1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
|
// Copyright (C) 2022-2023 Luke Shumaker <lukeshu@lukeshu.com>
//
// SPDX-License-Identifier: GPL-2.0-or-later
package containers
import (
"fmt"
"reflect"
"git.lukeshu.com/btrfs-progs-ng/lib/slices"
)
type Color bool
const (
Black = Color(false)
Red = Color(true)
)
type RBNode[V any] struct {
Parent, Left, Right *RBNode[V]
Color Color
Value V
}
func (node *RBNode[V]) getColor() Color {
if node == nil {
return Black
}
return node.Color
}
type RBTree[K Ordered[K], V any] struct {
KeyFn func(V) K
AttrFn func(*RBNode[V])
root *RBNode[V]
len int
}
func (t *RBTree[K, V]) Len() int {
return t.len
}
func (t *RBTree[K, V]) Walk(fn func(*RBNode[V]) error) error {
return t.root.walk(fn)
}
func (node *RBNode[V]) walk(fn func(*RBNode[V]) error) error {
if node == nil {
return nil
}
if err := node.Left.walk(fn); err != nil {
return err
}
if err := fn(node); err != nil {
return err
}
if err := node.Right.walk(fn); err != nil {
return err
}
return nil
}
// Search the tree for a value that satisfied the given callbackk
// function. A return value of 0 means to return this value; <0 means
// to go left on the tree (the value is too high), >0 means to go
// right on th etree (the value is too low).
//
// +-----+
// | v=8 | == 0 : this is it
// +-----+
// / \
// / \
// <0 : go left >0 : go right
// / \
// +---+ +---+
// | 7 | | 9 |
// +---+ +---+
//
// Returns nil if no such value is found.
//
// Search is good for advanced lookup, like when a range of values is
// acceptable. For simple exact-value lookup, use Lookup.
func (t *RBTree[K, V]) Search(fn func(V) int) *RBNode[V] {
ret, _ := t.root.search(fn)
return ret
}
func (node *RBNode[V]) search(fn func(V) int) (exact, nearest *RBNode[V]) {
var prev *RBNode[V]
for {
if node == nil {
return nil, prev
}
direction := fn(node.Value)
prev = node
switch {
case direction < 0:
node = node.Left
case direction == 0:
return node, nil
case direction > 0:
node = node.Right
}
}
}
func (t *RBTree[K, V]) exactKey(key K) func(V) int {
return func(val V) int {
valKey := t.KeyFn(val)
return key.Cmp(valKey)
}
}
// Lookup looks up the value for an exact key. If no such value
// exists, nil is returned.
func (t *RBTree[K, V]) Lookup(key K) *RBNode[V] {
return t.Search(t.exactKey(key))
}
// Min returns the minimum value stored in the tree, or nil if the
// tree is empty.
func (t *RBTree[K, V]) Min() *RBNode[V] {
return t.root.min()
}
func (node *RBNode[V]) min() *RBNode[V] {
if node == nil {
return nil
}
for {
if node.Left == nil {
return node
}
node = node.Left
}
}
// Max returns the maximum value stored in the tree, or nil if the
// tree is empty.
func (t *RBTree[K, V]) Max() *RBNode[V] {
return t.root.max()
}
func (node *RBNode[V]) max() *RBNode[V] {
if node == nil {
return nil
}
for {
if node.Right == nil {
return node
}
node = node.Right
}
}
func (t *RBTree[K, V]) Next(cur *RBNode[V]) *RBNode[V] {
return cur.next()
}
func (cur *RBNode[V]) next() *RBNode[V] {
if cur.Right != nil {
return cur.Right.min()
}
child, parent := cur, cur.Parent
for parent != nil && child == parent.Right {
child, parent = parent, parent.Parent
}
return parent
}
func (t *RBTree[K, V]) Prev(cur *RBNode[V]) *RBNode[V] {
return cur.prev()
}
func (cur *RBNode[V]) prev() *RBNode[V] {
if cur.Left != nil {
return cur.Left.max()
}
child, parent := cur, cur.Parent
for parent != nil && child == parent.Left {
child, parent = parent, parent.Parent
}
return parent
}
// SearchRange is like Search, but returns all nodes that match the
// function; assuming that they are contiguous.
func (t *RBTree[K, V]) SearchRange(fn func(V) int) []V {
middle := t.Search(fn)
if middle == nil {
return nil
}
ret := []V{middle.Value}
for node := t.Prev(middle); node != nil && fn(node.Value) == 0; node = t.Prev(node) {
ret = append(ret, node.Value)
}
slices.Reverse(ret)
for node := t.Next(middle); node != nil && fn(node.Value) == 0; node = t.Next(node) {
ret = append(ret, node.Value)
}
return ret
}
func (t *RBTree[K, V]) Equal(u *RBTree[K, V]) bool {
if (t == nil) != (u == nil) {
return false
}
if t == nil {
return true
}
var tSlice []V
_ = t.Walk(func(node *RBNode[V]) error {
tSlice = append(tSlice, node.Value)
return nil
})
var uSlice []V
_ = u.Walk(func(node *RBNode[V]) error {
uSlice = append(uSlice, node.Value)
return nil
})
return reflect.DeepEqual(tSlice, uSlice)
}
func (t *RBTree[K, V]) parentChild(node *RBNode[V]) **RBNode[V] {
switch {
case node.Parent == nil:
return &t.root
case node.Parent.Left == node:
return &node.Parent.Left
case node.Parent.Right == node:
return &node.Parent.Right
default:
panic(fmt.Errorf("node %p is not a child of its parent %p", node, node.Parent))
}
}
func (t *RBTree[K, V]) updateAttr(node *RBNode[V]) {
if t.AttrFn == nil {
return
}
for node != nil {
t.AttrFn(node)
node = node.Parent
}
}
func (t *RBTree[K, V]) leftRotate(x *RBNode[V]) {
// p p
// | |
// +---+ +---+
// | x | | y |
// +---+ +---+
// / \ => / \
// a +---+ +---+ c
// | y | | x |
// +---+ +---+
// / \ / \
// b c a b
// Define 'p', 'x', 'y', and 'b' per the above diagram.
p := x.Parent
pChild := t.parentChild(x)
y := x.Right
b := y.Left
// Move things around
y.Parent = p
*pChild = y
x.Parent = y
y.Left = x
if b != nil {
b.Parent = x
}
x.Right = b
t.updateAttr(x)
}
func (t *RBTree[K, V]) rightRotate(y *RBNode[V]) {
//nolint:dupword
//
// | |
// +---+ +---+
// | y | | x |
// +---+ +---+
// / \ => / \
// +---+ c a +---+
// | x | | y |
// +---+ +---+
// / \ / \
// a b b c
// Define 'p', 'x', 'y', and 'b' per the above diagram.
p := y.Parent
pChild := t.parentChild(y)
x := y.Left
b := x.Right
// Move things around
x.Parent = p
*pChild = x
y.Parent = x
x.Right = y
if b != nil {
b.Parent = y
}
y.Left = b
t.updateAttr(y)
}
func (t *RBTree[K, V]) Insert(val V) {
// Naive-insert
key := t.KeyFn(val)
exact, parent := t.root.search(t.exactKey(key))
if exact != nil {
exact.Value = val
return
}
t.len++
node := &RBNode[V]{
Color: Red,
Parent: parent,
Value: val,
}
switch {
case parent == nil:
t.root = node
case key.Cmp(t.KeyFn(parent.Value)) < 0:
parent.Left = node
default:
parent.Right = node
}
t.updateAttr(node)
// Re-balance
//
// This is closely based on the algorithm presented in CLRS
// 3e.
for node.Parent.getColor() == Red {
if node.Parent == node.Parent.Parent.Left {
uncle := node.Parent.Parent.Right
if uncle.getColor() == Red {
node.Parent.Color = Black
uncle.Color = Black
node.Parent.Parent.Color = Red
node = node.Parent.Parent
} else {
if node == node.Parent.Right {
node = node.Parent
t.leftRotate(node)
}
node.Parent.Color = Black
node.Parent.Parent.Color = Red
t.rightRotate(node.Parent.Parent)
}
} else {
uncle := node.Parent.Parent.Left
if uncle.getColor() == Red {
node.Parent.Color = Black
uncle.Color = Black
node.Parent.Parent.Color = Red
node = node.Parent.Parent
} else {
if node == node.Parent.Left {
node = node.Parent
t.rightRotate(node)
}
node.Parent.Color = Black
node.Parent.Parent.Color = Red
t.leftRotate(node.Parent.Parent)
}
}
}
t.root.Color = Black
}
func (t *RBTree[K, V]) transplant(oldNode, newNode *RBNode[V]) {
*t.parentChild(oldNode) = newNode
if newNode != nil {
newNode.Parent = oldNode.Parent
}
}
func (t *RBTree[K, V]) Delete(key K) {
nodeToDelete := t.Lookup(key)
if nodeToDelete == nil {
return
}
t.len--
// This is closely based on the algorithm presented in CLRS
// 3e.
// phase 1
var nodeToRebalance *RBNode[V]
var nodeToRebalanceParent *RBNode[V] // in case 'nodeToRebalance' is nil, which it can be
needsRebalance := nodeToDelete.Color == Black
switch {
case nodeToDelete.Left == nil:
nodeToRebalance = nodeToDelete.Right
nodeToRebalanceParent = nodeToDelete.Parent
t.transplant(nodeToDelete, nodeToDelete.Right)
case nodeToDelete.Right == nil:
nodeToRebalance = nodeToDelete.Left
nodeToRebalanceParent = nodeToDelete.Parent
t.transplant(nodeToDelete, nodeToDelete.Left)
default:
// The node being deleted has a child on both sides,
// so we've go to reshuffle the parents a bit to make
// room for those children.
next := nodeToDelete.next()
if next.Parent == nodeToDelete {
// p p
// | |
// +-----+ +-----+
// | ntd | | nxt |
// +-----+ +-----+
// / \ => / \
// a +-----+ a b
// | nxt |
// +-----+
// / \
// nil b
nodeToRebalance = next.Right
nodeToRebalanceParent = next
*t.parentChild(nodeToDelete) = next
next.Parent = nodeToDelete.Parent
next.Left = nodeToDelete.Left
next.Left.Parent = next
} else {
// p p
// | |
// +-----+ +-----+
// | ntd | | nxt |
// +-----+ +-----+
// / \ / \
// a x a x
// / \ => / \
// y z y z
// / \ / \
// +-----+ c b c
// | nxt |
// +-----+
// / \
// nil b
y := next.Parent
b := next.Right
nodeToRebalance = b
nodeToRebalanceParent = y
*t.parentChild(nodeToDelete) = next
next.Parent = nodeToDelete.Parent
next.Left = nodeToDelete.Left
next.Left.Parent = next
next.Right = nodeToDelete.Right
next.Right.Parent = next
y.Left = b
if b != nil {
b.Parent = y
}
}
// idk
needsRebalance = next.Color == Black
next.Color = nodeToDelete.Color
}
t.updateAttr(nodeToRebalanceParent)
// phase 2
if needsRebalance {
node := nodeToRebalance
nodeParent := nodeToRebalanceParent
for node != t.root && node.getColor() == Black {
if node == nodeParent.Left {
sibling := nodeParent.Right
if sibling.getColor() == Red {
sibling.Color = Black
nodeParent.Color = Red
t.leftRotate(nodeParent)
sibling = nodeParent.Right
}
if sibling.Left.getColor() == Black && sibling.Right.getColor() == Black {
sibling.Color = Red
node, nodeParent = nodeParent, nodeParent.Parent
} else {
if sibling.Right.getColor() == Black {
sibling.Left.Color = Black
sibling.Color = Red
t.rightRotate(sibling)
sibling = nodeParent.Right
}
sibling.Color = nodeParent.Color
nodeParent.Color = Black
sibling.Right.Color = Black
t.leftRotate(nodeParent)
node, nodeParent = t.root, nil
}
} else {
sibling := nodeParent.Left
if sibling.getColor() == Red {
sibling.Color = Black
nodeParent.Color = Red
t.rightRotate(nodeParent)
sibling = nodeParent.Left
}
if sibling.Right.getColor() == Black && sibling.Left.getColor() == Black {
sibling.Color = Red
node, nodeParent = nodeParent, nodeParent.Parent
} else {
if sibling.Left.getColor() == Black {
sibling.Right.Color = Black
sibling.Color = Red
t.leftRotate(sibling)
sibling = nodeParent.Left
}
sibling.Color = nodeParent.Color
nodeParent.Color = Black
sibling.Left.Color = Black
t.rightRotate(nodeParent)
node, nodeParent = t.root, nil
}
}
}
if node != nil {
node.Color = Black
}
}
}
|