summaryrefslogtreecommitdiff
path: root/arch/arm/kvm
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /arch/arm/kvm
Initial import
Diffstat (limited to 'arch/arm/kvm')
-rw-r--r--arch/arm/kvm/Kconfig58
-rw-r--r--arch/arm/kvm/Makefile26
-rw-r--r--arch/arm/kvm/arm.c1154
-rw-r--r--arch/arm/kvm/coproc.c1262
-rw-r--r--arch/arm/kvm/coproc.h160
-rw-r--r--arch/arm/kvm/coproc_a15.c51
-rw-r--r--arch/arm/kvm/coproc_a7.c54
-rw-r--r--arch/arm/kvm/emulate.c402
-rw-r--r--arch/arm/kvm/guest.c292
-rw-r--r--arch/arm/kvm/handle_exit.c173
-rw-r--r--arch/arm/kvm/init.S159
-rw-r--r--arch/arm/kvm/interrupts.S524
-rw-r--r--arch/arm/kvm/interrupts_head.S649
-rw-r--r--arch/arm/kvm/mmio.c218
-rw-r--r--arch/arm/kvm/mmu.c1926
-rw-r--r--arch/arm/kvm/perf.c68
-rw-r--r--arch/arm/kvm/psci.c320
-rw-r--r--arch/arm/kvm/reset.c83
-rw-r--r--arch/arm/kvm/trace.h328
19 files changed, 7907 insertions, 0 deletions
diff --git a/arch/arm/kvm/Kconfig b/arch/arm/kvm/Kconfig
new file mode 100644
index 000000000..f1f79d104
--- /dev/null
+++ b/arch/arm/kvm/Kconfig
@@ -0,0 +1,58 @@
+#
+# KVM configuration
+#
+
+source "virt/kvm/Kconfig"
+
+menuconfig VIRTUALIZATION
+ bool "Virtualization"
+ ---help---
+ Say Y here to get to see options for using your Linux host to run
+ other operating systems inside virtual machines (guests).
+ This option alone does not add any kernel code.
+
+ If you say N, all options in this submenu will be skipped and
+ disabled.
+
+if VIRTUALIZATION
+
+config KVM
+ bool "Kernel-based Virtual Machine (KVM) support"
+ depends on MMU && OF
+ select PREEMPT_NOTIFIERS
+ select ANON_INODES
+ select HAVE_KVM_CPU_RELAX_INTERCEPT
+ select HAVE_KVM_ARCH_TLB_FLUSH_ALL
+ select KVM_MMIO
+ select KVM_ARM_HOST
+ select KVM_GENERIC_DIRTYLOG_READ_PROTECT
+ select SRCU
+ select MMU_NOTIFIER
+ select HAVE_KVM_EVENTFD
+ select HAVE_KVM_IRQFD
+ depends on ARM_VIRT_EXT && ARM_LPAE && ARM_ARCH_TIMER
+ ---help---
+ Support hosting virtualized guest machines.
+
+ This module provides access to the hardware capabilities through
+ a character device node named /dev/kvm.
+
+ If unsure, say N.
+
+config KVM_ARM_HOST
+ bool
+ ---help---
+ Provides host support for ARM processors.
+
+config KVM_ARM_MAX_VCPUS
+ int "Number maximum supported virtual CPUs per VM"
+ depends on KVM_ARM_HOST
+ default 4
+ help
+ Static number of max supported virtual CPUs per VM.
+
+ If you choose a high number, the vcpu structures will be quite
+ large, so only choose a reasonable number that you expect to
+ actually use.
+
+endif # VIRTUALIZATION
diff --git a/arch/arm/kvm/Makefile b/arch/arm/kvm/Makefile
new file mode 100644
index 000000000..139e46c08
--- /dev/null
+++ b/arch/arm/kvm/Makefile
@@ -0,0 +1,26 @@
+#
+# Makefile for Kernel-based Virtual Machine module
+#
+
+plus_virt := $(call as-instr,.arch_extension virt,+virt)
+ifeq ($(plus_virt),+virt)
+ plus_virt_def := -DREQUIRES_VIRT=1
+endif
+
+ccflags-y += -Iarch/arm/kvm
+CFLAGS_arm.o := -I. $(plus_virt_def)
+CFLAGS_mmu.o := -I.
+
+AFLAGS_init.o := -Wa,-march=armv7-a$(plus_virt)
+AFLAGS_interrupts.o := -Wa,-march=armv7-a$(plus_virt)
+
+KVM := ../../../virt/kvm
+kvm-arm-y = $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o
+
+obj-y += kvm-arm.o init.o interrupts.o
+obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o
+obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o
+obj-y += $(KVM)/arm/vgic.o
+obj-y += $(KVM)/arm/vgic-v2.o
+obj-y += $(KVM)/arm/vgic-v2-emul.o
+obj-y += $(KVM)/arm/arch_timer.o
diff --git a/arch/arm/kvm/arm.c b/arch/arm/kvm/arm.c
new file mode 100644
index 000000000..d9631ecdd
--- /dev/null
+++ b/arch/arm/kvm/arm.c
@@ -0,0 +1,1154 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/cpu.h>
+#include <linux/cpu_pm.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+#include <linux/mman.h>
+#include <linux/sched.h>
+#include <linux/kvm.h>
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+#include <asm/uaccess.h>
+#include <asm/ptrace.h>
+#include <asm/mman.h>
+#include <asm/tlbflush.h>
+#include <asm/cacheflush.h>
+#include <asm/virt.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_coproc.h>
+#include <asm/kvm_psci.h>
+
+#ifdef REQUIRES_VIRT
+__asm__(".arch_extension virt");
+#endif
+
+static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
+static unsigned long hyp_default_vectors;
+
+/* Per-CPU variable containing the currently running vcpu. */
+static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
+
+/* The VMID used in the VTTBR */
+static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
+static u8 kvm_next_vmid;
+static DEFINE_SPINLOCK(kvm_vmid_lock);
+
+static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
+{
+ BUG_ON(preemptible());
+ __this_cpu_write(kvm_arm_running_vcpu, vcpu);
+}
+
+/**
+ * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
+ * Must be called from non-preemptible context
+ */
+struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
+{
+ BUG_ON(preemptible());
+ return __this_cpu_read(kvm_arm_running_vcpu);
+}
+
+/**
+ * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
+ */
+struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
+{
+ return &kvm_arm_running_vcpu;
+}
+
+int kvm_arch_hardware_enable(void)
+{
+ return 0;
+}
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+}
+
+int kvm_arch_hardware_setup(void)
+{
+ return 0;
+}
+
+void kvm_arch_check_processor_compat(void *rtn)
+{
+ *(int *)rtn = 0;
+}
+
+
+/**
+ * kvm_arch_init_vm - initializes a VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+ int ret = 0;
+
+ if (type)
+ return -EINVAL;
+
+ ret = kvm_alloc_stage2_pgd(kvm);
+ if (ret)
+ goto out_fail_alloc;
+
+ ret = create_hyp_mappings(kvm, kvm + 1);
+ if (ret)
+ goto out_free_stage2_pgd;
+
+ kvm_timer_init(kvm);
+
+ /* Mark the initial VMID generation invalid */
+ kvm->arch.vmid_gen = 0;
+
+ /* The maximum number of VCPUs is limited by the host's GIC model */
+ kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
+
+ return ret;
+out_free_stage2_pgd:
+ kvm_free_stage2_pgd(kvm);
+out_fail_alloc:
+ return ret;
+}
+
+int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+ return VM_FAULT_SIGBUS;
+}
+
+
+/**
+ * kvm_arch_destroy_vm - destroy the VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+ int i;
+
+ kvm_free_stage2_pgd(kvm);
+
+ for (i = 0; i < KVM_MAX_VCPUS; ++i) {
+ if (kvm->vcpus[i]) {
+ kvm_arch_vcpu_free(kvm->vcpus[i]);
+ kvm->vcpus[i] = NULL;
+ }
+ }
+
+ kvm_vgic_destroy(kvm);
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+ int r;
+ switch (ext) {
+ case KVM_CAP_IRQCHIP:
+ case KVM_CAP_IRQFD:
+ case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_DEVICE_CTRL:
+ case KVM_CAP_USER_MEMORY:
+ case KVM_CAP_SYNC_MMU:
+ case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
+ case KVM_CAP_ONE_REG:
+ case KVM_CAP_ARM_PSCI:
+ case KVM_CAP_ARM_PSCI_0_2:
+ case KVM_CAP_READONLY_MEM:
+ case KVM_CAP_MP_STATE:
+ r = 1;
+ break;
+ case KVM_CAP_COALESCED_MMIO:
+ r = KVM_COALESCED_MMIO_PAGE_OFFSET;
+ break;
+ case KVM_CAP_ARM_SET_DEVICE_ADDR:
+ r = 1;
+ break;
+ case KVM_CAP_NR_VCPUS:
+ r = num_online_cpus();
+ break;
+ case KVM_CAP_MAX_VCPUS:
+ r = KVM_MAX_VCPUS;
+ break;
+ default:
+ r = kvm_arch_dev_ioctl_check_extension(ext);
+ break;
+ }
+ return r;
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ return -EINVAL;
+}
+
+
+struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
+{
+ int err;
+ struct kvm_vcpu *vcpu;
+
+ if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
+ err = -EBUSY;
+ goto out;
+ }
+
+ if (id >= kvm->arch.max_vcpus) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+ if (!vcpu) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ err = kvm_vcpu_init(vcpu, kvm, id);
+ if (err)
+ goto free_vcpu;
+
+ err = create_hyp_mappings(vcpu, vcpu + 1);
+ if (err)
+ goto vcpu_uninit;
+
+ return vcpu;
+vcpu_uninit:
+ kvm_vcpu_uninit(vcpu);
+free_vcpu:
+ kmem_cache_free(kvm_vcpu_cache, vcpu);
+out:
+ return ERR_PTR(err);
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+}
+
+void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
+{
+ kvm_mmu_free_memory_caches(vcpu);
+ kvm_timer_vcpu_terminate(vcpu);
+ kvm_vgic_vcpu_destroy(vcpu);
+ kmem_cache_free(kvm_vcpu_cache, vcpu);
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ kvm_arch_vcpu_free(vcpu);
+}
+
+int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
+{
+ return kvm_timer_should_fire(vcpu);
+}
+
+int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ /* Force users to call KVM_ARM_VCPU_INIT */
+ vcpu->arch.target = -1;
+ bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+
+ /* Set up the timer */
+ kvm_timer_vcpu_init(vcpu);
+
+ return 0;
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ vcpu->cpu = cpu;
+ vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
+
+ kvm_arm_set_running_vcpu(vcpu);
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ /*
+ * The arch-generic KVM code expects the cpu field of a vcpu to be -1
+ * if the vcpu is no longer assigned to a cpu. This is used for the
+ * optimized make_all_cpus_request path.
+ */
+ vcpu->cpu = -1;
+
+ kvm_arm_set_running_vcpu(NULL);
+}
+
+int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
+ struct kvm_guest_debug *dbg)
+{
+ return -EINVAL;
+}
+
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ if (vcpu->arch.pause)
+ mp_state->mp_state = KVM_MP_STATE_STOPPED;
+ else
+ mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ switch (mp_state->mp_state) {
+ case KVM_MP_STATE_RUNNABLE:
+ vcpu->arch.pause = false;
+ break;
+ case KVM_MP_STATE_STOPPED:
+ vcpu->arch.pause = true;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
+ * @v: The VCPU pointer
+ *
+ * If the guest CPU is not waiting for interrupts or an interrupt line is
+ * asserted, the CPU is by definition runnable.
+ */
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
+{
+ return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
+}
+
+/* Just ensure a guest exit from a particular CPU */
+static void exit_vm_noop(void *info)
+{
+}
+
+void force_vm_exit(const cpumask_t *mask)
+{
+ smp_call_function_many(mask, exit_vm_noop, NULL, true);
+}
+
+/**
+ * need_new_vmid_gen - check that the VMID is still valid
+ * @kvm: The VM's VMID to checkt
+ *
+ * return true if there is a new generation of VMIDs being used
+ *
+ * The hardware supports only 256 values with the value zero reserved for the
+ * host, so we check if an assigned value belongs to a previous generation,
+ * which which requires us to assign a new value. If we're the first to use a
+ * VMID for the new generation, we must flush necessary caches and TLBs on all
+ * CPUs.
+ */
+static bool need_new_vmid_gen(struct kvm *kvm)
+{
+ return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
+}
+
+/**
+ * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
+ * @kvm The guest that we are about to run
+ *
+ * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
+ * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
+ * caches and TLBs.
+ */
+static void update_vttbr(struct kvm *kvm)
+{
+ phys_addr_t pgd_phys;
+ u64 vmid;
+
+ if (!need_new_vmid_gen(kvm))
+ return;
+
+ spin_lock(&kvm_vmid_lock);
+
+ /*
+ * We need to re-check the vmid_gen here to ensure that if another vcpu
+ * already allocated a valid vmid for this vm, then this vcpu should
+ * use the same vmid.
+ */
+ if (!need_new_vmid_gen(kvm)) {
+ spin_unlock(&kvm_vmid_lock);
+ return;
+ }
+
+ /* First user of a new VMID generation? */
+ if (unlikely(kvm_next_vmid == 0)) {
+ atomic64_inc(&kvm_vmid_gen);
+ kvm_next_vmid = 1;
+
+ /*
+ * On SMP we know no other CPUs can use this CPU's or each
+ * other's VMID after force_vm_exit returns since the
+ * kvm_vmid_lock blocks them from reentry to the guest.
+ */
+ force_vm_exit(cpu_all_mask);
+ /*
+ * Now broadcast TLB + ICACHE invalidation over the inner
+ * shareable domain to make sure all data structures are
+ * clean.
+ */
+ kvm_call_hyp(__kvm_flush_vm_context);
+ }
+
+ kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
+ kvm->arch.vmid = kvm_next_vmid;
+ kvm_next_vmid++;
+
+ /* update vttbr to be used with the new vmid */
+ pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
+ BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
+ vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
+ kvm->arch.vttbr = pgd_phys | vmid;
+
+ spin_unlock(&kvm_vmid_lock);
+}
+
+static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int ret;
+
+ if (likely(vcpu->arch.has_run_once))
+ return 0;
+
+ vcpu->arch.has_run_once = true;
+
+ /*
+ * Map the VGIC hardware resources before running a vcpu the first
+ * time on this VM.
+ */
+ if (unlikely(!vgic_ready(kvm))) {
+ ret = kvm_vgic_map_resources(kvm);
+ if (ret)
+ return ret;
+ }
+
+ /*
+ * Enable the arch timers only if we have an in-kernel VGIC
+ * and it has been properly initialized, since we cannot handle
+ * interrupts from the virtual timer with a userspace gic.
+ */
+ if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
+ kvm_timer_enable(kvm);
+
+ return 0;
+}
+
+bool kvm_arch_intc_initialized(struct kvm *kvm)
+{
+ return vgic_initialized(kvm);
+}
+
+static void vcpu_pause(struct kvm_vcpu *vcpu)
+{
+ wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
+
+ wait_event_interruptible(*wq, !vcpu->arch.pause);
+}
+
+static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.target >= 0;
+}
+
+/**
+ * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run structure pointer used for userspace state exchange
+ *
+ * This function is called through the VCPU_RUN ioctl called from user space. It
+ * will execute VM code in a loop until the time slice for the process is used
+ * or some emulation is needed from user space in which case the function will
+ * return with return value 0 and with the kvm_run structure filled in with the
+ * required data for the requested emulation.
+ */
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ int ret;
+ sigset_t sigsaved;
+
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ return -ENOEXEC;
+
+ ret = kvm_vcpu_first_run_init(vcpu);
+ if (ret)
+ return ret;
+
+ if (run->exit_reason == KVM_EXIT_MMIO) {
+ ret = kvm_handle_mmio_return(vcpu, vcpu->run);
+ if (ret)
+ return ret;
+ }
+
+ if (vcpu->sigset_active)
+ sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
+
+ ret = 1;
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ while (ret > 0) {
+ /*
+ * Check conditions before entering the guest
+ */
+ cond_resched();
+
+ update_vttbr(vcpu->kvm);
+
+ if (vcpu->arch.pause)
+ vcpu_pause(vcpu);
+
+ kvm_vgic_flush_hwstate(vcpu);
+ kvm_timer_flush_hwstate(vcpu);
+
+ local_irq_disable();
+
+ /*
+ * Re-check atomic conditions
+ */
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ run->exit_reason = KVM_EXIT_INTR;
+ }
+
+ if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
+ local_irq_enable();
+ kvm_timer_sync_hwstate(vcpu);
+ kvm_vgic_sync_hwstate(vcpu);
+ continue;
+ }
+
+ /**************************************************************
+ * Enter the guest
+ */
+ trace_kvm_entry(*vcpu_pc(vcpu));
+ kvm_guest_enter();
+ vcpu->mode = IN_GUEST_MODE;
+
+ ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
+
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ kvm_guest_exit();
+ trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
+ /*
+ * We may have taken a host interrupt in HYP mode (ie
+ * while executing the guest). This interrupt is still
+ * pending, as we haven't serviced it yet!
+ *
+ * We're now back in SVC mode, with interrupts
+ * disabled. Enabling the interrupts now will have
+ * the effect of taking the interrupt again, in SVC
+ * mode this time.
+ */
+ local_irq_enable();
+
+ /*
+ * Back from guest
+ *************************************************************/
+
+ kvm_timer_sync_hwstate(vcpu);
+ kvm_vgic_sync_hwstate(vcpu);
+
+ ret = handle_exit(vcpu, run, ret);
+ }
+
+ if (vcpu->sigset_active)
+ sigprocmask(SIG_SETMASK, &sigsaved, NULL);
+ return ret;
+}
+
+static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
+{
+ int bit_index;
+ bool set;
+ unsigned long *ptr;
+
+ if (number == KVM_ARM_IRQ_CPU_IRQ)
+ bit_index = __ffs(HCR_VI);
+ else /* KVM_ARM_IRQ_CPU_FIQ */
+ bit_index = __ffs(HCR_VF);
+
+ ptr = (unsigned long *)&vcpu->arch.irq_lines;
+ if (level)
+ set = test_and_set_bit(bit_index, ptr);
+ else
+ set = test_and_clear_bit(bit_index, ptr);
+
+ /*
+ * If we didn't change anything, no need to wake up or kick other CPUs
+ */
+ if (set == level)
+ return 0;
+
+ /*
+ * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
+ * trigger a world-switch round on the running physical CPU to set the
+ * virtual IRQ/FIQ fields in the HCR appropriately.
+ */
+ kvm_vcpu_kick(vcpu);
+
+ return 0;
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
+ bool line_status)
+{
+ u32 irq = irq_level->irq;
+ unsigned int irq_type, vcpu_idx, irq_num;
+ int nrcpus = atomic_read(&kvm->online_vcpus);
+ struct kvm_vcpu *vcpu = NULL;
+ bool level = irq_level->level;
+
+ irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
+ vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
+ irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
+
+ trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
+
+ switch (irq_type) {
+ case KVM_ARM_IRQ_TYPE_CPU:
+ if (irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
+ return -EINVAL;
+
+ return vcpu_interrupt_line(vcpu, irq_num, level);
+ case KVM_ARM_IRQ_TYPE_PPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
+ case KVM_ARM_IRQ_TYPE_SPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (irq_num < VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
+ }
+
+ return -EINVAL;
+}
+
+static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
+ const struct kvm_vcpu_init *init)
+{
+ unsigned int i;
+ int phys_target = kvm_target_cpu();
+
+ if (init->target != phys_target)
+ return -EINVAL;
+
+ /*
+ * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+ * use the same target.
+ */
+ if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
+ return -EINVAL;
+
+ /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
+ for (i = 0; i < sizeof(init->features) * 8; i++) {
+ bool set = (init->features[i / 32] & (1 << (i % 32)));
+
+ if (set && i >= KVM_VCPU_MAX_FEATURES)
+ return -ENOENT;
+
+ /*
+ * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+ * use the same feature set.
+ */
+ if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
+ test_bit(i, vcpu->arch.features) != set)
+ return -EINVAL;
+
+ if (set)
+ set_bit(i, vcpu->arch.features);
+ }
+
+ vcpu->arch.target = phys_target;
+
+ /* Now we know what it is, we can reset it. */
+ return kvm_reset_vcpu(vcpu);
+}
+
+
+static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_init *init)
+{
+ int ret;
+
+ ret = kvm_vcpu_set_target(vcpu, init);
+ if (ret)
+ return ret;
+
+ /*
+ * Ensure a rebooted VM will fault in RAM pages and detect if the
+ * guest MMU is turned off and flush the caches as needed.
+ */
+ if (vcpu->arch.has_run_once)
+ stage2_unmap_vm(vcpu->kvm);
+
+ vcpu_reset_hcr(vcpu);
+
+ /*
+ * Handle the "start in power-off" case by marking the VCPU as paused.
+ */
+ if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
+ vcpu->arch.pause = true;
+ else
+ vcpu->arch.pause = false;
+
+ return 0;
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+
+ switch (ioctl) {
+ case KVM_ARM_VCPU_INIT: {
+ struct kvm_vcpu_init init;
+
+ if (copy_from_user(&init, argp, sizeof(init)))
+ return -EFAULT;
+
+ return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
+ }
+ case KVM_SET_ONE_REG:
+ case KVM_GET_ONE_REG: {
+ struct kvm_one_reg reg;
+
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ return -ENOEXEC;
+
+ if (copy_from_user(&reg, argp, sizeof(reg)))
+ return -EFAULT;
+ if (ioctl == KVM_SET_ONE_REG)
+ return kvm_arm_set_reg(vcpu, &reg);
+ else
+ return kvm_arm_get_reg(vcpu, &reg);
+ }
+ case KVM_GET_REG_LIST: {
+ struct kvm_reg_list __user *user_list = argp;
+ struct kvm_reg_list reg_list;
+ unsigned n;
+
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ return -ENOEXEC;
+
+ if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
+ return -EFAULT;
+ n = reg_list.n;
+ reg_list.n = kvm_arm_num_regs(vcpu);
+ if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
+ return -EFAULT;
+ if (n < reg_list.n)
+ return -E2BIG;
+ return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+/**
+ * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
+ * @kvm: kvm instance
+ * @log: slot id and address to which we copy the log
+ *
+ * Steps 1-4 below provide general overview of dirty page logging. See
+ * kvm_get_dirty_log_protect() function description for additional details.
+ *
+ * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
+ * always flush the TLB (step 4) even if previous step failed and the dirty
+ * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
+ * does not preclude user space subsequent dirty log read. Flushing TLB ensures
+ * writes will be marked dirty for next log read.
+ *
+ * 1. Take a snapshot of the bit and clear it if needed.
+ * 2. Write protect the corresponding page.
+ * 3. Copy the snapshot to the userspace.
+ * 4. Flush TLB's if needed.
+ */
+int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
+{
+ bool is_dirty = false;
+ int r;
+
+ mutex_lock(&kvm->slots_lock);
+
+ r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
+
+ if (is_dirty)
+ kvm_flush_remote_tlbs(kvm);
+
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
+ struct kvm_arm_device_addr *dev_addr)
+{
+ unsigned long dev_id, type;
+
+ dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
+ KVM_ARM_DEVICE_ID_SHIFT;
+ type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
+ KVM_ARM_DEVICE_TYPE_SHIFT;
+
+ switch (dev_id) {
+ case KVM_ARM_DEVICE_VGIC_V2:
+ return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
+ default:
+ return -ENODEV;
+ }
+}
+
+long kvm_arch_vm_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm = filp->private_data;
+ void __user *argp = (void __user *)arg;
+
+ switch (ioctl) {
+ case KVM_CREATE_IRQCHIP: {
+ return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ }
+ case KVM_ARM_SET_DEVICE_ADDR: {
+ struct kvm_arm_device_addr dev_addr;
+
+ if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
+ return -EFAULT;
+ return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
+ }
+ case KVM_ARM_PREFERRED_TARGET: {
+ int err;
+ struct kvm_vcpu_init init;
+
+ err = kvm_vcpu_preferred_target(&init);
+ if (err)
+ return err;
+
+ if (copy_to_user(argp, &init, sizeof(init)))
+ return -EFAULT;
+
+ return 0;
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static void cpu_init_hyp_mode(void *dummy)
+{
+ phys_addr_t boot_pgd_ptr;
+ phys_addr_t pgd_ptr;
+ unsigned long hyp_stack_ptr;
+ unsigned long stack_page;
+ unsigned long vector_ptr;
+
+ /* Switch from the HYP stub to our own HYP init vector */
+ __hyp_set_vectors(kvm_get_idmap_vector());
+
+ boot_pgd_ptr = kvm_mmu_get_boot_httbr();
+ pgd_ptr = kvm_mmu_get_httbr();
+ stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
+ hyp_stack_ptr = stack_page + PAGE_SIZE;
+ vector_ptr = (unsigned long)__kvm_hyp_vector;
+
+ __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
+}
+
+static int hyp_init_cpu_notify(struct notifier_block *self,
+ unsigned long action, void *cpu)
+{
+ switch (action) {
+ case CPU_STARTING:
+ case CPU_STARTING_FROZEN:
+ if (__hyp_get_vectors() == hyp_default_vectors)
+ cpu_init_hyp_mode(NULL);
+ break;
+ }
+
+ return NOTIFY_OK;
+}
+
+static struct notifier_block hyp_init_cpu_nb = {
+ .notifier_call = hyp_init_cpu_notify,
+};
+
+#ifdef CONFIG_CPU_PM
+static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
+ unsigned long cmd,
+ void *v)
+{
+ if (cmd == CPU_PM_EXIT &&
+ __hyp_get_vectors() == hyp_default_vectors) {
+ cpu_init_hyp_mode(NULL);
+ return NOTIFY_OK;
+ }
+
+ return NOTIFY_DONE;
+}
+
+static struct notifier_block hyp_init_cpu_pm_nb = {
+ .notifier_call = hyp_init_cpu_pm_notifier,
+};
+
+static void __init hyp_cpu_pm_init(void)
+{
+ cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
+}
+#else
+static inline void hyp_cpu_pm_init(void)
+{
+}
+#endif
+
+/**
+ * Inits Hyp-mode on all online CPUs
+ */
+static int init_hyp_mode(void)
+{
+ int cpu;
+ int err = 0;
+
+ /*
+ * Allocate Hyp PGD and setup Hyp identity mapping
+ */
+ err = kvm_mmu_init();
+ if (err)
+ goto out_err;
+
+ /*
+ * It is probably enough to obtain the default on one
+ * CPU. It's unlikely to be different on the others.
+ */
+ hyp_default_vectors = __hyp_get_vectors();
+
+ /*
+ * Allocate stack pages for Hypervisor-mode
+ */
+ for_each_possible_cpu(cpu) {
+ unsigned long stack_page;
+
+ stack_page = __get_free_page(GFP_KERNEL);
+ if (!stack_page) {
+ err = -ENOMEM;
+ goto out_free_stack_pages;
+ }
+
+ per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
+ }
+
+ /*
+ * Map the Hyp-code called directly from the host
+ */
+ err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
+ if (err) {
+ kvm_err("Cannot map world-switch code\n");
+ goto out_free_mappings;
+ }
+
+ /*
+ * Map the Hyp stack pages
+ */
+ for_each_possible_cpu(cpu) {
+ char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
+ err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
+
+ if (err) {
+ kvm_err("Cannot map hyp stack\n");
+ goto out_free_mappings;
+ }
+ }
+
+ /*
+ * Map the host CPU structures
+ */
+ kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
+ if (!kvm_host_cpu_state) {
+ err = -ENOMEM;
+ kvm_err("Cannot allocate host CPU state\n");
+ goto out_free_mappings;
+ }
+
+ for_each_possible_cpu(cpu) {
+ kvm_cpu_context_t *cpu_ctxt;
+
+ cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
+ err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
+
+ if (err) {
+ kvm_err("Cannot map host CPU state: %d\n", err);
+ goto out_free_context;
+ }
+ }
+
+ /*
+ * Execute the init code on each CPU.
+ */
+ on_each_cpu(cpu_init_hyp_mode, NULL, 1);
+
+ /*
+ * Init HYP view of VGIC
+ */
+ err = kvm_vgic_hyp_init();
+ if (err)
+ goto out_free_context;
+
+ /*
+ * Init HYP architected timer support
+ */
+ err = kvm_timer_hyp_init();
+ if (err)
+ goto out_free_mappings;
+
+#ifndef CONFIG_HOTPLUG_CPU
+ free_boot_hyp_pgd();
+#endif
+
+ kvm_perf_init();
+
+ kvm_info("Hyp mode initialized successfully\n");
+
+ return 0;
+out_free_context:
+ free_percpu(kvm_host_cpu_state);
+out_free_mappings:
+ free_hyp_pgds();
+out_free_stack_pages:
+ for_each_possible_cpu(cpu)
+ free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
+out_err:
+ kvm_err("error initializing Hyp mode: %d\n", err);
+ return err;
+}
+
+static void check_kvm_target_cpu(void *ret)
+{
+ *(int *)ret = kvm_target_cpu();
+}
+
+struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ mpidr &= MPIDR_HWID_BITMASK;
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
+ return vcpu;
+ }
+ return NULL;
+}
+
+/**
+ * Initialize Hyp-mode and memory mappings on all CPUs.
+ */
+int kvm_arch_init(void *opaque)
+{
+ int err;
+ int ret, cpu;
+
+ if (!is_hyp_mode_available()) {
+ kvm_err("HYP mode not available\n");
+ return -ENODEV;
+ }
+
+ for_each_online_cpu(cpu) {
+ smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
+ if (ret < 0) {
+ kvm_err("Error, CPU %d not supported!\n", cpu);
+ return -ENODEV;
+ }
+ }
+
+ cpu_notifier_register_begin();
+
+ err = init_hyp_mode();
+ if (err)
+ goto out_err;
+
+ err = __register_cpu_notifier(&hyp_init_cpu_nb);
+ if (err) {
+ kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
+ goto out_err;
+ }
+
+ cpu_notifier_register_done();
+
+ hyp_cpu_pm_init();
+
+ kvm_coproc_table_init();
+ return 0;
+out_err:
+ cpu_notifier_register_done();
+ return err;
+}
+
+/* NOP: Compiling as a module not supported */
+void kvm_arch_exit(void)
+{
+ kvm_perf_teardown();
+}
+
+static int arm_init(void)
+{
+ int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
+ return rc;
+}
+
+module_init(arm_init);
diff --git a/arch/arm/kvm/coproc.c b/arch/arm/kvm/coproc.c
new file mode 100644
index 000000000..f3d88dc38
--- /dev/null
+++ b/arch/arm/kvm/coproc.c
@@ -0,0 +1,1262 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Authors: Rusty Russell <rusty@rustcorp.com.au>
+ * Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+#include <linux/mm.h>
+#include <linux/kvm_host.h>
+#include <linux/uaccess.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_coproc.h>
+#include <asm/kvm_mmu.h>
+#include <asm/cacheflush.h>
+#include <asm/cputype.h>
+#include <trace/events/kvm.h>
+#include <asm/vfp.h>
+#include "../vfp/vfpinstr.h"
+
+#include "trace.h"
+#include "coproc.h"
+
+
+/******************************************************************************
+ * Co-processor emulation
+ *****************************************************************************/
+
+/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
+static u32 cache_levels;
+
+/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
+#define CSSELR_MAX 12
+
+/*
+ * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
+ * of cp15 registers can be viewed either as couple of two u32 registers
+ * or one u64 register. Current u64 register encoding is that least
+ * significant u32 word is followed by most significant u32 word.
+ */
+static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
+ const struct coproc_reg *r,
+ u64 val)
+{
+ vcpu->arch.cp15[r->reg] = val & 0xffffffff;
+ vcpu->arch.cp15[r->reg + 1] = val >> 32;
+}
+
+static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
+ const struct coproc_reg *r)
+{
+ u64 val;
+
+ val = vcpu->arch.cp15[r->reg + 1];
+ val = val << 32;
+ val = val | vcpu->arch.cp15[r->reg];
+ return val;
+}
+
+int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ /*
+ * We can get here, if the host has been built without VFPv3 support,
+ * but the guest attempted a floating point operation.
+ */
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
+{
+ /*
+ * Compute guest MPIDR. We build a virtual cluster out of the
+ * vcpu_id, but we read the 'U' bit from the underlying
+ * hardware directly.
+ */
+ vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
+ ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
+ (vcpu->vcpu_id & 3));
+}
+
+/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
+static bool access_actlr(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p,
+ const struct coproc_reg *r)
+{
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+
+ *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
+ return true;
+}
+
+/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
+static bool access_cbar(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p,
+ const struct coproc_reg *r)
+{
+ if (p->is_write)
+ return write_to_read_only(vcpu, p);
+ return read_zero(vcpu, p);
+}
+
+/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
+static bool access_l2ctlr(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p,
+ const struct coproc_reg *r)
+{
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+
+ *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
+ return true;
+}
+
+static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
+{
+ u32 l2ctlr, ncores;
+
+ asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
+ l2ctlr &= ~(3 << 24);
+ ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
+ /* How many cores in the current cluster and the next ones */
+ ncores -= (vcpu->vcpu_id & ~3);
+ /* Cap it to the maximum number of cores in a single cluster */
+ ncores = min(ncores, 3U);
+ l2ctlr |= (ncores & 3) << 24;
+
+ vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
+}
+
+static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
+{
+ u32 actlr;
+
+ /* ACTLR contains SMP bit: make sure you create all cpus first! */
+ asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
+ /* Make the SMP bit consistent with the guest configuration */
+ if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
+ actlr |= 1U << 6;
+ else
+ actlr &= ~(1U << 6);
+
+ vcpu->arch.cp15[c1_ACTLR] = actlr;
+}
+
+/*
+ * TRM entries: A7:4.3.50, A15:4.3.49
+ * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
+ */
+static bool access_l2ectlr(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p,
+ const struct coproc_reg *r)
+{
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+
+ *vcpu_reg(vcpu, p->Rt1) = 0;
+ return true;
+}
+
+/*
+ * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+ */
+static bool access_dcsw(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p,
+ const struct coproc_reg *r)
+{
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p);
+
+ kvm_set_way_flush(vcpu);
+ return true;
+}
+
+/*
+ * Generic accessor for VM registers. Only called as long as HCR_TVM
+ * is set. If the guest enables the MMU, we stop trapping the VM
+ * sys_regs and leave it in complete control of the caches.
+ *
+ * Used by the cpu-specific code.
+ */
+bool access_vm_reg(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p,
+ const struct coproc_reg *r)
+{
+ bool was_enabled = vcpu_has_cache_enabled(vcpu);
+
+ BUG_ON(!p->is_write);
+
+ vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
+ if (p->is_64bit)
+ vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
+
+ kvm_toggle_cache(vcpu, was_enabled);
+ return true;
+}
+
+/*
+ * We could trap ID_DFR0 and tell the guest we don't support performance
+ * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
+ * NAKed, so it will read the PMCR anyway.
+ *
+ * Therefore we tell the guest we have 0 counters. Unfortunately, we
+ * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
+ * all PM registers, which doesn't crash the guest kernel at least.
+ */
+static bool pm_fake(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p,
+ const struct coproc_reg *r)
+{
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+ else
+ return read_zero(vcpu, p);
+}
+
+#define access_pmcr pm_fake
+#define access_pmcntenset pm_fake
+#define access_pmcntenclr pm_fake
+#define access_pmovsr pm_fake
+#define access_pmselr pm_fake
+#define access_pmceid0 pm_fake
+#define access_pmceid1 pm_fake
+#define access_pmccntr pm_fake
+#define access_pmxevtyper pm_fake
+#define access_pmxevcntr pm_fake
+#define access_pmuserenr pm_fake
+#define access_pmintenset pm_fake
+#define access_pmintenclr pm_fake
+
+/* Architected CP15 registers.
+ * CRn denotes the primary register number, but is copied to the CRm in the
+ * user space API for 64-bit register access in line with the terminology used
+ * in the ARM ARM.
+ * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
+ * registers preceding 32-bit ones.
+ */
+static const struct coproc_reg cp15_regs[] = {
+ /* MPIDR: we use VMPIDR for guest access. */
+ { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
+ NULL, reset_mpidr, c0_MPIDR },
+
+ /* CSSELR: swapped by interrupt.S. */
+ { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
+ NULL, reset_unknown, c0_CSSELR },
+
+ /* ACTLR: trapped by HCR.TAC bit. */
+ { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
+ access_actlr, reset_actlr, c1_ACTLR },
+
+ /* CPACR: swapped by interrupt.S. */
+ { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
+ NULL, reset_val, c1_CPACR, 0x00000000 },
+
+ /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
+ { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
+ { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_unknown, c2_TTBR0 },
+ { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
+ access_vm_reg, reset_unknown, c2_TTBR1 },
+ { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
+ access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
+ { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
+
+
+ /* DACR: swapped by interrupt.S. */
+ { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_unknown, c3_DACR },
+
+ /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
+ { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_unknown, c5_DFSR },
+ { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
+ access_vm_reg, reset_unknown, c5_IFSR },
+ { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_unknown, c5_ADFSR },
+ { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
+ access_vm_reg, reset_unknown, c5_AIFSR },
+
+ /* DFAR/IFAR: swapped by interrupt.S. */
+ { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_unknown, c6_DFAR },
+ { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
+ access_vm_reg, reset_unknown, c6_IFAR },
+
+ /* PAR swapped by interrupt.S */
+ { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
+
+ /*
+ * DC{C,I,CI}SW operations:
+ */
+ { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
+ { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
+ { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
+ /*
+ * L2CTLR access (guest wants to know #CPUs).
+ */
+ { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
+ access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
+ { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
+
+ /*
+ * Dummy performance monitor implementation.
+ */
+ { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
+ { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
+ { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
+ { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
+ { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
+ { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
+ { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
+ { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
+ { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
+ { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
+ { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
+ { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
+ { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
+
+ /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
+ { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_unknown, c10_PRRR},
+ { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
+ access_vm_reg, reset_unknown, c10_NMRR},
+
+ /* AMAIR0/AMAIR1: swapped by interrupt.S. */
+ { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_unknown, c10_AMAIR0},
+ { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
+ access_vm_reg, reset_unknown, c10_AMAIR1},
+
+ /* VBAR: swapped by interrupt.S. */
+ { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
+ NULL, reset_val, c12_VBAR, 0x00000000 },
+
+ /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
+ { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
+ access_vm_reg, reset_val, c13_CID, 0x00000000 },
+ { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
+ NULL, reset_unknown, c13_TID_URW },
+ { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
+ NULL, reset_unknown, c13_TID_URO },
+ { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
+ NULL, reset_unknown, c13_TID_PRIV },
+
+ /* CNTKCTL: swapped by interrupt.S. */
+ { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
+ NULL, reset_val, c14_CNTKCTL, 0x00000000 },
+
+ /* The Configuration Base Address Register. */
+ { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
+};
+
+/* Target specific emulation tables */
+static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
+
+void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
+{
+ unsigned int i;
+
+ for (i = 1; i < table->num; i++)
+ BUG_ON(cmp_reg(&table->table[i-1],
+ &table->table[i]) >= 0);
+
+ target_tables[table->target] = table;
+}
+
+/* Get specific register table for this target. */
+static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
+{
+ struct kvm_coproc_target_table *table;
+
+ table = target_tables[target];
+ *num = table->num;
+ return table->table;
+}
+
+static const struct coproc_reg *find_reg(const struct coproc_params *params,
+ const struct coproc_reg table[],
+ unsigned int num)
+{
+ unsigned int i;
+
+ for (i = 0; i < num; i++) {
+ const struct coproc_reg *r = &table[i];
+
+ if (params->is_64bit != r->is_64)
+ continue;
+ if (params->CRn != r->CRn)
+ continue;
+ if (params->CRm != r->CRm)
+ continue;
+ if (params->Op1 != r->Op1)
+ continue;
+ if (params->Op2 != r->Op2)
+ continue;
+
+ return r;
+ }
+ return NULL;
+}
+
+static int emulate_cp15(struct kvm_vcpu *vcpu,
+ const struct coproc_params *params)
+{
+ size_t num;
+ const struct coproc_reg *table, *r;
+
+ trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
+ params->CRm, params->Op2, params->is_write);
+
+ table = get_target_table(vcpu->arch.target, &num);
+
+ /* Search target-specific then generic table. */
+ r = find_reg(params, table, num);
+ if (!r)
+ r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
+
+ if (likely(r)) {
+ /* If we don't have an accessor, we should never get here! */
+ BUG_ON(!r->access);
+
+ if (likely(r->access(vcpu, params, r))) {
+ /* Skip instruction, since it was emulated */
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+ return 1;
+ }
+ /* If access function fails, it should complain. */
+ } else {
+ kvm_err("Unsupported guest CP15 access at: %08lx\n",
+ *vcpu_pc(vcpu));
+ print_cp_instr(params);
+ }
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+/**
+ * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run struct
+ */
+int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ struct coproc_params params;
+
+ params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
+ params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
+ params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
+ params.is_64bit = true;
+
+ params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
+ params.Op2 = 0;
+ params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
+ params.CRm = 0;
+
+ return emulate_cp15(vcpu, &params);
+}
+
+static void reset_coproc_regs(struct kvm_vcpu *vcpu,
+ const struct coproc_reg *table, size_t num)
+{
+ unsigned long i;
+
+ for (i = 0; i < num; i++)
+ if (table[i].reset)
+ table[i].reset(vcpu, &table[i]);
+}
+
+/**
+ * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run struct
+ */
+int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ struct coproc_params params;
+
+ params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
+ params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
+ params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
+ params.is_64bit = false;
+
+ params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
+ params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
+ params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
+ params.Rt2 = 0;
+
+ return emulate_cp15(vcpu, &params);
+}
+
+/******************************************************************************
+ * Userspace API
+ *****************************************************************************/
+
+static bool index_to_params(u64 id, struct coproc_params *params)
+{
+ switch (id & KVM_REG_SIZE_MASK) {
+ case KVM_REG_SIZE_U32:
+ /* Any unused index bits means it's not valid. */
+ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
+ | KVM_REG_ARM_COPROC_MASK
+ | KVM_REG_ARM_32_CRN_MASK
+ | KVM_REG_ARM_CRM_MASK
+ | KVM_REG_ARM_OPC1_MASK
+ | KVM_REG_ARM_32_OPC2_MASK))
+ return false;
+
+ params->is_64bit = false;
+ params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
+ >> KVM_REG_ARM_32_CRN_SHIFT);
+ params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
+ >> KVM_REG_ARM_CRM_SHIFT);
+ params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
+ >> KVM_REG_ARM_OPC1_SHIFT);
+ params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
+ >> KVM_REG_ARM_32_OPC2_SHIFT);
+ return true;
+ case KVM_REG_SIZE_U64:
+ /* Any unused index bits means it's not valid. */
+ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
+ | KVM_REG_ARM_COPROC_MASK
+ | KVM_REG_ARM_CRM_MASK
+ | KVM_REG_ARM_OPC1_MASK))
+ return false;
+ params->is_64bit = true;
+ /* CRm to CRn: see cp15_to_index for details */
+ params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
+ >> KVM_REG_ARM_CRM_SHIFT);
+ params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
+ >> KVM_REG_ARM_OPC1_SHIFT);
+ params->Op2 = 0;
+ params->CRm = 0;
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Decode an index value, and find the cp15 coproc_reg entry. */
+static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
+ u64 id)
+{
+ size_t num;
+ const struct coproc_reg *table, *r;
+ struct coproc_params params;
+
+ /* We only do cp15 for now. */
+ if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
+ return NULL;
+
+ if (!index_to_params(id, &params))
+ return NULL;
+
+ table = get_target_table(vcpu->arch.target, &num);
+ r = find_reg(&params, table, num);
+ if (!r)
+ r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
+
+ /* Not saved in the cp15 array? */
+ if (r && !r->reg)
+ r = NULL;
+
+ return r;
+}
+
+/*
+ * These are the invariant cp15 registers: we let the guest see the host
+ * versions of these, so they're part of the guest state.
+ *
+ * A future CPU may provide a mechanism to present different values to
+ * the guest, or a future kvm may trap them.
+ */
+/* Unfortunately, there's no register-argument for mrc, so generate. */
+#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
+ static void get_##name(struct kvm_vcpu *v, \
+ const struct coproc_reg *r) \
+ { \
+ u32 val; \
+ \
+ asm volatile("mrc p15, " __stringify(op1) \
+ ", %0, c" __stringify(crn) \
+ ", c" __stringify(crm) \
+ ", " __stringify(op2) "\n" : "=r" (val)); \
+ ((struct coproc_reg *)r)->val = val; \
+ }
+
+FUNCTION_FOR32(0, 0, 0, 0, MIDR)
+FUNCTION_FOR32(0, 0, 0, 1, CTR)
+FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
+FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
+FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
+FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
+FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
+FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
+FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
+FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
+FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
+FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
+FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
+FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
+FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
+FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
+FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
+FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
+FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
+FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
+FUNCTION_FOR32(0, 0, 1, 7, AIDR)
+
+/* ->val is filled in by kvm_invariant_coproc_table_init() */
+static struct coproc_reg invariant_cp15[] = {
+ { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
+ { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
+ { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
+ { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
+ { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
+
+ { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
+ { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
+ { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
+ { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
+ { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
+ { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
+ { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
+ { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
+
+ { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
+ { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
+ { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
+ { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
+ { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
+ { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
+
+ { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
+ { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
+};
+
+/*
+ * Reads a register value from a userspace address to a kernel
+ * variable. Make sure that register size matches sizeof(*__val).
+ */
+static int reg_from_user(void *val, const void __user *uaddr, u64 id)
+{
+ if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+/*
+ * Writes a register value to a userspace address from a kernel variable.
+ * Make sure that register size matches sizeof(*__val).
+ */
+static int reg_to_user(void __user *uaddr, const void *val, u64 id)
+{
+ if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static int get_invariant_cp15(u64 id, void __user *uaddr)
+{
+ struct coproc_params params;
+ const struct coproc_reg *r;
+ int ret;
+
+ if (!index_to_params(id, &params))
+ return -ENOENT;
+
+ r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
+ if (!r)
+ return -ENOENT;
+
+ ret = -ENOENT;
+ if (KVM_REG_SIZE(id) == 4) {
+ u32 val = r->val;
+
+ ret = reg_to_user(uaddr, &val, id);
+ } else if (KVM_REG_SIZE(id) == 8) {
+ ret = reg_to_user(uaddr, &r->val, id);
+ }
+ return ret;
+}
+
+static int set_invariant_cp15(u64 id, void __user *uaddr)
+{
+ struct coproc_params params;
+ const struct coproc_reg *r;
+ int err;
+ u64 val;
+
+ if (!index_to_params(id, &params))
+ return -ENOENT;
+ r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
+ if (!r)
+ return -ENOENT;
+
+ err = -ENOENT;
+ if (KVM_REG_SIZE(id) == 4) {
+ u32 val32;
+
+ err = reg_from_user(&val32, uaddr, id);
+ if (!err)
+ val = val32;
+ } else if (KVM_REG_SIZE(id) == 8) {
+ err = reg_from_user(&val, uaddr, id);
+ }
+ if (err)
+ return err;
+
+ /* This is what we mean by invariant: you can't change it. */
+ if (r->val != val)
+ return -EINVAL;
+
+ return 0;
+}
+
+static bool is_valid_cache(u32 val)
+{
+ u32 level, ctype;
+
+ if (val >= CSSELR_MAX)
+ return false;
+
+ /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
+ level = (val >> 1);
+ ctype = (cache_levels >> (level * 3)) & 7;
+
+ switch (ctype) {
+ case 0: /* No cache */
+ return false;
+ case 1: /* Instruction cache only */
+ return (val & 1);
+ case 2: /* Data cache only */
+ case 4: /* Unified cache */
+ return !(val & 1);
+ case 3: /* Separate instruction and data caches */
+ return true;
+ default: /* Reserved: we can't know instruction or data. */
+ return false;
+ }
+}
+
+/* Which cache CCSIDR represents depends on CSSELR value. */
+static u32 get_ccsidr(u32 csselr)
+{
+ u32 ccsidr;
+
+ /* Make sure noone else changes CSSELR during this! */
+ local_irq_disable();
+ /* Put value into CSSELR */
+ asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
+ isb();
+ /* Read result out of CCSIDR */
+ asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
+ local_irq_enable();
+
+ return ccsidr;
+}
+
+static int demux_c15_get(u64 id, void __user *uaddr)
+{
+ u32 val;
+ u32 __user *uval = uaddr;
+
+ /* Fail if we have unknown bits set. */
+ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+ | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+ return -ENOENT;
+
+ switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
+ case KVM_REG_ARM_DEMUX_ID_CCSIDR:
+ if (KVM_REG_SIZE(id) != 4)
+ return -ENOENT;
+ val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
+ >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
+ if (!is_valid_cache(val))
+ return -ENOENT;
+
+ return put_user(get_ccsidr(val), uval);
+ default:
+ return -ENOENT;
+ }
+}
+
+static int demux_c15_set(u64 id, void __user *uaddr)
+{
+ u32 val, newval;
+ u32 __user *uval = uaddr;
+
+ /* Fail if we have unknown bits set. */
+ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+ | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+ return -ENOENT;
+
+ switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
+ case KVM_REG_ARM_DEMUX_ID_CCSIDR:
+ if (KVM_REG_SIZE(id) != 4)
+ return -ENOENT;
+ val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
+ >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
+ if (!is_valid_cache(val))
+ return -ENOENT;
+
+ if (get_user(newval, uval))
+ return -EFAULT;
+
+ /* This is also invariant: you can't change it. */
+ if (newval != get_ccsidr(val))
+ return -EINVAL;
+ return 0;
+ default:
+ return -ENOENT;
+ }
+}
+
+#ifdef CONFIG_VFPv3
+static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
+ KVM_REG_ARM_VFP_FPSCR,
+ KVM_REG_ARM_VFP_FPINST,
+ KVM_REG_ARM_VFP_FPINST2,
+ KVM_REG_ARM_VFP_MVFR0,
+ KVM_REG_ARM_VFP_MVFR1,
+ KVM_REG_ARM_VFP_FPSID };
+
+static unsigned int num_fp_regs(void)
+{
+ if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
+ return 32;
+ else
+ return 16;
+}
+
+static unsigned int num_vfp_regs(void)
+{
+ /* Normal FP regs + control regs. */
+ return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
+}
+
+static int copy_vfp_regids(u64 __user *uindices)
+{
+ unsigned int i;
+ const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
+ const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
+
+ for (i = 0; i < num_fp_regs(); i++) {
+ if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
+ uindices))
+ return -EFAULT;
+ uindices++;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
+ if (put_user(u32reg | vfp_sysregs[i], uindices))
+ return -EFAULT;
+ uindices++;
+ }
+
+ return num_vfp_regs();
+}
+
+static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
+{
+ u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
+ u32 val;
+
+ /* Fail if we have unknown bits set. */
+ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+ | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+ return -ENOENT;
+
+ if (vfpid < num_fp_regs()) {
+ if (KVM_REG_SIZE(id) != 8)
+ return -ENOENT;
+ return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
+ id);
+ }
+
+ /* FP control registers are all 32 bit. */
+ if (KVM_REG_SIZE(id) != 4)
+ return -ENOENT;
+
+ switch (vfpid) {
+ case KVM_REG_ARM_VFP_FPEXC:
+ return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
+ case KVM_REG_ARM_VFP_FPSCR:
+ return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
+ case KVM_REG_ARM_VFP_FPINST:
+ return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
+ case KVM_REG_ARM_VFP_FPINST2:
+ return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
+ case KVM_REG_ARM_VFP_MVFR0:
+ val = fmrx(MVFR0);
+ return reg_to_user(uaddr, &val, id);
+ case KVM_REG_ARM_VFP_MVFR1:
+ val = fmrx(MVFR1);
+ return reg_to_user(uaddr, &val, id);
+ case KVM_REG_ARM_VFP_FPSID:
+ val = fmrx(FPSID);
+ return reg_to_user(uaddr, &val, id);
+ default:
+ return -ENOENT;
+ }
+}
+
+static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
+{
+ u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
+ u32 val;
+
+ /* Fail if we have unknown bits set. */
+ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+ | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+ return -ENOENT;
+
+ if (vfpid < num_fp_regs()) {
+ if (KVM_REG_SIZE(id) != 8)
+ return -ENOENT;
+ return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
+ uaddr, id);
+ }
+
+ /* FP control registers are all 32 bit. */
+ if (KVM_REG_SIZE(id) != 4)
+ return -ENOENT;
+
+ switch (vfpid) {
+ case KVM_REG_ARM_VFP_FPEXC:
+ return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
+ case KVM_REG_ARM_VFP_FPSCR:
+ return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
+ case KVM_REG_ARM_VFP_FPINST:
+ return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
+ case KVM_REG_ARM_VFP_FPINST2:
+ return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
+ /* These are invariant. */
+ case KVM_REG_ARM_VFP_MVFR0:
+ if (reg_from_user(&val, uaddr, id))
+ return -EFAULT;
+ if (val != fmrx(MVFR0))
+ return -EINVAL;
+ return 0;
+ case KVM_REG_ARM_VFP_MVFR1:
+ if (reg_from_user(&val, uaddr, id))
+ return -EFAULT;
+ if (val != fmrx(MVFR1))
+ return -EINVAL;
+ return 0;
+ case KVM_REG_ARM_VFP_FPSID:
+ if (reg_from_user(&val, uaddr, id))
+ return -EFAULT;
+ if (val != fmrx(FPSID))
+ return -EINVAL;
+ return 0;
+ default:
+ return -ENOENT;
+ }
+}
+#else /* !CONFIG_VFPv3 */
+static unsigned int num_vfp_regs(void)
+{
+ return 0;
+}
+
+static int copy_vfp_regids(u64 __user *uindices)
+{
+ return 0;
+}
+
+static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
+{
+ return -ENOENT;
+}
+
+static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
+{
+ return -ENOENT;
+}
+#endif /* !CONFIG_VFPv3 */
+
+int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ const struct coproc_reg *r;
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ int ret;
+
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
+ return demux_c15_get(reg->id, uaddr);
+
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
+ return vfp_get_reg(vcpu, reg->id, uaddr);
+
+ r = index_to_coproc_reg(vcpu, reg->id);
+ if (!r)
+ return get_invariant_cp15(reg->id, uaddr);
+
+ ret = -ENOENT;
+ if (KVM_REG_SIZE(reg->id) == 8) {
+ u64 val;
+
+ val = vcpu_cp15_reg64_get(vcpu, r);
+ ret = reg_to_user(uaddr, &val, reg->id);
+ } else if (KVM_REG_SIZE(reg->id) == 4) {
+ ret = reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
+ }
+
+ return ret;
+}
+
+int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ const struct coproc_reg *r;
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ int ret;
+
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
+ return demux_c15_set(reg->id, uaddr);
+
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
+ return vfp_set_reg(vcpu, reg->id, uaddr);
+
+ r = index_to_coproc_reg(vcpu, reg->id);
+ if (!r)
+ return set_invariant_cp15(reg->id, uaddr);
+
+ ret = -ENOENT;
+ if (KVM_REG_SIZE(reg->id) == 8) {
+ u64 val;
+
+ ret = reg_from_user(&val, uaddr, reg->id);
+ if (!ret)
+ vcpu_cp15_reg64_set(vcpu, r, val);
+ } else if (KVM_REG_SIZE(reg->id) == 4) {
+ ret = reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
+ }
+
+ return ret;
+}
+
+static unsigned int num_demux_regs(void)
+{
+ unsigned int i, count = 0;
+
+ for (i = 0; i < CSSELR_MAX; i++)
+ if (is_valid_cache(i))
+ count++;
+
+ return count;
+}
+
+static int write_demux_regids(u64 __user *uindices)
+{
+ u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
+ unsigned int i;
+
+ val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
+ for (i = 0; i < CSSELR_MAX; i++) {
+ if (!is_valid_cache(i))
+ continue;
+ if (put_user(val | i, uindices))
+ return -EFAULT;
+ uindices++;
+ }
+ return 0;
+}
+
+static u64 cp15_to_index(const struct coproc_reg *reg)
+{
+ u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
+ if (reg->is_64) {
+ val |= KVM_REG_SIZE_U64;
+ val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
+ /*
+ * CRn always denotes the primary coproc. reg. nr. for the
+ * in-kernel representation, but the user space API uses the
+ * CRm for the encoding, because it is modelled after the
+ * MRRC/MCRR instructions: see the ARM ARM rev. c page
+ * B3-1445
+ */
+ val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
+ } else {
+ val |= KVM_REG_SIZE_U32;
+ val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
+ val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
+ val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
+ val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
+ }
+ return val;
+}
+
+static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
+{
+ if (!*uind)
+ return true;
+
+ if (put_user(cp15_to_index(reg), *uind))
+ return false;
+
+ (*uind)++;
+ return true;
+}
+
+/* Assumed ordered tables, see kvm_coproc_table_init. */
+static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
+{
+ const struct coproc_reg *i1, *i2, *end1, *end2;
+ unsigned int total = 0;
+ size_t num;
+
+ /* We check for duplicates here, to allow arch-specific overrides. */
+ i1 = get_target_table(vcpu->arch.target, &num);
+ end1 = i1 + num;
+ i2 = cp15_regs;
+ end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
+
+ BUG_ON(i1 == end1 || i2 == end2);
+
+ /* Walk carefully, as both tables may refer to the same register. */
+ while (i1 || i2) {
+ int cmp = cmp_reg(i1, i2);
+ /* target-specific overrides generic entry. */
+ if (cmp <= 0) {
+ /* Ignore registers we trap but don't save. */
+ if (i1->reg) {
+ if (!copy_reg_to_user(i1, &uind))
+ return -EFAULT;
+ total++;
+ }
+ } else {
+ /* Ignore registers we trap but don't save. */
+ if (i2->reg) {
+ if (!copy_reg_to_user(i2, &uind))
+ return -EFAULT;
+ total++;
+ }
+ }
+
+ if (cmp <= 0 && ++i1 == end1)
+ i1 = NULL;
+ if (cmp >= 0 && ++i2 == end2)
+ i2 = NULL;
+ }
+ return total;
+}
+
+unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
+{
+ return ARRAY_SIZE(invariant_cp15)
+ + num_demux_regs()
+ + num_vfp_regs()
+ + walk_cp15(vcpu, (u64 __user *)NULL);
+}
+
+int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ unsigned int i;
+ int err;
+
+ /* Then give them all the invariant registers' indices. */
+ for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
+ if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
+ return -EFAULT;
+ uindices++;
+ }
+
+ err = walk_cp15(vcpu, uindices);
+ if (err < 0)
+ return err;
+ uindices += err;
+
+ err = copy_vfp_regids(uindices);
+ if (err < 0)
+ return err;
+ uindices += err;
+
+ return write_demux_regids(uindices);
+}
+
+void kvm_coproc_table_init(void)
+{
+ unsigned int i;
+
+ /* Make sure tables are unique and in order. */
+ for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
+ BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
+
+ /* We abuse the reset function to overwrite the table itself. */
+ for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
+ invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
+
+ /*
+ * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
+ *
+ * If software reads the Cache Type fields from Ctype1
+ * upwards, once it has seen a value of 0b000, no caches
+ * exist at further-out levels of the hierarchy. So, for
+ * example, if Ctype3 is the first Cache Type field with a
+ * value of 0b000, the values of Ctype4 to Ctype7 must be
+ * ignored.
+ */
+ asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
+ for (i = 0; i < 7; i++)
+ if (((cache_levels >> (i*3)) & 7) == 0)
+ break;
+ /* Clear all higher bits. */
+ cache_levels &= (1 << (i*3))-1;
+}
+
+/**
+ * kvm_reset_coprocs - sets cp15 registers to reset value
+ * @vcpu: The VCPU pointer
+ *
+ * This function finds the right table above and sets the registers on the
+ * virtual CPU struct to their architecturally defined reset values.
+ */
+void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
+{
+ size_t num;
+ const struct coproc_reg *table;
+
+ /* Catch someone adding a register without putting in reset entry. */
+ memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
+
+ /* Generic chip reset first (so target could override). */
+ reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
+
+ table = get_target_table(vcpu->arch.target, &num);
+ reset_coproc_regs(vcpu, table, num);
+
+ for (num = 1; num < NR_CP15_REGS; num++)
+ if (vcpu->arch.cp15[num] == 0x42424242)
+ panic("Didn't reset vcpu->arch.cp15[%zi]", num);
+}
diff --git a/arch/arm/kvm/coproc.h b/arch/arm/kvm/coproc.h
new file mode 100644
index 000000000..88d24a3a9
--- /dev/null
+++ b/arch/arm/kvm/coproc.h
@@ -0,0 +1,160 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Authors: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#ifndef __ARM_KVM_COPROC_LOCAL_H__
+#define __ARM_KVM_COPROC_LOCAL_H__
+
+struct coproc_params {
+ unsigned long CRn;
+ unsigned long CRm;
+ unsigned long Op1;
+ unsigned long Op2;
+ unsigned long Rt1;
+ unsigned long Rt2;
+ bool is_64bit;
+ bool is_write;
+};
+
+struct coproc_reg {
+ /* MRC/MCR/MRRC/MCRR instruction which accesses it. */
+ unsigned long CRn;
+ unsigned long CRm;
+ unsigned long Op1;
+ unsigned long Op2;
+
+ bool is_64;
+
+ /* Trapped access from guest, if non-NULL. */
+ bool (*access)(struct kvm_vcpu *,
+ const struct coproc_params *,
+ const struct coproc_reg *);
+
+ /* Initialization for vcpu. */
+ void (*reset)(struct kvm_vcpu *, const struct coproc_reg *);
+
+ /* Index into vcpu->arch.cp15[], or 0 if we don't need to save it. */
+ unsigned long reg;
+
+ /* Value (usually reset value) */
+ u64 val;
+};
+
+static inline void print_cp_instr(const struct coproc_params *p)
+{
+ /* Look, we even formatted it for you to paste into the table! */
+ if (p->is_64bit) {
+ kvm_pr_unimpl(" { CRm64(%2lu), Op1(%2lu), is64, func_%s },\n",
+ p->CRn, p->Op1, p->is_write ? "write" : "read");
+ } else {
+ kvm_pr_unimpl(" { CRn(%2lu), CRm(%2lu), Op1(%2lu), Op2(%2lu), is32,"
+ " func_%s },\n",
+ p->CRn, p->CRm, p->Op1, p->Op2,
+ p->is_write ? "write" : "read");
+ }
+}
+
+static inline bool ignore_write(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p)
+{
+ return true;
+}
+
+static inline bool read_zero(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p)
+{
+ *vcpu_reg(vcpu, p->Rt1) = 0;
+ return true;
+}
+
+static inline bool write_to_read_only(struct kvm_vcpu *vcpu,
+ const struct coproc_params *params)
+{
+ kvm_debug("CP15 write to read-only register at: %08lx\n",
+ *vcpu_pc(vcpu));
+ print_cp_instr(params);
+ return false;
+}
+
+static inline bool read_from_write_only(struct kvm_vcpu *vcpu,
+ const struct coproc_params *params)
+{
+ kvm_debug("CP15 read to write-only register at: %08lx\n",
+ *vcpu_pc(vcpu));
+ print_cp_instr(params);
+ return false;
+}
+
+/* Reset functions */
+static inline void reset_unknown(struct kvm_vcpu *vcpu,
+ const struct coproc_reg *r)
+{
+ BUG_ON(!r->reg);
+ BUG_ON(r->reg >= ARRAY_SIZE(vcpu->arch.cp15));
+ vcpu->arch.cp15[r->reg] = 0xdecafbad;
+}
+
+static inline void reset_val(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
+{
+ BUG_ON(!r->reg);
+ BUG_ON(r->reg >= ARRAY_SIZE(vcpu->arch.cp15));
+ vcpu->arch.cp15[r->reg] = r->val;
+}
+
+static inline void reset_unknown64(struct kvm_vcpu *vcpu,
+ const struct coproc_reg *r)
+{
+ BUG_ON(!r->reg);
+ BUG_ON(r->reg + 1 >= ARRAY_SIZE(vcpu->arch.cp15));
+
+ vcpu->arch.cp15[r->reg] = 0xdecafbad;
+ vcpu->arch.cp15[r->reg+1] = 0xd0c0ffee;
+}
+
+static inline int cmp_reg(const struct coproc_reg *i1,
+ const struct coproc_reg *i2)
+{
+ BUG_ON(i1 == i2);
+ if (!i1)
+ return 1;
+ else if (!i2)
+ return -1;
+ if (i1->CRn != i2->CRn)
+ return i1->CRn - i2->CRn;
+ if (i1->CRm != i2->CRm)
+ return i1->CRm - i2->CRm;
+ if (i1->Op1 != i2->Op1)
+ return i1->Op1 - i2->Op1;
+ if (i1->Op2 != i2->Op2)
+ return i1->Op2 - i2->Op2;
+ return i2->is_64 - i1->is_64;
+}
+
+
+#define CRn(_x) .CRn = _x
+#define CRm(_x) .CRm = _x
+#define CRm64(_x) .CRn = _x, .CRm = 0
+#define Op1(_x) .Op1 = _x
+#define Op2(_x) .Op2 = _x
+#define is64 .is_64 = true
+#define is32 .is_64 = false
+
+bool access_vm_reg(struct kvm_vcpu *vcpu,
+ const struct coproc_params *p,
+ const struct coproc_reg *r);
+
+#endif /* __ARM_KVM_COPROC_LOCAL_H__ */
diff --git a/arch/arm/kvm/coproc_a15.c b/arch/arm/kvm/coproc_a15.c
new file mode 100644
index 000000000..a7136757d
--- /dev/null
+++ b/arch/arm/kvm/coproc_a15.c
@@ -0,0 +1,51 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Authors: Rusty Russell <rusty@rustcorp.au>
+ * Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+#include <linux/kvm_host.h>
+#include <asm/kvm_coproc.h>
+#include <asm/kvm_emulate.h>
+#include <linux/init.h>
+
+#include "coproc.h"
+
+/*
+ * A15-specific CP15 registers.
+ * CRn denotes the primary register number, but is copied to the CRm in the
+ * user space API for 64-bit register access in line with the terminology used
+ * in the ARM ARM.
+ * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
+ * registers preceding 32-bit ones.
+ */
+static const struct coproc_reg a15_regs[] = {
+ /* SCTLR: swapped by interrupt.S. */
+ { CRn( 1), CRm( 0), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_val, c1_SCTLR, 0x00C50078 },
+};
+
+static struct kvm_coproc_target_table a15_target_table = {
+ .target = KVM_ARM_TARGET_CORTEX_A15,
+ .table = a15_regs,
+ .num = ARRAY_SIZE(a15_regs),
+};
+
+static int __init coproc_a15_init(void)
+{
+ kvm_register_target_coproc_table(&a15_target_table);
+ return 0;
+}
+late_initcall(coproc_a15_init);
diff --git a/arch/arm/kvm/coproc_a7.c b/arch/arm/kvm/coproc_a7.c
new file mode 100644
index 000000000..b19e46d1b
--- /dev/null
+++ b/arch/arm/kvm/coproc_a7.c
@@ -0,0 +1,54 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Copyright (C) 2013 - ARM Ltd
+ *
+ * Authors: Rusty Russell <rusty@rustcorp.au>
+ * Christoffer Dall <c.dall@virtualopensystems.com>
+ * Jonathan Austin <jonathan.austin@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+#include <linux/kvm_host.h>
+#include <asm/kvm_coproc.h>
+#include <asm/kvm_emulate.h>
+#include <linux/init.h>
+
+#include "coproc.h"
+
+/*
+ * Cortex-A7 specific CP15 registers.
+ * CRn denotes the primary register number, but is copied to the CRm in the
+ * user space API for 64-bit register access in line with the terminology used
+ * in the ARM ARM.
+ * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
+ * registers preceding 32-bit ones.
+ */
+static const struct coproc_reg a7_regs[] = {
+ /* SCTLR: swapped by interrupt.S. */
+ { CRn( 1), CRm( 0), Op1( 0), Op2( 0), is32,
+ access_vm_reg, reset_val, c1_SCTLR, 0x00C50878 },
+};
+
+static struct kvm_coproc_target_table a7_target_table = {
+ .target = KVM_ARM_TARGET_CORTEX_A7,
+ .table = a7_regs,
+ .num = ARRAY_SIZE(a7_regs),
+};
+
+static int __init coproc_a7_init(void)
+{
+ kvm_register_target_coproc_table(&a7_target_table);
+ return 0;
+}
+late_initcall(coproc_a7_init);
diff --git a/arch/arm/kvm/emulate.c b/arch/arm/kvm/emulate.c
new file mode 100644
index 000000000..d6c005283
--- /dev/null
+++ b/arch/arm/kvm/emulate.c
@@ -0,0 +1,402 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/mm.h>
+#include <linux/kvm_host.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/opcodes.h>
+#include <trace/events/kvm.h>
+
+#include "trace.h"
+
+#define VCPU_NR_MODES 6
+#define VCPU_REG_OFFSET_USR 0
+#define VCPU_REG_OFFSET_FIQ 1
+#define VCPU_REG_OFFSET_IRQ 2
+#define VCPU_REG_OFFSET_SVC 3
+#define VCPU_REG_OFFSET_ABT 4
+#define VCPU_REG_OFFSET_UND 5
+#define REG_OFFSET(_reg) \
+ (offsetof(struct kvm_regs, _reg) / sizeof(u32))
+
+#define USR_REG_OFFSET(_num) REG_OFFSET(usr_regs.uregs[_num])
+
+static const unsigned long vcpu_reg_offsets[VCPU_NR_MODES][15] = {
+ /* USR/SYS Registers */
+ [VCPU_REG_OFFSET_USR] = {
+ USR_REG_OFFSET(0), USR_REG_OFFSET(1), USR_REG_OFFSET(2),
+ USR_REG_OFFSET(3), USR_REG_OFFSET(4), USR_REG_OFFSET(5),
+ USR_REG_OFFSET(6), USR_REG_OFFSET(7), USR_REG_OFFSET(8),
+ USR_REG_OFFSET(9), USR_REG_OFFSET(10), USR_REG_OFFSET(11),
+ USR_REG_OFFSET(12), USR_REG_OFFSET(13), USR_REG_OFFSET(14),
+ },
+
+ /* FIQ Registers */
+ [VCPU_REG_OFFSET_FIQ] = {
+ USR_REG_OFFSET(0), USR_REG_OFFSET(1), USR_REG_OFFSET(2),
+ USR_REG_OFFSET(3), USR_REG_OFFSET(4), USR_REG_OFFSET(5),
+ USR_REG_OFFSET(6), USR_REG_OFFSET(7),
+ REG_OFFSET(fiq_regs[0]), /* r8 */
+ REG_OFFSET(fiq_regs[1]), /* r9 */
+ REG_OFFSET(fiq_regs[2]), /* r10 */
+ REG_OFFSET(fiq_regs[3]), /* r11 */
+ REG_OFFSET(fiq_regs[4]), /* r12 */
+ REG_OFFSET(fiq_regs[5]), /* r13 */
+ REG_OFFSET(fiq_regs[6]), /* r14 */
+ },
+
+ /* IRQ Registers */
+ [VCPU_REG_OFFSET_IRQ] = {
+ USR_REG_OFFSET(0), USR_REG_OFFSET(1), USR_REG_OFFSET(2),
+ USR_REG_OFFSET(3), USR_REG_OFFSET(4), USR_REG_OFFSET(5),
+ USR_REG_OFFSET(6), USR_REG_OFFSET(7), USR_REG_OFFSET(8),
+ USR_REG_OFFSET(9), USR_REG_OFFSET(10), USR_REG_OFFSET(11),
+ USR_REG_OFFSET(12),
+ REG_OFFSET(irq_regs[0]), /* r13 */
+ REG_OFFSET(irq_regs[1]), /* r14 */
+ },
+
+ /* SVC Registers */
+ [VCPU_REG_OFFSET_SVC] = {
+ USR_REG_OFFSET(0), USR_REG_OFFSET(1), USR_REG_OFFSET(2),
+ USR_REG_OFFSET(3), USR_REG_OFFSET(4), USR_REG_OFFSET(5),
+ USR_REG_OFFSET(6), USR_REG_OFFSET(7), USR_REG_OFFSET(8),
+ USR_REG_OFFSET(9), USR_REG_OFFSET(10), USR_REG_OFFSET(11),
+ USR_REG_OFFSET(12),
+ REG_OFFSET(svc_regs[0]), /* r13 */
+ REG_OFFSET(svc_regs[1]), /* r14 */
+ },
+
+ /* ABT Registers */
+ [VCPU_REG_OFFSET_ABT] = {
+ USR_REG_OFFSET(0), USR_REG_OFFSET(1), USR_REG_OFFSET(2),
+ USR_REG_OFFSET(3), USR_REG_OFFSET(4), USR_REG_OFFSET(5),
+ USR_REG_OFFSET(6), USR_REG_OFFSET(7), USR_REG_OFFSET(8),
+ USR_REG_OFFSET(9), USR_REG_OFFSET(10), USR_REG_OFFSET(11),
+ USR_REG_OFFSET(12),
+ REG_OFFSET(abt_regs[0]), /* r13 */
+ REG_OFFSET(abt_regs[1]), /* r14 */
+ },
+
+ /* UND Registers */
+ [VCPU_REG_OFFSET_UND] = {
+ USR_REG_OFFSET(0), USR_REG_OFFSET(1), USR_REG_OFFSET(2),
+ USR_REG_OFFSET(3), USR_REG_OFFSET(4), USR_REG_OFFSET(5),
+ USR_REG_OFFSET(6), USR_REG_OFFSET(7), USR_REG_OFFSET(8),
+ USR_REG_OFFSET(9), USR_REG_OFFSET(10), USR_REG_OFFSET(11),
+ USR_REG_OFFSET(12),
+ REG_OFFSET(und_regs[0]), /* r13 */
+ REG_OFFSET(und_regs[1]), /* r14 */
+ },
+};
+
+/*
+ * Return a pointer to the register number valid in the current mode of
+ * the virtual CPU.
+ */
+unsigned long *vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num)
+{
+ unsigned long *reg_array = (unsigned long *)&vcpu->arch.regs;
+ unsigned long mode = *vcpu_cpsr(vcpu) & MODE_MASK;
+
+ switch (mode) {
+ case USR_MODE...SVC_MODE:
+ mode &= ~MODE32_BIT; /* 0 ... 3 */
+ break;
+
+ case ABT_MODE:
+ mode = VCPU_REG_OFFSET_ABT;
+ break;
+
+ case UND_MODE:
+ mode = VCPU_REG_OFFSET_UND;
+ break;
+
+ case SYSTEM_MODE:
+ mode = VCPU_REG_OFFSET_USR;
+ break;
+
+ default:
+ BUG();
+ }
+
+ return reg_array + vcpu_reg_offsets[mode][reg_num];
+}
+
+/*
+ * Return the SPSR for the current mode of the virtual CPU.
+ */
+unsigned long *vcpu_spsr(struct kvm_vcpu *vcpu)
+{
+ unsigned long mode = *vcpu_cpsr(vcpu) & MODE_MASK;
+ switch (mode) {
+ case SVC_MODE:
+ return &vcpu->arch.regs.KVM_ARM_SVC_spsr;
+ case ABT_MODE:
+ return &vcpu->arch.regs.KVM_ARM_ABT_spsr;
+ case UND_MODE:
+ return &vcpu->arch.regs.KVM_ARM_UND_spsr;
+ case IRQ_MODE:
+ return &vcpu->arch.regs.KVM_ARM_IRQ_spsr;
+ case FIQ_MODE:
+ return &vcpu->arch.regs.KVM_ARM_FIQ_spsr;
+ default:
+ BUG();
+ }
+}
+
+/*
+ * A conditional instruction is allowed to trap, even though it
+ * wouldn't be executed. So let's re-implement the hardware, in
+ * software!
+ */
+bool kvm_condition_valid(struct kvm_vcpu *vcpu)
+{
+ unsigned long cpsr, cond, insn;
+
+ /*
+ * Exception Code 0 can only happen if we set HCR.TGE to 1, to
+ * catch undefined instructions, and then we won't get past
+ * the arm_exit_handlers test anyway.
+ */
+ BUG_ON(!kvm_vcpu_trap_get_class(vcpu));
+
+ /* Top two bits non-zero? Unconditional. */
+ if (kvm_vcpu_get_hsr(vcpu) >> 30)
+ return true;
+
+ cpsr = *vcpu_cpsr(vcpu);
+
+ /* Is condition field valid? */
+ if ((kvm_vcpu_get_hsr(vcpu) & HSR_CV) >> HSR_CV_SHIFT)
+ cond = (kvm_vcpu_get_hsr(vcpu) & HSR_COND) >> HSR_COND_SHIFT;
+ else {
+ /* This can happen in Thumb mode: examine IT state. */
+ unsigned long it;
+
+ it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
+
+ /* it == 0 => unconditional. */
+ if (it == 0)
+ return true;
+
+ /* The cond for this insn works out as the top 4 bits. */
+ cond = (it >> 4);
+ }
+
+ /* Shift makes it look like an ARM-mode instruction */
+ insn = cond << 28;
+ return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
+}
+
+/**
+ * adjust_itstate - adjust ITSTATE when emulating instructions in IT-block
+ * @vcpu: The VCPU pointer
+ *
+ * When exceptions occur while instructions are executed in Thumb IF-THEN
+ * blocks, the ITSTATE field of the CPSR is not advanved (updated), so we have
+ * to do this little bit of work manually. The fields map like this:
+ *
+ * IT[7:0] -> CPSR[26:25],CPSR[15:10]
+ */
+static void kvm_adjust_itstate(struct kvm_vcpu *vcpu)
+{
+ unsigned long itbits, cond;
+ unsigned long cpsr = *vcpu_cpsr(vcpu);
+ bool is_arm = !(cpsr & PSR_T_BIT);
+
+ BUG_ON(is_arm && (cpsr & PSR_IT_MASK));
+
+ if (!(cpsr & PSR_IT_MASK))
+ return;
+
+ cond = (cpsr & 0xe000) >> 13;
+ itbits = (cpsr & 0x1c00) >> (10 - 2);
+ itbits |= (cpsr & (0x3 << 25)) >> 25;
+
+ /* Perform ITAdvance (see page A-52 in ARM DDI 0406C) */
+ if ((itbits & 0x7) == 0)
+ itbits = cond = 0;
+ else
+ itbits = (itbits << 1) & 0x1f;
+
+ cpsr &= ~PSR_IT_MASK;
+ cpsr |= cond << 13;
+ cpsr |= (itbits & 0x1c) << (10 - 2);
+ cpsr |= (itbits & 0x3) << 25;
+ *vcpu_cpsr(vcpu) = cpsr;
+}
+
+/**
+ * kvm_skip_instr - skip a trapped instruction and proceed to the next
+ * @vcpu: The vcpu pointer
+ */
+void kvm_skip_instr(struct kvm_vcpu *vcpu, bool is_wide_instr)
+{
+ bool is_thumb;
+
+ is_thumb = !!(*vcpu_cpsr(vcpu) & PSR_T_BIT);
+ if (is_thumb && !is_wide_instr)
+ *vcpu_pc(vcpu) += 2;
+ else
+ *vcpu_pc(vcpu) += 4;
+ kvm_adjust_itstate(vcpu);
+}
+
+
+/******************************************************************************
+ * Inject exceptions into the guest
+ */
+
+static u32 exc_vector_base(struct kvm_vcpu *vcpu)
+{
+ u32 sctlr = vcpu->arch.cp15[c1_SCTLR];
+ u32 vbar = vcpu->arch.cp15[c12_VBAR];
+
+ if (sctlr & SCTLR_V)
+ return 0xffff0000;
+ else /* always have security exceptions */
+ return vbar;
+}
+
+/**
+ * kvm_inject_undefined - inject an undefined exception into the guest
+ * @vcpu: The VCPU to receive the undefined exception
+ *
+ * It is assumed that this code is called from the VCPU thread and that the
+ * VCPU therefore is not currently executing guest code.
+ *
+ * Modelled after TakeUndefInstrException() pseudocode.
+ */
+void kvm_inject_undefined(struct kvm_vcpu *vcpu)
+{
+ unsigned long new_lr_value;
+ unsigned long new_spsr_value;
+ unsigned long cpsr = *vcpu_cpsr(vcpu);
+ u32 sctlr = vcpu->arch.cp15[c1_SCTLR];
+ bool is_thumb = (cpsr & PSR_T_BIT);
+ u32 vect_offset = 4;
+ u32 return_offset = (is_thumb) ? 2 : 4;
+
+ new_spsr_value = cpsr;
+ new_lr_value = *vcpu_pc(vcpu) - return_offset;
+
+ *vcpu_cpsr(vcpu) = (cpsr & ~MODE_MASK) | UND_MODE;
+ *vcpu_cpsr(vcpu) |= PSR_I_BIT;
+ *vcpu_cpsr(vcpu) &= ~(PSR_IT_MASK | PSR_J_BIT | PSR_E_BIT | PSR_T_BIT);
+
+ if (sctlr & SCTLR_TE)
+ *vcpu_cpsr(vcpu) |= PSR_T_BIT;
+ if (sctlr & SCTLR_EE)
+ *vcpu_cpsr(vcpu) |= PSR_E_BIT;
+
+ /* Note: These now point to UND banked copies */
+ *vcpu_spsr(vcpu) = cpsr;
+ *vcpu_reg(vcpu, 14) = new_lr_value;
+
+ /* Branch to exception vector */
+ *vcpu_pc(vcpu) = exc_vector_base(vcpu) + vect_offset;
+}
+
+/*
+ * Modelled after TakeDataAbortException() and TakePrefetchAbortException
+ * pseudocode.
+ */
+static void inject_abt(struct kvm_vcpu *vcpu, bool is_pabt, unsigned long addr)
+{
+ unsigned long new_lr_value;
+ unsigned long new_spsr_value;
+ unsigned long cpsr = *vcpu_cpsr(vcpu);
+ u32 sctlr = vcpu->arch.cp15[c1_SCTLR];
+ bool is_thumb = (cpsr & PSR_T_BIT);
+ u32 vect_offset;
+ u32 return_offset = (is_thumb) ? 4 : 0;
+ bool is_lpae;
+
+ new_spsr_value = cpsr;
+ new_lr_value = *vcpu_pc(vcpu) + return_offset;
+
+ *vcpu_cpsr(vcpu) = (cpsr & ~MODE_MASK) | ABT_MODE;
+ *vcpu_cpsr(vcpu) |= PSR_I_BIT | PSR_A_BIT;
+ *vcpu_cpsr(vcpu) &= ~(PSR_IT_MASK | PSR_J_BIT | PSR_E_BIT | PSR_T_BIT);
+
+ if (sctlr & SCTLR_TE)
+ *vcpu_cpsr(vcpu) |= PSR_T_BIT;
+ if (sctlr & SCTLR_EE)
+ *vcpu_cpsr(vcpu) |= PSR_E_BIT;
+
+ /* Note: These now point to ABT banked copies */
+ *vcpu_spsr(vcpu) = cpsr;
+ *vcpu_reg(vcpu, 14) = new_lr_value;
+
+ if (is_pabt)
+ vect_offset = 12;
+ else
+ vect_offset = 16;
+
+ /* Branch to exception vector */
+ *vcpu_pc(vcpu) = exc_vector_base(vcpu) + vect_offset;
+
+ if (is_pabt) {
+ /* Set IFAR and IFSR */
+ vcpu->arch.cp15[c6_IFAR] = addr;
+ is_lpae = (vcpu->arch.cp15[c2_TTBCR] >> 31);
+ /* Always give debug fault for now - should give guest a clue */
+ if (is_lpae)
+ vcpu->arch.cp15[c5_IFSR] = 1 << 9 | 0x22;
+ else
+ vcpu->arch.cp15[c5_IFSR] = 2;
+ } else { /* !iabt */
+ /* Set DFAR and DFSR */
+ vcpu->arch.cp15[c6_DFAR] = addr;
+ is_lpae = (vcpu->arch.cp15[c2_TTBCR] >> 31);
+ /* Always give debug fault for now - should give guest a clue */
+ if (is_lpae)
+ vcpu->arch.cp15[c5_DFSR] = 1 << 9 | 0x22;
+ else
+ vcpu->arch.cp15[c5_DFSR] = 2;
+ }
+
+}
+
+/**
+ * kvm_inject_dabt - inject a data abort into the guest
+ * @vcpu: The VCPU to receive the undefined exception
+ * @addr: The address to report in the DFAR
+ *
+ * It is assumed that this code is called from the VCPU thread and that the
+ * VCPU therefore is not currently executing guest code.
+ */
+void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
+{
+ inject_abt(vcpu, false, addr);
+}
+
+/**
+ * kvm_inject_pabt - inject a prefetch abort into the guest
+ * @vcpu: The VCPU to receive the undefined exception
+ * @addr: The address to report in the DFAR
+ *
+ * It is assumed that this code is called from the VCPU thread and that the
+ * VCPU therefore is not currently executing guest code.
+ */
+void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr)
+{
+ inject_abt(vcpu, true, addr);
+}
diff --git a/arch/arm/kvm/guest.c b/arch/arm/kvm/guest.c
new file mode 100644
index 000000000..d503fbb78
--- /dev/null
+++ b/arch/arm/kvm/guest.c
@@ -0,0 +1,292 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+#include <asm/cputype.h>
+#include <asm/uaccess.h>
+#include <asm/kvm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_coproc.h>
+
+#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
+#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
+
+struct kvm_stats_debugfs_item debugfs_entries[] = {
+ { NULL }
+};
+
+int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
+{
+ return 0;
+}
+
+static u64 core_reg_offset_from_id(u64 id)
+{
+ return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
+}
+
+static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ u32 __user *uaddr = (u32 __user *)(long)reg->addr;
+ struct kvm_regs *regs = &vcpu->arch.regs;
+ u64 off;
+
+ if (KVM_REG_SIZE(reg->id) != 4)
+ return -ENOENT;
+
+ /* Our ID is an index into the kvm_regs struct. */
+ off = core_reg_offset_from_id(reg->id);
+ if (off >= sizeof(*regs) / KVM_REG_SIZE(reg->id))
+ return -ENOENT;
+
+ return put_user(((u32 *)regs)[off], uaddr);
+}
+
+static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ u32 __user *uaddr = (u32 __user *)(long)reg->addr;
+ struct kvm_regs *regs = &vcpu->arch.regs;
+ u64 off, val;
+
+ if (KVM_REG_SIZE(reg->id) != 4)
+ return -ENOENT;
+
+ /* Our ID is an index into the kvm_regs struct. */
+ off = core_reg_offset_from_id(reg->id);
+ if (off >= sizeof(*regs) / KVM_REG_SIZE(reg->id))
+ return -ENOENT;
+
+ if (get_user(val, uaddr) != 0)
+ return -EFAULT;
+
+ if (off == KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr)) {
+ unsigned long mode = val & MODE_MASK;
+ switch (mode) {
+ case USR_MODE:
+ case FIQ_MODE:
+ case IRQ_MODE:
+ case SVC_MODE:
+ case ABT_MODE:
+ case UND_MODE:
+ break;
+ default:
+ return -EINVAL;
+ }
+ }
+
+ ((u32 *)regs)[off] = val;
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ return -EINVAL;
+}
+
+#define NUM_TIMER_REGS 3
+
+static bool is_timer_reg(u64 index)
+{
+ switch (index) {
+ case KVM_REG_ARM_TIMER_CTL:
+ case KVM_REG_ARM_TIMER_CNT:
+ case KVM_REG_ARM_TIMER_CVAL:
+ return true;
+ }
+ return false;
+}
+
+static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
+ return -EFAULT;
+ uindices++;
+ if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
+ return -EFAULT;
+ uindices++;
+ if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ u64 val;
+ int ret;
+
+ ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
+ if (ret != 0)
+ return -EFAULT;
+
+ return kvm_arm_timer_set_reg(vcpu, reg->id, val);
+}
+
+static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ u64 val;
+
+ val = kvm_arm_timer_get_reg(vcpu, reg->id);
+ return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id));
+}
+
+static unsigned long num_core_regs(void)
+{
+ return sizeof(struct kvm_regs) / sizeof(u32);
+}
+
+/**
+ * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
+ *
+ * This is for all registers.
+ */
+unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
+{
+ return num_core_regs() + kvm_arm_num_coproc_regs(vcpu)
+ + NUM_TIMER_REGS;
+}
+
+/**
+ * kvm_arm_copy_reg_indices - get indices of all registers.
+ *
+ * We do core registers right here, then we apppend coproc regs.
+ */
+int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ unsigned int i;
+ const u64 core_reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE;
+ int ret;
+
+ for (i = 0; i < sizeof(struct kvm_regs)/sizeof(u32); i++) {
+ if (put_user(core_reg | i, uindices))
+ return -EFAULT;
+ uindices++;
+ }
+
+ ret = copy_timer_indices(vcpu, uindices);
+ if (ret)
+ return ret;
+ uindices += NUM_TIMER_REGS;
+
+ return kvm_arm_copy_coproc_indices(vcpu, uindices);
+}
+
+int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ /* We currently use nothing arch-specific in upper 32 bits */
+ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM >> 32)
+ return -EINVAL;
+
+ /* Register group 16 means we want a core register. */
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
+ return get_core_reg(vcpu, reg);
+
+ if (is_timer_reg(reg->id))
+ return get_timer_reg(vcpu, reg);
+
+ return kvm_arm_coproc_get_reg(vcpu, reg);
+}
+
+int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ /* We currently use nothing arch-specific in upper 32 bits */
+ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM >> 32)
+ return -EINVAL;
+
+ /* Register group 16 means we set a core register. */
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
+ return set_core_reg(vcpu, reg);
+
+ if (is_timer_reg(reg->id))
+ return set_timer_reg(vcpu, reg);
+
+ return kvm_arm_coproc_set_reg(vcpu, reg);
+}
+
+int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ return -EINVAL;
+}
+
+int __attribute_const__ kvm_target_cpu(void)
+{
+ switch (read_cpuid_part()) {
+ case ARM_CPU_PART_CORTEX_A7:
+ return KVM_ARM_TARGET_CORTEX_A7;
+ case ARM_CPU_PART_CORTEX_A15:
+ return KVM_ARM_TARGET_CORTEX_A15;
+ default:
+ return -EINVAL;
+ }
+}
+
+int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
+{
+ int target = kvm_target_cpu();
+
+ if (target < 0)
+ return -ENODEV;
+
+ memset(init, 0, sizeof(*init));
+
+ /*
+ * For now, we don't return any features.
+ * In future, we might use features to return target
+ * specific features available for the preferred
+ * target type.
+ */
+ init->target = (__u32)target;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
+ struct kvm_translation *tr)
+{
+ return -EINVAL;
+}
diff --git a/arch/arm/kvm/handle_exit.c b/arch/arm/kvm/handle_exit.c
new file mode 100644
index 000000000..95f12b2cc
--- /dev/null
+++ b/arch/arm/kvm/handle_exit.c
@@ -0,0 +1,173 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_coproc.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_psci.h>
+#include <trace/events/kvm.h>
+
+#include "trace.h"
+
+typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
+
+static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ /* SVC called from Hyp mode should never get here */
+ kvm_debug("SVC called from Hyp mode shouldn't go here\n");
+ BUG();
+ return -EINVAL; /* Squash warning */
+}
+
+static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ int ret;
+
+ trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
+ kvm_vcpu_hvc_get_imm(vcpu));
+
+ ret = kvm_psci_call(vcpu);
+ if (ret < 0) {
+ kvm_inject_undefined(vcpu);
+ return 1;
+ }
+
+ return ret;
+}
+
+static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ /* The hypervisor should never cause aborts */
+ kvm_err("Prefetch Abort taken from Hyp mode at %#08lx (HSR: %#08x)\n",
+ kvm_vcpu_get_hfar(vcpu), kvm_vcpu_get_hsr(vcpu));
+ return -EFAULT;
+}
+
+static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ /* This is either an error in the ws. code or an external abort */
+ kvm_err("Data Abort taken from Hyp mode at %#08lx (HSR: %#08x)\n",
+ kvm_vcpu_get_hfar(vcpu), kvm_vcpu_get_hsr(vcpu));
+ return -EFAULT;
+}
+
+/**
+ * kvm_handle_wfx - handle a WFI or WFE instructions trapped in guests
+ * @vcpu: the vcpu pointer
+ * @run: the kvm_run structure pointer
+ *
+ * WFE: Yield the CPU and come back to this vcpu when the scheduler
+ * decides to.
+ * WFI: Simply call kvm_vcpu_block(), which will halt execution of
+ * world-switches and schedule other host processes until there is an
+ * incoming IRQ or FIQ to the VM.
+ */
+static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ if (kvm_vcpu_get_hsr(vcpu) & HSR_WFI_IS_WFE) {
+ trace_kvm_wfx(*vcpu_pc(vcpu), true);
+ kvm_vcpu_on_spin(vcpu);
+ } else {
+ trace_kvm_wfx(*vcpu_pc(vcpu), false);
+ kvm_vcpu_block(vcpu);
+ }
+
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+
+ return 1;
+}
+
+static exit_handle_fn arm_exit_handlers[] = {
+ [HSR_EC_WFI] = kvm_handle_wfx,
+ [HSR_EC_CP15_32] = kvm_handle_cp15_32,
+ [HSR_EC_CP15_64] = kvm_handle_cp15_64,
+ [HSR_EC_CP14_MR] = kvm_handle_cp14_access,
+ [HSR_EC_CP14_LS] = kvm_handle_cp14_load_store,
+ [HSR_EC_CP14_64] = kvm_handle_cp14_access,
+ [HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access,
+ [HSR_EC_CP10_ID] = kvm_handle_cp10_id,
+ [HSR_EC_SVC_HYP] = handle_svc_hyp,
+ [HSR_EC_HVC] = handle_hvc,
+ [HSR_EC_SMC] = handle_smc,
+ [HSR_EC_IABT] = kvm_handle_guest_abort,
+ [HSR_EC_IABT_HYP] = handle_pabt_hyp,
+ [HSR_EC_DABT] = kvm_handle_guest_abort,
+ [HSR_EC_DABT_HYP] = handle_dabt_hyp,
+};
+
+static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
+{
+ u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
+
+ if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers) ||
+ !arm_exit_handlers[hsr_ec]) {
+ kvm_err("Unknown exception class: hsr: %#08x\n",
+ (unsigned int)kvm_vcpu_get_hsr(vcpu));
+ BUG();
+ }
+
+ return arm_exit_handlers[hsr_ec];
+}
+
+/*
+ * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
+ * proper exit to userspace.
+ */
+int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ int exception_index)
+{
+ exit_handle_fn exit_handler;
+
+ switch (exception_index) {
+ case ARM_EXCEPTION_IRQ:
+ return 1;
+ case ARM_EXCEPTION_UNDEFINED:
+ kvm_err("Undefined exception in Hyp mode at: %#08lx\n",
+ kvm_vcpu_get_hyp_pc(vcpu));
+ BUG();
+ panic("KVM: Hypervisor undefined exception!\n");
+ case ARM_EXCEPTION_DATA_ABORT:
+ case ARM_EXCEPTION_PREF_ABORT:
+ case ARM_EXCEPTION_HVC:
+ /*
+ * See ARM ARM B1.14.1: "Hyp traps on instructions
+ * that fail their condition code check"
+ */
+ if (!kvm_condition_valid(vcpu)) {
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+ return 1;
+ }
+
+ exit_handler = kvm_get_exit_handler(vcpu);
+
+ return exit_handler(vcpu, run);
+ default:
+ kvm_pr_unimpl("Unsupported exception type: %d",
+ exception_index);
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return 0;
+ }
+}
diff --git a/arch/arm/kvm/init.S b/arch/arm/kvm/init.S
new file mode 100644
index 000000000..3988e72d1
--- /dev/null
+++ b/arch/arm/kvm/init.S
@@ -0,0 +1,159 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/linkage.h>
+#include <asm/assembler.h>
+#include <asm/unified.h>
+#include <asm/asm-offsets.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+
+/********************************************************************
+ * Hypervisor initialization
+ * - should be called with:
+ * r0 = top of Hyp stack (kernel VA)
+ * r1 = pointer to hyp vectors
+ * r2,r3 = Hypervisor pgd pointer
+ *
+ * The init scenario is:
+ * - We jump in HYP with four parameters: boot HYP pgd, runtime HYP pgd,
+ * runtime stack, runtime vectors
+ * - Enable the MMU with the boot pgd
+ * - Jump to a target into the trampoline page (remember, this is the same
+ * physical page!)
+ * - Now switch to the runtime pgd (same VA, and still the same physical
+ * page!)
+ * - Invalidate TLBs
+ * - Set stack and vectors
+ * - Profit! (or eret, if you only care about the code).
+ *
+ * As we only have four registers available to pass parameters (and we
+ * need six), we split the init in two phases:
+ * - Phase 1: r0 = 0, r1 = 0, r2,r3 contain the boot PGD.
+ * Provides the basic HYP init, and enable the MMU.
+ * - Phase 2: r0 = ToS, r1 = vectors, r2,r3 contain the runtime PGD.
+ * Switches to the runtime PGD, set stack and vectors.
+ */
+
+ .text
+ .pushsection .hyp.idmap.text,"ax"
+ .align 5
+__kvm_hyp_init:
+ .globl __kvm_hyp_init
+
+ @ Hyp-mode exception vector
+ W(b) .
+ W(b) .
+ W(b) .
+ W(b) .
+ W(b) .
+ W(b) __do_hyp_init
+ W(b) .
+ W(b) .
+
+__do_hyp_init:
+ cmp r0, #0 @ We have a SP?
+ bne phase2 @ Yes, second stage init
+
+ @ Set the HTTBR to point to the hypervisor PGD pointer passed
+ mcrr p15, 4, rr_lo_hi(r2, r3), c2
+
+ @ Set the HTCR and VTCR to the same shareability and cacheability
+ @ settings as the non-secure TTBCR and with T0SZ == 0.
+ mrc p15, 4, r0, c2, c0, 2 @ HTCR
+ ldr r2, =HTCR_MASK
+ bic r0, r0, r2
+ mrc p15, 0, r1, c2, c0, 2 @ TTBCR
+ and r1, r1, #(HTCR_MASK & ~TTBCR_T0SZ)
+ orr r0, r0, r1
+ mcr p15, 4, r0, c2, c0, 2 @ HTCR
+
+ mrc p15, 4, r1, c2, c1, 2 @ VTCR
+ ldr r2, =VTCR_MASK
+ bic r1, r1, r2
+ bic r0, r0, #(~VTCR_HTCR_SH) @ clear non-reusable HTCR bits
+ orr r1, r0, r1
+ orr r1, r1, #(KVM_VTCR_SL0 | KVM_VTCR_T0SZ | KVM_VTCR_S)
+ mcr p15, 4, r1, c2, c1, 2 @ VTCR
+
+ @ Use the same memory attributes for hyp. accesses as the kernel
+ @ (copy MAIRx ro HMAIRx).
+ mrc p15, 0, r0, c10, c2, 0
+ mcr p15, 4, r0, c10, c2, 0
+ mrc p15, 0, r0, c10, c2, 1
+ mcr p15, 4, r0, c10, c2, 1
+
+ @ Invalidate the stale TLBs from Bootloader
+ mcr p15, 4, r0, c8, c7, 0 @ TLBIALLH
+ dsb ish
+
+ @ Set the HSCTLR to:
+ @ - ARM/THUMB exceptions: Kernel config (Thumb-2 kernel)
+ @ - Endianness: Kernel config
+ @ - Fast Interrupt Features: Kernel config
+ @ - Write permission implies XN: disabled
+ @ - Instruction cache: enabled
+ @ - Data/Unified cache: enabled
+ @ - Memory alignment checks: enabled
+ @ - MMU: enabled (this code must be run from an identity mapping)
+ mrc p15, 4, r0, c1, c0, 0 @ HSCR
+ ldr r2, =HSCTLR_MASK
+ bic r0, r0, r2
+ mrc p15, 0, r1, c1, c0, 0 @ SCTLR
+ ldr r2, =(HSCTLR_EE | HSCTLR_FI | HSCTLR_I | HSCTLR_C)
+ and r1, r1, r2
+ ARM( ldr r2, =(HSCTLR_M | HSCTLR_A) )
+ THUMB( ldr r2, =(HSCTLR_M | HSCTLR_A | HSCTLR_TE) )
+ orr r1, r1, r2
+ orr r0, r0, r1
+ isb
+ mcr p15, 4, r0, c1, c0, 0 @ HSCR
+
+ @ End of init phase-1
+ eret
+
+phase2:
+ @ Set stack pointer
+ mov sp, r0
+
+ @ Set HVBAR to point to the HYP vectors
+ mcr p15, 4, r1, c12, c0, 0 @ HVBAR
+
+ @ Jump to the trampoline page
+ ldr r0, =TRAMPOLINE_VA
+ adr r1, target
+ bfi r0, r1, #0, #PAGE_SHIFT
+ ret r0
+
+target: @ We're now in the trampoline code, switch page tables
+ mcrr p15, 4, rr_lo_hi(r2, r3), c2
+ isb
+
+ @ Invalidate the old TLBs
+ mcr p15, 4, r0, c8, c7, 0 @ TLBIALLH
+ dsb ish
+
+ eret
+
+ .ltorg
+
+ .globl __kvm_hyp_init_end
+__kvm_hyp_init_end:
+
+ .popsection
diff --git a/arch/arm/kvm/interrupts.S b/arch/arm/kvm/interrupts.S
new file mode 100644
index 000000000..f7db3a5d8
--- /dev/null
+++ b/arch/arm/kvm/interrupts.S
@@ -0,0 +1,524 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/linkage.h>
+#include <linux/const.h>
+#include <asm/unified.h>
+#include <asm/page.h>
+#include <asm/ptrace.h>
+#include <asm/asm-offsets.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_arm.h>
+#include <asm/vfpmacros.h>
+#include "interrupts_head.S"
+
+ .text
+
+__kvm_hyp_code_start:
+ .globl __kvm_hyp_code_start
+
+/********************************************************************
+ * Flush per-VMID TLBs
+ *
+ * void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
+ *
+ * We rely on the hardware to broadcast the TLB invalidation to all CPUs
+ * inside the inner-shareable domain (which is the case for all v7
+ * implementations). If we come across a non-IS SMP implementation, we'll
+ * have to use an IPI based mechanism. Until then, we stick to the simple
+ * hardware assisted version.
+ *
+ * As v7 does not support flushing per IPA, just nuke the whole TLB
+ * instead, ignoring the ipa value.
+ */
+ENTRY(__kvm_tlb_flush_vmid_ipa)
+ push {r2, r3}
+
+ dsb ishst
+ add r0, r0, #KVM_VTTBR
+ ldrd r2, r3, [r0]
+ mcrr p15, 6, rr_lo_hi(r2, r3), c2 @ Write VTTBR
+ isb
+ mcr p15, 0, r0, c8, c3, 0 @ TLBIALLIS (rt ignored)
+ dsb ish
+ isb
+ mov r2, #0
+ mov r3, #0
+ mcrr p15, 6, r2, r3, c2 @ Back to VMID #0
+ isb @ Not necessary if followed by eret
+
+ pop {r2, r3}
+ bx lr
+ENDPROC(__kvm_tlb_flush_vmid_ipa)
+
+/**
+ * void __kvm_tlb_flush_vmid(struct kvm *kvm) - Flush per-VMID TLBs
+ *
+ * Reuses __kvm_tlb_flush_vmid_ipa() for ARMv7, without passing address
+ * parameter
+ */
+
+ENTRY(__kvm_tlb_flush_vmid)
+ b __kvm_tlb_flush_vmid_ipa
+ENDPROC(__kvm_tlb_flush_vmid)
+
+/********************************************************************
+ * Flush TLBs and instruction caches of all CPUs inside the inner-shareable
+ * domain, for all VMIDs
+ *
+ * void __kvm_flush_vm_context(void);
+ */
+ENTRY(__kvm_flush_vm_context)
+ mov r0, #0 @ rn parameter for c15 flushes is SBZ
+
+ /* Invalidate NS Non-Hyp TLB Inner Shareable (TLBIALLNSNHIS) */
+ mcr p15, 4, r0, c8, c3, 4
+ /* Invalidate instruction caches Inner Shareable (ICIALLUIS) */
+ mcr p15, 0, r0, c7, c1, 0
+ dsb ish
+ isb @ Not necessary if followed by eret
+
+ bx lr
+ENDPROC(__kvm_flush_vm_context)
+
+
+/********************************************************************
+ * Hypervisor world-switch code
+ *
+ *
+ * int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
+ */
+ENTRY(__kvm_vcpu_run)
+ @ Save the vcpu pointer
+ mcr p15, 4, vcpu, c13, c0, 2 @ HTPIDR
+
+ save_host_regs
+
+ restore_vgic_state
+ restore_timer_state
+
+ @ Store hardware CP15 state and load guest state
+ read_cp15_state store_to_vcpu = 0
+ write_cp15_state read_from_vcpu = 1
+
+ @ If the host kernel has not been configured with VFPv3 support,
+ @ then it is safer if we deny guests from using it as well.
+#ifdef CONFIG_VFPv3
+ @ Set FPEXC_EN so the guest doesn't trap floating point instructions
+ VFPFMRX r2, FPEXC @ VMRS
+ push {r2}
+ orr r2, r2, #FPEXC_EN
+ VFPFMXR FPEXC, r2 @ VMSR
+#endif
+
+ @ Configure Hyp-role
+ configure_hyp_role vmentry
+
+ @ Trap coprocessor CRx accesses
+ set_hstr vmentry
+ set_hcptr vmentry, (HCPTR_TTA | HCPTR_TCP(10) | HCPTR_TCP(11))
+ set_hdcr vmentry
+
+ @ Write configured ID register into MIDR alias
+ ldr r1, [vcpu, #VCPU_MIDR]
+ mcr p15, 4, r1, c0, c0, 0
+
+ @ Write guest view of MPIDR into VMPIDR
+ ldr r1, [vcpu, #CP15_OFFSET(c0_MPIDR)]
+ mcr p15, 4, r1, c0, c0, 5
+
+ @ Set up guest memory translation
+ ldr r1, [vcpu, #VCPU_KVM]
+ add r1, r1, #KVM_VTTBR
+ ldrd r2, r3, [r1]
+ mcrr p15, 6, rr_lo_hi(r2, r3), c2 @ Write VTTBR
+
+ @ We're all done, just restore the GPRs and go to the guest
+ restore_guest_regs
+ clrex @ Clear exclusive monitor
+ eret
+
+__kvm_vcpu_return:
+ /*
+ * return convention:
+ * guest r0, r1, r2 saved on the stack
+ * r0: vcpu pointer
+ * r1: exception code
+ */
+ save_guest_regs
+
+ @ Set VMID == 0
+ mov r2, #0
+ mov r3, #0
+ mcrr p15, 6, r2, r3, c2 @ Write VTTBR
+
+ @ Don't trap coprocessor accesses for host kernel
+ set_hstr vmexit
+ set_hdcr vmexit
+ set_hcptr vmexit, (HCPTR_TTA | HCPTR_TCP(10) | HCPTR_TCP(11)), after_vfp_restore
+
+#ifdef CONFIG_VFPv3
+ @ Switch VFP/NEON hardware state to the host's
+ add r7, vcpu, #VCPU_VFP_GUEST
+ store_vfp_state r7
+ add r7, vcpu, #VCPU_VFP_HOST
+ ldr r7, [r7]
+ restore_vfp_state r7
+
+after_vfp_restore:
+ @ Restore FPEXC_EN which we clobbered on entry
+ pop {r2}
+ VFPFMXR FPEXC, r2
+#else
+after_vfp_restore:
+#endif
+
+ @ Reset Hyp-role
+ configure_hyp_role vmexit
+
+ @ Let host read hardware MIDR
+ mrc p15, 0, r2, c0, c0, 0
+ mcr p15, 4, r2, c0, c0, 0
+
+ @ Back to hardware MPIDR
+ mrc p15, 0, r2, c0, c0, 5
+ mcr p15, 4, r2, c0, c0, 5
+
+ @ Store guest CP15 state and restore host state
+ read_cp15_state store_to_vcpu = 1
+ write_cp15_state read_from_vcpu = 0
+
+ save_timer_state
+ save_vgic_state
+
+ restore_host_regs
+ clrex @ Clear exclusive monitor
+#ifndef CONFIG_CPU_ENDIAN_BE8
+ mov r0, r1 @ Return the return code
+ mov r1, #0 @ Clear upper bits in return value
+#else
+ @ r1 already has return code
+ mov r0, #0 @ Clear upper bits in return value
+#endif /* CONFIG_CPU_ENDIAN_BE8 */
+ bx lr @ return to IOCTL
+
+/********************************************************************
+ * Call function in Hyp mode
+ *
+ *
+ * u64 kvm_call_hyp(void *hypfn, ...);
+ *
+ * This is not really a variadic function in the classic C-way and care must
+ * be taken when calling this to ensure parameters are passed in registers
+ * only, since the stack will change between the caller and the callee.
+ *
+ * Call the function with the first argument containing a pointer to the
+ * function you wish to call in Hyp mode, and subsequent arguments will be
+ * passed as r0, r1, and r2 (a maximum of 3 arguments in addition to the
+ * function pointer can be passed). The function being called must be mapped
+ * in Hyp mode (see init_hyp_mode in arch/arm/kvm/arm.c). Return values are
+ * passed in r0 and r1.
+ *
+ * A function pointer with a value of 0xffffffff has a special meaning,
+ * and is used to implement __hyp_get_vectors in the same way as in
+ * arch/arm/kernel/hyp_stub.S.
+ *
+ * The calling convention follows the standard AAPCS:
+ * r0 - r3: caller save
+ * r12: caller save
+ * rest: callee save
+ */
+ENTRY(kvm_call_hyp)
+ hvc #0
+ bx lr
+
+/********************************************************************
+ * Hypervisor exception vector and handlers
+ *
+ *
+ * The KVM/ARM Hypervisor ABI is defined as follows:
+ *
+ * Entry to Hyp mode from the host kernel will happen _only_ when an HVC
+ * instruction is issued since all traps are disabled when running the host
+ * kernel as per the Hyp-mode initialization at boot time.
+ *
+ * HVC instructions cause a trap to the vector page + offset 0x14 (see hyp_hvc
+ * below) when the HVC instruction is called from SVC mode (i.e. a guest or the
+ * host kernel) and they cause a trap to the vector page + offset 0x8 when HVC
+ * instructions are called from within Hyp-mode.
+ *
+ * Hyp-ABI: Calling HYP-mode functions from host (in SVC mode):
+ * Switching to Hyp mode is done through a simple HVC #0 instruction. The
+ * exception vector code will check that the HVC comes from VMID==0 and if
+ * so will push the necessary state (SPSR, lr_usr) on the Hyp stack.
+ * - r0 contains a pointer to a HYP function
+ * - r1, r2, and r3 contain arguments to the above function.
+ * - The HYP function will be called with its arguments in r0, r1 and r2.
+ * On HYP function return, we return directly to SVC.
+ *
+ * Note that the above is used to execute code in Hyp-mode from a host-kernel
+ * point of view, and is a different concept from performing a world-switch and
+ * executing guest code SVC mode (with a VMID != 0).
+ */
+
+/* Handle undef, svc, pabt, or dabt by crashing with a user notice */
+.macro bad_exception exception_code, panic_str
+ push {r0-r2}
+ mrrc p15, 6, r0, r1, c2 @ Read VTTBR
+ lsr r1, r1, #16
+ ands r1, r1, #0xff
+ beq 99f
+
+ load_vcpu @ Load VCPU pointer
+ .if \exception_code == ARM_EXCEPTION_DATA_ABORT
+ mrc p15, 4, r2, c5, c2, 0 @ HSR
+ mrc p15, 4, r1, c6, c0, 0 @ HDFAR
+ str r2, [vcpu, #VCPU_HSR]
+ str r1, [vcpu, #VCPU_HxFAR]
+ .endif
+ .if \exception_code == ARM_EXCEPTION_PREF_ABORT
+ mrc p15, 4, r2, c5, c2, 0 @ HSR
+ mrc p15, 4, r1, c6, c0, 2 @ HIFAR
+ str r2, [vcpu, #VCPU_HSR]
+ str r1, [vcpu, #VCPU_HxFAR]
+ .endif
+ mov r1, #\exception_code
+ b __kvm_vcpu_return
+
+ @ We were in the host already. Let's craft a panic-ing return to SVC.
+99: mrs r2, cpsr
+ bic r2, r2, #MODE_MASK
+ orr r2, r2, #SVC_MODE
+THUMB( orr r2, r2, #PSR_T_BIT )
+ msr spsr_cxsf, r2
+ mrs r1, ELR_hyp
+ ldr r2, =BSYM(panic)
+ msr ELR_hyp, r2
+ ldr r0, =\panic_str
+ clrex @ Clear exclusive monitor
+ eret
+.endm
+
+ .text
+
+ .align 5
+__kvm_hyp_vector:
+ .globl __kvm_hyp_vector
+
+ @ Hyp-mode exception vector
+ W(b) hyp_reset
+ W(b) hyp_undef
+ W(b) hyp_svc
+ W(b) hyp_pabt
+ W(b) hyp_dabt
+ W(b) hyp_hvc
+ W(b) hyp_irq
+ W(b) hyp_fiq
+
+ .align
+hyp_reset:
+ b hyp_reset
+
+ .align
+hyp_undef:
+ bad_exception ARM_EXCEPTION_UNDEFINED, und_die_str
+
+ .align
+hyp_svc:
+ bad_exception ARM_EXCEPTION_HVC, svc_die_str
+
+ .align
+hyp_pabt:
+ bad_exception ARM_EXCEPTION_PREF_ABORT, pabt_die_str
+
+ .align
+hyp_dabt:
+ bad_exception ARM_EXCEPTION_DATA_ABORT, dabt_die_str
+
+ .align
+hyp_hvc:
+ /*
+ * Getting here is either becuase of a trap from a guest or from calling
+ * HVC from the host kernel, which means "switch to Hyp mode".
+ */
+ push {r0, r1, r2}
+
+ @ Check syndrome register
+ mrc p15, 4, r1, c5, c2, 0 @ HSR
+ lsr r0, r1, #HSR_EC_SHIFT
+#ifdef CONFIG_VFPv3
+ cmp r0, #HSR_EC_CP_0_13
+ beq switch_to_guest_vfp
+#endif
+ cmp r0, #HSR_EC_HVC
+ bne guest_trap @ Not HVC instr.
+
+ /*
+ * Let's check if the HVC came from VMID 0 and allow simple
+ * switch to Hyp mode
+ */
+ mrrc p15, 6, r0, r2, c2
+ lsr r2, r2, #16
+ and r2, r2, #0xff
+ cmp r2, #0
+ bne guest_trap @ Guest called HVC
+
+host_switch_to_hyp:
+ pop {r0, r1, r2}
+
+ /* Check for __hyp_get_vectors */
+ cmp r0, #-1
+ mrceq p15, 4, r0, c12, c0, 0 @ get HVBAR
+ beq 1f
+
+ push {lr}
+ mrs lr, SPSR
+ push {lr}
+
+ mov lr, r0
+ mov r0, r1
+ mov r1, r2
+ mov r2, r3
+
+THUMB( orr lr, #1)
+ blx lr @ Call the HYP function
+
+ pop {lr}
+ msr SPSR_csxf, lr
+ pop {lr}
+1: eret
+
+guest_trap:
+ load_vcpu @ Load VCPU pointer to r0
+ str r1, [vcpu, #VCPU_HSR]
+
+ @ Check if we need the fault information
+ lsr r1, r1, #HSR_EC_SHIFT
+ cmp r1, #HSR_EC_IABT
+ mrceq p15, 4, r2, c6, c0, 2 @ HIFAR
+ beq 2f
+ cmp r1, #HSR_EC_DABT
+ bne 1f
+ mrc p15, 4, r2, c6, c0, 0 @ HDFAR
+
+2: str r2, [vcpu, #VCPU_HxFAR]
+
+ /*
+ * B3.13.5 Reporting exceptions taken to the Non-secure PL2 mode:
+ *
+ * Abort on the stage 2 translation for a memory access from a
+ * Non-secure PL1 or PL0 mode:
+ *
+ * For any Access flag fault or Translation fault, and also for any
+ * Permission fault on the stage 2 translation of a memory access
+ * made as part of a translation table walk for a stage 1 translation,
+ * the HPFAR holds the IPA that caused the fault. Otherwise, the HPFAR
+ * is UNKNOWN.
+ */
+
+ /* Check for permission fault, and S1PTW */
+ mrc p15, 4, r1, c5, c2, 0 @ HSR
+ and r0, r1, #HSR_FSC_TYPE
+ cmp r0, #FSC_PERM
+ tsteq r1, #(1 << 7) @ S1PTW
+ mrcne p15, 4, r2, c6, c0, 4 @ HPFAR
+ bne 3f
+
+ /* Preserve PAR */
+ mrrc p15, 0, r0, r1, c7 @ PAR
+ push {r0, r1}
+
+ /* Resolve IPA using the xFAR */
+ mcr p15, 0, r2, c7, c8, 0 @ ATS1CPR
+ isb
+ mrrc p15, 0, r0, r1, c7 @ PAR
+ tst r0, #1
+ bne 4f @ Failed translation
+ ubfx r2, r0, #12, #20
+ lsl r2, r2, #4
+ orr r2, r2, r1, lsl #24
+
+ /* Restore PAR */
+ pop {r0, r1}
+ mcrr p15, 0, r0, r1, c7 @ PAR
+
+3: load_vcpu @ Load VCPU pointer to r0
+ str r2, [r0, #VCPU_HPFAR]
+
+1: mov r1, #ARM_EXCEPTION_HVC
+ b __kvm_vcpu_return
+
+4: pop {r0, r1} @ Failed translation, return to guest
+ mcrr p15, 0, r0, r1, c7 @ PAR
+ clrex
+ pop {r0, r1, r2}
+ eret
+
+/*
+ * If VFPv3 support is not available, then we will not switch the VFP
+ * registers; however cp10 and cp11 accesses will still trap and fallback
+ * to the regular coprocessor emulation code, which currently will
+ * inject an undefined exception to the guest.
+ */
+#ifdef CONFIG_VFPv3
+switch_to_guest_vfp:
+ load_vcpu @ Load VCPU pointer to r0
+ push {r3-r7}
+
+ @ NEON/VFP used. Turn on VFP access.
+ set_hcptr vmtrap, (HCPTR_TCP(10) | HCPTR_TCP(11))
+
+ @ Switch VFP/NEON hardware state to the guest's
+ add r7, r0, #VCPU_VFP_HOST
+ ldr r7, [r7]
+ store_vfp_state r7
+ add r7, r0, #VCPU_VFP_GUEST
+ restore_vfp_state r7
+
+ pop {r3-r7}
+ pop {r0-r2}
+ clrex
+ eret
+#endif
+
+ .align
+hyp_irq:
+ push {r0, r1, r2}
+ mov r1, #ARM_EXCEPTION_IRQ
+ load_vcpu @ Load VCPU pointer to r0
+ b __kvm_vcpu_return
+
+ .align
+hyp_fiq:
+ b hyp_fiq
+
+ .ltorg
+
+__kvm_hyp_code_end:
+ .globl __kvm_hyp_code_end
+
+ .section ".rodata"
+
+und_die_str:
+ .ascii "unexpected undefined exception in Hyp mode at: %#08x\n"
+pabt_die_str:
+ .ascii "unexpected prefetch abort in Hyp mode at: %#08x\n"
+dabt_die_str:
+ .ascii "unexpected data abort in Hyp mode at: %#08x\n"
+svc_die_str:
+ .ascii "unexpected HVC/SVC trap in Hyp mode at: %#08x\n"
diff --git a/arch/arm/kvm/interrupts_head.S b/arch/arm/kvm/interrupts_head.S
new file mode 100644
index 000000000..48efe2ee4
--- /dev/null
+++ b/arch/arm/kvm/interrupts_head.S
@@ -0,0 +1,649 @@
+#include <linux/irqchip/arm-gic.h>
+#include <asm/assembler.h>
+
+#define VCPU_USR_REG(_reg_nr) (VCPU_USR_REGS + (_reg_nr * 4))
+#define VCPU_USR_SP (VCPU_USR_REG(13))
+#define VCPU_USR_LR (VCPU_USR_REG(14))
+#define CP15_OFFSET(_cp15_reg_idx) (VCPU_CP15 + (_cp15_reg_idx * 4))
+
+/*
+ * Many of these macros need to access the VCPU structure, which is always
+ * held in r0. These macros should never clobber r1, as it is used to hold the
+ * exception code on the return path (except of course the macro that switches
+ * all the registers before the final jump to the VM).
+ */
+vcpu .req r0 @ vcpu pointer always in r0
+
+/* Clobbers {r2-r6} */
+.macro store_vfp_state vfp_base
+ @ The VFPFMRX and VFPFMXR macros are the VMRS and VMSR instructions
+ VFPFMRX r2, FPEXC
+ @ Make sure VFP is enabled so we can touch the registers.
+ orr r6, r2, #FPEXC_EN
+ VFPFMXR FPEXC, r6
+
+ VFPFMRX r3, FPSCR
+ tst r2, #FPEXC_EX @ Check for VFP Subarchitecture
+ beq 1f
+ @ If FPEXC_EX is 0, then FPINST/FPINST2 reads are upredictable, so
+ @ we only need to save them if FPEXC_EX is set.
+ VFPFMRX r4, FPINST
+ tst r2, #FPEXC_FP2V
+ VFPFMRX r5, FPINST2, ne @ vmrsne
+ bic r6, r2, #FPEXC_EX @ FPEXC_EX disable
+ VFPFMXR FPEXC, r6
+1:
+ VFPFSTMIA \vfp_base, r6 @ Save VFP registers
+ stm \vfp_base, {r2-r5} @ Save FPEXC, FPSCR, FPINST, FPINST2
+.endm
+
+/* Assume FPEXC_EN is on and FPEXC_EX is off, clobbers {r2-r6} */
+.macro restore_vfp_state vfp_base
+ VFPFLDMIA \vfp_base, r6 @ Load VFP registers
+ ldm \vfp_base, {r2-r5} @ Load FPEXC, FPSCR, FPINST, FPINST2
+
+ VFPFMXR FPSCR, r3
+ tst r2, #FPEXC_EX @ Check for VFP Subarchitecture
+ beq 1f
+ VFPFMXR FPINST, r4
+ tst r2, #FPEXC_FP2V
+ VFPFMXR FPINST2, r5, ne
+1:
+ VFPFMXR FPEXC, r2 @ FPEXC (last, in case !EN)
+.endm
+
+/* These are simply for the macros to work - value don't have meaning */
+.equ usr, 0
+.equ svc, 1
+.equ abt, 2
+.equ und, 3
+.equ irq, 4
+.equ fiq, 5
+
+.macro push_host_regs_mode mode
+ mrs r2, SP_\mode
+ mrs r3, LR_\mode
+ mrs r4, SPSR_\mode
+ push {r2, r3, r4}
+.endm
+
+/*
+ * Store all host persistent registers on the stack.
+ * Clobbers all registers, in all modes, except r0 and r1.
+ */
+.macro save_host_regs
+ /* Hyp regs. Only ELR_hyp (SPSR_hyp already saved) */
+ mrs r2, ELR_hyp
+ push {r2}
+
+ /* usr regs */
+ push {r4-r12} @ r0-r3 are always clobbered
+ mrs r2, SP_usr
+ mov r3, lr
+ push {r2, r3}
+
+ push_host_regs_mode svc
+ push_host_regs_mode abt
+ push_host_regs_mode und
+ push_host_regs_mode irq
+
+ /* fiq regs */
+ mrs r2, r8_fiq
+ mrs r3, r9_fiq
+ mrs r4, r10_fiq
+ mrs r5, r11_fiq
+ mrs r6, r12_fiq
+ mrs r7, SP_fiq
+ mrs r8, LR_fiq
+ mrs r9, SPSR_fiq
+ push {r2-r9}
+.endm
+
+.macro pop_host_regs_mode mode
+ pop {r2, r3, r4}
+ msr SP_\mode, r2
+ msr LR_\mode, r3
+ msr SPSR_\mode, r4
+.endm
+
+/*
+ * Restore all host registers from the stack.
+ * Clobbers all registers, in all modes, except r0 and r1.
+ */
+.macro restore_host_regs
+ pop {r2-r9}
+ msr r8_fiq, r2
+ msr r9_fiq, r3
+ msr r10_fiq, r4
+ msr r11_fiq, r5
+ msr r12_fiq, r6
+ msr SP_fiq, r7
+ msr LR_fiq, r8
+ msr SPSR_fiq, r9
+
+ pop_host_regs_mode irq
+ pop_host_regs_mode und
+ pop_host_regs_mode abt
+ pop_host_regs_mode svc
+
+ pop {r2, r3}
+ msr SP_usr, r2
+ mov lr, r3
+ pop {r4-r12}
+
+ pop {r2}
+ msr ELR_hyp, r2
+.endm
+
+/*
+ * Restore SP, LR and SPSR for a given mode. offset is the offset of
+ * this mode's registers from the VCPU base.
+ *
+ * Assumes vcpu pointer in vcpu reg
+ *
+ * Clobbers r1, r2, r3, r4.
+ */
+.macro restore_guest_regs_mode mode, offset
+ add r1, vcpu, \offset
+ ldm r1, {r2, r3, r4}
+ msr SP_\mode, r2
+ msr LR_\mode, r3
+ msr SPSR_\mode, r4
+.endm
+
+/*
+ * Restore all guest registers from the vcpu struct.
+ *
+ * Assumes vcpu pointer in vcpu reg
+ *
+ * Clobbers *all* registers.
+ */
+.macro restore_guest_regs
+ restore_guest_regs_mode svc, #VCPU_SVC_REGS
+ restore_guest_regs_mode abt, #VCPU_ABT_REGS
+ restore_guest_regs_mode und, #VCPU_UND_REGS
+ restore_guest_regs_mode irq, #VCPU_IRQ_REGS
+
+ add r1, vcpu, #VCPU_FIQ_REGS
+ ldm r1, {r2-r9}
+ msr r8_fiq, r2
+ msr r9_fiq, r3
+ msr r10_fiq, r4
+ msr r11_fiq, r5
+ msr r12_fiq, r6
+ msr SP_fiq, r7
+ msr LR_fiq, r8
+ msr SPSR_fiq, r9
+
+ @ Load return state
+ ldr r2, [vcpu, #VCPU_PC]
+ ldr r3, [vcpu, #VCPU_CPSR]
+ msr ELR_hyp, r2
+ msr SPSR_cxsf, r3
+
+ @ Load user registers
+ ldr r2, [vcpu, #VCPU_USR_SP]
+ ldr r3, [vcpu, #VCPU_USR_LR]
+ msr SP_usr, r2
+ mov lr, r3
+ add vcpu, vcpu, #(VCPU_USR_REGS)
+ ldm vcpu, {r0-r12}
+.endm
+
+/*
+ * Save SP, LR and SPSR for a given mode. offset is the offset of
+ * this mode's registers from the VCPU base.
+ *
+ * Assumes vcpu pointer in vcpu reg
+ *
+ * Clobbers r2, r3, r4, r5.
+ */
+.macro save_guest_regs_mode mode, offset
+ add r2, vcpu, \offset
+ mrs r3, SP_\mode
+ mrs r4, LR_\mode
+ mrs r5, SPSR_\mode
+ stm r2, {r3, r4, r5}
+.endm
+
+/*
+ * Save all guest registers to the vcpu struct
+ * Expects guest's r0, r1, r2 on the stack.
+ *
+ * Assumes vcpu pointer in vcpu reg
+ *
+ * Clobbers r2, r3, r4, r5.
+ */
+.macro save_guest_regs
+ @ Store usr registers
+ add r2, vcpu, #VCPU_USR_REG(3)
+ stm r2, {r3-r12}
+ add r2, vcpu, #VCPU_USR_REG(0)
+ pop {r3, r4, r5} @ r0, r1, r2
+ stm r2, {r3, r4, r5}
+ mrs r2, SP_usr
+ mov r3, lr
+ str r2, [vcpu, #VCPU_USR_SP]
+ str r3, [vcpu, #VCPU_USR_LR]
+
+ @ Store return state
+ mrs r2, ELR_hyp
+ mrs r3, spsr
+ str r2, [vcpu, #VCPU_PC]
+ str r3, [vcpu, #VCPU_CPSR]
+
+ @ Store other guest registers
+ save_guest_regs_mode svc, #VCPU_SVC_REGS
+ save_guest_regs_mode abt, #VCPU_ABT_REGS
+ save_guest_regs_mode und, #VCPU_UND_REGS
+ save_guest_regs_mode irq, #VCPU_IRQ_REGS
+.endm
+
+/* Reads cp15 registers from hardware and stores them in memory
+ * @store_to_vcpu: If 0, registers are written in-order to the stack,
+ * otherwise to the VCPU struct pointed to by vcpup
+ *
+ * Assumes vcpu pointer in vcpu reg
+ *
+ * Clobbers r2 - r12
+ */
+.macro read_cp15_state store_to_vcpu
+ mrc p15, 0, r2, c1, c0, 0 @ SCTLR
+ mrc p15, 0, r3, c1, c0, 2 @ CPACR
+ mrc p15, 0, r4, c2, c0, 2 @ TTBCR
+ mrc p15, 0, r5, c3, c0, 0 @ DACR
+ mrrc p15, 0, r6, r7, c2 @ TTBR 0
+ mrrc p15, 1, r8, r9, c2 @ TTBR 1
+ mrc p15, 0, r10, c10, c2, 0 @ PRRR
+ mrc p15, 0, r11, c10, c2, 1 @ NMRR
+ mrc p15, 2, r12, c0, c0, 0 @ CSSELR
+
+ .if \store_to_vcpu == 0
+ push {r2-r12} @ Push CP15 registers
+ .else
+ str r2, [vcpu, #CP15_OFFSET(c1_SCTLR)]
+ str r3, [vcpu, #CP15_OFFSET(c1_CPACR)]
+ str r4, [vcpu, #CP15_OFFSET(c2_TTBCR)]
+ str r5, [vcpu, #CP15_OFFSET(c3_DACR)]
+ add r2, vcpu, #CP15_OFFSET(c2_TTBR0)
+ strd r6, r7, [r2]
+ add r2, vcpu, #CP15_OFFSET(c2_TTBR1)
+ strd r8, r9, [r2]
+ str r10, [vcpu, #CP15_OFFSET(c10_PRRR)]
+ str r11, [vcpu, #CP15_OFFSET(c10_NMRR)]
+ str r12, [vcpu, #CP15_OFFSET(c0_CSSELR)]
+ .endif
+
+ mrc p15, 0, r2, c13, c0, 1 @ CID
+ mrc p15, 0, r3, c13, c0, 2 @ TID_URW
+ mrc p15, 0, r4, c13, c0, 3 @ TID_URO
+ mrc p15, 0, r5, c13, c0, 4 @ TID_PRIV
+ mrc p15, 0, r6, c5, c0, 0 @ DFSR
+ mrc p15, 0, r7, c5, c0, 1 @ IFSR
+ mrc p15, 0, r8, c5, c1, 0 @ ADFSR
+ mrc p15, 0, r9, c5, c1, 1 @ AIFSR
+ mrc p15, 0, r10, c6, c0, 0 @ DFAR
+ mrc p15, 0, r11, c6, c0, 2 @ IFAR
+ mrc p15, 0, r12, c12, c0, 0 @ VBAR
+
+ .if \store_to_vcpu == 0
+ push {r2-r12} @ Push CP15 registers
+ .else
+ str r2, [vcpu, #CP15_OFFSET(c13_CID)]
+ str r3, [vcpu, #CP15_OFFSET(c13_TID_URW)]
+ str r4, [vcpu, #CP15_OFFSET(c13_TID_URO)]
+ str r5, [vcpu, #CP15_OFFSET(c13_TID_PRIV)]
+ str r6, [vcpu, #CP15_OFFSET(c5_DFSR)]
+ str r7, [vcpu, #CP15_OFFSET(c5_IFSR)]
+ str r8, [vcpu, #CP15_OFFSET(c5_ADFSR)]
+ str r9, [vcpu, #CP15_OFFSET(c5_AIFSR)]
+ str r10, [vcpu, #CP15_OFFSET(c6_DFAR)]
+ str r11, [vcpu, #CP15_OFFSET(c6_IFAR)]
+ str r12, [vcpu, #CP15_OFFSET(c12_VBAR)]
+ .endif
+
+ mrc p15, 0, r2, c14, c1, 0 @ CNTKCTL
+ mrrc p15, 0, r4, r5, c7 @ PAR
+ mrc p15, 0, r6, c10, c3, 0 @ AMAIR0
+ mrc p15, 0, r7, c10, c3, 1 @ AMAIR1
+
+ .if \store_to_vcpu == 0
+ push {r2,r4-r7}
+ .else
+ str r2, [vcpu, #CP15_OFFSET(c14_CNTKCTL)]
+ add r12, vcpu, #CP15_OFFSET(c7_PAR)
+ strd r4, r5, [r12]
+ str r6, [vcpu, #CP15_OFFSET(c10_AMAIR0)]
+ str r7, [vcpu, #CP15_OFFSET(c10_AMAIR1)]
+ .endif
+.endm
+
+/*
+ * Reads cp15 registers from memory and writes them to hardware
+ * @read_from_vcpu: If 0, registers are read in-order from the stack,
+ * otherwise from the VCPU struct pointed to by vcpup
+ *
+ * Assumes vcpu pointer in vcpu reg
+ */
+.macro write_cp15_state read_from_vcpu
+ .if \read_from_vcpu == 0
+ pop {r2,r4-r7}
+ .else
+ ldr r2, [vcpu, #CP15_OFFSET(c14_CNTKCTL)]
+ add r12, vcpu, #CP15_OFFSET(c7_PAR)
+ ldrd r4, r5, [r12]
+ ldr r6, [vcpu, #CP15_OFFSET(c10_AMAIR0)]
+ ldr r7, [vcpu, #CP15_OFFSET(c10_AMAIR1)]
+ .endif
+
+ mcr p15, 0, r2, c14, c1, 0 @ CNTKCTL
+ mcrr p15, 0, r4, r5, c7 @ PAR
+ mcr p15, 0, r6, c10, c3, 0 @ AMAIR0
+ mcr p15, 0, r7, c10, c3, 1 @ AMAIR1
+
+ .if \read_from_vcpu == 0
+ pop {r2-r12}
+ .else
+ ldr r2, [vcpu, #CP15_OFFSET(c13_CID)]
+ ldr r3, [vcpu, #CP15_OFFSET(c13_TID_URW)]
+ ldr r4, [vcpu, #CP15_OFFSET(c13_TID_URO)]
+ ldr r5, [vcpu, #CP15_OFFSET(c13_TID_PRIV)]
+ ldr r6, [vcpu, #CP15_OFFSET(c5_DFSR)]
+ ldr r7, [vcpu, #CP15_OFFSET(c5_IFSR)]
+ ldr r8, [vcpu, #CP15_OFFSET(c5_ADFSR)]
+ ldr r9, [vcpu, #CP15_OFFSET(c5_AIFSR)]
+ ldr r10, [vcpu, #CP15_OFFSET(c6_DFAR)]
+ ldr r11, [vcpu, #CP15_OFFSET(c6_IFAR)]
+ ldr r12, [vcpu, #CP15_OFFSET(c12_VBAR)]
+ .endif
+
+ mcr p15, 0, r2, c13, c0, 1 @ CID
+ mcr p15, 0, r3, c13, c0, 2 @ TID_URW
+ mcr p15, 0, r4, c13, c0, 3 @ TID_URO
+ mcr p15, 0, r5, c13, c0, 4 @ TID_PRIV
+ mcr p15, 0, r6, c5, c0, 0 @ DFSR
+ mcr p15, 0, r7, c5, c0, 1 @ IFSR
+ mcr p15, 0, r8, c5, c1, 0 @ ADFSR
+ mcr p15, 0, r9, c5, c1, 1 @ AIFSR
+ mcr p15, 0, r10, c6, c0, 0 @ DFAR
+ mcr p15, 0, r11, c6, c0, 2 @ IFAR
+ mcr p15, 0, r12, c12, c0, 0 @ VBAR
+
+ .if \read_from_vcpu == 0
+ pop {r2-r12}
+ .else
+ ldr r2, [vcpu, #CP15_OFFSET(c1_SCTLR)]
+ ldr r3, [vcpu, #CP15_OFFSET(c1_CPACR)]
+ ldr r4, [vcpu, #CP15_OFFSET(c2_TTBCR)]
+ ldr r5, [vcpu, #CP15_OFFSET(c3_DACR)]
+ add r12, vcpu, #CP15_OFFSET(c2_TTBR0)
+ ldrd r6, r7, [r12]
+ add r12, vcpu, #CP15_OFFSET(c2_TTBR1)
+ ldrd r8, r9, [r12]
+ ldr r10, [vcpu, #CP15_OFFSET(c10_PRRR)]
+ ldr r11, [vcpu, #CP15_OFFSET(c10_NMRR)]
+ ldr r12, [vcpu, #CP15_OFFSET(c0_CSSELR)]
+ .endif
+
+ mcr p15, 0, r2, c1, c0, 0 @ SCTLR
+ mcr p15, 0, r3, c1, c0, 2 @ CPACR
+ mcr p15, 0, r4, c2, c0, 2 @ TTBCR
+ mcr p15, 0, r5, c3, c0, 0 @ DACR
+ mcrr p15, 0, r6, r7, c2 @ TTBR 0
+ mcrr p15, 1, r8, r9, c2 @ TTBR 1
+ mcr p15, 0, r10, c10, c2, 0 @ PRRR
+ mcr p15, 0, r11, c10, c2, 1 @ NMRR
+ mcr p15, 2, r12, c0, c0, 0 @ CSSELR
+.endm
+
+/*
+ * Save the VGIC CPU state into memory
+ *
+ * Assumes vcpu pointer in vcpu reg
+ */
+.macro save_vgic_state
+ /* Get VGIC VCTRL base into r2 */
+ ldr r2, [vcpu, #VCPU_KVM]
+ ldr r2, [r2, #KVM_VGIC_VCTRL]
+ cmp r2, #0
+ beq 2f
+
+ /* Compute the address of struct vgic_cpu */
+ add r11, vcpu, #VCPU_VGIC_CPU
+
+ /* Save all interesting registers */
+ ldr r3, [r2, #GICH_HCR]
+ ldr r4, [r2, #GICH_VMCR]
+ ldr r5, [r2, #GICH_MISR]
+ ldr r6, [r2, #GICH_EISR0]
+ ldr r7, [r2, #GICH_EISR1]
+ ldr r8, [r2, #GICH_ELRSR0]
+ ldr r9, [r2, #GICH_ELRSR1]
+ ldr r10, [r2, #GICH_APR]
+ARM_BE8(rev r3, r3 )
+ARM_BE8(rev r4, r4 )
+ARM_BE8(rev r5, r5 )
+ARM_BE8(rev r6, r6 )
+ARM_BE8(rev r7, r7 )
+ARM_BE8(rev r8, r8 )
+ARM_BE8(rev r9, r9 )
+ARM_BE8(rev r10, r10 )
+
+ str r3, [r11, #VGIC_V2_CPU_HCR]
+ str r4, [r11, #VGIC_V2_CPU_VMCR]
+ str r5, [r11, #VGIC_V2_CPU_MISR]
+#ifdef CONFIG_CPU_ENDIAN_BE8
+ str r6, [r11, #(VGIC_V2_CPU_EISR + 4)]
+ str r7, [r11, #VGIC_V2_CPU_EISR]
+ str r8, [r11, #(VGIC_V2_CPU_ELRSR + 4)]
+ str r9, [r11, #VGIC_V2_CPU_ELRSR]
+#else
+ str r6, [r11, #VGIC_V2_CPU_EISR]
+ str r7, [r11, #(VGIC_V2_CPU_EISR + 4)]
+ str r8, [r11, #VGIC_V2_CPU_ELRSR]
+ str r9, [r11, #(VGIC_V2_CPU_ELRSR + 4)]
+#endif
+ str r10, [r11, #VGIC_V2_CPU_APR]
+
+ /* Clear GICH_HCR */
+ mov r5, #0
+ str r5, [r2, #GICH_HCR]
+
+ /* Save list registers */
+ add r2, r2, #GICH_LR0
+ add r3, r11, #VGIC_V2_CPU_LR
+ ldr r4, [r11, #VGIC_CPU_NR_LR]
+1: ldr r6, [r2], #4
+ARM_BE8(rev r6, r6 )
+ str r6, [r3], #4
+ subs r4, r4, #1
+ bne 1b
+2:
+.endm
+
+/*
+ * Restore the VGIC CPU state from memory
+ *
+ * Assumes vcpu pointer in vcpu reg
+ */
+.macro restore_vgic_state
+ /* Get VGIC VCTRL base into r2 */
+ ldr r2, [vcpu, #VCPU_KVM]
+ ldr r2, [r2, #KVM_VGIC_VCTRL]
+ cmp r2, #0
+ beq 2f
+
+ /* Compute the address of struct vgic_cpu */
+ add r11, vcpu, #VCPU_VGIC_CPU
+
+ /* We only restore a minimal set of registers */
+ ldr r3, [r11, #VGIC_V2_CPU_HCR]
+ ldr r4, [r11, #VGIC_V2_CPU_VMCR]
+ ldr r8, [r11, #VGIC_V2_CPU_APR]
+ARM_BE8(rev r3, r3 )
+ARM_BE8(rev r4, r4 )
+ARM_BE8(rev r8, r8 )
+
+ str r3, [r2, #GICH_HCR]
+ str r4, [r2, #GICH_VMCR]
+ str r8, [r2, #GICH_APR]
+
+ /* Restore list registers */
+ add r2, r2, #GICH_LR0
+ add r3, r11, #VGIC_V2_CPU_LR
+ ldr r4, [r11, #VGIC_CPU_NR_LR]
+1: ldr r6, [r3], #4
+ARM_BE8(rev r6, r6 )
+ str r6, [r2], #4
+ subs r4, r4, #1
+ bne 1b
+2:
+.endm
+
+#define CNTHCTL_PL1PCTEN (1 << 0)
+#define CNTHCTL_PL1PCEN (1 << 1)
+
+/*
+ * Save the timer state onto the VCPU and allow physical timer/counter access
+ * for the host.
+ *
+ * Assumes vcpu pointer in vcpu reg
+ * Clobbers r2-r5
+ */
+.macro save_timer_state
+ ldr r4, [vcpu, #VCPU_KVM]
+ ldr r2, [r4, #KVM_TIMER_ENABLED]
+ cmp r2, #0
+ beq 1f
+
+ mrc p15, 0, r2, c14, c3, 1 @ CNTV_CTL
+ str r2, [vcpu, #VCPU_TIMER_CNTV_CTL]
+ bic r2, #1 @ Clear ENABLE
+ mcr p15, 0, r2, c14, c3, 1 @ CNTV_CTL
+ isb
+
+ mrrc p15, 3, rr_lo_hi(r2, r3), c14 @ CNTV_CVAL
+ ldr r4, =VCPU_TIMER_CNTV_CVAL
+ add r5, vcpu, r4
+ strd r2, r3, [r5]
+
+ @ Ensure host CNTVCT == CNTPCT
+ mov r2, #0
+ mcrr p15, 4, r2, r2, c14 @ CNTVOFF
+
+1:
+ @ Allow physical timer/counter access for the host
+ mrc p15, 4, r2, c14, c1, 0 @ CNTHCTL
+ orr r2, r2, #(CNTHCTL_PL1PCEN | CNTHCTL_PL1PCTEN)
+ mcr p15, 4, r2, c14, c1, 0 @ CNTHCTL
+.endm
+
+/*
+ * Load the timer state from the VCPU and deny physical timer/counter access
+ * for the host.
+ *
+ * Assumes vcpu pointer in vcpu reg
+ * Clobbers r2-r5
+ */
+.macro restore_timer_state
+ @ Disallow physical timer access for the guest
+ @ Physical counter access is allowed
+ mrc p15, 4, r2, c14, c1, 0 @ CNTHCTL
+ orr r2, r2, #CNTHCTL_PL1PCTEN
+ bic r2, r2, #CNTHCTL_PL1PCEN
+ mcr p15, 4, r2, c14, c1, 0 @ CNTHCTL
+
+ ldr r4, [vcpu, #VCPU_KVM]
+ ldr r2, [r4, #KVM_TIMER_ENABLED]
+ cmp r2, #0
+ beq 1f
+
+ ldr r2, [r4, #KVM_TIMER_CNTVOFF]
+ ldr r3, [r4, #(KVM_TIMER_CNTVOFF + 4)]
+ mcrr p15, 4, rr_lo_hi(r2, r3), c14 @ CNTVOFF
+
+ ldr r4, =VCPU_TIMER_CNTV_CVAL
+ add r5, vcpu, r4
+ ldrd r2, r3, [r5]
+ mcrr p15, 3, rr_lo_hi(r2, r3), c14 @ CNTV_CVAL
+ isb
+
+ ldr r2, [vcpu, #VCPU_TIMER_CNTV_CTL]
+ and r2, r2, #3
+ mcr p15, 0, r2, c14, c3, 1 @ CNTV_CTL
+1:
+.endm
+
+.equ vmentry, 0
+.equ vmexit, 1
+
+/* Configures the HSTR (Hyp System Trap Register) on entry/return
+ * (hardware reset value is 0) */
+.macro set_hstr operation
+ mrc p15, 4, r2, c1, c1, 3
+ ldr r3, =HSTR_T(15)
+ .if \operation == vmentry
+ orr r2, r2, r3 @ Trap CR{15}
+ .else
+ bic r2, r2, r3 @ Don't trap any CRx accesses
+ .endif
+ mcr p15, 4, r2, c1, c1, 3
+.endm
+
+/* Configures the HCPTR (Hyp Coprocessor Trap Register) on entry/return
+ * (hardware reset value is 0). Keep previous value in r2.
+ * An ISB is emited on vmexit/vmtrap, but executed on vmexit only if
+ * VFP wasn't already enabled (always executed on vmtrap).
+ * If a label is specified with vmexit, it is branched to if VFP wasn't
+ * enabled.
+ */
+.macro set_hcptr operation, mask, label = none
+ mrc p15, 4, r2, c1, c1, 2
+ ldr r3, =\mask
+ .if \operation == vmentry
+ orr r3, r2, r3 @ Trap coproc-accesses defined in mask
+ .else
+ bic r3, r2, r3 @ Don't trap defined coproc-accesses
+ .endif
+ mcr p15, 4, r3, c1, c1, 2
+ .if \operation != vmentry
+ .if \operation == vmexit
+ tst r2, #(HCPTR_TCP(10) | HCPTR_TCP(11))
+ beq 1f
+ .endif
+ isb
+ .if \label != none
+ b \label
+ .endif
+1:
+ .endif
+.endm
+
+/* Configures the HDCR (Hyp Debug Configuration Register) on entry/return
+ * (hardware reset value is 0) */
+.macro set_hdcr operation
+ mrc p15, 4, r2, c1, c1, 1
+ ldr r3, =(HDCR_TPM|HDCR_TPMCR)
+ .if \operation == vmentry
+ orr r2, r2, r3 @ Trap some perfmon accesses
+ .else
+ bic r2, r2, r3 @ Don't trap any perfmon accesses
+ .endif
+ mcr p15, 4, r2, c1, c1, 1
+.endm
+
+/* Enable/Disable: stage-2 trans., trap interrupts, trap wfi, trap smc */
+.macro configure_hyp_role operation
+ .if \operation == vmentry
+ ldr r2, [vcpu, #VCPU_HCR]
+ ldr r3, [vcpu, #VCPU_IRQ_LINES]
+ orr r2, r2, r3
+ .else
+ mov r2, #0
+ .endif
+ mcr p15, 4, r2, c1, c1, 0 @ HCR
+.endm
+
+.macro load_vcpu
+ mrc p15, 4, vcpu, c13, c0, 2 @ HTPIDR
+.endm
diff --git a/arch/arm/kvm/mmio.c b/arch/arm/kvm/mmio.c
new file mode 100644
index 000000000..974b1c606
--- /dev/null
+++ b/arch/arm/kvm/mmio.c
@@ -0,0 +1,218 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_mmio.h>
+#include <asm/kvm_emulate.h>
+#include <trace/events/kvm.h>
+
+#include "trace.h"
+
+static void mmio_write_buf(char *buf, unsigned int len, unsigned long data)
+{
+ void *datap = NULL;
+ union {
+ u8 byte;
+ u16 hword;
+ u32 word;
+ u64 dword;
+ } tmp;
+
+ switch (len) {
+ case 1:
+ tmp.byte = data;
+ datap = &tmp.byte;
+ break;
+ case 2:
+ tmp.hword = data;
+ datap = &tmp.hword;
+ break;
+ case 4:
+ tmp.word = data;
+ datap = &tmp.word;
+ break;
+ case 8:
+ tmp.dword = data;
+ datap = &tmp.dword;
+ break;
+ }
+
+ memcpy(buf, datap, len);
+}
+
+static unsigned long mmio_read_buf(char *buf, unsigned int len)
+{
+ unsigned long data = 0;
+ union {
+ u16 hword;
+ u32 word;
+ u64 dword;
+ } tmp;
+
+ switch (len) {
+ case 1:
+ data = buf[0];
+ break;
+ case 2:
+ memcpy(&tmp.hword, buf, len);
+ data = tmp.hword;
+ break;
+ case 4:
+ memcpy(&tmp.word, buf, len);
+ data = tmp.word;
+ break;
+ case 8:
+ memcpy(&tmp.dword, buf, len);
+ data = tmp.dword;
+ break;
+ }
+
+ return data;
+}
+
+/**
+ * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation
+ * @vcpu: The VCPU pointer
+ * @run: The VCPU run struct containing the mmio data
+ *
+ * This should only be called after returning from userspace for MMIO load
+ * emulation.
+ */
+int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ unsigned long data;
+ unsigned int len;
+ int mask;
+
+ if (!run->mmio.is_write) {
+ len = run->mmio.len;
+ if (len > sizeof(unsigned long))
+ return -EINVAL;
+
+ data = mmio_read_buf(run->mmio.data, len);
+
+ if (vcpu->arch.mmio_decode.sign_extend &&
+ len < sizeof(unsigned long)) {
+ mask = 1U << ((len * 8) - 1);
+ data = (data ^ mask) - mask;
+ }
+
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr,
+ data);
+ data = vcpu_data_host_to_guest(vcpu, data, len);
+ *vcpu_reg(vcpu, vcpu->arch.mmio_decode.rt) = data;
+ }
+
+ return 0;
+}
+
+static int decode_hsr(struct kvm_vcpu *vcpu, bool *is_write, int *len)
+{
+ unsigned long rt;
+ int access_size;
+ bool sign_extend;
+
+ if (kvm_vcpu_dabt_isextabt(vcpu)) {
+ /* cache operation on I/O addr, tell guest unsupported */
+ kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ return 1;
+ }
+
+ if (kvm_vcpu_dabt_iss1tw(vcpu)) {
+ /* page table accesses IO mem: tell guest to fix its TTBR */
+ kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ return 1;
+ }
+
+ access_size = kvm_vcpu_dabt_get_as(vcpu);
+ if (unlikely(access_size < 0))
+ return access_size;
+
+ *is_write = kvm_vcpu_dabt_iswrite(vcpu);
+ sign_extend = kvm_vcpu_dabt_issext(vcpu);
+ rt = kvm_vcpu_dabt_get_rd(vcpu);
+
+ *len = access_size;
+ vcpu->arch.mmio_decode.sign_extend = sign_extend;
+ vcpu->arch.mmio_decode.rt = rt;
+
+ /*
+ * The MMIO instruction is emulated and should not be re-executed
+ * in the guest.
+ */
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+ return 0;
+}
+
+int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ phys_addr_t fault_ipa)
+{
+ unsigned long data;
+ unsigned long rt;
+ int ret;
+ bool is_write;
+ int len;
+ u8 data_buf[8];
+
+ /*
+ * Prepare MMIO operation. First decode the syndrome data we get
+ * from the CPU. Then try if some in-kernel emulation feels
+ * responsible, otherwise let user space do its magic.
+ */
+ if (kvm_vcpu_dabt_isvalid(vcpu)) {
+ ret = decode_hsr(vcpu, &is_write, &len);
+ if (ret)
+ return ret;
+ } else {
+ kvm_err("load/store instruction decoding not implemented\n");
+ return -ENOSYS;
+ }
+
+ rt = vcpu->arch.mmio_decode.rt;
+
+ if (is_write) {
+ data = vcpu_data_guest_to_host(vcpu, *vcpu_reg(vcpu, rt), len);
+
+ trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, data);
+ mmio_write_buf(data_buf, len, data);
+
+ ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+ data_buf);
+ } else {
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len,
+ fault_ipa, 0);
+
+ ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+ data_buf);
+ }
+
+ /* Now prepare kvm_run for the potential return to userland. */
+ run->mmio.is_write = is_write;
+ run->mmio.phys_addr = fault_ipa;
+ run->mmio.len = len;
+ memcpy(run->mmio.data, data_buf, len);
+
+ if (!ret) {
+ /* We handled the access successfully in the kernel. */
+ kvm_handle_mmio_return(vcpu, run);
+ return 1;
+ }
+
+ run->exit_reason = KVM_EXIT_MMIO;
+ return 0;
+}
diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c
new file mode 100644
index 000000000..1d5accbd3
--- /dev/null
+++ b/arch/arm/kvm/mmu.c
@@ -0,0 +1,1926 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/mman.h>
+#include <linux/kvm_host.h>
+#include <linux/io.h>
+#include <linux/hugetlb.h>
+#include <trace/events/kvm.h>
+#include <asm/pgalloc.h>
+#include <asm/cacheflush.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_mmio.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+
+#include "trace.h"
+
+extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
+
+static pgd_t *boot_hyp_pgd;
+static pgd_t *hyp_pgd;
+static pgd_t *merged_hyp_pgd;
+static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
+
+static unsigned long hyp_idmap_start;
+static unsigned long hyp_idmap_end;
+static phys_addr_t hyp_idmap_vector;
+
+#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
+
+#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
+#define kvm_pud_huge(_x) pud_huge(_x)
+
+#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
+#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
+
+static bool memslot_is_logging(struct kvm_memory_slot *memslot)
+{
+ return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
+}
+
+/**
+ * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
+ * @kvm: pointer to kvm structure.
+ *
+ * Interface to HYP function to flush all VM TLB entries
+ */
+void kvm_flush_remote_tlbs(struct kvm *kvm)
+{
+ kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
+}
+
+static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
+{
+ /*
+ * This function also gets called when dealing with HYP page
+ * tables. As HYP doesn't have an associated struct kvm (and
+ * the HYP page tables are fairly static), we don't do
+ * anything there.
+ */
+ if (kvm)
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
+}
+
+/*
+ * D-Cache management functions. They take the page table entries by
+ * value, as they are flushing the cache using the kernel mapping (or
+ * kmap on 32bit).
+ */
+static void kvm_flush_dcache_pte(pte_t pte)
+{
+ __kvm_flush_dcache_pte(pte);
+}
+
+static void kvm_flush_dcache_pmd(pmd_t pmd)
+{
+ __kvm_flush_dcache_pmd(pmd);
+}
+
+static void kvm_flush_dcache_pud(pud_t pud)
+{
+ __kvm_flush_dcache_pud(pud);
+}
+
+/**
+ * stage2_dissolve_pmd() - clear and flush huge PMD entry
+ * @kvm: pointer to kvm structure.
+ * @addr: IPA
+ * @pmd: pmd pointer for IPA
+ *
+ * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
+ * pages in the range dirty.
+ */
+static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
+{
+ if (!kvm_pmd_huge(*pmd))
+ return;
+
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ put_page(virt_to_page(pmd));
+}
+
+static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
+ int min, int max)
+{
+ void *page;
+
+ BUG_ON(max > KVM_NR_MEM_OBJS);
+ if (cache->nobjs >= min)
+ return 0;
+ while (cache->nobjs < max) {
+ page = (void *)__get_free_page(PGALLOC_GFP);
+ if (!page)
+ return -ENOMEM;
+ cache->objects[cache->nobjs++] = page;
+ }
+ return 0;
+}
+
+static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
+{
+ while (mc->nobjs)
+ free_page((unsigned long)mc->objects[--mc->nobjs]);
+}
+
+static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
+{
+ void *p;
+
+ BUG_ON(!mc || !mc->nobjs);
+ p = mc->objects[--mc->nobjs];
+ return p;
+}
+
+static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
+{
+ pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
+ pgd_clear(pgd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ pud_free(NULL, pud_table);
+ put_page(virt_to_page(pgd));
+}
+
+static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
+{
+ pmd_t *pmd_table = pmd_offset(pud, 0);
+ VM_BUG_ON(pud_huge(*pud));
+ pud_clear(pud);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ pmd_free(NULL, pmd_table);
+ put_page(virt_to_page(pud));
+}
+
+static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
+{
+ pte_t *pte_table = pte_offset_kernel(pmd, 0);
+ VM_BUG_ON(kvm_pmd_huge(*pmd));
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ pte_free_kernel(NULL, pte_table);
+ put_page(virt_to_page(pmd));
+}
+
+/*
+ * Unmapping vs dcache management:
+ *
+ * If a guest maps certain memory pages as uncached, all writes will
+ * bypass the data cache and go directly to RAM. However, the CPUs
+ * can still speculate reads (not writes) and fill cache lines with
+ * data.
+ *
+ * Those cache lines will be *clean* cache lines though, so a
+ * clean+invalidate operation is equivalent to an invalidate
+ * operation, because no cache lines are marked dirty.
+ *
+ * Those clean cache lines could be filled prior to an uncached write
+ * by the guest, and the cache coherent IO subsystem would therefore
+ * end up writing old data to disk.
+ *
+ * This is why right after unmapping a page/section and invalidating
+ * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
+ * the IO subsystem will never hit in the cache.
+ */
+static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t start_addr = addr;
+ pte_t *pte, *start_pte;
+
+ start_pte = pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ pte_t old_pte = *pte;
+
+ kvm_set_pte(pte, __pte(0));
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+
+ /* No need to invalidate the cache for device mappings */
+ if ((pte_val(old_pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
+ kvm_flush_dcache_pte(old_pte);
+
+ put_page(virt_to_page(pte));
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+
+ if (kvm_pte_table_empty(kvm, start_pte))
+ clear_pmd_entry(kvm, pmd, start_addr);
+}
+
+static void unmap_pmds(struct kvm *kvm, pud_t *pud,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next, start_addr = addr;
+ pmd_t *pmd, *start_pmd;
+
+ start_pmd = pmd = pmd_offset(pud, addr);
+ do {
+ next = kvm_pmd_addr_end(addr, end);
+ if (!pmd_none(*pmd)) {
+ if (kvm_pmd_huge(*pmd)) {
+ pmd_t old_pmd = *pmd;
+
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+
+ kvm_flush_dcache_pmd(old_pmd);
+
+ put_page(virt_to_page(pmd));
+ } else {
+ unmap_ptes(kvm, pmd, addr, next);
+ }
+ }
+ } while (pmd++, addr = next, addr != end);
+
+ if (kvm_pmd_table_empty(kvm, start_pmd))
+ clear_pud_entry(kvm, pud, start_addr);
+}
+
+static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next, start_addr = addr;
+ pud_t *pud, *start_pud;
+
+ start_pud = pud = pud_offset(pgd, addr);
+ do {
+ next = kvm_pud_addr_end(addr, end);
+ if (!pud_none(*pud)) {
+ if (pud_huge(*pud)) {
+ pud_t old_pud = *pud;
+
+ pud_clear(pud);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+
+ kvm_flush_dcache_pud(old_pud);
+
+ put_page(virt_to_page(pud));
+ } else {
+ unmap_pmds(kvm, pud, addr, next);
+ }
+ }
+ } while (pud++, addr = next, addr != end);
+
+ if (kvm_pud_table_empty(kvm, start_pud))
+ clear_pgd_entry(kvm, pgd, start_addr);
+}
+
+
+static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
+ phys_addr_t start, u64 size)
+{
+ pgd_t *pgd;
+ phys_addr_t addr = start, end = start + size;
+ phys_addr_t next;
+
+ pgd = pgdp + kvm_pgd_index(addr);
+ do {
+ next = kvm_pgd_addr_end(addr, end);
+ if (!pgd_none(*pgd))
+ unmap_puds(kvm, pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte) &&
+ (pte_val(*pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
+ kvm_flush_dcache_pte(*pte);
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pmd_t *pmd;
+ phys_addr_t next;
+
+ pmd = pmd_offset(pud, addr);
+ do {
+ next = kvm_pmd_addr_end(addr, end);
+ if (!pmd_none(*pmd)) {
+ if (kvm_pmd_huge(*pmd))
+ kvm_flush_dcache_pmd(*pmd);
+ else
+ stage2_flush_ptes(kvm, pmd, addr, next);
+ }
+ } while (pmd++, addr = next, addr != end);
+}
+
+static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pud_t *pud;
+ phys_addr_t next;
+
+ pud = pud_offset(pgd, addr);
+ do {
+ next = kvm_pud_addr_end(addr, end);
+ if (!pud_none(*pud)) {
+ if (pud_huge(*pud))
+ kvm_flush_dcache_pud(*pud);
+ else
+ stage2_flush_pmds(kvm, pud, addr, next);
+ }
+ } while (pud++, addr = next, addr != end);
+}
+
+static void stage2_flush_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
+ phys_addr_t next;
+ pgd_t *pgd;
+
+ pgd = kvm->arch.pgd + kvm_pgd_index(addr);
+ do {
+ next = kvm_pgd_addr_end(addr, end);
+ stage2_flush_puds(kvm, pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+/**
+ * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the stage 2 page tables and invalidate any cache lines
+ * backing memory already mapped to the VM.
+ */
+static void stage2_flush_vm(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int idx;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ spin_lock(&kvm->mmu_lock);
+
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, slots)
+ stage2_flush_memslot(kvm, memslot);
+
+ spin_unlock(&kvm->mmu_lock);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+/**
+ * free_boot_hyp_pgd - free HYP boot page tables
+ *
+ * Free the HYP boot page tables. The bounce page is also freed.
+ */
+void free_boot_hyp_pgd(void)
+{
+ mutex_lock(&kvm_hyp_pgd_mutex);
+
+ if (boot_hyp_pgd) {
+ unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
+ unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
+ free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
+ boot_hyp_pgd = NULL;
+ }
+
+ if (hyp_pgd)
+ unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
+
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+}
+
+/**
+ * free_hyp_pgds - free Hyp-mode page tables
+ *
+ * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
+ * therefore contains either mappings in the kernel memory area (above
+ * PAGE_OFFSET), or device mappings in the vmalloc range (from
+ * VMALLOC_START to VMALLOC_END).
+ *
+ * boot_hyp_pgd should only map two pages for the init code.
+ */
+void free_hyp_pgds(void)
+{
+ unsigned long addr;
+
+ free_boot_hyp_pgd();
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+
+ if (hyp_pgd) {
+ for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
+ unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
+ for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
+ unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
+
+ free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
+ hyp_pgd = NULL;
+ }
+ if (merged_hyp_pgd) {
+ clear_page(merged_hyp_pgd);
+ free_page((unsigned long)merged_hyp_pgd);
+ merged_hyp_pgd = NULL;
+ }
+
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+}
+
+static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pte_t *pte;
+ unsigned long addr;
+
+ addr = start;
+ do {
+ pte = pte_offset_kernel(pmd, addr);
+ kvm_set_pte(pte, pfn_pte(pfn, prot));
+ get_page(virt_to_page(pte));
+ kvm_flush_dcache_to_poc(pte, sizeof(*pte));
+ pfn++;
+ } while (addr += PAGE_SIZE, addr != end);
+}
+
+static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned long addr, next;
+
+ addr = start;
+ do {
+ pmd = pmd_offset(pud, addr);
+
+ BUG_ON(pmd_sect(*pmd));
+
+ if (pmd_none(*pmd)) {
+ pte = pte_alloc_one_kernel(NULL, addr);
+ if (!pte) {
+ kvm_err("Cannot allocate Hyp pte\n");
+ return -ENOMEM;
+ }
+ pmd_populate_kernel(NULL, pmd, pte);
+ get_page(virt_to_page(pmd));
+ kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
+ }
+
+ next = pmd_addr_end(addr, end);
+
+ create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+
+ return 0;
+}
+
+static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+ unsigned long addr, next;
+ int ret;
+
+ addr = start;
+ do {
+ pud = pud_offset(pgd, addr);
+
+ if (pud_none_or_clear_bad(pud)) {
+ pmd = pmd_alloc_one(NULL, addr);
+ if (!pmd) {
+ kvm_err("Cannot allocate Hyp pmd\n");
+ return -ENOMEM;
+ }
+ pud_populate(NULL, pud, pmd);
+ get_page(virt_to_page(pud));
+ kvm_flush_dcache_to_poc(pud, sizeof(*pud));
+ }
+
+ next = pud_addr_end(addr, end);
+ ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
+ if (ret)
+ return ret;
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+
+ return 0;
+}
+
+static int __create_hyp_mappings(pgd_t *pgdp,
+ unsigned long start, unsigned long end,
+ unsigned long pfn, pgprot_t prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ unsigned long addr, next;
+ int err = 0;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+ addr = start & PAGE_MASK;
+ end = PAGE_ALIGN(end);
+ do {
+ pgd = pgdp + pgd_index(addr);
+
+ if (pgd_none(*pgd)) {
+ pud = pud_alloc_one(NULL, addr);
+ if (!pud) {
+ kvm_err("Cannot allocate Hyp pud\n");
+ err = -ENOMEM;
+ goto out;
+ }
+ pgd_populate(NULL, pgd, pud);
+ get_page(virt_to_page(pgd));
+ kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
+ }
+
+ next = pgd_addr_end(addr, end);
+ err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
+ if (err)
+ goto out;
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+out:
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+ return err;
+}
+
+static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
+{
+ if (!is_vmalloc_addr(kaddr)) {
+ BUG_ON(!virt_addr_valid(kaddr));
+ return __pa(kaddr);
+ } else {
+ return page_to_phys(vmalloc_to_page(kaddr)) +
+ offset_in_page(kaddr);
+ }
+}
+
+/**
+ * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
+ * @from: The virtual kernel start address of the range
+ * @to: The virtual kernel end address of the range (exclusive)
+ *
+ * The same virtual address as the kernel virtual address is also used
+ * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
+ * physical pages.
+ */
+int create_hyp_mappings(void *from, void *to)
+{
+ phys_addr_t phys_addr;
+ unsigned long virt_addr;
+ unsigned long start = KERN_TO_HYP((unsigned long)from);
+ unsigned long end = KERN_TO_HYP((unsigned long)to);
+
+ start = start & PAGE_MASK;
+ end = PAGE_ALIGN(end);
+
+ for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
+ int err;
+
+ phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
+ err = __create_hyp_mappings(hyp_pgd, virt_addr,
+ virt_addr + PAGE_SIZE,
+ __phys_to_pfn(phys_addr),
+ PAGE_HYP);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+/**
+ * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
+ * @from: The kernel start VA of the range
+ * @to: The kernel end VA of the range (exclusive)
+ * @phys_addr: The physical start address which gets mapped
+ *
+ * The resulting HYP VA is the same as the kernel VA, modulo
+ * HYP_PAGE_OFFSET.
+ */
+int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
+{
+ unsigned long start = KERN_TO_HYP((unsigned long)from);
+ unsigned long end = KERN_TO_HYP((unsigned long)to);
+
+ /* Check for a valid kernel IO mapping */
+ if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
+ return -EINVAL;
+
+ return __create_hyp_mappings(hyp_pgd, start, end,
+ __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
+}
+
+/* Free the HW pgd, one page at a time */
+static void kvm_free_hwpgd(void *hwpgd)
+{
+ free_pages_exact(hwpgd, kvm_get_hwpgd_size());
+}
+
+/* Allocate the HW PGD, making sure that each page gets its own refcount */
+static void *kvm_alloc_hwpgd(void)
+{
+ unsigned int size = kvm_get_hwpgd_size();
+
+ return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
+}
+
+/**
+ * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
+ * @kvm: The KVM struct pointer for the VM.
+ *
+ * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
+ * support either full 40-bit input addresses or limited to 32-bit input
+ * addresses). Clears the allocated pages.
+ *
+ * Note we don't need locking here as this is only called when the VM is
+ * created, which can only be done once.
+ */
+int kvm_alloc_stage2_pgd(struct kvm *kvm)
+{
+ pgd_t *pgd;
+ void *hwpgd;
+
+ if (kvm->arch.pgd != NULL) {
+ kvm_err("kvm_arch already initialized?\n");
+ return -EINVAL;
+ }
+
+ hwpgd = kvm_alloc_hwpgd();
+ if (!hwpgd)
+ return -ENOMEM;
+
+ /* When the kernel uses more levels of page tables than the
+ * guest, we allocate a fake PGD and pre-populate it to point
+ * to the next-level page table, which will be the real
+ * initial page table pointed to by the VTTBR.
+ *
+ * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
+ * the PMD and the kernel will use folded pud.
+ * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
+ * pages.
+ */
+ if (KVM_PREALLOC_LEVEL > 0) {
+ int i;
+
+ /*
+ * Allocate fake pgd for the page table manipulation macros to
+ * work. This is not used by the hardware and we have no
+ * alignment requirement for this allocation.
+ */
+ pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
+ GFP_KERNEL | __GFP_ZERO);
+
+ if (!pgd) {
+ kvm_free_hwpgd(hwpgd);
+ return -ENOMEM;
+ }
+
+ /* Plug the HW PGD into the fake one. */
+ for (i = 0; i < PTRS_PER_S2_PGD; i++) {
+ if (KVM_PREALLOC_LEVEL == 1)
+ pgd_populate(NULL, pgd + i,
+ (pud_t *)hwpgd + i * PTRS_PER_PUD);
+ else if (KVM_PREALLOC_LEVEL == 2)
+ pud_populate(NULL, pud_offset(pgd, 0) + i,
+ (pmd_t *)hwpgd + i * PTRS_PER_PMD);
+ }
+ } else {
+ /*
+ * Allocate actual first-level Stage-2 page table used by the
+ * hardware for Stage-2 page table walks.
+ */
+ pgd = (pgd_t *)hwpgd;
+ }
+
+ kvm_clean_pgd(pgd);
+ kvm->arch.pgd = pgd;
+ return 0;
+}
+
+/**
+ * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
+ * @kvm: The VM pointer
+ * @start: The intermediate physical base address of the range to unmap
+ * @size: The size of the area to unmap
+ *
+ * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
+ * be called while holding mmu_lock (unless for freeing the stage2 pgd before
+ * destroying the VM), otherwise another faulting VCPU may come in and mess
+ * with things behind our backs.
+ */
+static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
+{
+ unmap_range(kvm, kvm->arch.pgd, start, size);
+}
+
+static void stage2_unmap_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ hva_t hva = memslot->userspace_addr;
+ phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t size = PAGE_SIZE * memslot->npages;
+ hva_t reg_end = hva + size;
+
+ /*
+ * A memory region could potentially cover multiple VMAs, and any holes
+ * between them, so iterate over all of them to find out if we should
+ * unmap any of them.
+ *
+ * +--------------------------------------------+
+ * +---------------+----------------+ +----------------+
+ * | : VMA 1 | VMA 2 | | VMA 3 : |
+ * +---------------+----------------+ +----------------+
+ * | memory region |
+ * +--------------------------------------------+
+ */
+ do {
+ struct vm_area_struct *vma = find_vma(current->mm, hva);
+ hva_t vm_start, vm_end;
+
+ if (!vma || vma->vm_start >= reg_end)
+ break;
+
+ /*
+ * Take the intersection of this VMA with the memory region
+ */
+ vm_start = max(hva, vma->vm_start);
+ vm_end = min(reg_end, vma->vm_end);
+
+ if (!(vma->vm_flags & VM_PFNMAP)) {
+ gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
+ unmap_stage2_range(kvm, gpa, vm_end - vm_start);
+ }
+ hva = vm_end;
+ } while (hva < reg_end);
+}
+
+/**
+ * stage2_unmap_vm - Unmap Stage-2 RAM mappings
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the memregions and unmap any reguler RAM
+ * backing memory already mapped to the VM.
+ */
+void stage2_unmap_vm(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int idx;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ spin_lock(&kvm->mmu_lock);
+
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, slots)
+ stage2_unmap_memslot(kvm, memslot);
+
+ spin_unlock(&kvm->mmu_lock);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+/**
+ * kvm_free_stage2_pgd - free all stage-2 tables
+ * @kvm: The KVM struct pointer for the VM.
+ *
+ * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
+ * underlying level-2 and level-3 tables before freeing the actual level-1 table
+ * and setting the struct pointer to NULL.
+ *
+ * Note we don't need locking here as this is only called when the VM is
+ * destroyed, which can only be done once.
+ */
+void kvm_free_stage2_pgd(struct kvm *kvm)
+{
+ if (kvm->arch.pgd == NULL)
+ return;
+
+ unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
+ kvm_free_hwpgd(kvm_get_hwpgd(kvm));
+ if (KVM_PREALLOC_LEVEL > 0)
+ kfree(kvm->arch.pgd);
+
+ kvm->arch.pgd = NULL;
+}
+
+static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+
+ pgd = kvm->arch.pgd + kvm_pgd_index(addr);
+ if (WARN_ON(pgd_none(*pgd))) {
+ if (!cache)
+ return NULL;
+ pud = mmu_memory_cache_alloc(cache);
+ pgd_populate(NULL, pgd, pud);
+ get_page(virt_to_page(pgd));
+ }
+
+ return pud_offset(pgd, addr);
+}
+
+static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+
+ pud = stage2_get_pud(kvm, cache, addr);
+ if (pud_none(*pud)) {
+ if (!cache)
+ return NULL;
+ pmd = mmu_memory_cache_alloc(cache);
+ pud_populate(NULL, pud, pmd);
+ get_page(virt_to_page(pud));
+ }
+
+ return pmd_offset(pud, addr);
+}
+
+static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
+ *cache, phys_addr_t addr, const pmd_t *new_pmd)
+{
+ pmd_t *pmd, old_pmd;
+
+ pmd = stage2_get_pmd(kvm, cache, addr);
+ VM_BUG_ON(!pmd);
+
+ /*
+ * Mapping in huge pages should only happen through a fault. If a
+ * page is merged into a transparent huge page, the individual
+ * subpages of that huge page should be unmapped through MMU
+ * notifiers before we get here.
+ *
+ * Merging of CompoundPages is not supported; they should become
+ * splitting first, unmapped, merged, and mapped back in on-demand.
+ */
+ VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
+
+ old_pmd = *pmd;
+ kvm_set_pmd(pmd, *new_pmd);
+ if (pmd_present(old_pmd))
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ else
+ get_page(virt_to_page(pmd));
+ return 0;
+}
+
+static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr, const pte_t *new_pte,
+ unsigned long flags)
+{
+ pmd_t *pmd;
+ pte_t *pte, old_pte;
+ bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
+ bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
+
+ VM_BUG_ON(logging_active && !cache);
+
+ /* Create stage-2 page table mapping - Levels 0 and 1 */
+ pmd = stage2_get_pmd(kvm, cache, addr);
+ if (!pmd) {
+ /*
+ * Ignore calls from kvm_set_spte_hva for unallocated
+ * address ranges.
+ */
+ return 0;
+ }
+
+ /*
+ * While dirty page logging - dissolve huge PMD, then continue on to
+ * allocate page.
+ */
+ if (logging_active)
+ stage2_dissolve_pmd(kvm, addr, pmd);
+
+ /* Create stage-2 page mappings - Level 2 */
+ if (pmd_none(*pmd)) {
+ if (!cache)
+ return 0; /* ignore calls from kvm_set_spte_hva */
+ pte = mmu_memory_cache_alloc(cache);
+ kvm_clean_pte(pte);
+ pmd_populate_kernel(NULL, pmd, pte);
+ get_page(virt_to_page(pmd));
+ }
+
+ pte = pte_offset_kernel(pmd, addr);
+
+ if (iomap && pte_present(*pte))
+ return -EFAULT;
+
+ /* Create 2nd stage page table mapping - Level 3 */
+ old_pte = *pte;
+ kvm_set_pte(pte, *new_pte);
+ if (pte_present(old_pte))
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ else
+ get_page(virt_to_page(pte));
+
+ return 0;
+}
+
+/**
+ * kvm_phys_addr_ioremap - map a device range to guest IPA
+ *
+ * @kvm: The KVM pointer
+ * @guest_ipa: The IPA at which to insert the mapping
+ * @pa: The physical address of the device
+ * @size: The size of the mapping
+ */
+int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
+ phys_addr_t pa, unsigned long size, bool writable)
+{
+ phys_addr_t addr, end;
+ int ret = 0;
+ unsigned long pfn;
+ struct kvm_mmu_memory_cache cache = { 0, };
+
+ end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
+ pfn = __phys_to_pfn(pa);
+
+ for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
+ pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
+
+ if (writable)
+ kvm_set_s2pte_writable(&pte);
+
+ ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
+ KVM_NR_MEM_OBJS);
+ if (ret)
+ goto out;
+ spin_lock(&kvm->mmu_lock);
+ ret = stage2_set_pte(kvm, &cache, addr, &pte,
+ KVM_S2PTE_FLAG_IS_IOMAP);
+ spin_unlock(&kvm->mmu_lock);
+ if (ret)
+ goto out;
+
+ pfn++;
+ }
+
+out:
+ mmu_free_memory_cache(&cache);
+ return ret;
+}
+
+static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
+{
+ pfn_t pfn = *pfnp;
+ gfn_t gfn = *ipap >> PAGE_SHIFT;
+
+ if (PageTransCompound(pfn_to_page(pfn))) {
+ unsigned long mask;
+ /*
+ * The address we faulted on is backed by a transparent huge
+ * page. However, because we map the compound huge page and
+ * not the individual tail page, we need to transfer the
+ * refcount to the head page. We have to be careful that the
+ * THP doesn't start to split while we are adjusting the
+ * refcounts.
+ *
+ * We are sure this doesn't happen, because mmu_notifier_retry
+ * was successful and we are holding the mmu_lock, so if this
+ * THP is trying to split, it will be blocked in the mmu
+ * notifier before touching any of the pages, specifically
+ * before being able to call __split_huge_page_refcount().
+ *
+ * We can therefore safely transfer the refcount from PG_tail
+ * to PG_head and switch the pfn from a tail page to the head
+ * page accordingly.
+ */
+ mask = PTRS_PER_PMD - 1;
+ VM_BUG_ON((gfn & mask) != (pfn & mask));
+ if (pfn & mask) {
+ *ipap &= PMD_MASK;
+ kvm_release_pfn_clean(pfn);
+ pfn &= ~mask;
+ kvm_get_pfn(pfn);
+ *pfnp = pfn;
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vcpu_trap_is_iabt(vcpu))
+ return false;
+
+ return kvm_vcpu_dabt_iswrite(vcpu);
+}
+
+static bool kvm_is_device_pfn(unsigned long pfn)
+{
+ return !pfn_valid(pfn);
+}
+
+/**
+ * stage2_wp_ptes - write protect PMD range
+ * @pmd: pointer to pmd entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ if (!kvm_s2pte_readonly(pte))
+ kvm_set_s2pte_readonly(pte);
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+/**
+ * stage2_wp_pmds - write protect PUD range
+ * @pud: pointer to pud entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
+{
+ pmd_t *pmd;
+ phys_addr_t next;
+
+ pmd = pmd_offset(pud, addr);
+
+ do {
+ next = kvm_pmd_addr_end(addr, end);
+ if (!pmd_none(*pmd)) {
+ if (kvm_pmd_huge(*pmd)) {
+ if (!kvm_s2pmd_readonly(pmd))
+ kvm_set_s2pmd_readonly(pmd);
+ } else {
+ stage2_wp_ptes(pmd, addr, next);
+ }
+ }
+ } while (pmd++, addr = next, addr != end);
+}
+
+/**
+ * stage2_wp_puds - write protect PGD range
+ * @pgd: pointer to pgd entry
+ * @addr: range start address
+ * @end: range end address
+ *
+ * Process PUD entries, for a huge PUD we cause a panic.
+ */
+static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
+{
+ pud_t *pud;
+ phys_addr_t next;
+
+ pud = pud_offset(pgd, addr);
+ do {
+ next = kvm_pud_addr_end(addr, end);
+ if (!pud_none(*pud)) {
+ /* TODO:PUD not supported, revisit later if supported */
+ BUG_ON(kvm_pud_huge(*pud));
+ stage2_wp_pmds(pud, addr, next);
+ }
+ } while (pud++, addr = next, addr != end);
+}
+
+/**
+ * stage2_wp_range() - write protect stage2 memory region range
+ * @kvm: The KVM pointer
+ * @addr: Start address of range
+ * @end: End address of range
+ */
+static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
+{
+ pgd_t *pgd;
+ phys_addr_t next;
+
+ pgd = kvm->arch.pgd + kvm_pgd_index(addr);
+ do {
+ /*
+ * Release kvm_mmu_lock periodically if the memory region is
+ * large. Otherwise, we may see kernel panics with
+ * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
+ * CONFIG_LOCKDEP. Additionally, holding the lock too long
+ * will also starve other vCPUs.
+ */
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+ cond_resched_lock(&kvm->mmu_lock);
+
+ next = kvm_pgd_addr_end(addr, end);
+ if (pgd_present(*pgd))
+ stage2_wp_puds(pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+/**
+ * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
+ * @kvm: The KVM pointer
+ * @slot: The memory slot to write protect
+ *
+ * Called to start logging dirty pages after memory region
+ * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
+ * all present PMD and PTEs are write protected in the memory region.
+ * Afterwards read of dirty page log can be called.
+ *
+ * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
+ * serializing operations for VM memory regions.
+ */
+void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
+{
+ struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
+ phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
+
+ spin_lock(&kvm->mmu_lock);
+ stage2_wp_range(kvm, start, end);
+ spin_unlock(&kvm->mmu_lock);
+ kvm_flush_remote_tlbs(kvm);
+}
+
+/**
+ * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
+ * @kvm: The KVM pointer
+ * @slot: The memory slot associated with mask
+ * @gfn_offset: The gfn offset in memory slot
+ * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
+ * slot to be write protected
+ *
+ * Walks bits set in mask write protects the associated pte's. Caller must
+ * acquire kvm_mmu_lock.
+ */
+static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
+ phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
+ phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
+
+ stage2_wp_range(kvm, start, end);
+}
+
+/*
+ * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
+ * dirty pages.
+ *
+ * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
+ * enable dirty logging for them.
+ */
+void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
+}
+
+static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
+ unsigned long size, bool uncached)
+{
+ __coherent_cache_guest_page(vcpu, pfn, size, uncached);
+}
+
+static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
+ struct kvm_memory_slot *memslot, unsigned long hva,
+ unsigned long fault_status)
+{
+ int ret;
+ bool write_fault, writable, hugetlb = false, force_pte = false;
+ unsigned long mmu_seq;
+ gfn_t gfn = fault_ipa >> PAGE_SHIFT;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
+ struct vm_area_struct *vma;
+ pfn_t pfn;
+ pgprot_t mem_type = PAGE_S2;
+ bool fault_ipa_uncached;
+ bool logging_active = memslot_is_logging(memslot);
+ unsigned long flags = 0;
+
+ write_fault = kvm_is_write_fault(vcpu);
+ if (fault_status == FSC_PERM && !write_fault) {
+ kvm_err("Unexpected L2 read permission error\n");
+ return -EFAULT;
+ }
+
+ /* Let's check if we will get back a huge page backed by hugetlbfs */
+ down_read(&current->mm->mmap_sem);
+ vma = find_vma_intersection(current->mm, hva, hva + 1);
+ if (unlikely(!vma)) {
+ kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
+ up_read(&current->mm->mmap_sem);
+ return -EFAULT;
+ }
+
+ if (is_vm_hugetlb_page(vma) && !logging_active) {
+ hugetlb = true;
+ gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
+ } else {
+ /*
+ * Pages belonging to memslots that don't have the same
+ * alignment for userspace and IPA cannot be mapped using
+ * block descriptors even if the pages belong to a THP for
+ * the process, because the stage-2 block descriptor will
+ * cover more than a single THP and we loose atomicity for
+ * unmapping, updates, and splits of the THP or other pages
+ * in the stage-2 block range.
+ */
+ if ((memslot->userspace_addr & ~PMD_MASK) !=
+ ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
+ force_pte = true;
+ }
+ up_read(&current->mm->mmap_sem);
+
+ /* We need minimum second+third level pages */
+ ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
+ KVM_NR_MEM_OBJS);
+ if (ret)
+ return ret;
+
+ mmu_seq = vcpu->kvm->mmu_notifier_seq;
+ /*
+ * Ensure the read of mmu_notifier_seq happens before we call
+ * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
+ * the page we just got a reference to gets unmapped before we have a
+ * chance to grab the mmu_lock, which ensure that if the page gets
+ * unmapped afterwards, the call to kvm_unmap_hva will take it away
+ * from us again properly. This smp_rmb() interacts with the smp_wmb()
+ * in kvm_mmu_notifier_invalidate_<page|range_end>.
+ */
+ smp_rmb();
+
+ pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
+ if (is_error_pfn(pfn))
+ return -EFAULT;
+
+ if (kvm_is_device_pfn(pfn)) {
+ mem_type = PAGE_S2_DEVICE;
+ flags |= KVM_S2PTE_FLAG_IS_IOMAP;
+ } else if (logging_active) {
+ /*
+ * Faults on pages in a memslot with logging enabled
+ * should not be mapped with huge pages (it introduces churn
+ * and performance degradation), so force a pte mapping.
+ */
+ force_pte = true;
+ flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
+
+ /*
+ * Only actually map the page as writable if this was a write
+ * fault.
+ */
+ if (!write_fault)
+ writable = false;
+ }
+
+ spin_lock(&kvm->mmu_lock);
+ if (mmu_notifier_retry(kvm, mmu_seq))
+ goto out_unlock;
+
+ if (!hugetlb && !force_pte)
+ hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
+
+ fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
+
+ if (hugetlb) {
+ pmd_t new_pmd = pfn_pmd(pfn, mem_type);
+ new_pmd = pmd_mkhuge(new_pmd);
+ if (writable) {
+ kvm_set_s2pmd_writable(&new_pmd);
+ kvm_set_pfn_dirty(pfn);
+ }
+ coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
+ ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
+ } else {
+ pte_t new_pte = pfn_pte(pfn, mem_type);
+
+ if (writable) {
+ kvm_set_s2pte_writable(&new_pte);
+ kvm_set_pfn_dirty(pfn);
+ mark_page_dirty(kvm, gfn);
+ }
+ coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
+ ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
+ }
+
+out_unlock:
+ spin_unlock(&kvm->mmu_lock);
+ kvm_set_pfn_accessed(pfn);
+ kvm_release_pfn_clean(pfn);
+ return ret;
+}
+
+/*
+ * Resolve the access fault by making the page young again.
+ * Note that because the faulting entry is guaranteed not to be
+ * cached in the TLB, we don't need to invalidate anything.
+ */
+static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+ pfn_t pfn;
+ bool pfn_valid = false;
+
+ trace_kvm_access_fault(fault_ipa);
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+
+ pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
+ if (!pmd || pmd_none(*pmd)) /* Nothing there */
+ goto out;
+
+ if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
+ *pmd = pmd_mkyoung(*pmd);
+ pfn = pmd_pfn(*pmd);
+ pfn_valid = true;
+ goto out;
+ }
+
+ pte = pte_offset_kernel(pmd, fault_ipa);
+ if (pte_none(*pte)) /* Nothing there either */
+ goto out;
+
+ *pte = pte_mkyoung(*pte); /* Just a page... */
+ pfn = pte_pfn(*pte);
+ pfn_valid = true;
+out:
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ if (pfn_valid)
+ kvm_set_pfn_accessed(pfn);
+}
+
+/**
+ * kvm_handle_guest_abort - handles all 2nd stage aborts
+ * @vcpu: the VCPU pointer
+ * @run: the kvm_run structure
+ *
+ * Any abort that gets to the host is almost guaranteed to be caused by a
+ * missing second stage translation table entry, which can mean that either the
+ * guest simply needs more memory and we must allocate an appropriate page or it
+ * can mean that the guest tried to access I/O memory, which is emulated by user
+ * space. The distinction is based on the IPA causing the fault and whether this
+ * memory region has been registered as standard RAM by user space.
+ */
+int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ unsigned long fault_status;
+ phys_addr_t fault_ipa;
+ struct kvm_memory_slot *memslot;
+ unsigned long hva;
+ bool is_iabt, write_fault, writable;
+ gfn_t gfn;
+ int ret, idx;
+
+ is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
+ fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
+
+ trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
+ kvm_vcpu_get_hfar(vcpu), fault_ipa);
+
+ /* Check the stage-2 fault is trans. fault or write fault */
+ fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
+ if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
+ fault_status != FSC_ACCESS) {
+ kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
+ kvm_vcpu_trap_get_class(vcpu),
+ (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
+ (unsigned long)kvm_vcpu_get_hsr(vcpu));
+ return -EFAULT;
+ }
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ gfn = fault_ipa >> PAGE_SHIFT;
+ memslot = gfn_to_memslot(vcpu->kvm, gfn);
+ hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
+ write_fault = kvm_is_write_fault(vcpu);
+ if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
+ if (is_iabt) {
+ /* Prefetch Abort on I/O address */
+ kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ ret = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * The IPA is reported as [MAX:12], so we need to
+ * complement it with the bottom 12 bits from the
+ * faulting VA. This is always 12 bits, irrespective
+ * of the page size.
+ */
+ fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
+ ret = io_mem_abort(vcpu, run, fault_ipa);
+ goto out_unlock;
+ }
+
+ /* Userspace should not be able to register out-of-bounds IPAs */
+ VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
+
+ if (fault_status == FSC_ACCESS) {
+ handle_access_fault(vcpu, fault_ipa);
+ ret = 1;
+ goto out_unlock;
+ }
+
+ ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
+ if (ret == 0)
+ ret = 1;
+out_unlock:
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ return ret;
+}
+
+static int handle_hva_to_gpa(struct kvm *kvm,
+ unsigned long start,
+ unsigned long end,
+ int (*handler)(struct kvm *kvm,
+ gpa_t gpa, void *data),
+ void *data)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int ret = 0;
+
+ slots = kvm_memslots(kvm);
+
+ /* we only care about the pages that the guest sees */
+ kvm_for_each_memslot(memslot, slots) {
+ unsigned long hva_start, hva_end;
+ gfn_t gfn, gfn_end;
+
+ hva_start = max(start, memslot->userspace_addr);
+ hva_end = min(end, memslot->userspace_addr +
+ (memslot->npages << PAGE_SHIFT));
+ if (hva_start >= hva_end)
+ continue;
+
+ /*
+ * {gfn(page) | page intersects with [hva_start, hva_end)} =
+ * {gfn_start, gfn_start+1, ..., gfn_end-1}.
+ */
+ gfn = hva_to_gfn_memslot(hva_start, memslot);
+ gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
+
+ for (; gfn < gfn_end; ++gfn) {
+ gpa_t gpa = gfn << PAGE_SHIFT;
+ ret |= handler(kvm, gpa, data);
+ }
+ }
+
+ return ret;
+}
+
+static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
+{
+ unmap_stage2_range(kvm, gpa, PAGE_SIZE);
+ return 0;
+}
+
+int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
+{
+ unsigned long end = hva + PAGE_SIZE;
+
+ if (!kvm->arch.pgd)
+ return 0;
+
+ trace_kvm_unmap_hva(hva);
+ handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
+ return 0;
+}
+
+int kvm_unmap_hva_range(struct kvm *kvm,
+ unsigned long start, unsigned long end)
+{
+ if (!kvm->arch.pgd)
+ return 0;
+
+ trace_kvm_unmap_hva_range(start, end);
+ handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
+ return 0;
+}
+
+static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
+{
+ pte_t *pte = (pte_t *)data;
+
+ /*
+ * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
+ * flag clear because MMU notifiers will have unmapped a huge PMD before
+ * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
+ * therefore stage2_set_pte() never needs to clear out a huge PMD
+ * through this calling path.
+ */
+ stage2_set_pte(kvm, NULL, gpa, pte, 0);
+ return 0;
+}
+
+
+void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+{
+ unsigned long end = hva + PAGE_SIZE;
+ pte_t stage2_pte;
+
+ if (!kvm->arch.pgd)
+ return;
+
+ trace_kvm_set_spte_hva(hva);
+ stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
+ handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
+}
+
+static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+
+ pmd = stage2_get_pmd(kvm, NULL, gpa);
+ if (!pmd || pmd_none(*pmd)) /* Nothing there */
+ return 0;
+
+ if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
+ if (pmd_young(*pmd)) {
+ *pmd = pmd_mkold(*pmd);
+ return 1;
+ }
+
+ return 0;
+ }
+
+ pte = pte_offset_kernel(pmd, gpa);
+ if (pte_none(*pte))
+ return 0;
+
+ if (pte_young(*pte)) {
+ *pte = pte_mkold(*pte); /* Just a page... */
+ return 1;
+ }
+
+ return 0;
+}
+
+static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+
+ pmd = stage2_get_pmd(kvm, NULL, gpa);
+ if (!pmd || pmd_none(*pmd)) /* Nothing there */
+ return 0;
+
+ if (kvm_pmd_huge(*pmd)) /* THP, HugeTLB */
+ return pmd_young(*pmd);
+
+ pte = pte_offset_kernel(pmd, gpa);
+ if (!pte_none(*pte)) /* Just a page... */
+ return pte_young(*pte);
+
+ return 0;
+}
+
+int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
+{
+ trace_kvm_age_hva(start, end);
+ return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
+}
+
+int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ trace_kvm_test_age_hva(hva);
+ return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
+}
+
+void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
+{
+ mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
+}
+
+phys_addr_t kvm_mmu_get_httbr(void)
+{
+ if (__kvm_cpu_uses_extended_idmap())
+ return virt_to_phys(merged_hyp_pgd);
+ else
+ return virt_to_phys(hyp_pgd);
+}
+
+phys_addr_t kvm_mmu_get_boot_httbr(void)
+{
+ if (__kvm_cpu_uses_extended_idmap())
+ return virt_to_phys(merged_hyp_pgd);
+ else
+ return virt_to_phys(boot_hyp_pgd);
+}
+
+phys_addr_t kvm_get_idmap_vector(void)
+{
+ return hyp_idmap_vector;
+}
+
+int kvm_mmu_init(void)
+{
+ int err;
+
+ hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
+ hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
+ hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
+
+ /*
+ * We rely on the linker script to ensure at build time that the HYP
+ * init code does not cross a page boundary.
+ */
+ BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
+
+ hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
+ boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
+
+ if (!hyp_pgd || !boot_hyp_pgd) {
+ kvm_err("Hyp mode PGD not allocated\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /* Create the idmap in the boot page tables */
+ err = __create_hyp_mappings(boot_hyp_pgd,
+ hyp_idmap_start, hyp_idmap_end,
+ __phys_to_pfn(hyp_idmap_start),
+ PAGE_HYP);
+
+ if (err) {
+ kvm_err("Failed to idmap %lx-%lx\n",
+ hyp_idmap_start, hyp_idmap_end);
+ goto out;
+ }
+
+ if (__kvm_cpu_uses_extended_idmap()) {
+ merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
+ if (!merged_hyp_pgd) {
+ kvm_err("Failed to allocate extra HYP pgd\n");
+ goto out;
+ }
+ __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
+ hyp_idmap_start);
+ return 0;
+ }
+
+ /* Map the very same page at the trampoline VA */
+ err = __create_hyp_mappings(boot_hyp_pgd,
+ TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
+ __phys_to_pfn(hyp_idmap_start),
+ PAGE_HYP);
+ if (err) {
+ kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
+ TRAMPOLINE_VA);
+ goto out;
+ }
+
+ /* Map the same page again into the runtime page tables */
+ err = __create_hyp_mappings(hyp_pgd,
+ TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
+ __phys_to_pfn(hyp_idmap_start),
+ PAGE_HYP);
+ if (err) {
+ kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
+ TRAMPOLINE_VA);
+ goto out;
+ }
+
+ return 0;
+out:
+ free_hyp_pgds();
+ return err;
+}
+
+void kvm_arch_commit_memory_region(struct kvm *kvm,
+ struct kvm_userspace_memory_region *mem,
+ const struct kvm_memory_slot *old,
+ enum kvm_mr_change change)
+{
+ /*
+ * At this point memslot has been committed and there is an
+ * allocated dirty_bitmap[], dirty pages will be be tracked while the
+ * memory slot is write protected.
+ */
+ if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
+ kvm_mmu_wp_memory_region(kvm, mem->slot);
+}
+
+int kvm_arch_prepare_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *memslot,
+ struct kvm_userspace_memory_region *mem,
+ enum kvm_mr_change change)
+{
+ hva_t hva = mem->userspace_addr;
+ hva_t reg_end = hva + mem->memory_size;
+ bool writable = !(mem->flags & KVM_MEM_READONLY);
+ int ret = 0;
+
+ if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
+ change != KVM_MR_FLAGS_ONLY)
+ return 0;
+
+ /*
+ * Prevent userspace from creating a memory region outside of the IPA
+ * space addressable by the KVM guest IPA space.
+ */
+ if (memslot->base_gfn + memslot->npages >=
+ (KVM_PHYS_SIZE >> PAGE_SHIFT))
+ return -EFAULT;
+
+ /*
+ * A memory region could potentially cover multiple VMAs, and any holes
+ * between them, so iterate over all of them to find out if we can map
+ * any of them right now.
+ *
+ * +--------------------------------------------+
+ * +---------------+----------------+ +----------------+
+ * | : VMA 1 | VMA 2 | | VMA 3 : |
+ * +---------------+----------------+ +----------------+
+ * | memory region |
+ * +--------------------------------------------+
+ */
+ do {
+ struct vm_area_struct *vma = find_vma(current->mm, hva);
+ hva_t vm_start, vm_end;
+
+ if (!vma || vma->vm_start >= reg_end)
+ break;
+
+ /*
+ * Mapping a read-only VMA is only allowed if the
+ * memory region is configured as read-only.
+ */
+ if (writable && !(vma->vm_flags & VM_WRITE)) {
+ ret = -EPERM;
+ break;
+ }
+
+ /*
+ * Take the intersection of this VMA with the memory region
+ */
+ vm_start = max(hva, vma->vm_start);
+ vm_end = min(reg_end, vma->vm_end);
+
+ if (vma->vm_flags & VM_PFNMAP) {
+ gpa_t gpa = mem->guest_phys_addr +
+ (vm_start - mem->userspace_addr);
+ phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
+ vm_start - vma->vm_start;
+
+ /* IO region dirty page logging not allowed */
+ if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
+ return -EINVAL;
+
+ ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
+ vm_end - vm_start,
+ writable);
+ if (ret)
+ break;
+ }
+ hva = vm_end;
+ } while (hva < reg_end);
+
+ if (change == KVM_MR_FLAGS_ONLY)
+ return ret;
+
+ spin_lock(&kvm->mmu_lock);
+ if (ret)
+ unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
+ else
+ stage2_flush_memslot(kvm, memslot);
+ spin_unlock(&kvm->mmu_lock);
+ return ret;
+}
+
+void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
+ struct kvm_memory_slot *dont)
+{
+}
+
+int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
+ unsigned long npages)
+{
+ /*
+ * Readonly memslots are not incoherent with the caches by definition,
+ * but in practice, they are used mostly to emulate ROMs or NOR flashes
+ * that the guest may consider devices and hence map as uncached.
+ * To prevent incoherency issues in these cases, tag all readonly
+ * regions as incoherent.
+ */
+ if (slot->flags & KVM_MEM_READONLY)
+ slot->flags |= KVM_MEMSLOT_INCOHERENT;
+ return 0;
+}
+
+void kvm_arch_memslots_updated(struct kvm *kvm)
+{
+}
+
+void kvm_arch_flush_shadow_all(struct kvm *kvm)
+{
+}
+
+void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
+ phys_addr_t size = slot->npages << PAGE_SHIFT;
+
+ spin_lock(&kvm->mmu_lock);
+ unmap_stage2_range(kvm, gpa, size);
+ spin_unlock(&kvm->mmu_lock);
+}
+
+/*
+ * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+ *
+ * Main problems:
+ * - S/W ops are local to a CPU (not broadcast)
+ * - We have line migration behind our back (speculation)
+ * - System caches don't support S/W at all (damn!)
+ *
+ * In the face of the above, the best we can do is to try and convert
+ * S/W ops to VA ops. Because the guest is not allowed to infer the
+ * S/W to PA mapping, it can only use S/W to nuke the whole cache,
+ * which is a rather good thing for us.
+ *
+ * Also, it is only used when turning caches on/off ("The expected
+ * usage of the cache maintenance instructions that operate by set/way
+ * is associated with the cache maintenance instructions associated
+ * with the powerdown and powerup of caches, if this is required by
+ * the implementation.").
+ *
+ * We use the following policy:
+ *
+ * - If we trap a S/W operation, we enable VM trapping to detect
+ * caches being turned on/off, and do a full clean.
+ *
+ * - We flush the caches on both caches being turned on and off.
+ *
+ * - Once the caches are enabled, we stop trapping VM ops.
+ */
+void kvm_set_way_flush(struct kvm_vcpu *vcpu)
+{
+ unsigned long hcr = vcpu_get_hcr(vcpu);
+
+ /*
+ * If this is the first time we do a S/W operation
+ * (i.e. HCR_TVM not set) flush the whole memory, and set the
+ * VM trapping.
+ *
+ * Otherwise, rely on the VM trapping to wait for the MMU +
+ * Caches to be turned off. At that point, we'll be able to
+ * clean the caches again.
+ */
+ if (!(hcr & HCR_TVM)) {
+ trace_kvm_set_way_flush(*vcpu_pc(vcpu),
+ vcpu_has_cache_enabled(vcpu));
+ stage2_flush_vm(vcpu->kvm);
+ vcpu_set_hcr(vcpu, hcr | HCR_TVM);
+ }
+}
+
+void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
+{
+ bool now_enabled = vcpu_has_cache_enabled(vcpu);
+
+ /*
+ * If switching the MMU+caches on, need to invalidate the caches.
+ * If switching it off, need to clean the caches.
+ * Clean + invalidate does the trick always.
+ */
+ if (now_enabled != was_enabled)
+ stage2_flush_vm(vcpu->kvm);
+
+ /* Caches are now on, stop trapping VM ops (until a S/W op) */
+ if (now_enabled)
+ vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
+
+ trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
+}
diff --git a/arch/arm/kvm/perf.c b/arch/arm/kvm/perf.c
new file mode 100644
index 000000000..1a3849da0
--- /dev/null
+++ b/arch/arm/kvm/perf.c
@@ -0,0 +1,68 @@
+/*
+ * Based on the x86 implementation.
+ *
+ * Copyright (C) 2012 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <linux/perf_event.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+
+static int kvm_is_in_guest(void)
+{
+ return kvm_arm_get_running_vcpu() != NULL;
+}
+
+static int kvm_is_user_mode(void)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = kvm_arm_get_running_vcpu();
+
+ if (vcpu)
+ return !vcpu_mode_priv(vcpu);
+
+ return 0;
+}
+
+static unsigned long kvm_get_guest_ip(void)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = kvm_arm_get_running_vcpu();
+
+ if (vcpu)
+ return *vcpu_pc(vcpu);
+
+ return 0;
+}
+
+static struct perf_guest_info_callbacks kvm_guest_cbs = {
+ .is_in_guest = kvm_is_in_guest,
+ .is_user_mode = kvm_is_user_mode,
+ .get_guest_ip = kvm_get_guest_ip,
+};
+
+int kvm_perf_init(void)
+{
+ return perf_register_guest_info_callbacks(&kvm_guest_cbs);
+}
+
+int kvm_perf_teardown(void)
+{
+ return perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
+}
diff --git a/arch/arm/kvm/psci.c b/arch/arm/kvm/psci.c
new file mode 100644
index 000000000..531e92248
--- /dev/null
+++ b/arch/arm/kvm/psci.c
@@ -0,0 +1,320 @@
+/*
+ * Copyright (C) 2012 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <linux/preempt.h>
+#include <linux/kvm_host.h>
+#include <linux/wait.h>
+
+#include <asm/cputype.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_psci.h>
+#include <asm/kvm_host.h>
+
+/*
+ * This is an implementation of the Power State Coordination Interface
+ * as described in ARM document number ARM DEN 0022A.
+ */
+
+#define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
+
+static unsigned long psci_affinity_mask(unsigned long affinity_level)
+{
+ if (affinity_level <= 3)
+ return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
+
+ return 0;
+}
+
+static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
+{
+ /*
+ * NOTE: For simplicity, we make VCPU suspend emulation to be
+ * same-as WFI (Wait-for-interrupt) emulation.
+ *
+ * This means for KVM the wakeup events are interrupts and
+ * this is consistent with intended use of StateID as described
+ * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
+ *
+ * Further, we also treat power-down request to be same as
+ * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
+ * specification (ARM DEN 0022A). This means all suspend states
+ * for KVM will preserve the register state.
+ */
+ kvm_vcpu_block(vcpu);
+
+ return PSCI_RET_SUCCESS;
+}
+
+static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.pause = true;
+}
+
+static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
+{
+ struct kvm *kvm = source_vcpu->kvm;
+ struct kvm_vcpu *vcpu = NULL;
+ wait_queue_head_t *wq;
+ unsigned long cpu_id;
+ unsigned long context_id;
+ phys_addr_t target_pc;
+
+ cpu_id = *vcpu_reg(source_vcpu, 1) & MPIDR_HWID_BITMASK;
+ if (vcpu_mode_is_32bit(source_vcpu))
+ cpu_id &= ~((u32) 0);
+
+ vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
+
+ /*
+ * Make sure the caller requested a valid CPU and that the CPU is
+ * turned off.
+ */
+ if (!vcpu)
+ return PSCI_RET_INVALID_PARAMS;
+ if (!vcpu->arch.pause) {
+ if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
+ return PSCI_RET_ALREADY_ON;
+ else
+ return PSCI_RET_INVALID_PARAMS;
+ }
+
+ target_pc = *vcpu_reg(source_vcpu, 2);
+ context_id = *vcpu_reg(source_vcpu, 3);
+
+ kvm_reset_vcpu(vcpu);
+
+ /* Gracefully handle Thumb2 entry point */
+ if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
+ target_pc &= ~((phys_addr_t) 1);
+ vcpu_set_thumb(vcpu);
+ }
+
+ /* Propagate caller endianness */
+ if (kvm_vcpu_is_be(source_vcpu))
+ kvm_vcpu_set_be(vcpu);
+
+ *vcpu_pc(vcpu) = target_pc;
+ /*
+ * NOTE: We always update r0 (or x0) because for PSCI v0.1
+ * the general puspose registers are undefined upon CPU_ON.
+ */
+ *vcpu_reg(vcpu, 0) = context_id;
+ vcpu->arch.pause = false;
+ smp_mb(); /* Make sure the above is visible */
+
+ wq = kvm_arch_vcpu_wq(vcpu);
+ wake_up_interruptible(wq);
+
+ return PSCI_RET_SUCCESS;
+}
+
+static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
+{
+ int i;
+ unsigned long mpidr;
+ unsigned long target_affinity;
+ unsigned long target_affinity_mask;
+ unsigned long lowest_affinity_level;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *tmp;
+
+ target_affinity = *vcpu_reg(vcpu, 1);
+ lowest_affinity_level = *vcpu_reg(vcpu, 2);
+
+ /* Determine target affinity mask */
+ target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
+ if (!target_affinity_mask)
+ return PSCI_RET_INVALID_PARAMS;
+
+ /* Ignore other bits of target affinity */
+ target_affinity &= target_affinity_mask;
+
+ /*
+ * If one or more VCPU matching target affinity are running
+ * then ON else OFF
+ */
+ kvm_for_each_vcpu(i, tmp, kvm) {
+ mpidr = kvm_vcpu_get_mpidr_aff(tmp);
+ if (((mpidr & target_affinity_mask) == target_affinity) &&
+ !tmp->arch.pause) {
+ return PSCI_0_2_AFFINITY_LEVEL_ON;
+ }
+ }
+
+ return PSCI_0_2_AFFINITY_LEVEL_OFF;
+}
+
+static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type)
+{
+ int i;
+ struct kvm_vcpu *tmp;
+
+ /*
+ * The KVM ABI specifies that a system event exit may call KVM_RUN
+ * again and may perform shutdown/reboot at a later time that when the
+ * actual request is made. Since we are implementing PSCI and a
+ * caller of PSCI reboot and shutdown expects that the system shuts
+ * down or reboots immediately, let's make sure that VCPUs are not run
+ * after this call is handled and before the VCPUs have been
+ * re-initialized.
+ */
+ kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
+ tmp->arch.pause = true;
+ kvm_vcpu_kick(tmp);
+ }
+
+ memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
+ vcpu->run->system_event.type = type;
+ vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+}
+
+static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN);
+}
+
+static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET);
+}
+
+int kvm_psci_version(struct kvm_vcpu *vcpu)
+{
+ if (test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features))
+ return KVM_ARM_PSCI_0_2;
+
+ return KVM_ARM_PSCI_0_1;
+}
+
+static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
+{
+ int ret = 1;
+ unsigned long psci_fn = *vcpu_reg(vcpu, 0) & ~((u32) 0);
+ unsigned long val;
+
+ switch (psci_fn) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ /*
+ * Bits[31:16] = Major Version = 0
+ * Bits[15:0] = Minor Version = 2
+ */
+ val = 2;
+ break;
+ case PSCI_0_2_FN_CPU_SUSPEND:
+ case PSCI_0_2_FN64_CPU_SUSPEND:
+ val = kvm_psci_vcpu_suspend(vcpu);
+ break;
+ case PSCI_0_2_FN_CPU_OFF:
+ kvm_psci_vcpu_off(vcpu);
+ val = PSCI_RET_SUCCESS;
+ break;
+ case PSCI_0_2_FN_CPU_ON:
+ case PSCI_0_2_FN64_CPU_ON:
+ val = kvm_psci_vcpu_on(vcpu);
+ break;
+ case PSCI_0_2_FN_AFFINITY_INFO:
+ case PSCI_0_2_FN64_AFFINITY_INFO:
+ val = kvm_psci_vcpu_affinity_info(vcpu);
+ break;
+ case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ /*
+ * Trusted OS is MP hence does not require migration
+ * or
+ * Trusted OS is not present
+ */
+ val = PSCI_0_2_TOS_MP;
+ break;
+ case PSCI_0_2_FN_SYSTEM_OFF:
+ kvm_psci_system_off(vcpu);
+ /*
+ * We should'nt be going back to guest VCPU after
+ * receiving SYSTEM_OFF request.
+ *
+ * If user space accidently/deliberately resumes
+ * guest VCPU after SYSTEM_OFF request then guest
+ * VCPU should see internal failure from PSCI return
+ * value. To achieve this, we preload r0 (or x0) with
+ * PSCI return value INTERNAL_FAILURE.
+ */
+ val = PSCI_RET_INTERNAL_FAILURE;
+ ret = 0;
+ break;
+ case PSCI_0_2_FN_SYSTEM_RESET:
+ kvm_psci_system_reset(vcpu);
+ /*
+ * Same reason as SYSTEM_OFF for preloading r0 (or x0)
+ * with PSCI return value INTERNAL_FAILURE.
+ */
+ val = PSCI_RET_INTERNAL_FAILURE;
+ ret = 0;
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+ *vcpu_reg(vcpu, 0) = val;
+ return ret;
+}
+
+static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
+{
+ unsigned long psci_fn = *vcpu_reg(vcpu, 0) & ~((u32) 0);
+ unsigned long val;
+
+ switch (psci_fn) {
+ case KVM_PSCI_FN_CPU_OFF:
+ kvm_psci_vcpu_off(vcpu);
+ val = PSCI_RET_SUCCESS;
+ break;
+ case KVM_PSCI_FN_CPU_ON:
+ val = kvm_psci_vcpu_on(vcpu);
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+ *vcpu_reg(vcpu, 0) = val;
+ return 1;
+}
+
+/**
+ * kvm_psci_call - handle PSCI call if r0 value is in range
+ * @vcpu: Pointer to the VCPU struct
+ *
+ * Handle PSCI calls from guests through traps from HVC instructions.
+ * The calling convention is similar to SMC calls to the secure world
+ * where the function number is placed in r0.
+ *
+ * This function returns: > 0 (success), 0 (success but exit to user
+ * space), and < 0 (errors)
+ *
+ * Errors:
+ * -EINVAL: Unrecognized PSCI function
+ */
+int kvm_psci_call(struct kvm_vcpu *vcpu)
+{
+ switch (kvm_psci_version(vcpu)) {
+ case KVM_ARM_PSCI_0_2:
+ return kvm_psci_0_2_call(vcpu);
+ case KVM_ARM_PSCI_0_1:
+ return kvm_psci_0_1_call(vcpu);
+ default:
+ return -EINVAL;
+ };
+}
diff --git a/arch/arm/kvm/reset.c b/arch/arm/kvm/reset.c
new file mode 100644
index 000000000..f558c073c
--- /dev/null
+++ b/arch/arm/kvm/reset.c
@@ -0,0 +1,83 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+#include <linux/compiler.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/kvm_host.h>
+#include <linux/kvm.h>
+
+#include <asm/unified.h>
+#include <asm/ptrace.h>
+#include <asm/cputype.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_coproc.h>
+
+#include <kvm/arm_arch_timer.h>
+
+/******************************************************************************
+ * Cortex-A15 and Cortex-A7 Reset Values
+ */
+
+static struct kvm_regs cortexa_regs_reset = {
+ .usr_regs.ARM_cpsr = SVC_MODE | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT,
+};
+
+static const struct kvm_irq_level cortexa_vtimer_irq = {
+ { .irq = 27 },
+ .level = 1,
+};
+
+
+/*******************************************************************************
+ * Exported reset function
+ */
+
+/**
+ * kvm_reset_vcpu - sets core registers and cp15 registers to reset value
+ * @vcpu: The VCPU pointer
+ *
+ * This function finds the right table above and sets the registers on the
+ * virtual CPU struct to their architectually defined reset values.
+ */
+int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct kvm_regs *reset_regs;
+ const struct kvm_irq_level *cpu_vtimer_irq;
+
+ switch (vcpu->arch.target) {
+ case KVM_ARM_TARGET_CORTEX_A7:
+ case KVM_ARM_TARGET_CORTEX_A15:
+ reset_regs = &cortexa_regs_reset;
+ vcpu->arch.midr = read_cpuid_id();
+ cpu_vtimer_irq = &cortexa_vtimer_irq;
+ break;
+ default:
+ return -ENODEV;
+ }
+
+ /* Reset core registers */
+ memcpy(&vcpu->arch.regs, reset_regs, sizeof(vcpu->arch.regs));
+
+ /* Reset CP15 registers */
+ kvm_reset_coprocs(vcpu);
+
+ /* Reset arch_timer context */
+ kvm_timer_vcpu_reset(vcpu, cpu_vtimer_irq);
+
+ return 0;
+}
diff --git a/arch/arm/kvm/trace.h b/arch/arm/kvm/trace.h
new file mode 100644
index 000000000..0ec35392d
--- /dev/null
+++ b/arch/arm/kvm/trace.h
@@ -0,0 +1,328 @@
+#if !defined(_TRACE_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_KVM_H
+
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+/*
+ * Tracepoints for entry/exit to guest
+ */
+TRACE_EVENT(kvm_entry,
+ TP_PROTO(unsigned long vcpu_pc),
+ TP_ARGS(vcpu_pc),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ ),
+
+ TP_printk("PC: 0x%08lx", __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_exit,
+ TP_PROTO(unsigned int exit_reason, unsigned long vcpu_pc),
+ TP_ARGS(exit_reason, vcpu_pc),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, exit_reason )
+ __field( unsigned long, vcpu_pc )
+ ),
+
+ TP_fast_assign(
+ __entry->exit_reason = exit_reason;
+ __entry->vcpu_pc = vcpu_pc;
+ ),
+
+ TP_printk("HSR_EC: 0x%04x, PC: 0x%08lx",
+ __entry->exit_reason,
+ __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_guest_fault,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long hsr,
+ unsigned long hxfar,
+ unsigned long long ipa),
+ TP_ARGS(vcpu_pc, hsr, hxfar, ipa),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, hsr )
+ __field( unsigned long, hxfar )
+ __field( unsigned long long, ipa )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->hsr = hsr;
+ __entry->hxfar = hxfar;
+ __entry->ipa = ipa;
+ ),
+
+ TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#08lx",
+ __entry->ipa, __entry->hsr,
+ __entry->hxfar, __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_access_fault,
+ TP_PROTO(unsigned long ipa),
+ TP_ARGS(ipa),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, ipa )
+ ),
+
+ TP_fast_assign(
+ __entry->ipa = ipa;
+ ),
+
+ TP_printk("IPA: %lx", __entry->ipa)
+);
+
+TRACE_EVENT(kvm_irq_line,
+ TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level),
+ TP_ARGS(type, vcpu_idx, irq_num, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, type )
+ __field( int, vcpu_idx )
+ __field( int, irq_num )
+ __field( int, level )
+ ),
+
+ TP_fast_assign(
+ __entry->type = type;
+ __entry->vcpu_idx = vcpu_idx;
+ __entry->irq_num = irq_num;
+ __entry->level = level;
+ ),
+
+ TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d",
+ (__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" :
+ (__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" :
+ (__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN",
+ __entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level)
+);
+
+TRACE_EVENT(kvm_mmio_emulate,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long instr,
+ unsigned long cpsr),
+ TP_ARGS(vcpu_pc, instr, cpsr),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, instr )
+ __field( unsigned long, cpsr )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->instr = instr;
+ __entry->cpsr = cpsr;
+ ),
+
+ TP_printk("Emulate MMIO at: 0x%08lx (instr: %08lx, cpsr: %08lx)",
+ __entry->vcpu_pc, __entry->instr, __entry->cpsr)
+);
+
+/* Architecturally implementation defined CP15 register access */
+TRACE_EVENT(kvm_emulate_cp15_imp,
+ TP_PROTO(unsigned long Op1, unsigned long Rt1, unsigned long CRn,
+ unsigned long CRm, unsigned long Op2, bool is_write),
+ TP_ARGS(Op1, Rt1, CRn, CRm, Op2, is_write),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, Op1 )
+ __field( unsigned int, Rt1 )
+ __field( unsigned int, CRn )
+ __field( unsigned int, CRm )
+ __field( unsigned int, Op2 )
+ __field( bool, is_write )
+ ),
+
+ TP_fast_assign(
+ __entry->is_write = is_write;
+ __entry->Op1 = Op1;
+ __entry->Rt1 = Rt1;
+ __entry->CRn = CRn;
+ __entry->CRm = CRm;
+ __entry->Op2 = Op2;
+ ),
+
+ TP_printk("Implementation defined CP15: %s\tp15, %u, r%u, c%u, c%u, %u",
+ (__entry->is_write) ? "mcr" : "mrc",
+ __entry->Op1, __entry->Rt1, __entry->CRn,
+ __entry->CRm, __entry->Op2)
+);
+
+TRACE_EVENT(kvm_wfx,
+ TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
+ TP_ARGS(vcpu_pc, is_wfe),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, is_wfe )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->is_wfe = is_wfe;
+ ),
+
+ TP_printk("guest executed wf%c at: 0x%08lx",
+ __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_unmap_hva,
+ TP_PROTO(unsigned long hva),
+ TP_ARGS(hva),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, hva )
+ ),
+
+ TP_fast_assign(
+ __entry->hva = hva;
+ ),
+
+ TP_printk("mmu notifier unmap hva: %#08lx", __entry->hva)
+);
+
+TRACE_EVENT(kvm_unmap_hva_range,
+ TP_PROTO(unsigned long start, unsigned long end),
+ TP_ARGS(start, end),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, start )
+ __field( unsigned long, end )
+ ),
+
+ TP_fast_assign(
+ __entry->start = start;
+ __entry->end = end;
+ ),
+
+ TP_printk("mmu notifier unmap range: %#08lx -- %#08lx",
+ __entry->start, __entry->end)
+);
+
+TRACE_EVENT(kvm_set_spte_hva,
+ TP_PROTO(unsigned long hva),
+ TP_ARGS(hva),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, hva )
+ ),
+
+ TP_fast_assign(
+ __entry->hva = hva;
+ ),
+
+ TP_printk("mmu notifier set pte hva: %#08lx", __entry->hva)
+);
+
+TRACE_EVENT(kvm_age_hva,
+ TP_PROTO(unsigned long start, unsigned long end),
+ TP_ARGS(start, end),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, start )
+ __field( unsigned long, end )
+ ),
+
+ TP_fast_assign(
+ __entry->start = start;
+ __entry->end = end;
+ ),
+
+ TP_printk("mmu notifier age hva: %#08lx -- %#08lx",
+ __entry->start, __entry->end)
+);
+
+TRACE_EVENT(kvm_test_age_hva,
+ TP_PROTO(unsigned long hva),
+ TP_ARGS(hva),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, hva )
+ ),
+
+ TP_fast_assign(
+ __entry->hva = hva;
+ ),
+
+ TP_printk("mmu notifier test age hva: %#08lx", __entry->hva)
+);
+
+TRACE_EVENT(kvm_hvc,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
+ TP_ARGS(vcpu_pc, r0, imm),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, r0 )
+ __field( unsigned long, imm )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->r0 = r0;
+ __entry->imm = imm;
+ ),
+
+ TP_printk("HVC at 0x%08lx (r0: 0x%08lx, imm: 0x%lx",
+ __entry->vcpu_pc, __entry->r0, __entry->imm)
+);
+
+TRACE_EVENT(kvm_set_way_flush,
+ TP_PROTO(unsigned long vcpu_pc, bool cache),
+ TP_ARGS(vcpu_pc, cache),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, cache )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->cache = cache;
+ ),
+
+ TP_printk("S/W flush at 0x%016lx (cache %s)",
+ __entry->vcpu_pc, __entry->cache ? "on" : "off")
+);
+
+TRACE_EVENT(kvm_toggle_cache,
+ TP_PROTO(unsigned long vcpu_pc, bool was, bool now),
+ TP_ARGS(vcpu_pc, was, now),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, was )
+ __field( bool, now )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->was = was;
+ __entry->now = now;
+ ),
+
+ TP_printk("VM op at 0x%016lx (cache was %s, now %s)",
+ __entry->vcpu_pc, __entry->was ? "on" : "off",
+ __entry->now ? "on" : "off")
+);
+
+#endif /* _TRACE_KVM_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH arch/arm/kvm
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>