1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
|
// Copyright (C) 2022-2023 Luke Shumaker <lukeshu@lukeshu.com>
//
// SPDX-License-Identifier: GPL-2.0-or-later
// Package rebuildtrees is the guts of the `btrfs-rec inspect
// rebuild-trees` command, which rebuilds broken trees, but requires
// already-functioning chunk/dev-extent/blockgroup trees.
// chunk/dev-extent/blockgroup trees.
package rebuildtrees
import (
"context"
"fmt"
"runtime"
"sort"
"time"
"github.com/datawire/dlib/dgroup"
"github.com/datawire/dlib/dlog"
"git.lukeshu.com/btrfs-progs-ng/lib/btrfs"
"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsitem"
"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsprim"
"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfstree"
"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsvol"
"git.lukeshu.com/btrfs-progs-ng/lib/btrfscheck"
"git.lukeshu.com/btrfs-progs-ng/lib/btrfsutil"
"git.lukeshu.com/btrfs-progs-ng/lib/containers"
"git.lukeshu.com/btrfs-progs-ng/lib/maps"
"git.lukeshu.com/btrfs-progs-ng/lib/textui"
)
type keyAndTree struct {
btrfsprim.Key
TreeID btrfsprim.ObjID
}
func (a keyAndTree) Compare(b keyAndTree) int {
if d := containers.NativeCompare(a.TreeID, b.TreeID); d != 0 {
return d
}
return a.Key.Compare(b.Key)
}
func (o keyAndTree) String() string {
return fmt.Sprintf("tree=%v key=%v", o.TreeID, o.Key)
}
type rebuilder struct {
scan ScanDevicesResult
rebuilt *btrfsutil.RebuiltForrest
curKey struct {
TreeID btrfsprim.ObjID
Key containers.Optional[btrfsprim.Key]
}
treeQueue containers.Set[btrfsprim.ObjID]
retryItemQueue map[btrfsprim.ObjID]containers.Set[keyAndTree]
addedItemQueue containers.Set[keyAndTree]
settledItemQueue containers.Set[keyAndTree]
augmentQueue map[btrfsprim.ObjID]*treeAugmentQueue
numAugments int
numAugmentFailures int
}
type treeAugmentQueue struct {
zero map[want]struct{}
single map[want]btrfsvol.LogicalAddr
multi map[want]containers.Set[btrfsvol.LogicalAddr]
}
type Rebuilder interface {
Rebuild(context.Context) error
ListRoots(context.Context) map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr]
}
func NewRebuilder(ctx context.Context, fs *btrfs.FS, nodeList []btrfsvol.LogicalAddr) (Rebuilder, error) {
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.step", "read-fs-data")
scanData, err := ScanDevices(ctx, fs, nodeList) // ScanDevices does its own logging
if err != nil {
return nil, err
}
o := &rebuilder{
scan: scanData,
}
o.rebuilt = btrfsutil.NewRebuiltForrest(fs, scanData.Graph, forrestCallbacks{o})
return o, nil
}
func (o *rebuilder) ListRoots(ctx context.Context) map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr] {
return o.rebuilt.RebuiltListRoots(ctx)
}
func (o *rebuilder) Rebuild(ctx context.Context) error {
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.step", "rebuild")
// Initialize
o.retryItemQueue = make(map[btrfsprim.ObjID]containers.Set[keyAndTree])
o.addedItemQueue = make(containers.Set[keyAndTree])
o.settledItemQueue = make(containers.Set[keyAndTree])
o.augmentQueue = make(map[btrfsprim.ObjID]*treeAugmentQueue)
// Seed the queue
o.treeQueue = containers.NewSet[btrfsprim.ObjID](
btrfsprim.ROOT_TREE_OBJECTID,
btrfsprim.CHUNK_TREE_OBJECTID,
// btrfsprim.TREE_LOG_OBJECTID, // TODO(lukeshu): Special LOG_TREE handling
btrfsprim.BLOCK_GROUP_TREE_OBJECTID,
)
// Run
for passNum := 0; len(o.treeQueue) > 0 || len(o.addedItemQueue) > 0 || len(o.settledItemQueue) > 0 || len(o.augmentQueue) > 0; passNum++ {
ctx := dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.pass", passNum)
// Crawl trees (Drain o.treeQueue, fill o.addedItemQueue).
if err := o.processTreeQueue(ctx); err != nil {
return err
}
runtime.GC()
if len(o.addedItemQueue) > 0 {
// Settle items (drain o.addedItemQueue, fill o.augmentQueue and o.settledItemQueue).
if err := o.processAddedItemQueue(ctx); err != nil {
return err
}
} else {
// Process items (drain o.settledItemQueue, fill o.augmentQueue and o.treeQueue).
if err := o.processSettledItemQueue(ctx); err != nil {
return err
}
}
runtime.GC()
// Apply augments (drain o.augmentQueue (and maybe o.retryItemQueue), fill o.addedItemQueue).
if err := o.processAugmentQueue(ctx); err != nil {
return err
}
runtime.GC()
}
return nil
}
// processTreeQueue drains o.treeQueue, filling o.addedItemQueue.
func (o *rebuilder) processTreeQueue(ctx context.Context) error {
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.substep", "collect-items")
queue := maps.SortedKeys(o.treeQueue)
o.treeQueue = make(containers.Set[btrfsprim.ObjID])
// Because trees can be wildly different sizes, it's impossible to have a meaningful
// progress percentage here.
o.curKey.Key.OK = false
for _, o.curKey.TreeID = range queue {
if err := ctx.Err(); err != nil {
return err
}
// This will call o.AddedItem as nescessary, which
// inserts to o.addedItemQueue.
_, _ = o.rebuilt.ForrestLookup(ctx, o.curKey.TreeID)
}
return nil
}
type settleItemStats struct {
textui.Portion[int]
NumAugments int
NumAugmentTrees int
}
func (s settleItemStats) String() string {
// return textui.Sprintf("%v (queued %v augments across %v trees)",
return textui.Sprintf("%v (aug:%v trees:%v)",
s.Portion, s.NumAugments, s.NumAugmentTrees)
}
// processAddedItemQueue drains o.addedItemQueue, filling o.augmentQueue and o.settledItemQueue.
func (o *rebuilder) processAddedItemQueue(ctx context.Context) error {
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.substep", "settle-items")
queue := maps.Keys(o.addedItemQueue)
o.addedItemQueue = make(containers.Set[keyAndTree])
sort.Slice(queue, func(i, j int) bool {
return queue[i].Compare(queue[j]) < 0
})
var progress settleItemStats
progress.D = len(queue)
progressWriter := textui.NewProgress[settleItemStats](ctx, dlog.LogLevelInfo, textui.Tunable(1*time.Second))
progressWriter.Set(progress)
defer progressWriter.Done()
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.substep.progress", &progress)
for _, key := range queue {
ctx := dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.settle.item", key)
tree := discardErr(o.rebuilt.RebuiltTree(ctx, key.TreeID))
incPtr, ok := tree.RebuiltAcquireItems(ctx).Load(key.Key)
tree.RebuiltReleaseItems()
if !ok {
panic(fmt.Errorf("should not happen: failed to load already-added item: %v", key))
}
excPtr, ok := tree.RebuiltAcquirePotentialItems(ctx).Load(key.Key)
tree.RebuiltReleasePotentialItems()
if ok && tree.RebuiltShouldReplace(incPtr.Node, excPtr.Node) {
wantKey := wantWithTree{
TreeID: key.TreeID,
Key: wantFromKey(key.Key),
}
o.wantAugment(ctx, wantKey, tree.RebuiltLeafToRoots(ctx, excPtr.Node))
progress.NumAugments = o.numAugments
progress.NumAugmentTrees = len(o.augmentQueue)
} else if !btrfscheck.HandleItemWouldBeNoOp(key.ItemType) {
o.settledItemQueue.Insert(key)
}
progress.N++
progressWriter.Set(progress)
}
return nil
}
type itemToVisit struct {
SortTreeID btrfsprim.ObjID // Use this tree ID for sorting, but not lookups
keyAndTree
RefNum int // Only for EXTENT_ITEM and METADATA_ITEM
}
func (k itemToVisit) String() string {
if k.TreeID == btrfsprim.EXTENT_TREE_OBJECTID &&
(k.ItemType == btrfsprim.EXTENT_ITEM_KEY || k.ItemType == btrfsprim.METADATA_ITEM_KEY) {
return textui.Sprintf("%v#%d", k.keyAndTree, k.RefNum)
}
return textui.Sprintf("%v", k.keyAndTree)
}
func (a itemToVisit) Compare(b itemToVisit) int {
if d := containers.NativeCompare(a.SortTreeID, b.SortTreeID); d != 0 {
return d
}
if d := a.keyAndTree.Compare(b.keyAndTree); d != 0 {
return d
}
return containers.NativeCompare(a.RefNum, b.RefNum)
}
// sortSettledItemQueue is like a the usual simple by-key sort; but
// applies a different sort-order to members of the EXTENT_TREE. It
// sorts those members by the FS trees of the referencing inodes,
// rather than by the laddr of the extent being referenced. This
// greatly reduces the number of .RebuiltAcquireItems() cache-misses.
func (o *rebuilder) sortSettledItemQueue(ctx context.Context, unorderedQueue containers.Set[keyAndTree]) []itemToVisit {
// Like many problems, the trick isn't answering the question,
// it's asking the right question.
//
// "Naively", the problem might be stated as:
//
// Definitions:
//
// An "item" contains a set of 0 or more (`uint64`) "tree
// IDs". "Processing" an item does a cache-load operation
// (from a replacement cache) for each tree ID.
//
// Problem:
//
// Given a list of items, sort the list in a manor that
// minimizes cache-misses when processing the items in the
// list in order. Does the cache size or cache
// replacement policy affect what the optimal order is?
//
// Discussion:
//
// Put another way, sort the list such that items
// containing the same tree IDs are near to eachother. If
// each item only contained 1 tree ID, this would be
// simple: sort by that tree ID. The difficulty of the
// question is how to weight each tree ID when items
// contain multiple; if an item contains tree IDs 'A' and
// 'B', and putting it near other items with 'A' if that
// means putting it farther from other items with 'B',
// when is it worth it to do so?
//
// The most obvious approach that is independent of the cache
// size/policy is to minimize the total distance between items
// within the same set. It turns out that this is the
// "Minimum Linear Arrangement" problem ("MinLA"), which is
// NP-hard. But, if you were paying attention, it's not quite
// MinLA; in our once two items are far enough apart that a
// cache eviction happens between them, there's no cost to
// moving them farther apart. And continuing to try to keep
// them close (instead of giving up on them) results in
// sub-optimal arrangements. So not only is MinLA
// computationally expensive for us to try to approximate a
// solution for, it won't actually give us a very good
// solution!
//
// So you might think "Ah, the trick is to not ask MinLA, the
// trick is to ask this MinLA-with-capped-cost question!" But
// we can find an even better question!
//
// Some concrete numbers to help with thinking about this: In
// my test trees, the maximum number of trees per item is 33,
// and slowdown from areas of the queue with few cache misses
// to areas where the MinLA approximation does poorly is
// around ~300×. And I don't think it's possible to come up
// with a better solution without going O(n^2), which is
// prohibitive when there are 4 million items in the
// EXTENT_TREE.
//
// The *right* question involves backing up and revisiting the
// assumption that it's *items* that we're sorting.
//
// Instead, let's allow items in the EXTENT_TREE to be visited
// more than once; have an entry in the queue for each
// ExtentDataRef within an item. Sure, that'll cause some
// inefficiency because EXTENT_ITEMs and METADATA_ITEMs will
// need to be read more than once. But that's a ~30×
// slowdown, and allows us to just sort those queue-entries
// near the trees being back-referenced. A ~30× slowdown is a
// heck of a lot better than a ~300× slowdown. And we don't
// have to try to solve a problem that's NP-hard.
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.process.substep", "sort")
dlog.Info(ctx, "building ordered queue...")
dlog.Infof(ctx, "... walking %d items...", len(unorderedQueue))
// Don't worry about bailing if there is a failure to get the
// EXTENT_TREE; if that fails, then there can't be any items
// in the EXTENT_TREE for us to have to handle special, and
// all of the following code will fall through common-path.
var extentItems *containers.SortedMap[btrfsprim.Key, btrfsutil.ItemPtr]
if extentTree, err := o.rebuilt.RebuiltTree(ctx, btrfsprim.EXTENT_TREE_OBJECTID); err == nil {
extentItems = extentTree.RebuiltAcquireItems(ctx)
defer extentTree.RebuiltReleaseItems()
}
orderedQueue := make([]itemToVisit, 0, len(unorderedQueue))
for itemKey := range unorderedQueue {
if itemKey.TreeID == btrfsprim.EXTENT_TREE_OBJECTID && (itemKey.ItemType == btrfsprim.EXTENT_ITEM_KEY ||
itemKey.ItemType == btrfsprim.METADATA_ITEM_KEY ||
itemKey.ItemType == btrfsprim.EXTENT_DATA_REF_KEY) {
ptr, _ := extentItems.Load(itemKey.Key)
for i, treeID := range o.scan.DataBackrefs[ptr] {
orderedQueue = append(orderedQueue, itemToVisit{
keyAndTree: itemKey,
SortTreeID: treeID,
RefNum: i,
})
}
} else {
orderedQueue = append(orderedQueue, itemToVisit{
keyAndTree: itemKey,
SortTreeID: itemKey.TreeID,
})
}
}
dlog.Infof(ctx, "... sorting %d queue entries...", len(orderedQueue))
sort.Slice(orderedQueue, func(i, j int) bool {
return orderedQueue[i].Compare(orderedQueue[j]) < 0
})
dlog.Info(ctx, "... done")
return orderedQueue
}
type processItemStats struct {
textui.Portion[int]
NumAugments int
NumFailures int
NumAugmentTrees int
}
func (s processItemStats) String() string {
// return textui.Sprintf("%v (queued %v augments and %v failures across %v trees)",
return textui.Sprintf("%v (aug:%v fail:%v trees:%v)",
s.Portion, s.NumAugments, s.NumFailures, s.NumAugmentTrees)
}
// processSettledItemQueue drains o.settledItemQueue, filling o.augmentQueue and o.treeQueue.
func (o *rebuilder) processSettledItemQueue(ctx context.Context) error {
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.substep", "process-items")
queue := o.sortSettledItemQueue(ctx, o.settledItemQueue)
o.settledItemQueue = make(containers.Set[keyAndTree])
var progress processItemStats
progress.D = len(queue)
progressWriter := textui.NewProgress[processItemStats](ctx, dlog.LogLevelInfo, textui.Tunable(1*time.Second))
progressWriter.Set(progress)
defer progressWriter.Done()
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.substep.progress", &progress)
progressWriter.Set(progress)
type keyAndBody struct {
itemToVisit
Body btrfsitem.Item
}
itemChan := make(chan keyAndBody, textui.Tunable(300)) // average items-per-node≈100; let's have a buffer of ~3 nodes
grp := dgroup.NewGroup(ctx, dgroup.GroupConfig{})
grp.Go("io", func(ctx context.Context) error {
defer close(itemChan)
nextKey:
for _, key := range queue {
if err := ctx.Err(); err != nil {
return err
}
ctx := dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.process.item", key)
item := keyAndBody{
itemToVisit: key,
Body: discardErr(discardErr(o.rebuilt.RebuiltTree(ctx, key.TreeID)).TreeLookup(ctx, key.Key)).Body,
}
if key.TreeID == btrfsprim.EXTENT_TREE_OBJECTID &&
(key.ItemType == btrfsprim.EXTENT_ITEM_KEY || key.ItemType == btrfsprim.METADATA_ITEM_KEY) {
switch itemBody := item.Body.(type) {
case *btrfsitem.Extent:
item.Body = itemBody.Refs[key.RefNum].Body
if item.Body == nil {
continue nextKey
}
case *btrfsitem.Metadata:
item.Body = itemBody.Refs[key.RefNum].Body
if item.Body == nil {
continue nextKey
}
case *btrfsitem.Error:
// do nothing
default:
// This is a panic because the item decoder should not emit a new
// type to ref.Body without this code also being updated.
panic(fmt.Errorf("should not happen: unexpected type %T for %v", itemBody, key.ItemType))
}
}
select {
case itemChan <- item:
case <-ctx.Done():
}
}
return nil
})
grp.Go("cpu", func(ctx context.Context) error {
o.curKey.Key.OK = true
for item := range itemChan {
ctx := dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.process.item", item.keyAndTree)
o.curKey.TreeID = item.TreeID
o.curKey.Key.Val = item.Key
btrfscheck.HandleItem(ctx, graphCallbacks{o}, item.TreeID, btrfstree.Item{
Key: item.Key,
Body: item.Body,
})
item.Body.Free()
if item.ItemType == btrfsitem.ROOT_ITEM_KEY {
o.treeQueue.Insert(item.ObjectID)
}
progress.N++
progress.NumAugments = o.numAugments
progress.NumFailures = o.numAugmentFailures
progress.NumAugmentTrees = len(o.augmentQueue)
progressWriter.Set(progress)
}
return nil
})
return grp.Wait()
}
// processAugmentQueue drains o.augmentQueue (and maybe o.retryItemQueue), filling o.addedItemQueue.
func (o *rebuilder) processAugmentQueue(ctx context.Context) error {
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.substep", "apply-augments")
resolvedAugments := make(map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr], len(o.augmentQueue))
var progress textui.Portion[int]
for _, treeID := range maps.SortedKeys(o.augmentQueue) {
if err := ctx.Err(); err != nil {
return err
}
ctx := dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.augment.tree", treeID)
resolvedAugments[treeID] = o.resolveTreeAugments(ctx, treeID)
progress.D += len(resolvedAugments[treeID])
}
o.augmentQueue = make(map[btrfsprim.ObjID]*treeAugmentQueue)
o.numAugments = 0
o.numAugmentFailures = 0
runtime.GC()
progressWriter := textui.NewProgress[textui.Portion[int]](ctx, dlog.LogLevelInfo, textui.Tunable(1*time.Second))
progressWriter.Set(progress)
defer progressWriter.Done()
ctx = dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.substep.progress", &progress)
for _, treeID := range maps.SortedKeys(resolvedAugments) {
ctx := dlog.WithField(ctx, "btrfs.inspect.rebuild-trees.rebuild.augment.tree", treeID)
for _, nodeAddr := range maps.SortedKeys(resolvedAugments[treeID]) {
if err := ctx.Err(); err != nil {
return err
}
// This will call o.AddedItem as nescessary, which
// inserts to o.addedItemQueue.
discardErr(o.rebuilt.RebuiltTree(ctx, treeID)).RebuiltAddRoot(ctx, nodeAddr)
progress.N++
progressWriter.Set(progress)
}
}
return nil
}
func (o *rebuilder) enqueueRetry(ifTreeID btrfsprim.ObjID) {
if o.curKey.Key.OK {
if o.retryItemQueue[ifTreeID] == nil {
o.retryItemQueue[ifTreeID] = make(containers.Set[keyAndTree])
}
o.retryItemQueue[ifTreeID].Insert(keyAndTree{
TreeID: o.curKey.TreeID,
Key: o.curKey.Key.Val,
})
} else {
o.treeQueue.Insert(o.curKey.TreeID)
}
}
func (o *rebuilder) resolveTreeAugments(ctx context.Context, treeID btrfsprim.ObjID) containers.Set[btrfsvol.LogicalAddr] {
// Define an algorithm that takes several lists of items, and returns a
// set of those items such that each input list contains zero or one of
// the items from your return set. The same item may appear in multiple
// of the input lists.
type ChoiceInfo struct {
Count int
Distance int
Generation btrfsprim.Generation
}
choices := make(map[btrfsvol.LogicalAddr]ChoiceInfo)
// o.augmentQueue[treeID].zero is optimized storage for lists
// with zero items. Go ahead and free that memory up.
o.augmentQueue[treeID].zero = nil
// o.augmentQueue[treeID].single is optimized storage for
// lists with exactly 1 item.
for _, choice := range o.augmentQueue[treeID].single {
if old, ok := choices[choice]; ok {
old.Count++
choices[choice] = old
} else {
choices[choice] = ChoiceInfo{
Count: 1,
Distance: discardOK(discardErr(o.rebuilt.RebuiltTree(ctx, treeID)).RebuiltCOWDistance(o.scan.Graph.Nodes[choice].Owner)),
Generation: o.scan.Graph.Nodes[choice].Generation,
}
}
}
// o.augmentQueue[treeID].multi is the main list storage.
for _, list := range o.augmentQueue[treeID].multi {
for choice := range list {
if old, ok := choices[choice]; ok {
old.Count++
choices[choice] = old
} else {
choices[choice] = ChoiceInfo{
Count: 1,
Distance: discardOK(discardErr(o.rebuilt.RebuiltTree(ctx, treeID)).RebuiltCOWDistance(o.scan.Graph.Nodes[choice].Owner)),
Generation: o.scan.Graph.Nodes[choice].Generation,
}
}
}
}
// > Example 1: Given the input lists
// >
// > 0: [A, B]
// > 2: [A, C]
// >
// > legal solutions would be `[]`, `[A]`, `[B]`, `[C]`, or `[B, C]`. It
// > would not be legal to return `[A, B]` or `[A, C]`.
//
// > Example 2: Given the input lists
// >
// > 1: [A, B]
// > 2: [A]
// > 3: [B]
// >
// > legal solution would be `[]`, `[A]` or `[B]`. It would not be legal
// > to return `[A, B]`.
//
// The algorithm should optimize for the following goals:
//
// - We prefer that each input list have an item in the return set.
//
// > In Example 1, while `[]`, `[B]`, and `[C]` are permissible
// > solutions, they are not optimal, because one or both of the input
// > lists are not represented.
// >
// > It may be the case that it is not possible to represent all lists
// > in the result; in Example 2, either list 2 or list 3 must be
// > unrepresented.
//
// - Each item has a non-negative scalar "distance" score, we prefer
// lower distances. Distance scores are comparable; 0 is preferred,
// and a distance of 4 is twice as bad as a distance of 2.
//
// - Each item has a "generation" score, we prefer higher generations.
// Generation scores should not be treated as a linear scale; the
// magnitude of deltas is meaningless; only the sign of a delta is
// meaningful.
//
// > So it would be wrong to say something like
// >
// > desirability = (-a*distance) + (b*generation) // for some constants `a` and `b`
// >
// > because `generation` can't be used that way
//
// - We prefer items that appear in more lists over items that appear in
// fewer lists.
//
// The relative priority of these 4 goals is undefined; preferably the
// algorithm should be defined in a way that makes it easy to adjust the
// relative priorities.
ret := make(containers.Set[btrfsvol.LogicalAddr])
illegal := make(containers.Set[btrfsvol.LogicalAddr]) // cannot-be-accepted and already-accepted
accept := func(item btrfsvol.LogicalAddr) {
ret.Insert(item)
for _, list := range o.augmentQueue[treeID].multi {
if list.Has(item) {
illegal.InsertFrom(list)
}
}
}
sortedItems := maps.Keys(choices)
sort.Slice(sortedItems, func(i, j int) bool {
iItem, jItem := sortedItems[i], sortedItems[j]
if choices[iItem].Count != choices[jItem].Count {
return choices[iItem].Count > choices[jItem].Count // reverse this check; higher counts should sort lower
}
if choices[iItem].Distance != choices[jItem].Distance {
return choices[iItem].Distance < choices[jItem].Distance
}
if choices[iItem].Generation != choices[jItem].Generation {
return choices[iItem].Generation > choices[jItem].Generation // reverse this check; higher generations should sort lower
}
return iItem < jItem // laddr is as good a tiebreaker as anything
})
for _, item := range sortedItems {
if !illegal.Has(item) {
accept(item)
}
}
// Log our result
wantKeys := append(
maps.Keys(o.augmentQueue[treeID].single),
maps.Keys(o.augmentQueue[treeID].multi)...)
sort.Slice(wantKeys, func(i, j int) bool {
return wantKeys[i].Compare(wantKeys[j]) < 0
})
for _, wantKey := range wantKeys {
list, ok := o.augmentQueue[treeID].multi[wantKey]
if !ok {
list = containers.NewSet[btrfsvol.LogicalAddr](o.augmentQueue[treeID].single[wantKey])
}
chose := list.Intersection(ret)
switch {
case len(chose) == 0:
dlog.Infof(ctx, "lists[%q]: chose (none) from %v", wantKey, maps.SortedKeys(list))
case len(list) > 1:
dlog.Infof(ctx, "lists[%q]: chose %v from %v", wantKey, chose.TakeOne(), maps.SortedKeys(list))
default:
dlog.Debugf(ctx, "lists[%q]: chose %v from %v", wantKey, chose.TakeOne(), maps.SortedKeys(list))
}
}
// Free some memory
o.augmentQueue[treeID].single = nil
o.augmentQueue[treeID].multi = nil
return ret
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
func (queue *treeAugmentQueue) has(wantKey want) bool {
if queue == nil {
return false
}
return (queue.zero != nil && maps.HasKey(queue.zero, wantKey)) ||
(queue.single != nil && maps.HasKey(queue.single, wantKey)) ||
(queue.multi != nil && maps.HasKey(queue.multi, wantKey))
}
func (queue *treeAugmentQueue) store(wantKey want, choices containers.Set[btrfsvol.LogicalAddr]) {
if len(choices) == 0 && wantKey.OffsetType > offsetExact {
// This wantKey is unlikely to come up again, so it's
// not worth the RAM of storing a negative result.
return
}
switch len(choices) {
case 0:
if queue.zero == nil {
queue.zero = make(map[want]struct{})
}
queue.zero[wantKey] = struct{}{}
case 1:
if queue.single == nil {
queue.single = make(map[want]btrfsvol.LogicalAddr)
}
queue.single[wantKey] = choices.TakeOne()
default:
if queue.multi == nil {
queue.multi = make(map[want]containers.Set[btrfsvol.LogicalAddr])
}
queue.multi[wantKey] = choices
}
}
func (o *rebuilder) hasAugment(wantKey wantWithTree) bool {
return o.augmentQueue[wantKey.TreeID].has(wantKey.Key)
}
func (o *rebuilder) wantAugment(ctx context.Context, wantKey wantWithTree, choices containers.Set[btrfsvol.LogicalAddr]) {
if o.augmentQueue[wantKey.TreeID] == nil {
o.augmentQueue[wantKey.TreeID] = new(treeAugmentQueue)
}
o.augmentQueue[wantKey.TreeID].store(wantKey.Key, choices)
if len(choices) == 0 {
o.numAugmentFailures++
dlog.Debug(ctx, "ERR: could not find wanted item")
} else {
o.numAugments++
dlog.Debugf(ctx, "choices=%v", maps.SortedKeys(choices))
}
}
|