diff options
author | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
---|---|---|
committer | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
commit | 57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch) | |
tree | 5e910f0e82173f4ef4f51111366a3f1299037a7b /Documentation/power/devices.txt |
Initial import
Diffstat (limited to 'Documentation/power/devices.txt')
-rw-r--r-- | Documentation/power/devices.txt | 697 |
1 files changed, 697 insertions, 0 deletions
diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt new file mode 100644 index 000000000..d172bce0f --- /dev/null +++ b/Documentation/power/devices.txt @@ -0,0 +1,697 @@ +Device Power Management + +Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc. +Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu> +Copyright (c) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com> + + +Most of the code in Linux is device drivers, so most of the Linux power +management (PM) code is also driver-specific. Most drivers will do very +little; others, especially for platforms with small batteries (like cell +phones), will do a lot. + +This writeup gives an overview of how drivers interact with system-wide +power management goals, emphasizing the models and interfaces that are +shared by everything that hooks up to the driver model core. Read it as +background for the domain-specific work you'd do with any specific driver. + + +Two Models for Device Power Management +====================================== +Drivers will use one or both of these models to put devices into low-power +states: + + System Sleep model: + Drivers can enter low-power states as part of entering system-wide + low-power states like "suspend" (also known as "suspend-to-RAM"), or + (mostly for systems with disks) "hibernation" (also known as + "suspend-to-disk"). + + This is something that device, bus, and class drivers collaborate on + by implementing various role-specific suspend and resume methods to + cleanly power down hardware and software subsystems, then reactivate + them without loss of data. + + Some drivers can manage hardware wakeup events, which make the system + leave the low-power state. This feature may be enabled or disabled + using the relevant /sys/devices/.../power/wakeup file (for Ethernet + drivers the ioctl interface used by ethtool may also be used for this + purpose); enabling it may cost some power usage, but let the whole + system enter low-power states more often. + + Runtime Power Management model: + Devices may also be put into low-power states while the system is + running, independently of other power management activity in principle. + However, devices are not generally independent of each other (for + example, a parent device cannot be suspended unless all of its child + devices have been suspended). Moreover, depending on the bus type the + device is on, it may be necessary to carry out some bus-specific + operations on the device for this purpose. Devices put into low power + states at run time may require special handling during system-wide power + transitions (suspend or hibernation). + + For these reasons not only the device driver itself, but also the + appropriate subsystem (bus type, device type or device class) driver and + the PM core are involved in runtime power management. As in the system + sleep power management case, they need to collaborate by implementing + various role-specific suspend and resume methods, so that the hardware + is cleanly powered down and reactivated without data or service loss. + +There's not a lot to be said about those low-power states except that they are +very system-specific, and often device-specific. Also, that if enough devices +have been put into low-power states (at runtime), the effect may be very similar +to entering some system-wide low-power state (system sleep) ... and that +synergies exist, so that several drivers using runtime PM might put the system +into a state where even deeper power saving options are available. + +Most suspended devices will have quiesced all I/O: no more DMA or IRQs (except +for wakeup events), no more data read or written, and requests from upstream +drivers are no longer accepted. A given bus or platform may have different +requirements though. + +Examples of hardware wakeup events include an alarm from a real time clock, +network wake-on-LAN packets, keyboard or mouse activity, and media insertion +or removal (for PCMCIA, MMC/SD, USB, and so on). + + +Interfaces for Entering System Sleep States +=========================================== +There are programming interfaces provided for subsystems (bus type, device type, +device class) and device drivers to allow them to participate in the power +management of devices they are concerned with. These interfaces cover both +system sleep and runtime power management. + + +Device Power Management Operations +---------------------------------- +Device power management operations, at the subsystem level as well as at the +device driver level, are implemented by defining and populating objects of type +struct dev_pm_ops: + +struct dev_pm_ops { + int (*prepare)(struct device *dev); + void (*complete)(struct device *dev); + int (*suspend)(struct device *dev); + int (*resume)(struct device *dev); + int (*freeze)(struct device *dev); + int (*thaw)(struct device *dev); + int (*poweroff)(struct device *dev); + int (*restore)(struct device *dev); + int (*suspend_late)(struct device *dev); + int (*resume_early)(struct device *dev); + int (*freeze_late)(struct device *dev); + int (*thaw_early)(struct device *dev); + int (*poweroff_late)(struct device *dev); + int (*restore_early)(struct device *dev); + int (*suspend_noirq)(struct device *dev); + int (*resume_noirq)(struct device *dev); + int (*freeze_noirq)(struct device *dev); + int (*thaw_noirq)(struct device *dev); + int (*poweroff_noirq)(struct device *dev); + int (*restore_noirq)(struct device *dev); + int (*runtime_suspend)(struct device *dev); + int (*runtime_resume)(struct device *dev); + int (*runtime_idle)(struct device *dev); +}; + +This structure is defined in include/linux/pm.h and the methods included in it +are also described in that file. Their roles will be explained in what follows. +For now, it should be sufficient to remember that the last three methods are +specific to runtime power management while the remaining ones are used during +system-wide power transitions. + +There also is a deprecated "old" or "legacy" interface for power management +operations available at least for some subsystems. This approach does not use +struct dev_pm_ops objects and it is suitable only for implementing system sleep +power management methods. Therefore it is not described in this document, so +please refer directly to the source code for more information about it. + + +Subsystem-Level Methods +----------------------- +The core methods to suspend and resume devices reside in struct dev_pm_ops +pointed to by the ops member of struct dev_pm_domain, or by the pm member of +struct bus_type, struct device_type and struct class. They are mostly of +interest to the people writing infrastructure for platforms and buses, like PCI +or USB, or device type and device class drivers. They also are relevant to the +writers of device drivers whose subsystems (PM domains, device types, device +classes and bus types) don't provide all power management methods. + +Bus drivers implement these methods as appropriate for the hardware and the +drivers using it; PCI works differently from USB, and so on. Not many people +write subsystem-level drivers; most driver code is a "device driver" that builds +on top of bus-specific framework code. + +For more information on these driver calls, see the description later; +they are called in phases for every device, respecting the parent-child +sequencing in the driver model tree. + + +/sys/devices/.../power/wakeup files +----------------------------------- +All device objects in the driver model contain fields that control the handling +of system wakeup events (hardware signals that can force the system out of a +sleep state). These fields are initialized by bus or device driver code using +device_set_wakeup_capable() and device_set_wakeup_enable(), defined in +include/linux/pm_wakeup.h. + +The "power.can_wakeup" flag just records whether the device (and its driver) can +physically support wakeup events. The device_set_wakeup_capable() routine +affects this flag. The "power.wakeup" field is a pointer to an object of type +struct wakeup_source used for controlling whether or not the device should use +its system wakeup mechanism and for notifying the PM core of system wakeup +events signaled by the device. This object is only present for wakeup-capable +devices (i.e. devices whose "can_wakeup" flags are set) and is created (or +removed) by device_set_wakeup_capable(). + +Whether or not a device is capable of issuing wakeup events is a hardware +matter, and the kernel is responsible for keeping track of it. By contrast, +whether or not a wakeup-capable device should issue wakeup events is a policy +decision, and it is managed by user space through a sysfs attribute: the +"power/wakeup" file. User space can write the strings "enabled" or "disabled" +to it to indicate whether or not, respectively, the device is supposed to signal +system wakeup. This file is only present if the "power.wakeup" object exists +for the given device and is created (or removed) along with that object, by +device_set_wakeup_capable(). Reads from the file will return the corresponding +string. + +The "power/wakeup" file is supposed to contain the "disabled" string initially +for the majority of devices; the major exceptions are power buttons, keyboards, +and Ethernet adapters whose WoL (wake-on-LAN) feature has been set up with +ethtool. It should also default to "enabled" for devices that don't generate +wakeup requests on their own but merely forward wakeup requests from one bus to +another (like PCI Express ports). + +The device_may_wakeup() routine returns true only if the "power.wakeup" object +exists and the corresponding "power/wakeup" file contains the string "enabled". +This information is used by subsystems, like the PCI bus type code, to see +whether or not to enable the devices' wakeup mechanisms. If device wakeup +mechanisms are enabled or disabled directly by drivers, they also should use +device_may_wakeup() to decide what to do during a system sleep transition. +Device drivers, however, are not supposed to call device_set_wakeup_enable() +directly in any case. + +It ought to be noted that system wakeup is conceptually different from "remote +wakeup" used by runtime power management, although it may be supported by the +same physical mechanism. Remote wakeup is a feature allowing devices in +low-power states to trigger specific interrupts to signal conditions in which +they should be put into the full-power state. Those interrupts may or may not +be used to signal system wakeup events, depending on the hardware design. On +some systems it is impossible to trigger them from system sleep states. In any +case, remote wakeup should always be enabled for runtime power management for +all devices and drivers that support it. + +/sys/devices/.../power/control files +------------------------------------ +Each device in the driver model has a flag to control whether it is subject to +runtime power management. This flag, called runtime_auto, is initialized by the +bus type (or generally subsystem) code using pm_runtime_allow() or +pm_runtime_forbid(); the default is to allow runtime power management. + +The setting can be adjusted by user space by writing either "on" or "auto" to +the device's power/control sysfs file. Writing "auto" calls pm_runtime_allow(), +setting the flag and allowing the device to be runtime power-managed by its +driver. Writing "on" calls pm_runtime_forbid(), clearing the flag, returning +the device to full power if it was in a low-power state, and preventing the +device from being runtime power-managed. User space can check the current value +of the runtime_auto flag by reading the file. + +The device's runtime_auto flag has no effect on the handling of system-wide +power transitions. In particular, the device can (and in the majority of cases +should and will) be put into a low-power state during a system-wide transition +to a sleep state even though its runtime_auto flag is clear. + +For more information about the runtime power management framework, refer to +Documentation/power/runtime_pm.txt. + + +Calling Drivers to Enter and Leave System Sleep States +====================================================== +When the system goes into a sleep state, each device's driver is asked to +suspend the device by putting it into a state compatible with the target +system state. That's usually some version of "off", but the details are +system-specific. Also, wakeup-enabled devices will usually stay partly +functional in order to wake the system. + +When the system leaves that low-power state, the device's driver is asked to +resume it by returning it to full power. The suspend and resume operations +always go together, and both are multi-phase operations. + +For simple drivers, suspend might quiesce the device using class code +and then turn its hardware as "off" as possible during suspend_noirq. The +matching resume calls would then completely reinitialize the hardware +before reactivating its class I/O queues. + +More power-aware drivers might prepare the devices for triggering system wakeup +events. + + +Call Sequence Guarantees +------------------------ +To ensure that bridges and similar links needing to talk to a device are +available when the device is suspended or resumed, the device tree is +walked in a bottom-up order to suspend devices. A top-down order is +used to resume those devices. + +The ordering of the device tree is defined by the order in which devices +get registered: a child can never be registered, probed or resumed before +its parent; and can't be removed or suspended after that parent. + +The policy is that the device tree should match hardware bus topology. +(Or at least the control bus, for devices which use multiple busses.) +In particular, this means that a device registration may fail if the parent of +the device is suspending (i.e. has been chosen by the PM core as the next +device to suspend) or has already suspended, as well as after all of the other +devices have been suspended. Device drivers must be prepared to cope with such +situations. + + +System Power Management Phases +------------------------------ +Suspending or resuming the system is done in several phases. Different phases +are used for freeze, standby, and memory sleep states ("suspend-to-RAM") and the +hibernation state ("suspend-to-disk"). Each phase involves executing callbacks +for every device before the next phase begins. Not all busses or classes +support all these callbacks and not all drivers use all the callbacks. The +various phases always run after tasks have been frozen and before they are +unfrozen. Furthermore, the *_noirq phases run at a time when IRQ handlers have +been disabled (except for those marked with the IRQF_NO_SUSPEND flag). + +All phases use PM domain, bus, type, class or driver callbacks (that is, methods +defined in dev->pm_domain->ops, dev->bus->pm, dev->type->pm, dev->class->pm or +dev->driver->pm). These callbacks are regarded by the PM core as mutually +exclusive. Moreover, PM domain callbacks always take precedence over all of the +other callbacks and, for example, type callbacks take precedence over bus, class +and driver callbacks. To be precise, the following rules are used to determine +which callback to execute in the given phase: + + 1. If dev->pm_domain is present, the PM core will choose the callback + included in dev->pm_domain->ops for execution + + 2. Otherwise, if both dev->type and dev->type->pm are present, the callback + included in dev->type->pm will be chosen for execution. + + 3. Otherwise, if both dev->class and dev->class->pm are present, the + callback included in dev->class->pm will be chosen for execution. + + 4. Otherwise, if both dev->bus and dev->bus->pm are present, the callback + included in dev->bus->pm will be chosen for execution. + +This allows PM domains and device types to override callbacks provided by bus +types or device classes if necessary. + +The PM domain, type, class and bus callbacks may in turn invoke device- or +driver-specific methods stored in dev->driver->pm, but they don't have to do +that. + +If the subsystem callback chosen for execution is not present, the PM core will +execute the corresponding method from dev->driver->pm instead if there is one. + + +Entering System Suspend +----------------------- +When the system goes into the freeze, standby or memory sleep state, +the phases are: + + prepare, suspend, suspend_late, suspend_noirq. + + 1. The prepare phase is meant to prevent races by preventing new devices + from being registered; the PM core would never know that all the + children of a device had been suspended if new children could be + registered at will. (By contrast, devices may be unregistered at any + time.) Unlike the other suspend-related phases, during the prepare + phase the device tree is traversed top-down. + + After the prepare callback method returns, no new children may be + registered below the device. The method may also prepare the device or + driver in some way for the upcoming system power transition, but it + should not put the device into a low-power state. + + For devices supporting runtime power management, the return value of the + prepare callback can be used to indicate to the PM core that it may + safely leave the device in runtime suspend (if runtime-suspended + already), provided that all of the device's descendants are also left in + runtime suspend. Namely, if the prepare callback returns a positive + number and that happens for all of the descendants of the device too, + and all of them (including the device itself) are runtime-suspended, the + PM core will skip the suspend, suspend_late and suspend_noirq suspend + phases as well as the resume_noirq, resume_early and resume phases of + the following system resume for all of these devices. In that case, + the complete callback will be called directly after the prepare callback + and is entirely responsible for bringing the device back to the + functional state as appropriate. + + 2. The suspend methods should quiesce the device to stop it from performing + I/O. They also may save the device registers and put it into the + appropriate low-power state, depending on the bus type the device is on, + and they may enable wakeup events. + + 3 For a number of devices it is convenient to split suspend into the + "quiesce device" and "save device state" phases, in which cases + suspend_late is meant to do the latter. It is always executed after + runtime power management has been disabled for all devices. + + 4. The suspend_noirq phase occurs after IRQ handlers have been disabled, + which means that the driver's interrupt handler will not be called while + the callback method is running. The methods should save the values of + the device's registers that weren't saved previously and finally put the + device into the appropriate low-power state. + + The majority of subsystems and device drivers need not implement this + callback. However, bus types allowing devices to share interrupt + vectors, like PCI, generally need it; otherwise a driver might encounter + an error during the suspend phase by fielding a shared interrupt + generated by some other device after its own device had been set to low + power. + +At the end of these phases, drivers should have stopped all I/O transactions +(DMA, IRQs), saved enough state that they can re-initialize or restore previous +state (as needed by the hardware), and placed the device into a low-power state. +On many platforms they will gate off one or more clock sources; sometimes they +will also switch off power supplies or reduce voltages. (Drivers supporting +runtime PM may already have performed some or all of these steps.) + +If device_may_wakeup(dev) returns true, the device should be prepared for +generating hardware wakeup signals to trigger a system wakeup event when the +system is in the sleep state. For example, enable_irq_wake() might identify +GPIO signals hooked up to a switch or other external hardware, and +pci_enable_wake() does something similar for the PCI PME signal. + +If any of these callbacks returns an error, the system won't enter the desired +low-power state. Instead the PM core will unwind its actions by resuming all +the devices that were suspended. + + +Leaving System Suspend +---------------------- +When resuming from freeze, standby or memory sleep, the phases are: + + resume_noirq, resume_early, resume, complete. + + 1. The resume_noirq callback methods should perform any actions needed + before the driver's interrupt handlers are invoked. This generally + means undoing the actions of the suspend_noirq phase. If the bus type + permits devices to share interrupt vectors, like PCI, the method should + bring the device and its driver into a state in which the driver can + recognize if the device is the source of incoming interrupts, if any, + and handle them correctly. + + For example, the PCI bus type's ->pm.resume_noirq() puts the device into + the full-power state (D0 in the PCI terminology) and restores the + standard configuration registers of the device. Then it calls the + device driver's ->pm.resume_noirq() method to perform device-specific + actions. + + 2. The resume_early methods should prepare devices for the execution of + the resume methods. This generally involves undoing the actions of the + preceding suspend_late phase. + + 3 The resume methods should bring the device back to its operating + state, so that it can perform normal I/O. This generally involves + undoing the actions of the suspend phase. + + 4. The complete phase should undo the actions of the prepare phase. Note, + however, that new children may be registered below the device as soon as + the resume callbacks occur; it's not necessary to wait until the + complete phase. + + Moreover, if the preceding prepare callback returned a positive number, + the device may have been left in runtime suspend throughout the whole + system suspend and resume (the suspend, suspend_late, suspend_noirq + phases of system suspend and the resume_noirq, resume_early, resume + phases of system resume may have been skipped for it). In that case, + the complete callback is entirely responsible for bringing the device + back to the functional state after system suspend if necessary. [For + example, it may need to queue up a runtime resume request for the device + for this purpose.] To check if that is the case, the complete callback + can consult the device's power.direct_complete flag. Namely, if that + flag is set when the complete callback is being run, it has been called + directly after the preceding prepare and special action may be required + to make the device work correctly afterward. + +At the end of these phases, drivers should be as functional as they were before +suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are +gated on. + +However, the details here may again be platform-specific. For example, +some systems support multiple "run" states, and the mode in effect at +the end of resume might not be the one which preceded suspension. +That means availability of certain clocks or power supplies changed, +which could easily affect how a driver works. + +Drivers need to be able to handle hardware which has been reset since the +suspend methods were called, for example by complete reinitialization. +This may be the hardest part, and the one most protected by NDA'd documents +and chip errata. It's simplest if the hardware state hasn't changed since +the suspend was carried out, but that can't be guaranteed (in fact, it usually +is not the case). + +Drivers must also be prepared to notice that the device has been removed +while the system was powered down, whenever that's physically possible. +PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common examples of busses +where common Linux platforms will see such removal. Details of how drivers +will notice and handle such removals are currently bus-specific, and often +involve a separate thread. + +These callbacks may return an error value, but the PM core will ignore such +errors since there's nothing it can do about them other than printing them in +the system log. + + +Entering Hibernation +-------------------- +Hibernating the system is more complicated than putting it into the other +sleep states, because it involves creating and saving a system image. +Therefore there are more phases for hibernation, with a different set of +callbacks. These phases always run after tasks have been frozen and memory has +been freed. + +The general procedure for hibernation is to quiesce all devices (freeze), create +an image of the system memory while everything is stable, reactivate all +devices (thaw), write the image to permanent storage, and finally shut down the +system (poweroff). The phases used to accomplish this are: + + prepare, freeze, freeze_late, freeze_noirq, thaw_noirq, thaw_early, + thaw, complete, prepare, poweroff, poweroff_late, poweroff_noirq + + 1. The prepare phase is discussed in the "Entering System Suspend" section + above. + + 2. The freeze methods should quiesce the device so that it doesn't generate + IRQs or DMA, and they may need to save the values of device registers. + However the device does not have to be put in a low-power state, and to + save time it's best not to do so. Also, the device should not be + prepared to generate wakeup events. + + 3. The freeze_late phase is analogous to the suspend_late phase described + above, except that the device should not be put in a low-power state and + should not be allowed to generate wakeup events by it. + + 4. The freeze_noirq phase is analogous to the suspend_noirq phase discussed + above, except again that the device should not be put in a low-power + state and should not be allowed to generate wakeup events. + +At this point the system image is created. All devices should be inactive and +the contents of memory should remain undisturbed while this happens, so that the +image forms an atomic snapshot of the system state. + + 5. The thaw_noirq phase is analogous to the resume_noirq phase discussed + above. The main difference is that its methods can assume the device is + in the same state as at the end of the freeze_noirq phase. + + 6. The thaw_early phase is analogous to the resume_early phase described + above. Its methods should undo the actions of the preceding + freeze_late, if necessary. + + 7. The thaw phase is analogous to the resume phase discussed above. Its + methods should bring the device back to an operating state, so that it + can be used for saving the image if necessary. + + 8. The complete phase is discussed in the "Leaving System Suspend" section + above. + +At this point the system image is saved, and the devices then need to be +prepared for the upcoming system shutdown. This is much like suspending them +before putting the system into the freeze, standby or memory sleep state, +and the phases are similar. + + 9. The prepare phase is discussed above. + + 10. The poweroff phase is analogous to the suspend phase. + + 11. The poweroff_late phase is analogous to the suspend_late phase. + + 12. The poweroff_noirq phase is analogous to the suspend_noirq phase. + +The poweroff, poweroff_late and poweroff_noirq callbacks should do essentially +the same things as the suspend, suspend_late and suspend_noirq callbacks, +respectively. The only notable difference is that they need not store the +device register values, because the registers should already have been stored +during the freeze, freeze_late or freeze_noirq phases. + + +Leaving Hibernation +------------------- +Resuming from hibernation is, again, more complicated than resuming from a sleep +state in which the contents of main memory are preserved, because it requires +a system image to be loaded into memory and the pre-hibernation memory contents +to be restored before control can be passed back to the image kernel. + +Although in principle, the image might be loaded into memory and the +pre-hibernation memory contents restored by the boot loader, in practice this +can't be done because boot loaders aren't smart enough and there is no +established protocol for passing the necessary information. So instead, the +boot loader loads a fresh instance of the kernel, called the boot kernel, into +memory and passes control to it in the usual way. Then the boot kernel reads +the system image, restores the pre-hibernation memory contents, and passes +control to the image kernel. Thus two different kernels are involved in +resuming from hibernation. In fact, the boot kernel may be completely different +from the image kernel: a different configuration and even a different version. +This has important consequences for device drivers and their subsystems. + +To be able to load the system image into memory, the boot kernel needs to +include at least a subset of device drivers allowing it to access the storage +medium containing the image, although it doesn't need to include all of the +drivers present in the image kernel. After the image has been loaded, the +devices managed by the boot kernel need to be prepared for passing control back +to the image kernel. This is very similar to the initial steps involved in +creating a system image, and it is accomplished in the same way, using prepare, +freeze, and freeze_noirq phases. However the devices affected by these phases +are only those having drivers in the boot kernel; other devices will still be in +whatever state the boot loader left them. + +Should the restoration of the pre-hibernation memory contents fail, the boot +kernel would go through the "thawing" procedure described above, using the +thaw_noirq, thaw, and complete phases, and then continue running normally. This +happens only rarely. Most often the pre-hibernation memory contents are +restored successfully and control is passed to the image kernel, which then +becomes responsible for bringing the system back to the working state. + +To achieve this, the image kernel must restore the devices' pre-hibernation +functionality. The operation is much like waking up from the memory sleep +state, although it involves different phases: + + restore_noirq, restore_early, restore, complete + + 1. The restore_noirq phase is analogous to the resume_noirq phase. + + 2. The restore_early phase is analogous to the resume_early phase. + + 3. The restore phase is analogous to the resume phase. + + 4. The complete phase is discussed above. + +The main difference from resume[_early|_noirq] is that restore[_early|_noirq] +must assume the device has been accessed and reconfigured by the boot loader or +the boot kernel. Consequently the state of the device may be different from the +state remembered from the freeze, freeze_late and freeze_noirq phases. The +device may even need to be reset and completely re-initialized. In many cases +this difference doesn't matter, so the resume[_early|_noirq] and +restore[_early|_norq] method pointers can be set to the same routines. +Nevertheless, different callback pointers are used in case there is a situation +where it actually does matter. + + +Device Power Management Domains +------------------------------- +Sometimes devices share reference clocks or other power resources. In those +cases it generally is not possible to put devices into low-power states +individually. Instead, a set of devices sharing a power resource can be put +into a low-power state together at the same time by turning off the shared +power resource. Of course, they also need to be put into the full-power state +together, by turning the shared power resource on. A set of devices with this +property is often referred to as a power domain. + +Support for power domains is provided through the pm_domain field of struct +device. This field is a pointer to an object of type struct dev_pm_domain, +defined in include/linux/pm.h, providing a set of power management callbacks +analogous to the subsystem-level and device driver callbacks that are executed +for the given device during all power transitions, instead of the respective +subsystem-level callbacks. Specifically, if a device's pm_domain pointer is +not NULL, the ->suspend() callback from the object pointed to by it will be +executed instead of its subsystem's (e.g. bus type's) ->suspend() callback and +analogously for all of the remaining callbacks. In other words, power +management domain callbacks, if defined for the given device, always take +precedence over the callbacks provided by the device's subsystem (e.g. bus +type). + +The support for device power management domains is only relevant to platforms +needing to use the same device driver power management callbacks in many +different power domain configurations and wanting to avoid incorporating the +support for power domains into subsystem-level callbacks, for example by +modifying the platform bus type. Other platforms need not implement it or take +it into account in any way. + + +Device Low Power (suspend) States +--------------------------------- +Device low-power states aren't standard. One device might only handle +"on" and "off", while another might support a dozen different versions of +"on" (how many engines are active?), plus a state that gets back to "on" +faster than from a full "off". + +Some busses define rules about what different suspend states mean. PCI +gives one example: after the suspend sequence completes, a non-legacy +PCI device may not perform DMA or issue IRQs, and any wakeup events it +issues would be issued through the PME# bus signal. Plus, there are +several PCI-standard device states, some of which are optional. + +In contrast, integrated system-on-chip processors often use IRQs as the +wakeup event sources (so drivers would call enable_irq_wake) and might +be able to treat DMA completion as a wakeup event (sometimes DMA can stay +active too, it'd only be the CPU and some peripherals that sleep). + +Some details here may be platform-specific. Systems may have devices that +can be fully active in certain sleep states, such as an LCD display that's +refreshed using DMA while most of the system is sleeping lightly ... and +its frame buffer might even be updated by a DSP or other non-Linux CPU while +the Linux control processor stays idle. + +Moreover, the specific actions taken may depend on the target system state. +One target system state might allow a given device to be very operational; +another might require a hard shut down with re-initialization on resume. +And two different target systems might use the same device in different +ways; the aforementioned LCD might be active in one product's "standby", +but a different product using the same SOC might work differently. + + +Power Management Notifiers +-------------------------- +There are some operations that cannot be carried out by the power management +callbacks discussed above, because the callbacks occur too late or too early. +To handle these cases, subsystems and device drivers may register power +management notifiers that are called before tasks are frozen and after they have +been thawed. Generally speaking, the PM notifiers are suitable for performing +actions that either require user space to be available, or at least won't +interfere with user space. + +For details refer to Documentation/power/notifiers.txt. + + +Runtime Power Management +======================== +Many devices are able to dynamically power down while the system is still +running. This feature is useful for devices that are not being used, and +can offer significant power savings on a running system. These devices +often support a range of runtime power states, which might use names such +as "off", "sleep", "idle", "active", and so on. Those states will in some +cases (like PCI) be partially constrained by the bus the device uses, and will +usually include hardware states that are also used in system sleep states. + +A system-wide power transition can be started while some devices are in low +power states due to runtime power management. The system sleep PM callbacks +should recognize such situations and react to them appropriately, but the +necessary actions are subsystem-specific. + +In some cases the decision may be made at the subsystem level while in other +cases the device driver may be left to decide. In some cases it may be +desirable to leave a suspended device in that state during a system-wide power +transition, but in other cases the device must be put back into the full-power +state temporarily, for example so that its system wakeup capability can be +disabled. This all depends on the hardware and the design of the subsystem and +device driver in question. + +During system-wide resume from a sleep state it's easiest to put devices into +the full-power state, as explained in Documentation/power/runtime_pm.txt. Refer +to that document for more information regarding this particular issue as well as +for information on the device runtime power management framework in general. |