diff options
author | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
---|---|---|
committer | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
commit | 57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch) | |
tree | 5e910f0e82173f4ef4f51111366a3f1299037a7b /arch/ia64/kernel/efi.c |
Initial import
Diffstat (limited to 'arch/ia64/kernel/efi.c')
-rw-r--r-- | arch/ia64/kernel/efi.c | 1342 |
1 files changed, 1342 insertions, 0 deletions
diff --git a/arch/ia64/kernel/efi.c b/arch/ia64/kernel/efi.c new file mode 100644 index 000000000..c52d7540d --- /dev/null +++ b/arch/ia64/kernel/efi.c @@ -0,0 +1,1342 @@ +/* + * Extensible Firmware Interface + * + * Based on Extensible Firmware Interface Specification version 0.9 + * April 30, 1999 + * + * Copyright (C) 1999 VA Linux Systems + * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> + * Copyright (C) 1999-2003 Hewlett-Packard Co. + * David Mosberger-Tang <davidm@hpl.hp.com> + * Stephane Eranian <eranian@hpl.hp.com> + * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. + * Bjorn Helgaas <bjorn.helgaas@hp.com> + * + * All EFI Runtime Services are not implemented yet as EFI only + * supports physical mode addressing on SoftSDV. This is to be fixed + * in a future version. --drummond 1999-07-20 + * + * Implemented EFI runtime services and virtual mode calls. --davidm + * + * Goutham Rao: <goutham.rao@intel.com> + * Skip non-WB memory and ignore empty memory ranges. + */ +#include <linux/module.h> +#include <linux/bootmem.h> +#include <linux/crash_dump.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/time.h> +#include <linux/efi.h> +#include <linux/kexec.h> +#include <linux/mm.h> + +#include <asm/io.h> +#include <asm/kregs.h> +#include <asm/meminit.h> +#include <asm/pgtable.h> +#include <asm/processor.h> +#include <asm/mca.h> +#include <asm/setup.h> +#include <asm/tlbflush.h> + +#define EFI_DEBUG 0 + +static __initdata unsigned long palo_phys; + +static __initdata efi_config_table_type_t arch_tables[] = { + {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys}, + {NULL_GUID, NULL, 0}, +}; + +extern efi_status_t efi_call_phys (void *, ...); + +static efi_runtime_services_t *runtime; +static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL; + +#define efi_call_virt(f, args...) (*(f))(args) + +#define STUB_GET_TIME(prefix, adjust_arg) \ +static efi_status_t \ +prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ +{ \ + struct ia64_fpreg fr[6]; \ + efi_time_cap_t *atc = NULL; \ + efi_status_t ret; \ + \ + if (tc) \ + atc = adjust_arg(tc); \ + ia64_save_scratch_fpregs(fr); \ + ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \ + adjust_arg(tm), atc); \ + ia64_load_scratch_fpregs(fr); \ + return ret; \ +} + +#define STUB_SET_TIME(prefix, adjust_arg) \ +static efi_status_t \ +prefix##_set_time (efi_time_t *tm) \ +{ \ + struct ia64_fpreg fr[6]; \ + efi_status_t ret; \ + \ + ia64_save_scratch_fpregs(fr); \ + ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \ + adjust_arg(tm)); \ + ia64_load_scratch_fpregs(fr); \ + return ret; \ +} + +#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ +static efi_status_t \ +prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \ + efi_time_t *tm) \ +{ \ + struct ia64_fpreg fr[6]; \ + efi_status_t ret; \ + \ + ia64_save_scratch_fpregs(fr); \ + ret = efi_call_##prefix( \ + (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ + adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ + ia64_load_scratch_fpregs(fr); \ + return ret; \ +} + +#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ +static efi_status_t \ +prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ +{ \ + struct ia64_fpreg fr[6]; \ + efi_time_t *atm = NULL; \ + efi_status_t ret; \ + \ + if (tm) \ + atm = adjust_arg(tm); \ + ia64_save_scratch_fpregs(fr); \ + ret = efi_call_##prefix( \ + (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ + enabled, atm); \ + ia64_load_scratch_fpregs(fr); \ + return ret; \ +} + +#define STUB_GET_VARIABLE(prefix, adjust_arg) \ +static efi_status_t \ +prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ + unsigned long *data_size, void *data) \ +{ \ + struct ia64_fpreg fr[6]; \ + u32 *aattr = NULL; \ + efi_status_t ret; \ + \ + if (attr) \ + aattr = adjust_arg(attr); \ + ia64_save_scratch_fpregs(fr); \ + ret = efi_call_##prefix( \ + (efi_get_variable_t *) __va(runtime->get_variable), \ + adjust_arg(name), adjust_arg(vendor), aattr, \ + adjust_arg(data_size), adjust_arg(data)); \ + ia64_load_scratch_fpregs(fr); \ + return ret; \ +} + +#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ +static efi_status_t \ +prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \ + efi_guid_t *vendor) \ +{ \ + struct ia64_fpreg fr[6]; \ + efi_status_t ret; \ + \ + ia64_save_scratch_fpregs(fr); \ + ret = efi_call_##prefix( \ + (efi_get_next_variable_t *) __va(runtime->get_next_variable), \ + adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ + ia64_load_scratch_fpregs(fr); \ + return ret; \ +} + +#define STUB_SET_VARIABLE(prefix, adjust_arg) \ +static efi_status_t \ +prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \ + u32 attr, unsigned long data_size, \ + void *data) \ +{ \ + struct ia64_fpreg fr[6]; \ + efi_status_t ret; \ + \ + ia64_save_scratch_fpregs(fr); \ + ret = efi_call_##prefix( \ + (efi_set_variable_t *) __va(runtime->set_variable), \ + adjust_arg(name), adjust_arg(vendor), attr, data_size, \ + adjust_arg(data)); \ + ia64_load_scratch_fpregs(fr); \ + return ret; \ +} + +#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ +static efi_status_t \ +prefix##_get_next_high_mono_count (u32 *count) \ +{ \ + struct ia64_fpreg fr[6]; \ + efi_status_t ret; \ + \ + ia64_save_scratch_fpregs(fr); \ + ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ + __va(runtime->get_next_high_mono_count), \ + adjust_arg(count)); \ + ia64_load_scratch_fpregs(fr); \ + return ret; \ +} + +#define STUB_RESET_SYSTEM(prefix, adjust_arg) \ +static void \ +prefix##_reset_system (int reset_type, efi_status_t status, \ + unsigned long data_size, efi_char16_t *data) \ +{ \ + struct ia64_fpreg fr[6]; \ + efi_char16_t *adata = NULL; \ + \ + if (data) \ + adata = adjust_arg(data); \ + \ + ia64_save_scratch_fpregs(fr); \ + efi_call_##prefix( \ + (efi_reset_system_t *) __va(runtime->reset_system), \ + reset_type, status, data_size, adata); \ + /* should not return, but just in case... */ \ + ia64_load_scratch_fpregs(fr); \ +} + +#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) + +STUB_GET_TIME(phys, phys_ptr) +STUB_SET_TIME(phys, phys_ptr) +STUB_GET_WAKEUP_TIME(phys, phys_ptr) +STUB_SET_WAKEUP_TIME(phys, phys_ptr) +STUB_GET_VARIABLE(phys, phys_ptr) +STUB_GET_NEXT_VARIABLE(phys, phys_ptr) +STUB_SET_VARIABLE(phys, phys_ptr) +STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) +STUB_RESET_SYSTEM(phys, phys_ptr) + +#define id(arg) arg + +STUB_GET_TIME(virt, id) +STUB_SET_TIME(virt, id) +STUB_GET_WAKEUP_TIME(virt, id) +STUB_SET_WAKEUP_TIME(virt, id) +STUB_GET_VARIABLE(virt, id) +STUB_GET_NEXT_VARIABLE(virt, id) +STUB_SET_VARIABLE(virt, id) +STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) +STUB_RESET_SYSTEM(virt, id) + +void +efi_gettimeofday (struct timespec *ts) +{ + efi_time_t tm; + + if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) { + memset(ts, 0, sizeof(*ts)); + return; + } + + ts->tv_sec = mktime(tm.year, tm.month, tm.day, + tm.hour, tm.minute, tm.second); + ts->tv_nsec = tm.nanosecond; +} + +static int +is_memory_available (efi_memory_desc_t *md) +{ + if (!(md->attribute & EFI_MEMORY_WB)) + return 0; + + switch (md->type) { + case EFI_LOADER_CODE: + case EFI_LOADER_DATA: + case EFI_BOOT_SERVICES_CODE: + case EFI_BOOT_SERVICES_DATA: + case EFI_CONVENTIONAL_MEMORY: + return 1; + } + return 0; +} + +typedef struct kern_memdesc { + u64 attribute; + u64 start; + u64 num_pages; +} kern_memdesc_t; + +static kern_memdesc_t *kern_memmap; + +#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) + +static inline u64 +kmd_end(kern_memdesc_t *kmd) +{ + return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); +} + +static inline u64 +efi_md_end(efi_memory_desc_t *md) +{ + return (md->phys_addr + efi_md_size(md)); +} + +static inline int +efi_wb(efi_memory_desc_t *md) +{ + return (md->attribute & EFI_MEMORY_WB); +} + +static inline int +efi_uc(efi_memory_desc_t *md) +{ + return (md->attribute & EFI_MEMORY_UC); +} + +static void +walk (efi_freemem_callback_t callback, void *arg, u64 attr) +{ + kern_memdesc_t *k; + u64 start, end, voff; + + voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; + for (k = kern_memmap; k->start != ~0UL; k++) { + if (k->attribute != attr) + continue; + start = PAGE_ALIGN(k->start); + end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; + if (start < end) + if ((*callback)(start + voff, end + voff, arg) < 0) + return; + } +} + +/* + * Walk the EFI memory map and call CALLBACK once for each EFI memory + * descriptor that has memory that is available for OS use. + */ +void +efi_memmap_walk (efi_freemem_callback_t callback, void *arg) +{ + walk(callback, arg, EFI_MEMORY_WB); +} + +/* + * Walk the EFI memory map and call CALLBACK once for each EFI memory + * descriptor that has memory that is available for uncached allocator. + */ +void +efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) +{ + walk(callback, arg, EFI_MEMORY_UC); +} + +/* + * Look for the PAL_CODE region reported by EFI and map it using an + * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor + * Abstraction Layer chapter 11 in ADAG + */ +void * +efi_get_pal_addr (void) +{ + void *efi_map_start, *efi_map_end, *p; + efi_memory_desc_t *md; + u64 efi_desc_size; + int pal_code_count = 0; + u64 vaddr, mask; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { + md = p; + if (md->type != EFI_PAL_CODE) + continue; + + if (++pal_code_count > 1) { + printk(KERN_ERR "Too many EFI Pal Code memory ranges, " + "dropped @ %llx\n", md->phys_addr); + continue; + } + /* + * The only ITLB entry in region 7 that is used is the one + * installed by __start(). That entry covers a 64MB range. + */ + mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); + vaddr = PAGE_OFFSET + md->phys_addr; + + /* + * We must check that the PAL mapping won't overlap with the + * kernel mapping. + * + * PAL code is guaranteed to be aligned on a power of 2 between + * 4k and 256KB and that only one ITR is needed to map it. This + * implies that the PAL code is always aligned on its size, + * i.e., the closest matching page size supported by the TLB. + * Therefore PAL code is guaranteed never to cross a 64MB unless + * it is bigger than 64MB (very unlikely!). So for now the + * following test is enough to determine whether or not we need + * a dedicated ITR for the PAL code. + */ + if ((vaddr & mask) == (KERNEL_START & mask)) { + printk(KERN_INFO "%s: no need to install ITR for PAL code\n", + __func__); + continue; + } + + if (efi_md_size(md) > IA64_GRANULE_SIZE) + panic("Whoa! PAL code size bigger than a granule!"); + +#if EFI_DEBUG + mask = ~((1 << IA64_GRANULE_SHIFT) - 1); + + printk(KERN_INFO "CPU %d: mapping PAL code " + "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n", + smp_processor_id(), md->phys_addr, + md->phys_addr + efi_md_size(md), + vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); +#endif + return __va(md->phys_addr); + } + printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", + __func__); + return NULL; +} + + +static u8 __init palo_checksum(u8 *buffer, u32 length) +{ + u8 sum = 0; + u8 *end = buffer + length; + + while (buffer < end) + sum = (u8) (sum + *(buffer++)); + + return sum; +} + +/* + * Parse and handle PALO table which is published at: + * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf + */ +static void __init handle_palo(unsigned long phys_addr) +{ + struct palo_table *palo = __va(phys_addr); + u8 checksum; + + if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) { + printk(KERN_INFO "PALO signature incorrect.\n"); + return; + } + + checksum = palo_checksum((u8 *)palo, palo->length); + if (checksum) { + printk(KERN_INFO "PALO checksum incorrect.\n"); + return; + } + + setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO); +} + +void +efi_map_pal_code (void) +{ + void *pal_vaddr = efi_get_pal_addr (); + u64 psr; + + if (!pal_vaddr) + return; + + /* + * Cannot write to CRx with PSR.ic=1 + */ + psr = ia64_clear_ic(); + ia64_itr(0x1, IA64_TR_PALCODE, + GRANULEROUNDDOWN((unsigned long) pal_vaddr), + pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), + IA64_GRANULE_SHIFT); + paravirt_dv_serialize_data(); + ia64_set_psr(psr); /* restore psr */ +} + +void __init +efi_init (void) +{ + void *efi_map_start, *efi_map_end; + efi_char16_t *c16; + u64 efi_desc_size; + char *cp, vendor[100] = "unknown"; + int i; + + set_bit(EFI_BOOT, &efi.flags); + set_bit(EFI_64BIT, &efi.flags); + + /* + * It's too early to be able to use the standard kernel command line + * support... + */ + for (cp = boot_command_line; *cp; ) { + if (memcmp(cp, "mem=", 4) == 0) { + mem_limit = memparse(cp + 4, &cp); + } else if (memcmp(cp, "max_addr=", 9) == 0) { + max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); + } else if (memcmp(cp, "min_addr=", 9) == 0) { + min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); + } else { + while (*cp != ' ' && *cp) + ++cp; + while (*cp == ' ') + ++cp; + } + } + if (min_addr != 0UL) + printk(KERN_INFO "Ignoring memory below %lluMB\n", + min_addr >> 20); + if (max_addr != ~0UL) + printk(KERN_INFO "Ignoring memory above %lluMB\n", + max_addr >> 20); + + efi.systab = __va(ia64_boot_param->efi_systab); + + /* + * Verify the EFI Table + */ + if (efi.systab == NULL) + panic("Whoa! Can't find EFI system table.\n"); + if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) + panic("Whoa! EFI system table signature incorrect\n"); + if ((efi.systab->hdr.revision >> 16) == 0) + printk(KERN_WARNING "Warning: EFI system table version " + "%d.%02d, expected 1.00 or greater\n", + efi.systab->hdr.revision >> 16, + efi.systab->hdr.revision & 0xffff); + + /* Show what we know for posterity */ + c16 = __va(efi.systab->fw_vendor); + if (c16) { + for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i) + vendor[i] = *c16++; + vendor[i] = '\0'; + } + + printk(KERN_INFO "EFI v%u.%.02u by %s:", + efi.systab->hdr.revision >> 16, + efi.systab->hdr.revision & 0xffff, vendor); + + set_bit(EFI_SYSTEM_TABLES, &efi.flags); + + palo_phys = EFI_INVALID_TABLE_ADDR; + + if (efi_config_init(arch_tables) != 0) + return; + + if (palo_phys != EFI_INVALID_TABLE_ADDR) + handle_palo(palo_phys); + + runtime = __va(efi.systab->runtime); + efi.get_time = phys_get_time; + efi.set_time = phys_set_time; + efi.get_wakeup_time = phys_get_wakeup_time; + efi.set_wakeup_time = phys_set_wakeup_time; + efi.get_variable = phys_get_variable; + efi.get_next_variable = phys_get_next_variable; + efi.set_variable = phys_set_variable; + efi.get_next_high_mono_count = phys_get_next_high_mono_count; + efi.reset_system = phys_reset_system; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + +#if EFI_DEBUG + /* print EFI memory map: */ + { + efi_memory_desc_t *md; + void *p; + + for (i = 0, p = efi_map_start; p < efi_map_end; + ++i, p += efi_desc_size) + { + const char *unit; + unsigned long size; + char buf[64]; + + md = p; + size = md->num_pages << EFI_PAGE_SHIFT; + + if ((size >> 40) > 0) { + size >>= 40; + unit = "TB"; + } else if ((size >> 30) > 0) { + size >>= 30; + unit = "GB"; + } else if ((size >> 20) > 0) { + size >>= 20; + unit = "MB"; + } else { + size >>= 10; + unit = "KB"; + } + + printk("mem%02d: %s " + "range=[0x%016lx-0x%016lx) (%4lu%s)\n", + i, efi_md_typeattr_format(buf, sizeof(buf), md), + md->phys_addr, + md->phys_addr + efi_md_size(md), size, unit); + } + } +#endif + + efi_map_pal_code(); + efi_enter_virtual_mode(); +} + +void +efi_enter_virtual_mode (void) +{ + void *efi_map_start, *efi_map_end, *p; + efi_memory_desc_t *md; + efi_status_t status; + u64 efi_desc_size; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { + md = p; + if (md->attribute & EFI_MEMORY_RUNTIME) { + /* + * Some descriptors have multiple bits set, so the + * order of the tests is relevant. + */ + if (md->attribute & EFI_MEMORY_WB) { + md->virt_addr = (u64) __va(md->phys_addr); + } else if (md->attribute & EFI_MEMORY_UC) { + md->virt_addr = (u64) ioremap(md->phys_addr, 0); + } else if (md->attribute & EFI_MEMORY_WC) { +#if 0 + md->virt_addr = ia64_remap(md->phys_addr, + (_PAGE_A | + _PAGE_P | + _PAGE_D | + _PAGE_MA_WC | + _PAGE_PL_0 | + _PAGE_AR_RW)); +#else + printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); + md->virt_addr = (u64) ioremap(md->phys_addr, 0); +#endif + } else if (md->attribute & EFI_MEMORY_WT) { +#if 0 + md->virt_addr = ia64_remap(md->phys_addr, + (_PAGE_A | + _PAGE_P | + _PAGE_D | + _PAGE_MA_WT | + _PAGE_PL_0 | + _PAGE_AR_RW)); +#else + printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); + md->virt_addr = (u64) ioremap(md->phys_addr, 0); +#endif + } + } + } + + status = efi_call_phys(__va(runtime->set_virtual_address_map), + ia64_boot_param->efi_memmap_size, + efi_desc_size, + ia64_boot_param->efi_memdesc_version, + ia64_boot_param->efi_memmap); + if (status != EFI_SUCCESS) { + printk(KERN_WARNING "warning: unable to switch EFI into " + "virtual mode (status=%lu)\n", status); + return; + } + + set_bit(EFI_RUNTIME_SERVICES, &efi.flags); + + /* + * Now that EFI is in virtual mode, we call the EFI functions more + * efficiently: + */ + efi.get_time = virt_get_time; + efi.set_time = virt_set_time; + efi.get_wakeup_time = virt_get_wakeup_time; + efi.set_wakeup_time = virt_set_wakeup_time; + efi.get_variable = virt_get_variable; + efi.get_next_variable = virt_get_next_variable; + efi.set_variable = virt_set_variable; + efi.get_next_high_mono_count = virt_get_next_high_mono_count; + efi.reset_system = virt_reset_system; +} + +/* + * Walk the EFI memory map looking for the I/O port range. There can only be + * one entry of this type, other I/O port ranges should be described via ACPI. + */ +u64 +efi_get_iobase (void) +{ + void *efi_map_start, *efi_map_end, *p; + efi_memory_desc_t *md; + u64 efi_desc_size; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { + md = p; + if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { + if (md->attribute & EFI_MEMORY_UC) + return md->phys_addr; + } + } + return 0; +} + +static struct kern_memdesc * +kern_memory_descriptor (unsigned long phys_addr) +{ + struct kern_memdesc *md; + + for (md = kern_memmap; md->start != ~0UL; md++) { + if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT)) + return md; + } + return NULL; +} + +static efi_memory_desc_t * +efi_memory_descriptor (unsigned long phys_addr) +{ + void *efi_map_start, *efi_map_end, *p; + efi_memory_desc_t *md; + u64 efi_desc_size; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { + md = p; + + if (phys_addr - md->phys_addr < efi_md_size(md)) + return md; + } + return NULL; +} + +static int +efi_memmap_intersects (unsigned long phys_addr, unsigned long size) +{ + void *efi_map_start, *efi_map_end, *p; + efi_memory_desc_t *md; + u64 efi_desc_size; + unsigned long end; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + end = phys_addr + size; + + for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { + md = p; + if (md->phys_addr < end && efi_md_end(md) > phys_addr) + return 1; + } + return 0; +} + +u32 +efi_mem_type (unsigned long phys_addr) +{ + efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); + + if (md) + return md->type; + return 0; +} + +u64 +efi_mem_attributes (unsigned long phys_addr) +{ + efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); + + if (md) + return md->attribute; + return 0; +} +EXPORT_SYMBOL(efi_mem_attributes); + +u64 +efi_mem_attribute (unsigned long phys_addr, unsigned long size) +{ + unsigned long end = phys_addr + size; + efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); + u64 attr; + + if (!md) + return 0; + + /* + * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells + * the kernel that firmware needs this region mapped. + */ + attr = md->attribute & ~EFI_MEMORY_RUNTIME; + do { + unsigned long md_end = efi_md_end(md); + + if (end <= md_end) + return attr; + + md = efi_memory_descriptor(md_end); + if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr) + return 0; + } while (md); + return 0; /* never reached */ +} + +u64 +kern_mem_attribute (unsigned long phys_addr, unsigned long size) +{ + unsigned long end = phys_addr + size; + struct kern_memdesc *md; + u64 attr; + + /* + * This is a hack for ioremap calls before we set up kern_memmap. + * Maybe we should do efi_memmap_init() earlier instead. + */ + if (!kern_memmap) { + attr = efi_mem_attribute(phys_addr, size); + if (attr & EFI_MEMORY_WB) + return EFI_MEMORY_WB; + return 0; + } + + md = kern_memory_descriptor(phys_addr); + if (!md) + return 0; + + attr = md->attribute; + do { + unsigned long md_end = kmd_end(md); + + if (end <= md_end) + return attr; + + md = kern_memory_descriptor(md_end); + if (!md || md->attribute != attr) + return 0; + } while (md); + return 0; /* never reached */ +} +EXPORT_SYMBOL(kern_mem_attribute); + +int +valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size) +{ + u64 attr; + + /* + * /dev/mem reads and writes use copy_to_user(), which implicitly + * uses a granule-sized kernel identity mapping. It's really + * only safe to do this for regions in kern_memmap. For more + * details, see Documentation/ia64/aliasing.txt. + */ + attr = kern_mem_attribute(phys_addr, size); + if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) + return 1; + return 0; +} + +int +valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size) +{ + unsigned long phys_addr = pfn << PAGE_SHIFT; + u64 attr; + + attr = efi_mem_attribute(phys_addr, size); + + /* + * /dev/mem mmap uses normal user pages, so we don't need the entire + * granule, but the entire region we're mapping must support the same + * attribute. + */ + if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) + return 1; + + /* + * Intel firmware doesn't tell us about all the MMIO regions, so + * in general we have to allow mmap requests. But if EFI *does* + * tell us about anything inside this region, we should deny it. + * The user can always map a smaller region to avoid the overlap. + */ + if (efi_memmap_intersects(phys_addr, size)) + return 0; + + return 1; +} + +pgprot_t +phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, + pgprot_t vma_prot) +{ + unsigned long phys_addr = pfn << PAGE_SHIFT; + u64 attr; + + /* + * For /dev/mem mmap, we use user mappings, but if the region is + * in kern_memmap (and hence may be covered by a kernel mapping), + * we must use the same attribute as the kernel mapping. + */ + attr = kern_mem_attribute(phys_addr, size); + if (attr & EFI_MEMORY_WB) + return pgprot_cacheable(vma_prot); + else if (attr & EFI_MEMORY_UC) + return pgprot_noncached(vma_prot); + + /* + * Some chipsets don't support UC access to memory. If + * WB is supported, we prefer that. + */ + if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) + return pgprot_cacheable(vma_prot); + + return pgprot_noncached(vma_prot); +} + +int __init +efi_uart_console_only(void) +{ + efi_status_t status; + char *s, name[] = "ConOut"; + efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; + efi_char16_t *utf16, name_utf16[32]; + unsigned char data[1024]; + unsigned long size = sizeof(data); + struct efi_generic_dev_path *hdr, *end_addr; + int uart = 0; + + /* Convert to UTF-16 */ + utf16 = name_utf16; + s = name; + while (*s) + *utf16++ = *s++ & 0x7f; + *utf16 = 0; + + status = efi.get_variable(name_utf16, &guid, NULL, &size, data); + if (status != EFI_SUCCESS) { + printk(KERN_ERR "No EFI %s variable?\n", name); + return 0; + } + + hdr = (struct efi_generic_dev_path *) data; + end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); + while (hdr < end_addr) { + if (hdr->type == EFI_DEV_MSG && + hdr->sub_type == EFI_DEV_MSG_UART) + uart = 1; + else if (hdr->type == EFI_DEV_END_PATH || + hdr->type == EFI_DEV_END_PATH2) { + if (!uart) + return 0; + if (hdr->sub_type == EFI_DEV_END_ENTIRE) + return 1; + uart = 0; + } + hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length); + } + printk(KERN_ERR "Malformed %s value\n", name); + return 0; +} + +/* + * Look for the first granule aligned memory descriptor memory + * that is big enough to hold EFI memory map. Make sure this + * descriptor is atleast granule sized so it does not get trimmed + */ +struct kern_memdesc * +find_memmap_space (void) +{ + u64 contig_low=0, contig_high=0; + u64 as = 0, ae; + void *efi_map_start, *efi_map_end, *p, *q; + efi_memory_desc_t *md, *pmd = NULL, *check_md; + u64 space_needed, efi_desc_size; + unsigned long total_mem = 0; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + /* + * Worst case: we need 3 kernel descriptors for each efi descriptor + * (if every entry has a WB part in the middle, and UC head and tail), + * plus one for the end marker. + */ + space_needed = sizeof(kern_memdesc_t) * + (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); + + for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { + md = p; + if (!efi_wb(md)) { + continue; + } + if (pmd == NULL || !efi_wb(pmd) || + efi_md_end(pmd) != md->phys_addr) { + contig_low = GRANULEROUNDUP(md->phys_addr); + contig_high = efi_md_end(md); + for (q = p + efi_desc_size; q < efi_map_end; + q += efi_desc_size) { + check_md = q; + if (!efi_wb(check_md)) + break; + if (contig_high != check_md->phys_addr) + break; + contig_high = efi_md_end(check_md); + } + contig_high = GRANULEROUNDDOWN(contig_high); + } + if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) + continue; + + /* Round ends inward to granule boundaries */ + as = max(contig_low, md->phys_addr); + ae = min(contig_high, efi_md_end(md)); + + /* keep within max_addr= and min_addr= command line arg */ + as = max(as, min_addr); + ae = min(ae, max_addr); + if (ae <= as) + continue; + + /* avoid going over mem= command line arg */ + if (total_mem + (ae - as) > mem_limit) + ae -= total_mem + (ae - as) - mem_limit; + + if (ae <= as) + continue; + + if (ae - as > space_needed) + break; + } + if (p >= efi_map_end) + panic("Can't allocate space for kernel memory descriptors"); + + return __va(as); +} + +/* + * Walk the EFI memory map and gather all memory available for kernel + * to use. We can allocate partial granules only if the unavailable + * parts exist, and are WB. + */ +unsigned long +efi_memmap_init(u64 *s, u64 *e) +{ + struct kern_memdesc *k, *prev = NULL; + u64 contig_low=0, contig_high=0; + u64 as, ae, lim; + void *efi_map_start, *efi_map_end, *p, *q; + efi_memory_desc_t *md, *pmd = NULL, *check_md; + u64 efi_desc_size; + unsigned long total_mem = 0; + + k = kern_memmap = find_memmap_space(); + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { + md = p; + if (!efi_wb(md)) { + if (efi_uc(md) && + (md->type == EFI_CONVENTIONAL_MEMORY || + md->type == EFI_BOOT_SERVICES_DATA)) { + k->attribute = EFI_MEMORY_UC; + k->start = md->phys_addr; + k->num_pages = md->num_pages; + k++; + } + continue; + } + if (pmd == NULL || !efi_wb(pmd) || + efi_md_end(pmd) != md->phys_addr) { + contig_low = GRANULEROUNDUP(md->phys_addr); + contig_high = efi_md_end(md); + for (q = p + efi_desc_size; q < efi_map_end; + q += efi_desc_size) { + check_md = q; + if (!efi_wb(check_md)) + break; + if (contig_high != check_md->phys_addr) + break; + contig_high = efi_md_end(check_md); + } + contig_high = GRANULEROUNDDOWN(contig_high); + } + if (!is_memory_available(md)) + continue; + + /* + * Round ends inward to granule boundaries + * Give trimmings to uncached allocator + */ + if (md->phys_addr < contig_low) { + lim = min(efi_md_end(md), contig_low); + if (efi_uc(md)) { + if (k > kern_memmap && + (k-1)->attribute == EFI_MEMORY_UC && + kmd_end(k-1) == md->phys_addr) { + (k-1)->num_pages += + (lim - md->phys_addr) + >> EFI_PAGE_SHIFT; + } else { + k->attribute = EFI_MEMORY_UC; + k->start = md->phys_addr; + k->num_pages = (lim - md->phys_addr) + >> EFI_PAGE_SHIFT; + k++; + } + } + as = contig_low; + } else + as = md->phys_addr; + + if (efi_md_end(md) > contig_high) { + lim = max(md->phys_addr, contig_high); + if (efi_uc(md)) { + if (lim == md->phys_addr && k > kern_memmap && + (k-1)->attribute == EFI_MEMORY_UC && + kmd_end(k-1) == md->phys_addr) { + (k-1)->num_pages += md->num_pages; + } else { + k->attribute = EFI_MEMORY_UC; + k->start = lim; + k->num_pages = (efi_md_end(md) - lim) + >> EFI_PAGE_SHIFT; + k++; + } + } + ae = contig_high; + } else + ae = efi_md_end(md); + + /* keep within max_addr= and min_addr= command line arg */ + as = max(as, min_addr); + ae = min(ae, max_addr); + if (ae <= as) + continue; + + /* avoid going over mem= command line arg */ + if (total_mem + (ae - as) > mem_limit) + ae -= total_mem + (ae - as) - mem_limit; + + if (ae <= as) + continue; + if (prev && kmd_end(prev) == md->phys_addr) { + prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; + total_mem += ae - as; + continue; + } + k->attribute = EFI_MEMORY_WB; + k->start = as; + k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; + total_mem += ae - as; + prev = k++; + } + k->start = ~0L; /* end-marker */ + + /* reserve the memory we are using for kern_memmap */ + *s = (u64)kern_memmap; + *e = (u64)++k; + + return total_mem; +} + +void +efi_initialize_iomem_resources(struct resource *code_resource, + struct resource *data_resource, + struct resource *bss_resource) +{ + struct resource *res; + void *efi_map_start, *efi_map_end, *p; + efi_memory_desc_t *md; + u64 efi_desc_size; + char *name; + unsigned long flags; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + res = NULL; + + for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { + md = p; + + if (md->num_pages == 0) /* should not happen */ + continue; + + flags = IORESOURCE_MEM | IORESOURCE_BUSY; + switch (md->type) { + + case EFI_MEMORY_MAPPED_IO: + case EFI_MEMORY_MAPPED_IO_PORT_SPACE: + continue; + + case EFI_LOADER_CODE: + case EFI_LOADER_DATA: + case EFI_BOOT_SERVICES_DATA: + case EFI_BOOT_SERVICES_CODE: + case EFI_CONVENTIONAL_MEMORY: + if (md->attribute & EFI_MEMORY_WP) { + name = "System ROM"; + flags |= IORESOURCE_READONLY; + } else if (md->attribute == EFI_MEMORY_UC) + name = "Uncached RAM"; + else + name = "System RAM"; + break; + + case EFI_ACPI_MEMORY_NVS: + name = "ACPI Non-volatile Storage"; + break; + + case EFI_UNUSABLE_MEMORY: + name = "reserved"; + flags |= IORESOURCE_DISABLED; + break; + + case EFI_RESERVED_TYPE: + case EFI_RUNTIME_SERVICES_CODE: + case EFI_RUNTIME_SERVICES_DATA: + case EFI_ACPI_RECLAIM_MEMORY: + default: + name = "reserved"; + break; + } + + if ((res = kzalloc(sizeof(struct resource), + GFP_KERNEL)) == NULL) { + printk(KERN_ERR + "failed to allocate resource for iomem\n"); + return; + } + + res->name = name; + res->start = md->phys_addr; + res->end = md->phys_addr + efi_md_size(md) - 1; + res->flags = flags; + + if (insert_resource(&iomem_resource, res) < 0) + kfree(res); + else { + /* + * We don't know which region contains + * kernel data so we try it repeatedly and + * let the resource manager test it. + */ + insert_resource(res, code_resource); + insert_resource(res, data_resource); + insert_resource(res, bss_resource); +#ifdef CONFIG_KEXEC + insert_resource(res, &efi_memmap_res); + insert_resource(res, &boot_param_res); + if (crashk_res.end > crashk_res.start) + insert_resource(res, &crashk_res); +#endif + } + } +} + +#ifdef CONFIG_KEXEC +/* find a block of memory aligned to 64M exclude reserved regions + rsvd_regions are sorted + */ +unsigned long __init +kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n) +{ + int i; + u64 start, end; + u64 alignment = 1UL << _PAGE_SIZE_64M; + void *efi_map_start, *efi_map_end, *p; + efi_memory_desc_t *md; + u64 efi_desc_size; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { + md = p; + if (!efi_wb(md)) + continue; + start = ALIGN(md->phys_addr, alignment); + end = efi_md_end(md); + for (i = 0; i < n; i++) { + if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { + if (__pa(r[i].start) > start + size) + return start; + start = ALIGN(__pa(r[i].end), alignment); + if (i < n-1 && + __pa(r[i+1].start) < start + size) + continue; + else + break; + } + } + if (end > start + size) + return start; + } + + printk(KERN_WARNING + "Cannot reserve 0x%lx byte of memory for crashdump\n", size); + return ~0UL; +} +#endif + +#ifdef CONFIG_CRASH_DUMP +/* locate the size find a the descriptor at a certain address */ +unsigned long __init +vmcore_find_descriptor_size (unsigned long address) +{ + void *efi_map_start, *efi_map_end, *p; + efi_memory_desc_t *md; + u64 efi_desc_size; + unsigned long ret = 0; + + efi_map_start = __va(ia64_boot_param->efi_memmap); + efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; + efi_desc_size = ia64_boot_param->efi_memdesc_size; + + for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { + md = p; + if (efi_wb(md) && md->type == EFI_LOADER_DATA + && md->phys_addr == address) { + ret = efi_md_size(md); + break; + } + } + + if (ret == 0) + printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); + + return ret; +} +#endif |