summaryrefslogtreecommitdiff
path: root/Documentation/memory-barriers.txt
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /Documentation/memory-barriers.txt
Initial import
Diffstat (limited to 'Documentation/memory-barriers.txt')
-rw-r--r--Documentation/memory-barriers.txt3064
1 files changed, 3064 insertions, 0 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
new file mode 100644
index 000000000..f95746189
--- /dev/null
+++ b/Documentation/memory-barriers.txt
@@ -0,0 +1,3064 @@
+ ============================
+ LINUX KERNEL MEMORY BARRIERS
+ ============================
+
+By: David Howells <dhowells@redhat.com>
+ Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+
+Contents:
+
+ (*) Abstract memory access model.
+
+ - Device operations.
+ - Guarantees.
+
+ (*) What are memory barriers?
+
+ - Varieties of memory barrier.
+ - What may not be assumed about memory barriers?
+ - Data dependency barriers.
+ - Control dependencies.
+ - SMP barrier pairing.
+ - Examples of memory barrier sequences.
+ - Read memory barriers vs load speculation.
+ - Transitivity
+
+ (*) Explicit kernel barriers.
+
+ - Compiler barrier.
+ - CPU memory barriers.
+ - MMIO write barrier.
+
+ (*) Implicit kernel memory barriers.
+
+ - Locking functions.
+ - Interrupt disabling functions.
+ - Sleep and wake-up functions.
+ - Miscellaneous functions.
+
+ (*) Inter-CPU locking barrier effects.
+
+ - Locks vs memory accesses.
+ - Locks vs I/O accesses.
+
+ (*) Where are memory barriers needed?
+
+ - Interprocessor interaction.
+ - Atomic operations.
+ - Accessing devices.
+ - Interrupts.
+
+ (*) Kernel I/O barrier effects.
+
+ (*) Assumed minimum execution ordering model.
+
+ (*) The effects of the cpu cache.
+
+ - Cache coherency.
+ - Cache coherency vs DMA.
+ - Cache coherency vs MMIO.
+
+ (*) The things CPUs get up to.
+
+ - And then there's the Alpha.
+
+ (*) Example uses.
+
+ - Circular buffers.
+
+ (*) References.
+
+
+============================
+ABSTRACT MEMORY ACCESS MODEL
+============================
+
+Consider the following abstract model of the system:
+
+ : :
+ : :
+ : :
+ +-------+ : +--------+ : +-------+
+ | | : | | : | |
+ | | : | | : | |
+ | CPU 1 |<----->| Memory |<----->| CPU 2 |
+ | | : | | : | |
+ | | : | | : | |
+ +-------+ : +--------+ : +-------+
+ ^ : ^ : ^
+ | : | : |
+ | : | : |
+ | : v : |
+ | : +--------+ : |
+ | : | | : |
+ | : | | : |
+ +---------->| Device |<----------+
+ : | | :
+ : | | :
+ : +--------+ :
+ : :
+
+Each CPU executes a program that generates memory access operations. In the
+abstract CPU, memory operation ordering is very relaxed, and a CPU may actually
+perform the memory operations in any order it likes, provided program causality
+appears to be maintained. Similarly, the compiler may also arrange the
+instructions it emits in any order it likes, provided it doesn't affect the
+apparent operation of the program.
+
+So in the above diagram, the effects of the memory operations performed by a
+CPU are perceived by the rest of the system as the operations cross the
+interface between the CPU and rest of the system (the dotted lines).
+
+
+For example, consider the following sequence of events:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { A == 1; B == 2 }
+ A = 3; x = B;
+ B = 4; y = A;
+
+The set of accesses as seen by the memory system in the middle can be arranged
+in 24 different combinations:
+
+ STORE A=3, STORE B=4, y=LOAD A->3, x=LOAD B->4
+ STORE A=3, STORE B=4, x=LOAD B->4, y=LOAD A->3
+ STORE A=3, y=LOAD A->3, STORE B=4, x=LOAD B->4
+ STORE A=3, y=LOAD A->3, x=LOAD B->2, STORE B=4
+ STORE A=3, x=LOAD B->2, STORE B=4, y=LOAD A->3
+ STORE A=3, x=LOAD B->2, y=LOAD A->3, STORE B=4
+ STORE B=4, STORE A=3, y=LOAD A->3, x=LOAD B->4
+ STORE B=4, ...
+ ...
+
+and can thus result in four different combinations of values:
+
+ x == 2, y == 1
+ x == 2, y == 3
+ x == 4, y == 1
+ x == 4, y == 3
+
+
+Furthermore, the stores committed by a CPU to the memory system may not be
+perceived by the loads made by another CPU in the same order as the stores were
+committed.
+
+
+As a further example, consider this sequence of events:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { A == 1, B == 2, C = 3, P == &A, Q == &C }
+ B = 4; Q = P;
+ P = &B D = *Q;
+
+There is an obvious data dependency here, as the value loaded into D depends on
+the address retrieved from P by CPU 2. At the end of the sequence, any of the
+following results are possible:
+
+ (Q == &A) and (D == 1)
+ (Q == &B) and (D == 2)
+ (Q == &B) and (D == 4)
+
+Note that CPU 2 will never try and load C into D because the CPU will load P
+into Q before issuing the load of *Q.
+
+
+DEVICE OPERATIONS
+-----------------
+
+Some devices present their control interfaces as collections of memory
+locations, but the order in which the control registers are accessed is very
+important. For instance, imagine an ethernet card with a set of internal
+registers that are accessed through an address port register (A) and a data
+port register (D). To read internal register 5, the following code might then
+be used:
+
+ *A = 5;
+ x = *D;
+
+but this might show up as either of the following two sequences:
+
+ STORE *A = 5, x = LOAD *D
+ x = LOAD *D, STORE *A = 5
+
+the second of which will almost certainly result in a malfunction, since it set
+the address _after_ attempting to read the register.
+
+
+GUARANTEES
+----------
+
+There are some minimal guarantees that may be expected of a CPU:
+
+ (*) On any given CPU, dependent memory accesses will be issued in order, with
+ respect to itself. This means that for:
+
+ ACCESS_ONCE(Q) = P; smp_read_barrier_depends(); D = ACCESS_ONCE(*Q);
+
+ the CPU will issue the following memory operations:
+
+ Q = LOAD P, D = LOAD *Q
+
+ and always in that order. On most systems, smp_read_barrier_depends()
+ does nothing, but it is required for DEC Alpha. The ACCESS_ONCE()
+ is required to prevent compiler mischief. Please note that you
+ should normally use something like rcu_dereference() instead of
+ open-coding smp_read_barrier_depends().
+
+ (*) Overlapping loads and stores within a particular CPU will appear to be
+ ordered within that CPU. This means that for:
+
+ a = ACCESS_ONCE(*X); ACCESS_ONCE(*X) = b;
+
+ the CPU will only issue the following sequence of memory operations:
+
+ a = LOAD *X, STORE *X = b
+
+ And for:
+
+ ACCESS_ONCE(*X) = c; d = ACCESS_ONCE(*X);
+
+ the CPU will only issue:
+
+ STORE *X = c, d = LOAD *X
+
+ (Loads and stores overlap if they are targeted at overlapping pieces of
+ memory).
+
+And there are a number of things that _must_ or _must_not_ be assumed:
+
+ (*) It _must_not_ be assumed that the compiler will do what you want with
+ memory references that are not protected by ACCESS_ONCE(). Without
+ ACCESS_ONCE(), the compiler is within its rights to do all sorts
+ of "creative" transformations, which are covered in the Compiler
+ Barrier section.
+
+ (*) It _must_not_ be assumed that independent loads and stores will be issued
+ in the order given. This means that for:
+
+ X = *A; Y = *B; *D = Z;
+
+ we may get any of the following sequences:
+
+ X = LOAD *A, Y = LOAD *B, STORE *D = Z
+ X = LOAD *A, STORE *D = Z, Y = LOAD *B
+ Y = LOAD *B, X = LOAD *A, STORE *D = Z
+ Y = LOAD *B, STORE *D = Z, X = LOAD *A
+ STORE *D = Z, X = LOAD *A, Y = LOAD *B
+ STORE *D = Z, Y = LOAD *B, X = LOAD *A
+
+ (*) It _must_ be assumed that overlapping memory accesses may be merged or
+ discarded. This means that for:
+
+ X = *A; Y = *(A + 4);
+
+ we may get any one of the following sequences:
+
+ X = LOAD *A; Y = LOAD *(A + 4);
+ Y = LOAD *(A + 4); X = LOAD *A;
+ {X, Y} = LOAD {*A, *(A + 4) };
+
+ And for:
+
+ *A = X; *(A + 4) = Y;
+
+ we may get any of:
+
+ STORE *A = X; STORE *(A + 4) = Y;
+ STORE *(A + 4) = Y; STORE *A = X;
+ STORE {*A, *(A + 4) } = {X, Y};
+
+And there are anti-guarantees:
+
+ (*) These guarantees do not apply to bitfields, because compilers often
+ generate code to modify these using non-atomic read-modify-write
+ sequences. Do not attempt to use bitfields to synchronize parallel
+ algorithms.
+
+ (*) Even in cases where bitfields are protected by locks, all fields
+ in a given bitfield must be protected by one lock. If two fields
+ in a given bitfield are protected by different locks, the compiler's
+ non-atomic read-modify-write sequences can cause an update to one
+ field to corrupt the value of an adjacent field.
+
+ (*) These guarantees apply only to properly aligned and sized scalar
+ variables. "Properly sized" currently means variables that are
+ the same size as "char", "short", "int" and "long". "Properly
+ aligned" means the natural alignment, thus no constraints for
+ "char", two-byte alignment for "short", four-byte alignment for
+ "int", and either four-byte or eight-byte alignment for "long",
+ on 32-bit and 64-bit systems, respectively. Note that these
+ guarantees were introduced into the C11 standard, so beware when
+ using older pre-C11 compilers (for example, gcc 4.6). The portion
+ of the standard containing this guarantee is Section 3.14, which
+ defines "memory location" as follows:
+
+ memory location
+ either an object of scalar type, or a maximal sequence
+ of adjacent bit-fields all having nonzero width
+
+ NOTE 1: Two threads of execution can update and access
+ separate memory locations without interfering with
+ each other.
+
+ NOTE 2: A bit-field and an adjacent non-bit-field member
+ are in separate memory locations. The same applies
+ to two bit-fields, if one is declared inside a nested
+ structure declaration and the other is not, or if the two
+ are separated by a zero-length bit-field declaration,
+ or if they are separated by a non-bit-field member
+ declaration. It is not safe to concurrently update two
+ bit-fields in the same structure if all members declared
+ between them are also bit-fields, no matter what the
+ sizes of those intervening bit-fields happen to be.
+
+
+=========================
+WHAT ARE MEMORY BARRIERS?
+=========================
+
+As can be seen above, independent memory operations are effectively performed
+in random order, but this can be a problem for CPU-CPU interaction and for I/O.
+What is required is some way of intervening to instruct the compiler and the
+CPU to restrict the order.
+
+Memory barriers are such interventions. They impose a perceived partial
+ordering over the memory operations on either side of the barrier.
+
+Such enforcement is important because the CPUs and other devices in a system
+can use a variety of tricks to improve performance, including reordering,
+deferral and combination of memory operations; speculative loads; speculative
+branch prediction and various types of caching. Memory barriers are used to
+override or suppress these tricks, allowing the code to sanely control the
+interaction of multiple CPUs and/or devices.
+
+
+VARIETIES OF MEMORY BARRIER
+---------------------------
+
+Memory barriers come in four basic varieties:
+
+ (1) Write (or store) memory barriers.
+
+ A write memory barrier gives a guarantee that all the STORE operations
+ specified before the barrier will appear to happen before all the STORE
+ operations specified after the barrier with respect to the other
+ components of the system.
+
+ A write barrier is a partial ordering on stores only; it is not required
+ to have any effect on loads.
+
+ A CPU can be viewed as committing a sequence of store operations to the
+ memory system as time progresses. All stores before a write barrier will
+ occur in the sequence _before_ all the stores after the write barrier.
+
+ [!] Note that write barriers should normally be paired with read or data
+ dependency barriers; see the "SMP barrier pairing" subsection.
+
+
+ (2) Data dependency barriers.
+
+ A data dependency barrier is a weaker form of read barrier. In the case
+ where two loads are performed such that the second depends on the result
+ of the first (eg: the first load retrieves the address to which the second
+ load will be directed), a data dependency barrier would be required to
+ make sure that the target of the second load is updated before the address
+ obtained by the first load is accessed.
+
+ A data dependency barrier is a partial ordering on interdependent loads
+ only; it is not required to have any effect on stores, independent loads
+ or overlapping loads.
+
+ As mentioned in (1), the other CPUs in the system can be viewed as
+ committing sequences of stores to the memory system that the CPU being
+ considered can then perceive. A data dependency barrier issued by the CPU
+ under consideration guarantees that for any load preceding it, if that
+ load touches one of a sequence of stores from another CPU, then by the
+ time the barrier completes, the effects of all the stores prior to that
+ touched by the load will be perceptible to any loads issued after the data
+ dependency barrier.
+
+ See the "Examples of memory barrier sequences" subsection for diagrams
+ showing the ordering constraints.
+
+ [!] Note that the first load really has to have a _data_ dependency and
+ not a control dependency. If the address for the second load is dependent
+ on the first load, but the dependency is through a conditional rather than
+ actually loading the address itself, then it's a _control_ dependency and
+ a full read barrier or better is required. See the "Control dependencies"
+ subsection for more information.
+
+ [!] Note that data dependency barriers should normally be paired with
+ write barriers; see the "SMP barrier pairing" subsection.
+
+
+ (3) Read (or load) memory barriers.
+
+ A read barrier is a data dependency barrier plus a guarantee that all the
+ LOAD operations specified before the barrier will appear to happen before
+ all the LOAD operations specified after the barrier with respect to the
+ other components of the system.
+
+ A read barrier is a partial ordering on loads only; it is not required to
+ have any effect on stores.
+
+ Read memory barriers imply data dependency barriers, and so can substitute
+ for them.
+
+ [!] Note that read barriers should normally be paired with write barriers;
+ see the "SMP barrier pairing" subsection.
+
+
+ (4) General memory barriers.
+
+ A general memory barrier gives a guarantee that all the LOAD and STORE
+ operations specified before the barrier will appear to happen before all
+ the LOAD and STORE operations specified after the barrier with respect to
+ the other components of the system.
+
+ A general memory barrier is a partial ordering over both loads and stores.
+
+ General memory barriers imply both read and write memory barriers, and so
+ can substitute for either.
+
+
+And a couple of implicit varieties:
+
+ (5) ACQUIRE operations.
+
+ This acts as a one-way permeable barrier. It guarantees that all memory
+ operations after the ACQUIRE operation will appear to happen after the
+ ACQUIRE operation with respect to the other components of the system.
+ ACQUIRE operations include LOCK operations and smp_load_acquire()
+ operations.
+
+ Memory operations that occur before an ACQUIRE operation may appear to
+ happen after it completes.
+
+ An ACQUIRE operation should almost always be paired with a RELEASE
+ operation.
+
+
+ (6) RELEASE operations.
+
+ This also acts as a one-way permeable barrier. It guarantees that all
+ memory operations before the RELEASE operation will appear to happen
+ before the RELEASE operation with respect to the other components of the
+ system. RELEASE operations include UNLOCK operations and
+ smp_store_release() operations.
+
+ Memory operations that occur after a RELEASE operation may appear to
+ happen before it completes.
+
+ The use of ACQUIRE and RELEASE operations generally precludes the need
+ for other sorts of memory barrier (but note the exceptions mentioned in
+ the subsection "MMIO write barrier"). In addition, a RELEASE+ACQUIRE
+ pair is -not- guaranteed to act as a full memory barrier. However, after
+ an ACQUIRE on a given variable, all memory accesses preceding any prior
+ RELEASE on that same variable are guaranteed to be visible. In other
+ words, within a given variable's critical section, all accesses of all
+ previous critical sections for that variable are guaranteed to have
+ completed.
+
+ This means that ACQUIRE acts as a minimal "acquire" operation and
+ RELEASE acts as a minimal "release" operation.
+
+
+Memory barriers are only required where there's a possibility of interaction
+between two CPUs or between a CPU and a device. If it can be guaranteed that
+there won't be any such interaction in any particular piece of code, then
+memory barriers are unnecessary in that piece of code.
+
+
+Note that these are the _minimum_ guarantees. Different architectures may give
+more substantial guarantees, but they may _not_ be relied upon outside of arch
+specific code.
+
+
+WHAT MAY NOT BE ASSUMED ABOUT MEMORY BARRIERS?
+----------------------------------------------
+
+There are certain things that the Linux kernel memory barriers do not guarantee:
+
+ (*) There is no guarantee that any of the memory accesses specified before a
+ memory barrier will be _complete_ by the completion of a memory barrier
+ instruction; the barrier can be considered to draw a line in that CPU's
+ access queue that accesses of the appropriate type may not cross.
+
+ (*) There is no guarantee that issuing a memory barrier on one CPU will have
+ any direct effect on another CPU or any other hardware in the system. The
+ indirect effect will be the order in which the second CPU sees the effects
+ of the first CPU's accesses occur, but see the next point:
+
+ (*) There is no guarantee that a CPU will see the correct order of effects
+ from a second CPU's accesses, even _if_ the second CPU uses a memory
+ barrier, unless the first CPU _also_ uses a matching memory barrier (see
+ the subsection on "SMP Barrier Pairing").
+
+ (*) There is no guarantee that some intervening piece of off-the-CPU
+ hardware[*] will not reorder the memory accesses. CPU cache coherency
+ mechanisms should propagate the indirect effects of a memory barrier
+ between CPUs, but might not do so in order.
+
+ [*] For information on bus mastering DMA and coherency please read:
+
+ Documentation/PCI/pci.txt
+ Documentation/DMA-API-HOWTO.txt
+ Documentation/DMA-API.txt
+
+
+DATA DEPENDENCY BARRIERS
+------------------------
+
+The usage requirements of data dependency barriers are a little subtle, and
+it's not always obvious that they're needed. To illustrate, consider the
+following sequence of events:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { A == 1, B == 2, C = 3, P == &A, Q == &C }
+ B = 4;
+ <write barrier>
+ ACCESS_ONCE(P) = &B
+ Q = ACCESS_ONCE(P);
+ D = *Q;
+
+There's a clear data dependency here, and it would seem that by the end of the
+sequence, Q must be either &A or &B, and that:
+
+ (Q == &A) implies (D == 1)
+ (Q == &B) implies (D == 4)
+
+But! CPU 2's perception of P may be updated _before_ its perception of B, thus
+leading to the following situation:
+
+ (Q == &B) and (D == 2) ????
+
+Whilst this may seem like a failure of coherency or causality maintenance, it
+isn't, and this behaviour can be observed on certain real CPUs (such as the DEC
+Alpha).
+
+To deal with this, a data dependency barrier or better must be inserted
+between the address load and the data load:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { A == 1, B == 2, C = 3, P == &A, Q == &C }
+ B = 4;
+ <write barrier>
+ ACCESS_ONCE(P) = &B
+ Q = ACCESS_ONCE(P);
+ <data dependency barrier>
+ D = *Q;
+
+This enforces the occurrence of one of the two implications, and prevents the
+third possibility from arising.
+
+[!] Note that this extremely counterintuitive situation arises most easily on
+machines with split caches, so that, for example, one cache bank processes
+even-numbered cache lines and the other bank processes odd-numbered cache
+lines. The pointer P might be stored in an odd-numbered cache line, and the
+variable B might be stored in an even-numbered cache line. Then, if the
+even-numbered bank of the reading CPU's cache is extremely busy while the
+odd-numbered bank is idle, one can see the new value of the pointer P (&B),
+but the old value of the variable B (2).
+
+
+Another example of where data dependency barriers might be required is where a
+number is read from memory and then used to calculate the index for an array
+access:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { M[0] == 1, M[1] == 2, M[3] = 3, P == 0, Q == 3 }
+ M[1] = 4;
+ <write barrier>
+ ACCESS_ONCE(P) = 1
+ Q = ACCESS_ONCE(P);
+ <data dependency barrier>
+ D = M[Q];
+
+
+The data dependency barrier is very important to the RCU system,
+for example. See rcu_assign_pointer() and rcu_dereference() in
+include/linux/rcupdate.h. This permits the current target of an RCU'd
+pointer to be replaced with a new modified target, without the replacement
+target appearing to be incompletely initialised.
+
+See also the subsection on "Cache Coherency" for a more thorough example.
+
+
+CONTROL DEPENDENCIES
+--------------------
+
+A load-load control dependency requires a full read memory barrier, not
+simply a data dependency barrier to make it work correctly. Consider the
+following bit of code:
+
+ q = ACCESS_ONCE(a);
+ if (q) {
+ <data dependency barrier> /* BUG: No data dependency!!! */
+ p = ACCESS_ONCE(b);
+ }
+
+This will not have the desired effect because there is no actual data
+dependency, but rather a control dependency that the CPU may short-circuit
+by attempting to predict the outcome in advance, so that other CPUs see
+the load from b as having happened before the load from a. In such a
+case what's actually required is:
+
+ q = ACCESS_ONCE(a);
+ if (q) {
+ <read barrier>
+ p = ACCESS_ONCE(b);
+ }
+
+However, stores are not speculated. This means that ordering -is- provided
+for load-store control dependencies, as in the following example:
+
+ q = ACCESS_ONCE(a);
+ if (q) {
+ ACCESS_ONCE(b) = p;
+ }
+
+Control dependencies pair normally with other types of barriers.
+That said, please note that ACCESS_ONCE() is not optional! Without the
+ACCESS_ONCE(), might combine the load from 'a' with other loads from
+'a', and the store to 'b' with other stores to 'b', with possible highly
+counterintuitive effects on ordering.
+
+Worse yet, if the compiler is able to prove (say) that the value of
+variable 'a' is always non-zero, it would be well within its rights
+to optimize the original example by eliminating the "if" statement
+as follows:
+
+ q = a;
+ b = p; /* BUG: Compiler and CPU can both reorder!!! */
+
+So don't leave out the ACCESS_ONCE().
+
+It is tempting to try to enforce ordering on identical stores on both
+branches of the "if" statement as follows:
+
+ q = ACCESS_ONCE(a);
+ if (q) {
+ barrier();
+ ACCESS_ONCE(b) = p;
+ do_something();
+ } else {
+ barrier();
+ ACCESS_ONCE(b) = p;
+ do_something_else();
+ }
+
+Unfortunately, current compilers will transform this as follows at high
+optimization levels:
+
+ q = ACCESS_ONCE(a);
+ barrier();
+ ACCESS_ONCE(b) = p; /* BUG: No ordering vs. load from a!!! */
+ if (q) {
+ /* ACCESS_ONCE(b) = p; -- moved up, BUG!!! */
+ do_something();
+ } else {
+ /* ACCESS_ONCE(b) = p; -- moved up, BUG!!! */
+ do_something_else();
+ }
+
+Now there is no conditional between the load from 'a' and the store to
+'b', which means that the CPU is within its rights to reorder them:
+The conditional is absolutely required, and must be present in the
+assembly code even after all compiler optimizations have been applied.
+Therefore, if you need ordering in this example, you need explicit
+memory barriers, for example, smp_store_release():
+
+ q = ACCESS_ONCE(a);
+ if (q) {
+ smp_store_release(&b, p);
+ do_something();
+ } else {
+ smp_store_release(&b, p);
+ do_something_else();
+ }
+
+In contrast, without explicit memory barriers, two-legged-if control
+ordering is guaranteed only when the stores differ, for example:
+
+ q = ACCESS_ONCE(a);
+ if (q) {
+ ACCESS_ONCE(b) = p;
+ do_something();
+ } else {
+ ACCESS_ONCE(b) = r;
+ do_something_else();
+ }
+
+The initial ACCESS_ONCE() is still required to prevent the compiler from
+proving the value of 'a'.
+
+In addition, you need to be careful what you do with the local variable 'q',
+otherwise the compiler might be able to guess the value and again remove
+the needed conditional. For example:
+
+ q = ACCESS_ONCE(a);
+ if (q % MAX) {
+ ACCESS_ONCE(b) = p;
+ do_something();
+ } else {
+ ACCESS_ONCE(b) = r;
+ do_something_else();
+ }
+
+If MAX is defined to be 1, then the compiler knows that (q % MAX) is
+equal to zero, in which case the compiler is within its rights to
+transform the above code into the following:
+
+ q = ACCESS_ONCE(a);
+ ACCESS_ONCE(b) = p;
+ do_something_else();
+
+Given this transformation, the CPU is not required to respect the ordering
+between the load from variable 'a' and the store to variable 'b'. It is
+tempting to add a barrier(), but this does not help. The conditional
+is gone, and the barrier won't bring it back. Therefore, if you are
+relying on this ordering, you should make sure that MAX is greater than
+one, perhaps as follows:
+
+ q = ACCESS_ONCE(a);
+ BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */
+ if (q % MAX) {
+ ACCESS_ONCE(b) = p;
+ do_something();
+ } else {
+ ACCESS_ONCE(b) = r;
+ do_something_else();
+ }
+
+Please note once again that the stores to 'b' differ. If they were
+identical, as noted earlier, the compiler could pull this store outside
+of the 'if' statement.
+
+You must also be careful not to rely too much on boolean short-circuit
+evaluation. Consider this example:
+
+ q = ACCESS_ONCE(a);
+ if (a || 1 > 0)
+ ACCESS_ONCE(b) = 1;
+
+Because the second condition is always true, the compiler can transform
+this example as following, defeating control dependency:
+
+ q = ACCESS_ONCE(a);
+ ACCESS_ONCE(b) = 1;
+
+This example underscores the need to ensure that the compiler cannot
+out-guess your code. More generally, although ACCESS_ONCE() does force
+the compiler to actually emit code for a given load, it does not force
+the compiler to use the results.
+
+Finally, control dependencies do -not- provide transitivity. This is
+demonstrated by two related examples, with the initial values of
+x and y both being zero:
+
+ CPU 0 CPU 1
+ ===================== =====================
+ r1 = ACCESS_ONCE(x); r2 = ACCESS_ONCE(y);
+ if (r1 > 0) if (r2 > 0)
+ ACCESS_ONCE(y) = 1; ACCESS_ONCE(x) = 1;
+
+ assert(!(r1 == 1 && r2 == 1));
+
+The above two-CPU example will never trigger the assert(). However,
+if control dependencies guaranteed transitivity (which they do not),
+then adding the following CPU would guarantee a related assertion:
+
+ CPU 2
+ =====================
+ ACCESS_ONCE(x) = 2;
+
+ assert(!(r1 == 2 && r2 == 1 && x == 2)); /* FAILS!!! */
+
+But because control dependencies do -not- provide transitivity, the above
+assertion can fail after the combined three-CPU example completes. If you
+need the three-CPU example to provide ordering, you will need smp_mb()
+between the loads and stores in the CPU 0 and CPU 1 code fragments,
+that is, just before or just after the "if" statements.
+
+These two examples are the LB and WWC litmus tests from this paper:
+http://www.cl.cam.ac.uk/users/pes20/ppc-supplemental/test6.pdf and this
+site: https://www.cl.cam.ac.uk/~pes20/ppcmem/index.html.
+
+In summary:
+
+ (*) Control dependencies can order prior loads against later stores.
+ However, they do -not- guarantee any other sort of ordering:
+ Not prior loads against later loads, nor prior stores against
+ later anything. If you need these other forms of ordering,
+ use smp_rmb(), smp_wmb(), or, in the case of prior stores and
+ later loads, smp_mb().
+
+ (*) If both legs of the "if" statement begin with identical stores
+ to the same variable, a barrier() statement is required at the
+ beginning of each leg of the "if" statement.
+
+ (*) Control dependencies require at least one run-time conditional
+ between the prior load and the subsequent store, and this
+ conditional must involve the prior load. If the compiler
+ is able to optimize the conditional away, it will have also
+ optimized away the ordering. Careful use of ACCESS_ONCE() can
+ help to preserve the needed conditional.
+
+ (*) Control dependencies require that the compiler avoid reordering the
+ dependency into nonexistence. Careful use of ACCESS_ONCE() or
+ barrier() can help to preserve your control dependency. Please
+ see the Compiler Barrier section for more information.
+
+ (*) Control dependencies pair normally with other types of barriers.
+
+ (*) Control dependencies do -not- provide transitivity. If you
+ need transitivity, use smp_mb().
+
+
+SMP BARRIER PAIRING
+-------------------
+
+When dealing with CPU-CPU interactions, certain types of memory barrier should
+always be paired. A lack of appropriate pairing is almost certainly an error.
+
+General barriers pair with each other, though they also pair with most
+other types of barriers, albeit without transitivity. An acquire barrier
+pairs with a release barrier, but both may also pair with other barriers,
+including of course general barriers. A write barrier pairs with a data
+dependency barrier, a control dependency, an acquire barrier, a release
+barrier, a read barrier, or a general barrier. Similarly a read barrier,
+control dependency, or a data dependency barrier pairs with a write
+barrier, an acquire barrier, a release barrier, or a general barrier:
+
+ CPU 1 CPU 2
+ =============== ===============
+ ACCESS_ONCE(a) = 1;
+ <write barrier>
+ ACCESS_ONCE(b) = 2; x = ACCESS_ONCE(b);
+ <read barrier>
+ y = ACCESS_ONCE(a);
+
+Or:
+
+ CPU 1 CPU 2
+ =============== ===============================
+ a = 1;
+ <write barrier>
+ ACCESS_ONCE(b) = &a; x = ACCESS_ONCE(b);
+ <data dependency barrier>
+ y = *x;
+
+Or even:
+
+ CPU 1 CPU 2
+ =============== ===============================
+ r1 = ACCESS_ONCE(y);
+ <general barrier>
+ ACCESS_ONCE(y) = 1; if (r2 = ACCESS_ONCE(x)) {
+ <implicit control dependency>
+ ACCESS_ONCE(y) = 1;
+ }
+
+ assert(r1 == 0 || r2 == 0);
+
+Basically, the read barrier always has to be there, even though it can be of
+the "weaker" type.
+
+[!] Note that the stores before the write barrier would normally be expected to
+match the loads after the read barrier or the data dependency barrier, and vice
+versa:
+
+ CPU 1 CPU 2
+ =================== ===================
+ ACCESS_ONCE(a) = 1; }---- --->{ v = ACCESS_ONCE(c);
+ ACCESS_ONCE(b) = 2; } \ / { w = ACCESS_ONCE(d);
+ <write barrier> \ <read barrier>
+ ACCESS_ONCE(c) = 3; } / \ { x = ACCESS_ONCE(a);
+ ACCESS_ONCE(d) = 4; }---- --->{ y = ACCESS_ONCE(b);
+
+
+EXAMPLES OF MEMORY BARRIER SEQUENCES
+------------------------------------
+
+Firstly, write barriers act as partial orderings on store operations.
+Consider the following sequence of events:
+
+ CPU 1
+ =======================
+ STORE A = 1
+ STORE B = 2
+ STORE C = 3
+ <write barrier>
+ STORE D = 4
+ STORE E = 5
+
+This sequence of events is committed to the memory coherence system in an order
+that the rest of the system might perceive as the unordered set of { STORE A,
+STORE B, STORE C } all occurring before the unordered set of { STORE D, STORE E
+}:
+
+ +-------+ : :
+ | | +------+
+ | |------>| C=3 | } /\
+ | | : +------+ }----- \ -----> Events perceptible to
+ | | : | A=1 | } \/ the rest of the system
+ | | : +------+ }
+ | CPU 1 | : | B=2 | }
+ | | +------+ }
+ | | wwwwwwwwwwwwwwww } <--- At this point the write barrier
+ | | +------+ } requires all stores prior to the
+ | | : | E=5 | } barrier to be committed before
+ | | : +------+ } further stores may take place
+ | |------>| D=4 | }
+ | | +------+
+ +-------+ : :
+ |
+ | Sequence in which stores are committed to the
+ | memory system by CPU 1
+ V
+
+
+Secondly, data dependency barriers act as partial orderings on data-dependent
+loads. Consider the following sequence of events:
+
+ CPU 1 CPU 2
+ ======================= =======================
+ { B = 7; X = 9; Y = 8; C = &Y }
+ STORE A = 1
+ STORE B = 2
+ <write barrier>
+ STORE C = &B LOAD X
+ STORE D = 4 LOAD C (gets &B)
+ LOAD *C (reads B)
+
+Without intervention, CPU 2 may perceive the events on CPU 1 in some
+effectively random order, despite the write barrier issued by CPU 1:
+
+ +-------+ : : : :
+ | | +------+ +-------+ | Sequence of update
+ | |------>| B=2 |----- --->| Y->8 | | of perception on
+ | | : +------+ \ +-------+ | CPU 2
+ | CPU 1 | : | A=1 | \ --->| C->&Y | V
+ | | +------+ | +-------+
+ | | wwwwwwwwwwwwwwww | : :
+ | | +------+ | : :
+ | | : | C=&B |--- | : : +-------+
+ | | : +------+ \ | +-------+ | |
+ | |------>| D=4 | ----------->| C->&B |------>| |
+ | | +------+ | +-------+ | |
+ +-------+ : : | : : | |
+ | : : | |
+ | : : | CPU 2 |
+ | +-------+ | |
+ Apparently incorrect ---> | | B->7 |------>| |
+ perception of B (!) | +-------+ | |
+ | : : | |
+ | +-------+ | |
+ The load of X holds ---> \ | X->9 |------>| |
+ up the maintenance \ +-------+ | |
+ of coherence of B ----->| B->2 | +-------+
+ +-------+
+ : :
+
+
+In the above example, CPU 2 perceives that B is 7, despite the load of *C
+(which would be B) coming after the LOAD of C.
+
+If, however, a data dependency barrier were to be placed between the load of C
+and the load of *C (ie: B) on CPU 2:
+
+ CPU 1 CPU 2
+ ======================= =======================
+ { B = 7; X = 9; Y = 8; C = &Y }
+ STORE A = 1
+ STORE B = 2
+ <write barrier>
+ STORE C = &B LOAD X
+ STORE D = 4 LOAD C (gets &B)
+ <data dependency barrier>
+ LOAD *C (reads B)
+
+then the following will occur:
+
+ +-------+ : : : :
+ | | +------+ +-------+
+ | |------>| B=2 |----- --->| Y->8 |
+ | | : +------+ \ +-------+
+ | CPU 1 | : | A=1 | \ --->| C->&Y |
+ | | +------+ | +-------+
+ | | wwwwwwwwwwwwwwww | : :
+ | | +------+ | : :
+ | | : | C=&B |--- | : : +-------+
+ | | : +------+ \ | +-------+ | |
+ | |------>| D=4 | ----------->| C->&B |------>| |
+ | | +------+ | +-------+ | |
+ +-------+ : : | : : | |
+ | : : | |
+ | : : | CPU 2 |
+ | +-------+ | |
+ | | X->9 |------>| |
+ | +-------+ | |
+ Makes sure all effects ---> \ ddddddddddddddddd | |
+ prior to the store of C \ +-------+ | |
+ are perceptible to ----->| B->2 |------>| |
+ subsequent loads +-------+ | |
+ : : +-------+
+
+
+And thirdly, a read barrier acts as a partial order on loads. Consider the
+following sequence of events:
+
+ CPU 1 CPU 2
+ ======================= =======================
+ { A = 0, B = 9 }
+ STORE A=1
+ <write barrier>
+ STORE B=2
+ LOAD B
+ LOAD A
+
+Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in
+some effectively random order, despite the write barrier issued by CPU 1:
+
+ +-------+ : : : :
+ | | +------+ +-------+
+ | |------>| A=1 |------ --->| A->0 |
+ | | +------+ \ +-------+
+ | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
+ | | +------+ | +-------+
+ | |------>| B=2 |--- | : :
+ | | +------+ \ | : : +-------+
+ +-------+ : : \ | +-------+ | |
+ ---------->| B->2 |------>| |
+ | +-------+ | CPU 2 |
+ | | A->0 |------>| |
+ | +-------+ | |
+ | : : +-------+
+ \ : :
+ \ +-------+
+ ---->| A->1 |
+ +-------+
+ : :
+
+
+If, however, a read barrier were to be placed between the load of B and the
+load of A on CPU 2:
+
+ CPU 1 CPU 2
+ ======================= =======================
+ { A = 0, B = 9 }
+ STORE A=1
+ <write barrier>
+ STORE B=2
+ LOAD B
+ <read barrier>
+ LOAD A
+
+then the partial ordering imposed by CPU 1 will be perceived correctly by CPU
+2:
+
+ +-------+ : : : :
+ | | +------+ +-------+
+ | |------>| A=1 |------ --->| A->0 |
+ | | +------+ \ +-------+
+ | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
+ | | +------+ | +-------+
+ | |------>| B=2 |--- | : :
+ | | +------+ \ | : : +-------+
+ +-------+ : : \ | +-------+ | |
+ ---------->| B->2 |------>| |
+ | +-------+ | CPU 2 |
+ | : : | |
+ | : : | |
+ At this point the read ----> \ rrrrrrrrrrrrrrrrr | |
+ barrier causes all effects \ +-------+ | |
+ prior to the storage of B ---->| A->1 |------>| |
+ to be perceptible to CPU 2 +-------+ | |
+ : : +-------+
+
+
+To illustrate this more completely, consider what could happen if the code
+contained a load of A either side of the read barrier:
+
+ CPU 1 CPU 2
+ ======================= =======================
+ { A = 0, B = 9 }
+ STORE A=1
+ <write barrier>
+ STORE B=2
+ LOAD B
+ LOAD A [first load of A]
+ <read barrier>
+ LOAD A [second load of A]
+
+Even though the two loads of A both occur after the load of B, they may both
+come up with different values:
+
+ +-------+ : : : :
+ | | +------+ +-------+
+ | |------>| A=1 |------ --->| A->0 |
+ | | +------+ \ +-------+
+ | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
+ | | +------+ | +-------+
+ | |------>| B=2 |--- | : :
+ | | +------+ \ | : : +-------+
+ +-------+ : : \ | +-------+ | |
+ ---------->| B->2 |------>| |
+ | +-------+ | CPU 2 |
+ | : : | |
+ | : : | |
+ | +-------+ | |
+ | | A->0 |------>| 1st |
+ | +-------+ | |
+ At this point the read ----> \ rrrrrrrrrrrrrrrrr | |
+ barrier causes all effects \ +-------+ | |
+ prior to the storage of B ---->| A->1 |------>| 2nd |
+ to be perceptible to CPU 2 +-------+ | |
+ : : +-------+
+
+
+But it may be that the update to A from CPU 1 becomes perceptible to CPU 2
+before the read barrier completes anyway:
+
+ +-------+ : : : :
+ | | +------+ +-------+
+ | |------>| A=1 |------ --->| A->0 |
+ | | +------+ \ +-------+
+ | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
+ | | +------+ | +-------+
+ | |------>| B=2 |--- | : :
+ | | +------+ \ | : : +-------+
+ +-------+ : : \ | +-------+ | |
+ ---------->| B->2 |------>| |
+ | +-------+ | CPU 2 |
+ | : : | |
+ \ : : | |
+ \ +-------+ | |
+ ---->| A->1 |------>| 1st |
+ +-------+ | |
+ rrrrrrrrrrrrrrrrr | |
+ +-------+ | |
+ | A->1 |------>| 2nd |
+ +-------+ | |
+ : : +-------+
+
+
+The guarantee is that the second load will always come up with A == 1 if the
+load of B came up with B == 2. No such guarantee exists for the first load of
+A; that may come up with either A == 0 or A == 1.
+
+
+READ MEMORY BARRIERS VS LOAD SPECULATION
+----------------------------------------
+
+Many CPUs speculate with loads: that is they see that they will need to load an
+item from memory, and they find a time where they're not using the bus for any
+other loads, and so do the load in advance - even though they haven't actually
+got to that point in the instruction execution flow yet. This permits the
+actual load instruction to potentially complete immediately because the CPU
+already has the value to hand.
+
+It may turn out that the CPU didn't actually need the value - perhaps because a
+branch circumvented the load - in which case it can discard the value or just
+cache it for later use.
+
+Consider:
+
+ CPU 1 CPU 2
+ ======================= =======================
+ LOAD B
+ DIVIDE } Divide instructions generally
+ DIVIDE } take a long time to perform
+ LOAD A
+
+Which might appear as this:
+
+ : : +-------+
+ +-------+ | |
+ --->| B->2 |------>| |
+ +-------+ | CPU 2 |
+ : :DIVIDE | |
+ +-------+ | |
+ The CPU being busy doing a ---> --->| A->0 |~~~~ | |
+ division speculates on the +-------+ ~ | |
+ LOAD of A : : ~ | |
+ : :DIVIDE | |
+ : : ~ | |
+ Once the divisions are complete --> : : ~-->| |
+ the CPU can then perform the : : | |
+ LOAD with immediate effect : : +-------+
+
+
+Placing a read barrier or a data dependency barrier just before the second
+load:
+
+ CPU 1 CPU 2
+ ======================= =======================
+ LOAD B
+ DIVIDE
+ DIVIDE
+ <read barrier>
+ LOAD A
+
+will force any value speculatively obtained to be reconsidered to an extent
+dependent on the type of barrier used. If there was no change made to the
+speculated memory location, then the speculated value will just be used:
+
+ : : +-------+
+ +-------+ | |
+ --->| B->2 |------>| |
+ +-------+ | CPU 2 |
+ : :DIVIDE | |
+ +-------+ | |
+ The CPU being busy doing a ---> --->| A->0 |~~~~ | |
+ division speculates on the +-------+ ~ | |
+ LOAD of A : : ~ | |
+ : :DIVIDE | |
+ : : ~ | |
+ : : ~ | |
+ rrrrrrrrrrrrrrrr~ | |
+ : : ~ | |
+ : : ~-->| |
+ : : | |
+ : : +-------+
+
+
+but if there was an update or an invalidation from another CPU pending, then
+the speculation will be cancelled and the value reloaded:
+
+ : : +-------+
+ +-------+ | |
+ --->| B->2 |------>| |
+ +-------+ | CPU 2 |
+ : :DIVIDE | |
+ +-------+ | |
+ The CPU being busy doing a ---> --->| A->0 |~~~~ | |
+ division speculates on the +-------+ ~ | |
+ LOAD of A : : ~ | |
+ : :DIVIDE | |
+ : : ~ | |
+ : : ~ | |
+ rrrrrrrrrrrrrrrrr | |
+ +-------+ | |
+ The speculation is discarded ---> --->| A->1 |------>| |
+ and an updated value is +-------+ | |
+ retrieved : : +-------+
+
+
+TRANSITIVITY
+------------
+
+Transitivity is a deeply intuitive notion about ordering that is not
+always provided by real computer systems. The following example
+demonstrates transitivity (also called "cumulativity"):
+
+ CPU 1 CPU 2 CPU 3
+ ======================= ======================= =======================
+ { X = 0, Y = 0 }
+ STORE X=1 LOAD X STORE Y=1
+ <general barrier> <general barrier>
+ LOAD Y LOAD X
+
+Suppose that CPU 2's load from X returns 1 and its load from Y returns 0.
+This indicates that CPU 2's load from X in some sense follows CPU 1's
+store to X and that CPU 2's load from Y in some sense preceded CPU 3's
+store to Y. The question is then "Can CPU 3's load from X return 0?"
+
+Because CPU 2's load from X in some sense came after CPU 1's store, it
+is natural to expect that CPU 3's load from X must therefore return 1.
+This expectation is an example of transitivity: if a load executing on
+CPU A follows a load from the same variable executing on CPU B, then
+CPU A's load must either return the same value that CPU B's load did,
+or must return some later value.
+
+In the Linux kernel, use of general memory barriers guarantees
+transitivity. Therefore, in the above example, if CPU 2's load from X
+returns 1 and its load from Y returns 0, then CPU 3's load from X must
+also return 1.
+
+However, transitivity is -not- guaranteed for read or write barriers.
+For example, suppose that CPU 2's general barrier in the above example
+is changed to a read barrier as shown below:
+
+ CPU 1 CPU 2 CPU 3
+ ======================= ======================= =======================
+ { X = 0, Y = 0 }
+ STORE X=1 LOAD X STORE Y=1
+ <read barrier> <general barrier>
+ LOAD Y LOAD X
+
+This substitution destroys transitivity: in this example, it is perfectly
+legal for CPU 2's load from X to return 1, its load from Y to return 0,
+and CPU 3's load from X to return 0.
+
+The key point is that although CPU 2's read barrier orders its pair
+of loads, it does not guarantee to order CPU 1's store. Therefore, if
+this example runs on a system where CPUs 1 and 2 share a store buffer
+or a level of cache, CPU 2 might have early access to CPU 1's writes.
+General barriers are therefore required to ensure that all CPUs agree
+on the combined order of CPU 1's and CPU 2's accesses.
+
+To reiterate, if your code requires transitivity, use general barriers
+throughout.
+
+
+========================
+EXPLICIT KERNEL BARRIERS
+========================
+
+The Linux kernel has a variety of different barriers that act at different
+levels:
+
+ (*) Compiler barrier.
+
+ (*) CPU memory barriers.
+
+ (*) MMIO write barrier.
+
+
+COMPILER BARRIER
+----------------
+
+The Linux kernel has an explicit compiler barrier function that prevents the
+compiler from moving the memory accesses either side of it to the other side:
+
+ barrier();
+
+This is a general barrier -- there are no read-read or write-write variants
+of barrier(). However, ACCESS_ONCE() can be thought of as a weak form
+for barrier() that affects only the specific accesses flagged by the
+ACCESS_ONCE().
+
+The barrier() function has the following effects:
+
+ (*) Prevents the compiler from reordering accesses following the
+ barrier() to precede any accesses preceding the barrier().
+ One example use for this property is to ease communication between
+ interrupt-handler code and the code that was interrupted.
+
+ (*) Within a loop, forces the compiler to load the variables used
+ in that loop's conditional on each pass through that loop.
+
+The ACCESS_ONCE() function can prevent any number of optimizations that,
+while perfectly safe in single-threaded code, can be fatal in concurrent
+code. Here are some examples of these sorts of optimizations:
+
+ (*) The compiler is within its rights to reorder loads and stores
+ to the same variable, and in some cases, the CPU is within its
+ rights to reorder loads to the same variable. This means that
+ the following code:
+
+ a[0] = x;
+ a[1] = x;
+
+ Might result in an older value of x stored in a[1] than in a[0].
+ Prevent both the compiler and the CPU from doing this as follows:
+
+ a[0] = ACCESS_ONCE(x);
+ a[1] = ACCESS_ONCE(x);
+
+ In short, ACCESS_ONCE() provides cache coherence for accesses from
+ multiple CPUs to a single variable.
+
+ (*) The compiler is within its rights to merge successive loads from
+ the same variable. Such merging can cause the compiler to "optimize"
+ the following code:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ into the following code, which, although in some sense legitimate
+ for single-threaded code, is almost certainly not what the developer
+ intended:
+
+ if (tmp = a)
+ for (;;)
+ do_something_with(tmp);
+
+ Use ACCESS_ONCE() to prevent the compiler from doing this to you:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ (*) The compiler is within its rights to reload a variable, for example,
+ in cases where high register pressure prevents the compiler from
+ keeping all data of interest in registers. The compiler might
+ therefore optimize the variable 'tmp' out of our previous example:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ This could result in the following code, which is perfectly safe in
+ single-threaded code, but can be fatal in concurrent code:
+
+ while (a)
+ do_something_with(a);
+
+ For example, the optimized version of this code could result in
+ passing a zero to do_something_with() in the case where the variable
+ a was modified by some other CPU between the "while" statement and
+ the call to do_something_with().
+
+ Again, use ACCESS_ONCE() to prevent the compiler from doing this:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ Note that if the compiler runs short of registers, it might save
+ tmp onto the stack. The overhead of this saving and later restoring
+ is why compilers reload variables. Doing so is perfectly safe for
+ single-threaded code, so you need to tell the compiler about cases
+ where it is not safe.
+
+ (*) The compiler is within its rights to omit a load entirely if it knows
+ what the value will be. For example, if the compiler can prove that
+ the value of variable 'a' is always zero, it can optimize this code:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ Into this:
+
+ do { } while (0);
+
+ This transformation is a win for single-threaded code because it gets
+ rid of a load and a branch. The problem is that the compiler will
+ carry out its proof assuming that the current CPU is the only one
+ updating variable 'a'. If variable 'a' is shared, then the compiler's
+ proof will be erroneous. Use ACCESS_ONCE() to tell the compiler
+ that it doesn't know as much as it thinks it does:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ But please note that the compiler is also closely watching what you
+ do with the value after the ACCESS_ONCE(). For example, suppose you
+ do the following and MAX is a preprocessor macro with the value 1:
+
+ while ((tmp = ACCESS_ONCE(a)) % MAX)
+ do_something_with(tmp);
+
+ Then the compiler knows that the result of the "%" operator applied
+ to MAX will always be zero, again allowing the compiler to optimize
+ the code into near-nonexistence. (It will still load from the
+ variable 'a'.)
+
+ (*) Similarly, the compiler is within its rights to omit a store entirely
+ if it knows that the variable already has the value being stored.
+ Again, the compiler assumes that the current CPU is the only one
+ storing into the variable, which can cause the compiler to do the
+ wrong thing for shared variables. For example, suppose you have
+ the following:
+
+ a = 0;
+ /* Code that does not store to variable a. */
+ a = 0;
+
+ The compiler sees that the value of variable 'a' is already zero, so
+ it might well omit the second store. This would come as a fatal
+ surprise if some other CPU might have stored to variable 'a' in the
+ meantime.
+
+ Use ACCESS_ONCE() to prevent the compiler from making this sort of
+ wrong guess:
+
+ ACCESS_ONCE(a) = 0;
+ /* Code that does not store to variable a. */
+ ACCESS_ONCE(a) = 0;
+
+ (*) The compiler is within its rights to reorder memory accesses unless
+ you tell it not to. For example, consider the following interaction
+ between process-level code and an interrupt handler:
+
+ void process_level(void)
+ {
+ msg = get_message();
+ flag = true;
+ }
+
+ void interrupt_handler(void)
+ {
+ if (flag)
+ process_message(msg);
+ }
+
+ There is nothing to prevent the compiler from transforming
+ process_level() to the following, in fact, this might well be a
+ win for single-threaded code:
+
+ void process_level(void)
+ {
+ flag = true;
+ msg = get_message();
+ }
+
+ If the interrupt occurs between these two statement, then
+ interrupt_handler() might be passed a garbled msg. Use ACCESS_ONCE()
+ to prevent this as follows:
+
+ void process_level(void)
+ {
+ ACCESS_ONCE(msg) = get_message();
+ ACCESS_ONCE(flag) = true;
+ }
+
+ void interrupt_handler(void)
+ {
+ if (ACCESS_ONCE(flag))
+ process_message(ACCESS_ONCE(msg));
+ }
+
+ Note that the ACCESS_ONCE() wrappers in interrupt_handler()
+ are needed if this interrupt handler can itself be interrupted
+ by something that also accesses 'flag' and 'msg', for example,
+ a nested interrupt or an NMI. Otherwise, ACCESS_ONCE() is not
+ needed in interrupt_handler() other than for documentation purposes.
+ (Note also that nested interrupts do not typically occur in modern
+ Linux kernels, in fact, if an interrupt handler returns with
+ interrupts enabled, you will get a WARN_ONCE() splat.)
+
+ You should assume that the compiler can move ACCESS_ONCE() past
+ code not containing ACCESS_ONCE(), barrier(), or similar primitives.
+
+ This effect could also be achieved using barrier(), but ACCESS_ONCE()
+ is more selective: With ACCESS_ONCE(), the compiler need only forget
+ the contents of the indicated memory locations, while with barrier()
+ the compiler must discard the value of all memory locations that
+ it has currented cached in any machine registers. Of course,
+ the compiler must also respect the order in which the ACCESS_ONCE()s
+ occur, though the CPU of course need not do so.
+
+ (*) The compiler is within its rights to invent stores to a variable,
+ as in the following example:
+
+ if (a)
+ b = a;
+ else
+ b = 42;
+
+ The compiler might save a branch by optimizing this as follows:
+
+ b = 42;
+ if (a)
+ b = a;
+
+ In single-threaded code, this is not only safe, but also saves
+ a branch. Unfortunately, in concurrent code, this optimization
+ could cause some other CPU to see a spurious value of 42 -- even
+ if variable 'a' was never zero -- when loading variable 'b'.
+ Use ACCESS_ONCE() to prevent this as follows:
+
+ if (a)
+ ACCESS_ONCE(b) = a;
+ else
+ ACCESS_ONCE(b) = 42;
+
+ The compiler can also invent loads. These are usually less
+ damaging, but they can result in cache-line bouncing and thus in
+ poor performance and scalability. Use ACCESS_ONCE() to prevent
+ invented loads.
+
+ (*) For aligned memory locations whose size allows them to be accessed
+ with a single memory-reference instruction, prevents "load tearing"
+ and "store tearing," in which a single large access is replaced by
+ multiple smaller accesses. For example, given an architecture having
+ 16-bit store instructions with 7-bit immediate fields, the compiler
+ might be tempted to use two 16-bit store-immediate instructions to
+ implement the following 32-bit store:
+
+ p = 0x00010002;
+
+ Please note that GCC really does use this sort of optimization,
+ which is not surprising given that it would likely take more
+ than two instructions to build the constant and then store it.
+ This optimization can therefore be a win in single-threaded code.
+ In fact, a recent bug (since fixed) caused GCC to incorrectly use
+ this optimization in a volatile store. In the absence of such bugs,
+ use of ACCESS_ONCE() prevents store tearing in the following example:
+
+ ACCESS_ONCE(p) = 0x00010002;
+
+ Use of packed structures can also result in load and store tearing,
+ as in this example:
+
+ struct __attribute__((__packed__)) foo {
+ short a;
+ int b;
+ short c;
+ };
+ struct foo foo1, foo2;
+ ...
+
+ foo2.a = foo1.a;
+ foo2.b = foo1.b;
+ foo2.c = foo1.c;
+
+ Because there are no ACCESS_ONCE() wrappers and no volatile markings,
+ the compiler would be well within its rights to implement these three
+ assignment statements as a pair of 32-bit loads followed by a pair
+ of 32-bit stores. This would result in load tearing on 'foo1.b'
+ and store tearing on 'foo2.b'. ACCESS_ONCE() again prevents tearing
+ in this example:
+
+ foo2.a = foo1.a;
+ ACCESS_ONCE(foo2.b) = ACCESS_ONCE(foo1.b);
+ foo2.c = foo1.c;
+
+All that aside, it is never necessary to use ACCESS_ONCE() on a variable
+that has been marked volatile. For example, because 'jiffies' is marked
+volatile, it is never necessary to say ACCESS_ONCE(jiffies). The reason
+for this is that ACCESS_ONCE() is implemented as a volatile cast, which
+has no effect when its argument is already marked volatile.
+
+Please note that these compiler barriers have no direct effect on the CPU,
+which may then reorder things however it wishes.
+
+
+CPU MEMORY BARRIERS
+-------------------
+
+The Linux kernel has eight basic CPU memory barriers:
+
+ TYPE MANDATORY SMP CONDITIONAL
+ =============== ======================= ===========================
+ GENERAL mb() smp_mb()
+ WRITE wmb() smp_wmb()
+ READ rmb() smp_rmb()
+ DATA DEPENDENCY read_barrier_depends() smp_read_barrier_depends()
+
+
+All memory barriers except the data dependency barriers imply a compiler
+barrier. Data dependencies do not impose any additional compiler ordering.
+
+Aside: In the case of data dependencies, the compiler would be expected to
+issue the loads in the correct order (eg. `a[b]` would have to load the value
+of b before loading a[b]), however there is no guarantee in the C specification
+that the compiler may not speculate the value of b (eg. is equal to 1) and load
+a before b (eg. tmp = a[1]; if (b != 1) tmp = a[b]; ). There is also the
+problem of a compiler reloading b after having loaded a[b], thus having a newer
+copy of b than a[b]. A consensus has not yet been reached about these problems,
+however the ACCESS_ONCE macro is a good place to start looking.
+
+SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
+systems because it is assumed that a CPU will appear to be self-consistent,
+and will order overlapping accesses correctly with respect to itself.
+
+[!] Note that SMP memory barriers _must_ be used to control the ordering of
+references to shared memory on SMP systems, though the use of locking instead
+is sufficient.
+
+Mandatory barriers should not be used to control SMP effects, since mandatory
+barriers unnecessarily impose overhead on UP systems. They may, however, be
+used to control MMIO effects on accesses through relaxed memory I/O windows.
+These are required even on non-SMP systems as they affect the order in which
+memory operations appear to a device by prohibiting both the compiler and the
+CPU from reordering them.
+
+
+There are some more advanced barrier functions:
+
+ (*) set_mb(var, value)
+
+ This assigns the value to the variable and then inserts a full memory
+ barrier after it, depending on the function. It isn't guaranteed to
+ insert anything more than a compiler barrier in a UP compilation.
+
+
+ (*) smp_mb__before_atomic();
+ (*) smp_mb__after_atomic();
+
+ These are for use with atomic (such as add, subtract, increment and
+ decrement) functions that don't return a value, especially when used for
+ reference counting. These functions do not imply memory barriers.
+
+ These are also used for atomic bitop functions that do not return a
+ value (such as set_bit and clear_bit).
+
+ As an example, consider a piece of code that marks an object as being dead
+ and then decrements the object's reference count:
+
+ obj->dead = 1;
+ smp_mb__before_atomic();
+ atomic_dec(&obj->ref_count);
+
+ This makes sure that the death mark on the object is perceived to be set
+ *before* the reference counter is decremented.
+
+ See Documentation/atomic_ops.txt for more information. See the "Atomic
+ operations" subsection for information on where to use these.
+
+
+ (*) dma_wmb();
+ (*) dma_rmb();
+
+ These are for use with consistent memory to guarantee the ordering
+ of writes or reads of shared memory accessible to both the CPU and a
+ DMA capable device.
+
+ For example, consider a device driver that shares memory with a device
+ and uses a descriptor status value to indicate if the descriptor belongs
+ to the device or the CPU, and a doorbell to notify it when new
+ descriptors are available:
+
+ if (desc->status != DEVICE_OWN) {
+ /* do not read data until we own descriptor */
+ dma_rmb();
+
+ /* read/modify data */
+ read_data = desc->data;
+ desc->data = write_data;
+
+ /* flush modifications before status update */
+ dma_wmb();
+
+ /* assign ownership */
+ desc->status = DEVICE_OWN;
+
+ /* force memory to sync before notifying device via MMIO */
+ wmb();
+
+ /* notify device of new descriptors */
+ writel(DESC_NOTIFY, doorbell);
+ }
+
+ The dma_rmb() allows us guarantee the device has released ownership
+ before we read the data from the descriptor, and the dma_wmb() allows
+ us to guarantee the data is written to the descriptor before the device
+ can see it now has ownership. The wmb() is needed to guarantee that the
+ cache coherent memory writes have completed before attempting a write to
+ the cache incoherent MMIO region.
+
+ See Documentation/DMA-API.txt for more information on consistent memory.
+
+MMIO WRITE BARRIER
+------------------
+
+The Linux kernel also has a special barrier for use with memory-mapped I/O
+writes:
+
+ mmiowb();
+
+This is a variation on the mandatory write barrier that causes writes to weakly
+ordered I/O regions to be partially ordered. Its effects may go beyond the
+CPU->Hardware interface and actually affect the hardware at some level.
+
+See the subsection "Locks vs I/O accesses" for more information.
+
+
+===============================
+IMPLICIT KERNEL MEMORY BARRIERS
+===============================
+
+Some of the other functions in the linux kernel imply memory barriers, amongst
+which are locking and scheduling functions.
+
+This specification is a _minimum_ guarantee; any particular architecture may
+provide more substantial guarantees, but these may not be relied upon outside
+of arch specific code.
+
+
+ACQUIRING FUNCTIONS
+-------------------
+
+The Linux kernel has a number of locking constructs:
+
+ (*) spin locks
+ (*) R/W spin locks
+ (*) mutexes
+ (*) semaphores
+ (*) R/W semaphores
+ (*) RCU
+
+In all cases there are variants on "ACQUIRE" operations and "RELEASE" operations
+for each construct. These operations all imply certain barriers:
+
+ (1) ACQUIRE operation implication:
+
+ Memory operations issued after the ACQUIRE will be completed after the
+ ACQUIRE operation has completed.
+
+ Memory operations issued before the ACQUIRE may be completed after
+ the ACQUIRE operation has completed. An smp_mb__before_spinlock(),
+ combined with a following ACQUIRE, orders prior loads against
+ subsequent loads and stores and also orders prior stores against
+ subsequent stores. Note that this is weaker than smp_mb()! The
+ smp_mb__before_spinlock() primitive is free on many architectures.
+
+ (2) RELEASE operation implication:
+
+ Memory operations issued before the RELEASE will be completed before the
+ RELEASE operation has completed.
+
+ Memory operations issued after the RELEASE may be completed before the
+ RELEASE operation has completed.
+
+ (3) ACQUIRE vs ACQUIRE implication:
+
+ All ACQUIRE operations issued before another ACQUIRE operation will be
+ completed before that ACQUIRE operation.
+
+ (4) ACQUIRE vs RELEASE implication:
+
+ All ACQUIRE operations issued before a RELEASE operation will be
+ completed before the RELEASE operation.
+
+ (5) Failed conditional ACQUIRE implication:
+
+ Certain locking variants of the ACQUIRE operation may fail, either due to
+ being unable to get the lock immediately, or due to receiving an unblocked
+ signal whilst asleep waiting for the lock to become available. Failed
+ locks do not imply any sort of barrier.
+
+[!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only
+one-way barriers is that the effects of instructions outside of a critical
+section may seep into the inside of the critical section.
+
+An ACQUIRE followed by a RELEASE may not be assumed to be full memory barrier
+because it is possible for an access preceding the ACQUIRE to happen after the
+ACQUIRE, and an access following the RELEASE to happen before the RELEASE, and
+the two accesses can themselves then cross:
+
+ *A = a;
+ ACQUIRE M
+ RELEASE M
+ *B = b;
+
+may occur as:
+
+ ACQUIRE M, STORE *B, STORE *A, RELEASE M
+
+When the ACQUIRE and RELEASE are a lock acquisition and release,
+respectively, this same reordering can occur if the lock's ACQUIRE and
+RELEASE are to the same lock variable, but only from the perspective of
+another CPU not holding that lock. In short, a ACQUIRE followed by an
+RELEASE may -not- be assumed to be a full memory barrier.
+
+Similarly, the reverse case of a RELEASE followed by an ACQUIRE does not
+imply a full memory barrier. If it is necessary for a RELEASE-ACQUIRE
+pair to produce a full barrier, the ACQUIRE can be followed by an
+smp_mb__after_unlock_lock() invocation. This will produce a full barrier
+if either (a) the RELEASE and the ACQUIRE are executed by the same
+CPU or task, or (b) the RELEASE and ACQUIRE act on the same variable.
+The smp_mb__after_unlock_lock() primitive is free on many architectures.
+Without smp_mb__after_unlock_lock(), the CPU's execution of the critical
+sections corresponding to the RELEASE and the ACQUIRE can cross, so that:
+
+ *A = a;
+ RELEASE M
+ ACQUIRE N
+ *B = b;
+
+could occur as:
+
+ ACQUIRE N, STORE *B, STORE *A, RELEASE M
+
+It might appear that this reordering could introduce a deadlock.
+However, this cannot happen because if such a deadlock threatened,
+the RELEASE would simply complete, thereby avoiding the deadlock.
+
+ Why does this work?
+
+ One key point is that we are only talking about the CPU doing
+ the reordering, not the compiler. If the compiler (or, for
+ that matter, the developer) switched the operations, deadlock
+ -could- occur.
+
+ But suppose the CPU reordered the operations. In this case,
+ the unlock precedes the lock in the assembly code. The CPU
+ simply elected to try executing the later lock operation first.
+ If there is a deadlock, this lock operation will simply spin (or
+ try to sleep, but more on that later). The CPU will eventually
+ execute the unlock operation (which preceded the lock operation
+ in the assembly code), which will unravel the potential deadlock,
+ allowing the lock operation to succeed.
+
+ But what if the lock is a sleeplock? In that case, the code will
+ try to enter the scheduler, where it will eventually encounter
+ a memory barrier, which will force the earlier unlock operation
+ to complete, again unraveling the deadlock. There might be
+ a sleep-unlock race, but the locking primitive needs to resolve
+ such races properly in any case.
+
+With smp_mb__after_unlock_lock(), the two critical sections cannot overlap.
+For example, with the following code, the store to *A will always be
+seen by other CPUs before the store to *B:
+
+ *A = a;
+ RELEASE M
+ ACQUIRE N
+ smp_mb__after_unlock_lock();
+ *B = b;
+
+The operations will always occur in one of the following orders:
+
+ STORE *A, RELEASE, ACQUIRE, smp_mb__after_unlock_lock(), STORE *B
+ STORE *A, ACQUIRE, RELEASE, smp_mb__after_unlock_lock(), STORE *B
+ ACQUIRE, STORE *A, RELEASE, smp_mb__after_unlock_lock(), STORE *B
+
+If the RELEASE and ACQUIRE were instead both operating on the same lock
+variable, only the first of these alternatives can occur. In addition,
+the more strongly ordered systems may rule out some of the above orders.
+But in any case, as noted earlier, the smp_mb__after_unlock_lock()
+ensures that the store to *A will always be seen as happening before
+the store to *B.
+
+Locks and semaphores may not provide any guarantee of ordering on UP compiled
+systems, and so cannot be counted on in such a situation to actually achieve
+anything at all - especially with respect to I/O accesses - unless combined
+with interrupt disabling operations.
+
+See also the section on "Inter-CPU locking barrier effects".
+
+
+As an example, consider the following:
+
+ *A = a;
+ *B = b;
+ ACQUIRE
+ *C = c;
+ *D = d;
+ RELEASE
+ *E = e;
+ *F = f;
+
+The following sequence of events is acceptable:
+
+ ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE
+
+ [+] Note that {*F,*A} indicates a combined access.
+
+But none of the following are:
+
+ {*F,*A}, *B, ACQUIRE, *C, *D, RELEASE, *E
+ *A, *B, *C, ACQUIRE, *D, RELEASE, *E, *F
+ *A, *B, ACQUIRE, *C, RELEASE, *D, *E, *F
+ *B, ACQUIRE, *C, *D, RELEASE, {*F,*A}, *E
+
+
+
+INTERRUPT DISABLING FUNCTIONS
+-----------------------------
+
+Functions that disable interrupts (ACQUIRE equivalent) and enable interrupts
+(RELEASE equivalent) will act as compiler barriers only. So if memory or I/O
+barriers are required in such a situation, they must be provided from some
+other means.
+
+
+SLEEP AND WAKE-UP FUNCTIONS
+---------------------------
+
+Sleeping and waking on an event flagged in global data can be viewed as an
+interaction between two pieces of data: the task state of the task waiting for
+the event and the global data used to indicate the event. To make sure that
+these appear to happen in the right order, the primitives to begin the process
+of going to sleep, and the primitives to initiate a wake up imply certain
+barriers.
+
+Firstly, the sleeper normally follows something like this sequence of events:
+
+ for (;;) {
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ if (event_indicated)
+ break;
+ schedule();
+ }
+
+A general memory barrier is interpolated automatically by set_current_state()
+after it has altered the task state:
+
+ CPU 1
+ ===============================
+ set_current_state();
+ set_mb();
+ STORE current->state
+ <general barrier>
+ LOAD event_indicated
+
+set_current_state() may be wrapped by:
+
+ prepare_to_wait();
+ prepare_to_wait_exclusive();
+
+which therefore also imply a general memory barrier after setting the state.
+The whole sequence above is available in various canned forms, all of which
+interpolate the memory barrier in the right place:
+
+ wait_event();
+ wait_event_interruptible();
+ wait_event_interruptible_exclusive();
+ wait_event_interruptible_timeout();
+ wait_event_killable();
+ wait_event_timeout();
+ wait_on_bit();
+ wait_on_bit_lock();
+
+
+Secondly, code that performs a wake up normally follows something like this:
+
+ event_indicated = 1;
+ wake_up(&event_wait_queue);
+
+or:
+
+ event_indicated = 1;
+ wake_up_process(event_daemon);
+
+A write memory barrier is implied by wake_up() and co. if and only if they wake
+something up. The barrier occurs before the task state is cleared, and so sits
+between the STORE to indicate the event and the STORE to set TASK_RUNNING:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ set_current_state(); STORE event_indicated
+ set_mb(); wake_up();
+ STORE current->state <write barrier>
+ <general barrier> STORE current->state
+ LOAD event_indicated
+
+To repeat, this write memory barrier is present if and only if something
+is actually awakened. To see this, consider the following sequence of
+events, where X and Y are both initially zero:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ X = 1; STORE event_indicated
+ smp_mb(); wake_up();
+ Y = 1; wait_event(wq, Y == 1);
+ wake_up(); load from Y sees 1, no memory barrier
+ load from X might see 0
+
+In contrast, if a wakeup does occur, CPU 2's load from X would be guaranteed
+to see 1.
+
+The available waker functions include:
+
+ complete();
+ wake_up();
+ wake_up_all();
+ wake_up_bit();
+ wake_up_interruptible();
+ wake_up_interruptible_all();
+ wake_up_interruptible_nr();
+ wake_up_interruptible_poll();
+ wake_up_interruptible_sync();
+ wake_up_interruptible_sync_poll();
+ wake_up_locked();
+ wake_up_locked_poll();
+ wake_up_nr();
+ wake_up_poll();
+ wake_up_process();
+
+
+[!] Note that the memory barriers implied by the sleeper and the waker do _not_
+order multiple stores before the wake-up with respect to loads of those stored
+values after the sleeper has called set_current_state(). For instance, if the
+sleeper does:
+
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (event_indicated)
+ break;
+ __set_current_state(TASK_RUNNING);
+ do_something(my_data);
+
+and the waker does:
+
+ my_data = value;
+ event_indicated = 1;
+ wake_up(&event_wait_queue);
+
+there's no guarantee that the change to event_indicated will be perceived by
+the sleeper as coming after the change to my_data. In such a circumstance, the
+code on both sides must interpolate its own memory barriers between the
+separate data accesses. Thus the above sleeper ought to do:
+
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (event_indicated) {
+ smp_rmb();
+ do_something(my_data);
+ }
+
+and the waker should do:
+
+ my_data = value;
+ smp_wmb();
+ event_indicated = 1;
+ wake_up(&event_wait_queue);
+
+
+MISCELLANEOUS FUNCTIONS
+-----------------------
+
+Other functions that imply barriers:
+
+ (*) schedule() and similar imply full memory barriers.
+
+
+===================================
+INTER-CPU ACQUIRING BARRIER EFFECTS
+===================================
+
+On SMP systems locking primitives give a more substantial form of barrier: one
+that does affect memory access ordering on other CPUs, within the context of
+conflict on any particular lock.
+
+
+ACQUIRES VS MEMORY ACCESSES
+---------------------------
+
+Consider the following: the system has a pair of spinlocks (M) and (Q), and
+three CPUs; then should the following sequence of events occur:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ ACCESS_ONCE(*A) = a; ACCESS_ONCE(*E) = e;
+ ACQUIRE M ACQUIRE Q
+ ACCESS_ONCE(*B) = b; ACCESS_ONCE(*F) = f;
+ ACCESS_ONCE(*C) = c; ACCESS_ONCE(*G) = g;
+ RELEASE M RELEASE Q
+ ACCESS_ONCE(*D) = d; ACCESS_ONCE(*H) = h;
+
+Then there is no guarantee as to what order CPU 3 will see the accesses to *A
+through *H occur in, other than the constraints imposed by the separate locks
+on the separate CPUs. It might, for example, see:
+
+ *E, ACQUIRE M, ACQUIRE Q, *G, *C, *F, *A, *B, RELEASE Q, *D, *H, RELEASE M
+
+But it won't see any of:
+
+ *B, *C or *D preceding ACQUIRE M
+ *A, *B or *C following RELEASE M
+ *F, *G or *H preceding ACQUIRE Q
+ *E, *F or *G following RELEASE Q
+
+
+However, if the following occurs:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ ACCESS_ONCE(*A) = a;
+ ACQUIRE M [1]
+ ACCESS_ONCE(*B) = b;
+ ACCESS_ONCE(*C) = c;
+ RELEASE M [1]
+ ACCESS_ONCE(*D) = d; ACCESS_ONCE(*E) = e;
+ ACQUIRE M [2]
+ smp_mb__after_unlock_lock();
+ ACCESS_ONCE(*F) = f;
+ ACCESS_ONCE(*G) = g;
+ RELEASE M [2]
+ ACCESS_ONCE(*H) = h;
+
+CPU 3 might see:
+
+ *E, ACQUIRE M [1], *C, *B, *A, RELEASE M [1],
+ ACQUIRE M [2], *H, *F, *G, RELEASE M [2], *D
+
+But assuming CPU 1 gets the lock first, CPU 3 won't see any of:
+
+ *B, *C, *D, *F, *G or *H preceding ACQUIRE M [1]
+ *A, *B or *C following RELEASE M [1]
+ *F, *G or *H preceding ACQUIRE M [2]
+ *A, *B, *C, *E, *F or *G following RELEASE M [2]
+
+Note that the smp_mb__after_unlock_lock() is critically important
+here: Without it CPU 3 might see some of the above orderings.
+Without smp_mb__after_unlock_lock(), the accesses are not guaranteed
+to be seen in order unless CPU 3 holds lock M.
+
+
+ACQUIRES VS I/O ACCESSES
+------------------------
+
+Under certain circumstances (especially involving NUMA), I/O accesses within
+two spinlocked sections on two different CPUs may be seen as interleaved by the
+PCI bridge, because the PCI bridge does not necessarily participate in the
+cache-coherence protocol, and is therefore incapable of issuing the required
+read memory barriers.
+
+For example:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ spin_lock(Q)
+ writel(0, ADDR)
+ writel(1, DATA);
+ spin_unlock(Q);
+ spin_lock(Q);
+ writel(4, ADDR);
+ writel(5, DATA);
+ spin_unlock(Q);
+
+may be seen by the PCI bridge as follows:
+
+ STORE *ADDR = 0, STORE *ADDR = 4, STORE *DATA = 1, STORE *DATA = 5
+
+which would probably cause the hardware to malfunction.
+
+
+What is necessary here is to intervene with an mmiowb() before dropping the
+spinlock, for example:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ spin_lock(Q)
+ writel(0, ADDR)
+ writel(1, DATA);
+ mmiowb();
+ spin_unlock(Q);
+ spin_lock(Q);
+ writel(4, ADDR);
+ writel(5, DATA);
+ mmiowb();
+ spin_unlock(Q);
+
+this will ensure that the two stores issued on CPU 1 appear at the PCI bridge
+before either of the stores issued on CPU 2.
+
+
+Furthermore, following a store by a load from the same device obviates the need
+for the mmiowb(), because the load forces the store to complete before the load
+is performed:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ spin_lock(Q)
+ writel(0, ADDR)
+ a = readl(DATA);
+ spin_unlock(Q);
+ spin_lock(Q);
+ writel(4, ADDR);
+ b = readl(DATA);
+ spin_unlock(Q);
+
+
+See Documentation/DocBook/deviceiobook.tmpl for more information.
+
+
+=================================
+WHERE ARE MEMORY BARRIERS NEEDED?
+=================================
+
+Under normal operation, memory operation reordering is generally not going to
+be a problem as a single-threaded linear piece of code will still appear to
+work correctly, even if it's in an SMP kernel. There are, however, four
+circumstances in which reordering definitely _could_ be a problem:
+
+ (*) Interprocessor interaction.
+
+ (*) Atomic operations.
+
+ (*) Accessing devices.
+
+ (*) Interrupts.
+
+
+INTERPROCESSOR INTERACTION
+--------------------------
+
+When there's a system with more than one processor, more than one CPU in the
+system may be working on the same data set at the same time. This can cause
+synchronisation problems, and the usual way of dealing with them is to use
+locks. Locks, however, are quite expensive, and so it may be preferable to
+operate without the use of a lock if at all possible. In such a case
+operations that affect both CPUs may have to be carefully ordered to prevent
+a malfunction.
+
+Consider, for example, the R/W semaphore slow path. Here a waiting process is
+queued on the semaphore, by virtue of it having a piece of its stack linked to
+the semaphore's list of waiting processes:
+
+ struct rw_semaphore {
+ ...
+ spinlock_t lock;
+ struct list_head waiters;
+ };
+
+ struct rwsem_waiter {
+ struct list_head list;
+ struct task_struct *task;
+ };
+
+To wake up a particular waiter, the up_read() or up_write() functions have to:
+
+ (1) read the next pointer from this waiter's record to know as to where the
+ next waiter record is;
+
+ (2) read the pointer to the waiter's task structure;
+
+ (3) clear the task pointer to tell the waiter it has been given the semaphore;
+
+ (4) call wake_up_process() on the task; and
+
+ (5) release the reference held on the waiter's task struct.
+
+In other words, it has to perform this sequence of events:
+
+ LOAD waiter->list.next;
+ LOAD waiter->task;
+ STORE waiter->task;
+ CALL wakeup
+ RELEASE task
+
+and if any of these steps occur out of order, then the whole thing may
+malfunction.
+
+Once it has queued itself and dropped the semaphore lock, the waiter does not
+get the lock again; it instead just waits for its task pointer to be cleared
+before proceeding. Since the record is on the waiter's stack, this means that
+if the task pointer is cleared _before_ the next pointer in the list is read,
+another CPU might start processing the waiter and might clobber the waiter's
+stack before the up*() function has a chance to read the next pointer.
+
+Consider then what might happen to the above sequence of events:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ down_xxx()
+ Queue waiter
+ Sleep
+ up_yyy()
+ LOAD waiter->task;
+ STORE waiter->task;
+ Woken up by other event
+ <preempt>
+ Resume processing
+ down_xxx() returns
+ call foo()
+ foo() clobbers *waiter
+ </preempt>
+ LOAD waiter->list.next;
+ --- OOPS ---
+
+This could be dealt with using the semaphore lock, but then the down_xxx()
+function has to needlessly get the spinlock again after being woken up.
+
+The way to deal with this is to insert a general SMP memory barrier:
+
+ LOAD waiter->list.next;
+ LOAD waiter->task;
+ smp_mb();
+ STORE waiter->task;
+ CALL wakeup
+ RELEASE task
+
+In this case, the barrier makes a guarantee that all memory accesses before the
+barrier will appear to happen before all the memory accesses after the barrier
+with respect to the other CPUs on the system. It does _not_ guarantee that all
+the memory accesses before the barrier will be complete by the time the barrier
+instruction itself is complete.
+
+On a UP system - where this wouldn't be a problem - the smp_mb() is just a
+compiler barrier, thus making sure the compiler emits the instructions in the
+right order without actually intervening in the CPU. Since there's only one
+CPU, that CPU's dependency ordering logic will take care of everything else.
+
+
+ATOMIC OPERATIONS
+-----------------
+
+Whilst they are technically interprocessor interaction considerations, atomic
+operations are noted specially as some of them imply full memory barriers and
+some don't, but they're very heavily relied on as a group throughout the
+kernel.
+
+Any atomic operation that modifies some state in memory and returns information
+about the state (old or new) implies an SMP-conditional general memory barrier
+(smp_mb()) on each side of the actual operation (with the exception of
+explicit lock operations, described later). These include:
+
+ xchg();
+ cmpxchg();
+ atomic_xchg(); atomic_long_xchg();
+ atomic_cmpxchg(); atomic_long_cmpxchg();
+ atomic_inc_return(); atomic_long_inc_return();
+ atomic_dec_return(); atomic_long_dec_return();
+ atomic_add_return(); atomic_long_add_return();
+ atomic_sub_return(); atomic_long_sub_return();
+ atomic_inc_and_test(); atomic_long_inc_and_test();
+ atomic_dec_and_test(); atomic_long_dec_and_test();
+ atomic_sub_and_test(); atomic_long_sub_and_test();
+ atomic_add_negative(); atomic_long_add_negative();
+ test_and_set_bit();
+ test_and_clear_bit();
+ test_and_change_bit();
+
+ /* when succeeds (returns 1) */
+ atomic_add_unless(); atomic_long_add_unless();
+
+These are used for such things as implementing ACQUIRE-class and RELEASE-class
+operations and adjusting reference counters towards object destruction, and as
+such the implicit memory barrier effects are necessary.
+
+
+The following operations are potential problems as they do _not_ imply memory
+barriers, but might be used for implementing such things as RELEASE-class
+operations:
+
+ atomic_set();
+ set_bit();
+ clear_bit();
+ change_bit();
+
+With these the appropriate explicit memory barrier should be used if necessary
+(smp_mb__before_atomic() for instance).
+
+
+The following also do _not_ imply memory barriers, and so may require explicit
+memory barriers under some circumstances (smp_mb__before_atomic() for
+instance):
+
+ atomic_add();
+ atomic_sub();
+ atomic_inc();
+ atomic_dec();
+
+If they're used for statistics generation, then they probably don't need memory
+barriers, unless there's a coupling between statistical data.
+
+If they're used for reference counting on an object to control its lifetime,
+they probably don't need memory barriers because either the reference count
+will be adjusted inside a locked section, or the caller will already hold
+sufficient references to make the lock, and thus a memory barrier unnecessary.
+
+If they're used for constructing a lock of some description, then they probably
+do need memory barriers as a lock primitive generally has to do things in a
+specific order.
+
+Basically, each usage case has to be carefully considered as to whether memory
+barriers are needed or not.
+
+The following operations are special locking primitives:
+
+ test_and_set_bit_lock();
+ clear_bit_unlock();
+ __clear_bit_unlock();
+
+These implement ACQUIRE-class and RELEASE-class operations. These should be used in
+preference to other operations when implementing locking primitives, because
+their implementations can be optimised on many architectures.
+
+[!] Note that special memory barrier primitives are available for these
+situations because on some CPUs the atomic instructions used imply full memory
+barriers, and so barrier instructions are superfluous in conjunction with them,
+and in such cases the special barrier primitives will be no-ops.
+
+See Documentation/atomic_ops.txt for more information.
+
+
+ACCESSING DEVICES
+-----------------
+
+Many devices can be memory mapped, and so appear to the CPU as if they're just
+a set of memory locations. To control such a device, the driver usually has to
+make the right memory accesses in exactly the right order.
+
+However, having a clever CPU or a clever compiler creates a potential problem
+in that the carefully sequenced accesses in the driver code won't reach the
+device in the requisite order if the CPU or the compiler thinks it is more
+efficient to reorder, combine or merge accesses - something that would cause
+the device to malfunction.
+
+Inside of the Linux kernel, I/O should be done through the appropriate accessor
+routines - such as inb() or writel() - which know how to make such accesses
+appropriately sequential. Whilst this, for the most part, renders the explicit
+use of memory barriers unnecessary, there are a couple of situations where they
+might be needed:
+
+ (1) On some systems, I/O stores are not strongly ordered across all CPUs, and
+ so for _all_ general drivers locks should be used and mmiowb() must be
+ issued prior to unlocking the critical section.
+
+ (2) If the accessor functions are used to refer to an I/O memory window with
+ relaxed memory access properties, then _mandatory_ memory barriers are
+ required to enforce ordering.
+
+See Documentation/DocBook/deviceiobook.tmpl for more information.
+
+
+INTERRUPTS
+----------
+
+A driver may be interrupted by its own interrupt service routine, and thus the
+two parts of the driver may interfere with each other's attempts to control or
+access the device.
+
+This may be alleviated - at least in part - by disabling local interrupts (a
+form of locking), such that the critical operations are all contained within
+the interrupt-disabled section in the driver. Whilst the driver's interrupt
+routine is executing, the driver's core may not run on the same CPU, and its
+interrupt is not permitted to happen again until the current interrupt has been
+handled, thus the interrupt handler does not need to lock against that.
+
+However, consider a driver that was talking to an ethernet card that sports an
+address register and a data register. If that driver's core talks to the card
+under interrupt-disablement and then the driver's interrupt handler is invoked:
+
+ LOCAL IRQ DISABLE
+ writew(ADDR, 3);
+ writew(DATA, y);
+ LOCAL IRQ ENABLE
+ <interrupt>
+ writew(ADDR, 4);
+ q = readw(DATA);
+ </interrupt>
+
+The store to the data register might happen after the second store to the
+address register if ordering rules are sufficiently relaxed:
+
+ STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA
+
+
+If ordering rules are relaxed, it must be assumed that accesses done inside an
+interrupt disabled section may leak outside of it and may interleave with
+accesses performed in an interrupt - and vice versa - unless implicit or
+explicit barriers are used.
+
+Normally this won't be a problem because the I/O accesses done inside such
+sections will include synchronous load operations on strictly ordered I/O
+registers that form implicit I/O barriers. If this isn't sufficient then an
+mmiowb() may need to be used explicitly.
+
+
+A similar situation may occur between an interrupt routine and two routines
+running on separate CPUs that communicate with each other. If such a case is
+likely, then interrupt-disabling locks should be used to guarantee ordering.
+
+
+==========================
+KERNEL I/O BARRIER EFFECTS
+==========================
+
+When accessing I/O memory, drivers should use the appropriate accessor
+functions:
+
+ (*) inX(), outX():
+
+ These are intended to talk to I/O space rather than memory space, but
+ that's primarily a CPU-specific concept. The i386 and x86_64 processors do
+ indeed have special I/O space access cycles and instructions, but many
+ CPUs don't have such a concept.
+
+ The PCI bus, amongst others, defines an I/O space concept which - on such
+ CPUs as i386 and x86_64 - readily maps to the CPU's concept of I/O
+ space. However, it may also be mapped as a virtual I/O space in the CPU's
+ memory map, particularly on those CPUs that don't support alternate I/O
+ spaces.
+
+ Accesses to this space may be fully synchronous (as on i386), but
+ intermediary bridges (such as the PCI host bridge) may not fully honour
+ that.
+
+ They are guaranteed to be fully ordered with respect to each other.
+
+ They are not guaranteed to be fully ordered with respect to other types of
+ memory and I/O operation.
+
+ (*) readX(), writeX():
+
+ Whether these are guaranteed to be fully ordered and uncombined with
+ respect to each other on the issuing CPU depends on the characteristics
+ defined for the memory window through which they're accessing. On later
+ i386 architecture machines, for example, this is controlled by way of the
+ MTRR registers.
+
+ Ordinarily, these will be guaranteed to be fully ordered and uncombined,
+ provided they're not accessing a prefetchable device.
+
+ However, intermediary hardware (such as a PCI bridge) may indulge in
+ deferral if it so wishes; to flush a store, a load from the same location
+ is preferred[*], but a load from the same device or from configuration
+ space should suffice for PCI.
+
+ [*] NOTE! attempting to load from the same location as was written to may
+ cause a malfunction - consider the 16550 Rx/Tx serial registers for
+ example.
+
+ Used with prefetchable I/O memory, an mmiowb() barrier may be required to
+ force stores to be ordered.
+
+ Please refer to the PCI specification for more information on interactions
+ between PCI transactions.
+
+ (*) readX_relaxed(), writeX_relaxed()
+
+ These are similar to readX() and writeX(), but provide weaker memory
+ ordering guarantees. Specifically, they do not guarantee ordering with
+ respect to normal memory accesses (e.g. DMA buffers) nor do they guarantee
+ ordering with respect to LOCK or UNLOCK operations. If the latter is
+ required, an mmiowb() barrier can be used. Note that relaxed accesses to
+ the same peripheral are guaranteed to be ordered with respect to each
+ other.
+
+ (*) ioreadX(), iowriteX()
+
+ These will perform appropriately for the type of access they're actually
+ doing, be it inX()/outX() or readX()/writeX().
+
+
+========================================
+ASSUMED MINIMUM EXECUTION ORDERING MODEL
+========================================
+
+It has to be assumed that the conceptual CPU is weakly-ordered but that it will
+maintain the appearance of program causality with respect to itself. Some CPUs
+(such as i386 or x86_64) are more constrained than others (such as powerpc or
+frv), and so the most relaxed case (namely DEC Alpha) must be assumed outside
+of arch-specific code.
+
+This means that it must be considered that the CPU will execute its instruction
+stream in any order it feels like - or even in parallel - provided that if an
+instruction in the stream depends on an earlier instruction, then that
+earlier instruction must be sufficiently complete[*] before the later
+instruction may proceed; in other words: provided that the appearance of
+causality is maintained.
+
+ [*] Some instructions have more than one effect - such as changing the
+ condition codes, changing registers or changing memory - and different
+ instructions may depend on different effects.
+
+A CPU may also discard any instruction sequence that winds up having no
+ultimate effect. For example, if two adjacent instructions both load an
+immediate value into the same register, the first may be discarded.
+
+
+Similarly, it has to be assumed that compiler might reorder the instruction
+stream in any way it sees fit, again provided the appearance of causality is
+maintained.
+
+
+============================
+THE EFFECTS OF THE CPU CACHE
+============================
+
+The way cached memory operations are perceived across the system is affected to
+a certain extent by the caches that lie between CPUs and memory, and by the
+memory coherence system that maintains the consistency of state in the system.
+
+As far as the way a CPU interacts with another part of the system through the
+caches goes, the memory system has to include the CPU's caches, and memory
+barriers for the most part act at the interface between the CPU and its cache
+(memory barriers logically act on the dotted line in the following diagram):
+
+ <--- CPU ---> : <----------- Memory ----------->
+ :
+ +--------+ +--------+ : +--------+ +-----------+
+ | | | | : | | | | +--------+
+ | CPU | | Memory | : | CPU | | | | |
+ | Core |--->| Access |----->| Cache |<-->| | | |
+ | | | Queue | : | | | |--->| Memory |
+ | | | | : | | | | | |
+ +--------+ +--------+ : +--------+ | | | |
+ : | Cache | +--------+
+ : | Coherency |
+ : | Mechanism | +--------+
+ +--------+ +--------+ : +--------+ | | | |
+ | | | | : | | | | | |
+ | CPU | | Memory | : | CPU | | |--->| Device |
+ | Core |--->| Access |----->| Cache |<-->| | | |
+ | | | Queue | : | | | | | |
+ | | | | : | | | | +--------+
+ +--------+ +--------+ : +--------+ +-----------+
+ :
+ :
+
+Although any particular load or store may not actually appear outside of the
+CPU that issued it since it may have been satisfied within the CPU's own cache,
+it will still appear as if the full memory access had taken place as far as the
+other CPUs are concerned since the cache coherency mechanisms will migrate the
+cacheline over to the accessing CPU and propagate the effects upon conflict.
+
+The CPU core may execute instructions in any order it deems fit, provided the
+expected program causality appears to be maintained. Some of the instructions
+generate load and store operations which then go into the queue of memory
+accesses to be performed. The core may place these in the queue in any order
+it wishes, and continue execution until it is forced to wait for an instruction
+to complete.
+
+What memory barriers are concerned with is controlling the order in which
+accesses cross from the CPU side of things to the memory side of things, and
+the order in which the effects are perceived to happen by the other observers
+in the system.
+
+[!] Memory barriers are _not_ needed within a given CPU, as CPUs always see
+their own loads and stores as if they had happened in program order.
+
+[!] MMIO or other device accesses may bypass the cache system. This depends on
+the properties of the memory window through which devices are accessed and/or
+the use of any special device communication instructions the CPU may have.
+
+
+CACHE COHERENCY
+---------------
+
+Life isn't quite as simple as it may appear above, however: for while the
+caches are expected to be coherent, there's no guarantee that that coherency
+will be ordered. This means that whilst changes made on one CPU will
+eventually become visible on all CPUs, there's no guarantee that they will
+become apparent in the same order on those other CPUs.
+
+
+Consider dealing with a system that has a pair of CPUs (1 & 2), each of which
+has a pair of parallel data caches (CPU 1 has A/B, and CPU 2 has C/D):
+
+ :
+ : +--------+
+ : +---------+ | |
+ +--------+ : +--->| Cache A |<------->| |
+ | | : | +---------+ | |
+ | CPU 1 |<---+ | |
+ | | : | +---------+ | |
+ +--------+ : +--->| Cache B |<------->| |
+ : +---------+ | |
+ : | Memory |
+ : +---------+ | System |
+ +--------+ : +--->| Cache C |<------->| |
+ | | : | +---------+ | |
+ | CPU 2 |<---+ | |
+ | | : | +---------+ | |
+ +--------+ : +--->| Cache D |<------->| |
+ : +---------+ | |
+ : +--------+
+ :
+
+Imagine the system has the following properties:
+
+ (*) an odd-numbered cache line may be in cache A, cache C or it may still be
+ resident in memory;
+
+ (*) an even-numbered cache line may be in cache B, cache D or it may still be
+ resident in memory;
+
+ (*) whilst the CPU core is interrogating one cache, the other cache may be
+ making use of the bus to access the rest of the system - perhaps to
+ displace a dirty cacheline or to do a speculative load;
+
+ (*) each cache has a queue of operations that need to be applied to that cache
+ to maintain coherency with the rest of the system;
+
+ (*) the coherency queue is not flushed by normal loads to lines already
+ present in the cache, even though the contents of the queue may
+ potentially affect those loads.
+
+Imagine, then, that two writes are made on the first CPU, with a write barrier
+between them to guarantee that they will appear to reach that CPU's caches in
+the requisite order:
+
+ CPU 1 CPU 2 COMMENT
+ =============== =============== =======================================
+ u == 0, v == 1 and p == &u, q == &u
+ v = 2;
+ smp_wmb(); Make sure change to v is visible before
+ change to p
+ <A:modify v=2> v is now in cache A exclusively
+ p = &v;
+ <B:modify p=&v> p is now in cache B exclusively
+
+The write memory barrier forces the other CPUs in the system to perceive that
+the local CPU's caches have apparently been updated in the correct order. But
+now imagine that the second CPU wants to read those values:
+
+ CPU 1 CPU 2 COMMENT
+ =============== =============== =======================================
+ ...
+ q = p;
+ x = *q;
+
+The above pair of reads may then fail to happen in the expected order, as the
+cacheline holding p may get updated in one of the second CPU's caches whilst
+the update to the cacheline holding v is delayed in the other of the second
+CPU's caches by some other cache event:
+
+ CPU 1 CPU 2 COMMENT
+ =============== =============== =======================================
+ u == 0, v == 1 and p == &u, q == &u
+ v = 2;
+ smp_wmb();
+ <A:modify v=2> <C:busy>
+ <C:queue v=2>
+ p = &v; q = p;
+ <D:request p>
+ <B:modify p=&v> <D:commit p=&v>
+ <D:read p>
+ x = *q;
+ <C:read *q> Reads from v before v updated in cache
+ <C:unbusy>
+ <C:commit v=2>
+
+Basically, whilst both cachelines will be updated on CPU 2 eventually, there's
+no guarantee that, without intervention, the order of update will be the same
+as that committed on CPU 1.
+
+
+To intervene, we need to interpolate a data dependency barrier or a read
+barrier between the loads. This will force the cache to commit its coherency
+queue before processing any further requests:
+
+ CPU 1 CPU 2 COMMENT
+ =============== =============== =======================================
+ u == 0, v == 1 and p == &u, q == &u
+ v = 2;
+ smp_wmb();
+ <A:modify v=2> <C:busy>
+ <C:queue v=2>
+ p = &v; q = p;
+ <D:request p>
+ <B:modify p=&v> <D:commit p=&v>
+ <D:read p>
+ smp_read_barrier_depends()
+ <C:unbusy>
+ <C:commit v=2>
+ x = *q;
+ <C:read *q> Reads from v after v updated in cache
+
+
+This sort of problem can be encountered on DEC Alpha processors as they have a
+split cache that improves performance by making better use of the data bus.
+Whilst most CPUs do imply a data dependency barrier on the read when a memory
+access depends on a read, not all do, so it may not be relied on.
+
+Other CPUs may also have split caches, but must coordinate between the various
+cachelets for normal memory accesses. The semantics of the Alpha removes the
+need for coordination in the absence of memory barriers.
+
+
+CACHE COHERENCY VS DMA
+----------------------
+
+Not all systems maintain cache coherency with respect to devices doing DMA. In
+such cases, a device attempting DMA may obtain stale data from RAM because
+dirty cache lines may be resident in the caches of various CPUs, and may not
+have been written back to RAM yet. To deal with this, the appropriate part of
+the kernel must flush the overlapping bits of cache on each CPU (and maybe
+invalidate them as well).
+
+In addition, the data DMA'd to RAM by a device may be overwritten by dirty
+cache lines being written back to RAM from a CPU's cache after the device has
+installed its own data, or cache lines present in the CPU's cache may simply
+obscure the fact that RAM has been updated, until at such time as the cacheline
+is discarded from the CPU's cache and reloaded. To deal with this, the
+appropriate part of the kernel must invalidate the overlapping bits of the
+cache on each CPU.
+
+See Documentation/cachetlb.txt for more information on cache management.
+
+
+CACHE COHERENCY VS MMIO
+-----------------------
+
+Memory mapped I/O usually takes place through memory locations that are part of
+a window in the CPU's memory space that has different properties assigned than
+the usual RAM directed window.
+
+Amongst these properties is usually the fact that such accesses bypass the
+caching entirely and go directly to the device buses. This means MMIO accesses
+may, in effect, overtake accesses to cached memory that were emitted earlier.
+A memory barrier isn't sufficient in such a case, but rather the cache must be
+flushed between the cached memory write and the MMIO access if the two are in
+any way dependent.
+
+
+=========================
+THE THINGS CPUS GET UP TO
+=========================
+
+A programmer might take it for granted that the CPU will perform memory
+operations in exactly the order specified, so that if the CPU is, for example,
+given the following piece of code to execute:
+
+ a = ACCESS_ONCE(*A);
+ ACCESS_ONCE(*B) = b;
+ c = ACCESS_ONCE(*C);
+ d = ACCESS_ONCE(*D);
+ ACCESS_ONCE(*E) = e;
+
+they would then expect that the CPU will complete the memory operation for each
+instruction before moving on to the next one, leading to a definite sequence of
+operations as seen by external observers in the system:
+
+ LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E.
+
+
+Reality is, of course, much messier. With many CPUs and compilers, the above
+assumption doesn't hold because:
+
+ (*) loads are more likely to need to be completed immediately to permit
+ execution progress, whereas stores can often be deferred without a
+ problem;
+
+ (*) loads may be done speculatively, and the result discarded should it prove
+ to have been unnecessary;
+
+ (*) loads may be done speculatively, leading to the result having been fetched
+ at the wrong time in the expected sequence of events;
+
+ (*) the order of the memory accesses may be rearranged to promote better use
+ of the CPU buses and caches;
+
+ (*) loads and stores may be combined to improve performance when talking to
+ memory or I/O hardware that can do batched accesses of adjacent locations,
+ thus cutting down on transaction setup costs (memory and PCI devices may
+ both be able to do this); and
+
+ (*) the CPU's data cache may affect the ordering, and whilst cache-coherency
+ mechanisms may alleviate this - once the store has actually hit the cache
+ - there's no guarantee that the coherency management will be propagated in
+ order to other CPUs.
+
+So what another CPU, say, might actually observe from the above piece of code
+is:
+
+ LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B
+
+ (Where "LOAD {*C,*D}" is a combined load)
+
+
+However, it is guaranteed that a CPU will be self-consistent: it will see its
+_own_ accesses appear to be correctly ordered, without the need for a memory
+barrier. For instance with the following code:
+
+ U = ACCESS_ONCE(*A);
+ ACCESS_ONCE(*A) = V;
+ ACCESS_ONCE(*A) = W;
+ X = ACCESS_ONCE(*A);
+ ACCESS_ONCE(*A) = Y;
+ Z = ACCESS_ONCE(*A);
+
+and assuming no intervention by an external influence, it can be assumed that
+the final result will appear to be:
+
+ U == the original value of *A
+ X == W
+ Z == Y
+ *A == Y
+
+The code above may cause the CPU to generate the full sequence of memory
+accesses:
+
+ U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A
+
+in that order, but, without intervention, the sequence may have almost any
+combination of elements combined or discarded, provided the program's view of
+the world remains consistent. Note that ACCESS_ONCE() is -not- optional
+in the above example, as there are architectures where a given CPU might
+reorder successive loads to the same location. On such architectures,
+ACCESS_ONCE() does whatever is necessary to prevent this, for example, on
+Itanium the volatile casts used by ACCESS_ONCE() cause GCC to emit the
+special ld.acq and st.rel instructions that prevent such reordering.
+
+The compiler may also combine, discard or defer elements of the sequence before
+the CPU even sees them.
+
+For instance:
+
+ *A = V;
+ *A = W;
+
+may be reduced to:
+
+ *A = W;
+
+since, without either a write barrier or an ACCESS_ONCE(), it can be
+assumed that the effect of the storage of V to *A is lost. Similarly:
+
+ *A = Y;
+ Z = *A;
+
+may, without a memory barrier or an ACCESS_ONCE(), be reduced to:
+
+ *A = Y;
+ Z = Y;
+
+and the LOAD operation never appear outside of the CPU.
+
+
+AND THEN THERE'S THE ALPHA
+--------------------------
+
+The DEC Alpha CPU is one of the most relaxed CPUs there is. Not only that,
+some versions of the Alpha CPU have a split data cache, permitting them to have
+two semantically-related cache lines updated at separate times. This is where
+the data dependency barrier really becomes necessary as this synchronises both
+caches with the memory coherence system, thus making it seem like pointer
+changes vs new data occur in the right order.
+
+The Alpha defines the Linux kernel's memory barrier model.
+
+See the subsection on "Cache Coherency" above.
+
+
+============
+EXAMPLE USES
+============
+
+CIRCULAR BUFFERS
+----------------
+
+Memory barriers can be used to implement circular buffering without the need
+of a lock to serialise the producer with the consumer. See:
+
+ Documentation/circular-buffers.txt
+
+for details.
+
+
+==========
+REFERENCES
+==========
+
+Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek,
+Digital Press)
+ Chapter 5.2: Physical Address Space Characteristics
+ Chapter 5.4: Caches and Write Buffers
+ Chapter 5.5: Data Sharing
+ Chapter 5.6: Read/Write Ordering
+
+AMD64 Architecture Programmer's Manual Volume 2: System Programming
+ Chapter 7.1: Memory-Access Ordering
+ Chapter 7.4: Buffering and Combining Memory Writes
+
+IA-32 Intel Architecture Software Developer's Manual, Volume 3:
+System Programming Guide
+ Chapter 7.1: Locked Atomic Operations
+ Chapter 7.2: Memory Ordering
+ Chapter 7.4: Serializing Instructions
+
+The SPARC Architecture Manual, Version 9
+ Chapter 8: Memory Models
+ Appendix D: Formal Specification of the Memory Models
+ Appendix J: Programming with the Memory Models
+
+UltraSPARC Programmer Reference Manual
+ Chapter 5: Memory Accesses and Cacheability
+ Chapter 15: Sparc-V9 Memory Models
+
+UltraSPARC III Cu User's Manual
+ Chapter 9: Memory Models
+
+UltraSPARC IIIi Processor User's Manual
+ Chapter 8: Memory Models
+
+UltraSPARC Architecture 2005
+ Chapter 9: Memory
+ Appendix D: Formal Specifications of the Memory Models
+
+UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005
+ Chapter 8: Memory Models
+ Appendix F: Caches and Cache Coherency
+
+Solaris Internals, Core Kernel Architecture, p63-68:
+ Chapter 3.3: Hardware Considerations for Locks and
+ Synchronization
+
+Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching
+for Kernel Programmers:
+ Chapter 13: Other Memory Models
+
+Intel Itanium Architecture Software Developer's Manual: Volume 1:
+ Section 2.6: Speculation
+ Section 4.4: Memory Access