// Copyright (C) 2022 Luke Shumaker // // SPDX-License-Identifier: GPL-2.0-or-later package btrfs import ( "context" "fmt" "io" iofs "io/fs" "math" "strings" "github.com/datawire/dlib/derror" "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsitem" "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsvol" "git.lukeshu.com/btrfs-progs-ng/lib/diskio" "git.lukeshu.com/btrfs-progs-ng/lib/slices" ) type Trees interface { // TreeWalk walks a tree, triggering callbacks for every node, // key-pointer, and item; as well as for any errors encountered. // // If the tree is valid, then everything is walked in key-order; but if // the tree is broken, then ordering is not guaranteed. // // Canceling the Context causes TreeWalk to return early; no // values from the Context are used. // // The lifecycle of callbacks is: // // 001 .PreNode() // 002 (read node) // 003 .Node() (or .BadNode()) // for item in node.items: // if internal: // 004 .PreKeyPointer() // 005 (recurse) // 006 .PostKeyPointer() // else: // 004 .Item() (or .BadItem()) // 007 .PostNode() TreeWalk(ctx context.Context, treeID ObjID, errHandle func(*TreeError), cbs TreeWalkHandler) TreeLookup(treeID ObjID, key Key) (Item, error) TreeSearch(treeID ObjID, fn func(key Key, size uint32) int) (Item, error) // size is math.MaxUint32 for key-pointers // If some items are able to be read, but there is an error reading the // full set, then it might return *both* a list of items and an error. // // If no such item is found, an error that is io/fs.ErrNotExist is // returned. TreeSearchAll(treeID ObjID, fn func(key Key, size uint32) int) ([]Item, error) // size is math.MaxUint32 for key-pointers // For bootstrapping purposes. Superblock() (*Superblock, error) // For reading raw data extants pointed at by tree items. ReadAt(p []byte, off btrfsvol.LogicalAddr) (int, error) } var _ Trees = (*FS)(nil) // - The first element will always have an ItemIdx of -1. // // - For .Item() callbacks, the last element will always have a // NodeAddr of 0. // // For example, given the tree structure // // [superblock] // | // | <------------------------------------------ pathElem={idx:-1, addr:0x01, lvl:3} // | // +[0x01]-----------+ // | lvl=3 | // +-+-+-+-+-+-+-+-+-+ // |1|2|3|4|5|6|7|8|9| // +---+---+---+---+-+ // | // | <------------------------------ pathElem={idx:8, addr:0x02, lvl:2} // | // +[0x02]-----------+ // | lvl=2 | // +-+-+-+-+-+-+-+-+-+ // |1|2|3|4|5|6|7|8|9| // +---+---+---+---+-+ // | // | <-------------------- pathElem={idx:7, addr:0x03, lvl:1} // | // +[0x03]-----------+ // | lvl=1 | // +-+-+-+-+-+-+-+-+-+ // |1|2|3|4|5|6|7|8|9| // +---+---+---+---+-+ // | // | <---------------- pathElem={idx:4, addr:0x04, lvl:0} // | // +[0x04]-----------+ // | lvl=0 | // +-+-+-+-+-+-+-+-+-+ // |1|2|3|4|5|6|7|8|9| // +---+---+---+---+-+ // | // | <--------------- pathElem={idx:5, addr:0, lvl:0} // | // [item] // // the path would be // // {-1, 0x01, 3}→{8, 0x02, 2}→{7, 0x03, 1}→{4, 0x04, 0}→{2, 0, 0} type TreePath struct { TreeID ObjID Nodes []TreePathElem } // A TreePathElem essentially represents a KeyPointer. type TreePathElem struct { // ItemIdx is the index of this KeyPointer in the parent Node; // or -1 if this is the root and there is no KeyPointer. ItemIdx int // NodeAddr is the address of the node that the KeyPointer // points at, or 0 if this is a leaf item and nothing is // being pointed at. NodeAddr btrfsvol.LogicalAddr // NodeLevel is the expected or actual level of the node at // NodeAddr. NodeLevel uint8 } func (elem TreePathElem) writeNodeTo(w io.Writer) { fmt.Fprintf(w, "node:%d@%v", elem.NodeLevel, elem.NodeAddr) } func (path TreePath) String() string { var ret strings.Builder fmt.Fprintf(&ret, "%s->", path.TreeID.Format(btrfsitem.ROOT_ITEM_KEY)) if len(path.Nodes) == 0 { ret.WriteString("(empty-path)") } else { path.Nodes[0].writeNodeTo(&ret) for _, elem := range path.Nodes[1:] { fmt.Fprintf(&ret, "[%v]", elem.ItemIdx) if elem.NodeAddr != 0 { ret.WriteString("->") elem.writeNodeTo(&ret) } } } return ret.String() } func (path TreePath) DeepCopy() TreePath { return TreePath{ TreeID: path.TreeID, Nodes: append([]TreePathElem(nil), path.Nodes...), } } func (path TreePath) Append(elem TreePathElem) TreePath { path.Nodes = append(path.Nodes, elem) return path } // path.Node(x) is like path.Nodes[x], but negative values of x move // down from the end of path.Nodes (similar to how lists work in many // other languages, such as Python). func (path TreePath) Node(x int) *TreePathElem { if x < 0 { x += len(path.Nodes) } return &path.Nodes[x] } type TreeError struct { Path TreePath Err error } func (e *TreeError) Unwrap() error { return e.Err } func (e *TreeError) Error() string { return fmt.Sprintf("%v: %v", e.Path, e.Err) } // A TreeRoot is more-or-less a btrfsitem.Root, but simpler; returned by // LookupTreeRoot. type TreeRoot struct { TreeID ObjID RootNode btrfsvol.LogicalAddr Level uint8 Generation Generation } // LookupTreeRoot is a utility function to help with implementing the 'Trees' // interface. func LookupTreeRoot(fs Trees, treeID ObjID) (*TreeRoot, error) { sb, err := fs.Superblock() if err != nil { return nil, err } switch treeID { case ROOT_TREE_OBJECTID: return &TreeRoot{ TreeID: treeID, RootNode: sb.RootTree, Level: sb.RootLevel, Generation: sb.Generation, // XXX: same generation as LOG_TREE? }, nil case CHUNK_TREE_OBJECTID: return &TreeRoot{ TreeID: treeID, RootNode: sb.ChunkTree, Level: sb.ChunkLevel, Generation: sb.ChunkRootGeneration, }, nil case TREE_LOG_OBJECTID: return &TreeRoot{ TreeID: treeID, RootNode: sb.LogTree, Level: sb.LogLevel, Generation: sb.Generation, // XXX: same generation as ROOT_TREE? }, nil case BLOCK_GROUP_TREE_OBJECTID: return &TreeRoot{ TreeID: treeID, RootNode: sb.BlockGroupRoot, Level: sb.BlockGroupRootLevel, Generation: sb.BlockGroupRootGeneration, }, nil default: rootItem, err := fs.TreeSearch(ROOT_TREE_OBJECTID, func(key Key, _ uint32) int { if key.ObjectID == treeID && key.ItemType == btrfsitem.ROOT_ITEM_KEY { return 0 } return Key{ ObjectID: treeID, ItemType: btrfsitem.ROOT_ITEM_KEY, Offset: 0, }.Cmp(key) }) if err != nil { return nil, err } rootItemBody, ok := rootItem.Body.(btrfsitem.Root) if !ok { return nil, fmt.Errorf("malformed ROOT_ITEM for tree %v", treeID) } return &TreeRoot{ TreeID: treeID, RootNode: rootItemBody.ByteNr, Level: rootItemBody.Level, Generation: rootItemBody.Generation, }, nil } } type TreeWalkHandler struct { // Callbacks for entire nodes PreNode func(TreePath) error Node func(TreePath, *diskio.Ref[btrfsvol.LogicalAddr, Node]) error BadNode func(TreePath, *diskio.Ref[btrfsvol.LogicalAddr, Node], error) error PostNode func(TreePath, *diskio.Ref[btrfsvol.LogicalAddr, Node]) error // Callbacks for items on internal nodes PreKeyPointer func(TreePath, KeyPointer) error PostKeyPointer func(TreePath, KeyPointer) error // Callbacks for items on leaf nodes Item func(TreePath, Item) error BadItem func(TreePath, Item) error } func (fs *FS) TreeWalk(ctx context.Context, treeID ObjID, errHandle func(*TreeError), cbs TreeWalkHandler) { path := TreePath{ TreeID: treeID, } rootInfo, err := LookupTreeRoot(fs, treeID) if err != nil { errHandle(&TreeError{Path: path, Err: err}) return } path = path.Append(TreePathElem{ ItemIdx: -1, NodeAddr: rootInfo.RootNode, NodeLevel: rootInfo.Level, }) fs.treeWalk(ctx, path, errHandle, cbs) } // TreeWalk is a utility function to help with implementing the 'Trees' // interface. func (fs *FS) RawTreeWalk(ctx context.Context, rootInfo TreeRoot, errHandle func(*TreeError), cbs TreeWalkHandler) { path := TreePath{ TreeID: rootInfo.TreeID, Nodes: []TreePathElem{ { ItemIdx: -1, NodeAddr: rootInfo.RootNode, NodeLevel: rootInfo.Level, }, }, } fs.treeWalk(ctx, path, errHandle, cbs) } func (fs *FS) treeWalk(ctx context.Context, path TreePath, errHandle func(*TreeError), cbs TreeWalkHandler) { if ctx.Err() != nil { return } if path.Node(-1).NodeAddr == 0 { return } if cbs.PreNode != nil { if err := cbs.PreNode(path); err != nil { errHandle(&TreeError{Path: path, Err: err}) } if ctx.Err() != nil { return } } node, err := fs.readNodeAtLevel(path.Node(-1).NodeAddr, path.Node(-1).NodeLevel) if ctx.Err() != nil { return } if err != nil && node != nil && cbs.BadNode != nil { // opportunity to fix the node err = cbs.BadNode(path, node, err) } if err != nil { errHandle(&TreeError{Path: path, Err: err}) } else { if cbs.Node != nil { if err := cbs.Node(path, node); err != nil { errHandle(&TreeError{Path: path, Err: err}) } } } if ctx.Err() != nil { return } if node != nil { for i, item := range node.Data.BodyInternal { itemPath := path.Append(TreePathElem{ ItemIdx: i, NodeAddr: item.BlockPtr, NodeLevel: node.Data.Head.Level - 1, }) if cbs.PreKeyPointer != nil { if err := cbs.PreKeyPointer(itemPath, item); err != nil { errHandle(&TreeError{Path: itemPath, Err: err}) } if ctx.Err() != nil { return } } fs.treeWalk(ctx, itemPath, errHandle, cbs) if cbs.PostKeyPointer != nil { if err := cbs.PostKeyPointer(itemPath, item); err != nil { errHandle(&TreeError{Path: itemPath, Err: err}) } if ctx.Err() != nil { return } } } for i, item := range node.Data.BodyLeaf { itemPath := path.Append(TreePathElem{ ItemIdx: i, }) if errBody, isErr := item.Body.(btrfsitem.Error); isErr { if cbs.BadItem == nil { errHandle(&TreeError{Path: itemPath, Err: errBody.Err}) } else { if err := cbs.BadItem(itemPath, item); err != nil { errHandle(&TreeError{Path: itemPath, Err: err}) } if ctx.Err() != nil { return } } } else { if cbs.Item != nil { if err := cbs.Item(itemPath, item); err != nil { errHandle(&TreeError{Path: itemPath, Err: err}) } if ctx.Err() != nil { return } } } } } if cbs.PostNode != nil { if err := cbs.PostNode(path, node); err != nil { errHandle(&TreeError{Path: path, Err: err}) } } } func (fs *FS) treeSearch(treeRoot TreeRoot, fn func(Key, uint32) int) (TreePath, *diskio.Ref[btrfsvol.LogicalAddr, Node], error) { path := TreePath{ TreeID: treeRoot.TreeID, Nodes: []TreePathElem{ { ItemIdx: -1, NodeAddr: treeRoot.RootNode, NodeLevel: treeRoot.Level, }, }, } for { if path.Node(-1).NodeAddr == 0 { return TreePath{}, nil, iofs.ErrNotExist } node, err := fs.readNodeAtLevel(path.Node(-1).NodeAddr, path.Node(-1).NodeLevel) if err != nil { return TreePath{}, nil, err } if node.Data.Head.Level > 0 { // internal node // Search for the right-most node.Data.BodyInternal item for which // `fn(item.Key) >= 0`. // // + + + + 0 - - - - // // There may or may not be a value that returns '0'. // // i.e. find the highest value that isn't too high. lastGood, ok := slices.SearchHighest(node.Data.BodyInternal, func(kp KeyPointer) int { return slices.Min(fn(kp.Key, math.MaxUint32), 0) // don't return >0; a key can't be "too low" }) if !ok { return TreePath{}, nil, iofs.ErrNotExist } path = path.Append(TreePathElem{ ItemIdx: lastGood, NodeAddr: node.Data.BodyInternal[lastGood].BlockPtr, NodeLevel: node.Data.Head.Level - 1, }) } else { // leaf node // Search for a member of node.Data.BodyLeaf for which // `fn(item.Head.Key) == 0`. // // + + + + 0 - - - - // // Such an item might not exist; in this case, return nil/ErrNotExist. // Multiple such items might exist; in this case, it does not matter which // is returned. // // Implement this search as a binary search. idx, ok := slices.Search(node.Data.BodyLeaf, func(item Item) int { return fn(item.Key, item.BodySize) }) if !ok { return TreePath{}, nil, iofs.ErrNotExist } path = path.Append(TreePathElem{ ItemIdx: idx, }) return path, node, nil } } } func (fs *FS) prev(path TreePath, node *diskio.Ref[btrfsvol.LogicalAddr, Node]) (TreePath, *diskio.Ref[btrfsvol.LogicalAddr, Node], error) { var err error path = path.DeepCopy() // go up for path.Node(-1).ItemIdx < 1 { path.Nodes = path.Nodes[:len(path.Nodes)-1] if len(path.Nodes) == 0 { return TreePath{}, nil, nil } } // go left path.Node(-1).ItemIdx-- if path.Node(-1).NodeAddr != 0 { if node.Addr != path.Node(-2).NodeAddr { node, err = fs.readNodeAtLevel(path.Node(-2).NodeAddr, path.Node(-2).NodeLevel) if err != nil { return TreePath{}, nil, err } path.Node(-1).NodeAddr = node.Data.BodyInternal[path.Node(-1).ItemIdx].BlockPtr } } // go down for path.Node(-1).NodeAddr != 0 { if node.Addr != path.Node(-1).NodeAddr { node, err = fs.readNodeAtLevel(path.Node(-1).NodeAddr, path.Node(-1).NodeLevel) if err != nil { return TreePath{}, nil, err } } if node.Data.Head.Level > 0 { path = path.Append(TreePathElem{ ItemIdx: len(node.Data.BodyInternal) - 1, NodeAddr: node.Data.BodyInternal[len(node.Data.BodyInternal)-1].BlockPtr, NodeLevel: node.Data.Head.Level - 1, }) } else { path = path.Append(TreePathElem{ ItemIdx: len(node.Data.BodyLeaf) - 1, }) } } // return if node.Addr != path.Node(-2).NodeAddr { node, err = fs.readNodeAtLevel(path.Node(-2).NodeAddr, path.Node(-2).NodeLevel) if err != nil { return TreePath{}, nil, err } } return path, node, nil } func (fs *FS) next(path TreePath, node *diskio.Ref[btrfsvol.LogicalAddr, Node]) (TreePath, *diskio.Ref[btrfsvol.LogicalAddr, Node], error) { var err error path = path.DeepCopy() // go up if node.Addr != path.Node(-2).NodeAddr { node, err = fs.readNodeAtLevel(path.Node(-2).NodeAddr, path.Node(-2).NodeLevel) if err != nil { return TreePath{}, nil, err } path.Node(-2).NodeLevel = node.Data.Head.Level } for path.Node(-1).ItemIdx+1 >= int(node.Data.Head.NumItems) { path.Nodes = path.Nodes[:len(path.Nodes)-1] if len(path.Nodes) == 1 { return TreePath{}, nil, nil } if node.Addr != path.Node(-2).NodeAddr { node, err = fs.readNodeAtLevel(path.Node(-2).NodeAddr, path.Node(-2).NodeLevel) if err != nil { return TreePath{}, nil, err } path.Node(-2).NodeLevel = node.Data.Head.Level } } // go left path.Node(-1).ItemIdx++ if path.Node(-1).NodeAddr != 0 { if node.Addr != path.Node(-2).NodeAddr { node, err = fs.readNodeAtLevel(path.Node(-2).NodeAddr, path.Node(-2).NodeLevel) if err != nil { return TreePath{}, nil, err } path.Node(-1).NodeAddr = node.Data.BodyInternal[path.Node(-1).ItemIdx].BlockPtr } } // go down for path.Node(-1).NodeAddr != 0 { if node.Addr != path.Node(-1).NodeAddr { node, err = fs.readNodeAtLevel(path.Node(-1).NodeAddr, path.Node(-1).NodeLevel) if err != nil { return TreePath{}, nil, err } path.Node(-1).NodeLevel = node.Data.Head.Level } if node.Data.Head.Level > 0 { path = path.Append(TreePathElem{ ItemIdx: 0, NodeAddr: node.Data.BodyInternal[len(node.Data.BodyInternal)-1].BlockPtr, NodeLevel: node.Data.Head.Level - 1, }) } else { path = path.Append(TreePathElem{ ItemIdx: 0, }) } } // return if node.Addr != path.Node(-2).NodeAddr { node, err = fs.readNodeAtLevel(path.Node(-2).NodeAddr, path.Node(-2).NodeLevel) if err != nil { return TreePath{}, nil, err } } return path, node, nil } func (fs *FS) TreeSearch(treeID ObjID, fn func(Key, uint32) int) (Item, error) { rootInfo, err := LookupTreeRoot(fs, treeID) if err != nil { return Item{}, err } path, node, err := fs.treeSearch(*rootInfo, fn) if err != nil { return Item{}, err } return node.Data.BodyLeaf[path.Node(-1).ItemIdx], nil } func KeySearch(fn func(Key) int) func(Key, uint32) int { return func(key Key, _ uint32) int { return fn(key) } } func (fs *FS) TreeLookup(treeID ObjID, key Key) (Item, error) { item, err := fs.TreeSearch(treeID, KeySearch(key.Cmp)) if err != nil { err = fmt.Errorf("item with key=%v: %w", key, err) } return item, err } func (fs *FS) TreeSearchAll(treeID ObjID, fn func(Key, uint32) int) ([]Item, error) { rootInfo, err := LookupTreeRoot(fs, treeID) if err != nil { return nil, err } middlePath, middleNode, err := fs.treeSearch(*rootInfo, fn) if err != nil { return nil, err } middleItem := middleNode.Data.BodyLeaf[middlePath.Node(-1).ItemIdx] var ret = []Item{middleItem} var errs derror.MultiError for prevPath, prevNode := middlePath, middleNode; true; { prevPath, prevNode, err = fs.prev(prevPath, prevNode) if err != nil { errs = append(errs, err) break } if len(prevPath.Nodes) == 0 { break } prevItem := prevNode.Data.BodyLeaf[prevPath.Node(-1).ItemIdx] if fn(prevItem.Key, prevItem.BodySize) != 0 { break } ret = append(ret, prevItem) } slices.Reverse(ret) for nextPath, nextNode := middlePath, middleNode; true; { nextPath, nextNode, err = fs.next(nextPath, nextNode) if err != nil { errs = append(errs, err) break } if len(nextPath.Nodes) == 0 { break } nextItem := nextNode.Data.BodyLeaf[nextPath.Node(-1).ItemIdx] if fn(nextItem.Key, nextItem.BodySize) != 0 { break } ret = append(ret, nextItem) } if errs != nil { err = errs } return ret, err }