summaryrefslogtreecommitdiff
path: root/Documentation/device-mapper
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /Documentation/device-mapper
Initial import
Diffstat (limited to 'Documentation/device-mapper')
-rw-r--r--Documentation/device-mapper/cache-policies.txt97
-rw-r--r--Documentation/device-mapper/cache.txt298
-rw-r--r--Documentation/device-mapper/delay.txt26
-rw-r--r--Documentation/device-mapper/dm-crypt.txt96
-rw-r--r--Documentation/device-mapper/dm-flakey.txt53
-rw-r--r--Documentation/device-mapper/dm-io.txt75
-rw-r--r--Documentation/device-mapper/dm-log.txt54
-rw-r--r--Documentation/device-mapper/dm-queue-length.txt39
-rw-r--r--Documentation/device-mapper/dm-raid.txt226
-rw-r--r--Documentation/device-mapper/dm-service-time.txt91
-rw-r--r--Documentation/device-mapper/dm-uevent.txt97
-rw-r--r--Documentation/device-mapper/era.txt108
-rw-r--r--Documentation/device-mapper/kcopyd.txt47
-rw-r--r--Documentation/device-mapper/linear.txt61
-rw-r--r--Documentation/device-mapper/log-writes.txt140
-rw-r--r--Documentation/device-mapper/persistent-data.txt84
-rw-r--r--Documentation/device-mapper/snapshot.txt168
-rw-r--r--Documentation/device-mapper/statistics.txt186
-rw-r--r--Documentation/device-mapper/striped.txt57
-rw-r--r--Documentation/device-mapper/switch.txt138
-rw-r--r--Documentation/device-mapper/thin-provisioning.txt389
-rw-r--r--Documentation/device-mapper/verity.txt172
-rw-r--r--Documentation/device-mapper/zero.txt37
23 files changed, 2739 insertions, 0 deletions
diff --git a/Documentation/device-mapper/cache-policies.txt b/Documentation/device-mapper/cache-policies.txt
new file mode 100644
index 000000000..0d124a971
--- /dev/null
+++ b/Documentation/device-mapper/cache-policies.txt
@@ -0,0 +1,97 @@
+Guidance for writing policies
+=============================
+
+Try to keep transactionality out of it. The core is careful to
+avoid asking about anything that is migrating. This is a pain, but
+makes it easier to write the policies.
+
+Mappings are loaded into the policy at construction time.
+
+Every bio that is mapped by the target is referred to the policy.
+The policy can return a simple HIT or MISS or issue a migration.
+
+Currently there's no way for the policy to issue background work,
+e.g. to start writing back dirty blocks that are going to be evicte
+soon.
+
+Because we map bios, rather than requests it's easy for the policy
+to get fooled by many small bios. For this reason the core target
+issues periodic ticks to the policy. It's suggested that the policy
+doesn't update states (eg, hit counts) for a block more than once
+for each tick. The core ticks by watching bios complete, and so
+trying to see when the io scheduler has let the ios run.
+
+
+Overview of supplied cache replacement policies
+===============================================
+
+multiqueue
+----------
+
+This policy is the default.
+
+The multiqueue policy has three sets of 16 queues: one set for entries
+waiting for the cache and another two for those in the cache (a set for
+clean entries and a set for dirty entries).
+
+Cache entries in the queues are aged based on logical time. Entry into
+the cache is based on variable thresholds and queue selection is based
+on hit count on entry. The policy aims to take different cache miss
+costs into account and to adjust to varying load patterns automatically.
+
+Message and constructor argument pairs are:
+ 'sequential_threshold <#nr_sequential_ios>'
+ 'random_threshold <#nr_random_ios>'
+ 'read_promote_adjustment <value>'
+ 'write_promote_adjustment <value>'
+ 'discard_promote_adjustment <value>'
+
+The sequential threshold indicates the number of contiguous I/Os
+required before a stream is treated as sequential. Once a stream is
+considered sequential it will bypass the cache. The random threshold
+is the number of intervening non-contiguous I/Os that must be seen
+before the stream is treated as random again.
+
+The sequential and random thresholds default to 512 and 4 respectively.
+
+Large, sequential I/Os are probably better left on the origin device
+since spindles tend to have good sequential I/O bandwidth. The
+io_tracker counts contiguous I/Os to try to spot when the I/O is in one
+of these sequential modes. But there are use-cases for wanting to
+promote sequential blocks to the cache (e.g. fast application startup).
+If sequential threshold is set to 0 the sequential I/O detection is
+disabled and sequential I/O will no longer implicitly bypass the cache.
+Setting the random threshold to 0 does _not_ disable the random I/O
+stream detection.
+
+Internally the mq policy determines a promotion threshold. If the hit
+count of a block not in the cache goes above this threshold it gets
+promoted to the cache. The read, write and discard promote adjustment
+tunables allow you to tweak the promotion threshold by adding a small
+value based on the io type. They default to 4, 8 and 1 respectively.
+If you're trying to quickly warm a new cache device you may wish to
+reduce these to encourage promotion. Remember to switch them back to
+their defaults after the cache fills though.
+
+cleaner
+-------
+
+The cleaner writes back all dirty blocks in a cache to decommission it.
+
+Examples
+========
+
+The syntax for a table is:
+ cache <metadata dev> <cache dev> <origin dev> <block size>
+ <#feature_args> [<feature arg>]*
+ <policy> <#policy_args> [<policy arg>]*
+
+The syntax to send a message using the dmsetup command is:
+ dmsetup message <mapped device> 0 sequential_threshold 1024
+ dmsetup message <mapped device> 0 random_threshold 8
+
+Using dmsetup:
+ dmsetup create blah --table "0 268435456 cache /dev/sdb /dev/sdc \
+ /dev/sdd 512 0 mq 4 sequential_threshold 1024 random_threshold 8"
+ creates a 128GB large mapped device named 'blah' with the
+ sequential threshold set to 1024 and the random_threshold set to 8.
diff --git a/Documentation/device-mapper/cache.txt b/Documentation/device-mapper/cache.txt
new file mode 100644
index 000000000..68c0f517c
--- /dev/null
+++ b/Documentation/device-mapper/cache.txt
@@ -0,0 +1,298 @@
+Introduction
+============
+
+dm-cache is a device mapper target written by Joe Thornber, Heinz
+Mauelshagen, and Mike Snitzer.
+
+It aims to improve performance of a block device (eg, a spindle) by
+dynamically migrating some of its data to a faster, smaller device
+(eg, an SSD).
+
+This device-mapper solution allows us to insert this caching at
+different levels of the dm stack, for instance above the data device for
+a thin-provisioning pool. Caching solutions that are integrated more
+closely with the virtual memory system should give better performance.
+
+The target reuses the metadata library used in the thin-provisioning
+library.
+
+The decision as to what data to migrate and when is left to a plug-in
+policy module. Several of these have been written as we experiment,
+and we hope other people will contribute others for specific io
+scenarios (eg. a vm image server).
+
+Glossary
+========
+
+ Migration - Movement of the primary copy of a logical block from one
+ device to the other.
+ Promotion - Migration from slow device to fast device.
+ Demotion - Migration from fast device to slow device.
+
+The origin device always contains a copy of the logical block, which
+may be out of date or kept in sync with the copy on the cache device
+(depending on policy).
+
+Design
+======
+
+Sub-devices
+-----------
+
+The target is constructed by passing three devices to it (along with
+other parameters detailed later):
+
+1. An origin device - the big, slow one.
+
+2. A cache device - the small, fast one.
+
+3. A small metadata device - records which blocks are in the cache,
+ which are dirty, and extra hints for use by the policy object.
+ This information could be put on the cache device, but having it
+ separate allows the volume manager to configure it differently,
+ e.g. as a mirror for extra robustness. This metadata device may only
+ be used by a single cache device.
+
+Fixed block size
+----------------
+
+The origin is divided up into blocks of a fixed size. This block size
+is configurable when you first create the cache. Typically we've been
+using block sizes of 256KB - 1024KB. The block size must be between 64
+(32KB) and 2097152 (1GB) and a multiple of 64 (32KB).
+
+Having a fixed block size simplifies the target a lot. But it is
+something of a compromise. For instance, a small part of a block may be
+getting hit a lot, yet the whole block will be promoted to the cache.
+So large block sizes are bad because they waste cache space. And small
+block sizes are bad because they increase the amount of metadata (both
+in core and on disk).
+
+Cache operating modes
+---------------------
+
+The cache has three operating modes: writeback, writethrough and
+passthrough.
+
+If writeback, the default, is selected then a write to a block that is
+cached will go only to the cache and the block will be marked dirty in
+the metadata.
+
+If writethrough is selected then a write to a cached block will not
+complete until it has hit both the origin and cache devices. Clean
+blocks should remain clean.
+
+If passthrough is selected, useful when the cache contents are not known
+to be coherent with the origin device, then all reads are served from
+the origin device (all reads miss the cache) and all writes are
+forwarded to the origin device; additionally, write hits cause cache
+block invalidates. To enable passthrough mode the cache must be clean.
+Passthrough mode allows a cache device to be activated without having to
+worry about coherency. Coherency that exists is maintained, although
+the cache will gradually cool as writes take place. If the coherency of
+the cache can later be verified, or established through use of the
+"invalidate_cblocks" message, the cache device can be transitioned to
+writethrough or writeback mode while still warm. Otherwise, the cache
+contents can be discarded prior to transitioning to the desired
+operating mode.
+
+A simple cleaner policy is provided, which will clean (write back) all
+dirty blocks in a cache. Useful for decommissioning a cache or when
+shrinking a cache. Shrinking the cache's fast device requires all cache
+blocks, in the area of the cache being removed, to be clean. If the
+area being removed from the cache still contains dirty blocks the resize
+will fail. Care must be taken to never reduce the volume used for the
+cache's fast device until the cache is clean. This is of particular
+importance if writeback mode is used. Writethrough and passthrough
+modes already maintain a clean cache. Future support to partially clean
+the cache, above a specified threshold, will allow for keeping the cache
+warm and in writeback mode during resize.
+
+Migration throttling
+--------------------
+
+Migrating data between the origin and cache device uses bandwidth.
+The user can set a throttle to prevent more than a certain amount of
+migration occurring at any one time. Currently we're not taking any
+account of normal io traffic going to the devices. More work needs
+doing here to avoid migrating during those peak io moments.
+
+For the time being, a message "migration_threshold <#sectors>"
+can be used to set the maximum number of sectors being migrated,
+the default being 204800 sectors (or 100MB).
+
+Updating on-disk metadata
+-------------------------
+
+On-disk metadata is committed every time a FLUSH or FUA bio is written.
+If no such requests are made then commits will occur every second. This
+means the cache behaves like a physical disk that has a volatile write
+cache. If power is lost you may lose some recent writes. The metadata
+should always be consistent in spite of any crash.
+
+The 'dirty' state for a cache block changes far too frequently for us
+to keep updating it on the fly. So we treat it as a hint. In normal
+operation it will be written when the dm device is suspended. If the
+system crashes all cache blocks will be assumed dirty when restarted.
+
+Per-block policy hints
+----------------------
+
+Policy plug-ins can store a chunk of data per cache block. It's up to
+the policy how big this chunk is, but it should be kept small. Like the
+dirty flags this data is lost if there's a crash so a safe fallback
+value should always be possible.
+
+For instance, the 'mq' policy, which is currently the default policy,
+uses this facility to store the hit count of the cache blocks. If
+there's a crash this information will be lost, which means the cache
+may be less efficient until those hit counts are regenerated.
+
+Policy hints affect performance, not correctness.
+
+Policy messaging
+----------------
+
+Policies will have different tunables, specific to each one, so we
+need a generic way of getting and setting these. Device-mapper
+messages are used. Refer to cache-policies.txt.
+
+Discard bitset resolution
+-------------------------
+
+We can avoid copying data during migration if we know the block has
+been discarded. A prime example of this is when mkfs discards the
+whole block device. We store a bitset tracking the discard state of
+blocks. However, we allow this bitset to have a different block size
+from the cache blocks. This is because we need to track the discard
+state for all of the origin device (compare with the dirty bitset
+which is just for the smaller cache device).
+
+Target interface
+================
+
+Constructor
+-----------
+
+ cache <metadata dev> <cache dev> <origin dev> <block size>
+ <#feature args> [<feature arg>]*
+ <policy> <#policy args> [policy args]*
+
+ metadata dev : fast device holding the persistent metadata
+ cache dev : fast device holding cached data blocks
+ origin dev : slow device holding original data blocks
+ block size : cache unit size in sectors
+
+ #feature args : number of feature arguments passed
+ feature args : writethrough or passthrough (The default is writeback.)
+
+ policy : the replacement policy to use
+ #policy args : an even number of arguments corresponding to
+ key/value pairs passed to the policy
+ policy args : key/value pairs passed to the policy
+ E.g. 'sequential_threshold 1024'
+ See cache-policies.txt for details.
+
+Optional feature arguments are:
+ writethrough : write through caching that prohibits cache block
+ content from being different from origin block content.
+ Without this argument, the default behaviour is to write
+ back cache block contents later for performance reasons,
+ so they may differ from the corresponding origin blocks.
+
+ passthrough : a degraded mode useful for various cache coherency
+ situations (e.g., rolling back snapshots of
+ underlying storage). Reads and writes always go to
+ the origin. If a write goes to a cached origin
+ block, then the cache block is invalidated.
+ To enable passthrough mode the cache must be clean.
+
+A policy called 'default' is always registered. This is an alias for
+the policy we currently think is giving best all round performance.
+
+As the default policy could vary between kernels, if you are relying on
+the characteristics of a specific policy, always request it by name.
+
+Status
+------
+
+<metadata block size> <#used metadata blocks>/<#total metadata blocks>
+<cache block size> <#used cache blocks>/<#total cache blocks>
+<#read hits> <#read misses> <#write hits> <#write misses>
+<#demotions> <#promotions> <#dirty> <#features> <features>*
+<#core args> <core args>* <policy name> <#policy args> <policy args>*
+
+metadata block size : Fixed block size for each metadata block in
+ sectors
+#used metadata blocks : Number of metadata blocks used
+#total metadata blocks : Total number of metadata blocks
+cache block size : Configurable block size for the cache device
+ in sectors
+#used cache blocks : Number of blocks resident in the cache
+#total cache blocks : Total number of cache blocks
+#read hits : Number of times a READ bio has been mapped
+ to the cache
+#read misses : Number of times a READ bio has been mapped
+ to the origin
+#write hits : Number of times a WRITE bio has been mapped
+ to the cache
+#write misses : Number of times a WRITE bio has been
+ mapped to the origin
+#demotions : Number of times a block has been removed
+ from the cache
+#promotions : Number of times a block has been moved to
+ the cache
+#dirty : Number of blocks in the cache that differ
+ from the origin
+#feature args : Number of feature args to follow
+feature args : 'writethrough' (optional)
+#core args : Number of core arguments (must be even)
+core args : Key/value pairs for tuning the core
+ e.g. migration_threshold
+policy name : Name of the policy
+#policy args : Number of policy arguments to follow (must be even)
+policy args : Key/value pairs
+ e.g. sequential_threshold
+
+Messages
+--------
+
+Policies will have different tunables, specific to each one, so we
+need a generic way of getting and setting these. Device-mapper
+messages are used. (A sysfs interface would also be possible.)
+
+The message format is:
+
+ <key> <value>
+
+E.g.
+ dmsetup message my_cache 0 sequential_threshold 1024
+
+
+Invalidation is removing an entry from the cache without writing it
+back. Cache blocks can be invalidated via the invalidate_cblocks
+message, which takes an arbitrary number of cblock ranges. Each cblock
+range's end value is "one past the end", meaning 5-10 expresses a range
+of values from 5 to 9. Each cblock must be expressed as a decimal
+value, in the future a variant message that takes cblock ranges
+expressed in hexidecimal may be needed to better support efficient
+invalidation of larger caches. The cache must be in passthrough mode
+when invalidate_cblocks is used.
+
+ invalidate_cblocks [<cblock>|<cblock begin>-<cblock end>]*
+
+E.g.
+ dmsetup message my_cache 0 invalidate_cblocks 2345 3456-4567 5678-6789
+
+Examples
+========
+
+The test suite can be found here:
+
+https://github.com/jthornber/device-mapper-test-suite
+
+dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
+ /dev/mapper/ssd /dev/mapper/origin 512 1 writeback default 0'
+dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
+ /dev/mapper/ssd /dev/mapper/origin 1024 1 writeback \
+ mq 4 sequential_threshold 1024 random_threshold 8'
diff --git a/Documentation/device-mapper/delay.txt b/Documentation/device-mapper/delay.txt
new file mode 100644
index 000000000..15adc5535
--- /dev/null
+++ b/Documentation/device-mapper/delay.txt
@@ -0,0 +1,26 @@
+dm-delay
+========
+
+Device-Mapper's "delay" target delays reads and/or writes
+and maps them to different devices.
+
+Parameters:
+ <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
+
+With separate write parameters, the first set is only used for reads.
+Delays are specified in milliseconds.
+
+Example scripts
+===============
+[[
+#!/bin/sh
+# Create device delaying rw operation for 500ms
+echo "0 `blockdev --getsize $1` delay $1 0 500" | dmsetup create delayed
+]]
+
+[[
+#!/bin/sh
+# Create device delaying only write operation for 500ms and
+# splitting reads and writes to different devices $1 $2
+echo "0 `blockdev --getsize $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
+]]
diff --git a/Documentation/device-mapper/dm-crypt.txt b/Documentation/device-mapper/dm-crypt.txt
new file mode 100644
index 000000000..692171fe9
--- /dev/null
+++ b/Documentation/device-mapper/dm-crypt.txt
@@ -0,0 +1,96 @@
+dm-crypt
+=========
+
+Device-Mapper's "crypt" target provides transparent encryption of block devices
+using the kernel crypto API.
+
+For a more detailed description of supported parameters see:
+https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
+
+Parameters: <cipher> <key> <iv_offset> <device path> \
+ <offset> [<#opt_params> <opt_params>]
+
+<cipher>
+ Encryption cipher and an optional IV generation mode.
+ (In format cipher[:keycount]-chainmode-ivmode[:ivopts]).
+ Examples:
+ des
+ aes-cbc-essiv:sha256
+ twofish-ecb
+
+ /proc/crypto contains supported crypto modes
+
+<key>
+ Key used for encryption. It is encoded as a hexadecimal number.
+ You can only use key sizes that are valid for the selected cipher
+ in combination with the selected iv mode.
+ Note that for some iv modes the key string can contain additional
+ keys (for example IV seed) so the key contains more parts concatenated
+ into a single string.
+
+<keycount>
+ Multi-key compatibility mode. You can define <keycount> keys and
+ then sectors are encrypted according to their offsets (sector 0 uses key0;
+ sector 1 uses key1 etc.). <keycount> must be a power of two.
+
+<iv_offset>
+ The IV offset is a sector count that is added to the sector number
+ before creating the IV.
+
+<device path>
+ This is the device that is going to be used as backend and contains the
+ encrypted data. You can specify it as a path like /dev/xxx or a device
+ number <major>:<minor>.
+
+<offset>
+ Starting sector within the device where the encrypted data begins.
+
+<#opt_params>
+ Number of optional parameters. If there are no optional parameters,
+ the optional paramaters section can be skipped or #opt_params can be zero.
+ Otherwise #opt_params is the number of following arguments.
+
+ Example of optional parameters section:
+ 3 allow_discards same_cpu_crypt submit_from_crypt_cpus
+
+allow_discards
+ Block discard requests (a.k.a. TRIM) are passed through the crypt device.
+ The default is to ignore discard requests.
+
+ WARNING: Assess the specific security risks carefully before enabling this
+ option. For example, allowing discards on encrypted devices may lead to
+ the leak of information about the ciphertext device (filesystem type,
+ used space etc.) if the discarded blocks can be located easily on the
+ device later.
+
+same_cpu_crypt
+ Perform encryption using the same cpu that IO was submitted on.
+ The default is to use an unbound workqueue so that encryption work
+ is automatically balanced between available CPUs.
+
+submit_from_crypt_cpus
+ Disable offloading writes to a separate thread after encryption.
+ There are some situations where offloading write bios from the
+ encryption threads to a single thread degrades performance
+ significantly. The default is to offload write bios to the same
+ thread because it benefits CFQ to have writes submitted using the
+ same context.
+
+Example scripts
+===============
+LUKS (Linux Unified Key Setup) is now the preferred way to set up disk
+encryption with dm-crypt using the 'cryptsetup' utility, see
+https://gitlab.com/cryptsetup/cryptsetup
+
+[[
+#!/bin/sh
+# Create a crypt device using dmsetup
+dmsetup create crypt1 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
+]]
+
+[[
+#!/bin/sh
+# Create a crypt device using cryptsetup and LUKS header with default cipher
+cryptsetup luksFormat $1
+cryptsetup luksOpen $1 crypt1
+]]
diff --git a/Documentation/device-mapper/dm-flakey.txt b/Documentation/device-mapper/dm-flakey.txt
new file mode 100644
index 000000000..6ff5c2327
--- /dev/null
+++ b/Documentation/device-mapper/dm-flakey.txt
@@ -0,0 +1,53 @@
+dm-flakey
+=========
+
+This target is the same as the linear target except that it exhibits
+unreliable behaviour periodically. It's been found useful in simulating
+failing devices for testing purposes.
+
+Starting from the time the table is loaded, the device is available for
+<up interval> seconds, then exhibits unreliable behaviour for <down
+interval> seconds, and then this cycle repeats.
+
+Also, consider using this in combination with the dm-delay target too,
+which can delay reads and writes and/or send them to different
+underlying devices.
+
+Table parameters
+----------------
+ <dev path> <offset> <up interval> <down interval> \
+ [<num_features> [<feature arguments>]]
+
+Mandatory parameters:
+ <dev path>: Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>: Starting sector within the device.
+ <up interval>: Number of seconds device is available.
+ <down interval>: Number of seconds device returns errors.
+
+Optional feature parameters:
+ If no feature parameters are present, during the periods of
+ unreliability, all I/O returns errors.
+
+ drop_writes:
+ All write I/O is silently ignored.
+ Read I/O is handled correctly.
+
+ corrupt_bio_byte <Nth_byte> <direction> <value> <flags>:
+ During <down interval>, replace <Nth_byte> of the data of
+ each matching bio with <value>.
+
+ <Nth_byte>: The offset of the byte to replace.
+ Counting starts at 1, to replace the first byte.
+ <direction>: Either 'r' to corrupt reads or 'w' to corrupt writes.
+ 'w' is incompatible with drop_writes.
+ <value>: The value (from 0-255) to write.
+ <flags>: Perform the replacement only if bio->bi_rw has all the
+ selected flags set.
+
+Examples:
+ corrupt_bio_byte 32 r 1 0
+ - replaces the 32nd byte of READ bios with the value 1
+
+ corrupt_bio_byte 224 w 0 32
+ - replaces the 224th byte of REQ_META (=32) bios with the value 0
diff --git a/Documentation/device-mapper/dm-io.txt b/Documentation/device-mapper/dm-io.txt
new file mode 100644
index 000000000..3b5d9a52c
--- /dev/null
+++ b/Documentation/device-mapper/dm-io.txt
@@ -0,0 +1,75 @@
+dm-io
+=====
+
+Dm-io provides synchronous and asynchronous I/O services. There are three
+types of I/O services available, and each type has a sync and an async
+version.
+
+The user must set up an io_region structure to describe the desired location
+of the I/O. Each io_region indicates a block-device along with the starting
+sector and size of the region.
+
+ struct io_region {
+ struct block_device *bdev;
+ sector_t sector;
+ sector_t count;
+ };
+
+Dm-io can read from one io_region or write to one or more io_regions. Writes
+to multiple regions are specified by an array of io_region structures.
+
+The first I/O service type takes a list of memory pages as the data buffer for
+the I/O, along with an offset into the first page.
+
+ struct page_list {
+ struct page_list *next;
+ struct page *page;
+ };
+
+ int dm_io_sync(unsigned int num_regions, struct io_region *where, int rw,
+ struct page_list *pl, unsigned int offset,
+ unsigned long *error_bits);
+ int dm_io_async(unsigned int num_regions, struct io_region *where, int rw,
+ struct page_list *pl, unsigned int offset,
+ io_notify_fn fn, void *context);
+
+The second I/O service type takes an array of bio vectors as the data buffer
+for the I/O. This service can be handy if the caller has a pre-assembled bio,
+but wants to direct different portions of the bio to different devices.
+
+ int dm_io_sync_bvec(unsigned int num_regions, struct io_region *where,
+ int rw, struct bio_vec *bvec,
+ unsigned long *error_bits);
+ int dm_io_async_bvec(unsigned int num_regions, struct io_region *where,
+ int rw, struct bio_vec *bvec,
+ io_notify_fn fn, void *context);
+
+The third I/O service type takes a pointer to a vmalloc'd memory buffer as the
+data buffer for the I/O. This service can be handy if the caller needs to do
+I/O to a large region but doesn't want to allocate a large number of individual
+memory pages.
+
+ int dm_io_sync_vm(unsigned int num_regions, struct io_region *where, int rw,
+ void *data, unsigned long *error_bits);
+ int dm_io_async_vm(unsigned int num_regions, struct io_region *where, int rw,
+ void *data, io_notify_fn fn, void *context);
+
+Callers of the asynchronous I/O services must include the name of a completion
+callback routine and a pointer to some context data for the I/O.
+
+ typedef void (*io_notify_fn)(unsigned long error, void *context);
+
+The "error" parameter in this callback, as well as the "*error" parameter in
+all of the synchronous versions, is a bitset (instead of a simple error value).
+In the case of an write-I/O to multiple regions, this bitset allows dm-io to
+indicate success or failure on each individual region.
+
+Before using any of the dm-io services, the user should call dm_io_get()
+and specify the number of pages they expect to perform I/O on concurrently.
+Dm-io will attempt to resize its mempool to make sure enough pages are
+always available in order to avoid unnecessary waiting while performing I/O.
+
+When the user is finished using the dm-io services, they should call
+dm_io_put() and specify the same number of pages that were given on the
+dm_io_get() call.
+
diff --git a/Documentation/device-mapper/dm-log.txt b/Documentation/device-mapper/dm-log.txt
new file mode 100644
index 000000000..c155ac569
--- /dev/null
+++ b/Documentation/device-mapper/dm-log.txt
@@ -0,0 +1,54 @@
+Device-Mapper Logging
+=====================
+The device-mapper logging code is used by some of the device-mapper
+RAID targets to track regions of the disk that are not consistent.
+A region (or portion of the address space) of the disk may be
+inconsistent because a RAID stripe is currently being operated on or
+a machine died while the region was being altered. In the case of
+mirrors, a region would be considered dirty/inconsistent while you
+are writing to it because the writes need to be replicated for all
+the legs of the mirror and may not reach the legs at the same time.
+Once all writes are complete, the region is considered clean again.
+
+There is a generic logging interface that the device-mapper RAID
+implementations use to perform logging operations (see
+dm_dirty_log_type in include/linux/dm-dirty-log.h). Various different
+logging implementations are available and provide different
+capabilities. The list includes:
+
+Type Files
+==== =====
+disk drivers/md/dm-log.c
+core drivers/md/dm-log.c
+userspace drivers/md/dm-log-userspace* include/linux/dm-log-userspace.h
+
+The "disk" log type
+-------------------
+This log implementation commits the log state to disk. This way, the
+logging state survives reboots/crashes.
+
+The "core" log type
+-------------------
+This log implementation keeps the log state in memory. The log state
+will not survive a reboot or crash, but there may be a small boost in
+performance. This method can also be used if no storage device is
+available for storing log state.
+
+The "userspace" log type
+------------------------
+This log type simply provides a way to export the log API to userspace,
+so log implementations can be done there. This is done by forwarding most
+logging requests to userspace, where a daemon receives and processes the
+request.
+
+The structure used for communication between kernel and userspace are
+located in include/linux/dm-log-userspace.h. Due to the frequency,
+diversity, and 2-way communication nature of the exchanges between
+kernel and userspace, 'connector' is used as the interface for
+communication.
+
+There are currently two userspace log implementations that leverage this
+framework - "clustered-disk" and "clustered-core". These implementations
+provide a cluster-coherent log for shared-storage. Device-mapper mirroring
+can be used in a shared-storage environment when the cluster log implementations
+are employed.
diff --git a/Documentation/device-mapper/dm-queue-length.txt b/Documentation/device-mapper/dm-queue-length.txt
new file mode 100644
index 000000000..f4db25621
--- /dev/null
+++ b/Documentation/device-mapper/dm-queue-length.txt
@@ -0,0 +1,39 @@
+dm-queue-length
+===============
+
+dm-queue-length is a path selector module for device-mapper targets,
+which selects a path with the least number of in-flight I/Os.
+The path selector name is 'queue-length'.
+
+Table parameters for each path: [<repeat_count>]
+ <repeat_count>: The number of I/Os to dispatch using the selected
+ path before switching to the next path.
+ If not given, internal default is used. To check
+ the default value, see the activated table.
+
+Status for each path: <status> <fail-count> <in-flight>
+ <status>: 'A' if the path is active, 'F' if the path is failed.
+ <fail-count>: The number of path failures.
+ <in-flight>: The number of in-flight I/Os on the path.
+
+
+Algorithm
+=========
+
+dm-queue-length increments/decrements 'in-flight' when an I/O is
+dispatched/completed respectively.
+dm-queue-length selects a path with the minimum 'in-flight'.
+
+
+Examples
+========
+In case that 2 paths (sda and sdb) are used with repeat_count == 128.
+
+# echo "0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128" \
+ dmsetup create test
+#
+# dmsetup table
+test: 0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128
+#
+# dmsetup status
+test: 0 10 multipath 2 0 0 0 1 1 E 0 2 1 8:0 A 0 0 8:16 A 0 0
diff --git a/Documentation/device-mapper/dm-raid.txt b/Documentation/device-mapper/dm-raid.txt
new file mode 100644
index 000000000..ef8ba9fa5
--- /dev/null
+++ b/Documentation/device-mapper/dm-raid.txt
@@ -0,0 +1,226 @@
+dm-raid
+=======
+
+The device-mapper RAID (dm-raid) target provides a bridge from DM to MD.
+It allows the MD RAID drivers to be accessed using a device-mapper
+interface.
+
+
+Mapping Table Interface
+-----------------------
+The target is named "raid" and it accepts the following parameters:
+
+ <raid_type> <#raid_params> <raid_params> \
+ <#raid_devs> <metadata_dev0> <dev0> [.. <metadata_devN> <devN>]
+
+<raid_type>:
+ raid1 RAID1 mirroring
+ raid4 RAID4 dedicated parity disk
+ raid5_la RAID5 left asymmetric
+ - rotating parity 0 with data continuation
+ raid5_ra RAID5 right asymmetric
+ - rotating parity N with data continuation
+ raid5_ls RAID5 left symmetric
+ - rotating parity 0 with data restart
+ raid5_rs RAID5 right symmetric
+ - rotating parity N with data restart
+ raid6_zr RAID6 zero restart
+ - rotating parity zero (left-to-right) with data restart
+ raid6_nr RAID6 N restart
+ - rotating parity N (right-to-left) with data restart
+ raid6_nc RAID6 N continue
+ - rotating parity N (right-to-left) with data continuation
+ raid10 Various RAID10 inspired algorithms chosen by additional params
+ - RAID10: Striped Mirrors (aka 'Striping on top of mirrors')
+ - RAID1E: Integrated Adjacent Stripe Mirroring
+ - RAID1E: Integrated Offset Stripe Mirroring
+ - and other similar RAID10 variants
+
+ Reference: Chapter 4 of
+ http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf
+
+<#raid_params>: The number of parameters that follow.
+
+<raid_params> consists of
+ Mandatory parameters:
+ <chunk_size>: Chunk size in sectors. This parameter is often known as
+ "stripe size". It is the only mandatory parameter and
+ is placed first.
+
+ followed by optional parameters (in any order):
+ [sync|nosync] Force or prevent RAID initialization.
+
+ [rebuild <idx>] Rebuild drive number 'idx' (first drive is 0).
+
+ [daemon_sleep <ms>]
+ Interval between runs of the bitmap daemon that
+ clear bits. A longer interval means less bitmap I/O but
+ resyncing after a failure is likely to take longer.
+
+ [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
+ [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
+ [write_mostly <idx>] Mark drive index 'idx' write-mostly.
+ [max_write_behind <sectors>] See '--write-behind=' (man mdadm)
+ [stripe_cache <sectors>] Stripe cache size (RAID 4/5/6 only)
+ [region_size <sectors>]
+ The region_size multiplied by the number of regions is the
+ logical size of the array. The bitmap records the device
+ synchronisation state for each region.
+
+ [raid10_copies <# copies>]
+ [raid10_format <near|far|offset>]
+ These two options are used to alter the default layout of
+ a RAID10 configuration. The number of copies is can be
+ specified, but the default is 2. There are also three
+ variations to how the copies are laid down - the default
+ is "near". Near copies are what most people think of with
+ respect to mirroring. If these options are left unspecified,
+ or 'raid10_copies 2' and/or 'raid10_format near' are given,
+ then the layouts for 2, 3 and 4 devices are:
+ 2 drives 3 drives 4 drives
+ -------- ---------- --------------
+ A1 A1 A1 A1 A2 A1 A1 A2 A2
+ A2 A2 A2 A3 A3 A3 A3 A4 A4
+ A3 A3 A4 A4 A5 A5 A5 A6 A6
+ A4 A4 A5 A6 A6 A7 A7 A8 A8
+ .. .. .. .. .. .. .. .. ..
+ The 2-device layout is equivalent 2-way RAID1. The 4-device
+ layout is what a traditional RAID10 would look like. The
+ 3-device layout is what might be called a 'RAID1E - Integrated
+ Adjacent Stripe Mirroring'.
+
+ If 'raid10_copies 2' and 'raid10_format far', then the layouts
+ for 2, 3 and 4 devices are:
+ 2 drives 3 drives 4 drives
+ -------- -------------- --------------------
+ A1 A2 A1 A2 A3 A1 A2 A3 A4
+ A3 A4 A4 A5 A6 A5 A6 A7 A8
+ A5 A6 A7 A8 A9 A9 A10 A11 A12
+ .. .. .. .. .. .. .. .. ..
+ A2 A1 A3 A1 A2 A2 A1 A4 A3
+ A4 A3 A6 A4 A5 A6 A5 A8 A7
+ A6 A5 A9 A7 A8 A10 A9 A12 A11
+ .. .. .. .. .. .. .. .. ..
+
+ If 'raid10_copies 2' and 'raid10_format offset', then the
+ layouts for 2, 3 and 4 devices are:
+ 2 drives 3 drives 4 drives
+ -------- ------------ -----------------
+ A1 A2 A1 A2 A3 A1 A2 A3 A4
+ A2 A1 A3 A1 A2 A2 A1 A4 A3
+ A3 A4 A4 A5 A6 A5 A6 A7 A8
+ A4 A3 A6 A4 A5 A6 A5 A8 A7
+ A5 A6 A7 A8 A9 A9 A10 A11 A12
+ A6 A5 A9 A7 A8 A10 A9 A12 A11
+ .. .. .. .. .. .. .. .. ..
+ Here we see layouts closely akin to 'RAID1E - Integrated
+ Offset Stripe Mirroring'.
+
+<#raid_devs>: The number of devices composing the array.
+ Each device consists of two entries. The first is the device
+ containing the metadata (if any); the second is the one containing the
+ data.
+
+ If a drive has failed or is missing at creation time, a '-' can be
+ given for both the metadata and data drives for a given position.
+
+
+Example Tables
+--------------
+# RAID4 - 4 data drives, 1 parity (no metadata devices)
+# No metadata devices specified to hold superblock/bitmap info
+# Chunk size of 1MiB
+# (Lines separated for easy reading)
+
+0 1960893648 raid \
+ raid4 1 2048 \
+ 5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
+
+# RAID4 - 4 data drives, 1 parity (with metadata devices)
+# Chunk size of 1MiB, force RAID initialization,
+# min recovery rate at 20 kiB/sec/disk
+
+0 1960893648 raid \
+ raid4 4 2048 sync min_recovery_rate 20 \
+ 5 8:17 8:18 8:33 8:34 8:49 8:50 8:65 8:66 8:81 8:82
+
+
+Status Output
+-------------
+'dmsetup table' displays the table used to construct the mapping.
+The optional parameters are always printed in the order listed
+above with "sync" or "nosync" always output ahead of the other
+arguments, regardless of the order used when originally loading the table.
+Arguments that can be repeated are ordered by value.
+
+
+'dmsetup status' yields information on the state and health of the array.
+The output is as follows (normally a single line, but expanded here for
+clarity):
+1: <s> <l> raid \
+2: <raid_type> <#devices> <health_chars> \
+3: <sync_ratio> <sync_action> <mismatch_cnt>
+
+Line 1 is the standard output produced by device-mapper.
+Line 2 & 3 are produced by the raid target and are best explained by example:
+ 0 1960893648 raid raid4 5 AAAAA 2/490221568 init 0
+Here we can see the RAID type is raid4, there are 5 devices - all of
+which are 'A'live, and the array is 2/490221568 complete with its initial
+recovery. Here is a fuller description of the individual fields:
+ <raid_type> Same as the <raid_type> used to create the array.
+ <health_chars> One char for each device, indicating: 'A' = alive and
+ in-sync, 'a' = alive but not in-sync, 'D' = dead/failed.
+ <sync_ratio> The ratio indicating how much of the array has undergone
+ the process described by 'sync_action'. If the
+ 'sync_action' is "check" or "repair", then the process
+ of "resync" or "recover" can be considered complete.
+ <sync_action> One of the following possible states:
+ idle - No synchronization action is being performed.
+ frozen - The current action has been halted.
+ resync - Array is undergoing its initial synchronization
+ or is resynchronizing after an unclean shutdown
+ (possibly aided by a bitmap).
+ recover - A device in the array is being rebuilt or
+ replaced.
+ check - A user-initiated full check of the array is
+ being performed. All blocks are read and
+ checked for consistency. The number of
+ discrepancies found are recorded in
+ <mismatch_cnt>. No changes are made to the
+ array by this action.
+ repair - The same as "check", but discrepancies are
+ corrected.
+ reshape - The array is undergoing a reshape.
+ <mismatch_cnt> The number of discrepancies found between mirror copies
+ in RAID1/10 or wrong parity values found in RAID4/5/6.
+ This value is valid only after a "check" of the array
+ is performed. A healthy array has a 'mismatch_cnt' of 0.
+
+Message Interface
+-----------------
+The dm-raid target will accept certain actions through the 'message' interface.
+('man dmsetup' for more information on the message interface.) These actions
+include:
+ "idle" - Halt the current sync action.
+ "frozen" - Freeze the current sync action.
+ "resync" - Initiate/continue a resync.
+ "recover"- Initiate/continue a recover process.
+ "check" - Initiate a check (i.e. a "scrub") of the array.
+ "repair" - Initiate a repair of the array.
+ "reshape"- Currently unsupported (-EINVAL).
+
+Version History
+---------------
+1.0.0 Initial version. Support for RAID 4/5/6
+1.1.0 Added support for RAID 1
+1.2.0 Handle creation of arrays that contain failed devices.
+1.3.0 Added support for RAID 10
+1.3.1 Allow device replacement/rebuild for RAID 10
+1.3.2 Fix/improve redundancy checking for RAID10
+1.4.0 Non-functional change. Removes arg from mapping function.
+1.4.1 RAID10 fix redundancy validation checks (commit 55ebbb5).
+1.4.2 Add RAID10 "far" and "offset" algorithm support.
+1.5.0 Add message interface to allow manipulation of the sync_action.
+ New status (STATUSTYPE_INFO) fields: sync_action and mismatch_cnt.
+1.5.1 Add ability to restore transiently failed devices on resume.
+1.5.2 'mismatch_cnt' is zero unless [last_]sync_action is "check".
diff --git a/Documentation/device-mapper/dm-service-time.txt b/Documentation/device-mapper/dm-service-time.txt
new file mode 100644
index 000000000..fb1d4a0cf
--- /dev/null
+++ b/Documentation/device-mapper/dm-service-time.txt
@@ -0,0 +1,91 @@
+dm-service-time
+===============
+
+dm-service-time is a path selector module for device-mapper targets,
+which selects a path with the shortest estimated service time for
+the incoming I/O.
+
+The service time for each path is estimated by dividing the total size
+of in-flight I/Os on a path with the performance value of the path.
+The performance value is a relative throughput value among all paths
+in a path-group, and it can be specified as a table argument.
+
+The path selector name is 'service-time'.
+
+Table parameters for each path: [<repeat_count> [<relative_throughput>]]
+ <repeat_count>: The number of I/Os to dispatch using the selected
+ path before switching to the next path.
+ If not given, internal default is used. To check
+ the default value, see the activated table.
+ <relative_throughput>: The relative throughput value of the path
+ among all paths in the path-group.
+ The valid range is 0-100.
+ If not given, minimum value '1' is used.
+ If '0' is given, the path isn't selected while
+ other paths having a positive value are available.
+
+Status for each path: <status> <fail-count> <in-flight-size> \
+ <relative_throughput>
+ <status>: 'A' if the path is active, 'F' if the path is failed.
+ <fail-count>: The number of path failures.
+ <in-flight-size>: The size of in-flight I/Os on the path.
+ <relative_throughput>: The relative throughput value of the path
+ among all paths in the path-group.
+
+
+Algorithm
+=========
+
+dm-service-time adds the I/O size to 'in-flight-size' when the I/O is
+dispatched and subtracts when completed.
+Basically, dm-service-time selects a path having minimum service time
+which is calculated by:
+
+ ('in-flight-size' + 'size-of-incoming-io') / 'relative_throughput'
+
+However, some optimizations below are used to reduce the calculation
+as much as possible.
+
+ 1. If the paths have the same 'relative_throughput', skip
+ the division and just compare the 'in-flight-size'.
+
+ 2. If the paths have the same 'in-flight-size', skip the division
+ and just compare the 'relative_throughput'.
+
+ 3. If some paths have non-zero 'relative_throughput' and others
+ have zero 'relative_throughput', ignore those paths with zero
+ 'relative_throughput'.
+
+If such optimizations can't be applied, calculate service time, and
+compare service time.
+If calculated service time is equal, the path having maximum
+'relative_throughput' may be better. So compare 'relative_throughput'
+then.
+
+
+Examples
+========
+In case that 2 paths (sda and sdb) are used with repeat_count == 128
+and sda has an average throughput 1GB/s and sdb has 4GB/s,
+'relative_throughput' value may be '1' for sda and '4' for sdb.
+
+# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
+ dmsetup create test
+#
+# dmsetup table
+test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
+#
+# dmsetup status
+test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
+
+
+Or '2' for sda and '8' for sdb would be also true.
+
+# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
+ dmsetup create test
+#
+# dmsetup table
+test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
+#
+# dmsetup status
+test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8
diff --git a/Documentation/device-mapper/dm-uevent.txt b/Documentation/device-mapper/dm-uevent.txt
new file mode 100644
index 000000000..07edbd85c
--- /dev/null
+++ b/Documentation/device-mapper/dm-uevent.txt
@@ -0,0 +1,97 @@
+The device-mapper uevent code adds the capability to device-mapper to create
+and send kobject uevents (uevents). Previously device-mapper events were only
+available through the ioctl interface. The advantage of the uevents interface
+is the event contains environment attributes providing increased context for
+the event avoiding the need to query the state of the device-mapper device after
+the event is received.
+
+There are two functions currently for device-mapper events. The first function
+listed creates the event and the second function sends the event(s).
+
+void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
+ const char *path, unsigned nr_valid_paths)
+
+void dm_send_uevents(struct list_head *events, struct kobject *kobj)
+
+
+The variables added to the uevent environment are:
+
+Variable Name: DM_TARGET
+Uevent Action(s): KOBJ_CHANGE
+Type: string
+Description:
+Value: Name of device-mapper target that generated the event.
+
+Variable Name: DM_ACTION
+Uevent Action(s): KOBJ_CHANGE
+Type: string
+Description:
+Value: Device-mapper specific action that caused the uevent action.
+ PATH_FAILED - A path has failed.
+ PATH_REINSTATED - A path has been reinstated.
+
+Variable Name: DM_SEQNUM
+Uevent Action(s): KOBJ_CHANGE
+Type: unsigned integer
+Description: A sequence number for this specific device-mapper device.
+Value: Valid unsigned integer range.
+
+Variable Name: DM_PATH
+Uevent Action(s): KOBJ_CHANGE
+Type: string
+Description: Major and minor number of the path device pertaining to this
+event.
+Value: Path name in the form of "Major:Minor"
+
+Variable Name: DM_NR_VALID_PATHS
+Uevent Action(s): KOBJ_CHANGE
+Type: unsigned integer
+Description:
+Value: Valid unsigned integer range.
+
+Variable Name: DM_NAME
+Uevent Action(s): KOBJ_CHANGE
+Type: string
+Description: Name of the device-mapper device.
+Value: Name
+
+Variable Name: DM_UUID
+Uevent Action(s): KOBJ_CHANGE
+Type: string
+Description: UUID of the device-mapper device.
+Value: UUID. (Empty string if there isn't one.)
+
+An example of the uevents generated as captured by udevmonitor is shown
+below.
+
+1.) Path failure.
+UEVENT[1192521009.711215] change@/block/dm-3
+ACTION=change
+DEVPATH=/block/dm-3
+SUBSYSTEM=block
+DM_TARGET=multipath
+DM_ACTION=PATH_FAILED
+DM_SEQNUM=1
+DM_PATH=8:32
+DM_NR_VALID_PATHS=0
+DM_NAME=mpath2
+DM_UUID=mpath-35333333000002328
+MINOR=3
+MAJOR=253
+SEQNUM=1130
+
+2.) Path reinstate.
+UEVENT[1192521132.989927] change@/block/dm-3
+ACTION=change
+DEVPATH=/block/dm-3
+SUBSYSTEM=block
+DM_TARGET=multipath
+DM_ACTION=PATH_REINSTATED
+DM_SEQNUM=2
+DM_PATH=8:32
+DM_NR_VALID_PATHS=1
+DM_NAME=mpath2
+DM_UUID=mpath-35333333000002328
+MINOR=3
+MAJOR=253
+SEQNUM=1131
diff --git a/Documentation/device-mapper/era.txt b/Documentation/device-mapper/era.txt
new file mode 100644
index 000000000..3c6d01be3
--- /dev/null
+++ b/Documentation/device-mapper/era.txt
@@ -0,0 +1,108 @@
+Introduction
+============
+
+dm-era is a target that behaves similar to the linear target. In
+addition it keeps track of which blocks were written within a user
+defined period of time called an 'era'. Each era target instance
+maintains the current era as a monotonically increasing 32-bit
+counter.
+
+Use cases include tracking changed blocks for backup software, and
+partially invalidating the contents of a cache to restore cache
+coherency after rolling back a vendor snapshot.
+
+Constructor
+===========
+
+ era <metadata dev> <origin dev> <block size>
+
+ metadata dev : fast device holding the persistent metadata
+ origin dev : device holding data blocks that may change
+ block size : block size of origin data device, granularity that is
+ tracked by the target
+
+Messages
+========
+
+None of the dm messages take any arguments.
+
+checkpoint
+----------
+
+Possibly move to a new era. You shouldn't assume the era has
+incremented. After sending this message, you should check the
+current era via the status line.
+
+take_metadata_snap
+------------------
+
+Create a clone of the metadata, to allow a userland process to read it.
+
+drop_metadata_snap
+------------------
+
+Drop the metadata snapshot.
+
+Status
+======
+
+<metadata block size> <#used metadata blocks>/<#total metadata blocks>
+<current era> <held metadata root | '-'>
+
+metadata block size : Fixed block size for each metadata block in
+ sectors
+#used metadata blocks : Number of metadata blocks used
+#total metadata blocks : Total number of metadata blocks
+current era : The current era
+held metadata root : The location, in blocks, of the metadata root
+ that has been 'held' for userspace read
+ access. '-' indicates there is no held root
+
+Detailed use case
+=================
+
+The scenario of invalidating a cache when rolling back a vendor
+snapshot was the primary use case when developing this target:
+
+Taking a vendor snapshot
+------------------------
+
+- Send a checkpoint message to the era target
+- Make a note of the current era in its status line
+- Take vendor snapshot (the era and snapshot should be forever
+ associated now).
+
+Rolling back to an vendor snapshot
+----------------------------------
+
+- Cache enters passthrough mode (see: dm-cache's docs in cache.txt)
+- Rollback vendor storage
+- Take metadata snapshot
+- Ascertain which blocks have been written since the snapshot was taken
+ by checking each block's era
+- Invalidate those blocks in the caching software
+- Cache returns to writeback/writethrough mode
+
+Memory usage
+============
+
+The target uses a bitset to record writes in the current era. It also
+has a spare bitset ready for switching over to a new era. Other than
+that it uses a few 4k blocks for updating metadata.
+
+ (4 * nr_blocks) bytes + buffers
+
+Resilience
+==========
+
+Metadata is updated on disk before a write to a previously unwritten
+block is performed. As such dm-era should not be effected by a hard
+crash such as power failure.
+
+Userland tools
+==============
+
+Userland tools are found in the increasingly poorly named
+thin-provisioning-tools project:
+
+ https://github.com/jthornber/thin-provisioning-tools
diff --git a/Documentation/device-mapper/kcopyd.txt b/Documentation/device-mapper/kcopyd.txt
new file mode 100644
index 000000000..820382c4c
--- /dev/null
+++ b/Documentation/device-mapper/kcopyd.txt
@@ -0,0 +1,47 @@
+kcopyd
+======
+
+Kcopyd provides the ability to copy a range of sectors from one block-device
+to one or more other block-devices, with an asynchronous completion
+notification. It is used by dm-snapshot and dm-mirror.
+
+Users of kcopyd must first create a client and indicate how many memory pages
+to set aside for their copy jobs. This is done with a call to
+kcopyd_client_create().
+
+ int kcopyd_client_create(unsigned int num_pages,
+ struct kcopyd_client **result);
+
+To start a copy job, the user must set up io_region structures to describe
+the source and destinations of the copy. Each io_region indicates a
+block-device along with the starting sector and size of the region. The source
+of the copy is given as one io_region structure, and the destinations of the
+copy are given as an array of io_region structures.
+
+ struct io_region {
+ struct block_device *bdev;
+ sector_t sector;
+ sector_t count;
+ };
+
+To start the copy, the user calls kcopyd_copy(), passing in the client
+pointer, pointers to the source and destination io_regions, the name of a
+completion callback routine, and a pointer to some context data for the copy.
+
+ int kcopyd_copy(struct kcopyd_client *kc, struct io_region *from,
+ unsigned int num_dests, struct io_region *dests,
+ unsigned int flags, kcopyd_notify_fn fn, void *context);
+
+ typedef void (*kcopyd_notify_fn)(int read_err, unsigned int write_err,
+ void *context);
+
+When the copy completes, kcopyd will call the user's completion routine,
+passing back the user's context pointer. It will also indicate if a read or
+write error occurred during the copy.
+
+When a user is done with all their copy jobs, they should call
+kcopyd_client_destroy() to delete the kcopyd client, which will release the
+associated memory pages.
+
+ void kcopyd_client_destroy(struct kcopyd_client *kc);
+
diff --git a/Documentation/device-mapper/linear.txt b/Documentation/device-mapper/linear.txt
new file mode 100644
index 000000000..d5307d380
--- /dev/null
+++ b/Documentation/device-mapper/linear.txt
@@ -0,0 +1,61 @@
+dm-linear
+=========
+
+Device-Mapper's "linear" target maps a linear range of the Device-Mapper
+device onto a linear range of another device. This is the basic building
+block of logical volume managers.
+
+Parameters: <dev path> <offset>
+ <dev path>: Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>: Starting sector within the device.
+
+
+Example scripts
+===============
+[[
+#!/bin/sh
+# Create an identity mapping for a device
+echo "0 `blockdev --getsize $1` linear $1 0" | dmsetup create identity
+]]
+
+
+[[
+#!/bin/sh
+# Join 2 devices together
+size1=`blockdev --getsize $1`
+size2=`blockdev --getsize $2`
+echo "0 $size1 linear $1 0
+$size1 $size2 linear $2 0" | dmsetup create joined
+]]
+
+
+[[
+#!/usr/bin/perl -w
+# Split a device into 4M chunks and then join them together in reverse order.
+
+my $name = "reverse";
+my $extent_size = 4 * 1024 * 2;
+my $dev = $ARGV[0];
+my $table = "";
+my $count = 0;
+
+if (!defined($dev)) {
+ die("Please specify a device.\n");
+}
+
+my $dev_size = `blockdev --getsize $dev`;
+my $extents = int($dev_size / $extent_size) -
+ (($dev_size % $extent_size) ? 1 : 0);
+
+while ($extents > 0) {
+ my $this_start = $count * $extent_size;
+ $extents--;
+ $count++;
+ my $this_offset = $extents * $extent_size;
+
+ $table .= "$this_start $extent_size linear $dev $this_offset\n";
+}
+
+`echo \"$table\" | dmsetup create $name`;
+]]
diff --git a/Documentation/device-mapper/log-writes.txt b/Documentation/device-mapper/log-writes.txt
new file mode 100644
index 000000000..c10f30c9b
--- /dev/null
+++ b/Documentation/device-mapper/log-writes.txt
@@ -0,0 +1,140 @@
+dm-log-writes
+=============
+
+This target takes 2 devices, one to pass all IO to normally, and one to log all
+of the write operations to. This is intended for file system developers wishing
+to verify the integrity of metadata or data as the file system is written to.
+There is a log_write_entry written for every WRITE request and the target is
+able to take arbitrary data from userspace to insert into the log. The data
+that is in the WRITE requests is copied into the log to make the replay happen
+exactly as it happened originally.
+
+Log Ordering
+============
+
+We log things in order of completion once we are sure the write is no longer in
+cache. This means that normal WRITE requests are not actually logged until the
+next REQ_FLUSH request. This is to make it easier for userspace to replay the
+log in a way that correlates to what is on disk and not what is in cache, to
+make it easier to detect improper waiting/flushing.
+
+This works by attaching all WRITE requests to a list once the write completes.
+Once we see a REQ_FLUSH request we splice this list onto the request and once
+the FLUSH request completes we log all of the WRITEs and then the FLUSH. Only
+completed WRITEs, at the time the REQ_FLUSH is issued, are added in order to
+simulate the worst case scenario with regard to power failures. Consider the
+following example (W means write, C means complete):
+
+W1,W2,W3,C3,C2,Wflush,C1,Cflush
+
+The log would show the following
+
+W3,W2,flush,W1....
+
+Again this is to simulate what is actually on disk, this allows us to detect
+cases where a power failure at a particular point in time would create an
+inconsistent file system.
+
+Any REQ_FUA requests bypass this flushing mechanism and are logged as soon as
+they complete as those requests will obviously bypass the device cache.
+
+Any REQ_DISCARD requests are treated like WRITE requests. Otherwise we would
+have all the DISCARD requests, and then the WRITE requests and then the FLUSH
+request. Consider the following example:
+
+WRITE block 1, DISCARD block 1, FLUSH
+
+If we logged DISCARD when it completed, the replay would look like this
+
+DISCARD 1, WRITE 1, FLUSH
+
+which isn't quite what happened and wouldn't be caught during the log replay.
+
+Target interface
+================
+
+i) Constructor
+
+ log-writes <dev_path> <log_dev_path>
+
+ dev_path : Device that all of the IO will go to normally.
+ log_dev_path : Device where the log entries are written to.
+
+ii) Status
+
+ <#logged entries> <highest allocated sector>
+
+ #logged entries : Number of logged entries
+ highest allocated sector : Highest allocated sector
+
+iii) Messages
+
+ mark <description>
+
+ You can use a dmsetup message to set an arbitrary mark in a log.
+ For example say you want to fsck a file system after every
+ write, but first you need to replay up to the mkfs to make sure
+ we're fsck'ing something reasonable, you would do something like
+ this:
+
+ mkfs.btrfs -f /dev/mapper/log
+ dmsetup message log 0 mark mkfs
+ <run test>
+
+ This would allow you to replay the log up to the mkfs mark and
+ then replay from that point on doing the fsck check in the
+ interval that you want.
+
+ Every log has a mark at the end labeled "dm-log-writes-end".
+
+Userspace component
+===================
+
+There is a userspace tool that will replay the log for you in various ways.
+It can be found here: https://github.com/josefbacik/log-writes
+
+Example usage
+=============
+
+Say you want to test fsync on your file system. You would do something like
+this:
+
+TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
+dmsetup create log --table "$TABLE"
+mkfs.btrfs -f /dev/mapper/log
+dmsetup message log 0 mark mkfs
+
+mount /dev/mapper/log /mnt/btrfs-test
+<some test that does fsync at the end>
+dmsetup message log 0 mark fsync
+md5sum /mnt/btrfs-test/foo
+umount /mnt/btrfs-test
+
+dmsetup remove log
+replay-log --log /dev/sdc --replay /dev/sdb --end-mark fsync
+mount /dev/sdb /mnt/btrfs-test
+md5sum /mnt/btrfs-test/foo
+<verify md5sum's are correct>
+
+Another option is to do a complicated file system operation and verify the file
+system is consistent during the entire operation. You could do this with:
+
+TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
+dmsetup create log --table "$TABLE"
+mkfs.btrfs -f /dev/mapper/log
+dmsetup message log 0 mark mkfs
+
+mount /dev/mapper/log /mnt/btrfs-test
+<fsstress to dirty the fs>
+btrfs filesystem balance /mnt/btrfs-test
+umount /mnt/btrfs-test
+dmsetup remove log
+
+replay-log --log /dev/sdc --replay /dev/sdb --end-mark mkfs
+btrfsck /dev/sdb
+replay-log --log /dev/sdc --replay /dev/sdb --start-mark mkfs \
+ --fsck "btrfsck /dev/sdb" --check fua
+
+And that will replay the log until it sees a FUA request, run the fsck command
+and if the fsck passes it will replay to the next FUA, until it is completed or
+the fsck command exists abnormally.
diff --git a/Documentation/device-mapper/persistent-data.txt b/Documentation/device-mapper/persistent-data.txt
new file mode 100644
index 000000000..a333bcb3a
--- /dev/null
+++ b/Documentation/device-mapper/persistent-data.txt
@@ -0,0 +1,84 @@
+Introduction
+============
+
+The more-sophisticated device-mapper targets require complex metadata
+that is managed in kernel. In late 2010 we were seeing that various
+different targets were rolling their own data structures, for example:
+
+- Mikulas Patocka's multisnap implementation
+- Heinz Mauelshagen's thin provisioning target
+- Another btree-based caching target posted to dm-devel
+- Another multi-snapshot target based on a design of Daniel Phillips
+
+Maintaining these data structures takes a lot of work, so if possible
+we'd like to reduce the number.
+
+The persistent-data library is an attempt to provide a re-usable
+framework for people who want to store metadata in device-mapper
+targets. It's currently used by the thin-provisioning target and an
+upcoming hierarchical storage target.
+
+Overview
+========
+
+The main documentation is in the header files which can all be found
+under drivers/md/persistent-data.
+
+The block manager
+-----------------
+
+dm-block-manager.[hc]
+
+This provides access to the data on disk in fixed sized-blocks. There
+is a read/write locking interface to prevent concurrent accesses, and
+keep data that is being used in the cache.
+
+Clients of persistent-data are unlikely to use this directly.
+
+The transaction manager
+-----------------------
+
+dm-transaction-manager.[hc]
+
+This restricts access to blocks and enforces copy-on-write semantics.
+The only way you can get hold of a writable block through the
+transaction manager is by shadowing an existing block (ie. doing
+copy-on-write) or allocating a fresh one. Shadowing is elided within
+the same transaction so performance is reasonable. The commit method
+ensures that all data is flushed before it writes the superblock.
+On power failure your metadata will be as it was when last committed.
+
+The Space Maps
+--------------
+
+dm-space-map.h
+dm-space-map-metadata.[hc]
+dm-space-map-disk.[hc]
+
+On-disk data structures that keep track of reference counts of blocks.
+Also acts as the allocator of new blocks. Currently two
+implementations: a simpler one for managing blocks on a different
+device (eg. thinly-provisioned data blocks); and one for managing
+the metadata space. The latter is complicated by the need to store
+its own data within the space it's managing.
+
+The data structures
+-------------------
+
+dm-btree.[hc]
+dm-btree-remove.c
+dm-btree-spine.c
+dm-btree-internal.h
+
+Currently there is only one data structure, a hierarchical btree.
+There are plans to add more. For example, something with an
+array-like interface would see a lot of use.
+
+The btree is 'hierarchical' in that you can define it to be composed
+of nested btrees, and take multiple keys. For example, the
+thin-provisioning target uses a btree with two levels of nesting.
+The first maps a device id to a mapping tree, and that in turn maps a
+virtual block to a physical block.
+
+Values stored in the btrees can have arbitrary size. Keys are always
+64bits, although nesting allows you to use multiple keys.
diff --git a/Documentation/device-mapper/snapshot.txt b/Documentation/device-mapper/snapshot.txt
new file mode 100644
index 000000000..0d5bc46dc
--- /dev/null
+++ b/Documentation/device-mapper/snapshot.txt
@@ -0,0 +1,168 @@
+Device-mapper snapshot support
+==============================
+
+Device-mapper allows you, without massive data copying:
+
+*) To create snapshots of any block device i.e. mountable, saved states of
+the block device which are also writable without interfering with the
+original content;
+*) To create device "forks", i.e. multiple different versions of the
+same data stream.
+*) To merge a snapshot of a block device back into the snapshot's origin
+device.
+
+In the first two cases, dm copies only the chunks of data that get
+changed and uses a separate copy-on-write (COW) block device for
+storage.
+
+For snapshot merge the contents of the COW storage are merged back into
+the origin device.
+
+
+There are three dm targets available:
+snapshot, snapshot-origin, and snapshot-merge.
+
+*) snapshot-origin <origin>
+
+which will normally have one or more snapshots based on it.
+Reads will be mapped directly to the backing device. For each write, the
+original data will be saved in the <COW device> of each snapshot to keep
+its visible content unchanged, at least until the <COW device> fills up.
+
+
+*) snapshot <origin> <COW device> <persistent?> <chunksize>
+
+A snapshot of the <origin> block device is created. Changed chunks of
+<chunksize> sectors will be stored on the <COW device>. Writes will
+only go to the <COW device>. Reads will come from the <COW device> or
+from <origin> for unchanged data. <COW device> will often be
+smaller than the origin and if it fills up the snapshot will become
+useless and be disabled, returning errors. So it is important to monitor
+the amount of free space and expand the <COW device> before it fills up.
+
+<persistent?> is P (Persistent) or N (Not persistent - will not survive
+after reboot).
+The difference is that for transient snapshots less metadata must be
+saved on disk - they can be kept in memory by the kernel.
+
+
+* snapshot-merge <origin> <COW device> <persistent> <chunksize>
+
+takes the same table arguments as the snapshot target except it only
+works with persistent snapshots. This target assumes the role of the
+"snapshot-origin" target and must not be loaded if the "snapshot-origin"
+is still present for <origin>.
+
+Creates a merging snapshot that takes control of the changed chunks
+stored in the <COW device> of an existing snapshot, through a handover
+procedure, and merges these chunks back into the <origin>. Once merging
+has started (in the background) the <origin> may be opened and the merge
+will continue while I/O is flowing to it. Changes to the <origin> are
+deferred until the merging snapshot's corresponding chunk(s) have been
+merged. Once merging has started the snapshot device, associated with
+the "snapshot" target, will return -EIO when accessed.
+
+
+How snapshot is used by LVM2
+============================
+When you create the first LVM2 snapshot of a volume, four dm devices are used:
+
+1) a device containing the original mapping table of the source volume;
+2) a device used as the <COW device>;
+3) a "snapshot" device, combining #1 and #2, which is the visible snapshot
+ volume;
+4) the "original" volume (which uses the device number used by the original
+ source volume), whose table is replaced by a "snapshot-origin" mapping
+ from device #1.
+
+A fixed naming scheme is used, so with the following commands:
+
+lvcreate -L 1G -n base volumeGroup
+lvcreate -L 100M --snapshot -n snap volumeGroup/base
+
+we'll have this situation (with volumes in above order):
+
+# dmsetup table|grep volumeGroup
+
+volumeGroup-base-real: 0 2097152 linear 8:19 384
+volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
+volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
+volumeGroup-base: 0 2097152 snapshot-origin 254:11
+
+# ls -lL /dev/mapper/volumeGroup-*
+brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
+brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
+brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
+brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
+
+
+How snapshot-merge is used by LVM2
+==================================
+A merging snapshot assumes the role of the "snapshot-origin" while
+merging. As such the "snapshot-origin" is replaced with
+"snapshot-merge". The "-real" device is not changed and the "-cow"
+device is renamed to <origin name>-cow to aid LVM2's cleanup of the
+merging snapshot after it completes. The "snapshot" that hands over its
+COW device to the "snapshot-merge" is deactivated (unless using lvchange
+--refresh); but if it is left active it will simply return I/O errors.
+
+A snapshot will merge into its origin with the following command:
+
+lvconvert --merge volumeGroup/snap
+
+we'll now have this situation:
+
+# dmsetup table|grep volumeGroup
+
+volumeGroup-base-real: 0 2097152 linear 8:19 384
+volumeGroup-base-cow: 0 204800 linear 8:19 2097536
+volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
+
+# ls -lL /dev/mapper/volumeGroup-*
+brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
+brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
+brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
+
+
+How to determine when a merging is complete
+===========================================
+The snapshot-merge and snapshot status lines end with:
+ <sectors_allocated>/<total_sectors> <metadata_sectors>
+
+Both <sectors_allocated> and <total_sectors> include both data and metadata.
+During merging, the number of sectors allocated gets smaller and
+smaller. Merging has finished when the number of sectors holding data
+is zero, in other words <sectors_allocated> == <metadata_sectors>.
+
+Here is a practical example (using a hybrid of lvm and dmsetup commands):
+
+# lvs
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup owi-a- 4.00g
+ snap volumeGroup swi-a- 1.00g base 18.97
+
+# dmsetup status volumeGroup-snap
+0 8388608 snapshot 397896/2097152 1560
+ ^^^^ metadata sectors
+
+# lvconvert --merge -b volumeGroup/snap
+ Merging of volume snap started.
+
+# lvs volumeGroup/snap
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup Owi-a- 4.00g 17.23
+
+# dmsetup status volumeGroup-base
+0 8388608 snapshot-merge 281688/2097152 1104
+
+# dmsetup status volumeGroup-base
+0 8388608 snapshot-merge 180480/2097152 712
+
+# dmsetup status volumeGroup-base
+0 8388608 snapshot-merge 16/2097152 16
+
+Merging has finished.
+
+# lvs
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup owi-a- 4.00g
diff --git a/Documentation/device-mapper/statistics.txt b/Documentation/device-mapper/statistics.txt
new file mode 100644
index 000000000..2a1673adc
--- /dev/null
+++ b/Documentation/device-mapper/statistics.txt
@@ -0,0 +1,186 @@
+DM statistics
+=============
+
+Device Mapper supports the collection of I/O statistics on user-defined
+regions of a DM device. If no regions are defined no statistics are
+collected so there isn't any performance impact. Only bio-based DM
+devices are currently supported.
+
+Each user-defined region specifies a starting sector, length and step.
+Individual statistics will be collected for each step-sized area within
+the range specified.
+
+The I/O statistics counters for each step-sized area of a region are
+in the same format as /sys/block/*/stat or /proc/diskstats (see:
+Documentation/iostats.txt). But two extra counters (12 and 13) are
+provided: total time spent reading and writing in milliseconds. All
+these counters may be accessed by sending the @stats_print message to
+the appropriate DM device via dmsetup.
+
+Each region has a corresponding unique identifier, which we call a
+region_id, that is assigned when the region is created. The region_id
+must be supplied when querying statistics about the region, deleting the
+region, etc. Unique region_ids enable multiple userspace programs to
+request and process statistics for the same DM device without stepping
+on each other's data.
+
+The creation of DM statistics will allocate memory via kmalloc or
+fallback to using vmalloc space. At most, 1/4 of the overall system
+memory may be allocated by DM statistics. The admin can see how much
+memory is used by reading
+/sys/module/dm_mod/parameters/stats_current_allocated_bytes
+
+Messages
+========
+
+ @stats_create <range> <step> [<program_id> [<aux_data>]]
+
+ Create a new region and return the region_id.
+
+ <range>
+ "-" - whole device
+ "<start_sector>+<length>" - a range of <length> 512-byte sectors
+ starting with <start_sector>.
+
+ <step>
+ "<area_size>" - the range is subdivided into areas each containing
+ <area_size> sectors.
+ "/<number_of_areas>" - the range is subdivided into the specified
+ number of areas.
+
+ <program_id>
+ An optional parameter. A name that uniquely identifies
+ the userspace owner of the range. This groups ranges together
+ so that userspace programs can identify the ranges they
+ created and ignore those created by others.
+ The kernel returns this string back in the output of
+ @stats_list message, but it doesn't use it for anything else.
+
+ <aux_data>
+ An optional parameter. A word that provides auxiliary data
+ that is useful to the client program that created the range.
+ The kernel returns this string back in the output of
+ @stats_list message, but it doesn't use this value for anything.
+
+ @stats_delete <region_id>
+
+ Delete the region with the specified id.
+
+ <region_id>
+ region_id returned from @stats_create
+
+ @stats_clear <region_id>
+
+ Clear all the counters except the in-flight i/o counters.
+
+ <region_id>
+ region_id returned from @stats_create
+
+ @stats_list [<program_id>]
+
+ List all regions registered with @stats_create.
+
+ <program_id>
+ An optional parameter.
+ If this parameter is specified, only matching regions
+ are returned.
+ If it is not specified, all regions are returned.
+
+ Output format:
+ <region_id>: <start_sector>+<length> <step> <program_id> <aux_data>
+
+ @stats_print <region_id> [<starting_line> <number_of_lines>]
+
+ Print counters for each step-sized area of a region.
+
+ <region_id>
+ region_id returned from @stats_create
+
+ <starting_line>
+ The index of the starting line in the output.
+ If omitted, all lines are returned.
+
+ <number_of_lines>
+ The number of lines to include in the output.
+ If omitted, all lines are returned.
+
+ Output format for each step-sized area of a region:
+
+ <start_sector>+<length> counters
+
+ The first 11 counters have the same meaning as
+ /sys/block/*/stat or /proc/diskstats.
+
+ Please refer to Documentation/iostats.txt for details.
+
+ 1. the number of reads completed
+ 2. the number of reads merged
+ 3. the number of sectors read
+ 4. the number of milliseconds spent reading
+ 5. the number of writes completed
+ 6. the number of writes merged
+ 7. the number of sectors written
+ 8. the number of milliseconds spent writing
+ 9. the number of I/Os currently in progress
+ 10. the number of milliseconds spent doing I/Os
+ 11. the weighted number of milliseconds spent doing I/Os
+
+ Additional counters:
+ 12. the total time spent reading in milliseconds
+ 13. the total time spent writing in milliseconds
+
+ @stats_print_clear <region_id> [<starting_line> <number_of_lines>]
+
+ Atomically print and then clear all the counters except the
+ in-flight i/o counters. Useful when the client consuming the
+ statistics does not want to lose any statistics (those updated
+ between printing and clearing).
+
+ <region_id>
+ region_id returned from @stats_create
+
+ <starting_line>
+ The index of the starting line in the output.
+ If omitted, all lines are printed and then cleared.
+
+ <number_of_lines>
+ The number of lines to process.
+ If omitted, all lines are printed and then cleared.
+
+ @stats_set_aux <region_id> <aux_data>
+
+ Store auxiliary data aux_data for the specified region.
+
+ <region_id>
+ region_id returned from @stats_create
+
+ <aux_data>
+ The string that identifies data which is useful to the client
+ program that created the range. The kernel returns this
+ string back in the output of @stats_list message, but it
+ doesn't use this value for anything.
+
+Examples
+========
+
+Subdivide the DM device 'vol' into 100 pieces and start collecting
+statistics on them:
+
+ dmsetup message vol 0 @stats_create - /100
+
+Set the auxillary data string to "foo bar baz" (the escape for each
+space must also be escaped, otherwise the shell will consume them):
+
+ dmsetup message vol 0 @stats_set_aux 0 foo\\ bar\\ baz
+
+List the statistics:
+
+ dmsetup message vol 0 @stats_list
+
+Print the statistics:
+
+ dmsetup message vol 0 @stats_print 0
+
+Delete the statistics:
+
+ dmsetup message vol 0 @stats_delete 0
diff --git a/Documentation/device-mapper/striped.txt b/Documentation/device-mapper/striped.txt
new file mode 100644
index 000000000..45f3b91ea
--- /dev/null
+++ b/Documentation/device-mapper/striped.txt
@@ -0,0 +1,57 @@
+dm-stripe
+=========
+
+Device-Mapper's "striped" target is used to create a striped (i.e. RAID-0)
+device across one or more underlying devices. Data is written in "chunks",
+with consecutive chunks rotating among the underlying devices. This can
+potentially provide improved I/O throughput by utilizing several physical
+devices in parallel.
+
+Parameters: <num devs> <chunk size> [<dev path> <offset>]+
+ <num devs>: Number of underlying devices.
+ <chunk size>: Size of each chunk of data. Must be at least as
+ large as the system's PAGE_SIZE.
+ <dev path>: Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>: Starting sector within the device.
+
+One or more underlying devices can be specified. The striped device size must
+be a multiple of the chunk size multiplied by the number of underlying devices.
+
+
+Example scripts
+===============
+
+[[
+#!/usr/bin/perl -w
+# Create a striped device across any number of underlying devices. The device
+# will be called "stripe_dev" and have a chunk-size of 128k.
+
+my $chunk_size = 128 * 2;
+my $dev_name = "stripe_dev";
+my $num_devs = @ARGV;
+my @devs = @ARGV;
+my ($min_dev_size, $stripe_dev_size, $i);
+
+if (!$num_devs) {
+ die("Specify at least one device\n");
+}
+
+$min_dev_size = `blockdev --getsize $devs[0]`;
+for ($i = 1; $i < $num_devs; $i++) {
+ my $this_size = `blockdev --getsize $devs[$i]`;
+ $min_dev_size = ($min_dev_size < $this_size) ?
+ $min_dev_size : $this_size;
+}
+
+$stripe_dev_size = $min_dev_size * $num_devs;
+$stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
+
+$table = "0 $stripe_dev_size striped $num_devs $chunk_size";
+for ($i = 0; $i < $num_devs; $i++) {
+ $table .= " $devs[$i] 0";
+}
+
+`echo $table | dmsetup create $dev_name`;
+]]
+
diff --git a/Documentation/device-mapper/switch.txt b/Documentation/device-mapper/switch.txt
new file mode 100644
index 000000000..424835e57
--- /dev/null
+++ b/Documentation/device-mapper/switch.txt
@@ -0,0 +1,138 @@
+dm-switch
+=========
+
+The device-mapper switch target creates a device that supports an
+arbitrary mapping of fixed-size regions of I/O across a fixed set of
+paths. The path used for any specific region can be switched
+dynamically by sending the target a message.
+
+It maps I/O to underlying block devices efficiently when there is a large
+number of fixed-sized address regions but there is no simple pattern
+that would allow for a compact representation of the mapping such as
+dm-stripe.
+
+Background
+----------
+
+Dell EqualLogic and some other iSCSI storage arrays use a distributed
+frameless architecture. In this architecture, the storage group
+consists of a number of distinct storage arrays ("members") each having
+independent controllers, disk storage and network adapters. When a LUN
+is created it is spread across multiple members. The details of the
+spreading are hidden from initiators connected to this storage system.
+The storage group exposes a single target discovery portal, no matter
+how many members are being used. When iSCSI sessions are created, each
+session is connected to an eth port on a single member. Data to a LUN
+can be sent on any iSCSI session, and if the blocks being accessed are
+stored on another member the I/O will be forwarded as required. This
+forwarding is invisible to the initiator. The storage layout is also
+dynamic, and the blocks stored on disk may be moved from member to
+member as needed to balance the load.
+
+This architecture simplifies the management and configuration of both
+the storage group and initiators. In a multipathing configuration, it
+is possible to set up multiple iSCSI sessions to use multiple network
+interfaces on both the host and target to take advantage of the
+increased network bandwidth. An initiator could use a simple round
+robin algorithm to send I/O across all paths and let the storage array
+members forward it as necessary, but there is a performance advantage to
+sending data directly to the correct member.
+
+A device-mapper table already lets you map different regions of a
+device onto different targets. However in this architecture the LUN is
+spread with an address region size on the order of 10s of MBs, which
+means the resulting table could have more than a million entries and
+consume far too much memory.
+
+Using this device-mapper switch target we can now build a two-layer
+device hierarchy:
+
+ Upper Tier - Determine which array member the I/O should be sent to.
+ Lower Tier - Load balance amongst paths to a particular member.
+
+The lower tier consists of a single dm multipath device for each member.
+Each of these multipath devices contains the set of paths directly to
+the array member in one priority group, and leverages existing path
+selectors to load balance amongst these paths. We also build a
+non-preferred priority group containing paths to other array members for
+failover reasons.
+
+The upper tier consists of a single dm-switch device. This device uses
+a bitmap to look up the location of the I/O and choose the appropriate
+lower tier device to route the I/O. By using a bitmap we are able to
+use 4 bits for each address range in a 16 member group (which is very
+large for us). This is a much denser representation than the dm table
+b-tree can achieve.
+
+Construction Parameters
+=======================
+
+ <num_paths> <region_size> <num_optional_args> [<optional_args>...]
+ [<dev_path> <offset>]+
+
+<num_paths>
+ The number of paths across which to distribute the I/O.
+
+<region_size>
+ The number of 512-byte sectors in a region. Each region can be redirected
+ to any of the available paths.
+
+<num_optional_args>
+ The number of optional arguments. Currently, no optional arguments
+ are supported and so this must be zero.
+
+<dev_path>
+ The block device that represents a specific path to the device.
+
+<offset>
+ The offset of the start of data on the specific <dev_path> (in units
+ of 512-byte sectors). This number is added to the sector number when
+ forwarding the request to the specific path. Typically it is zero.
+
+Messages
+========
+
+set_region_mappings <index>:<path_nr> [<index>]:<path_nr> [<index>]:<path_nr>...
+
+Modify the region table by specifying which regions are redirected to
+which paths.
+
+<index>
+ The region number (region size was specified in constructor parameters).
+ If index is omitted, the next region (previous index + 1) is used.
+ Expressed in hexadecimal (WITHOUT any prefix like 0x).
+
+<path_nr>
+ The path number in the range 0 ... (<num_paths> - 1).
+ Expressed in hexadecimal (WITHOUT any prefix like 0x).
+
+R<n>,<m>
+ This parameter allows repetitive patterns to be loaded quickly. <n> and <m>
+ are hexadecimal numbers. The last <n> mappings are repeated in the next <m>
+ slots.
+
+Status
+======
+
+No status line is reported.
+
+Example
+=======
+
+Assume that you have volumes vg1/switch0 vg1/switch1 vg1/switch2 with
+the same size.
+
+Create a switch device with 64kB region size:
+ dmsetup create switch --table "0 `blockdev --getsize /dev/vg1/switch0`
+ switch 3 128 0 /dev/vg1/switch0 0 /dev/vg1/switch1 0 /dev/vg1/switch2 0"
+
+Set mappings for the first 7 entries to point to devices switch0, switch1,
+switch2, switch0, switch1, switch2, switch1:
+ dmsetup message switch 0 set_region_mappings 0:0 :1 :2 :0 :1 :2 :1
+
+Set repetitive mapping. This command:
+ dmsetup message switch 0 set_region_mappings 1000:1 :2 R2,10
+is equivalent to:
+ dmsetup message switch 0 set_region_mappings 1000:1 :2 :1 :2 :1 :2 :1 :2 \
+ :1 :2 :1 :2 :1 :2 :1 :2 :1 :2
+
diff --git a/Documentation/device-mapper/thin-provisioning.txt b/Documentation/device-mapper/thin-provisioning.txt
new file mode 100644
index 000000000..4f67578b2
--- /dev/null
+++ b/Documentation/device-mapper/thin-provisioning.txt
@@ -0,0 +1,389 @@
+Introduction
+============
+
+This document describes a collection of device-mapper targets that
+between them implement thin-provisioning and snapshots.
+
+The main highlight of this implementation, compared to the previous
+implementation of snapshots, is that it allows many virtual devices to
+be stored on the same data volume. This simplifies administration and
+allows the sharing of data between volumes, thus reducing disk usage.
+
+Another significant feature is support for an arbitrary depth of
+recursive snapshots (snapshots of snapshots of snapshots ...). The
+previous implementation of snapshots did this by chaining together
+lookup tables, and so performance was O(depth). This new
+implementation uses a single data structure to avoid this degradation
+with depth. Fragmentation may still be an issue, however, in some
+scenarios.
+
+Metadata is stored on a separate device from data, giving the
+administrator some freedom, for example to:
+
+- Improve metadata resilience by storing metadata on a mirrored volume
+ but data on a non-mirrored one.
+
+- Improve performance by storing the metadata on SSD.
+
+Status
+======
+
+These targets are very much still in the EXPERIMENTAL state. Please
+do not yet rely on them in production. But do experiment and offer us
+feedback. Different use cases will have different performance
+characteristics, for example due to fragmentation of the data volume.
+
+If you find this software is not performing as expected please mail
+dm-devel@redhat.com with details and we'll try our best to improve
+things for you.
+
+Userspace tools for checking and repairing the metadata are under
+development.
+
+Cookbook
+========
+
+This section describes some quick recipes for using thin provisioning.
+They use the dmsetup program to control the device-mapper driver
+directly. End users will be advised to use a higher-level volume
+manager such as LVM2 once support has been added.
+
+Pool device
+-----------
+
+The pool device ties together the metadata volume and the data volume.
+It maps I/O linearly to the data volume and updates the metadata via
+two mechanisms:
+
+- Function calls from the thin targets
+
+- Device-mapper 'messages' from userspace which control the creation of new
+ virtual devices amongst other things.
+
+Setting up a fresh pool device
+------------------------------
+
+Setting up a pool device requires a valid metadata device, and a
+data device. If you do not have an existing metadata device you can
+make one by zeroing the first 4k to indicate empty metadata.
+
+ dd if=/dev/zero of=$metadata_dev bs=4096 count=1
+
+The amount of metadata you need will vary according to how many blocks
+are shared between thin devices (i.e. through snapshots). If you have
+less sharing than average you'll need a larger-than-average metadata device.
+
+As a guide, we suggest you calculate the number of bytes to use in the
+metadata device as 48 * $data_dev_size / $data_block_size but round it up
+to 2MB if the answer is smaller. If you're creating large numbers of
+snapshots which are recording large amounts of change, you may find you
+need to increase this.
+
+The largest size supported is 16GB: If the device is larger,
+a warning will be issued and the excess space will not be used.
+
+Reloading a pool table
+----------------------
+
+You may reload a pool's table, indeed this is how the pool is resized
+if it runs out of space. (N.B. While specifying a different metadata
+device when reloading is not forbidden at the moment, things will go
+wrong if it does not route I/O to exactly the same on-disk location as
+previously.)
+
+Using an existing pool device
+-----------------------------
+
+ dmsetup create pool \
+ --table "0 20971520 thin-pool $metadata_dev $data_dev \
+ $data_block_size $low_water_mark"
+
+$data_block_size gives the smallest unit of disk space that can be
+allocated at a time expressed in units of 512-byte sectors.
+$data_block_size must be between 128 (64KB) and 2097152 (1GB) and a
+multiple of 128 (64KB). $data_block_size cannot be changed after the
+thin-pool is created. People primarily interested in thin provisioning
+may want to use a value such as 1024 (512KB). People doing lots of
+snapshotting may want a smaller value such as 128 (64KB). If you are
+not zeroing newly-allocated data, a larger $data_block_size in the
+region of 256000 (128MB) is suggested.
+
+$low_water_mark is expressed in blocks of size $data_block_size. If
+free space on the data device drops below this level then a dm event
+will be triggered which a userspace daemon should catch allowing it to
+extend the pool device. Only one such event will be sent.
+Resuming a device with a new table itself triggers an event so the
+userspace daemon can use this to detect a situation where a new table
+already exceeds the threshold.
+
+A low water mark for the metadata device is maintained in the kernel and
+will trigger a dm event if free space on the metadata device drops below
+it.
+
+Updating on-disk metadata
+-------------------------
+
+On-disk metadata is committed every time a FLUSH or FUA bio is written.
+If no such requests are made then commits will occur every second. This
+means the thin-provisioning target behaves like a physical disk that has
+a volatile write cache. If power is lost you may lose some recent
+writes. The metadata should always be consistent in spite of any crash.
+
+If data space is exhausted the pool will either error or queue IO
+according to the configuration (see: error_if_no_space). If metadata
+space is exhausted or a metadata operation fails: the pool will error IO
+until the pool is taken offline and repair is performed to 1) fix any
+potential inconsistencies and 2) clear the flag that imposes repair.
+Once the pool's metadata device is repaired it may be resized, which
+will allow the pool to return to normal operation. Note that if a pool
+is flagged as needing repair, the pool's data and metadata devices
+cannot be resized until repair is performed. It should also be noted
+that when the pool's metadata space is exhausted the current metadata
+transaction is aborted. Given that the pool will cache IO whose
+completion may have already been acknowledged to upper IO layers
+(e.g. filesystem) it is strongly suggested that consistency checks
+(e.g. fsck) be performed on those layers when repair of the pool is
+required.
+
+Thin provisioning
+-----------------
+
+i) Creating a new thinly-provisioned volume.
+
+ To create a new thinly- provisioned volume you must send a message to an
+ active pool device, /dev/mapper/pool in this example.
+
+ dmsetup message /dev/mapper/pool 0 "create_thin 0"
+
+ Here '0' is an identifier for the volume, a 24-bit number. It's up
+ to the caller to allocate and manage these identifiers. If the
+ identifier is already in use, the message will fail with -EEXIST.
+
+ii) Using a thinly-provisioned volume.
+
+ Thinly-provisioned volumes are activated using the 'thin' target:
+
+ dmsetup create thin --table "0 2097152 thin /dev/mapper/pool 0"
+
+ The last parameter is the identifier for the thinp device.
+
+Internal snapshots
+------------------
+
+i) Creating an internal snapshot.
+
+ Snapshots are created with another message to the pool.
+
+ N.B. If the origin device that you wish to snapshot is active, you
+ must suspend it before creating the snapshot to avoid corruption.
+ This is NOT enforced at the moment, so please be careful!
+
+ dmsetup suspend /dev/mapper/thin
+ dmsetup message /dev/mapper/pool 0 "create_snap 1 0"
+ dmsetup resume /dev/mapper/thin
+
+ Here '1' is the identifier for the volume, a 24-bit number. '0' is the
+ identifier for the origin device.
+
+ii) Using an internal snapshot.
+
+ Once created, the user doesn't have to worry about any connection
+ between the origin and the snapshot. Indeed the snapshot is no
+ different from any other thinly-provisioned device and can be
+ snapshotted itself via the same method. It's perfectly legal to
+ have only one of them active, and there's no ordering requirement on
+ activating or removing them both. (This differs from conventional
+ device-mapper snapshots.)
+
+ Activate it exactly the same way as any other thinly-provisioned volume:
+
+ dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 1"
+
+External snapshots
+------------------
+
+You can use an external _read only_ device as an origin for a
+thinly-provisioned volume. Any read to an unprovisioned area of the
+thin device will be passed through to the origin. Writes trigger
+the allocation of new blocks as usual.
+
+One use case for this is VM hosts that want to run guests on
+thinly-provisioned volumes but have the base image on another device
+(possibly shared between many VMs).
+
+You must not write to the origin device if you use this technique!
+Of course, you may write to the thin device and take internal snapshots
+of the thin volume.
+
+i) Creating a snapshot of an external device
+
+ This is the same as creating a thin device.
+ You don't mention the origin at this stage.
+
+ dmsetup message /dev/mapper/pool 0 "create_thin 0"
+
+ii) Using a snapshot of an external device.
+
+ Append an extra parameter to the thin target specifying the origin:
+
+ dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 0 /dev/image"
+
+ N.B. All descendants (internal snapshots) of this snapshot require the
+ same extra origin parameter.
+
+Deactivation
+------------
+
+All devices using a pool must be deactivated before the pool itself
+can be.
+
+ dmsetup remove thin
+ dmsetup remove snap
+ dmsetup remove pool
+
+Reference
+=========
+
+'thin-pool' target
+------------------
+
+i) Constructor
+
+ thin-pool <metadata dev> <data dev> <data block size (sectors)> \
+ <low water mark (blocks)> [<number of feature args> [<arg>]*]
+
+ Optional feature arguments:
+
+ skip_block_zeroing: Skip the zeroing of newly-provisioned blocks.
+
+ ignore_discard: Disable discard support.
+
+ no_discard_passdown: Don't pass discards down to the underlying
+ data device, but just remove the mapping.
+
+ read_only: Don't allow any changes to be made to the pool
+ metadata.
+
+ error_if_no_space: Error IOs, instead of queueing, if no space.
+
+ Data block size must be between 64KB (128 sectors) and 1GB
+ (2097152 sectors) inclusive.
+
+
+ii) Status
+
+ <transaction id> <used metadata blocks>/<total metadata blocks>
+ <used data blocks>/<total data blocks> <held metadata root>
+ [no_]discard_passdown ro|rw
+
+ transaction id:
+ A 64-bit number used by userspace to help synchronise with metadata
+ from volume managers.
+
+ used data blocks / total data blocks
+ If the number of free blocks drops below the pool's low water mark a
+ dm event will be sent to userspace. This event is edge-triggered and
+ it will occur only once after each resume so volume manager writers
+ should register for the event and then check the target's status.
+
+ held metadata root:
+ The location, in blocks, of the metadata root that has been
+ 'held' for userspace read access. '-' indicates there is no
+ held root.
+
+ discard_passdown|no_discard_passdown
+ Whether or not discards are actually being passed down to the
+ underlying device. When this is enabled when loading the table,
+ it can get disabled if the underlying device doesn't support it.
+
+ ro|rw
+ If the pool encounters certain types of device failures it will
+ drop into a read-only metadata mode in which no changes to
+ the pool metadata (like allocating new blocks) are permitted.
+
+ In serious cases where even a read-only mode is deemed unsafe
+ no further I/O will be permitted and the status will just
+ contain the string 'Fail'. The userspace recovery tools
+ should then be used.
+
+ error_if_no_space|queue_if_no_space
+ If the pool runs out of data or metadata space, the pool will
+ either queue or error the IO destined to the data device. The
+ default is to queue the IO until more space is added or the
+ 'no_space_timeout' expires. The 'no_space_timeout' dm-thin-pool
+ module parameter can be used to change this timeout -- it
+ defaults to 60 seconds but may be disabled using a value of 0.
+
+iii) Messages
+
+ create_thin <dev id>
+
+ Create a new thinly-provisioned device.
+ <dev id> is an arbitrary unique 24-bit identifier chosen by
+ the caller.
+
+ create_snap <dev id> <origin id>
+
+ Create a new snapshot of another thinly-provisioned device.
+ <dev id> is an arbitrary unique 24-bit identifier chosen by
+ the caller.
+ <origin id> is the identifier of the thinly-provisioned device
+ of which the new device will be a snapshot.
+
+ delete <dev id>
+
+ Deletes a thin device. Irreversible.
+
+ set_transaction_id <current id> <new id>
+
+ Userland volume managers, such as LVM, need a way to
+ synchronise their external metadata with the internal metadata of the
+ pool target. The thin-pool target offers to store an
+ arbitrary 64-bit transaction id and return it on the target's
+ status line. To avoid races you must provide what you think
+ the current transaction id is when you change it with this
+ compare-and-swap message.
+
+ reserve_metadata_snap
+
+ Reserve a copy of the data mapping btree for use by userland.
+ This allows userland to inspect the mappings as they were when
+ this message was executed. Use the pool's status command to
+ get the root block associated with the metadata snapshot.
+
+ release_metadata_snap
+
+ Release a previously reserved copy of the data mapping btree.
+
+'thin' target
+-------------
+
+i) Constructor
+
+ thin <pool dev> <dev id> [<external origin dev>]
+
+ pool dev:
+ the thin-pool device, e.g. /dev/mapper/my_pool or 253:0
+
+ dev id:
+ the internal device identifier of the device to be
+ activated.
+
+ external origin dev:
+ an optional block device outside the pool to be treated as a
+ read-only snapshot origin: reads to unprovisioned areas of the
+ thin target will be mapped to this device.
+
+The pool doesn't store any size against the thin devices. If you
+load a thin target that is smaller than you've been using previously,
+then you'll have no access to blocks mapped beyond the end. If you
+load a target that is bigger than before, then extra blocks will be
+provisioned as and when needed.
+
+ii) Status
+
+ <nr mapped sectors> <highest mapped sector>
+
+ If the pool has encountered device errors and failed, the status
+ will just contain the string 'Fail'. The userspace recovery
+ tools should then be used.
diff --git a/Documentation/device-mapper/verity.txt b/Documentation/device-mapper/verity.txt
new file mode 100644
index 000000000..e15bc1a0f
--- /dev/null
+++ b/Documentation/device-mapper/verity.txt
@@ -0,0 +1,172 @@
+dm-verity
+==========
+
+Device-Mapper's "verity" target provides transparent integrity checking of
+block devices using a cryptographic digest provided by the kernel crypto API.
+This target is read-only.
+
+Construction Parameters
+=======================
+ <version> <dev> <hash_dev>
+ <data_block_size> <hash_block_size>
+ <num_data_blocks> <hash_start_block>
+ <algorithm> <digest> <salt>
+ [<#opt_params> <opt_params>]
+
+<version>
+ This is the type of the on-disk hash format.
+
+ 0 is the original format used in the Chromium OS.
+ The salt is appended when hashing, digests are stored continuously and
+ the rest of the block is padded with zeros.
+
+ 1 is the current format that should be used for new devices.
+ The salt is prepended when hashing and each digest is
+ padded with zeros to the power of two.
+
+<dev>
+ This is the device containing data, the integrity of which needs to be
+ checked. It may be specified as a path, like /dev/sdaX, or a device number,
+ <major>:<minor>.
+
+<hash_dev>
+ This is the device that supplies the hash tree data. It may be
+ specified similarly to the device path and may be the same device. If the
+ same device is used, the hash_start should be outside the configured
+ dm-verity device.
+
+<data_block_size>
+ The block size on a data device in bytes.
+ Each block corresponds to one digest on the hash device.
+
+<hash_block_size>
+ The size of a hash block in bytes.
+
+<num_data_blocks>
+ The number of data blocks on the data device. Additional blocks are
+ inaccessible. You can place hashes to the same partition as data, in this
+ case hashes are placed after <num_data_blocks>.
+
+<hash_start_block>
+ This is the offset, in <hash_block_size>-blocks, from the start of hash_dev
+ to the root block of the hash tree.
+
+<algorithm>
+ The cryptographic hash algorithm used for this device. This should
+ be the name of the algorithm, like "sha1".
+
+<digest>
+ The hexadecimal encoding of the cryptographic hash of the root hash block
+ and the salt. This hash should be trusted as there is no other authenticity
+ beyond this point.
+
+<salt>
+ The hexadecimal encoding of the salt value.
+
+<#opt_params>
+ Number of optional parameters. If there are no optional parameters,
+ the optional paramaters section can be skipped or #opt_params can be zero.
+ Otherwise #opt_params is the number of following arguments.
+
+ Example of optional parameters section:
+ 1 ignore_corruption
+
+ignore_corruption
+ Log corrupted blocks, but allow read operations to proceed normally.
+
+restart_on_corruption
+ Restart the system when a corrupted block is discovered. This option is
+ not compatible with ignore_corruption and requires user space support to
+ avoid restart loops.
+
+Theory of operation
+===================
+
+dm-verity is meant to be set up as part of a verified boot path. This
+may be anything ranging from a boot using tboot or trustedgrub to just
+booting from a known-good device (like a USB drive or CD).
+
+When a dm-verity device is configured, it is expected that the caller
+has been authenticated in some way (cryptographic signatures, etc).
+After instantiation, all hashes will be verified on-demand during
+disk access. If they cannot be verified up to the root node of the
+tree, the root hash, then the I/O will fail. This should detect
+tampering with any data on the device and the hash data.
+
+Cryptographic hashes are used to assert the integrity of the device on a
+per-block basis. This allows for a lightweight hash computation on first read
+into the page cache. Block hashes are stored linearly, aligned to the nearest
+block size.
+
+Hash Tree
+---------
+
+Each node in the tree is a cryptographic hash. If it is a leaf node, the hash
+of some data block on disk is calculated. If it is an intermediary node,
+the hash of a number of child nodes is calculated.
+
+Each entry in the tree is a collection of neighboring nodes that fit in one
+block. The number is determined based on block_size and the size of the
+selected cryptographic digest algorithm. The hashes are linearly-ordered in
+this entry and any unaligned trailing space is ignored but included when
+calculating the parent node.
+
+The tree looks something like:
+
+alg = sha256, num_blocks = 32768, block_size = 4096
+
+ [ root ]
+ / . . . \
+ [entry_0] [entry_1]
+ / . . . \ . . . \
+ [entry_0_0] . . . [entry_0_127] . . . . [entry_1_127]
+ / ... \ / . . . \ / \
+ blk_0 ... blk_127 blk_16256 blk_16383 blk_32640 . . . blk_32767
+
+
+On-disk format
+==============
+
+The verity kernel code does not read the verity metadata on-disk header.
+It only reads the hash blocks which directly follow the header.
+It is expected that a user-space tool will verify the integrity of the
+verity header.
+
+Alternatively, the header can be omitted and the dmsetup parameters can
+be passed via the kernel command-line in a rooted chain of trust where
+the command-line is verified.
+
+Directly following the header (and with sector number padded to the next hash
+block boundary) are the hash blocks which are stored a depth at a time
+(starting from the root), sorted in order of increasing index.
+
+The full specification of kernel parameters and on-disk metadata format
+is available at the cryptsetup project's wiki page
+ https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity
+
+Status
+======
+V (for Valid) is returned if every check performed so far was valid.
+If any check failed, C (for Corruption) is returned.
+
+Example
+=======
+Set up a device:
+ # dmsetup create vroot --readonly --table \
+ "0 2097152 verity 1 /dev/sda1 /dev/sda2 4096 4096 262144 1 sha256 "\
+ "4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
+ "1234000000000000000000000000000000000000000000000000000000000000"
+
+A command line tool veritysetup is available to compute or verify
+the hash tree or activate the kernel device. This is available from
+the cryptsetup upstream repository https://gitlab.com/cryptsetup/cryptsetup/
+(as a libcryptsetup extension).
+
+Create hash on the device:
+ # veritysetup format /dev/sda1 /dev/sda2
+ ...
+ Root hash: 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
+
+Activate the device:
+ # veritysetup create vroot /dev/sda1 /dev/sda2 \
+ 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
diff --git a/Documentation/device-mapper/zero.txt b/Documentation/device-mapper/zero.txt
new file mode 100644
index 000000000..20fb38e7f
--- /dev/null
+++ b/Documentation/device-mapper/zero.txt
@@ -0,0 +1,37 @@
+dm-zero
+=======
+
+Device-Mapper's "zero" target provides a block-device that always returns
+zero'd data on reads and silently drops writes. This is similar behavior to
+/dev/zero, but as a block-device instead of a character-device.
+
+Dm-zero has no target-specific parameters.
+
+One very interesting use of dm-zero is for creating "sparse" devices in
+conjunction with dm-snapshot. A sparse device reports a device-size larger
+than the amount of actual storage space available for that device. A user can
+write data anywhere within the sparse device and read it back like a normal
+device. Reads to previously unwritten areas will return a zero'd buffer. When
+enough data has been written to fill up the actual storage space, the sparse
+device is deactivated. This can be very useful for testing device and
+filesystem limitations.
+
+To create a sparse device, start by creating a dm-zero device that's the
+desired size of the sparse device. For this example, we'll assume a 10TB
+sparse device.
+
+TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
+echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
+
+Then create a snapshot of the zero device, using any available block-device as
+the COW device. The size of the COW device will determine the amount of real
+space available to the sparse device. For this example, we'll assume /dev/sdb1
+is an available 10GB partition.
+
+echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
+ dmsetup create sparse1
+
+This will create a 10TB sparse device called /dev/mapper/sparse1 that has
+10GB of actual storage space available. If more than 10GB of data is written
+to this device, it will start returning I/O errors.
+