diff options
author | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
---|---|---|
committer | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
commit | 57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch) | |
tree | 5e910f0e82173f4ef4f51111366a3f1299037a7b /arch/m68k/fpsp040 |
Initial import
Diffstat (limited to 'arch/m68k/fpsp040')
44 files changed, 16737 insertions, 0 deletions
diff --git a/arch/m68k/fpsp040/Makefile b/arch/m68k/fpsp040/Makefile new file mode 100644 index 000000000..9506d883a --- /dev/null +++ b/arch/m68k/fpsp040/Makefile @@ -0,0 +1,15 @@ +# +# Makefile for Linux arch/m68k/fpsp040 source directory +# + +obj-y := bindec.o binstr.o decbin.o do_func.o gen_except.o get_op.o \ + kernel_ex.o res_func.o round.o sacos.o sasin.o satan.o satanh.o \ + scosh.o setox.o sgetem.o sint.o slog2.o slogn.o \ + smovecr.o srem_mod.o scale.o \ + ssin.o ssinh.o stan.o stanh.o sto_res.o stwotox.o tbldo.o util.o \ + x_bsun.o x_fline.o x_operr.o x_ovfl.o x_snan.o x_store.o \ + x_unfl.o x_unimp.o x_unsupp.o bugfix.o skeleton.o + +EXTRA_LDFLAGS := -x + +$(OS_OBJS): fpsp.h diff --git a/arch/m68k/fpsp040/README b/arch/m68k/fpsp040/README new file mode 100644 index 000000000..f57494460 --- /dev/null +++ b/arch/m68k/fpsp040/README @@ -0,0 +1,30 @@ + +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68040 Software Package + +M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc. +All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A +PARTICULAR PURPOSE and any warranty against infringement with +regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) +and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS +PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR +OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE +SOFTWARE. Motorola assumes no responsibility for the maintenance +and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and +distribute the SOFTWARE so long as this entire notice is retained +without alteration in any modified and/or redistributed versions, +and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise +under any patents or trademarks of Motorola, Inc. diff --git a/arch/m68k/fpsp040/bindec.S b/arch/m68k/fpsp040/bindec.S new file mode 100644 index 000000000..f2e795231 --- /dev/null +++ b/arch/m68k/fpsp040/bindec.S @@ -0,0 +1,919 @@ +| +| bindec.sa 3.4 1/3/91 +| +| bindec +| +| Description: +| Converts an input in extended precision format +| to bcd format. +| +| Input: +| a0 points to the input extended precision value +| value in memory; d0 contains the k-factor sign-extended +| to 32-bits. The input may be either normalized, +| unnormalized, or denormalized. +| +| Output: result in the FP_SCR1 space on the stack. +| +| Saves and Modifies: D2-D7,A2,FP2 +| +| Algorithm: +| +| A1. Set RM and size ext; Set SIGMA = sign of input. +| The k-factor is saved for use in d7. Clear the +| BINDEC_FLG for separating normalized/denormalized +| input. If input is unnormalized or denormalized, +| normalize it. +| +| A2. Set X = abs(input). +| +| A3. Compute ILOG. +| ILOG is the log base 10 of the input value. It is +| approximated by adding e + 0.f when the original +| value is viewed as 2^^e * 1.f in extended precision. +| This value is stored in d6. +| +| A4. Clr INEX bit. +| The operation in A3 above may have set INEX2. +| +| A5. Set ICTR = 0; +| ICTR is a flag used in A13. It must be set before the +| loop entry A6. +| +| A6. Calculate LEN. +| LEN is the number of digits to be displayed. The +| k-factor can dictate either the total number of digits, +| if it is a positive number, or the number of digits +| after the decimal point which are to be included as +| significant. See the 68882 manual for examples. +| If LEN is computed to be greater than 17, set OPERR in +| USER_FPSR. LEN is stored in d4. +| +| A7. Calculate SCALE. +| SCALE is equal to 10^ISCALE, where ISCALE is the number +| of decimal places needed to insure LEN integer digits +| in the output before conversion to bcd. LAMBDA is the +| sign of ISCALE, used in A9. Fp1 contains +| 10^^(abs(ISCALE)) using a rounding mode which is a +| function of the original rounding mode and the signs +| of ISCALE and X. A table is given in the code. +| +| A8. Clr INEX; Force RZ. +| The operation in A3 above may have set INEX2. +| RZ mode is forced for the scaling operation to insure +| only one rounding error. The grs bits are collected in +| the INEX flag for use in A10. +| +| A9. Scale X -> Y. +| The mantissa is scaled to the desired number of +| significant digits. The excess digits are collected +| in INEX2. +| +| A10. Or in INEX. +| If INEX is set, round error occurred. This is +| compensated for by 'or-ing' in the INEX2 flag to +| the lsb of Y. +| +| A11. Restore original FPCR; set size ext. +| Perform FINT operation in the user's rounding mode. +| Keep the size to extended. +| +| A12. Calculate YINT = FINT(Y) according to user's rounding +| mode. The FPSP routine sintd0 is used. The output +| is in fp0. +| +| A13. Check for LEN digits. +| If the int operation results in more than LEN digits, +| or less than LEN -1 digits, adjust ILOG and repeat from +| A6. This test occurs only on the first pass. If the +| result is exactly 10^LEN, decrement ILOG and divide +| the mantissa by 10. +| +| A14. Convert the mantissa to bcd. +| The binstr routine is used to convert the LEN digit +| mantissa to bcd in memory. The input to binstr is +| to be a fraction; i.e. (mantissa)/10^LEN and adjusted +| such that the decimal point is to the left of bit 63. +| The bcd digits are stored in the correct position in +| the final string area in memory. +| +| A15. Convert the exponent to bcd. +| As in A14 above, the exp is converted to bcd and the +| digits are stored in the final string. +| Test the length of the final exponent string. If the +| length is 4, set operr. +| +| A16. Write sign bits to final string. +| +| Implementation Notes: +| +| The registers are used as follows: +| +| d0: scratch; LEN input to binstr +| d1: scratch +| d2: upper 32-bits of mantissa for binstr +| d3: scratch;lower 32-bits of mantissa for binstr +| d4: LEN +| d5: LAMBDA/ICTR +| d6: ILOG +| d7: k-factor +| a0: ptr for original operand/final result +| a1: scratch pointer +| a2: pointer to FP_X; abs(original value) in ext +| fp0: scratch +| fp1: scratch +| fp2: scratch +| F_SCR1: +| F_SCR2: +| L_SCR1: +| L_SCR2: + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package + +#include "fpsp.h" + + |section 8 + +| Constants in extended precision +LOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 +LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 + +| Constants in single precision +FONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 +FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 +FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 +F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 + +RBDTBL: .byte 0,0,0,0 + .byte 3,3,2,2 + .byte 3,2,2,3 + .byte 2,3,3,2 + + |xref binstr + |xref sintdo + |xref ptenrn,ptenrm,ptenrp + + .global bindec + .global sc_mul +bindec: + moveml %d2-%d7/%a2,-(%a7) + fmovemx %fp0-%fp2,-(%a7) + +| A1. Set RM and size ext. Set SIGMA = sign input; +| The k-factor is saved for use in d7. Clear BINDEC_FLG for +| separating normalized/denormalized input. If the input +| is a denormalized number, set the BINDEC_FLG memory word +| to signal denorm. If the input is unnormalized, normalize +| the input and test for denormalized result. +| + fmovel #rm_mode,%FPCR |set RM and ext + movel (%a0),L_SCR2(%a6) |save exponent for sign check + movel %d0,%d7 |move k-factor to d7 + clrb BINDEC_FLG(%a6) |clr norm/denorm flag + movew STAG(%a6),%d0 |get stag + andiw #0xe000,%d0 |isolate stag bits + beq A2_str |if zero, input is norm +| +| Normalize the denorm +| +un_de_norm: + movew (%a0),%d0 + andiw #0x7fff,%d0 |strip sign of normalized exp + movel 4(%a0),%d1 + movel 8(%a0),%d2 +norm_loop: + subw #1,%d0 + lsll #1,%d2 + roxll #1,%d1 + tstl %d1 + bges norm_loop +| +| Test if the normalized input is denormalized +| + tstw %d0 + bgts pos_exp |if greater than zero, it is a norm + st BINDEC_FLG(%a6) |set flag for denorm +pos_exp: + andiw #0x7fff,%d0 |strip sign of normalized exp + movew %d0,(%a0) + movel %d1,4(%a0) + movel %d2,8(%a0) + +| A2. Set X = abs(input). +| +A2_str: + movel (%a0),FP_SCR2(%a6) | move input to work space + movel 4(%a0),FP_SCR2+4(%a6) | move input to work space + movel 8(%a0),FP_SCR2+8(%a6) | move input to work space + andil #0x7fffffff,FP_SCR2(%a6) |create abs(X) + +| A3. Compute ILOG. +| ILOG is the log base 10 of the input value. It is approx- +| imated by adding e + 0.f when the original value is viewed +| as 2^^e * 1.f in extended precision. This value is stored +| in d6. +| +| Register usage: +| Input/Output +| d0: k-factor/exponent +| d2: x/x +| d3: x/x +| d4: x/x +| d5: x/x +| d6: x/ILOG +| d7: k-factor/Unchanged +| a0: ptr for original operand/final result +| a1: x/x +| a2: x/x +| fp0: x/float(ILOG) +| fp1: x/x +| fp2: x/x +| F_SCR1:x/x +| F_SCR2:Abs(X)/Abs(X) with $3fff exponent +| L_SCR1:x/x +| L_SCR2:first word of X packed/Unchanged + + tstb BINDEC_FLG(%a6) |check for denorm + beqs A3_cont |if clr, continue with norm + movel #-4933,%d6 |force ILOG = -4933 + bras A4_str +A3_cont: + movew FP_SCR2(%a6),%d0 |move exp to d0 + movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff + fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f + subw #0x3fff,%d0 |strip off bias + faddw %d0,%fp0 |add in exp + fsubs FONE,%fp0 |subtract off 1.0 + fbge pos_res |if pos, branch + fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 + fmovel %fp0,%d6 |put ILOG in d6 as a lword + bras A4_str |go move out ILOG +pos_res: + fmulx LOG2,%fp0 |if pos, mul by LOG2 + fmovel %fp0,%d6 |put ILOG in d6 as a lword + + +| A4. Clr INEX bit. +| The operation in A3 above may have set INEX2. + +A4_str: + fmovel #0,%FPSR |zero all of fpsr - nothing needed + + +| A5. Set ICTR = 0; +| ICTR is a flag used in A13. It must be set before the +| loop entry A6. The lower word of d5 is used for ICTR. + + clrw %d5 |clear ICTR + + +| A6. Calculate LEN. +| LEN is the number of digits to be displayed. The k-factor +| can dictate either the total number of digits, if it is +| a positive number, or the number of digits after the +| original decimal point which are to be included as +| significant. See the 68882 manual for examples. +| If LEN is computed to be greater than 17, set OPERR in +| USER_FPSR. LEN is stored in d4. +| +| Register usage: +| Input/Output +| d0: exponent/Unchanged +| d2: x/x/scratch +| d3: x/x +| d4: exc picture/LEN +| d5: ICTR/Unchanged +| d6: ILOG/Unchanged +| d7: k-factor/Unchanged +| a0: ptr for original operand/final result +| a1: x/x +| a2: x/x +| fp0: float(ILOG)/Unchanged +| fp1: x/x +| fp2: x/x +| F_SCR1:x/x +| F_SCR2:Abs(X) with $3fff exponent/Unchanged +| L_SCR1:x/x +| L_SCR2:first word of X packed/Unchanged + +A6_str: + tstl %d7 |branch on sign of k + bles k_neg |if k <= 0, LEN = ILOG + 1 - k + movel %d7,%d4 |if k > 0, LEN = k + bras len_ck |skip to LEN check +k_neg: + movel %d6,%d4 |first load ILOG to d4 + subl %d7,%d4 |subtract off k + addql #1,%d4 |add in the 1 +len_ck: + tstl %d4 |LEN check: branch on sign of LEN + bles LEN_ng |if neg, set LEN = 1 + cmpl #17,%d4 |test if LEN > 17 + bles A7_str |if not, forget it + movel #17,%d4 |set max LEN = 17 + tstl %d7 |if negative, never set OPERR + bles A7_str |if positive, continue + orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR + bras A7_str |finished here +LEN_ng: + moveql #1,%d4 |min LEN is 1 + + +| A7. Calculate SCALE. +| SCALE is equal to 10^ISCALE, where ISCALE is the number +| of decimal places needed to insure LEN integer digits +| in the output before conversion to bcd. LAMBDA is the sign +| of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using +| the rounding mode as given in the following table (see +| Coonen, p. 7.23 as ref.; however, the SCALE variable is +| of opposite sign in bindec.sa from Coonen). +| +| Initial USE +| FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] +| ---------------------------------------------- +| RN 00 0 0 00/0 RN +| RN 00 0 1 00/0 RN +| RN 00 1 0 00/0 RN +| RN 00 1 1 00/0 RN +| RZ 01 0 0 11/3 RP +| RZ 01 0 1 11/3 RP +| RZ 01 1 0 10/2 RM +| RZ 01 1 1 10/2 RM +| RM 10 0 0 11/3 RP +| RM 10 0 1 10/2 RM +| RM 10 1 0 10/2 RM +| RM 10 1 1 11/3 RP +| RP 11 0 0 10/2 RM +| RP 11 0 1 11/3 RP +| RP 11 1 0 11/3 RP +| RP 11 1 1 10/2 RM +| +| Register usage: +| Input/Output +| d0: exponent/scratch - final is 0 +| d2: x/0 or 24 for A9 +| d3: x/scratch - offset ptr into PTENRM array +| d4: LEN/Unchanged +| d5: 0/ICTR:LAMBDA +| d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) +| d7: k-factor/Unchanged +| a0: ptr for original operand/final result +| a1: x/ptr to PTENRM array +| a2: x/x +| fp0: float(ILOG)/Unchanged +| fp1: x/10^ISCALE +| fp2: x/x +| F_SCR1:x/x +| F_SCR2:Abs(X) with $3fff exponent/Unchanged +| L_SCR1:x/x +| L_SCR2:first word of X packed/Unchanged + +A7_str: + tstl %d7 |test sign of k + bgts k_pos |if pos and > 0, skip this + cmpl %d6,%d7 |test k - ILOG + blts k_pos |if ILOG >= k, skip this + movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = k +k_pos: + movel %d6,%d0 |calc ILOG + 1 - LEN in d0 + addql #1,%d0 |add the 1 + subl %d4,%d0 |sub off LEN + swap %d5 |use upper word of d5 for LAMBDA + clrw %d5 |set it zero initially + clrw %d2 |set up d2 for very small case + tstl %d0 |test sign of ISCALE + bges iscale |if pos, skip next inst + addqw #1,%d5 |if neg, set LAMBDA true + cmpl #0xffffecd4,%d0 |test iscale <= -4908 + bgts no_inf |if false, skip rest + addil #24,%d0 |add in 24 to iscale + movel #24,%d2 |put 24 in d2 for A9 +no_inf: + negl %d0 |and take abs of ISCALE +iscale: + fmoves FONE,%fp1 |init fp1 to 1 + bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits + lslw #1,%d1 |put them in bits 2:1 + addw %d5,%d1 |add in LAMBDA + lslw #1,%d1 |put them in bits 3:1 + tstl L_SCR2(%a6) |test sign of original x + bges x_pos |if pos, don't set bit 0 + addql #1,%d1 |if neg, set bit 0 +x_pos: + leal RBDTBL,%a2 |load rbdtbl base + moveb (%a2,%d1),%d3 |load d3 with new rmode + lsll #4,%d3 |put bits in proper position + fmovel %d3,%fpcr |load bits into fpu + lsrl #4,%d3 |put bits in proper position + tstb %d3 |decode new rmode for pten table + bnes not_rn |if zero, it is RN + leal PTENRN,%a1 |load a1 with RN table base + bras rmode |exit decode +not_rn: + lsrb #1,%d3 |get lsb in carry + bccs not_rp |if carry clear, it is RM + leal PTENRP,%a1 |load a1 with RP table base + bras rmode |exit decode +not_rp: + leal PTENRM,%a1 |load a1 with RM table base +rmode: + clrl %d3 |clr table index +e_loop: + lsrl #1,%d0 |shift next bit into carry + bccs e_next |if zero, skip the mul + fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) +e_next: + addl #12,%d3 |inc d3 to next pwrten table entry + tstl %d0 |test if ISCALE is zero + bnes e_loop |if not, loop + + +| A8. Clr INEX; Force RZ. +| The operation in A3 above may have set INEX2. +| RZ mode is forced for the scaling operation to insure +| only one rounding error. The grs bits are collected in +| the INEX flag for use in A10. +| +| Register usage: +| Input/Output + + fmovel #0,%FPSR |clr INEX + fmovel #rz_mode,%FPCR |set RZ rounding mode + + +| A9. Scale X -> Y. +| The mantissa is scaled to the desired number of significant +| digits. The excess digits are collected in INEX2. If mul, +| Check d2 for excess 10 exponential value. If not zero, +| the iscale value would have caused the pwrten calculation +| to overflow. Only a negative iscale can cause this, so +| multiply by 10^(d2), which is now only allowed to be 24, +| with a multiply by 10^8 and 10^16, which is exact since +| 10^24 is exact. If the input was denormalized, we must +| create a busy stack frame with the mul command and the +| two operands, and allow the fpu to complete the multiply. +| +| Register usage: +| Input/Output +| d0: FPCR with RZ mode/Unchanged +| d2: 0 or 24/unchanged +| d3: x/x +| d4: LEN/Unchanged +| d5: ICTR:LAMBDA +| d6: ILOG/Unchanged +| d7: k-factor/Unchanged +| a0: ptr for original operand/final result +| a1: ptr to PTENRM array/Unchanged +| a2: x/x +| fp0: float(ILOG)/X adjusted for SCALE (Y) +| fp1: 10^ISCALE/Unchanged +| fp2: x/x +| F_SCR1:x/x +| F_SCR2:Abs(X) with $3fff exponent/Unchanged +| L_SCR1:x/x +| L_SCR2:first word of X packed/Unchanged + +A9_str: + fmovex (%a0),%fp0 |load X from memory + fabsx %fp0 |use abs(X) + tstw %d5 |LAMBDA is in lower word of d5 + bne sc_mul |if neg (LAMBDA = 1), scale by mul + fdivx %fp1,%fp0 |calculate X / SCALE -> Y to fp0 + bras A10_st |branch to A10 + +sc_mul: + tstb BINDEC_FLG(%a6) |check for denorm + beqs A9_norm |if norm, continue with mul + fmovemx %fp1-%fp1,-(%a7) |load ETEMP with 10^ISCALE + movel 8(%a0),-(%a7) |load FPTEMP with input arg + movel 4(%a0),-(%a7) + movel (%a0),-(%a7) + movel #18,%d3 |load count for busy stack +A9_loop: + clrl -(%a7) |clear lword on stack + dbf %d3,A9_loop + moveb VER_TMP(%a6),(%a7) |write current version number + moveb #BUSY_SIZE-4,1(%a7) |write current busy size + moveb #0x10,0x44(%a7) |set fcefpte[15] bit + movew #0x0023,0x40(%a7) |load cmdreg1b with mul command + moveb #0xfe,0x8(%a7) |load all 1s to cu savepc + frestore (%a7)+ |restore frame to fpu for completion + fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 + fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 + bras A10_st +A9_norm: + tstw %d2 |test for small exp case + beqs A9_con |if zero, continue as normal + fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 + fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 +A9_con: + fmulx %fp1,%fp0 |calculate X * SCALE -> Y to fp0 + + +| A10. Or in INEX. +| If INEX is set, round error occurred. This is compensated +| for by 'or-ing' in the INEX2 flag to the lsb of Y. +| +| Register usage: +| Input/Output +| d0: FPCR with RZ mode/FPSR with INEX2 isolated +| d2: x/x +| d3: x/x +| d4: LEN/Unchanged +| d5: ICTR:LAMBDA +| d6: ILOG/Unchanged +| d7: k-factor/Unchanged +| a0: ptr for original operand/final result +| a1: ptr to PTENxx array/Unchanged +| a2: x/ptr to FP_SCR2(a6) +| fp0: Y/Y with lsb adjusted +| fp1: 10^ISCALE/Unchanged +| fp2: x/x + +A10_st: + fmovel %FPSR,%d0 |get FPSR + fmovex %fp0,FP_SCR2(%a6) |move Y to memory + leal FP_SCR2(%a6),%a2 |load a2 with ptr to FP_SCR2 + btstl #9,%d0 |check if INEX2 set + beqs A11_st |if clear, skip rest + oril #1,8(%a2) |or in 1 to lsb of mantissa + fmovex FP_SCR2(%a6),%fp0 |write adjusted Y back to fpu + + +| A11. Restore original FPCR; set size ext. +| Perform FINT operation in the user's rounding mode. Keep +| the size to extended. The sintdo entry point in the sint +| routine expects the FPCR value to be in USER_FPCR for +| mode and precision. The original FPCR is saved in L_SCR1. + +A11_st: + movel USER_FPCR(%a6),L_SCR1(%a6) |save it for later + andil #0x00000030,USER_FPCR(%a6) |set size to ext, +| ;block exceptions + + +| A12. Calculate YINT = FINT(Y) according to user's rounding mode. +| The FPSP routine sintd0 is used. The output is in fp0. +| +| Register usage: +| Input/Output +| d0: FPSR with AINEX cleared/FPCR with size set to ext +| d2: x/x/scratch +| d3: x/x +| d4: LEN/Unchanged +| d5: ICTR:LAMBDA/Unchanged +| d6: ILOG/Unchanged +| d7: k-factor/Unchanged +| a0: ptr for original operand/src ptr for sintdo +| a1: ptr to PTENxx array/Unchanged +| a2: ptr to FP_SCR2(a6)/Unchanged +| a6: temp pointer to FP_SCR2(a6) - orig value saved and restored +| fp0: Y/YINT +| fp1: 10^ISCALE/Unchanged +| fp2: x/x +| F_SCR1:x/x +| F_SCR2:Y adjusted for inex/Y with original exponent +| L_SCR1:x/original USER_FPCR +| L_SCR2:first word of X packed/Unchanged + +A12_st: + moveml %d0-%d1/%a0-%a1,-(%a7) |save regs used by sintd0 + movel L_SCR1(%a6),-(%a7) + movel L_SCR2(%a6),-(%a7) + leal FP_SCR2(%a6),%a0 |a0 is ptr to F_SCR2(a6) + fmovex %fp0,(%a0) |move Y to memory at FP_SCR2(a6) + tstl L_SCR2(%a6) |test sign of original operand + bges do_fint |if pos, use Y + orl #0x80000000,(%a0) |if neg, use -Y +do_fint: + movel USER_FPSR(%a6),-(%a7) + bsr sintdo |sint routine returns int in fp0 + moveb (%a7),USER_FPSR(%a6) + addl #4,%a7 + movel (%a7)+,L_SCR2(%a6) + movel (%a7)+,L_SCR1(%a6) + moveml (%a7)+,%d0-%d1/%a0-%a1 |restore regs used by sint + movel L_SCR2(%a6),FP_SCR2(%a6) |restore original exponent + movel L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR + + +| A13. Check for LEN digits. +| If the int operation results in more than LEN digits, +| or less than LEN -1 digits, adjust ILOG and repeat from +| A6. This test occurs only on the first pass. If the +| result is exactly 10^LEN, decrement ILOG and divide +| the mantissa by 10. The calculation of 10^LEN cannot +| be inexact, since all powers of ten up to 10^27 are exact +| in extended precision, so the use of a previous power-of-ten +| table will introduce no error. +| +| +| Register usage: +| Input/Output +| d0: FPCR with size set to ext/scratch final = 0 +| d2: x/x +| d3: x/scratch final = x +| d4: LEN/LEN adjusted +| d5: ICTR:LAMBDA/LAMBDA:ICTR +| d6: ILOG/ILOG adjusted +| d7: k-factor/Unchanged +| a0: pointer into memory for packed bcd string formation +| a1: ptr to PTENxx array/Unchanged +| a2: ptr to FP_SCR2(a6)/Unchanged +| fp0: int portion of Y/abs(YINT) adjusted +| fp1: 10^ISCALE/Unchanged +| fp2: x/10^LEN +| F_SCR1:x/x +| F_SCR2:Y with original exponent/Unchanged +| L_SCR1:original USER_FPCR/Unchanged +| L_SCR2:first word of X packed/Unchanged + +A13_st: + swap %d5 |put ICTR in lower word of d5 + tstw %d5 |check if ICTR = 0 + bne not_zr |if non-zero, go to second test +| +| Compute 10^(LEN-1) +| + fmoves FONE,%fp2 |init fp2 to 1.0 + movel %d4,%d0 |put LEN in d0 + subql #1,%d0 |d0 = LEN -1 + clrl %d3 |clr table index +l_loop: + lsrl #1,%d0 |shift next bit into carry + bccs l_next |if zero, skip the mul + fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) +l_next: + addl #12,%d3 |inc d3 to next pwrten table entry + tstl %d0 |test if LEN is zero + bnes l_loop |if not, loop +| +| 10^LEN-1 is computed for this test and A14. If the input was +| denormalized, check only the case in which YINT > 10^LEN. +| + tstb BINDEC_FLG(%a6) |check if input was norm + beqs A13_con |if norm, continue with checking + fabsx %fp0 |take abs of YINT + bra test_2 +| +| Compare abs(YINT) to 10^(LEN-1) and 10^LEN +| +A13_con: + fabsx %fp0 |take abs of YINT + fcmpx %fp2,%fp0 |compare abs(YINT) with 10^(LEN-1) + fbge test_2 |if greater, do next test + subql #1,%d6 |subtract 1 from ILOG + movew #1,%d5 |set ICTR + fmovel #rm_mode,%FPCR |set rmode to RM + fmuls FTEN,%fp2 |compute 10^LEN + bra A6_str |return to A6 and recompute YINT +test_2: + fmuls FTEN,%fp2 |compute 10^LEN + fcmpx %fp2,%fp0 |compare abs(YINT) with 10^LEN + fblt A14_st |if less, all is ok, go to A14 + fbgt fix_ex |if greater, fix and redo + fdivs FTEN,%fp0 |if equal, divide by 10 + addql #1,%d6 | and inc ILOG + bras A14_st | and continue elsewhere +fix_ex: + addql #1,%d6 |increment ILOG by 1 + movew #1,%d5 |set ICTR + fmovel #rm_mode,%FPCR |set rmode to RM + bra A6_str |return to A6 and recompute YINT +| +| Since ICTR <> 0, we have already been through one adjustment, +| and shouldn't have another; this is to check if abs(YINT) = 10^LEN +| 10^LEN is again computed using whatever table is in a1 since the +| value calculated cannot be inexact. +| +not_zr: + fmoves FONE,%fp2 |init fp2 to 1.0 + movel %d4,%d0 |put LEN in d0 + clrl %d3 |clr table index +z_loop: + lsrl #1,%d0 |shift next bit into carry + bccs z_next |if zero, skip the mul + fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) +z_next: + addl #12,%d3 |inc d3 to next pwrten table entry + tstl %d0 |test if LEN is zero + bnes z_loop |if not, loop + fabsx %fp0 |get abs(YINT) + fcmpx %fp2,%fp0 |check if abs(YINT) = 10^LEN + fbne A14_st |if not, skip this + fdivs FTEN,%fp0 |divide abs(YINT) by 10 + addql #1,%d6 |and inc ILOG by 1 + addql #1,%d4 | and inc LEN + fmuls FTEN,%fp2 | if LEN++, the get 10^^LEN + + +| A14. Convert the mantissa to bcd. +| The binstr routine is used to convert the LEN digit +| mantissa to bcd in memory. The input to binstr is +| to be a fraction; i.e. (mantissa)/10^LEN and adjusted +| such that the decimal point is to the left of bit 63. +| The bcd digits are stored in the correct position in +| the final string area in memory. +| +| +| Register usage: +| Input/Output +| d0: x/LEN call to binstr - final is 0 +| d1: x/0 +| d2: x/ms 32-bits of mant of abs(YINT) +| d3: x/ls 32-bits of mant of abs(YINT) +| d4: LEN/Unchanged +| d5: ICTR:LAMBDA/LAMBDA:ICTR +| d6: ILOG +| d7: k-factor/Unchanged +| a0: pointer into memory for packed bcd string formation +| /ptr to first mantissa byte in result string +| a1: ptr to PTENxx array/Unchanged +| a2: ptr to FP_SCR2(a6)/Unchanged +| fp0: int portion of Y/abs(YINT) adjusted +| fp1: 10^ISCALE/Unchanged +| fp2: 10^LEN/Unchanged +| F_SCR1:x/Work area for final result +| F_SCR2:Y with original exponent/Unchanged +| L_SCR1:original USER_FPCR/Unchanged +| L_SCR2:first word of X packed/Unchanged + +A14_st: + fmovel #rz_mode,%FPCR |force rz for conversion + fdivx %fp2,%fp0 |divide abs(YINT) by 10^LEN + leal FP_SCR1(%a6),%a0 + fmovex %fp0,(%a0) |move abs(YINT)/10^LEN to memory + movel 4(%a0),%d2 |move 2nd word of FP_RES to d2 + movel 8(%a0),%d3 |move 3rd word of FP_RES to d3 + clrl 4(%a0) |zero word 2 of FP_RES + clrl 8(%a0) |zero word 3 of FP_RES + movel (%a0),%d0 |move exponent to d0 + swap %d0 |put exponent in lower word + beqs no_sft |if zero, don't shift + subil #0x3ffd,%d0 |sub bias less 2 to make fract + tstl %d0 |check if > 1 + bgts no_sft |if so, don't shift + negl %d0 |make exp positive +m_loop: + lsrl #1,%d2 |shift d2:d3 right, add 0s + roxrl #1,%d3 |the number of places + dbf %d0,m_loop |given in d0 +no_sft: + tstl %d2 |check for mantissa of zero + bnes no_zr |if not, go on + tstl %d3 |continue zero check + beqs zer_m |if zero, go directly to binstr +no_zr: + clrl %d1 |put zero in d1 for addx + addil #0x00000080,%d3 |inc at bit 7 + addxl %d1,%d2 |continue inc + andil #0xffffff80,%d3 |strip off lsb not used by 882 +zer_m: + movel %d4,%d0 |put LEN in d0 for binstr call + addql #3,%a0 |a0 points to M16 byte in result + bsr binstr |call binstr to convert mant + + +| A15. Convert the exponent to bcd. +| As in A14 above, the exp is converted to bcd and the +| digits are stored in the final string. +| +| Digits are stored in L_SCR1(a6) on return from BINDEC as: +| +| 32 16 15 0 +| ----------------------------------------- +| | 0 | e3 | e2 | e1 | e4 | X | X | X | +| ----------------------------------------- +| +| And are moved into their proper places in FP_SCR1. If digit e4 +| is non-zero, OPERR is signaled. In all cases, all 4 digits are +| written as specified in the 881/882 manual for packed decimal. +| +| Register usage: +| Input/Output +| d0: x/LEN call to binstr - final is 0 +| d1: x/scratch (0);shift count for final exponent packing +| d2: x/ms 32-bits of exp fraction/scratch +| d3: x/ls 32-bits of exp fraction +| d4: LEN/Unchanged +| d5: ICTR:LAMBDA/LAMBDA:ICTR +| d6: ILOG +| d7: k-factor/Unchanged +| a0: ptr to result string/ptr to L_SCR1(a6) +| a1: ptr to PTENxx array/Unchanged +| a2: ptr to FP_SCR2(a6)/Unchanged +| fp0: abs(YINT) adjusted/float(ILOG) +| fp1: 10^ISCALE/Unchanged +| fp2: 10^LEN/Unchanged +| F_SCR1:Work area for final result/BCD result +| F_SCR2:Y with original exponent/ILOG/10^4 +| L_SCR1:original USER_FPCR/Exponent digits on return from binstr +| L_SCR2:first word of X packed/Unchanged + +A15_st: + tstb BINDEC_FLG(%a6) |check for denorm + beqs not_denorm + ftstx %fp0 |test for zero + fbeq den_zero |if zero, use k-factor or 4933 + fmovel %d6,%fp0 |float ILOG + fabsx %fp0 |get abs of ILOG + bras convrt +den_zero: + tstl %d7 |check sign of the k-factor + blts use_ilog |if negative, use ILOG + fmoves F4933,%fp0 |force exponent to 4933 + bras convrt |do it +use_ilog: + fmovel %d6,%fp0 |float ILOG + fabsx %fp0 |get abs of ILOG + bras convrt +not_denorm: + ftstx %fp0 |test for zero + fbne not_zero |if zero, force exponent + fmoves FONE,%fp0 |force exponent to 1 + bras convrt |do it +not_zero: + fmovel %d6,%fp0 |float ILOG + fabsx %fp0 |get abs of ILOG +convrt: + fdivx 24(%a1),%fp0 |compute ILOG/10^4 + fmovex %fp0,FP_SCR2(%a6) |store fp0 in memory + movel 4(%a2),%d2 |move word 2 to d2 + movel 8(%a2),%d3 |move word 3 to d3 + movew (%a2),%d0 |move exp to d0 + beqs x_loop_fin |if zero, skip the shift + subiw #0x3ffd,%d0 |subtract off bias + negw %d0 |make exp positive +x_loop: + lsrl #1,%d2 |shift d2:d3 right + roxrl #1,%d3 |the number of places + dbf %d0,x_loop |given in d0 +x_loop_fin: + clrl %d1 |put zero in d1 for addx + addil #0x00000080,%d3 |inc at bit 6 + addxl %d1,%d2 |continue inc + andil #0xffffff80,%d3 |strip off lsb not used by 882 + movel #4,%d0 |put 4 in d0 for binstr call + leal L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits + bsr binstr |call binstr to convert exp + movel L_SCR1(%a6),%d0 |load L_SCR1 lword to d0 + movel #12,%d1 |use d1 for shift count + lsrl %d1,%d0 |shift d0 right by 12 + bfins %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1 + lsrl %d1,%d0 |shift d0 right by 12 + bfins %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 + tstb %d0 |check if e4 is zero + beqs A16_st |if zero, skip rest + orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR + + +| A16. Write sign bits to final string. +| Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). +| +| Register usage: +| Input/Output +| d0: x/scratch - final is x +| d2: x/x +| d3: x/x +| d4: LEN/Unchanged +| d5: ICTR:LAMBDA/LAMBDA:ICTR +| d6: ILOG/ILOG adjusted +| d7: k-factor/Unchanged +| a0: ptr to L_SCR1(a6)/Unchanged +| a1: ptr to PTENxx array/Unchanged +| a2: ptr to FP_SCR2(a6)/Unchanged +| fp0: float(ILOG)/Unchanged +| fp1: 10^ISCALE/Unchanged +| fp2: 10^LEN/Unchanged +| F_SCR1:BCD result with correct signs +| F_SCR2:ILOG/10^4 +| L_SCR1:Exponent digits on return from binstr +| L_SCR2:first word of X packed/Unchanged + +A16_st: + clrl %d0 |clr d0 for collection of signs + andib #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 + tstl L_SCR2(%a6) |check sign of original mantissa + bges mant_p |if pos, don't set SM + moveql #2,%d0 |move 2 in to d0 for SM +mant_p: + tstl %d6 |check sign of ILOG + bges wr_sgn |if pos, don't set SE + addql #1,%d0 |set bit 0 in d0 for SE +wr_sgn: + bfins %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1 + +| Clean up and restore all registers used. + + fmovel #0,%FPSR |clear possible inex2/ainex bits + fmovemx (%a7)+,%fp0-%fp2 + moveml (%a7)+,%d2-%d7/%a2 + rts + + |end diff --git a/arch/m68k/fpsp040/binstr.S b/arch/m68k/fpsp040/binstr.S new file mode 100644 index 000000000..8a05ba92a --- /dev/null +++ b/arch/m68k/fpsp040/binstr.S @@ -0,0 +1,139 @@ +| +| binstr.sa 3.3 12/19/90 +| +| +| Description: Converts a 64-bit binary integer to bcd. +| +| Input: 64-bit binary integer in d2:d3, desired length (LEN) in +| d0, and a pointer to start in memory for bcd characters +| in d0. (This pointer must point to byte 4 of the first +| lword of the packed decimal memory string.) +| +| Output: LEN bcd digits representing the 64-bit integer. +| +| Algorithm: +| The 64-bit binary is assumed to have a decimal point before +| bit 63. The fraction is multiplied by 10 using a mul by 2 +| shift and a mul by 8 shift. The bits shifted out of the +| msb form a decimal digit. This process is iterated until +| LEN digits are formed. +| +| A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the +| digit formed will be assumed the least significant. This is +| to force the first byte formed to have a 0 in the upper 4 bits. +| +| A2. Beginning of the loop: +| Copy the fraction in d2:d3 to d4:d5. +| +| A3. Multiply the fraction in d2:d3 by 8 using bit-field +| extracts and shifts. The three msbs from d2 will go into +| d1. +| +| A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb +| will be collected by the carry. +| +| A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 +| into d2:d3. D1 will contain the bcd digit formed. +| +| A6. Test d7. If zero, the digit formed is the ms digit. If non- +| zero, it is the ls digit. Put the digit in its place in the +| upper word of d0. If it is the ls digit, write the word +| from d0 to memory. +| +| A7. Decrement d6 (LEN counter) and repeat the loop until zero. +| +| Implementation Notes: +| +| The registers are used as follows: +| +| d0: LEN counter +| d1: temp used to form the digit +| d2: upper 32-bits of fraction for mul by 8 +| d3: lower 32-bits of fraction for mul by 8 +| d4: upper 32-bits of fraction for mul by 2 +| d5: lower 32-bits of fraction for mul by 2 +| d6: temp for bit-field extracts +| d7: byte digit formation word;digit count {0,1} +| a0: pointer into memory for packed bcd string formation +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|BINSTR idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + .global binstr +binstr: + moveml %d0-%d7,-(%a7) +| +| A1: Init d7 +| + moveql #1,%d7 |init d7 for second digit + subql #1,%d0 |for dbf d0 would have LEN+1 passes +| +| A2. Copy d2:d3 to d4:d5. Start loop. +| +loop: + movel %d2,%d4 |copy the fraction before muls + movel %d3,%d5 |to d4:d5 +| +| A3. Multiply d2:d3 by 8; extract msbs into d1. +| + bfextu %d2{#0:#3},%d1 |copy 3 msbs of d2 into d1 + asll #3,%d2 |shift d2 left by 3 places + bfextu %d3{#0:#3},%d6 |copy 3 msbs of d3 into d6 + asll #3,%d3 |shift d3 left by 3 places + orl %d6,%d2 |or in msbs from d3 into d2 +| +| A4. Multiply d4:d5 by 2; add carry out to d1. +| + asll #1,%d5 |mul d5 by 2 + roxll #1,%d4 |mul d4 by 2 + swap %d6 |put 0 in d6 lower word + addxw %d6,%d1 |add in extend from mul by 2 +| +| A5. Add mul by 8 to mul by 2. D1 contains the digit formed. +| + addl %d5,%d3 |add lower 32 bits + nop |ERRATA ; FIX #13 (Rev. 1.2 6/6/90) + addxl %d4,%d2 |add with extend upper 32 bits + nop |ERRATA ; FIX #13 (Rev. 1.2 6/6/90) + addxw %d6,%d1 |add in extend from add to d1 + swap %d6 |with d6 = 0; put 0 in upper word +| +| A6. Test d7 and branch. +| + tstw %d7 |if zero, store digit & to loop + beqs first_d |if non-zero, form byte & write +sec_d: + swap %d7 |bring first digit to word d7b + aslw #4,%d7 |first digit in upper 4 bits d7b + addw %d1,%d7 |add in ls digit to d7b + moveb %d7,(%a0)+ |store d7b byte in memory + swap %d7 |put LEN counter in word d7a + clrw %d7 |set d7a to signal no digits done + dbf %d0,loop |do loop some more! + bras end_bstr |finished, so exit +first_d: + swap %d7 |put digit word in d7b + movew %d1,%d7 |put new digit in d7b + swap %d7 |put LEN counter in word d7a + addqw #1,%d7 |set d7a to signal first digit done + dbf %d0,loop |do loop some more! + swap %d7 |put last digit in string + lslw #4,%d7 |move it to upper 4 bits + moveb %d7,(%a0)+ |store it in memory string +| +| Clean up and return with result in fp0. +| +end_bstr: + moveml (%a7)+,%d0-%d7 + rts + |end diff --git a/arch/m68k/fpsp040/bugfix.S b/arch/m68k/fpsp040/bugfix.S new file mode 100644 index 000000000..3bb9c84bb --- /dev/null +++ b/arch/m68k/fpsp040/bugfix.S @@ -0,0 +1,495 @@ +| +| bugfix.sa 3.2 1/31/91 +| +| +| This file contains workarounds for bugs in the 040 +| relating to the Floating-Point Software Package (FPSP) +| +| Fixes for bugs: 1238 +| +| Bug: 1238 +| +| +| /* The following dirty_bit clear should be left in +| * the handler permanently to improve throughput. +| * The dirty_bits are located at bits [23:16] in +| * longword $08 in the busy frame $4x60. Bit 16 +| * corresponds to FP0, bit 17 corresponds to FP1, +| * and so on. +| */ +| if (E3_exception_just_serviced) { +| dirty_bit[cmdreg3b[9:7]] = 0; +| } +| +| if (fsave_format_version != $40) {goto NOFIX} +| +| if !(E3_exception_just_serviced) {goto NOFIX} +| if (cupc == 0000000) {goto NOFIX} +| if ((cmdreg1b[15:13] != 000) && +| (cmdreg1b[15:10] != 010001)) {goto NOFIX} +| if (((cmdreg1b[15:13] != 000) || ((cmdreg1b[12:10] != cmdreg2b[9:7]) && +| (cmdreg1b[12:10] != cmdreg3b[9:7])) ) && +| ((cmdreg1b[ 9: 7] != cmdreg2b[9:7]) && +| (cmdreg1b[ 9: 7] != cmdreg3b[9:7])) ) {goto NOFIX} +| +| /* Note: for 6d43b or 8d43b, you may want to add the following code +| * to get better coverage. (If you do not insert this code, the part +| * won't lock up; it will simply get the wrong answer.) +| * Do NOT insert this code for 10d43b or later parts. +| * +| * if (fpiarcu == integer stack return address) { +| * cupc = 0000000; +| * goto NOFIX; +| * } +| */ +| +| if (cmdreg1b[15:13] != 000) {goto FIX_OPCLASS2} +| FIX_OPCLASS0: +| if (((cmdreg1b[12:10] == cmdreg2b[9:7]) || +| (cmdreg1b[ 9: 7] == cmdreg2b[9:7])) && +| (cmdreg1b[12:10] != cmdreg3b[9:7]) && +| (cmdreg1b[ 9: 7] != cmdreg3b[9:7])) { /* xu conflict only */ +| /* We execute the following code if there is an +| xu conflict and NOT an nu conflict */ +| +| /* first save some values on the fsave frame */ +| stag_temp = STAG[fsave_frame]; +| cmdreg1b_temp = CMDREG1B[fsave_frame]; +| dtag_temp = DTAG[fsave_frame]; +| ete15_temp = ETE15[fsave_frame]; +| +| CUPC[fsave_frame] = 0000000; +| FRESTORE +| FSAVE +| +| /* If the xu instruction is exceptional, we punt. +| * Otherwise, we would have to include OVFL/UNFL handler +| * code here to get the correct answer. +| */ +| if (fsave_frame_format == $4060) {goto KILL_PROCESS} +| +| fsave_frame = /* build a long frame of all zeros */ +| fsave_frame_format = $4060; /* label it as long frame */ +| +| /* load it with the temps we saved */ +| STAG[fsave_frame] = stag_temp; +| CMDREG1B[fsave_frame] = cmdreg1b_temp; +| DTAG[fsave_frame] = dtag_temp; +| ETE15[fsave_frame] = ete15_temp; +| +| /* Make sure that the cmdreg3b dest reg is not going to +| * be destroyed by a FMOVEM at the end of all this code. +| * If it is, you should move the current value of the reg +| * onto the stack so that the reg will loaded with that value. +| */ +| +| /* All done. Proceed with the code below */ +| } +| +| etemp = FP_reg_[cmdreg1b[12:10]]; +| ete15 = ~ete14; +| cmdreg1b[15:10] = 010010; +| clear(bug_flag_procIDxxxx); +| FRESTORE and return; +| +| +| FIX_OPCLASS2: +| if ((cmdreg1b[9:7] == cmdreg2b[9:7]) && +| (cmdreg1b[9:7] != cmdreg3b[9:7])) { /* xu conflict only */ +| /* We execute the following code if there is an +| xu conflict and NOT an nu conflict */ +| +| /* first save some values on the fsave frame */ +| stag_temp = STAG[fsave_frame]; +| cmdreg1b_temp = CMDREG1B[fsave_frame]; +| dtag_temp = DTAG[fsave_frame]; +| ete15_temp = ETE15[fsave_frame]; +| etemp_temp = ETEMP[fsave_frame]; +| +| CUPC[fsave_frame] = 0000000; +| FRESTORE +| FSAVE +| +| +| /* If the xu instruction is exceptional, we punt. +| * Otherwise, we would have to include OVFL/UNFL handler +| * code here to get the correct answer. +| */ +| if (fsave_frame_format == $4060) {goto KILL_PROCESS} +| +| fsave_frame = /* build a long frame of all zeros */ +| fsave_frame_format = $4060; /* label it as long frame */ +| +| /* load it with the temps we saved */ +| STAG[fsave_frame] = stag_temp; +| CMDREG1B[fsave_frame] = cmdreg1b_temp; +| DTAG[fsave_frame] = dtag_temp; +| ETE15[fsave_frame] = ete15_temp; +| ETEMP[fsave_frame] = etemp_temp; +| +| /* Make sure that the cmdreg3b dest reg is not going to +| * be destroyed by a FMOVEM at the end of all this code. +| * If it is, you should move the current value of the reg +| * onto the stack so that the reg will loaded with that value. +| */ +| +| /* All done. Proceed with the code below */ +| } +| +| if (etemp_exponent == min_sgl) etemp_exponent = min_dbl; +| if (etemp_exponent == max_sgl) etemp_exponent = max_dbl; +| cmdreg1b[15:10] = 010101; +| clear(bug_flag_procIDxxxx); +| FRESTORE and return; +| +| +| NOFIX: +| clear(bug_flag_procIDxxxx); +| FRESTORE and return; +| + + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|BUGFIX idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref fpsp_fmt_error + + .global b1238_fix +b1238_fix: +| +| This code is entered only on completion of the handling of an +| nu-generated ovfl, unfl, or inex exception. If the version +| number of the fsave is not $40, this handler is not necessary. +| Simply branch to fix_done and exit normally. +| + cmpib #VER_40,4(%a7) + bne fix_done +| +| Test for cu_savepc equal to zero. If not, this is not a bug +| #1238 case. +| + moveb CU_SAVEPC(%a6),%d0 + andib #0xFE,%d0 + beq fix_done |if zero, this is not bug #1238 + +| +| Test the register conflict aspect. If opclass0, check for +| cu src equal to xu dest or equal to nu dest. If so, go to +| op0. Else, or if opclass2, check for cu dest equal to +| xu dest or equal to nu dest. If so, go to tst_opcl. Else, +| exit, it is not the bug case. +| +| Check for opclass 0. If not, go and check for opclass 2 and sgl. +| + movew CMDREG1B(%a6),%d0 + andiw #0xE000,%d0 |strip all but opclass + bne op2sgl |not opclass 0, check op2 +| +| Check for cu and nu register conflict. If one exists, this takes +| priority over a cu and xu conflict. +| + bfextu CMDREG1B(%a6){#3:#3},%d0 |get 1st src + bfextu CMDREG3B(%a6){#6:#3},%d1 |get 3rd dest + cmpb %d0,%d1 + beqs op0 |if equal, continue bugfix +| +| Check for cu dest equal to nu dest. If so, go and fix the +| bug condition. Otherwise, exit. +| + bfextu CMDREG1B(%a6){#6:#3},%d0 |get 1st dest + cmpb %d0,%d1 |cmp 1st dest with 3rd dest + beqs op0 |if equal, continue bugfix +| +| Check for cu and xu register conflict. +| + bfextu CMDREG2B(%a6){#6:#3},%d1 |get 2nd dest + cmpb %d0,%d1 |cmp 1st dest with 2nd dest + beqs op0_xu |if equal, continue bugfix + bfextu CMDREG1B(%a6){#3:#3},%d0 |get 1st src + cmpb %d0,%d1 |cmp 1st src with 2nd dest + beq op0_xu + bne fix_done |if the reg checks fail, exit +| +| We have the opclass 0 situation. +| +op0: + bfextu CMDREG1B(%a6){#3:#3},%d0 |get source register no + movel #7,%d1 + subl %d0,%d1 + clrl %d0 + bsetl %d1,%d0 + fmovemx %d0,ETEMP(%a6) |load source to ETEMP + + moveb #0x12,%d0 + bfins %d0,CMDREG1B(%a6){#0:#6} |opclass 2, extended +| +| Set ETEMP exponent bit 15 as the opposite of ete14 +| + btst #6,ETEMP_EX(%a6) |check etemp exponent bit 14 + beq setete15 + bclr #etemp15_bit,STAG(%a6) + bra finish +setete15: + bset #etemp15_bit,STAG(%a6) + bra finish + +| +| We have the case in which a conflict exists between the cu src or +| dest and the dest of the xu. We must clear the instruction in +| the cu and restore the state, allowing the instruction in the +| xu to complete. Remember, the instruction in the nu +| was exceptional, and was completed by the appropriate handler. +| If the result of the xu instruction is not exceptional, we can +| restore the instruction from the cu to the frame and continue +| processing the original exception. If the result is also +| exceptional, we choose to kill the process. +| +| Items saved from the stack: +| +| $3c stag - L_SCR1 +| $40 cmdreg1b - L_SCR2 +| $44 dtag - L_SCR3 +| +| The cu savepc is set to zero, and the frame is restored to the +| fpu. +| +op0_xu: + movel STAG(%a6),L_SCR1(%a6) + movel CMDREG1B(%a6),L_SCR2(%a6) + movel DTAG(%a6),L_SCR3(%a6) + andil #0xe0000000,L_SCR3(%a6) + moveb #0,CU_SAVEPC(%a6) + movel (%a7)+,%d1 |save return address from bsr + frestore (%a7)+ + fsave -(%a7) +| +| Check if the instruction which just completed was exceptional. +| + cmpw #0x4060,(%a7) + beq op0_xb +| +| It is necessary to isolate the result of the instruction in the +| xu if it is to fp0 - fp3 and write that value to the USER_FPn +| locations on the stack. The correct destination register is in +| cmdreg2b. +| + bfextu CMDREG2B(%a6){#6:#3},%d0 |get dest register no + cmpil #3,%d0 + bgts op0_xi + beqs op0_fp3 + cmpil #1,%d0 + blts op0_fp0 + beqs op0_fp1 +op0_fp2: + fmovemx %fp2-%fp2,USER_FP2(%a6) + bras op0_xi +op0_fp1: + fmovemx %fp1-%fp1,USER_FP1(%a6) + bras op0_xi +op0_fp0: + fmovemx %fp0-%fp0,USER_FP0(%a6) + bras op0_xi +op0_fp3: + fmovemx %fp3-%fp3,USER_FP3(%a6) +| +| The frame returned is idle. We must build a busy frame to hold +| the cu state information and setup etemp. +| +op0_xi: + movel #22,%d0 |clear 23 lwords + clrl (%a7) +op0_loop: + clrl -(%a7) + dbf %d0,op0_loop + movel #0x40600000,-(%a7) + movel L_SCR1(%a6),STAG(%a6) + movel L_SCR2(%a6),CMDREG1B(%a6) + movel L_SCR3(%a6),DTAG(%a6) + moveb #0x6,CU_SAVEPC(%a6) + movel %d1,-(%a7) |return bsr return address + bfextu CMDREG1B(%a6){#3:#3},%d0 |get source register no + movel #7,%d1 + subl %d0,%d1 + clrl %d0 + bsetl %d1,%d0 + fmovemx %d0,ETEMP(%a6) |load source to ETEMP + + moveb #0x12,%d0 + bfins %d0,CMDREG1B(%a6){#0:#6} |opclass 2, extended +| +| Set ETEMP exponent bit 15 as the opposite of ete14 +| + btst #6,ETEMP_EX(%a6) |check etemp exponent bit 14 + beq op0_sete15 + bclr #etemp15_bit,STAG(%a6) + bra finish +op0_sete15: + bset #etemp15_bit,STAG(%a6) + bra finish + +| +| The frame returned is busy. It is not possible to reconstruct +| the code sequence to allow completion. We will jump to +| fpsp_fmt_error and allow the kernel to kill the process. +| +op0_xb: + jmp fpsp_fmt_error + +| +| Check for opclass 2 and single size. If not both, exit. +| +op2sgl: + movew CMDREG1B(%a6),%d0 + andiw #0xFC00,%d0 |strip all but opclass and size + cmpiw #0x4400,%d0 |test for opclass 2 and size=sgl + bne fix_done |if not, it is not bug 1238 +| +| Check for cu dest equal to nu dest or equal to xu dest, with +| a cu and nu conflict taking priority an nu conflict. If either, +| go and fix the bug condition. Otherwise, exit. +| + bfextu CMDREG1B(%a6){#6:#3},%d0 |get 1st dest + bfextu CMDREG3B(%a6){#6:#3},%d1 |get 3rd dest + cmpb %d0,%d1 |cmp 1st dest with 3rd dest + beq op2_com |if equal, continue bugfix + bfextu CMDREG2B(%a6){#6:#3},%d1 |get 2nd dest + cmpb %d0,%d1 |cmp 1st dest with 2nd dest + bne fix_done |if the reg checks fail, exit +| +| We have the case in which a conflict exists between the cu src or +| dest and the dest of the xu. We must clear the instruction in +| the cu and restore the state, allowing the instruction in the +| xu to complete. Remember, the instruction in the nu +| was exceptional, and was completed by the appropriate handler. +| If the result of the xu instruction is not exceptional, we can +| restore the instruction from the cu to the frame and continue +| processing the original exception. If the result is also +| exceptional, we choose to kill the process. +| +| Items saved from the stack: +| +| $3c stag - L_SCR1 +| $40 cmdreg1b - L_SCR2 +| $44 dtag - L_SCR3 +| etemp - FP_SCR2 +| +| The cu savepc is set to zero, and the frame is restored to the +| fpu. +| +op2_xu: + movel STAG(%a6),L_SCR1(%a6) + movel CMDREG1B(%a6),L_SCR2(%a6) + movel DTAG(%a6),L_SCR3(%a6) + andil #0xe0000000,L_SCR3(%a6) + moveb #0,CU_SAVEPC(%a6) + movel ETEMP(%a6),FP_SCR2(%a6) + movel ETEMP_HI(%a6),FP_SCR2+4(%a6) + movel ETEMP_LO(%a6),FP_SCR2+8(%a6) + movel (%a7)+,%d1 |save return address from bsr + frestore (%a7)+ + fsave -(%a7) +| +| Check if the instruction which just completed was exceptional. +| + cmpw #0x4060,(%a7) + beq op2_xb +| +| It is necessary to isolate the result of the instruction in the +| xu if it is to fp0 - fp3 and write that value to the USER_FPn +| locations on the stack. The correct destination register is in +| cmdreg2b. +| + bfextu CMDREG2B(%a6){#6:#3},%d0 |get dest register no + cmpil #3,%d0 + bgts op2_xi + beqs op2_fp3 + cmpil #1,%d0 + blts op2_fp0 + beqs op2_fp1 +op2_fp2: + fmovemx %fp2-%fp2,USER_FP2(%a6) + bras op2_xi +op2_fp1: + fmovemx %fp1-%fp1,USER_FP1(%a6) + bras op2_xi +op2_fp0: + fmovemx %fp0-%fp0,USER_FP0(%a6) + bras op2_xi +op2_fp3: + fmovemx %fp3-%fp3,USER_FP3(%a6) +| +| The frame returned is idle. We must build a busy frame to hold +| the cu state information and fix up etemp. +| +op2_xi: + movel #22,%d0 |clear 23 lwords + clrl (%a7) +op2_loop: + clrl -(%a7) + dbf %d0,op2_loop + movel #0x40600000,-(%a7) + movel L_SCR1(%a6),STAG(%a6) + movel L_SCR2(%a6),CMDREG1B(%a6) + movel L_SCR3(%a6),DTAG(%a6) + moveb #0x6,CU_SAVEPC(%a6) + movel FP_SCR2(%a6),ETEMP(%a6) + movel FP_SCR2+4(%a6),ETEMP_HI(%a6) + movel FP_SCR2+8(%a6),ETEMP_LO(%a6) + movel %d1,-(%a7) + bra op2_com + +| +| We have the opclass 2 single source situation. +| +op2_com: + moveb #0x15,%d0 + bfins %d0,CMDREG1B(%a6){#0:#6} |opclass 2, double + + cmpw #0x407F,ETEMP_EX(%a6) |single +max + bnes case2 + movew #0x43FF,ETEMP_EX(%a6) |to double +max + bra finish +case2: + cmpw #0xC07F,ETEMP_EX(%a6) |single -max + bnes case3 + movew #0xC3FF,ETEMP_EX(%a6) |to double -max + bra finish +case3: + cmpw #0x3F80,ETEMP_EX(%a6) |single +min + bnes case4 + movew #0x3C00,ETEMP_EX(%a6) |to double +min + bra finish +case4: + cmpw #0xBF80,ETEMP_EX(%a6) |single -min + bne fix_done + movew #0xBC00,ETEMP_EX(%a6) |to double -min + bra finish +| +| The frame returned is busy. It is not possible to reconstruct +| the code sequence to allow completion. fpsp_fmt_error causes +| an fline illegal instruction to be executed. +| +| You should replace the jump to fpsp_fmt_error with a jump +| to the entry point used to kill a process. +| +op2_xb: + jmp fpsp_fmt_error + +| +| Enter here if the case is not of the situations affected by +| bug #1238, or if the fix is completed, and exit. +| +finish: +fix_done: + rts + + |end diff --git a/arch/m68k/fpsp040/decbin.S b/arch/m68k/fpsp040/decbin.S new file mode 100644 index 000000000..16ed796ba --- /dev/null +++ b/arch/m68k/fpsp040/decbin.S @@ -0,0 +1,505 @@ +| +| decbin.sa 3.3 12/19/90 +| +| Description: Converts normalized packed bcd value pointed to by +| register A6 to extended-precision value in FP0. +| +| Input: Normalized packed bcd value in ETEMP(a6). +| +| Output: Exact floating-point representation of the packed bcd value. +| +| Saves and Modifies: D2-D5 +| +| Speed: The program decbin takes ??? cycles to execute. +| +| Object Size: +| +| External Reference(s): None. +| +| Algorithm: +| Expected is a normal bcd (i.e. non-exceptional; all inf, zero, +| and NaN operands are dispatched without entering this routine) +| value in 68881/882 format at location ETEMP(A6). +| +| A1. Convert the bcd exponent to binary by successive adds and muls. +| Set the sign according to SE. Subtract 16 to compensate +| for the mantissa which is to be interpreted as 17 integer +| digits, rather than 1 integer and 16 fraction digits. +| Note: this operation can never overflow. +| +| A2. Convert the bcd mantissa to binary by successive +| adds and muls in FP0. Set the sign according to SM. +| The mantissa digits will be converted with the decimal point +| assumed following the least-significant digit. +| Note: this operation can never overflow. +| +| A3. Count the number of leading/trailing zeros in the +| bcd string. If SE is positive, count the leading zeros; +| if negative, count the trailing zeros. Set the adjusted +| exponent equal to the exponent from A1 and the zero count +| added if SM = 1 and subtracted if SM = 0. Scale the +| mantissa the equivalent of forcing in the bcd value: +| +| SM = 0 a non-zero digit in the integer position +| SM = 1 a non-zero digit in Mant0, lsd of the fraction +| +| this will insure that any value, regardless of its +| representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted +| consistently. +| +| A4. Calculate the factor 10^exp in FP1 using a table of +| 10^(2^n) values. To reduce the error in forming factors +| greater than 10^27, a directed rounding scheme is used with +| tables rounded to RN, RM, and RP, according to the table +| in the comments of the pwrten section. +| +| A5. Form the final binary number by scaling the mantissa by +| the exponent factor. This is done by multiplying the +| mantissa in FP0 by the factor in FP1 if the adjusted +| exponent sign is positive, and dividing FP0 by FP1 if +| it is negative. +| +| Clean up and return. Check if the final mul or div resulted +| in an inex2 exception. If so, set inex1 in the fpsr and +| check if the inex1 exception is enabled. If so, set d7 upper +| word to $0100. This will signal unimp.sa that an enabled inex1 +| exception occurred. Unimp will fix the stack. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +| +| PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded +| to nearest, minus, and plus, respectively. The tables include +| 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding +| is required until the power is greater than 27, however, all +| tables include the first 5 for ease of indexing. +| + |xref PTENRN + |xref PTENRM + |xref PTENRP + +RTABLE: .byte 0,0,0,0 + .byte 2,3,2,3 + .byte 2,3,3,2 + .byte 3,2,2,3 + + .global decbin + .global calc_e + .global pwrten + .global calc_m + .global norm + .global ap_st_z + .global ap_st_n +| + .set FNIBS,7 + .set FSTRT,0 +| + .set ESTRT,4 + .set EDIGITS,2 | +| +| Constants in single precision +FZERO: .long 0x00000000 +FONE: .long 0x3F800000 +FTEN: .long 0x41200000 + + .set TEN,10 + +| +decbin: + | fmovel #0,FPCR ;clr real fpcr + moveml %d2-%d5,-(%a7) +| +| Calculate exponent: +| 1. Copy bcd value in memory for use as a working copy. +| 2. Calculate absolute value of exponent in d1 by mul and add. +| 3. Correct for exponent sign. +| 4. Subtract 16 to compensate for interpreting the mant as all integer digits. +| (i.e., all digits assumed left of the decimal point.) +| +| Register usage: +| +| calc_e: +| (*) d0: temp digit storage +| (*) d1: accumulator for binary exponent +| (*) d2: digit count +| (*) d3: offset pointer +| ( ) d4: first word of bcd +| ( ) a0: pointer to working bcd value +| ( ) a6: pointer to original bcd value +| (*) FP_SCR1: working copy of original bcd value +| (*) L_SCR1: copy of original exponent word +| +calc_e: + movel #EDIGITS,%d2 |# of nibbles (digits) in fraction part + moveql #ESTRT,%d3 |counter to pick up digits + leal FP_SCR1(%a6),%a0 |load tmp bcd storage address + movel ETEMP(%a6),(%a0) |save input bcd value + movel ETEMP_HI(%a6),4(%a0) |save words 2 and 3 + movel ETEMP_LO(%a6),8(%a0) |and work with these + movel (%a0),%d4 |get first word of bcd + clrl %d1 |zero d1 for accumulator +e_gd: + mulul #TEN,%d1 |mul partial product by one digit place + bfextu %d4{%d3:#4},%d0 |get the digit and zero extend into d0 + addl %d0,%d1 |d1 = d1 + d0 + addqb #4,%d3 |advance d3 to the next digit + dbf %d2,e_gd |if we have used all 3 digits, exit loop + btst #30,%d4 |get SE + beqs e_pos |don't negate if pos + negl %d1 |negate before subtracting +e_pos: + subl #16,%d1 |sub to compensate for shift of mant + bges e_save |if still pos, do not neg + negl %d1 |now negative, make pos and set SE + orl #0x40000000,%d4 |set SE in d4, + orl #0x40000000,(%a0) |and in working bcd +e_save: + movel %d1,L_SCR1(%a6) |save exp in memory +| +| +| Calculate mantissa: +| 1. Calculate absolute value of mantissa in fp0 by mul and add. +| 2. Correct for mantissa sign. +| (i.e., all digits assumed left of the decimal point.) +| +| Register usage: +| +| calc_m: +| (*) d0: temp digit storage +| (*) d1: lword counter +| (*) d2: digit count +| (*) d3: offset pointer +| ( ) d4: words 2 and 3 of bcd +| ( ) a0: pointer to working bcd value +| ( ) a6: pointer to original bcd value +| (*) fp0: mantissa accumulator +| ( ) FP_SCR1: working copy of original bcd value +| ( ) L_SCR1: copy of original exponent word +| +calc_m: + moveql #1,%d1 |word counter, init to 1 + fmoves FZERO,%fp0 |accumulator +| +| +| Since the packed number has a long word between the first & second parts, +| get the integer digit then skip down & get the rest of the +| mantissa. We will unroll the loop once. +| + bfextu (%a0){#28:#4},%d0 |integer part is ls digit in long word + faddb %d0,%fp0 |add digit to sum in fp0 +| +| +| Get the rest of the mantissa. +| +loadlw: + movel (%a0,%d1.L*4),%d4 |load mantissa longword into d4 + moveql #FSTRT,%d3 |counter to pick up digits + moveql #FNIBS,%d2 |reset number of digits per a0 ptr +md2b: + fmuls FTEN,%fp0 |fp0 = fp0 * 10 + bfextu %d4{%d3:#4},%d0 |get the digit and zero extend + faddb %d0,%fp0 |fp0 = fp0 + digit +| +| +| If all the digits (8) in that long word have been converted (d2=0), +| then inc d1 (=2) to point to the next long word and reset d3 to 0 +| to initialize the digit offset, and set d2 to 7 for the digit count; +| else continue with this long word. +| + addqb #4,%d3 |advance d3 to the next digit + dbf %d2,md2b |check for last digit in this lw +nextlw: + addql #1,%d1 |inc lw pointer in mantissa + cmpl #2,%d1 |test for last lw + ble loadlw |if not, get last one + +| +| Check the sign of the mant and make the value in fp0 the same sign. +| +m_sign: + btst #31,(%a0) |test sign of the mantissa + beq ap_st_z |if clear, go to append/strip zeros + fnegx %fp0 |if set, negate fp0 + +| +| Append/strip zeros: +| +| For adjusted exponents which have an absolute value greater than 27*, +| this routine calculates the amount needed to normalize the mantissa +| for the adjusted exponent. That number is subtracted from the exp +| if the exp was positive, and added if it was negative. The purpose +| of this is to reduce the value of the exponent and the possibility +| of error in calculation of pwrten. +| +| 1. Branch on the sign of the adjusted exponent. +| 2p.(positive exp) +| 2. Check M16 and the digits in lwords 2 and 3 in descending order. +| 3. Add one for each zero encountered until a non-zero digit. +| 4. Subtract the count from the exp. +| 5. Check if the exp has crossed zero in #3 above; make the exp abs +| and set SE. +| 6. Multiply the mantissa by 10**count. +| 2n.(negative exp) +| 2. Check the digits in lwords 3 and 2 in descending order. +| 3. Add one for each zero encountered until a non-zero digit. +| 4. Add the count to the exp. +| 5. Check if the exp has crossed zero in #3 above; clear SE. +| 6. Divide the mantissa by 10**count. +| +| *Why 27? If the adjusted exponent is within -28 < expA < 28, than +| any adjustment due to append/strip zeros will drive the resultant +| exponent towards zero. Since all pwrten constants with a power +| of 27 or less are exact, there is no need to use this routine to +| attempt to lessen the resultant exponent. +| +| Register usage: +| +| ap_st_z: +| (*) d0: temp digit storage +| (*) d1: zero count +| (*) d2: digit count +| (*) d3: offset pointer +| ( ) d4: first word of bcd +| (*) d5: lword counter +| ( ) a0: pointer to working bcd value +| ( ) FP_SCR1: working copy of original bcd value +| ( ) L_SCR1: copy of original exponent word +| +| +| First check the absolute value of the exponent to see if this +| routine is necessary. If so, then check the sign of the exponent +| and do append (+) or strip (-) zeros accordingly. +| This section handles a positive adjusted exponent. +| +ap_st_z: + movel L_SCR1(%a6),%d1 |load expA for range test + cmpl #27,%d1 |test is with 27 + ble pwrten |if abs(expA) <28, skip ap/st zeros + btst #30,(%a0) |check sign of exp + bne ap_st_n |if neg, go to neg side + clrl %d1 |zero count reg + movel (%a0),%d4 |load lword 1 to d4 + bfextu %d4{#28:#4},%d0 |get M16 in d0 + bnes ap_p_fx |if M16 is non-zero, go fix exp + addql #1,%d1 |inc zero count + moveql #1,%d5 |init lword counter + movel (%a0,%d5.L*4),%d4 |get lword 2 to d4 + bnes ap_p_cl |if lw 2 is zero, skip it + addql #8,%d1 |and inc count by 8 + addql #1,%d5 |inc lword counter + movel (%a0,%d5.L*4),%d4 |get lword 3 to d4 +ap_p_cl: + clrl %d3 |init offset reg + moveql #7,%d2 |init digit counter +ap_p_gd: + bfextu %d4{%d3:#4},%d0 |get digit + bnes ap_p_fx |if non-zero, go to fix exp + addql #4,%d3 |point to next digit + addql #1,%d1 |inc digit counter + dbf %d2,ap_p_gd |get next digit +ap_p_fx: + movel %d1,%d0 |copy counter to d2 + movel L_SCR1(%a6),%d1 |get adjusted exp from memory + subl %d0,%d1 |subtract count from exp + bges ap_p_fm |if still pos, go to pwrten + negl %d1 |now its neg; get abs + movel (%a0),%d4 |load lword 1 to d4 + orl #0x40000000,%d4 | and set SE in d4 + orl #0x40000000,(%a0) | and in memory +| +| Calculate the mantissa multiplier to compensate for the striping of +| zeros from the mantissa. +| +ap_p_fm: + movel #PTENRN,%a1 |get address of power-of-ten table + clrl %d3 |init table index + fmoves FONE,%fp1 |init fp1 to 1 + moveql #3,%d2 |init d2 to count bits in counter +ap_p_el: + asrl #1,%d0 |shift lsb into carry + bccs ap_p_en |if 1, mul fp1 by pwrten factor + fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) +ap_p_en: + addl #12,%d3 |inc d3 to next rtable entry + tstl %d0 |check if d0 is zero + bnes ap_p_el |if not, get next bit + fmulx %fp1,%fp0 |mul mantissa by 10**(no_bits_shifted) + bra pwrten |go calc pwrten +| +| This section handles a negative adjusted exponent. +| +ap_st_n: + clrl %d1 |clr counter + moveql #2,%d5 |set up d5 to point to lword 3 + movel (%a0,%d5.L*4),%d4 |get lword 3 + bnes ap_n_cl |if not zero, check digits + subl #1,%d5 |dec d5 to point to lword 2 + addql #8,%d1 |inc counter by 8 + movel (%a0,%d5.L*4),%d4 |get lword 2 +ap_n_cl: + movel #28,%d3 |point to last digit + moveql #7,%d2 |init digit counter +ap_n_gd: + bfextu %d4{%d3:#4},%d0 |get digit + bnes ap_n_fx |if non-zero, go to exp fix + subql #4,%d3 |point to previous digit + addql #1,%d1 |inc digit counter + dbf %d2,ap_n_gd |get next digit +ap_n_fx: + movel %d1,%d0 |copy counter to d0 + movel L_SCR1(%a6),%d1 |get adjusted exp from memory + subl %d0,%d1 |subtract count from exp + bgts ap_n_fm |if still pos, go fix mantissa + negl %d1 |take abs of exp and clr SE + movel (%a0),%d4 |load lword 1 to d4 + andl #0xbfffffff,%d4 | and clr SE in d4 + andl #0xbfffffff,(%a0) | and in memory +| +| Calculate the mantissa multiplier to compensate for the appending of +| zeros to the mantissa. +| +ap_n_fm: + movel #PTENRN,%a1 |get address of power-of-ten table + clrl %d3 |init table index + fmoves FONE,%fp1 |init fp1 to 1 + moveql #3,%d2 |init d2 to count bits in counter +ap_n_el: + asrl #1,%d0 |shift lsb into carry + bccs ap_n_en |if 1, mul fp1 by pwrten factor + fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) +ap_n_en: + addl #12,%d3 |inc d3 to next rtable entry + tstl %d0 |check if d0 is zero + bnes ap_n_el |if not, get next bit + fdivx %fp1,%fp0 |div mantissa by 10**(no_bits_shifted) +| +| +| Calculate power-of-ten factor from adjusted and shifted exponent. +| +| Register usage: +| +| pwrten: +| (*) d0: temp +| ( ) d1: exponent +| (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp +| (*) d3: FPCR work copy +| ( ) d4: first word of bcd +| (*) a1: RTABLE pointer +| calc_p: +| (*) d0: temp +| ( ) d1: exponent +| (*) d3: PWRTxx table index +| ( ) a0: pointer to working copy of bcd +| (*) a1: PWRTxx pointer +| (*) fp1: power-of-ten accumulator +| +| Pwrten calculates the exponent factor in the selected rounding mode +| according to the following table: +| +| Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode +| +| ANY ANY RN RN +| +| + + RP RP +| - + RP RM +| + - RP RM +| - - RP RP +| +| + + RM RM +| - + RM RP +| + - RM RP +| - - RM RM +| +| + + RZ RM +| - + RZ RM +| + - RZ RP +| - - RZ RP +| +| +pwrten: + movel USER_FPCR(%a6),%d3 |get user's FPCR + bfextu %d3{#26:#2},%d2 |isolate rounding mode bits + movel (%a0),%d4 |reload 1st bcd word to d4 + asll #2,%d2 |format d2 to be + bfextu %d4{#0:#2},%d0 | {FPCR[6],FPCR[5],SM,SE} + addl %d0,%d2 |in d2 as index into RTABLE + leal RTABLE,%a1 |load rtable base + moveb (%a1,%d2),%d0 |load new rounding bits from table + clrl %d3 |clear d3 to force no exc and extended + bfins %d0,%d3{#26:#2} |stuff new rounding bits in FPCR + fmovel %d3,%FPCR |write new FPCR + asrl #1,%d0 |write correct PTENxx table + bccs not_rp |to a1 + leal PTENRP,%a1 |it is RP + bras calc_p |go to init section +not_rp: + asrl #1,%d0 |keep checking + bccs not_rm + leal PTENRM,%a1 |it is RM + bras calc_p |go to init section +not_rm: + leal PTENRN,%a1 |it is RN +calc_p: + movel %d1,%d0 |copy exp to d0;use d0 + bpls no_neg |if exp is negative, + negl %d0 |invert it + orl #0x40000000,(%a0) |and set SE bit +no_neg: + clrl %d3 |table index + fmoves FONE,%fp1 |init fp1 to 1 +e_loop: + asrl #1,%d0 |shift next bit into carry + bccs e_next |if zero, skip the mul + fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) +e_next: + addl #12,%d3 |inc d3 to next rtable entry + tstl %d0 |check if d0 is zero + bnes e_loop |not zero, continue shifting +| +| +| Check the sign of the adjusted exp and make the value in fp0 the +| same sign. If the exp was pos then multiply fp1*fp0; +| else divide fp0/fp1. +| +| Register Usage: +| norm: +| ( ) a0: pointer to working bcd value +| (*) fp0: mantissa accumulator +| ( ) fp1: scaling factor - 10**(abs(exp)) +| +norm: + btst #30,(%a0) |test the sign of the exponent + beqs mul |if clear, go to multiply +div: + fdivx %fp1,%fp0 |exp is negative, so divide mant by exp + bras end_dec +mul: + fmulx %fp1,%fp0 |exp is positive, so multiply by exp +| +| +| Clean up and return with result in fp0. +| +| If the final mul/div in decbin incurred an inex exception, +| it will be inex2, but will be reported as inex1 by get_op. +| +end_dec: + fmovel %FPSR,%d0 |get status register + bclrl #inex2_bit+8,%d0 |test for inex2 and clear it + fmovel %d0,%FPSR |return status reg w/o inex2 + beqs no_exc |skip this if no exc + orl #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex +no_exc: + moveml (%a7)+,%d2-%d5 + rts + |end diff --git a/arch/m68k/fpsp040/do_func.S b/arch/m68k/fpsp040/do_func.S new file mode 100644 index 000000000..3eff99a80 --- /dev/null +++ b/arch/m68k/fpsp040/do_func.S @@ -0,0 +1,558 @@ +| +| do_func.sa 3.4 2/18/91 +| +| Do_func performs the unimplemented operation. The operation +| to be performed is determined from the lower 7 bits of the +| extension word (except in the case of fmovecr and fsincos). +| The opcode and tag bits form an index into a jump table in +| tbldo.sa. Cases of zero, infinity and NaN are handled in +| do_func by forcing the default result. Normalized and +| denormalized (there are no unnormalized numbers at this +| point) are passed onto the emulation code. +| +| CMDREG1B and STAG are extracted from the fsave frame +| and combined to form the table index. The function called +| will start with a0 pointing to the ETEMP operand. Dyadic +| functions can find FPTEMP at -12(a0). +| +| Called functions return their result in fp0. Sincos returns +| sin(x) in fp0 and cos(x) in fp1. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +DO_FUNC: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref t_dz2 + |xref t_operr + |xref t_inx2 + |xref t_resdnrm + |xref dst_nan + |xref src_nan + |xref nrm_set + |xref sto_cos + + |xref tblpre + |xref slognp1,slogn,slog10,slog2 + |xref slognd,slog10d,slog2d + |xref smod,srem + |xref sscale + |xref smovcr + +PONE: .long 0x3fff0000,0x80000000,0x00000000 |+1 +MONE: .long 0xbfff0000,0x80000000,0x00000000 |-1 +PZERO: .long 0x00000000,0x00000000,0x00000000 |+0 +MZERO: .long 0x80000000,0x00000000,0x00000000 |-0 +PINF: .long 0x7fff0000,0x00000000,0x00000000 |+inf +MINF: .long 0xffff0000,0x00000000,0x00000000 |-inf +QNAN: .long 0x7fff0000,0xffffffff,0xffffffff |non-signaling nan +PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235 |+PI/2 +MPIBY2: .long 0xbFFF0000,0xC90FDAA2,0x2168C235 |-PI/2 + + .global do_func +do_func: + clrb CU_ONLY(%a6) +| +| Check for fmovecr. It does not follow the format of fp gen +| unimplemented instructions. The test is on the upper 6 bits; +| if they are $17, the inst is fmovecr. Call entry smovcr +| directly. +| + bfextu CMDREG1B(%a6){#0:#6},%d0 |get opclass and src fields + cmpil #0x17,%d0 |if op class and size fields are $17, +| ;it is FMOVECR; if not, continue + bnes not_fmovecr + jmp smovcr |fmovecr; jmp directly to emulation + +not_fmovecr: + movew CMDREG1B(%a6),%d0 + andl #0x7F,%d0 + cmpil #0x38,%d0 |if the extension is >= $38, + bge serror |it is illegal + bfextu STAG(%a6){#0:#3},%d1 + lsll #3,%d0 |make room for STAG + addl %d1,%d0 |combine for final index into table + leal tblpre,%a1 |start of monster jump table + movel (%a1,%d0.w*4),%a1 |real target address + leal ETEMP(%a6),%a0 |a0 is pointer to src op + movel USER_FPCR(%a6),%d1 + andl #0xFF,%d1 | discard all but rounding mode/prec + fmovel #0,%fpcr + jmp (%a1) +| +| ERROR +| + .global serror +serror: + st STORE_FLG(%a6) + rts +| +| These routines load forced values into fp0. They are called +| by index into tbldo. +| +| Load a signed zero to fp0 and set inex2/ainex +| + .global snzrinx +snzrinx: + btstb #sign_bit,LOCAL_EX(%a0) |get sign of source operand + bnes ld_mzinx |if negative, branch + bsr ld_pzero |bsr so we can return and set inx + bra t_inx2 |now, set the inx for the next inst +ld_mzinx: + bsr ld_mzero |if neg, load neg zero, return here + bra t_inx2 |now, set the inx for the next inst +| +| Load a signed zero to fp0; do not set inex2/ainex +| + .global szero +szero: + btstb #sign_bit,LOCAL_EX(%a0) |get sign of source operand + bne ld_mzero |if neg, load neg zero + bra ld_pzero |load positive zero +| +| Load a signed infinity to fp0; do not set inex2/ainex +| + .global sinf +sinf: + btstb #sign_bit,LOCAL_EX(%a0) |get sign of source operand + bne ld_minf |if negative branch + bra ld_pinf +| +| Load a signed one to fp0; do not set inex2/ainex +| + .global sone +sone: + btstb #sign_bit,LOCAL_EX(%a0) |check sign of source + bne ld_mone + bra ld_pone +| +| Load a signed pi/2 to fp0; do not set inex2/ainex +| + .global spi_2 +spi_2: + btstb #sign_bit,LOCAL_EX(%a0) |check sign of source + bne ld_mpi2 + bra ld_ppi2 +| +| Load either a +0 or +inf for plus/minus operand +| + .global szr_inf +szr_inf: + btstb #sign_bit,LOCAL_EX(%a0) |check sign of source + bne ld_pzero + bra ld_pinf +| +| Result is either an operr or +inf for plus/minus operand +| [Used by slogn, slognp1, slog10, and slog2] +| + .global sopr_inf +sopr_inf: + btstb #sign_bit,LOCAL_EX(%a0) |check sign of source + bne t_operr + bra ld_pinf +| +| FLOGNP1 +| + .global sslognp1 +sslognp1: + fmovemx (%a0),%fp0-%fp0 + fcmpb #-1,%fp0 + fbgt slognp1 + fbeq t_dz2 |if = -1, divide by zero exception + fmovel #0,%FPSR |clr N flag + bra t_operr |take care of operands < -1 +| +| FETOXM1 +| + .global setoxm1i +setoxm1i: + btstb #sign_bit,LOCAL_EX(%a0) |check sign of source + bne ld_mone + bra ld_pinf +| +| FLOGN +| +| Test for 1.0 as an input argument, returning +zero. Also check +| the sign and return operr if negative. +| + .global sslogn +sslogn: + btstb #sign_bit,LOCAL_EX(%a0) + bne t_operr |take care of operands < 0 + cmpiw #0x3fff,LOCAL_EX(%a0) |test for 1.0 input + bne slogn + cmpil #0x80000000,LOCAL_HI(%a0) + bne slogn + tstl LOCAL_LO(%a0) + bne slogn + fmovex PZERO,%fp0 + rts + + .global sslognd +sslognd: + btstb #sign_bit,LOCAL_EX(%a0) + beq slognd + bra t_operr |take care of operands < 0 + +| +| FLOG10 +| + .global sslog10 +sslog10: + btstb #sign_bit,LOCAL_EX(%a0) + bne t_operr |take care of operands < 0 + cmpiw #0x3fff,LOCAL_EX(%a0) |test for 1.0 input + bne slog10 + cmpil #0x80000000,LOCAL_HI(%a0) + bne slog10 + tstl LOCAL_LO(%a0) + bne slog10 + fmovex PZERO,%fp0 + rts + + .global sslog10d +sslog10d: + btstb #sign_bit,LOCAL_EX(%a0) + beq slog10d + bra t_operr |take care of operands < 0 + +| +| FLOG2 +| + .global sslog2 +sslog2: + btstb #sign_bit,LOCAL_EX(%a0) + bne t_operr |take care of operands < 0 + cmpiw #0x3fff,LOCAL_EX(%a0) |test for 1.0 input + bne slog2 + cmpil #0x80000000,LOCAL_HI(%a0) + bne slog2 + tstl LOCAL_LO(%a0) + bne slog2 + fmovex PZERO,%fp0 + rts + + .global sslog2d +sslog2d: + btstb #sign_bit,LOCAL_EX(%a0) + beq slog2d + bra t_operr |take care of operands < 0 + +| +| FMOD +| +pmodt: +| ;$21 fmod +| ;dtag,stag + .long smod | 00,00 norm,norm = normal + .long smod_oper | 00,01 norm,zero = nan with operr + .long smod_fpn | 00,10 norm,inf = fpn + .long smod_snan | 00,11 norm,nan = nan + .long smod_zro | 01,00 zero,norm = +-zero + .long smod_oper | 01,01 zero,zero = nan with operr + .long smod_zro | 01,10 zero,inf = +-zero + .long smod_snan | 01,11 zero,nan = nan + .long smod_oper | 10,00 inf,norm = nan with operr + .long smod_oper | 10,01 inf,zero = nan with operr + .long smod_oper | 10,10 inf,inf = nan with operr + .long smod_snan | 10,11 inf,nan = nan + .long smod_dnan | 11,00 nan,norm = nan + .long smod_dnan | 11,01 nan,zero = nan + .long smod_dnan | 11,10 nan,inf = nan + .long smod_dnan | 11,11 nan,nan = nan + + .global pmod +pmod: + clrb FPSR_QBYTE(%a6) | clear quotient field + bfextu STAG(%a6){#0:#3},%d0 |stag = d0 + bfextu DTAG(%a6){#0:#3},%d1 |dtag = d1 + +| +| Alias extended denorms to norms for the jump table. +| + bclrl #2,%d0 + bclrl #2,%d1 + + lslb #2,%d1 + orb %d0,%d1 |d1{3:2} = dtag, d1{1:0} = stag +| ;Tag values: +| ;00 = norm or denorm +| ;01 = zero +| ;10 = inf +| ;11 = nan + lea pmodt,%a1 + movel (%a1,%d1.w*4),%a1 + jmp (%a1) + +smod_snan: + bra src_nan +smod_dnan: + bra dst_nan +smod_oper: + bra t_operr +smod_zro: + moveb ETEMP(%a6),%d1 |get sign of src op + moveb FPTEMP(%a6),%d0 |get sign of dst op + eorb %d0,%d1 |get exor of sign bits + btstl #7,%d1 |test for sign + beqs smod_zsn |if clr, do not set sign big + bsetb #q_sn_bit,FPSR_QBYTE(%a6) |set q-byte sign bit +smod_zsn: + btstl #7,%d0 |test if + or - + beq ld_pzero |if pos then load +0 + bra ld_mzero |else neg load -0 + +smod_fpn: + moveb ETEMP(%a6),%d1 |get sign of src op + moveb FPTEMP(%a6),%d0 |get sign of dst op + eorb %d0,%d1 |get exor of sign bits + btstl #7,%d1 |test for sign + beqs smod_fsn |if clr, do not set sign big + bsetb #q_sn_bit,FPSR_QBYTE(%a6) |set q-byte sign bit +smod_fsn: + tstb DTAG(%a6) |filter out denormal destination case + bpls smod_nrm | + leal FPTEMP(%a6),%a0 |a0<- addr(FPTEMP) + bra t_resdnrm |force UNFL(but exact) result +smod_nrm: + fmovel USER_FPCR(%a6),%fpcr |use user's rmode and precision + fmovex FPTEMP(%a6),%fp0 |return dest to fp0 + rts + +| +| FREM +| +premt: +| ;$25 frem +| ;dtag,stag + .long srem | 00,00 norm,norm = normal + .long srem_oper | 00,01 norm,zero = nan with operr + .long srem_fpn | 00,10 norm,inf = fpn + .long srem_snan | 00,11 norm,nan = nan + .long srem_zro | 01,00 zero,norm = +-zero + .long srem_oper | 01,01 zero,zero = nan with operr + .long srem_zro | 01,10 zero,inf = +-zero + .long srem_snan | 01,11 zero,nan = nan + .long srem_oper | 10,00 inf,norm = nan with operr + .long srem_oper | 10,01 inf,zero = nan with operr + .long srem_oper | 10,10 inf,inf = nan with operr + .long srem_snan | 10,11 inf,nan = nan + .long srem_dnan | 11,00 nan,norm = nan + .long srem_dnan | 11,01 nan,zero = nan + .long srem_dnan | 11,10 nan,inf = nan + .long srem_dnan | 11,11 nan,nan = nan + + .global prem +prem: + clrb FPSR_QBYTE(%a6) |clear quotient field + bfextu STAG(%a6){#0:#3},%d0 |stag = d0 + bfextu DTAG(%a6){#0:#3},%d1 |dtag = d1 +| +| Alias extended denorms to norms for the jump table. +| + bclr #2,%d0 + bclr #2,%d1 + + lslb #2,%d1 + orb %d0,%d1 |d1{3:2} = dtag, d1{1:0} = stag +| ;Tag values: +| ;00 = norm or denorm +| ;01 = zero +| ;10 = inf +| ;11 = nan + lea premt,%a1 + movel (%a1,%d1.w*4),%a1 + jmp (%a1) + +srem_snan: + bra src_nan +srem_dnan: + bra dst_nan +srem_oper: + bra t_operr +srem_zro: + moveb ETEMP(%a6),%d1 |get sign of src op + moveb FPTEMP(%a6),%d0 |get sign of dst op + eorb %d0,%d1 |get exor of sign bits + btstl #7,%d1 |test for sign + beqs srem_zsn |if clr, do not set sign big + bsetb #q_sn_bit,FPSR_QBYTE(%a6) |set q-byte sign bit +srem_zsn: + btstl #7,%d0 |test if + or - + beq ld_pzero |if pos then load +0 + bra ld_mzero |else neg load -0 + +srem_fpn: + moveb ETEMP(%a6),%d1 |get sign of src op + moveb FPTEMP(%a6),%d0 |get sign of dst op + eorb %d0,%d1 |get exor of sign bits + btstl #7,%d1 |test for sign + beqs srem_fsn |if clr, do not set sign big + bsetb #q_sn_bit,FPSR_QBYTE(%a6) |set q-byte sign bit +srem_fsn: + tstb DTAG(%a6) |filter out denormal destination case + bpls srem_nrm | + leal FPTEMP(%a6),%a0 |a0<- addr(FPTEMP) + bra t_resdnrm |force UNFL(but exact) result +srem_nrm: + fmovel USER_FPCR(%a6),%fpcr |use user's rmode and precision + fmovex FPTEMP(%a6),%fp0 |return dest to fp0 + rts +| +| FSCALE +| +pscalet: +| ;$26 fscale +| ;dtag,stag + .long sscale | 00,00 norm,norm = result + .long sscale | 00,01 norm,zero = fpn + .long scl_opr | 00,10 norm,inf = nan with operr + .long scl_snan | 00,11 norm,nan = nan + .long scl_zro | 01,00 zero,norm = +-zero + .long scl_zro | 01,01 zero,zero = +-zero + .long scl_opr | 01,10 zero,inf = nan with operr + .long scl_snan | 01,11 zero,nan = nan + .long scl_inf | 10,00 inf,norm = +-inf + .long scl_inf | 10,01 inf,zero = +-inf + .long scl_opr | 10,10 inf,inf = nan with operr + .long scl_snan | 10,11 inf,nan = nan + .long scl_dnan | 11,00 nan,norm = nan + .long scl_dnan | 11,01 nan,zero = nan + .long scl_dnan | 11,10 nan,inf = nan + .long scl_dnan | 11,11 nan,nan = nan + + .global pscale +pscale: + bfextu STAG(%a6){#0:#3},%d0 |stag in d0 + bfextu DTAG(%a6){#0:#3},%d1 |dtag in d1 + bclrl #2,%d0 |alias denorm into norm + bclrl #2,%d1 |alias denorm into norm + lslb #2,%d1 + orb %d0,%d1 |d1{4:2} = dtag, d1{1:0} = stag +| ;dtag values stag values: +| ;000 = norm 00 = norm +| ;001 = zero 01 = zero +| ;010 = inf 10 = inf +| ;011 = nan 11 = nan +| ;100 = dnrm +| +| + leal pscalet,%a1 |load start of jump table + movel (%a1,%d1.w*4),%a1 |load a1 with label depending on tag + jmp (%a1) |go to the routine + +scl_opr: + bra t_operr + +scl_dnan: + bra dst_nan + +scl_zro: + btstb #sign_bit,FPTEMP_EX(%a6) |test if + or - + beq ld_pzero |if pos then load +0 + bra ld_mzero |if neg then load -0 +scl_inf: + btstb #sign_bit,FPTEMP_EX(%a6) |test if + or - + beq ld_pinf |if pos then load +inf + bra ld_minf |else neg load -inf +scl_snan: + bra src_nan +| +| FSINCOS +| + .global ssincosz +ssincosz: + btstb #sign_bit,ETEMP(%a6) |get sign + beqs sincosp + fmovex MZERO,%fp0 + bras sincoscom +sincosp: + fmovex PZERO,%fp0 +sincoscom: + fmovemx PONE,%fp1-%fp1 |do not allow FPSR to be affected + bra sto_cos |store cosine result + + .global ssincosi +ssincosi: + fmovex QNAN,%fp1 |load NAN + bsr sto_cos |store cosine result + fmovex QNAN,%fp0 |load NAN + bra t_operr + + .global ssincosnan +ssincosnan: + movel ETEMP_EX(%a6),FP_SCR1(%a6) + movel ETEMP_HI(%a6),FP_SCR1+4(%a6) + movel ETEMP_LO(%a6),FP_SCR1+8(%a6) + bsetb #signan_bit,FP_SCR1+4(%a6) + fmovemx FP_SCR1(%a6),%fp1-%fp1 + bsr sto_cos + bra src_nan +| +| This code forces default values for the zero, inf, and nan cases +| in the transcendentals code. The CC bits must be set in the +| stacked FPSR to be correctly reported. +| +|**Returns +PI/2 + .global ld_ppi2 +ld_ppi2: + fmovex PPIBY2,%fp0 |load +pi/2 + bra t_inx2 |set inex2 exc + +|**Returns -PI/2 + .global ld_mpi2 +ld_mpi2: + fmovex MPIBY2,%fp0 |load -pi/2 + orl #neg_mask,USER_FPSR(%a6) |set N bit + bra t_inx2 |set inex2 exc + +|**Returns +inf + .global ld_pinf +ld_pinf: + fmovex PINF,%fp0 |load +inf + orl #inf_mask,USER_FPSR(%a6) |set I bit + rts + +|**Returns -inf + .global ld_minf +ld_minf: + fmovex MINF,%fp0 |load -inf + orl #neg_mask+inf_mask,USER_FPSR(%a6) |set N and I bits + rts + +|**Returns +1 + .global ld_pone +ld_pone: + fmovex PONE,%fp0 |load +1 + rts + +|**Returns -1 + .global ld_mone +ld_mone: + fmovex MONE,%fp0 |load -1 + orl #neg_mask,USER_FPSR(%a6) |set N bit + rts + +|**Returns +0 + .global ld_pzero +ld_pzero: + fmovex PZERO,%fp0 |load +0 + orl #z_mask,USER_FPSR(%a6) |set Z bit + rts + +|**Returns -0 + .global ld_mzero +ld_mzero: + fmovex MZERO,%fp0 |load -0 + orl #neg_mask+z_mask,USER_FPSR(%a6) |set N and Z bits + rts + + |end diff --git a/arch/m68k/fpsp040/fpsp.h b/arch/m68k/fpsp040/fpsp.h new file mode 100644 index 000000000..5df4cd772 --- /dev/null +++ b/arch/m68k/fpsp040/fpsp.h @@ -0,0 +1,347 @@ +| +| fpsp.h 3.3 3.3 +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +| fpsp.h --- stack frame offsets during FPSP exception handling +| +| These equates are used to access the exception frame, the fsave +| frame and any local variables needed by the FPSP package. +| +| All FPSP handlers begin by executing: +| +| link a6,#-LOCAL_SIZE +| fsave -(a7) +| movem.l d0-d1/a0-a1,USER_DA(a6) +| fmovem.x fp0-fp3,USER_FP0(a6) +| fmove.l fpsr/fpcr/fpiar,USER_FPSR(a6) +| +| After initialization, the stack looks like this: +| +| A7 ---> +-------------------------------+ +| | | +| | FPU fsave area | +| | | +| +-------------------------------+ +| | | +| | FPSP Local Variables | +| | including | +| | saved registers | +| | | +| +-------------------------------+ +| A6 ---> | Saved A6 | +| +-------------------------------+ +| | | +| | Exception Frame | +| | | +| | | +| +| Positive offsets from A6 refer to the exception frame. Negative +| offsets refer to the Local Variable area and the fsave area. +| The fsave frame is also accessible from the top via A7. +| +| On exit, the handlers execute: +| +| movem.l USER_DA(a6),d0-d1/a0-a1 +| fmovem.x USER_FP0(a6),fp0-fp3 +| fmove.l USER_FPSR(a6),fpsr/fpcr/fpiar +| frestore (a7)+ +| unlk a6 +| +| and then either "bra fpsp_done" if the exception was completely +| handled by the package, or "bra real_xxxx" which is an external +| label to a routine that will process a real exception of the +| type that was generated. Some handlers may omit the "frestore" +| if the FPU state after the exception is idle. +| +| Sometimes the exception handler will transform the fsave area +| because it needs to report an exception back to the user. This +| can happen if the package is entered for an unimplemented float +| instruction that generates (say) an underflow. Alternatively, +| a second fsave frame can be pushed onto the stack and the +| handler exit code will reload the new frame and discard the old. +| +| The registers d0, d1, a0, a1 and fp0-fp3 are always saved and +| restored from the "local variable" area and can be used as +| temporaries. If a routine needs to change any +| of these registers, it should modify the saved copy and let +| the handler exit code restore the value. +| +|---------------------------------------------------------------------- +| +| Local Variables on the stack +| + .set LOCAL_SIZE,192 | bytes needed for local variables + .set LV,-LOCAL_SIZE | convenient base value +| + .set USER_DA,LV+0 | save space for D0-D1,A0-A1 + .set USER_D0,LV+0 | saved user D0 + .set USER_D1,LV+4 | saved user D1 + .set USER_A0,LV+8 | saved user A0 + .set USER_A1,LV+12 | saved user A1 + .set USER_FP0,LV+16 | saved user FP0 + .set USER_FP1,LV+28 | saved user FP1 + .set USER_FP2,LV+40 | saved user FP2 + .set USER_FP3,LV+52 | saved user FP3 + .set USER_FPCR,LV+64 | saved user FPCR + .set FPCR_ENABLE,USER_FPCR+2 | FPCR exception enable + .set FPCR_MODE,USER_FPCR+3 | FPCR rounding mode control + .set USER_FPSR,LV+68 | saved user FPSR + .set FPSR_CC,USER_FPSR+0 | FPSR condition code + .set FPSR_QBYTE,USER_FPSR+1 | FPSR quotient + .set FPSR_EXCEPT,USER_FPSR+2 | FPSR exception + .set FPSR_AEXCEPT,USER_FPSR+3 | FPSR accrued exception + .set USER_FPIAR,LV+72 | saved user FPIAR + .set FP_SCR1,LV+76 | room for a temporary float value + .set FP_SCR2,LV+92 | room for a temporary float value + .set L_SCR1,LV+108 | room for a temporary long value + .set L_SCR2,LV+112 | room for a temporary long value + .set STORE_FLG,LV+116 + .set BINDEC_FLG,LV+117 | used in bindec + .set DNRM_FLG,LV+118 | used in res_func + .set RES_FLG,LV+119 | used in res_func + .set DY_MO_FLG,LV+120 | dyadic/monadic flag + .set UFLG_TMP,LV+121 | temporary for uflag errata + .set CU_ONLY,LV+122 | cu-only flag + .set VER_TMP,LV+123 | temp holding for version number + .set L_SCR3,LV+124 | room for a temporary long value + .set FP_SCR3,LV+128 | room for a temporary float value + .set FP_SCR4,LV+144 | room for a temporary float value + .set FP_SCR5,LV+160 | room for a temporary float value + .set FP_SCR6,LV+176 +| +|NEXT equ LV+192 ;need to increase LOCAL_SIZE +| +|-------------------------------------------------------------------------- +| +| fsave offsets and bit definitions +| +| Offsets are defined from the end of an fsave because the last 10 +| words of a busy frame are the same as the unimplemented frame. +| + .set CU_SAVEPC,LV-92 | micro-pc for CU (1 byte) + .set FPR_DIRTY_BITS,LV-91 | fpr dirty bits +| + .set WBTEMP,LV-76 | write back temp (12 bytes) + .set WBTEMP_EX,WBTEMP | wbtemp sign and exponent (2 bytes) + .set WBTEMP_HI,WBTEMP+4 | wbtemp mantissa [63:32] (4 bytes) + .set WBTEMP_LO,WBTEMP+8 | wbtemp mantissa [31:00] (4 bytes) +| + .set WBTEMP_SGN,WBTEMP+2 | used to store sign +| + .set FPSR_SHADOW,LV-64 | fpsr shadow reg +| + .set FPIARCU,LV-60 | Instr. addr. reg. for CU (4 bytes) +| + .set CMDREG2B,LV-52 | cmd reg for machine 2 + .set CMDREG3B,LV-48 | cmd reg for E3 exceptions (2 bytes) +| + .set NMNEXC,LV-44 | NMNEXC (unsup,snan bits only) + .set nmn_unsup_bit,1 | + .set nmn_snan_bit,0 | +| + .set NMCEXC,LV-43 | NMNEXC & NMCEXC + .set nmn_operr_bit,7 + .set nmn_ovfl_bit,6 + .set nmn_unfl_bit,5 + .set nmc_unsup_bit,4 + .set nmc_snan_bit,3 + .set nmc_operr_bit,2 + .set nmc_ovfl_bit,1 + .set nmc_unfl_bit,0 +| + .set STAG,LV-40 | source tag (1 byte) + .set WBTEMP_GRS,LV-40 | alias wbtemp guard, round, sticky + .set guard_bit,1 | guard bit is bit number 1 + .set round_bit,0 | round bit is bit number 0 + .set stag_mask,0xE0 | upper 3 bits are source tag type + .set denorm_bit,7 | bit determines if denorm or unnorm + .set etemp15_bit,4 | etemp exponent bit #15 + .set wbtemp66_bit,2 | wbtemp mantissa bit #66 + .set wbtemp1_bit,1 | wbtemp mantissa bit #1 + .set wbtemp0_bit,0 | wbtemp mantissa bit #0 +| + .set STICKY,LV-39 | holds sticky bit + .set sticky_bit,7 +| + .set CMDREG1B,LV-36 | cmd reg for E1 exceptions (2 bytes) + .set kfact_bit,12 | distinguishes static/dynamic k-factor +| ;on packed move outs. NOTE: this +| ;equate only works when CMDREG1B is in +| ;a register. +| + .set CMDWORD,LV-35 | command word in cmd1b + .set direction_bit,5 | bit 0 in opclass + .set size_bit2,12 | bit 2 in size field +| + .set DTAG,LV-32 | dest tag (1 byte) + .set dtag_mask,0xE0 | upper 3 bits are dest type tag + .set fptemp15_bit,4 | fptemp exponent bit #15 +| + .set WB_BYTE,LV-31 | holds WBTE15 bit (1 byte) + .set wbtemp15_bit,4 | wbtemp exponent bit #15 +| + .set E_BYTE,LV-28 | holds E1 and E3 bits (1 byte) + .set E1,2 | which bit is E1 flag + .set E3,1 | which bit is E3 flag + .set SFLAG,0 | which bit is S flag +| + .set T_BYTE,LV-27 | holds T and U bits (1 byte) + .set XFLAG,7 | which bit is X flag + .set UFLAG,5 | which bit is U flag + .set TFLAG,4 | which bit is T flag +| + .set FPTEMP,LV-24 | fptemp (12 bytes) + .set FPTEMP_EX,FPTEMP | fptemp sign and exponent (2 bytes) + .set FPTEMP_HI,FPTEMP+4 | fptemp mantissa [63:32] (4 bytes) + .set FPTEMP_LO,FPTEMP+8 | fptemp mantissa [31:00] (4 bytes) +| + .set FPTEMP_SGN,FPTEMP+2 | used to store sign +| + .set ETEMP,LV-12 | etemp (12 bytes) + .set ETEMP_EX,ETEMP | etemp sign and exponent (2 bytes) + .set ETEMP_HI,ETEMP+4 | etemp mantissa [63:32] (4 bytes) + .set ETEMP_LO,ETEMP+8 | etemp mantissa [31:00] (4 bytes) +| + .set ETEMP_SGN,ETEMP+2 | used to store sign +| + .set EXC_SR,4 | exception frame status register + .set EXC_PC,6 | exception frame program counter + .set EXC_VEC,10 | exception frame vector (format+vector#) + .set EXC_EA,12 | exception frame effective address +| +|-------------------------------------------------------------------------- +| +| FPSR/FPCR bits +| + .set neg_bit,3 | negative result + .set z_bit,2 | zero result + .set inf_bit,1 | infinity result + .set nan_bit,0 | not-a-number result +| + .set q_sn_bit,7 | sign bit of quotient byte +| + .set bsun_bit,7 | branch on unordered + .set snan_bit,6 | signalling nan + .set operr_bit,5 | operand error + .set ovfl_bit,4 | overflow + .set unfl_bit,3 | underflow + .set dz_bit,2 | divide by zero + .set inex2_bit,1 | inexact result 2 + .set inex1_bit,0 | inexact result 1 +| + .set aiop_bit,7 | accrued illegal operation + .set aovfl_bit,6 | accrued overflow + .set aunfl_bit,5 | accrued underflow + .set adz_bit,4 | accrued divide by zero + .set ainex_bit,3 | accrued inexact +| +| FPSR individual bit masks +| + .set neg_mask,0x08000000 + .set z_mask,0x04000000 + .set inf_mask,0x02000000 + .set nan_mask,0x01000000 +| + .set bsun_mask,0x00008000 | + .set snan_mask,0x00004000 + .set operr_mask,0x00002000 + .set ovfl_mask,0x00001000 + .set unfl_mask,0x00000800 + .set dz_mask,0x00000400 + .set inex2_mask,0x00000200 + .set inex1_mask,0x00000100 +| + .set aiop_mask,0x00000080 | accrued illegal operation + .set aovfl_mask,0x00000040 | accrued overflow + .set aunfl_mask,0x00000020 | accrued underflow + .set adz_mask,0x00000010 | accrued divide by zero + .set ainex_mask,0x00000008 | accrued inexact +| +| FPSR combinations used in the FPSP +| + .set dzinf_mask,inf_mask+dz_mask+adz_mask + .set opnan_mask,nan_mask+operr_mask+aiop_mask + .set nzi_mask,0x01ffffff | clears N, Z, and I + .set unfinx_mask,unfl_mask+inex2_mask+aunfl_mask+ainex_mask + .set unf2inx_mask,unfl_mask+inex2_mask+ainex_mask + .set ovfinx_mask,ovfl_mask+inex2_mask+aovfl_mask+ainex_mask + .set inx1a_mask,inex1_mask+ainex_mask + .set inx2a_mask,inex2_mask+ainex_mask + .set snaniop_mask,nan_mask+snan_mask+aiop_mask + .set naniop_mask,nan_mask+aiop_mask + .set neginf_mask,neg_mask+inf_mask + .set infaiop_mask,inf_mask+aiop_mask + .set negz_mask,neg_mask+z_mask + .set opaop_mask,operr_mask+aiop_mask + .set unfl_inx_mask,unfl_mask+aunfl_mask+ainex_mask + .set ovfl_inx_mask,ovfl_mask+aovfl_mask+ainex_mask +| +|-------------------------------------------------------------------------- +| +| FPCR rounding modes +| + .set x_mode,0x00 | round to extended + .set s_mode,0x40 | round to single + .set d_mode,0x80 | round to double +| + .set rn_mode,0x00 | round nearest + .set rz_mode,0x10 | round to zero + .set rm_mode,0x20 | round to minus infinity + .set rp_mode,0x30 | round to plus infinity +| +|-------------------------------------------------------------------------- +| +| Miscellaneous equates +| + .set signan_bit,6 | signalling nan bit in mantissa + .set sign_bit,7 +| + .set rnd_stky_bit,29 | round/sticky bit of mantissa +| this can only be used if in a data register + .set sx_mask,0x01800000 | set s and x bits in word $48 +| + .set LOCAL_EX,0 + .set LOCAL_SGN,2 + .set LOCAL_HI,4 + .set LOCAL_LO,8 + .set LOCAL_GRS,12 | valid ONLY for FP_SCR1, FP_SCR2 +| +| + .set norm_tag,0x00 | tag bits in {7:5} position + .set zero_tag,0x20 + .set inf_tag,0x40 + .set nan_tag,0x60 + .set dnrm_tag,0x80 +| +| fsave sizes and formats +| + .set VER_4,0x40 | fpsp compatible version numbers +| are in the $40s {$40-$4f} + .set VER_40,0x40 | original version number + .set VER_41,0x41 | revision version number +| + .set BUSY_SIZE,100 | size of busy frame + .set BUSY_FRAME,LV-BUSY_SIZE | start of busy frame +| + .set UNIMP_40_SIZE,44 | size of orig unimp frame + .set UNIMP_41_SIZE,52 | size of rev unimp frame +| + .set IDLE_SIZE,4 | size of idle frame + .set IDLE_FRAME,LV-IDLE_SIZE | start of idle frame +| +| exception vectors +| + .set TRACE_VEC,0x2024 | trace trap + .set FLINE_VEC,0x002C | real F-line + .set UNIMP_VEC,0x202C | unimplemented + .set INEX_VEC,0x00C4 +| + .set dbl_thresh,0x3C01 + .set sgl_thresh,0x3F81 +| diff --git a/arch/m68k/fpsp040/gen_except.S b/arch/m68k/fpsp040/gen_except.S new file mode 100644 index 000000000..3642cb7e3 --- /dev/null +++ b/arch/m68k/fpsp040/gen_except.S @@ -0,0 +1,467 @@ +| +| gen_except.sa 3.7 1/16/92 +| +| gen_except --- FPSP routine to detect reportable exceptions +| +| This routine compares the exception enable byte of the +| user_fpcr on the stack with the exception status byte +| of the user_fpsr. +| +| Any routine which may report an exceptions must load +| the stack frame in memory with the exceptional operand(s). +| +| Priority for exceptions is: +| +| Highest: bsun +| snan +| operr +| ovfl +| unfl +| dz +| inex2 +| Lowest: inex1 +| +| Note: The IEEE standard specifies that inex2 is to be +| reported if ovfl occurs and the ovfl enable bit is not +| set but the inex2 enable bit is. +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +GEN_EXCEPT: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref real_trace + |xref fpsp_done + |xref fpsp_fmt_error + +exc_tbl: + .long bsun_exc + .long commonE1 + .long commonE1 + .long ovfl_unfl + .long ovfl_unfl + .long commonE1 + .long commonE3 + .long commonE3 + .long no_match + + .global gen_except +gen_except: + cmpib #IDLE_SIZE-4,1(%a7) |test for idle frame + beq do_check |go handle idle frame + cmpib #UNIMP_40_SIZE-4,1(%a7) |test for orig unimp frame + beqs unimp_x |go handle unimp frame + cmpib #UNIMP_41_SIZE-4,1(%a7) |test for rev unimp frame + beqs unimp_x |go handle unimp frame + cmpib #BUSY_SIZE-4,1(%a7) |if size <> $60, fmt error + bnel fpsp_fmt_error + leal BUSY_SIZE+LOCAL_SIZE(%a7),%a1 |init a1 so fpsp.h +| ;equates will work +| Fix up the new busy frame with entries from the unimp frame +| + movel ETEMP_EX(%a6),ETEMP_EX(%a1) |copy etemp from unimp + movel ETEMP_HI(%a6),ETEMP_HI(%a1) |frame to busy frame + movel ETEMP_LO(%a6),ETEMP_LO(%a1) + movel CMDREG1B(%a6),CMDREG1B(%a1) |set inst in frame to unimp + movel CMDREG1B(%a6),%d0 |fix cmd1b to make it + andl #0x03c30000,%d0 |work for cmd3b + bfextu CMDREG1B(%a6){#13:#1},%d1 |extract bit 2 + lsll #5,%d1 + swap %d1 + orl %d1,%d0 |put it in the right place + bfextu CMDREG1B(%a6){#10:#3},%d1 |extract bit 3,4,5 + lsll #2,%d1 + swap %d1 + orl %d1,%d0 |put them in the right place + movel %d0,CMDREG3B(%a1) |in the busy frame +| +| Or in the FPSR from the emulation with the USER_FPSR on the stack. +| + fmovel %FPSR,%d0 + orl %d0,USER_FPSR(%a6) + movel USER_FPSR(%a6),FPSR_SHADOW(%a1) |set exc bits + orl #sx_mask,E_BYTE(%a1) + bra do_clean + +| +| Frame is an unimp frame possible resulting from an fmove <ea>,fp0 +| that caused an exception +| +| a1 is modified to point into the new frame allowing fpsp equates +| to be valid. +| +unimp_x: + cmpib #UNIMP_40_SIZE-4,1(%a7) |test for orig unimp frame + bnes test_rev + leal UNIMP_40_SIZE+LOCAL_SIZE(%a7),%a1 + bras unimp_con +test_rev: + cmpib #UNIMP_41_SIZE-4,1(%a7) |test for rev unimp frame + bnel fpsp_fmt_error |if not $28 or $30 + leal UNIMP_41_SIZE+LOCAL_SIZE(%a7),%a1 + +unimp_con: +| +| Fix up the new unimp frame with entries from the old unimp frame +| + movel CMDREG1B(%a6),CMDREG1B(%a1) |set inst in frame to unimp +| +| Or in the FPSR from the emulation with the USER_FPSR on the stack. +| + fmovel %FPSR,%d0 + orl %d0,USER_FPSR(%a6) + bra do_clean + +| +| Frame is idle, so check for exceptions reported through +| USER_FPSR and set the unimp frame accordingly. +| A7 must be incremented to the point before the +| idle fsave vector to the unimp vector. +| + +do_check: + addl #4,%a7 |point A7 back to unimp frame +| +| Or in the FPSR from the emulation with the USER_FPSR on the stack. +| + fmovel %FPSR,%d0 + orl %d0,USER_FPSR(%a6) +| +| On a busy frame, we must clear the nmnexc bits. +| + cmpib #BUSY_SIZE-4,1(%a7) |check frame type + bnes check_fr |if busy, clr nmnexc + clrw NMNEXC(%a6) |clr nmnexc & nmcexc + btstb #5,CMDREG1B(%a6) |test for fmove out + bnes frame_com + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) |set exc bits + orl #sx_mask,E_BYTE(%a6) + bras frame_com +check_fr: + cmpb #UNIMP_40_SIZE-4,1(%a7) + beqs frame_com + clrw NMNEXC(%a6) +frame_com: + moveb FPCR_ENABLE(%a6),%d0 |get fpcr enable byte + andb FPSR_EXCEPT(%a6),%d0 |and in the fpsr exc byte + bfffo %d0{#24:#8},%d1 |test for first set bit + leal exc_tbl,%a0 |load jmp table address + subib #24,%d1 |normalize bit offset to 0-8 + movel (%a0,%d1.w*4),%a0 |load routine address based +| ;based on first enabled exc + jmp (%a0) |jump to routine +| +| Bsun is not possible in unimp or unsupp +| +bsun_exc: + bra do_clean +| +| The typical work to be done to the unimp frame to report an +| exception is to set the E1/E3 byte and clr the U flag. +| commonE1 does this for E1 exceptions, which are snan, +| operr, and dz. commonE3 does this for E3 exceptions, which +| are inex2 and inex1, and also clears the E1 exception bit +| left over from the unimp exception. +| +commonE1: + bsetb #E1,E_BYTE(%a6) |set E1 flag + bra commonE |go clean and exit + +commonE3: + tstb UFLG_TMP(%a6) |test flag for unsup/unimp state + bnes unsE3 +uniE3: + bsetb #E3,E_BYTE(%a6) |set E3 flag + bclrb #E1,E_BYTE(%a6) |clr E1 from unimp + bra commonE + +unsE3: + tstb RES_FLG(%a6) + bnes unsE3_0 +unsE3_1: + bsetb #E3,E_BYTE(%a6) |set E3 flag +unsE3_0: + bclrb #E1,E_BYTE(%a6) |clr E1 flag + movel CMDREG1B(%a6),%d0 + andl #0x03c30000,%d0 |work for cmd3b + bfextu CMDREG1B(%a6){#13:#1},%d1 |extract bit 2 + lsll #5,%d1 + swap %d1 + orl %d1,%d0 |put it in the right place + bfextu CMDREG1B(%a6){#10:#3},%d1 |extract bit 3,4,5 + lsll #2,%d1 + swap %d1 + orl %d1,%d0 |put them in the right place + movel %d0,CMDREG3B(%a6) |in the busy frame + +commonE: + bclrb #UFLAG,T_BYTE(%a6) |clr U flag from unimp + bra do_clean |go clean and exit +| +| No bits in the enable byte match existing exceptions. Check for +| the case of the ovfl exc without the ovfl enabled, but with +| inex2 enabled. +| +no_match: + btstb #inex2_bit,FPCR_ENABLE(%a6) |check for ovfl/inex2 case + beqs no_exc |if clear, exit + btstb #ovfl_bit,FPSR_EXCEPT(%a6) |now check ovfl + beqs no_exc |if clear, exit + bras ovfl_unfl |go to unfl_ovfl to determine if +| ;it is an unsupp or unimp exc + +| No exceptions are to be reported. If the instruction was +| unimplemented, no FPU restore is necessary. If it was +| unsupported, we must perform the restore. +no_exc: + tstb UFLG_TMP(%a6) |test flag for unsupp/unimp state + beqs uni_no_exc +uns_no_exc: + tstb RES_FLG(%a6) |check if frestore is needed + bne do_clean |if clear, no frestore needed +uni_no_exc: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + unlk %a6 + bra finish_up +| +| Unsupported Data Type Handler: +| Ovfl: +| An fmoveout that results in an overflow is reported this way. +| Unfl: +| An fmoveout that results in an underflow is reported this way. +| +| Unimplemented Instruction Handler: +| Ovfl: +| Only scosh, setox, ssinh, stwotox, and scale can set overflow in +| this manner. +| Unfl: +| Stwotox, setox, and scale can set underflow in this manner. +| Any of the other Library Routines such that f(x)=x in which +| x is an extended denorm can report an underflow exception. +| It is the responsibility of the exception-causing exception +| to make sure that WBTEMP is correct. +| +| The exceptional operand is in FP_SCR1. +| +ovfl_unfl: + tstb UFLG_TMP(%a6) |test flag for unsupp/unimp state + beqs ofuf_con +| +| The caller was from an unsupported data type trap. Test if the +| caller set CU_ONLY. If so, the exceptional operand is expected in +| FPTEMP, rather than WBTEMP. +| + tstb CU_ONLY(%a6) |test if inst is cu-only + beq unsE3 +| move.w #$fe,CU_SAVEPC(%a6) + clrb CU_SAVEPC(%a6) + bsetb #E1,E_BYTE(%a6) |set E1 exception flag + movew ETEMP_EX(%a6),FPTEMP_EX(%a6) + movel ETEMP_HI(%a6),FPTEMP_HI(%a6) + movel ETEMP_LO(%a6),FPTEMP_LO(%a6) + bsetb #fptemp15_bit,DTAG(%a6) |set fpte15 + bclrb #UFLAG,T_BYTE(%a6) |clr U flag from unimp + bra do_clean |go clean and exit + +ofuf_con: + moveb (%a7),VER_TMP(%a6) |save version number + cmpib #BUSY_SIZE-4,1(%a7) |check for busy frame + beqs busy_fr |if unimp, grow to busy + cmpib #VER_40,(%a7) |test for orig unimp frame + bnes try_41 |if not, test for rev frame + moveql #13,%d0 |need to zero 14 lwords + bras ofuf_fin +try_41: + cmpib #VER_41,(%a7) |test for rev unimp frame + bnel fpsp_fmt_error |if neither, exit with error + moveql #11,%d0 |need to zero 12 lwords + +ofuf_fin: + clrl (%a7) +loop1: + clrl -(%a7) |clear and dec a7 + dbra %d0,loop1 + moveb VER_TMP(%a6),(%a7) + moveb #BUSY_SIZE-4,1(%a7) |write busy fmt word. +busy_fr: + movel FP_SCR1(%a6),WBTEMP_EX(%a6) |write + movel FP_SCR1+4(%a6),WBTEMP_HI(%a6) |exceptional op to + movel FP_SCR1+8(%a6),WBTEMP_LO(%a6) |wbtemp + bsetb #E3,E_BYTE(%a6) |set E3 flag + bclrb #E1,E_BYTE(%a6) |make sure E1 is clear + bclrb #UFLAG,T_BYTE(%a6) |clr U flag + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) + movel CMDREG1B(%a6),%d0 |fix cmd1b to make it + andl #0x03c30000,%d0 |work for cmd3b + bfextu CMDREG1B(%a6){#13:#1},%d1 |extract bit 2 + lsll #5,%d1 + swap %d1 + orl %d1,%d0 |put it in the right place + bfextu CMDREG1B(%a6){#10:#3},%d1 |extract bit 3,4,5 + lsll #2,%d1 + swap %d1 + orl %d1,%d0 |put them in the right place + movel %d0,CMDREG3B(%a6) |in the busy frame + +| +| Check if the frame to be restored is busy or unimp. +|** NOTE *** Bug fix for errata (0d43b #3) +| If the frame is unimp, we must create a busy frame to +| fix the bug with the nmnexc bits in cases in which they +| are set by a previous instruction and not cleared by +| the save. The frame will be unimp only if the final +| instruction in an emulation routine caused the exception +| by doing an fmove <ea>,fp0. The exception operand, in +| internal format, is in fptemp. +| +do_clean: + cmpib #UNIMP_40_SIZE-4,1(%a7) + bnes do_con + moveql #13,%d0 |in orig, need to zero 14 lwords + bras do_build +do_con: + cmpib #UNIMP_41_SIZE-4,1(%a7) + bnes do_restore |frame must be busy + moveql #11,%d0 |in rev, need to zero 12 lwords + +do_build: + moveb (%a7),VER_TMP(%a6) + clrl (%a7) +loop2: + clrl -(%a7) |clear and dec a7 + dbra %d0,loop2 +| +| Use a1 as pointer into new frame. a6 is not correct if an unimp or +| busy frame was created as the result of an exception on the final +| instruction of an emulation routine. +| +| We need to set the nmcexc bits if the exception is E1. Otherwise, +| the exc taken will be inex2. +| + leal BUSY_SIZE+LOCAL_SIZE(%a7),%a1 |init a1 for new frame + moveb VER_TMP(%a6),(%a7) |write busy fmt word + moveb #BUSY_SIZE-4,1(%a7) + movel FP_SCR1(%a6),WBTEMP_EX(%a1) |write + movel FP_SCR1+4(%a6),WBTEMP_HI(%a1) |exceptional op to + movel FP_SCR1+8(%a6),WBTEMP_LO(%a1) |wbtemp +| btst.b #E1,E_BYTE(%a1) +| beq.b do_restore + bfextu USER_FPSR(%a6){#17:#4},%d0 |get snan/operr/ovfl/unfl bits + bfins %d0,NMCEXC(%a1){#4:#4} |and insert them in nmcexc + movel USER_FPSR(%a6),FPSR_SHADOW(%a1) |set exc bits + orl #sx_mask,E_BYTE(%a1) + +do_restore: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + tstb RES_FLG(%a6) |RES_FLG indicates a "continuation" frame + beq cont + bsr bug1384 +cont: + unlk %a6 +| +| If trace mode enabled, then go to trace handler. This handler +| cannot have any fp instructions. If there are fp inst's and an +| exception has been restored into the machine then the exception +| will occur upon execution of the fp inst. This is not desirable +| in the kernel (supervisor mode). See MC68040 manual Section 9.3.8. +| +finish_up: + btstb #7,(%a7) |test T1 in SR + bnes g_trace + btstb #6,(%a7) |test T0 in SR + bnes g_trace + bral fpsp_done +| +| Change integer stack to look like trace stack +| The address of the instruction that caused the +| exception is already in the integer stack (is +| the same as the saved friar) +| +| If the current frame is already a 6-word stack then all +| that needs to be done is to change the vector# to TRACE. +| If the frame is only a 4-word stack (meaning we got here +| on an Unsupported data type exception), then we need to grow +| the stack an extra 2 words and get the FPIAR from the FPU. +| +g_trace: + bftst EXC_VEC-4(%sp){#0:#4} + bne g_easy + + subw #4,%sp | make room + movel 4(%sp),(%sp) + movel 8(%sp),4(%sp) + subw #BUSY_SIZE,%sp + fsave (%sp) + fmovel %fpiar,BUSY_SIZE+EXC_EA-4(%sp) + frestore (%sp) + addw #BUSY_SIZE,%sp + +g_easy: + movew #TRACE_VEC,EXC_VEC-4(%a7) + bral real_trace +| +| This is a work-around for hardware bug 1384. +| +bug1384: + link %a5,#0 + fsave -(%sp) + cmpib #0x41,(%sp) | check for correct frame + beq frame_41 + bgt nofix | if more advanced mask, do nada + +frame_40: + tstb 1(%sp) | check to see if idle + bne notidle +idle40: + clrl (%sp) | get rid of old fsave frame + movel %d1,USER_D1(%a6) | save d1 + movew #8,%d1 | place unimp frame instead +loop40: clrl -(%sp) + dbra %d1,loop40 + movel USER_D1(%a6),%d1 | restore d1 + movel #0x40280000,-(%sp) + frestore (%sp)+ + unlk %a5 + rts + +frame_41: + tstb 1(%sp) | check to see if idle + bne notidle +idle41: + clrl (%sp) | get rid of old fsave frame + movel %d1,USER_D1(%a6) | save d1 + movew #10,%d1 | place unimp frame instead +loop41: clrl -(%sp) + dbra %d1,loop41 + movel USER_D1(%a6),%d1 | restore d1 + movel #0x41300000,-(%sp) + frestore (%sp)+ + unlk %a5 + rts + +notidle: + bclrb #etemp15_bit,-40(%a5) + frestore (%sp)+ + unlk %a5 + rts + +nofix: + frestore (%sp)+ + unlk %a5 + rts + + |end diff --git a/arch/m68k/fpsp040/get_op.S b/arch/m68k/fpsp040/get_op.S new file mode 100644 index 000000000..64c36d79e --- /dev/null +++ b/arch/m68k/fpsp040/get_op.S @@ -0,0 +1,675 @@ +| +| get_op.sa 3.6 5/19/92 +| +| get_op.sa 3.5 4/26/91 +| +| Description: This routine is called by the unsupported format/data +| type exception handler ('unsupp' - vector 55) and the unimplemented +| instruction exception handler ('unimp' - vector 11). 'get_op' +| determines the opclass (0, 2, or 3) and branches to the +| opclass handler routine. See 68881/2 User's Manual table 4-11 +| for a description of the opclasses. +| +| For UNSUPPORTED data/format (exception vector 55) and for +| UNIMPLEMENTED instructions (exception vector 11) the following +| applies: +| +| - For unnormalized numbers (opclass 0, 2, or 3) the +| number(s) is normalized and the operand type tag is updated. +| +| - For a packed number (opclass 2) the number is unpacked and the +| operand type tag is updated. +| +| - For denormalized numbers (opclass 0 or 2) the number(s) is not +| changed but passed to the next module. The next module for +| unimp is do_func, the next module for unsupp is res_func. +| +| For UNSUPPORTED data/format (exception vector 55) only the +| following applies: +| +| - If there is a move out with a packed number (opclass 3) the +| number is packed and written to user memory. For the other +| opclasses the number(s) are written back to the fsave stack +| and the instruction is then restored back into the '040. The +| '040 is then able to complete the instruction. +| +| For example: +| fadd.x fpm,fpn where the fpm contains an unnormalized number. +| The '040 takes an unsupported data trap and gets to this +| routine. The number is normalized, put back on the stack and +| then an frestore is done to restore the instruction back into +| the '040. The '040 then re-executes the fadd.x fpm,fpn with +| a normalized number in the source and the instruction is +| successful. +| +| Next consider if in the process of normalizing the un- +| normalized number it becomes a denormalized number. The +| routine which converts the unnorm to a norm (called mk_norm) +| detects this and tags the number as a denorm. The routine +| res_func sees the denorm tag and converts the denorm to a +| norm. The instruction is then restored back into the '040 +| which re_executes the instruction. +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +GET_OP: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + .global PIRN,PIRZRM,PIRP + .global SMALRN,SMALRZRM,SMALRP + .global BIGRN,BIGRZRM,BIGRP + +PIRN: + .long 0x40000000,0xc90fdaa2,0x2168c235 |pi +PIRZRM: + .long 0x40000000,0xc90fdaa2,0x2168c234 |pi +PIRP: + .long 0x40000000,0xc90fdaa2,0x2168c235 |pi + +|round to nearest +SMALRN: + .long 0x3ffd0000,0x9a209a84,0xfbcff798 |log10(2) + .long 0x40000000,0xadf85458,0xa2bb4a9a |e + .long 0x3fff0000,0xb8aa3b29,0x5c17f0bc |log2(e) + .long 0x3ffd0000,0xde5bd8a9,0x37287195 |log10(e) + .long 0x00000000,0x00000000,0x00000000 |0.0 +| round to zero;round to negative infinity +SMALRZRM: + .long 0x3ffd0000,0x9a209a84,0xfbcff798 |log10(2) + .long 0x40000000,0xadf85458,0xa2bb4a9a |e + .long 0x3fff0000,0xb8aa3b29,0x5c17f0bb |log2(e) + .long 0x3ffd0000,0xde5bd8a9,0x37287195 |log10(e) + .long 0x00000000,0x00000000,0x00000000 |0.0 +| round to positive infinity +SMALRP: + .long 0x3ffd0000,0x9a209a84,0xfbcff799 |log10(2) + .long 0x40000000,0xadf85458,0xa2bb4a9b |e + .long 0x3fff0000,0xb8aa3b29,0x5c17f0bc |log2(e) + .long 0x3ffd0000,0xde5bd8a9,0x37287195 |log10(e) + .long 0x00000000,0x00000000,0x00000000 |0.0 + +|round to nearest +BIGRN: + .long 0x3ffe0000,0xb17217f7,0xd1cf79ac |ln(2) + .long 0x40000000,0x935d8ddd,0xaaa8ac17 |ln(10) + .long 0x3fff0000,0x80000000,0x00000000 |10 ^ 0 + + .global PTENRN +PTENRN: + .long 0x40020000,0xA0000000,0x00000000 |10 ^ 1 + .long 0x40050000,0xC8000000,0x00000000 |10 ^ 2 + .long 0x400C0000,0x9C400000,0x00000000 |10 ^ 4 + .long 0x40190000,0xBEBC2000,0x00000000 |10 ^ 8 + .long 0x40340000,0x8E1BC9BF,0x04000000 |10 ^ 16 + .long 0x40690000,0x9DC5ADA8,0x2B70B59E |10 ^ 32 + .long 0x40D30000,0xC2781F49,0xFFCFA6D5 |10 ^ 64 + .long 0x41A80000,0x93BA47C9,0x80E98CE0 |10 ^ 128 + .long 0x43510000,0xAA7EEBFB,0x9DF9DE8E |10 ^ 256 + .long 0x46A30000,0xE319A0AE,0xA60E91C7 |10 ^ 512 + .long 0x4D480000,0xC9767586,0x81750C17 |10 ^ 1024 + .long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 |10 ^ 2048 + .long 0x75250000,0xC4605202,0x8A20979B |10 ^ 4096 +|round to minus infinity +BIGRZRM: + .long 0x3ffe0000,0xb17217f7,0xd1cf79ab |ln(2) + .long 0x40000000,0x935d8ddd,0xaaa8ac16 |ln(10) + .long 0x3fff0000,0x80000000,0x00000000 |10 ^ 0 + + .global PTENRM +PTENRM: + .long 0x40020000,0xA0000000,0x00000000 |10 ^ 1 + .long 0x40050000,0xC8000000,0x00000000 |10 ^ 2 + .long 0x400C0000,0x9C400000,0x00000000 |10 ^ 4 + .long 0x40190000,0xBEBC2000,0x00000000 |10 ^ 8 + .long 0x40340000,0x8E1BC9BF,0x04000000 |10 ^ 16 + .long 0x40690000,0x9DC5ADA8,0x2B70B59D |10 ^ 32 + .long 0x40D30000,0xC2781F49,0xFFCFA6D5 |10 ^ 64 + .long 0x41A80000,0x93BA47C9,0x80E98CDF |10 ^ 128 + .long 0x43510000,0xAA7EEBFB,0x9DF9DE8D |10 ^ 256 + .long 0x46A30000,0xE319A0AE,0xA60E91C6 |10 ^ 512 + .long 0x4D480000,0xC9767586,0x81750C17 |10 ^ 1024 + .long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 |10 ^ 2048 + .long 0x75250000,0xC4605202,0x8A20979A |10 ^ 4096 +|round to positive infinity +BIGRP: + .long 0x3ffe0000,0xb17217f7,0xd1cf79ac |ln(2) + .long 0x40000000,0x935d8ddd,0xaaa8ac17 |ln(10) + .long 0x3fff0000,0x80000000,0x00000000 |10 ^ 0 + + .global PTENRP +PTENRP: + .long 0x40020000,0xA0000000,0x00000000 |10 ^ 1 + .long 0x40050000,0xC8000000,0x00000000 |10 ^ 2 + .long 0x400C0000,0x9C400000,0x00000000 |10 ^ 4 + .long 0x40190000,0xBEBC2000,0x00000000 |10 ^ 8 + .long 0x40340000,0x8E1BC9BF,0x04000000 |10 ^ 16 + .long 0x40690000,0x9DC5ADA8,0x2B70B59E |10 ^ 32 + .long 0x40D30000,0xC2781F49,0xFFCFA6D6 |10 ^ 64 + .long 0x41A80000,0x93BA47C9,0x80E98CE0 |10 ^ 128 + .long 0x43510000,0xAA7EEBFB,0x9DF9DE8E |10 ^ 256 + .long 0x46A30000,0xE319A0AE,0xA60E91C7 |10 ^ 512 + .long 0x4D480000,0xC9767586,0x81750C18 |10 ^ 1024 + .long 0x5A920000,0x9E8B3B5D,0xC53D5DE6 |10 ^ 2048 + .long 0x75250000,0xC4605202,0x8A20979B |10 ^ 4096 + + |xref nrm_zero + |xref decbin + |xref round + + .global get_op + .global uns_getop + .global uni_getop +get_op: + clrb DY_MO_FLG(%a6) + tstb UFLG_TMP(%a6) |test flag for unsupp/unimp state + beq uni_getop + +uns_getop: + btstb #direction_bit,CMDREG1B(%a6) + bne opclass3 |branch if a fmove out (any kind) + btstb #6,CMDREG1B(%a6) + beqs uns_notpacked + + bfextu CMDREG1B(%a6){#3:#3},%d0 + cmpb #3,%d0 + beq pack_source |check for a packed src op, branch if so +uns_notpacked: + bsr chk_dy_mo |set the dyadic/monadic flag + tstb DY_MO_FLG(%a6) + beqs src_op_ck |if monadic, go check src op +| ;else, check dst op (fall through) + + btstb #7,DTAG(%a6) + beqs src_op_ck |if dst op is norm, check src op + bras dst_ex_dnrm |else, handle destination unnorm/dnrm + +uni_getop: + bfextu CMDREG1B(%a6){#0:#6},%d0 |get opclass and src fields + cmpil #0x17,%d0 |if op class and size fields are $17, +| ;it is FMOVECR; if not, continue +| +| If the instruction is fmovecr, exit get_op. It is handled +| in do_func and smovecr.sa. +| + bne not_fmovecr |handle fmovecr as an unimplemented inst + rts + +not_fmovecr: + btstb #E1,E_BYTE(%a6) |if set, there is a packed operand + bne pack_source |check for packed src op, branch if so + +| The following lines of are coded to optimize on normalized operands + moveb STAG(%a6),%d0 + orb DTAG(%a6),%d0 |check if either of STAG/DTAG msb set + bmis dest_op_ck |if so, some op needs to be fixed + rts + +dest_op_ck: + btstb #7,DTAG(%a6) |check for unsupported data types in + beqs src_op_ck |the destination, if not, check src op + bsr chk_dy_mo |set dyadic/monadic flag + tstb DY_MO_FLG(%a6) | + beqs src_op_ck |if monadic, check src op +| +| At this point, destination has an extended denorm or unnorm. +| +dst_ex_dnrm: + movew FPTEMP_EX(%a6),%d0 |get destination exponent + andiw #0x7fff,%d0 |mask sign, check if exp = 0000 + beqs src_op_ck |if denorm then check source op. +| ;denorms are taken care of in res_func +| ;(unsupp) or do_func (unimp) +| ;else unnorm fall through + leal FPTEMP(%a6),%a0 |point a0 to dop - used in mk_norm + bsr mk_norm |go normalize - mk_norm returns: +| ;L_SCR1{7:5} = operand tag +| ; (000 = norm, 100 = denorm) +| ;L_SCR1{4} = fpte15 or ete15 +| ; 0 = exp > $3fff +| ; 1 = exp <= $3fff +| ;and puts the normalized num back +| ;on the fsave stack +| + moveb L_SCR1(%a6),DTAG(%a6) |write the new tag & fpte15 +| ;to the fsave stack and fall +| ;through to check source operand +| +src_op_ck: + btstb #7,STAG(%a6) + beq end_getop |check for unsupported data types on the +| ;source operand + btstb #5,STAG(%a6) + bnes src_sd_dnrm |if bit 5 set, handle sgl/dbl denorms +| +| At this point only unnorms or extended denorms are possible. +| +src_ex_dnrm: + movew ETEMP_EX(%a6),%d0 |get source exponent + andiw #0x7fff,%d0 |mask sign, check if exp = 0000 + beq end_getop |if denorm then exit, denorms are +| ;handled in do_func + leal ETEMP(%a6),%a0 |point a0 to sop - used in mk_norm + bsr mk_norm |go normalize - mk_norm returns: +| ;L_SCR1{7:5} = operand tag +| ; (000 = norm, 100 = denorm) +| ;L_SCR1{4} = fpte15 or ete15 +| ; 0 = exp > $3fff +| ; 1 = exp <= $3fff +| ;and puts the normalized num back +| ;on the fsave stack +| + moveb L_SCR1(%a6),STAG(%a6) |write the new tag & ete15 + rts |end_getop + +| +| At this point, only single or double denorms are possible. +| If the inst is not fmove, normalize the source. If it is, +| do nothing to the input. +| +src_sd_dnrm: + btstb #4,CMDREG1B(%a6) |differentiate between sgl/dbl denorm + bnes is_double +is_single: + movew #0x3f81,%d1 |write bias for sgl denorm + bras common |goto the common code +is_double: + movew #0x3c01,%d1 |write the bias for a dbl denorm +common: + btstb #sign_bit,ETEMP_EX(%a6) |grab sign bit of mantissa + beqs pos + bset #15,%d1 |set sign bit because it is negative +pos: + movew %d1,ETEMP_EX(%a6) +| ;put exponent on stack + + movew CMDREG1B(%a6),%d1 + andw #0xe3ff,%d1 |clear out source specifier + orw #0x0800,%d1 |set source specifier to extended prec + movew %d1,CMDREG1B(%a6) |write back to the command word in stack +| ;this is needed to fix unsupp data stack + leal ETEMP(%a6),%a0 |point a0 to sop + + bsr mk_norm |convert sgl/dbl denorm to norm + moveb L_SCR1(%a6),STAG(%a6) |put tag into source tag reg - d0 + rts |end_getop +| +| At this point, the source is definitely packed, whether +| instruction is dyadic or monadic is still unknown +| +pack_source: + movel FPTEMP_LO(%a6),ETEMP(%a6) |write ms part of packed +| ;number to etemp slot + bsr chk_dy_mo |set dyadic/monadic flag + bsr unpack + + tstb DY_MO_FLG(%a6) + beqs end_getop |if monadic, exit +| ;else, fix FPTEMP +pack_dya: + bfextu CMDREG1B(%a6){#6:#3},%d0 |extract dest fp reg + movel #7,%d1 + subl %d0,%d1 + clrl %d0 + bsetl %d1,%d0 |set up d0 as a dynamic register mask + fmovemx %d0,FPTEMP(%a6) |write to FPTEMP + + btstb #7,DTAG(%a6) |check dest tag for unnorm or denorm + bne dst_ex_dnrm |else, handle the unnorm or ext denorm +| +| Dest is not denormalized. Check for norm, and set fpte15 +| accordingly. +| + moveb DTAG(%a6),%d0 + andib #0xf0,%d0 |strip to only dtag:fpte15 + tstb %d0 |check for normalized value + bnes end_getop |if inf/nan/zero leave get_op + movew FPTEMP_EX(%a6),%d0 + andiw #0x7fff,%d0 + cmpiw #0x3fff,%d0 |check if fpte15 needs setting + bges end_getop |if >= $3fff, leave fpte15=0 + orb #0x10,DTAG(%a6) + bras end_getop + +| +| At this point, it is either an fmoveout packed, unnorm or denorm +| +opclass3: + clrb DY_MO_FLG(%a6) |set dyadic/monadic flag to monadic + bfextu CMDREG1B(%a6){#4:#2},%d0 + cmpib #3,%d0 + bne src_ex_dnrm |if not equal, must be unnorm or denorm +| ;else it is a packed move out +| ;exit +end_getop: + rts + +| +| Sets the DY_MO_FLG correctly. This is used only on if it is an +| unsupported data type exception. Set if dyadic. +| +chk_dy_mo: + movew CMDREG1B(%a6),%d0 + btstl #5,%d0 |testing extension command word + beqs set_mon |if bit 5 = 0 then monadic + btstl #4,%d0 |know that bit 5 = 1 + beqs set_dya |if bit 4 = 0 then dyadic + andiw #0x007f,%d0 |get rid of all but extension bits {6:0} + cmpiw #0x0038,%d0 |if extension = $38 then fcmp (dyadic) + bnes set_mon +set_dya: + st DY_MO_FLG(%a6) |set the inst flag type to dyadic + rts +set_mon: + clrb DY_MO_FLG(%a6) |set the inst flag type to monadic + rts +| +| MK_NORM +| +| Normalizes unnormalized numbers, sets tag to norm or denorm, sets unfl +| exception if denorm. +| +| CASE opclass 0x0 unsupp +| mk_norm till msb set +| set tag = norm +| +| CASE opclass 0x0 unimp +| mk_norm till msb set or exp = 0 +| if integer bit = 0 +| tag = denorm +| else +| tag = norm +| +| CASE opclass 011 unsupp +| mk_norm till msb set or exp = 0 +| if integer bit = 0 +| tag = denorm +| set unfl_nmcexe = 1 +| else +| tag = norm +| +| if exp <= $3fff +| set ete15 or fpte15 = 1 +| else set ete15 or fpte15 = 0 + +| input: +| a0 = points to operand to be normalized +| output: +| L_SCR1{7:5} = operand tag (000 = norm, 100 = denorm) +| L_SCR1{4} = fpte15 or ete15 (0 = exp > $3fff, 1 = exp <=$3fff) +| the normalized operand is placed back on the fsave stack +mk_norm: + clrl L_SCR1(%a6) + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) |transform into internal extended format + + cmpib #0x2c,1+EXC_VEC(%a6) |check if unimp + bnes uns_data |branch if unsupp + bsr uni_inst |call if unimp (opclass 0x0) + bras reload +uns_data: + btstb #direction_bit,CMDREG1B(%a6) |check transfer direction + bnes bit_set |branch if set (opclass 011) + bsr uns_opx |call if opclass 0x0 + bras reload +bit_set: + bsr uns_op3 |opclass 011 +reload: + cmpw #0x3fff,LOCAL_EX(%a0) |if exp > $3fff + bgts end_mk | fpte15/ete15 already set to 0 + bsetb #4,L_SCR1(%a6) |else set fpte15/ete15 to 1 +| ;calling routine actually sets the +| ;value on the stack (along with the +| ;tag), since this routine doesn't +| ;know if it should set ete15 or fpte15 +| ;ie, it doesn't know if this is the +| ;src op or dest op. +end_mk: + bfclr LOCAL_SGN(%a0){#0:#8} + beqs end_mk_pos + bsetb #sign_bit,LOCAL_EX(%a0) |convert back to IEEE format +end_mk_pos: + rts +| +| CASE opclass 011 unsupp +| +uns_op3: + bsr nrm_zero |normalize till msb = 1 or exp = zero + btstb #7,LOCAL_HI(%a0) |if msb = 1 + bnes no_unfl |then branch +set_unfl: + orw #dnrm_tag,L_SCR1(%a6) |set denorm tag + bsetb #unfl_bit,FPSR_EXCEPT(%a6) |set unfl exception bit +no_unfl: + rts +| +| CASE opclass 0x0 unsupp +| +uns_opx: + bsr nrm_zero |normalize the number + btstb #7,LOCAL_HI(%a0) |check if integer bit (j-bit) is set + beqs uns_den |if clear then now have a denorm +uns_nrm: + orb #norm_tag,L_SCR1(%a6) |set tag to norm + rts +uns_den: + orb #dnrm_tag,L_SCR1(%a6) |set tag to denorm + rts +| +| CASE opclass 0x0 unimp +| +uni_inst: + bsr nrm_zero + btstb #7,LOCAL_HI(%a0) |check if integer bit (j-bit) is set + beqs uni_den |if clear then now have a denorm +uni_nrm: + orb #norm_tag,L_SCR1(%a6) |set tag to norm + rts +uni_den: + orb #dnrm_tag,L_SCR1(%a6) |set tag to denorm + rts + +| +| Decimal to binary conversion +| +| Special cases of inf and NaNs are completed outside of decbin. +| If the input is an snan, the snan bit is not set. +| +| input: +| ETEMP(a6) - points to packed decimal string in memory +| output: +| fp0 - contains packed string converted to extended precision +| ETEMP - same as fp0 +unpack: + movew CMDREG1B(%a6),%d0 |examine command word, looking for fmove's + andw #0x3b,%d0 + beq move_unpack |special handling for fmove: must set FPSR_CC + + movew ETEMP(%a6),%d0 |get word with inf information + bfextu %d0{#20:#12},%d1 |get exponent into d1 + cmpiw #0x0fff,%d1 |test for inf or NaN + bnes try_zero |if not equal, it is not special + bfextu %d0{#17:#3},%d1 |get SE and y bits into d1 + cmpiw #7,%d1 |SE and y bits must be on for special + bnes try_zero |if not on, it is not special +|input is of the special cases of inf and NaN + tstl ETEMP_HI(%a6) |check ms mantissa + bnes fix_nan |if non-zero, it is a NaN + tstl ETEMP_LO(%a6) |check ls mantissa + bnes fix_nan |if non-zero, it is a NaN + bra finish |special already on stack +fix_nan: + btstb #signan_bit,ETEMP_HI(%a6) |test for snan + bne finish + orl #snaniop_mask,USER_FPSR(%a6) |always set snan if it is so + bra finish +try_zero: + movew ETEMP_EX+2(%a6),%d0 |get word 4 + andiw #0x000f,%d0 |clear all but last ni(y)bble + tstw %d0 |check for zero. + bne not_spec + tstl ETEMP_HI(%a6) |check words 3 and 2 + bne not_spec + tstl ETEMP_LO(%a6) |check words 1 and 0 + bne not_spec + tstl ETEMP(%a6) |test sign of the zero + bges pos_zero + movel #0x80000000,ETEMP(%a6) |write neg zero to etemp + clrl ETEMP_HI(%a6) + clrl ETEMP_LO(%a6) + bra finish +pos_zero: + clrl ETEMP(%a6) + clrl ETEMP_HI(%a6) + clrl ETEMP_LO(%a6) + bra finish + +not_spec: + fmovemx %fp0-%fp1,-(%a7) |save fp0 - decbin returns in it + bsr decbin + fmovex %fp0,ETEMP(%a6) |put the unpacked sop in the fsave stack + fmovemx (%a7)+,%fp0-%fp1 + fmovel #0,%FPSR |clr fpsr from decbin + bra finish + +| +| Special handling for packed move in: Same results as all other +| packed cases, but we must set the FPSR condition codes properly. +| +move_unpack: + movew ETEMP(%a6),%d0 |get word with inf information + bfextu %d0{#20:#12},%d1 |get exponent into d1 + cmpiw #0x0fff,%d1 |test for inf or NaN + bnes mtry_zero |if not equal, it is not special + bfextu %d0{#17:#3},%d1 |get SE and y bits into d1 + cmpiw #7,%d1 |SE and y bits must be on for special + bnes mtry_zero |if not on, it is not special +|input is of the special cases of inf and NaN + tstl ETEMP_HI(%a6) |check ms mantissa + bnes mfix_nan |if non-zero, it is a NaN + tstl ETEMP_LO(%a6) |check ls mantissa + bnes mfix_nan |if non-zero, it is a NaN +|input is inf + orl #inf_mask,USER_FPSR(%a6) |set I bit + tstl ETEMP(%a6) |check sign + bge finish + orl #neg_mask,USER_FPSR(%a6) |set N bit + bra finish |special already on stack +mfix_nan: + orl #nan_mask,USER_FPSR(%a6) |set NaN bit + moveb #nan_tag,STAG(%a6) |set stag to NaN + btstb #signan_bit,ETEMP_HI(%a6) |test for snan + bnes mn_snan + orl #snaniop_mask,USER_FPSR(%a6) |set snan bit + btstb #snan_bit,FPCR_ENABLE(%a6) |test for snan enabled + bnes mn_snan + bsetb #signan_bit,ETEMP_HI(%a6) |force snans to qnans +mn_snan: + tstl ETEMP(%a6) |check for sign + bge finish |if clr, go on + orl #neg_mask,USER_FPSR(%a6) |set N bit + bra finish + +mtry_zero: + movew ETEMP_EX+2(%a6),%d0 |get word 4 + andiw #0x000f,%d0 |clear all but last ni(y)bble + tstw %d0 |check for zero. + bnes mnot_spec + tstl ETEMP_HI(%a6) |check words 3 and 2 + bnes mnot_spec + tstl ETEMP_LO(%a6) |check words 1 and 0 + bnes mnot_spec + tstl ETEMP(%a6) |test sign of the zero + bges mpos_zero + orl #neg_mask+z_mask,USER_FPSR(%a6) |set N and Z + movel #0x80000000,ETEMP(%a6) |write neg zero to etemp + clrl ETEMP_HI(%a6) + clrl ETEMP_LO(%a6) + bras finish +mpos_zero: + orl #z_mask,USER_FPSR(%a6) |set Z + clrl ETEMP(%a6) + clrl ETEMP_HI(%a6) + clrl ETEMP_LO(%a6) + bras finish + +mnot_spec: + fmovemx %fp0-%fp1,-(%a7) |save fp0 ,fp1 - decbin returns in fp0 + bsr decbin + fmovex %fp0,ETEMP(%a6) +| ;put the unpacked sop in the fsave stack + fmovemx (%a7)+,%fp0-%fp1 + +finish: + movew CMDREG1B(%a6),%d0 |get the command word + andw #0xfbff,%d0 |change the source specifier field to +| ;extended (was packed). + movew %d0,CMDREG1B(%a6) |write command word back to fsave stack +| ;we need to do this so the 040 will +| ;re-execute the inst. without taking +| ;another packed trap. + +fix_stag: +|Converted result is now in etemp on fsave stack, now set the source +|tag (stag) +| if (ete =$7fff) then INF or NAN +| if (etemp = $x.0----0) then +| stag = INF +| else +| stag = NAN +| else +| if (ete = $0000) then +| stag = ZERO +| else +| stag = NORM +| +| Note also that the etemp_15 bit (just right of the stag) must +| be set accordingly. +| + movew ETEMP_EX(%a6),%d1 + andiw #0x7fff,%d1 |strip sign + cmpw #0x7fff,%d1 + bnes z_or_nrm + movel ETEMP_HI(%a6),%d1 + bnes is_nan + movel ETEMP_LO(%a6),%d1 + bnes is_nan +is_inf: + moveb #0x40,STAG(%a6) + movel #0x40,%d0 + rts +is_nan: + moveb #0x60,STAG(%a6) + movel #0x60,%d0 + rts +z_or_nrm: + tstw %d1 + bnes is_nrm +is_zro: +| For a zero, set etemp_15 + moveb #0x30,STAG(%a6) + movel #0x20,%d0 + rts +is_nrm: +| For a norm, check if the exp <= $3fff; if so, set etemp_15 + cmpiw #0x3fff,%d1 + bles set_bit15 + moveb #0,STAG(%a6) + bras end_is_nrm +set_bit15: + moveb #0x10,STAG(%a6) +end_is_nrm: + movel #0,%d0 +end_fix: + rts + +end_get: + rts + |end diff --git a/arch/m68k/fpsp040/kernel_ex.S b/arch/m68k/fpsp040/kernel_ex.S new file mode 100644 index 000000000..45bcf3455 --- /dev/null +++ b/arch/m68k/fpsp040/kernel_ex.S @@ -0,0 +1,493 @@ +| +| kernel_ex.sa 3.3 12/19/90 +| +| This file contains routines to force exception status in the +| fpu for exceptional cases detected or reported within the +| transcendental functions. Typically, the t_xx routine will +| set the appropriate bits in the USER_FPSR word on the stack. +| The bits are tested in gen_except.sa to determine if an exceptional +| situation needs to be created on return from the FPSP. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +KERNEL_EX: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +mns_inf: .long 0xffff0000,0x00000000,0x00000000 +pls_inf: .long 0x7fff0000,0x00000000,0x00000000 +nan: .long 0x7fff0000,0xffffffff,0xffffffff +huge: .long 0x7ffe0000,0xffffffff,0xffffffff + + |xref ovf_r_k + |xref unf_sub + |xref nrm_set + + .global t_dz + .global t_dz2 + .global t_operr + .global t_unfl + .global t_ovfl + .global t_ovfl2 + .global t_inx2 + .global t_frcinx + .global t_extdnrm + .global t_resdnrm + .global dst_nan + .global src_nan +| +| DZ exception +| +| +| if dz trap disabled +| store properly signed inf (use sign of etemp) into fp0 +| set FPSR exception status dz bit, condition code +| inf bit, and accrued dz bit +| return +| frestore the frame into the machine (done by unimp_hd) +| +| else dz trap enabled +| set exception status bit & accrued bits in FPSR +| set flag to disable sto_res from corrupting fp register +| return +| frestore the frame into the machine (done by unimp_hd) +| +| t_dz2 is used by monadic functions such as flogn (from do_func). +| t_dz is used by monadic functions such as satanh (from the +| transcendental function). +| +t_dz2: + bsetb #neg_bit,FPSR_CC(%a6) |set neg bit in FPSR + fmovel #0,%FPSR |clr status bits (Z set) + btstb #dz_bit,FPCR_ENABLE(%a6) |test FPCR for dz exc enabled + bnes dz_ena_end + bras m_inf |flogx always returns -inf +t_dz: + fmovel #0,%FPSR |clr status bits (Z set) + btstb #dz_bit,FPCR_ENABLE(%a6) |test FPCR for dz exc enabled + bnes dz_ena +| +| dz disabled +| + btstb #sign_bit,ETEMP_EX(%a6) |check sign for neg or pos + beqs p_inf |branch if pos sign + +m_inf: + fmovemx mns_inf,%fp0-%fp0 |load -inf + bsetb #neg_bit,FPSR_CC(%a6) |set neg bit in FPSR + bras set_fpsr +p_inf: + fmovemx pls_inf,%fp0-%fp0 |load +inf +set_fpsr: + orl #dzinf_mask,USER_FPSR(%a6) |set I,DZ,ADZ + rts +| +| dz enabled +| +dz_ena: + btstb #sign_bit,ETEMP_EX(%a6) |check sign for neg or pos + beqs dz_ena_end + bsetb #neg_bit,FPSR_CC(%a6) |set neg bit in FPSR +dz_ena_end: + orl #dzinf_mask,USER_FPSR(%a6) |set I,DZ,ADZ + st STORE_FLG(%a6) + rts +| +| OPERR exception +| +| if (operr trap disabled) +| set FPSR exception status operr bit, condition code +| nan bit; Store default NAN into fp0 +| frestore the frame into the machine (done by unimp_hd) +| +| else (operr trap enabled) +| set FPSR exception status operr bit, accrued operr bit +| set flag to disable sto_res from corrupting fp register +| frestore the frame into the machine (done by unimp_hd) +| +t_operr: + orl #opnan_mask,USER_FPSR(%a6) |set NaN, OPERR, AIOP + + btstb #operr_bit,FPCR_ENABLE(%a6) |test FPCR for operr enabled + bnes op_ena + + fmovemx nan,%fp0-%fp0 |load default nan + rts +op_ena: + st STORE_FLG(%a6) |do not corrupt destination + rts + +| +| t_unfl --- UNFL exception +| +| This entry point is used by all routines requiring unfl, inex2, +| aunfl, and ainex to be set on exit. +| +| On entry, a0 points to the exceptional operand. The final exceptional +| operand is built in FP_SCR1 and only the sign from the original operand +| is used. +| +t_unfl: + clrl FP_SCR1(%a6) |set exceptional operand to zero + clrl FP_SCR1+4(%a6) + clrl FP_SCR1+8(%a6) + tstb (%a0) |extract sign from caller's exop + bpls unfl_signok + bset #sign_bit,FP_SCR1(%a6) +unfl_signok: + leal FP_SCR1(%a6),%a0 + orl #unfinx_mask,USER_FPSR(%a6) +| ;set UNFL, INEX2, AUNFL, AINEX +unfl_con: + btstb #unfl_bit,FPCR_ENABLE(%a6) + beqs unfl_dis + +unfl_ena: + bfclr STAG(%a6){#5:#3} |clear wbtm66,wbtm1,wbtm0 + bsetb #wbtemp15_bit,WB_BYTE(%a6) |set wbtemp15 + bsetb #sticky_bit,STICKY(%a6) |set sticky bit + + bclrb #E1,E_BYTE(%a6) + +unfl_dis: + bfextu FPCR_MODE(%a6){#0:#2},%d0 |get round precision + + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) |convert to internal ext format + + bsr unf_sub |returns IEEE result at a0 +| ;and sets FPSR_CC accordingly + + bfclr LOCAL_SGN(%a0){#0:#8} |convert back to IEEE ext format + beqs unfl_fin + + bsetb #sign_bit,LOCAL_EX(%a0) + bsetb #sign_bit,FP_SCR1(%a6) |set sign bit of exc operand + +unfl_fin: + fmovemx (%a0),%fp0-%fp0 |store result in fp0 + rts + + +| +| t_ovfl2 --- OVFL exception (without inex2 returned) +| +| This entry is used by scale to force catastrophic overflow. The +| ovfl, aovfl, and ainex bits are set, but not the inex2 bit. +| +t_ovfl2: + orl #ovfl_inx_mask,USER_FPSR(%a6) + movel ETEMP(%a6),FP_SCR1(%a6) + movel ETEMP_HI(%a6),FP_SCR1+4(%a6) + movel ETEMP_LO(%a6),FP_SCR1+8(%a6) +| +| Check for single or double round precision. If single, check if +| the lower 40 bits of ETEMP are zero; if not, set inex2. If double, +| check if the lower 21 bits are zero; if not, set inex2. +| + moveb FPCR_MODE(%a6),%d0 + andib #0xc0,%d0 + beq t_work |if extended, finish ovfl processing + cmpib #0x40,%d0 |test for single + bnes t_dbl +t_sgl: + tstb ETEMP_LO(%a6) + bnes t_setinx2 + movel ETEMP_HI(%a6),%d0 + andil #0xff,%d0 |look at only lower 8 bits + bnes t_setinx2 + bra t_work +t_dbl: + movel ETEMP_LO(%a6),%d0 + andil #0x7ff,%d0 |look at only lower 11 bits + beq t_work +t_setinx2: + orl #inex2_mask,USER_FPSR(%a6) + bras t_work +| +| t_ovfl --- OVFL exception +| +|** Note: the exc operand is returned in ETEMP. +| +t_ovfl: + orl #ovfinx_mask,USER_FPSR(%a6) +t_work: + btstb #ovfl_bit,FPCR_ENABLE(%a6) |test FPCR for ovfl enabled + beqs ovf_dis + +ovf_ena: + clrl FP_SCR1(%a6) |set exceptional operand + clrl FP_SCR1+4(%a6) + clrl FP_SCR1+8(%a6) + + bfclr STAG(%a6){#5:#3} |clear wbtm66,wbtm1,wbtm0 + bclrb #wbtemp15_bit,WB_BYTE(%a6) |clear wbtemp15 + bsetb #sticky_bit,STICKY(%a6) |set sticky bit + + bclrb #E1,E_BYTE(%a6) +| ;fall through to disabled case + +| For disabled overflow call 'ovf_r_k'. This routine loads the +| correct result based on the rounding precision, destination +| format, rounding mode and sign. +| +ovf_dis: + bsr ovf_r_k |returns unsigned ETEMP_EX +| ;and sets FPSR_CC accordingly. + bfclr ETEMP_SGN(%a6){#0:#8} |fix sign + beqs ovf_pos + bsetb #sign_bit,ETEMP_EX(%a6) + bsetb #sign_bit,FP_SCR1(%a6) |set exceptional operand sign +ovf_pos: + fmovemx ETEMP(%a6),%fp0-%fp0 |move the result to fp0 + rts + + +| +| INEX2 exception +| +| The inex2 and ainex bits are set. +| +t_inx2: + orl #inx2a_mask,USER_FPSR(%a6) |set INEX2, AINEX + rts + +| +| Force Inex2 +| +| This routine is called by the transcendental routines to force +| the inex2 exception bits set in the FPSR. If the underflow bit +| is set, but the underflow trap was not taken, the aunfl bit in +| the FPSR must be set. +| +t_frcinx: + orl #inx2a_mask,USER_FPSR(%a6) |set INEX2, AINEX + btstb #unfl_bit,FPSR_EXCEPT(%a6) |test for unfl bit set + beqs no_uacc1 |if clear, do not set aunfl + bsetb #aunfl_bit,FPSR_AEXCEPT(%a6) +no_uacc1: + rts + +| +| DST_NAN +| +| Determine if the destination nan is signalling or non-signalling, +| and set the FPSR bits accordingly. See the MC68040 User's Manual +| section 3.2.2.5 NOT-A-NUMBERS. +| +dst_nan: + btstb #sign_bit,FPTEMP_EX(%a6) |test sign of nan + beqs dst_pos |if clr, it was positive + bsetb #neg_bit,FPSR_CC(%a6) |set N bit +dst_pos: + btstb #signan_bit,FPTEMP_HI(%a6) |check if signalling + beqs dst_snan |branch if signalling + + fmovel %d1,%fpcr |restore user's rmode/prec + fmovex FPTEMP(%a6),%fp0 |return the non-signalling nan +| +| Check the source nan. If it is signalling, snan will be reported. +| + moveb STAG(%a6),%d0 + andib #0xe0,%d0 + cmpib #0x60,%d0 + bnes no_snan + btstb #signan_bit,ETEMP_HI(%a6) |check if signalling + bnes no_snan + orl #snaniop_mask,USER_FPSR(%a6) |set NAN, SNAN, AIOP +no_snan: + rts + +dst_snan: + btstb #snan_bit,FPCR_ENABLE(%a6) |check if trap enabled + beqs dst_dis |branch if disabled + + orb #nan_tag,DTAG(%a6) |set up dtag for nan + st STORE_FLG(%a6) |do not store a result + orl #snaniop_mask,USER_FPSR(%a6) |set NAN, SNAN, AIOP + rts + +dst_dis: + bsetb #signan_bit,FPTEMP_HI(%a6) |set SNAN bit in sop + fmovel %d1,%fpcr |restore user's rmode/prec + fmovex FPTEMP(%a6),%fp0 |load non-sign. nan + orl #snaniop_mask,USER_FPSR(%a6) |set NAN, SNAN, AIOP + rts + +| +| SRC_NAN +| +| Determine if the source nan is signalling or non-signalling, +| and set the FPSR bits accordingly. See the MC68040 User's Manual +| section 3.2.2.5 NOT-A-NUMBERS. +| +src_nan: + btstb #sign_bit,ETEMP_EX(%a6) |test sign of nan + beqs src_pos |if clr, it was positive + bsetb #neg_bit,FPSR_CC(%a6) |set N bit +src_pos: + btstb #signan_bit,ETEMP_HI(%a6) |check if signalling + beqs src_snan |branch if signalling + fmovel %d1,%fpcr |restore user's rmode/prec + fmovex ETEMP(%a6),%fp0 |return the non-signalling nan + rts + +src_snan: + btstb #snan_bit,FPCR_ENABLE(%a6) |check if trap enabled + beqs src_dis |branch if disabled + bsetb #signan_bit,ETEMP_HI(%a6) |set SNAN bit in sop + orb #norm_tag,DTAG(%a6) |set up dtag for norm + orb #nan_tag,STAG(%a6) |set up stag for nan + st STORE_FLG(%a6) |do not store a result + orl #snaniop_mask,USER_FPSR(%a6) |set NAN, SNAN, AIOP + rts + +src_dis: + bsetb #signan_bit,ETEMP_HI(%a6) |set SNAN bit in sop + fmovel %d1,%fpcr |restore user's rmode/prec + fmovex ETEMP(%a6),%fp0 |load non-sign. nan + orl #snaniop_mask,USER_FPSR(%a6) |set NAN, SNAN, AIOP + rts + +| +| For all functions that have a denormalized input and that f(x)=x, +| this is the entry point +| +t_extdnrm: + orl #unfinx_mask,USER_FPSR(%a6) +| ;set UNFL, INEX2, AUNFL, AINEX + bras xdnrm_con +| +| Entry point for scale with extended denorm. The function does +| not set inex2, aunfl, or ainex. +| +t_resdnrm: + orl #unfl_mask,USER_FPSR(%a6) + +xdnrm_con: + btstb #unfl_bit,FPCR_ENABLE(%a6) + beqs xdnrm_dis + +| +| If exceptions are enabled, the additional task of setting up WBTEMP +| is needed so that when the underflow exception handler is entered, +| the user perceives no difference between what the 040 provides vs. +| what the FPSP provides. +| +xdnrm_ena: + movel %a0,-(%a7) + + movel LOCAL_EX(%a0),FP_SCR1(%a6) + movel LOCAL_HI(%a0),FP_SCR1+4(%a6) + movel LOCAL_LO(%a0),FP_SCR1+8(%a6) + + lea FP_SCR1(%a6),%a0 + + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) |convert to internal ext format + tstw LOCAL_EX(%a0) |check if input is denorm + beqs xdnrm_dn |if so, skip nrm_set + bsr nrm_set |normalize the result (exponent +| ;will be negative +xdnrm_dn: + bclrb #sign_bit,LOCAL_EX(%a0) |take off false sign + bfclr LOCAL_SGN(%a0){#0:#8} |change back to IEEE ext format + beqs xdep + bsetb #sign_bit,LOCAL_EX(%a0) +xdep: + bfclr STAG(%a6){#5:#3} |clear wbtm66,wbtm1,wbtm0 + bsetb #wbtemp15_bit,WB_BYTE(%a6) |set wbtemp15 + bclrb #sticky_bit,STICKY(%a6) |clear sticky bit + bclrb #E1,E_BYTE(%a6) + movel (%a7)+,%a0 +xdnrm_dis: + bfextu FPCR_MODE(%a6){#0:#2},%d0 |get round precision + bnes not_ext |if not round extended, store +| ;IEEE defaults +is_ext: + btstb #sign_bit,LOCAL_EX(%a0) + beqs xdnrm_store + + bsetb #neg_bit,FPSR_CC(%a6) |set N bit in FPSR_CC + + bras xdnrm_store + +not_ext: + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) |convert to internal ext format + bsr unf_sub |returns IEEE result pointed by +| ;a0; sets FPSR_CC accordingly + bfclr LOCAL_SGN(%a0){#0:#8} |convert back to IEEE ext format + beqs xdnrm_store + bsetb #sign_bit,LOCAL_EX(%a0) +xdnrm_store: + fmovemx (%a0),%fp0-%fp0 |store result in fp0 + rts + +| +| This subroutine is used for dyadic operations that use an extended +| denorm within the kernel. The approach used is to capture the frame, +| fix/restore. +| + .global t_avoid_unsupp +t_avoid_unsupp: + link %a2,#-LOCAL_SIZE |so that a2 fpsp.h negative +| ;offsets may be used + fsave -(%a7) + tstb 1(%a7) |check if idle, exit if so + beq idle_end + btstb #E1,E_BYTE(%a2) |check for an E1 exception if +| ;enabled, there is an unsupp + beq end_avun |else, exit + btstb #7,DTAG(%a2) |check for denorm destination + beqs src_den |else, must be a source denorm +| +| handle destination denorm +| + lea FPTEMP(%a2),%a0 + btstb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) |convert to internal ext format + bclrb #7,DTAG(%a2) |set DTAG to norm + bsr nrm_set |normalize result, exponent +| ;will become negative + bclrb #sign_bit,LOCAL_EX(%a0) |get rid of fake sign + bfclr LOCAL_SGN(%a0){#0:#8} |convert back to IEEE ext format + beqs ck_src_den |check if source is also denorm + bsetb #sign_bit,LOCAL_EX(%a0) +ck_src_den: + btstb #7,STAG(%a2) + beqs end_avun +src_den: + lea ETEMP(%a2),%a0 + btstb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) |convert to internal ext format + bclrb #7,STAG(%a2) |set STAG to norm + bsr nrm_set |normalize result, exponent +| ;will become negative + bclrb #sign_bit,LOCAL_EX(%a0) |get rid of fake sign + bfclr LOCAL_SGN(%a0){#0:#8} |convert back to IEEE ext format + beqs den_com + bsetb #sign_bit,LOCAL_EX(%a0) +den_com: + moveb #0xfe,CU_SAVEPC(%a2) |set continue frame + clrw NMNEXC(%a2) |clear NMNEXC + bclrb #E1,E_BYTE(%a2) +| fmove.l %FPSR,FPSR_SHADOW(%a2) +| bset.b #SFLAG,E_BYTE(%a2) +| bset.b #XFLAG,T_BYTE(%a2) +end_avun: + frestore (%a7)+ + unlk %a2 + rts +idle_end: + addl #4,%a7 + unlk %a2 + rts + |end diff --git a/arch/m68k/fpsp040/res_func.S b/arch/m68k/fpsp040/res_func.S new file mode 100644 index 000000000..d9cdf4383 --- /dev/null +++ b/arch/m68k/fpsp040/res_func.S @@ -0,0 +1,2039 @@ +| +| res_func.sa 3.9 7/29/91 +| +| Normalizes denormalized numbers if necessary and updates the +| stack frame. The function is then restored back into the +| machine and the 040 completes the operation. This routine +| is only used by the unsupported data type/format handler. +| (Exception vector 55). +| +| For packed move out (fmove.p fpm,<ea>) the operation is +| completed here; data is packed and moved to user memory. +| The stack is restored to the 040 only in the case of a +| reportable exception in the conversion. +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +RES_FUNC: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +sp_bnds: .short 0x3f81,0x407e + .short 0x3f6a,0x0000 +dp_bnds: .short 0x3c01,0x43fe + .short 0x3bcd,0x0000 + + |xref mem_write + |xref bindec + |xref get_fline + |xref round + |xref denorm + |xref dest_ext + |xref dest_dbl + |xref dest_sgl + |xref unf_sub + |xref nrm_set + |xref dnrm_lp + |xref ovf_res + |xref reg_dest + |xref t_ovfl + |xref t_unfl + + .global res_func + .global p_move + +res_func: + clrb DNRM_FLG(%a6) + clrb RES_FLG(%a6) + clrb CU_ONLY(%a6) + tstb DY_MO_FLG(%a6) + beqs monadic +dyadic: + btstb #7,DTAG(%a6) |if dop = norm=000, zero=001, +| ;inf=010 or nan=011 + beqs monadic |then branch +| ;else denorm +| HANDLE DESTINATION DENORM HERE +| ;set dtag to norm +| ;write the tag & fpte15 to the fstack + leal FPTEMP(%a6),%a0 + + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + + bsr nrm_set |normalize number (exp will go negative) + bclrb #sign_bit,LOCAL_EX(%a0) |get rid of false sign + bfclr LOCAL_SGN(%a0){#0:#8} |change back to IEEE ext format + beqs dpos + bsetb #sign_bit,LOCAL_EX(%a0) +dpos: + bfclr DTAG(%a6){#0:#4} |set tag to normalized, FPTE15 = 0 + bsetb #4,DTAG(%a6) |set FPTE15 + orb #0x0f,DNRM_FLG(%a6) +monadic: + leal ETEMP(%a6),%a0 + btstb #direction_bit,CMDREG1B(%a6) |check direction + bne opclass3 |it is a mv out +| +| At this point, only opclass 0 and 2 possible +| + btstb #7,STAG(%a6) |if sop = norm=000, zero=001, +| ;inf=010 or nan=011 + bne mon_dnrm |else denorm + tstb DY_MO_FLG(%a6) |all cases of dyadic instructions would + bne normal |require normalization of denorm + +| At this point: +| monadic instructions: fabs = $18 fneg = $1a ftst = $3a +| fmove = $00 fsmove = $40 fdmove = $44 +| fsqrt = $05* fssqrt = $41 fdsqrt = $45 +| (*fsqrt reencoded to $05) +| + movew CMDREG1B(%a6),%d0 |get command register + andil #0x7f,%d0 |strip to only command word +| +| At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and +| fdsqrt are possible. +| For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize) +| For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize) +| + btstl #0,%d0 + bne normal |weed out fsqrt instructions +| +| cu_norm handles fmove in instructions with normalized inputs. +| The routine round is used to correctly round the input for the +| destination precision and mode. +| +cu_norm: + st CU_ONLY(%a6) |set cu-only inst flag + movew CMDREG1B(%a6),%d0 + andib #0x3b,%d0 |isolate bits to select inst + tstb %d0 + beql cu_nmove |if zero, it is an fmove + cmpib #0x18,%d0 + beql cu_nabs |if $18, it is fabs + cmpib #0x1a,%d0 + beql cu_nneg |if $1a, it is fneg +| +| Inst is ftst. Check the source operand and set the cc's accordingly. +| No write is done, so simply rts. +| +cu_ntst: + movew LOCAL_EX(%a0),%d0 + bclrl #15,%d0 + sne LOCAL_SGN(%a0) + beqs cu_ntpo + orl #neg_mask,USER_FPSR(%a6) |set N +cu_ntpo: + cmpiw #0x7fff,%d0 |test for inf/nan + bnes cu_ntcz + tstl LOCAL_HI(%a0) + bnes cu_ntn + tstl LOCAL_LO(%a0) + bnes cu_ntn + orl #inf_mask,USER_FPSR(%a6) + rts +cu_ntn: + orl #nan_mask,USER_FPSR(%a6) + movel ETEMP_EX(%a6),FPTEMP_EX(%a6) |set up fptemp sign for +| ;snan handler + + rts +cu_ntcz: + tstl LOCAL_HI(%a0) + bnel cu_ntsx + tstl LOCAL_LO(%a0) + bnel cu_ntsx + orl #z_mask,USER_FPSR(%a6) +cu_ntsx: + rts +| +| Inst is fabs. Execute the absolute value function on the input. +| Branch to the fmove code. If the operand is NaN, do nothing. +| +cu_nabs: + moveb STAG(%a6),%d0 + btstl #5,%d0 |test for NaN or zero + bne wr_etemp |if either, simply write it + bclrb #7,LOCAL_EX(%a0) |do abs + bras cu_nmove |fmove code will finish +| +| Inst is fneg. Execute the negate value function on the input. +| Fall though to the fmove code. If the operand is NaN, do nothing. +| +cu_nneg: + moveb STAG(%a6),%d0 + btstl #5,%d0 |test for NaN or zero + bne wr_etemp |if either, simply write it + bchgb #7,LOCAL_EX(%a0) |do neg +| +| Inst is fmove. This code also handles all result writes. +| If bit 2 is set, round is forced to double. If it is clear, +| and bit 6 is set, round is forced to single. If both are clear, +| the round precision is found in the fpcr. If the rounding precision +| is double or single, round the result before the write. +| +cu_nmove: + moveb STAG(%a6),%d0 + andib #0xe0,%d0 |isolate stag bits + bne wr_etemp |if not norm, simply write it + btstb #2,CMDREG1B+1(%a6) |check for rd + bne cu_nmrd + btstb #6,CMDREG1B+1(%a6) |check for rs + bne cu_nmrs +| +| The move or operation is not with forced precision. Test for +| nan or inf as the input; if so, simply write it to FPn. Use the +| FPCR_MODE byte to get rounding on norms and zeros. +| +cu_nmnr: + bfextu FPCR_MODE(%a6){#0:#2},%d0 + tstb %d0 |check for extended + beq cu_wrexn |if so, just write result + cmpib #1,%d0 |check for single + beq cu_nmrs |fall through to double +| +| The move is fdmove or round precision is double. +| +cu_nmrd: + movel #2,%d0 |set up the size for denorm + movew LOCAL_EX(%a0),%d1 |compare exponent to double threshold + andw #0x7fff,%d1 + cmpw #0x3c01,%d1 + bls cu_nunfl + bfextu FPCR_MODE(%a6){#2:#2},%d1 |get rmode + orl #0x00020000,%d1 |or in rprec (double) + clrl %d0 |clear g,r,s for round + bclrb #sign_bit,LOCAL_EX(%a0) |convert to internal format + sne LOCAL_SGN(%a0) + bsrl round + bfclr LOCAL_SGN(%a0){#0:#8} + beqs cu_nmrdc + bsetb #sign_bit,LOCAL_EX(%a0) +cu_nmrdc: + movew LOCAL_EX(%a0),%d1 |check for overflow + andw #0x7fff,%d1 + cmpw #0x43ff,%d1 + bge cu_novfl |take care of overflow case + bra cu_wrexn +| +| The move is fsmove or round precision is single. +| +cu_nmrs: + movel #1,%d0 + movew LOCAL_EX(%a0),%d1 + andw #0x7fff,%d1 + cmpw #0x3f81,%d1 + bls cu_nunfl + bfextu FPCR_MODE(%a6){#2:#2},%d1 + orl #0x00010000,%d1 + clrl %d0 + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + bsrl round + bfclr LOCAL_SGN(%a0){#0:#8} + beqs cu_nmrsc + bsetb #sign_bit,LOCAL_EX(%a0) +cu_nmrsc: + movew LOCAL_EX(%a0),%d1 + andw #0x7FFF,%d1 + cmpw #0x407f,%d1 + blt cu_wrexn +| +| The operand is above precision boundaries. Use t_ovfl to +| generate the correct value. +| +cu_novfl: + bsr t_ovfl + bra cu_wrexn +| +| The operand is below precision boundaries. Use denorm to +| generate the correct value. +| +cu_nunfl: + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + bsr denorm + bfclr LOCAL_SGN(%a0){#0:#8} |change back to IEEE ext format + beqs cu_nucont + bsetb #sign_bit,LOCAL_EX(%a0) +cu_nucont: + bfextu FPCR_MODE(%a6){#2:#2},%d1 + btstb #2,CMDREG1B+1(%a6) |check for rd + bne inst_d + btstb #6,CMDREG1B+1(%a6) |check for rs + bne inst_s + swap %d1 + moveb FPCR_MODE(%a6),%d1 + lsrb #6,%d1 + swap %d1 + bra inst_sd +inst_d: + orl #0x00020000,%d1 + bra inst_sd +inst_s: + orl #0x00010000,%d1 +inst_sd: + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + bsrl round + bfclr LOCAL_SGN(%a0){#0:#8} + beqs cu_nuflp + bsetb #sign_bit,LOCAL_EX(%a0) +cu_nuflp: + btstb #inex2_bit,FPSR_EXCEPT(%a6) + beqs cu_nuninx + orl #aunfl_mask,USER_FPSR(%a6) |if the round was inex, set AUNFL +cu_nuninx: + tstl LOCAL_HI(%a0) |test for zero + bnes cu_nunzro + tstl LOCAL_LO(%a0) + bnes cu_nunzro +| +| The mantissa is zero from the denorm loop. Check sign and rmode +| to see if rounding should have occurred which would leave the lsb. +| + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 |isolate rmode + cmpil #0x20,%d0 + blts cu_nzro + bnes cu_nrp +cu_nrm: + tstw LOCAL_EX(%a0) |if positive, set lsb + bges cu_nzro + btstb #7,FPCR_MODE(%a6) |check for double + beqs cu_nincs + bras cu_nincd +cu_nrp: + tstw LOCAL_EX(%a0) |if positive, set lsb + blts cu_nzro + btstb #7,FPCR_MODE(%a6) |check for double + beqs cu_nincs +cu_nincd: + orl #0x800,LOCAL_LO(%a0) |inc for double + bra cu_nunzro +cu_nincs: + orl #0x100,LOCAL_HI(%a0) |inc for single + bra cu_nunzro +cu_nzro: + orl #z_mask,USER_FPSR(%a6) + moveb STAG(%a6),%d0 + andib #0xe0,%d0 + cmpib #0x40,%d0 |check if input was tagged zero + beqs cu_numv +cu_nunzro: + orl #unfl_mask,USER_FPSR(%a6) |set unfl +cu_numv: + movel (%a0),ETEMP(%a6) + movel 4(%a0),ETEMP_HI(%a6) + movel 8(%a0),ETEMP_LO(%a6) +| +| Write the result to memory, setting the fpsr cc bits. NaN and Inf +| bypass cu_wrexn. +| +cu_wrexn: + tstw LOCAL_EX(%a0) |test for zero + beqs cu_wrzero + cmpw #0x8000,LOCAL_EX(%a0) |test for zero + bnes cu_wreon +cu_wrzero: + orl #z_mask,USER_FPSR(%a6) |set Z bit +cu_wreon: + tstw LOCAL_EX(%a0) + bpl wr_etemp + orl #neg_mask,USER_FPSR(%a6) + bra wr_etemp + +| +| HANDLE SOURCE DENORM HERE +| +| ;clear denorm stag to norm +| ;write the new tag & ete15 to the fstack +mon_dnrm: +| +| At this point, check for the cases in which normalizing the +| denorm produces incorrect results. +| + tstb DY_MO_FLG(%a6) |all cases of dyadic instructions would + bnes nrm_src |require normalization of denorm + +| At this point: +| monadic instructions: fabs = $18 fneg = $1a ftst = $3a +| fmove = $00 fsmove = $40 fdmove = $44 +| fsqrt = $05* fssqrt = $41 fdsqrt = $45 +| (*fsqrt reencoded to $05) +| + movew CMDREG1B(%a6),%d0 |get command register + andil #0x7f,%d0 |strip to only command word +| +| At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and +| fdsqrt are possible. +| For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize) +| For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize) +| + btstl #0,%d0 + bnes nrm_src |weed out fsqrt instructions + st CU_ONLY(%a6) |set cu-only inst flag + bra cu_dnrm |fmove, fabs, fneg, ftst +| ;cases go to cu_dnrm +nrm_src: + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + bsr nrm_set |normalize number (exponent will go +| ; negative) + bclrb #sign_bit,LOCAL_EX(%a0) |get rid of false sign + + bfclr LOCAL_SGN(%a0){#0:#8} |change back to IEEE ext format + beqs spos + bsetb #sign_bit,LOCAL_EX(%a0) +spos: + bfclr STAG(%a6){#0:#4} |set tag to normalized, FPTE15 = 0 + bsetb #4,STAG(%a6) |set ETE15 + orb #0xf0,DNRM_FLG(%a6) +normal: + tstb DNRM_FLG(%a6) |check if any of the ops were denorms + bne ck_wrap |if so, check if it is a potential +| ;wrap-around case +fix_stk: + moveb #0xfe,CU_SAVEPC(%a6) + bclrb #E1,E_BYTE(%a6) + + clrw NMNEXC(%a6) + + st RES_FLG(%a6) |indicate that a restore is needed + rts + +| +| cu_dnrm handles all cu-only instructions (fmove, fabs, fneg, and +| ftst) completely in software without an frestore to the 040. +| +cu_dnrm: + st CU_ONLY(%a6) + movew CMDREG1B(%a6),%d0 + andib #0x3b,%d0 |isolate bits to select inst + tstb %d0 + beql cu_dmove |if zero, it is an fmove + cmpib #0x18,%d0 + beql cu_dabs |if $18, it is fabs + cmpib #0x1a,%d0 + beql cu_dneg |if $1a, it is fneg +| +| Inst is ftst. Check the source operand and set the cc's accordingly. +| No write is done, so simply rts. +| +cu_dtst: + movew LOCAL_EX(%a0),%d0 + bclrl #15,%d0 + sne LOCAL_SGN(%a0) + beqs cu_dtpo + orl #neg_mask,USER_FPSR(%a6) |set N +cu_dtpo: + cmpiw #0x7fff,%d0 |test for inf/nan + bnes cu_dtcz + tstl LOCAL_HI(%a0) + bnes cu_dtn + tstl LOCAL_LO(%a0) + bnes cu_dtn + orl #inf_mask,USER_FPSR(%a6) + rts +cu_dtn: + orl #nan_mask,USER_FPSR(%a6) + movel ETEMP_EX(%a6),FPTEMP_EX(%a6) |set up fptemp sign for +| ;snan handler + rts +cu_dtcz: + tstl LOCAL_HI(%a0) + bnel cu_dtsx + tstl LOCAL_LO(%a0) + bnel cu_dtsx + orl #z_mask,USER_FPSR(%a6) +cu_dtsx: + rts +| +| Inst is fabs. Execute the absolute value function on the input. +| Branch to the fmove code. +| +cu_dabs: + bclrb #7,LOCAL_EX(%a0) |do abs + bras cu_dmove |fmove code will finish +| +| Inst is fneg. Execute the negate value function on the input. +| Fall though to the fmove code. +| +cu_dneg: + bchgb #7,LOCAL_EX(%a0) |do neg +| +| Inst is fmove. This code also handles all result writes. +| If bit 2 is set, round is forced to double. If it is clear, +| and bit 6 is set, round is forced to single. If both are clear, +| the round precision is found in the fpcr. If the rounding precision +| is double or single, the result is zero, and the mode is checked +| to determine if the lsb of the result should be set. +| +cu_dmove: + btstb #2,CMDREG1B+1(%a6) |check for rd + bne cu_dmrd + btstb #6,CMDREG1B+1(%a6) |check for rs + bne cu_dmrs +| +| The move or operation is not with forced precision. Use the +| FPCR_MODE byte to get rounding. +| +cu_dmnr: + bfextu FPCR_MODE(%a6){#0:#2},%d0 + tstb %d0 |check for extended + beq cu_wrexd |if so, just write result + cmpib #1,%d0 |check for single + beq cu_dmrs |fall through to double +| +| The move is fdmove or round precision is double. Result is zero. +| Check rmode for rp or rm and set lsb accordingly. +| +cu_dmrd: + bfextu FPCR_MODE(%a6){#2:#2},%d1 |get rmode + tstw LOCAL_EX(%a0) |check sign + blts cu_dmdn + cmpib #3,%d1 |check for rp + bne cu_dpd |load double pos zero + bra cu_dpdr |load double pos zero w/lsb +cu_dmdn: + cmpib #2,%d1 |check for rm + bne cu_dnd |load double neg zero + bra cu_dndr |load double neg zero w/lsb +| +| The move is fsmove or round precision is single. Result is zero. +| Check for rp or rm and set lsb accordingly. +| +cu_dmrs: + bfextu FPCR_MODE(%a6){#2:#2},%d1 |get rmode + tstw LOCAL_EX(%a0) |check sign + blts cu_dmsn + cmpib #3,%d1 |check for rp + bne cu_spd |load single pos zero + bra cu_spdr |load single pos zero w/lsb +cu_dmsn: + cmpib #2,%d1 |check for rm + bne cu_snd |load single neg zero + bra cu_sndr |load single neg zero w/lsb +| +| The precision is extended, so the result in etemp is correct. +| Simply set unfl (not inex2 or aunfl) and write the result to +| the correct fp register. +cu_wrexd: + orl #unfl_mask,USER_FPSR(%a6) + tstw LOCAL_EX(%a0) + beq wr_etemp + orl #neg_mask,USER_FPSR(%a6) + bra wr_etemp +| +| These routines write +/- zero in double format. The routines +| cu_dpdr and cu_dndr set the double lsb. +| +cu_dpd: + movel #0x3c010000,LOCAL_EX(%a0) |force pos double zero + clrl LOCAL_HI(%a0) + clrl LOCAL_LO(%a0) + orl #z_mask,USER_FPSR(%a6) + orl #unfinx_mask,USER_FPSR(%a6) + bra wr_etemp +cu_dpdr: + movel #0x3c010000,LOCAL_EX(%a0) |force pos double zero + clrl LOCAL_HI(%a0) + movel #0x800,LOCAL_LO(%a0) |with lsb set + orl #unfinx_mask,USER_FPSR(%a6) + bra wr_etemp +cu_dnd: + movel #0xbc010000,LOCAL_EX(%a0) |force pos double zero + clrl LOCAL_HI(%a0) + clrl LOCAL_LO(%a0) + orl #z_mask,USER_FPSR(%a6) + orl #neg_mask,USER_FPSR(%a6) + orl #unfinx_mask,USER_FPSR(%a6) + bra wr_etemp +cu_dndr: + movel #0xbc010000,LOCAL_EX(%a0) |force pos double zero + clrl LOCAL_HI(%a0) + movel #0x800,LOCAL_LO(%a0) |with lsb set + orl #neg_mask,USER_FPSR(%a6) + orl #unfinx_mask,USER_FPSR(%a6) + bra wr_etemp +| +| These routines write +/- zero in single format. The routines +| cu_dpdr and cu_dndr set the single lsb. +| +cu_spd: + movel #0x3f810000,LOCAL_EX(%a0) |force pos single zero + clrl LOCAL_HI(%a0) + clrl LOCAL_LO(%a0) + orl #z_mask,USER_FPSR(%a6) + orl #unfinx_mask,USER_FPSR(%a6) + bra wr_etemp +cu_spdr: + movel #0x3f810000,LOCAL_EX(%a0) |force pos single zero + movel #0x100,LOCAL_HI(%a0) |with lsb set + clrl LOCAL_LO(%a0) + orl #unfinx_mask,USER_FPSR(%a6) + bra wr_etemp +cu_snd: + movel #0xbf810000,LOCAL_EX(%a0) |force pos single zero + clrl LOCAL_HI(%a0) + clrl LOCAL_LO(%a0) + orl #z_mask,USER_FPSR(%a6) + orl #neg_mask,USER_FPSR(%a6) + orl #unfinx_mask,USER_FPSR(%a6) + bra wr_etemp +cu_sndr: + movel #0xbf810000,LOCAL_EX(%a0) |force pos single zero + movel #0x100,LOCAL_HI(%a0) |with lsb set + clrl LOCAL_LO(%a0) + orl #neg_mask,USER_FPSR(%a6) + orl #unfinx_mask,USER_FPSR(%a6) + bra wr_etemp + +| +| This code checks for 16-bit overflow conditions on dyadic +| operations which are not restorable into the floating-point +| unit and must be completed in software. Basically, this +| condition exists with a very large norm and a denorm. One +| of the operands must be denormalized to enter this code. +| +| Flags used: +| DY_MO_FLG contains 0 for monadic op, $ff for dyadic +| DNRM_FLG contains $00 for neither op denormalized +| $0f for the destination op denormalized +| $f0 for the source op denormalized +| $ff for both ops denormalized +| +| The wrap-around condition occurs for add, sub, div, and cmp +| when +| +| abs(dest_exp - src_exp) >= $8000 +| +| and for mul when +| +| (dest_exp + src_exp) < $0 +| +| we must process the operation here if this case is true. +| +| The rts following the frcfpn routine is the exit from res_func +| for this condition. The restore flag (RES_FLG) is left clear. +| No frestore is done unless an exception is to be reported. +| +| For fadd: +| if(sign_of(dest) != sign_of(src)) +| replace exponent of src with $3fff (keep sign) +| use fpu to perform dest+new_src (user's rmode and X) +| clr sticky +| else +| set sticky +| call round with user's precision and mode +| move result to fpn and wbtemp +| +| For fsub: +| if(sign_of(dest) == sign_of(src)) +| replace exponent of src with $3fff (keep sign) +| use fpu to perform dest+new_src (user's rmode and X) +| clr sticky +| else +| set sticky +| call round with user's precision and mode +| move result to fpn and wbtemp +| +| For fdiv/fsgldiv: +| if(both operands are denorm) +| restore_to_fpu; +| if(dest is norm) +| force_ovf; +| else(dest is denorm) +| force_unf: +| +| For fcmp: +| if(dest is norm) +| N = sign_of(dest); +| else(dest is denorm) +| N = sign_of(src); +| +| For fmul: +| if(both operands are denorm) +| force_unf; +| if((dest_exp + src_exp) < 0) +| force_unf: +| else +| restore_to_fpu; +| +| local equates: + .set addcode,0x22 + .set subcode,0x28 + .set mulcode,0x23 + .set divcode,0x20 + .set cmpcode,0x38 +ck_wrap: + | tstb DY_MO_FLG(%a6) ;check for fsqrt + beq fix_stk |if zero, it is fsqrt + movew CMDREG1B(%a6),%d0 + andiw #0x3b,%d0 |strip to command bits + cmpiw #addcode,%d0 + beq wrap_add + cmpiw #subcode,%d0 + beq wrap_sub + cmpiw #mulcode,%d0 + beq wrap_mul + cmpiw #cmpcode,%d0 + beq wrap_cmp +| +| Inst is fdiv. +| +wrap_div: + cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, + beq fix_stk |restore to fpu +| +| One of the ops is denormalized. Test for wrap condition +| and force the result. +| + cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm + bnes div_srcd +div_destd: + bsrl ckinf_ns + bne fix_stk + bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) + bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) + subl %d1,%d0 |subtract dest from src + cmpl #0x7fff,%d0 + blt fix_stk |if less, not wrap case + clrb WBTEMP_SGN(%a6) + movew ETEMP_EX(%a6),%d0 |find the sign of the result + movew FPTEMP_EX(%a6),%d1 + eorw %d1,%d0 + andiw #0x8000,%d0 + beq force_unf + st WBTEMP_SGN(%a6) + bra force_unf + +ckinf_ns: + moveb STAG(%a6),%d0 |check source tag for inf or nan + bra ck_in_com +ckinf_nd: + moveb DTAG(%a6),%d0 |check destination tag for inf or nan +ck_in_com: + andib #0x60,%d0 |isolate tag bits + cmpb #0x40,%d0 |is it inf? + beq nan_or_inf |not wrap case + cmpb #0x60,%d0 |is it nan? + beq nan_or_inf |yes, not wrap case? + cmpb #0x20,%d0 |is it a zero? + beq nan_or_inf |yes + clrl %d0 + rts |then ; it is either a zero of norm, +| ;check wrap case +nan_or_inf: + moveql #-1,%d0 + rts + + + +div_srcd: + bsrl ckinf_nd + bne fix_stk + bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) + bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) + subl %d1,%d0 |subtract src from dest + cmpl #0x8000,%d0 + blt fix_stk |if less, not wrap case + clrb WBTEMP_SGN(%a6) + movew ETEMP_EX(%a6),%d0 |find the sign of the result + movew FPTEMP_EX(%a6),%d1 + eorw %d1,%d0 + andiw #0x8000,%d0 + beqs force_ovf + st WBTEMP_SGN(%a6) +| +| This code handles the case of the instruction resulting in +| an overflow condition. +| +force_ovf: + bclrb #E1,E_BYTE(%a6) + orl #ovfl_inx_mask,USER_FPSR(%a6) + clrw NMNEXC(%a6) + leal WBTEMP(%a6),%a0 |point a0 to memory location + movew CMDREG1B(%a6),%d0 + btstl #6,%d0 |test for forced precision + beqs frcovf_fpcr + btstl #2,%d0 |check for double + bnes frcovf_dbl + movel #0x1,%d0 |inst is forced single + bras frcovf_rnd +frcovf_dbl: + movel #0x2,%d0 |inst is forced double + bras frcovf_rnd +frcovf_fpcr: + bfextu FPCR_MODE(%a6){#0:#2},%d0 |inst not forced - use fpcr prec +frcovf_rnd: + +| The 881/882 does not set inex2 for the following case, so the +| line is commented out to be compatible with 881/882 +| tst.b %d0 +| beq.b frcovf_x +| or.l #inex2_mask,USER_FPSR(%a6) ;if prec is s or d, set inex2 + +|frcovf_x: + bsrl ovf_res |get correct result based on +| ;round precision/mode. This +| ;sets FPSR_CC correctly +| ;returns in external format + bfclr WBTEMP_SGN(%a6){#0:#8} + beq frcfpn + bsetb #sign_bit,WBTEMP_EX(%a6) + bra frcfpn +| +| Inst is fadd. +| +wrap_add: + cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, + beq fix_stk |restore to fpu +| +| One of the ops is denormalized. Test for wrap condition +| and complete the instruction. +| + cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm + bnes add_srcd +add_destd: + bsrl ckinf_ns + bne fix_stk + bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) + bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) + subl %d1,%d0 |subtract dest from src + cmpl #0x8000,%d0 + blt fix_stk |if less, not wrap case + bra add_wrap +add_srcd: + bsrl ckinf_nd + bne fix_stk + bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) + bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) + subl %d1,%d0 |subtract src from dest + cmpl #0x8000,%d0 + blt fix_stk |if less, not wrap case +| +| Check the signs of the operands. If they are unlike, the fpu +| can be used to add the norm and 1.0 with the sign of the +| denorm and it will correctly generate the result in extended +| precision. We can then call round with no sticky and the result +| will be correct for the user's rounding mode and precision. If +| the signs are the same, we call round with the sticky bit set +| and the result will be correct for the user's rounding mode and +| precision. +| +add_wrap: + movew ETEMP_EX(%a6),%d0 + movew FPTEMP_EX(%a6),%d1 + eorw %d1,%d0 + andiw #0x8000,%d0 + beq add_same +| +| The signs are unlike. +| + cmpb #0x0f,DNRM_FLG(%a6) |is dest the denorm? + bnes add_u_srcd + movew FPTEMP_EX(%a6),%d0 + andiw #0x8000,%d0 + orw #0x3fff,%d0 |force the exponent to +/- 1 + movew %d0,FPTEMP_EX(%a6) |in the denorm + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 + fmovel %d0,%fpcr |set up users rmode and X + fmovex ETEMP(%a6),%fp0 + faddx FPTEMP(%a6),%fp0 + leal WBTEMP(%a6),%a0 |point a0 to wbtemp in frame + fmovel %fpsr,%d1 + orl %d1,USER_FPSR(%a6) |capture cc's and inex from fadd + fmovex %fp0,WBTEMP(%a6) |write result to memory + lsrl #4,%d0 |put rmode in lower 2 bits + movel USER_FPCR(%a6),%d1 + andil #0xc0,%d1 + lsrl #6,%d1 |put precision in upper word + swap %d1 + orl %d0,%d1 |set up for round call + clrl %d0 |force sticky to zero + bclrb #sign_bit,WBTEMP_EX(%a6) + sne WBTEMP_SGN(%a6) + bsrl round |round result to users rmode & prec + bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beq frcfpnr + bsetb #sign_bit,WBTEMP_EX(%a6) + bra frcfpnr +add_u_srcd: + movew ETEMP_EX(%a6),%d0 + andiw #0x8000,%d0 + orw #0x3fff,%d0 |force the exponent to +/- 1 + movew %d0,ETEMP_EX(%a6) |in the denorm + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 + fmovel %d0,%fpcr |set up users rmode and X + fmovex ETEMP(%a6),%fp0 + faddx FPTEMP(%a6),%fp0 + fmovel %fpsr,%d1 + orl %d1,USER_FPSR(%a6) |capture cc's and inex from fadd + leal WBTEMP(%a6),%a0 |point a0 to wbtemp in frame + fmovex %fp0,WBTEMP(%a6) |write result to memory + lsrl #4,%d0 |put rmode in lower 2 bits + movel USER_FPCR(%a6),%d1 + andil #0xc0,%d1 + lsrl #6,%d1 |put precision in upper word + swap %d1 + orl %d0,%d1 |set up for round call + clrl %d0 |force sticky to zero + bclrb #sign_bit,WBTEMP_EX(%a6) + sne WBTEMP_SGN(%a6) |use internal format for round + bsrl round |round result to users rmode & prec + bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beq frcfpnr + bsetb #sign_bit,WBTEMP_EX(%a6) + bra frcfpnr +| +| Signs are alike: +| +add_same: + cmpb #0x0f,DNRM_FLG(%a6) |is dest the denorm? + bnes add_s_srcd +add_s_destd: + leal ETEMP(%a6),%a0 + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 + lsrl #4,%d0 |put rmode in lower 2 bits + movel USER_FPCR(%a6),%d1 + andil #0xc0,%d1 + lsrl #6,%d1 |put precision in upper word + swap %d1 + orl %d0,%d1 |set up for round call + movel #0x20000000,%d0 |set sticky for round + bclrb #sign_bit,ETEMP_EX(%a6) + sne ETEMP_SGN(%a6) + bsrl round |round result to users rmode & prec + bfclr ETEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beqs add_s_dclr + bsetb #sign_bit,ETEMP_EX(%a6) +add_s_dclr: + leal WBTEMP(%a6),%a0 + movel ETEMP(%a6),(%a0) |write result to wbtemp + movel ETEMP_HI(%a6),4(%a0) + movel ETEMP_LO(%a6),8(%a0) + tstw ETEMP_EX(%a6) + bgt add_ckovf + orl #neg_mask,USER_FPSR(%a6) + bra add_ckovf +add_s_srcd: + leal FPTEMP(%a6),%a0 + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 + lsrl #4,%d0 |put rmode in lower 2 bits + movel USER_FPCR(%a6),%d1 + andil #0xc0,%d1 + lsrl #6,%d1 |put precision in upper word + swap %d1 + orl %d0,%d1 |set up for round call + movel #0x20000000,%d0 |set sticky for round + bclrb #sign_bit,FPTEMP_EX(%a6) + sne FPTEMP_SGN(%a6) + bsrl round |round result to users rmode & prec + bfclr FPTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beqs add_s_sclr + bsetb #sign_bit,FPTEMP_EX(%a6) +add_s_sclr: + leal WBTEMP(%a6),%a0 + movel FPTEMP(%a6),(%a0) |write result to wbtemp + movel FPTEMP_HI(%a6),4(%a0) + movel FPTEMP_LO(%a6),8(%a0) + tstw FPTEMP_EX(%a6) + bgt add_ckovf + orl #neg_mask,USER_FPSR(%a6) +add_ckovf: + movew WBTEMP_EX(%a6),%d0 + andiw #0x7fff,%d0 + cmpiw #0x7fff,%d0 + bne frcfpnr +| +| The result has overflowed to $7fff exponent. Set I, ovfl, +| and aovfl, and clr the mantissa (incorrectly set by the +| round routine.) +| + orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6) + clrl 4(%a0) + bra frcfpnr +| +| Inst is fsub. +| +wrap_sub: + cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, + beq fix_stk |restore to fpu +| +| One of the ops is denormalized. Test for wrap condition +| and complete the instruction. +| + cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm + bnes sub_srcd +sub_destd: + bsrl ckinf_ns + bne fix_stk + bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) + bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) + subl %d1,%d0 |subtract src from dest + cmpl #0x8000,%d0 + blt fix_stk |if less, not wrap case + bra sub_wrap +sub_srcd: + bsrl ckinf_nd + bne fix_stk + bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) + bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) + subl %d1,%d0 |subtract dest from src + cmpl #0x8000,%d0 + blt fix_stk |if less, not wrap case +| +| Check the signs of the operands. If they are alike, the fpu +| can be used to subtract from the norm 1.0 with the sign of the +| denorm and it will correctly generate the result in extended +| precision. We can then call round with no sticky and the result +| will be correct for the user's rounding mode and precision. If +| the signs are unlike, we call round with the sticky bit set +| and the result will be correct for the user's rounding mode and +| precision. +| +sub_wrap: + movew ETEMP_EX(%a6),%d0 + movew FPTEMP_EX(%a6),%d1 + eorw %d1,%d0 + andiw #0x8000,%d0 + bne sub_diff +| +| The signs are alike. +| + cmpb #0x0f,DNRM_FLG(%a6) |is dest the denorm? + bnes sub_u_srcd + movew FPTEMP_EX(%a6),%d0 + andiw #0x8000,%d0 + orw #0x3fff,%d0 |force the exponent to +/- 1 + movew %d0,FPTEMP_EX(%a6) |in the denorm + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 + fmovel %d0,%fpcr |set up users rmode and X + fmovex FPTEMP(%a6),%fp0 + fsubx ETEMP(%a6),%fp0 + fmovel %fpsr,%d1 + orl %d1,USER_FPSR(%a6) |capture cc's and inex from fadd + leal WBTEMP(%a6),%a0 |point a0 to wbtemp in frame + fmovex %fp0,WBTEMP(%a6) |write result to memory + lsrl #4,%d0 |put rmode in lower 2 bits + movel USER_FPCR(%a6),%d1 + andil #0xc0,%d1 + lsrl #6,%d1 |put precision in upper word + swap %d1 + orl %d0,%d1 |set up for round call + clrl %d0 |force sticky to zero + bclrb #sign_bit,WBTEMP_EX(%a6) + sne WBTEMP_SGN(%a6) + bsrl round |round result to users rmode & prec + bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beq frcfpnr + bsetb #sign_bit,WBTEMP_EX(%a6) + bra frcfpnr +sub_u_srcd: + movew ETEMP_EX(%a6),%d0 + andiw #0x8000,%d0 + orw #0x3fff,%d0 |force the exponent to +/- 1 + movew %d0,ETEMP_EX(%a6) |in the denorm + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 + fmovel %d0,%fpcr |set up users rmode and X + fmovex FPTEMP(%a6),%fp0 + fsubx ETEMP(%a6),%fp0 + fmovel %fpsr,%d1 + orl %d1,USER_FPSR(%a6) |capture cc's and inex from fadd + leal WBTEMP(%a6),%a0 |point a0 to wbtemp in frame + fmovex %fp0,WBTEMP(%a6) |write result to memory + lsrl #4,%d0 |put rmode in lower 2 bits + movel USER_FPCR(%a6),%d1 + andil #0xc0,%d1 + lsrl #6,%d1 |put precision in upper word + swap %d1 + orl %d0,%d1 |set up for round call + clrl %d0 |force sticky to zero + bclrb #sign_bit,WBTEMP_EX(%a6) + sne WBTEMP_SGN(%a6) + bsrl round |round result to users rmode & prec + bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beq frcfpnr + bsetb #sign_bit,WBTEMP_EX(%a6) + bra frcfpnr +| +| Signs are unlike: +| +sub_diff: + cmpb #0x0f,DNRM_FLG(%a6) |is dest the denorm? + bnes sub_s_srcd +sub_s_destd: + leal ETEMP(%a6),%a0 + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 + lsrl #4,%d0 |put rmode in lower 2 bits + movel USER_FPCR(%a6),%d1 + andil #0xc0,%d1 + lsrl #6,%d1 |put precision in upper word + swap %d1 + orl %d0,%d1 |set up for round call + movel #0x20000000,%d0 |set sticky for round +| +| Since the dest is the denorm, the sign is the opposite of the +| norm sign. +| + eoriw #0x8000,ETEMP_EX(%a6) |flip sign on result + tstw ETEMP_EX(%a6) + bgts sub_s_dwr + orl #neg_mask,USER_FPSR(%a6) +sub_s_dwr: + bclrb #sign_bit,ETEMP_EX(%a6) + sne ETEMP_SGN(%a6) + bsrl round |round result to users rmode & prec + bfclr ETEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beqs sub_s_dclr + bsetb #sign_bit,ETEMP_EX(%a6) +sub_s_dclr: + leal WBTEMP(%a6),%a0 + movel ETEMP(%a6),(%a0) |write result to wbtemp + movel ETEMP_HI(%a6),4(%a0) + movel ETEMP_LO(%a6),8(%a0) + bra sub_ckovf +sub_s_srcd: + leal FPTEMP(%a6),%a0 + movel USER_FPCR(%a6),%d0 + andil #0x30,%d0 + lsrl #4,%d0 |put rmode in lower 2 bits + movel USER_FPCR(%a6),%d1 + andil #0xc0,%d1 + lsrl #6,%d1 |put precision in upper word + swap %d1 + orl %d0,%d1 |set up for round call + movel #0x20000000,%d0 |set sticky for round + bclrb #sign_bit,FPTEMP_EX(%a6) + sne FPTEMP_SGN(%a6) + bsrl round |round result to users rmode & prec + bfclr FPTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beqs sub_s_sclr + bsetb #sign_bit,FPTEMP_EX(%a6) +sub_s_sclr: + leal WBTEMP(%a6),%a0 + movel FPTEMP(%a6),(%a0) |write result to wbtemp + movel FPTEMP_HI(%a6),4(%a0) + movel FPTEMP_LO(%a6),8(%a0) + tstw FPTEMP_EX(%a6) + bgt sub_ckovf + orl #neg_mask,USER_FPSR(%a6) +sub_ckovf: + movew WBTEMP_EX(%a6),%d0 + andiw #0x7fff,%d0 + cmpiw #0x7fff,%d0 + bne frcfpnr +| +| The result has overflowed to $7fff exponent. Set I, ovfl, +| and aovfl, and clr the mantissa (incorrectly set by the +| round routine.) +| + orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6) + clrl 4(%a0) + bra frcfpnr +| +| Inst is fcmp. +| +wrap_cmp: + cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, + beq fix_stk |restore to fpu +| +| One of the ops is denormalized. Test for wrap condition +| and complete the instruction. +| + cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm + bnes cmp_srcd +cmp_destd: + bsrl ckinf_ns + bne fix_stk + bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) + bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) + subl %d1,%d0 |subtract dest from src + cmpl #0x8000,%d0 + blt fix_stk |if less, not wrap case + tstw ETEMP_EX(%a6) |set N to ~sign_of(src) + bge cmp_setn + rts +cmp_srcd: + bsrl ckinf_nd + bne fix_stk + bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) + bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) + subl %d1,%d0 |subtract src from dest + cmpl #0x8000,%d0 + blt fix_stk |if less, not wrap case + tstw FPTEMP_EX(%a6) |set N to sign_of(dest) + blt cmp_setn + rts +cmp_setn: + orl #neg_mask,USER_FPSR(%a6) + rts + +| +| Inst is fmul. +| +wrap_mul: + cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, + beq force_unf |force an underflow (really!) +| +| One of the ops is denormalized. Test for wrap condition +| and complete the instruction. +| + cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm + bnes mul_srcd +mul_destd: + bsrl ckinf_ns + bne fix_stk + bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) + bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) + addl %d1,%d0 |subtract dest from src + bgt fix_stk + bra force_unf +mul_srcd: + bsrl ckinf_nd + bne fix_stk + bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) + bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) + addl %d1,%d0 |subtract src from dest + bgt fix_stk + +| +| This code handles the case of the instruction resulting in +| an underflow condition. +| +force_unf: + bclrb #E1,E_BYTE(%a6) + orl #unfinx_mask,USER_FPSR(%a6) + clrw NMNEXC(%a6) + clrb WBTEMP_SGN(%a6) + movew ETEMP_EX(%a6),%d0 |find the sign of the result + movew FPTEMP_EX(%a6),%d1 + eorw %d1,%d0 + andiw #0x8000,%d0 + beqs frcunfcont + st WBTEMP_SGN(%a6) +frcunfcont: + lea WBTEMP(%a6),%a0 |point a0 to memory location + movew CMDREG1B(%a6),%d0 + btstl #6,%d0 |test for forced precision + beqs frcunf_fpcr + btstl #2,%d0 |check for double + bnes frcunf_dbl + movel #0x1,%d0 |inst is forced single + bras frcunf_rnd +frcunf_dbl: + movel #0x2,%d0 |inst is forced double + bras frcunf_rnd +frcunf_fpcr: + bfextu FPCR_MODE(%a6){#0:#2},%d0 |inst not forced - use fpcr prec +frcunf_rnd: + bsrl unf_sub |get correct result based on +| ;round precision/mode. This +| ;sets FPSR_CC correctly + bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beqs frcfpn + bsetb #sign_bit,WBTEMP_EX(%a6) + bra frcfpn + +| +| Write the result to the user's fpn. All results must be HUGE to be +| written; otherwise the results would have overflowed or underflowed. +| If the rounding precision is single or double, the ovf_res routine +| is needed to correctly supply the max value. +| +frcfpnr: + movew CMDREG1B(%a6),%d0 + btstl #6,%d0 |test for forced precision + beqs frcfpn_fpcr + btstl #2,%d0 |check for double + bnes frcfpn_dbl + movel #0x1,%d0 |inst is forced single + bras frcfpn_rnd +frcfpn_dbl: + movel #0x2,%d0 |inst is forced double + bras frcfpn_rnd +frcfpn_fpcr: + bfextu FPCR_MODE(%a6){#0:#2},%d0 |inst not forced - use fpcr prec + tstb %d0 + beqs frcfpn |if extended, write what you got +frcfpn_rnd: + bclrb #sign_bit,WBTEMP_EX(%a6) + sne WBTEMP_SGN(%a6) + bsrl ovf_res |get correct result based on +| ;round precision/mode. This +| ;sets FPSR_CC correctly + bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format + beqs frcfpn_clr + bsetb #sign_bit,WBTEMP_EX(%a6) +frcfpn_clr: + orl #ovfinx_mask,USER_FPSR(%a6) +| +| Perform the write. +| +frcfpn: + bfextu CMDREG1B(%a6){#6:#3},%d0 |extract fp destination register + cmpib #3,%d0 + bles frc0123 |check if dest is fp0-fp3 + movel #7,%d1 + subl %d0,%d1 + clrl %d0 + bsetl %d1,%d0 + fmovemx WBTEMP(%a6),%d0 + rts +frc0123: + cmpib #0,%d0 + beqs frc0_dst + cmpib #1,%d0 + beqs frc1_dst + cmpib #2,%d0 + beqs frc2_dst +frc3_dst: + movel WBTEMP_EX(%a6),USER_FP3(%a6) + movel WBTEMP_HI(%a6),USER_FP3+4(%a6) + movel WBTEMP_LO(%a6),USER_FP3+8(%a6) + rts +frc2_dst: + movel WBTEMP_EX(%a6),USER_FP2(%a6) + movel WBTEMP_HI(%a6),USER_FP2+4(%a6) + movel WBTEMP_LO(%a6),USER_FP2+8(%a6) + rts +frc1_dst: + movel WBTEMP_EX(%a6),USER_FP1(%a6) + movel WBTEMP_HI(%a6),USER_FP1+4(%a6) + movel WBTEMP_LO(%a6),USER_FP1+8(%a6) + rts +frc0_dst: + movel WBTEMP_EX(%a6),USER_FP0(%a6) + movel WBTEMP_HI(%a6),USER_FP0+4(%a6) + movel WBTEMP_LO(%a6),USER_FP0+8(%a6) + rts + +| +| Write etemp to fpn. +| A check is made on enabled and signalled snan exceptions, +| and the destination is not overwritten if this condition exists. +| This code is designed to make fmoveins of unsupported data types +| faster. +| +wr_etemp: + btstb #snan_bit,FPSR_EXCEPT(%a6) |if snan is set, and + beqs fmoveinc |enabled, force restore + btstb #snan_bit,FPCR_ENABLE(%a6) |and don't overwrite + beqs fmoveinc |the dest + movel ETEMP_EX(%a6),FPTEMP_EX(%a6) |set up fptemp sign for +| ;snan handler + tstb ETEMP(%a6) |check for negative + blts snan_neg + rts +snan_neg: + orl #neg_bit,USER_FPSR(%a6) |snan is negative; set N + rts +fmoveinc: + clrw NMNEXC(%a6) + bclrb #E1,E_BYTE(%a6) + moveb STAG(%a6),%d0 |check if stag is inf + andib #0xe0,%d0 + cmpib #0x40,%d0 + bnes fminc_cnan + orl #inf_mask,USER_FPSR(%a6) |if inf, nothing yet has set I + tstw LOCAL_EX(%a0) |check sign + bges fminc_con + orl #neg_mask,USER_FPSR(%a6) + bra fminc_con +fminc_cnan: + cmpib #0x60,%d0 |check if stag is NaN + bnes fminc_czero + orl #nan_mask,USER_FPSR(%a6) |if nan, nothing yet has set NaN + movel ETEMP_EX(%a6),FPTEMP_EX(%a6) |set up fptemp sign for +| ;snan handler + tstw LOCAL_EX(%a0) |check sign + bges fminc_con + orl #neg_mask,USER_FPSR(%a6) + bra fminc_con +fminc_czero: + cmpib #0x20,%d0 |check if zero + bnes fminc_con + orl #z_mask,USER_FPSR(%a6) |if zero, set Z + tstw LOCAL_EX(%a0) |check sign + bges fminc_con + orl #neg_mask,USER_FPSR(%a6) +fminc_con: + bfextu CMDREG1B(%a6){#6:#3},%d0 |extract fp destination register + cmpib #3,%d0 + bles fp0123 |check if dest is fp0-fp3 + movel #7,%d1 + subl %d0,%d1 + clrl %d0 + bsetl %d1,%d0 + fmovemx ETEMP(%a6),%d0 + rts + +fp0123: + cmpib #0,%d0 + beqs fp0_dst + cmpib #1,%d0 + beqs fp1_dst + cmpib #2,%d0 + beqs fp2_dst +fp3_dst: + movel ETEMP_EX(%a6),USER_FP3(%a6) + movel ETEMP_HI(%a6),USER_FP3+4(%a6) + movel ETEMP_LO(%a6),USER_FP3+8(%a6) + rts +fp2_dst: + movel ETEMP_EX(%a6),USER_FP2(%a6) + movel ETEMP_HI(%a6),USER_FP2+4(%a6) + movel ETEMP_LO(%a6),USER_FP2+8(%a6) + rts +fp1_dst: + movel ETEMP_EX(%a6),USER_FP1(%a6) + movel ETEMP_HI(%a6),USER_FP1+4(%a6) + movel ETEMP_LO(%a6),USER_FP1+8(%a6) + rts +fp0_dst: + movel ETEMP_EX(%a6),USER_FP0(%a6) + movel ETEMP_HI(%a6),USER_FP0+4(%a6) + movel ETEMP_LO(%a6),USER_FP0+8(%a6) + rts + +opclass3: + st CU_ONLY(%a6) + movew CMDREG1B(%a6),%d0 |check if packed moveout + andiw #0x0c00,%d0 |isolate last 2 bits of size field + cmpiw #0x0c00,%d0 |if size is 011 or 111, it is packed + beq pack_out |else it is norm or denorm + bra mv_out + + +| +| MOVE OUT +| + +mv_tbl: + .long li + .long sgp + .long xp + .long mvout_end |should never be taken + .long wi + .long dp + .long bi + .long mvout_end |should never be taken +mv_out: + bfextu CMDREG1B(%a6){#3:#3},%d1 |put source specifier in d1 + leal mv_tbl,%a0 + movel %a0@(%d1:l:4),%a0 + jmp (%a0) + +| +| This exit is for move-out to memory. The aunfl bit is +| set if the result is inex and unfl is signalled. +| +mvout_end: + btstb #inex2_bit,FPSR_EXCEPT(%a6) + beqs no_aufl + btstb #unfl_bit,FPSR_EXCEPT(%a6) + beqs no_aufl + bsetb #aunfl_bit,FPSR_AEXCEPT(%a6) +no_aufl: + clrw NMNEXC(%a6) + bclrb #E1,E_BYTE(%a6) + fmovel #0,%FPSR |clear any cc bits from res_func +| +| Return ETEMP to extended format from internal extended format so +| that gen_except will have a correctly signed value for ovfl/unfl +| handlers. +| + bfclr ETEMP_SGN(%a6){#0:#8} + beqs mvout_con + bsetb #sign_bit,ETEMP_EX(%a6) +mvout_con: + rts +| +| This exit is for move-out to int register. The aunfl bit is +| not set in any case for this move. +| +mvouti_end: + clrw NMNEXC(%a6) + bclrb #E1,E_BYTE(%a6) + fmovel #0,%FPSR |clear any cc bits from res_func +| +| Return ETEMP to extended format from internal extended format so +| that gen_except will have a correctly signed value for ovfl/unfl +| handlers. +| + bfclr ETEMP_SGN(%a6){#0:#8} + beqs mvouti_con + bsetb #sign_bit,ETEMP_EX(%a6) +mvouti_con: + rts +| +| li is used to handle a long integer source specifier +| + +li: + moveql #4,%d0 |set byte count + + btstb #7,STAG(%a6) |check for extended denorm + bne int_dnrm |if so, branch + + fmovemx ETEMP(%a6),%fp0-%fp0 + fcmpd #0x41dfffffffc00000,%fp0 +| 41dfffffffc00000 in dbl prec = 401d0000fffffffe00000000 in ext prec + fbge lo_plrg + fcmpd #0xc1e0000000000000,%fp0 +| c1e0000000000000 in dbl prec = c01e00008000000000000000 in ext prec + fble lo_nlrg +| +| at this point, the answer is between the largest pos and neg values +| + movel USER_FPCR(%a6),%d1 |use user's rounding mode + andil #0x30,%d1 + fmovel %d1,%fpcr + fmovel %fp0,L_SCR1(%a6) |let the 040 perform conversion + fmovel %fpsr,%d1 + orl %d1,USER_FPSR(%a6) |capture inex2/ainex if set + bra int_wrt + + +lo_plrg: + movel #0x7fffffff,L_SCR1(%a6) |answer is largest positive int + fbeq int_wrt |exact answer + fcmpd #0x41dfffffffe00000,%fp0 +| 41dfffffffe00000 in dbl prec = 401d0000ffffffff00000000 in ext prec + fbge int_operr |set operr + bra int_inx |set inexact + +lo_nlrg: + movel #0x80000000,L_SCR1(%a6) + fbeq int_wrt |exact answer + fcmpd #0xc1e0000000100000,%fp0 +| c1e0000000100000 in dbl prec = c01e00008000000080000000 in ext prec + fblt int_operr |set operr + bra int_inx |set inexact + +| +| wi is used to handle a word integer source specifier +| + +wi: + moveql #2,%d0 |set byte count + + btstb #7,STAG(%a6) |check for extended denorm + bne int_dnrm |branch if so + + fmovemx ETEMP(%a6),%fp0-%fp0 + fcmps #0x46fffe00,%fp0 +| 46fffe00 in sgl prec = 400d0000fffe000000000000 in ext prec + fbge wo_plrg + fcmps #0xc7000000,%fp0 +| c7000000 in sgl prec = c00e00008000000000000000 in ext prec + fble wo_nlrg + +| +| at this point, the answer is between the largest pos and neg values +| + movel USER_FPCR(%a6),%d1 |use user's rounding mode + andil #0x30,%d1 + fmovel %d1,%fpcr + fmovew %fp0,L_SCR1(%a6) |let the 040 perform conversion + fmovel %fpsr,%d1 + orl %d1,USER_FPSR(%a6) |capture inex2/ainex if set + bra int_wrt + +wo_plrg: + movew #0x7fff,L_SCR1(%a6) |answer is largest positive int + fbeq int_wrt |exact answer + fcmps #0x46ffff00,%fp0 +| 46ffff00 in sgl prec = 400d0000ffff000000000000 in ext prec + fbge int_operr |set operr + bra int_inx |set inexact + +wo_nlrg: + movew #0x8000,L_SCR1(%a6) + fbeq int_wrt |exact answer + fcmps #0xc7000080,%fp0 +| c7000080 in sgl prec = c00e00008000800000000000 in ext prec + fblt int_operr |set operr + bra int_inx |set inexact + +| +| bi is used to handle a byte integer source specifier +| + +bi: + moveql #1,%d0 |set byte count + + btstb #7,STAG(%a6) |check for extended denorm + bne int_dnrm |branch if so + + fmovemx ETEMP(%a6),%fp0-%fp0 + fcmps #0x42fe0000,%fp0 +| 42fe0000 in sgl prec = 40050000fe00000000000000 in ext prec + fbge by_plrg + fcmps #0xc3000000,%fp0 +| c3000000 in sgl prec = c00600008000000000000000 in ext prec + fble by_nlrg + +| +| at this point, the answer is between the largest pos and neg values +| + movel USER_FPCR(%a6),%d1 |use user's rounding mode + andil #0x30,%d1 + fmovel %d1,%fpcr + fmoveb %fp0,L_SCR1(%a6) |let the 040 perform conversion + fmovel %fpsr,%d1 + orl %d1,USER_FPSR(%a6) |capture inex2/ainex if set + bra int_wrt + +by_plrg: + moveb #0x7f,L_SCR1(%a6) |answer is largest positive int + fbeq int_wrt |exact answer + fcmps #0x42ff0000,%fp0 +| 42ff0000 in sgl prec = 40050000ff00000000000000 in ext prec + fbge int_operr |set operr + bra int_inx |set inexact + +by_nlrg: + moveb #0x80,L_SCR1(%a6) + fbeq int_wrt |exact answer + fcmps #0xc3008000,%fp0 +| c3008000 in sgl prec = c00600008080000000000000 in ext prec + fblt int_operr |set operr + bra int_inx |set inexact + +| +| Common integer routines +| +| int_drnrm---account for possible nonzero result for round up with positive +| operand and round down for negative answer. In the first case (result = 1) +| byte-width (store in d0) of result must be honored. In the second case, +| -1 in L_SCR1(a6) will cover all contingencies (FMOVE.B/W/L out). + +int_dnrm: + movel #0,L_SCR1(%a6) | initialize result to 0 + bfextu FPCR_MODE(%a6){#2:#2},%d1 | d1 is the rounding mode + cmpb #2,%d1 + bmis int_inx | if RN or RZ, done + bnes int_rp | if RP, continue below + tstw ETEMP(%a6) | RM: store -1 in L_SCR1 if src is negative + bpls int_inx | otherwise result is 0 + movel #-1,L_SCR1(%a6) + bras int_inx +int_rp: + tstw ETEMP(%a6) | RP: store +1 of proper width in L_SCR1 if +| ; source is greater than 0 + bmis int_inx | otherwise, result is 0 + lea L_SCR1(%a6),%a1 | a1 is address of L_SCR1 + addal %d0,%a1 | offset by destination width -1 + subal #1,%a1 + bsetb #0,(%a1) | set low bit at a1 address +int_inx: + oril #inx2a_mask,USER_FPSR(%a6) + bras int_wrt +int_operr: + fmovemx %fp0-%fp0,FPTEMP(%a6) |FPTEMP must contain the extended +| ;precision source that needs to be +| ;converted to integer this is required +| ;if the operr exception is enabled. +| ;set operr/aiop (no inex2 on int ovfl) + + oril #opaop_mask,USER_FPSR(%a6) +| ;fall through to perform int_wrt +int_wrt: + movel EXC_EA(%a6),%a1 |load destination address + tstl %a1 |check to see if it is a dest register + beqs wrt_dn |write data register + lea L_SCR1(%a6),%a0 |point to supervisor source address + bsrl mem_write + bra mvouti_end + +wrt_dn: + movel %d0,-(%sp) |d0 currently contains the size to write + bsrl get_fline |get_fline returns Dn in d0 + andiw #0x7,%d0 |isolate register + movel (%sp)+,%d1 |get size + cmpil #4,%d1 |most frequent case + beqs sz_long + cmpil #2,%d1 + bnes sz_con + orl #8,%d0 |add 'word' size to register# + bras sz_con +sz_long: + orl #0x10,%d0 |add 'long' size to register# +sz_con: + movel %d0,%d1 |reg_dest expects size:reg in d1 + bsrl reg_dest |load proper data register + bra mvouti_end +xp: + lea ETEMP(%a6),%a0 + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + btstb #7,STAG(%a6) |check for extended denorm + bne xdnrm + clrl %d0 + bras do_fp |do normal case +sgp: + lea ETEMP(%a6),%a0 + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + btstb #7,STAG(%a6) |check for extended denorm + bne sp_catas |branch if so + movew LOCAL_EX(%a0),%d0 + lea sp_bnds,%a1 + cmpw (%a1),%d0 + blt sp_under + cmpw 2(%a1),%d0 + bgt sp_over + movel #1,%d0 |set destination format to single + bras do_fp |do normal case +dp: + lea ETEMP(%a6),%a0 + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + + btstb #7,STAG(%a6) |check for extended denorm + bne dp_catas |branch if so + + movew LOCAL_EX(%a0),%d0 + lea dp_bnds,%a1 + + cmpw (%a1),%d0 + blt dp_under + cmpw 2(%a1),%d0 + bgt dp_over + + movel #2,%d0 |set destination format to double +| ;fall through to do_fp +| +do_fp: + bfextu FPCR_MODE(%a6){#2:#2},%d1 |rnd mode in d1 + swap %d0 |rnd prec in upper word + addl %d0,%d1 |d1 has PREC/MODE info + + clrl %d0 |clear g,r,s + + bsrl round |round + + movel %a0,%a1 + movel EXC_EA(%a6),%a0 + + bfextu CMDREG1B(%a6){#3:#3},%d1 |extract destination format +| ;at this point only the dest +| ;formats sgl, dbl, ext are +| ;possible + cmpb #2,%d1 + bgts ddbl |double=5, extended=2, single=1 + bnes dsgl +| ;fall through to dext +dext: + bsrl dest_ext + bra mvout_end +dsgl: + bsrl dest_sgl + bra mvout_end +ddbl: + bsrl dest_dbl + bra mvout_end + +| +| Handle possible denorm or catastrophic underflow cases here +| +xdnrm: + bsr set_xop |initialize WBTEMP + bsetb #wbtemp15_bit,WB_BYTE(%a6) |set wbtemp15 + + movel %a0,%a1 + movel EXC_EA(%a6),%a0 |a0 has the destination pointer + bsrl dest_ext |store to memory + bsetb #unfl_bit,FPSR_EXCEPT(%a6) + bra mvout_end + +sp_under: + bsetb #etemp15_bit,STAG(%a6) + + cmpw 4(%a1),%d0 + blts sp_catas |catastrophic underflow case + + movel #1,%d0 |load in round precision + movel #sgl_thresh,%d1 |load in single denorm threshold + bsrl dpspdnrm |expects d1 to have the proper +| ;denorm threshold + bsrl dest_sgl |stores value to destination + bsetb #unfl_bit,FPSR_EXCEPT(%a6) + bra mvout_end |exit + +dp_under: + bsetb #etemp15_bit,STAG(%a6) + + cmpw 4(%a1),%d0 + blts dp_catas |catastrophic underflow case + + movel #dbl_thresh,%d1 |load in double precision threshold + movel #2,%d0 + bsrl dpspdnrm |expects d1 to have proper +| ;denorm threshold +| ;expects d0 to have round precision + bsrl dest_dbl |store value to destination + bsetb #unfl_bit,FPSR_EXCEPT(%a6) + bra mvout_end |exit + +| +| Handle catastrophic underflow cases here +| +sp_catas: +| Temp fix for z bit set in unf_sub + movel USER_FPSR(%a6),-(%a7) + + movel #1,%d0 |set round precision to sgl + + bsrl unf_sub |a0 points to result + + movel (%a7)+,USER_FPSR(%a6) + + movel #1,%d0 + subw %d0,LOCAL_EX(%a0) |account for difference between +| ;denorm/norm bias + + movel %a0,%a1 |a1 has the operand input + movel EXC_EA(%a6),%a0 |a0 has the destination pointer + + bsrl dest_sgl |store the result + oril #unfinx_mask,USER_FPSR(%a6) + bra mvout_end + +dp_catas: +| Temp fix for z bit set in unf_sub + movel USER_FPSR(%a6),-(%a7) + + movel #2,%d0 |set round precision to dbl + bsrl unf_sub |a0 points to result + + movel (%a7)+,USER_FPSR(%a6) + + movel #1,%d0 + subw %d0,LOCAL_EX(%a0) |account for difference between +| ;denorm/norm bias + + movel %a0,%a1 |a1 has the operand input + movel EXC_EA(%a6),%a0 |a0 has the destination pointer + + bsrl dest_dbl |store the result + oril #unfinx_mask,USER_FPSR(%a6) + bra mvout_end + +| +| Handle catastrophic overflow cases here +| +sp_over: +| Temp fix for z bit set in unf_sub + movel USER_FPSR(%a6),-(%a7) + + movel #1,%d0 + leal FP_SCR1(%a6),%a0 |use FP_SCR1 for creating result + movel ETEMP_EX(%a6),(%a0) + movel ETEMP_HI(%a6),4(%a0) + movel ETEMP_LO(%a6),8(%a0) + bsrl ovf_res + + movel (%a7)+,USER_FPSR(%a6) + + movel %a0,%a1 + movel EXC_EA(%a6),%a0 + bsrl dest_sgl + orl #ovfinx_mask,USER_FPSR(%a6) + bra mvout_end + +dp_over: +| Temp fix for z bit set in ovf_res + movel USER_FPSR(%a6),-(%a7) + + movel #2,%d0 + leal FP_SCR1(%a6),%a0 |use FP_SCR1 for creating result + movel ETEMP_EX(%a6),(%a0) + movel ETEMP_HI(%a6),4(%a0) + movel ETEMP_LO(%a6),8(%a0) + bsrl ovf_res + + movel (%a7)+,USER_FPSR(%a6) + + movel %a0,%a1 + movel EXC_EA(%a6),%a0 + bsrl dest_dbl + orl #ovfinx_mask,USER_FPSR(%a6) + bra mvout_end + +| +| DPSPDNRM +| +| This subroutine takes an extended normalized number and denormalizes +| it to the given round precision. This subroutine also decrements +| the input operand's exponent by 1 to account for the fact that +| dest_sgl or dest_dbl expects a normalized number's bias. +| +| Input: a0 points to a normalized number in internal extended format +| d0 is the round precision (=1 for sgl; =2 for dbl) +| d1 is the single precision or double precision +| denorm threshold +| +| Output: (In the format for dest_sgl or dest_dbl) +| a0 points to the destination +| a1 points to the operand +| +| Exceptions: Reports inexact 2 exception by setting USER_FPSR bits +| +dpspdnrm: + movel %d0,-(%a7) |save round precision + clrl %d0 |clear initial g,r,s + bsrl dnrm_lp |careful with d0, it's needed by round + + bfextu FPCR_MODE(%a6){#2:#2},%d1 |get rounding mode + swap %d1 + movew 2(%a7),%d1 |set rounding precision + swap %d1 |at this point d1 has PREC/MODE info + bsrl round |round result, sets the inex bit in +| ;USER_FPSR if needed + + movew #1,%d0 + subw %d0,LOCAL_EX(%a0) |account for difference in denorm +| ;vs norm bias + + movel %a0,%a1 |a1 has the operand input + movel EXC_EA(%a6),%a0 |a0 has the destination pointer + addw #4,%a7 |pop stack + rts +| +| SET_XOP initialized WBTEMP with the value pointed to by a0 +| input: a0 points to input operand in the internal extended format +| +set_xop: + movel LOCAL_EX(%a0),WBTEMP_EX(%a6) + movel LOCAL_HI(%a0),WBTEMP_HI(%a6) + movel LOCAL_LO(%a0),WBTEMP_LO(%a6) + bfclr WBTEMP_SGN(%a6){#0:#8} + beqs sxop + bsetb #sign_bit,WBTEMP_EX(%a6) +sxop: + bfclr STAG(%a6){#5:#4} |clear wbtm66,wbtm1,wbtm0,sbit + rts +| +| P_MOVE +| +p_movet: + .long p_move + .long p_movez + .long p_movei + .long p_moven + .long p_move +p_regd: + .long p_dyd0 + .long p_dyd1 + .long p_dyd2 + .long p_dyd3 + .long p_dyd4 + .long p_dyd5 + .long p_dyd6 + .long p_dyd7 + +pack_out: + leal p_movet,%a0 |load jmp table address + movew STAG(%a6),%d0 |get source tag + bfextu %d0{#16:#3},%d0 |isolate source bits + movel (%a0,%d0.w*4),%a0 |load a0 with routine label for tag + jmp (%a0) |go to the routine + +p_write: + movel #0x0c,%d0 |get byte count + movel EXC_EA(%a6),%a1 |get the destination address + bsr mem_write |write the user's destination + moveb #0,CU_SAVEPC(%a6) |set the cu save pc to all 0's + +| +| Also note that the dtag must be set to norm here - this is because +| the 040 uses the dtag to execute the correct microcode. +| + bfclr DTAG(%a6){#0:#3} |set dtag to norm + + rts + +| Notes on handling of special case (zero, inf, and nan) inputs: +| 1. Operr is not signalled if the k-factor is greater than 18. +| 2. Per the manual, status bits are not set. +| + +p_move: + movew CMDREG1B(%a6),%d0 + btstl #kfact_bit,%d0 |test for dynamic k-factor + beqs statick |if clear, k-factor is static +dynamick: + bfextu %d0{#25:#3},%d0 |isolate register for dynamic k-factor + lea p_regd,%a0 + movel %a0@(%d0:l:4),%a0 + jmp (%a0) +statick: + andiw #0x007f,%d0 |get k-factor + bfexts %d0{#25:#7},%d0 |sign extend d0 for bindec + leal ETEMP(%a6),%a0 |a0 will point to the packed decimal + bsrl bindec |perform the convert; data at a6 + leal FP_SCR1(%a6),%a0 |load a0 with result address + bral p_write +p_movez: + leal ETEMP(%a6),%a0 |a0 will point to the packed decimal + clrw 2(%a0) |clear lower word of exp + clrl 4(%a0) |load second lword of ZERO + clrl 8(%a0) |load third lword of ZERO + bra p_write |go write results +p_movei: + fmovel #0,%FPSR |clear aiop + leal ETEMP(%a6),%a0 |a0 will point to the packed decimal + clrw 2(%a0) |clear lower word of exp + bra p_write |go write the result +p_moven: + leal ETEMP(%a6),%a0 |a0 will point to the packed decimal + clrw 2(%a0) |clear lower word of exp + bra p_write |go write the result + +| +| Routines to read the dynamic k-factor from Dn. +| +p_dyd0: + movel USER_D0(%a6),%d0 + bras statick +p_dyd1: + movel USER_D1(%a6),%d0 + bras statick +p_dyd2: + movel %d2,%d0 + bras statick +p_dyd3: + movel %d3,%d0 + bras statick +p_dyd4: + movel %d4,%d0 + bras statick +p_dyd5: + movel %d5,%d0 + bras statick +p_dyd6: + movel %d6,%d0 + bra statick +p_dyd7: + movel %d7,%d0 + bra statick + + |end diff --git a/arch/m68k/fpsp040/round.S b/arch/m68k/fpsp040/round.S new file mode 100644 index 000000000..f84ae0dd4 --- /dev/null +++ b/arch/m68k/fpsp040/round.S @@ -0,0 +1,648 @@ +| +| round.sa 3.4 7/29/91 +| +| handle rounding and normalization tasks +| +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|ROUND idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +| +| round --- round result according to precision/mode +| +| a0 points to the input operand in the internal extended format +| d1(high word) contains rounding precision: +| ext = $0000xxxx +| sgl = $0001xxxx +| dbl = $0002xxxx +| d1(low word) contains rounding mode: +| RN = $xxxx0000 +| RZ = $xxxx0001 +| RM = $xxxx0010 +| RP = $xxxx0011 +| d0{31:29} contains the g,r,s bits (extended) +| +| On return the value pointed to by a0 is correctly rounded, +| a0 is preserved and the g-r-s bits in d0 are cleared. +| The result is not typed - the tag field is invalid. The +| result is still in the internal extended format. +| +| The INEX bit of USER_FPSR will be set if the rounded result was +| inexact (i.e. if any of the g-r-s bits were set). +| + + .global round +round: +| If g=r=s=0 then result is exact and round is done, else set +| the inex flag in status reg and continue. +| + bsrs ext_grs |this subroutine looks at the +| :rounding precision and sets +| ;the appropriate g-r-s bits. + tstl %d0 |if grs are zero, go force + bne rnd_cont |lower bits to zero for size + + swap %d1 |set up d1.w for round prec. + bra truncate + +rnd_cont: +| +| Use rounding mode as an index into a jump table for these modes. +| + orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex + lea mode_tab,%a1 + movel (%a1,%d1.w*4),%a1 + jmp (%a1) +| +| Jump table indexed by rounding mode in d1.w. All following assumes +| grs != 0. +| +mode_tab: + .long rnd_near + .long rnd_zero + .long rnd_mnus + .long rnd_plus +| +| ROUND PLUS INFINITY +| +| If sign of fp number = 0 (positive), then add 1 to l. +| +rnd_plus: + swap %d1 |set up d1 for round prec. + tstb LOCAL_SGN(%a0) |check for sign + bmi truncate |if positive then truncate + movel #0xffffffff,%d0 |force g,r,s to be all f's + lea add_to_l,%a1 + movel (%a1,%d1.w*4),%a1 + jmp (%a1) +| +| ROUND MINUS INFINITY +| +| If sign of fp number = 1 (negative), then add 1 to l. +| +rnd_mnus: + swap %d1 |set up d1 for round prec. + tstb LOCAL_SGN(%a0) |check for sign + bpl truncate |if negative then truncate + movel #0xffffffff,%d0 |force g,r,s to be all f's + lea add_to_l,%a1 + movel (%a1,%d1.w*4),%a1 + jmp (%a1) +| +| ROUND ZERO +| +| Always truncate. +rnd_zero: + swap %d1 |set up d1 for round prec. + bra truncate +| +| +| ROUND NEAREST +| +| If (g=1), then add 1 to l and if (r=s=0), then clear l +| Note that this will round to even in case of a tie. +| +rnd_near: + swap %d1 |set up d1 for round prec. + asll #1,%d0 |shift g-bit to c-bit + bcc truncate |if (g=1) then + lea add_to_l,%a1 + movel (%a1,%d1.w*4),%a1 + jmp (%a1) + +| +| ext_grs --- extract guard, round and sticky bits +| +| Input: d1 = PREC:ROUND +| Output: d0{31:29}= guard, round, sticky +| +| The ext_grs extract the guard/round/sticky bits according to the +| selected rounding precision. It is called by the round subroutine +| only. All registers except d0 are kept intact. d0 becomes an +| updated guard,round,sticky in d0{31:29} +| +| Notes: the ext_grs uses the round PREC, and therefore has to swap d1 +| prior to usage, and needs to restore d1 to original. +| +ext_grs: + swap %d1 |have d1.w point to round precision + cmpiw #0,%d1 + bnes sgl_or_dbl + bras end_ext_grs + +sgl_or_dbl: + moveml %d2/%d3,-(%a7) |make some temp registers + cmpiw #1,%d1 + bnes grs_dbl +grs_sgl: + bfextu LOCAL_HI(%a0){#24:#2},%d3 |sgl prec. g-r are 2 bits right + movel #30,%d2 |of the sgl prec. limits + lsll %d2,%d3 |shift g-r bits to MSB of d3 + movel LOCAL_HI(%a0),%d2 |get word 2 for s-bit test + andil #0x0000003f,%d2 |s bit is the or of all other + bnes st_stky |bits to the right of g-r + tstl LOCAL_LO(%a0) |test lower mantissa + bnes st_stky |if any are set, set sticky + tstl %d0 |test original g,r,s + bnes st_stky |if any are set, set sticky + bras end_sd |if words 3 and 4 are clr, exit +grs_dbl: + bfextu LOCAL_LO(%a0){#21:#2},%d3 |dbl-prec. g-r are 2 bits right + movel #30,%d2 |of the dbl prec. limits + lsll %d2,%d3 |shift g-r bits to the MSB of d3 + movel LOCAL_LO(%a0),%d2 |get lower mantissa for s-bit test + andil #0x000001ff,%d2 |s bit is the or-ing of all + bnes st_stky |other bits to the right of g-r + tstl %d0 |test word original g,r,s + bnes st_stky |if any are set, set sticky + bras end_sd |if clear, exit +st_stky: + bset #rnd_stky_bit,%d3 +end_sd: + movel %d3,%d0 |return grs to d0 + moveml (%a7)+,%d2/%d3 |restore scratch registers +end_ext_grs: + swap %d1 |restore d1 to original + rts + +|******************* Local Equates + .set ad_1_sgl,0x00000100 | constant to add 1 to l-bit in sgl prec + .set ad_1_dbl,0x00000800 | constant to add 1 to l-bit in dbl prec + + +|Jump table for adding 1 to the l-bit indexed by rnd prec + +add_to_l: + .long add_ext + .long add_sgl + .long add_dbl + .long add_dbl +| +| ADD SINGLE +| +add_sgl: + addl #ad_1_sgl,LOCAL_HI(%a0) + bccs scc_clr |no mantissa overflow + roxrw LOCAL_HI(%a0) |shift v-bit back in + roxrw LOCAL_HI+2(%a0) |shift v-bit back in + addw #0x1,LOCAL_EX(%a0) |and incr exponent +scc_clr: + tstl %d0 |test for rs = 0 + bnes sgl_done + andiw #0xfe00,LOCAL_HI+2(%a0) |clear the l-bit +sgl_done: + andil #0xffffff00,LOCAL_HI(%a0) |truncate bits beyond sgl limit + clrl LOCAL_LO(%a0) |clear d2 + rts + +| +| ADD EXTENDED +| +add_ext: + addql #1,LOCAL_LO(%a0) |add 1 to l-bit + bccs xcc_clr |test for carry out + addql #1,LOCAL_HI(%a0) |propagate carry + bccs xcc_clr + roxrw LOCAL_HI(%a0) |mant is 0 so restore v-bit + roxrw LOCAL_HI+2(%a0) |mant is 0 so restore v-bit + roxrw LOCAL_LO(%a0) + roxrw LOCAL_LO+2(%a0) + addw #0x1,LOCAL_EX(%a0) |and inc exp +xcc_clr: + tstl %d0 |test rs = 0 + bnes add_ext_done + andib #0xfe,LOCAL_LO+3(%a0) |clear the l bit +add_ext_done: + rts +| +| ADD DOUBLE +| +add_dbl: + addl #ad_1_dbl,LOCAL_LO(%a0) + bccs dcc_clr + addql #1,LOCAL_HI(%a0) |propagate carry + bccs dcc_clr + roxrw LOCAL_HI(%a0) |mant is 0 so restore v-bit + roxrw LOCAL_HI+2(%a0) |mant is 0 so restore v-bit + roxrw LOCAL_LO(%a0) + roxrw LOCAL_LO+2(%a0) + addw #0x1,LOCAL_EX(%a0) |incr exponent +dcc_clr: + tstl %d0 |test for rs = 0 + bnes dbl_done + andiw #0xf000,LOCAL_LO+2(%a0) |clear the l-bit + +dbl_done: + andil #0xfffff800,LOCAL_LO(%a0) |truncate bits beyond dbl limit + rts + +error: + rts +| +| Truncate all other bits +| +trunct: + .long end_rnd + .long sgl_done + .long dbl_done + .long dbl_done + +truncate: + lea trunct,%a1 + movel (%a1,%d1.w*4),%a1 + jmp (%a1) + +end_rnd: + rts + +| +| NORMALIZE +| +| These routines (nrm_zero & nrm_set) normalize the unnorm. This +| is done by shifting the mantissa left while decrementing the +| exponent. +| +| NRM_SET shifts and decrements until there is a 1 set in the integer +| bit of the mantissa (msb in d1). +| +| NRM_ZERO shifts and decrements until there is a 1 set in the integer +| bit of the mantissa (msb in d1) unless this would mean the exponent +| would go less than 0. In that case the number becomes a denorm - the +| exponent (d0) is set to 0 and the mantissa (d1 & d2) is not +| normalized. +| +| Note that both routines have been optimized (for the worst case) and +| therefore do not have the easy to follow decrement/shift loop. +| +| NRM_ZERO +| +| Distance to first 1 bit in mantissa = X +| Distance to 0 from exponent = Y +| If X < Y +| Then +| nrm_set +| Else +| shift mantissa by Y +| set exponent = 0 +| +|input: +| FP_SCR1 = exponent, ms mantissa part, ls mantissa part +|output: +| L_SCR1{4} = fpte15 or ete15 bit +| + .global nrm_zero +nrm_zero: + movew LOCAL_EX(%a0),%d0 + cmpw #64,%d0 |see if exp > 64 + bmis d0_less + bsr nrm_set |exp > 64 so exp won't exceed 0 + rts +d0_less: + moveml %d2/%d3/%d5/%d6,-(%a7) + movel LOCAL_HI(%a0),%d1 + movel LOCAL_LO(%a0),%d2 + + bfffo %d1{#0:#32},%d3 |get the distance to the first 1 +| ;in ms mant + beqs ms_clr |branch if no bits were set + cmpw %d3,%d0 |of X>Y + bmis greater |then exp will go past 0 (neg) if +| ;it is just shifted + bsr nrm_set |else exp won't go past 0 + moveml (%a7)+,%d2/%d3/%d5/%d6 + rts +greater: + movel %d2,%d6 |save ls mant in d6 + lsll %d0,%d2 |shift ls mant by count + lsll %d0,%d1 |shift ms mant by count + movel #32,%d5 + subl %d0,%d5 |make op a denorm by shifting bits + lsrl %d5,%d6 |by the number in the exp, then +| ;set exp = 0. + orl %d6,%d1 |shift the ls mant bits into the ms mant + movel #0,%d0 |same as if decremented exp to 0 +| ;while shifting + movew %d0,LOCAL_EX(%a0) + movel %d1,LOCAL_HI(%a0) + movel %d2,LOCAL_LO(%a0) + moveml (%a7)+,%d2/%d3/%d5/%d6 + rts +ms_clr: + bfffo %d2{#0:#32},%d3 |check if any bits set in ls mant + beqs all_clr |branch if none set + addw #32,%d3 + cmpw %d3,%d0 |if X>Y + bmis greater |then branch + bsr nrm_set |else exp won't go past 0 + moveml (%a7)+,%d2/%d3/%d5/%d6 + rts +all_clr: + movew #0,LOCAL_EX(%a0) |no mantissa bits set. Set exp = 0. + moveml (%a7)+,%d2/%d3/%d5/%d6 + rts +| +| NRM_SET +| + .global nrm_set +nrm_set: + movel %d7,-(%a7) + bfffo LOCAL_HI(%a0){#0:#32},%d7 |find first 1 in ms mant to d7) + beqs lower |branch if ms mant is all 0's + + movel %d6,-(%a7) + + subw %d7,LOCAL_EX(%a0) |sub exponent by count + movel LOCAL_HI(%a0),%d0 |d0 has ms mant + movel LOCAL_LO(%a0),%d1 |d1 has ls mant + + lsll %d7,%d0 |shift first 1 to j bit position + movel %d1,%d6 |copy ls mant into d6 + lsll %d7,%d6 |shift ls mant by count + movel %d6,LOCAL_LO(%a0) |store ls mant into memory + moveql #32,%d6 + subl %d7,%d6 |continue shift + lsrl %d6,%d1 |shift off all bits but those that will +| ;be shifted into ms mant + orl %d1,%d0 |shift the ls mant bits into the ms mant + movel %d0,LOCAL_HI(%a0) |store ms mant into memory + moveml (%a7)+,%d7/%d6 |restore registers + rts + +| +| We get here if ms mant was = 0, and we assume ls mant has bits +| set (otherwise this would have been tagged a zero not a denorm). +| +lower: + movew LOCAL_EX(%a0),%d0 |d0 has exponent + movel LOCAL_LO(%a0),%d1 |d1 has ls mant + subw #32,%d0 |account for ms mant being all zeros + bfffo %d1{#0:#32},%d7 |find first 1 in ls mant to d7) + subw %d7,%d0 |subtract shift count from exp + lsll %d7,%d1 |shift first 1 to integer bit in ms mant + movew %d0,LOCAL_EX(%a0) |store ms mant + movel %d1,LOCAL_HI(%a0) |store exp + clrl LOCAL_LO(%a0) |clear ls mant + movel (%a7)+,%d7 + rts +| +| denorm --- denormalize an intermediate result +| +| Used by underflow. +| +| Input: +| a0 points to the operand to be denormalized +| (in the internal extended format) +| +| d0: rounding precision +| Output: +| a0 points to the denormalized result +| (in the internal extended format) +| +| d0 is guard,round,sticky +| +| d0 comes into this routine with the rounding precision. It +| is then loaded with the denormalized exponent threshold for the +| rounding precision. +| + + .global denorm +denorm: + btstb #6,LOCAL_EX(%a0) |check for exponents between $7fff-$4000 + beqs no_sgn_ext + bsetb #7,LOCAL_EX(%a0) |sign extend if it is so +no_sgn_ext: + + cmpib #0,%d0 |if 0 then extended precision + bnes not_ext |else branch + + clrl %d1 |load d1 with ext threshold + clrl %d0 |clear the sticky flag + bsr dnrm_lp |denormalize the number + tstb %d1 |check for inex + beq no_inex |if clr, no inex + bras dnrm_inex |if set, set inex + +not_ext: + cmpil #1,%d0 |if 1 then single precision + beqs load_sgl |else must be 2, double prec + +load_dbl: + movew #dbl_thresh,%d1 |put copy of threshold in d1 + movel %d1,%d0 |copy d1 into d0 + subw LOCAL_EX(%a0),%d0 |diff = threshold - exp + cmpw #67,%d0 |if diff > 67 (mant + grs bits) + bpls chk_stky |then branch (all bits would be +| ; shifted off in denorm routine) + clrl %d0 |else clear the sticky flag + bsr dnrm_lp |denormalize the number + tstb %d1 |check flag + beqs no_inex |if clr, no inex + bras dnrm_inex |if set, set inex + +load_sgl: + movew #sgl_thresh,%d1 |put copy of threshold in d1 + movel %d1,%d0 |copy d1 into d0 + subw LOCAL_EX(%a0),%d0 |diff = threshold - exp + cmpw #67,%d0 |if diff > 67 (mant + grs bits) + bpls chk_stky |then branch (all bits would be +| ; shifted off in denorm routine) + clrl %d0 |else clear the sticky flag + bsr dnrm_lp |denormalize the number + tstb %d1 |check flag + beqs no_inex |if clr, no inex + bras dnrm_inex |if set, set inex + +chk_stky: + tstl LOCAL_HI(%a0) |check for any bits set + bnes set_stky + tstl LOCAL_LO(%a0) |check for any bits set + bnes set_stky + bras clr_mant +set_stky: + orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex + movel #0x20000000,%d0 |set sticky bit in return value +clr_mant: + movew %d1,LOCAL_EX(%a0) |load exp with threshold + movel #0,LOCAL_HI(%a0) |set d1 = 0 (ms mantissa) + movel #0,LOCAL_LO(%a0) |set d2 = 0 (ms mantissa) + rts +dnrm_inex: + orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex +no_inex: + rts + +| +| dnrm_lp --- normalize exponent/mantissa to specified threshold +| +| Input: +| a0 points to the operand to be denormalized +| d0{31:29} initial guard,round,sticky +| d1{15:0} denormalization threshold +| Output: +| a0 points to the denormalized operand +| d0{31:29} final guard,round,sticky +| d1.b inexact flag: all ones means inexact result +| +| The LOCAL_LO and LOCAL_GRS parts of the value are copied to FP_SCR2 +| so that bfext can be used to extract the new low part of the mantissa. +| Dnrm_lp can be called with a0 pointing to ETEMP or WBTEMP and there +| is no LOCAL_GRS scratch word following it on the fsave frame. +| + .global dnrm_lp +dnrm_lp: + movel %d2,-(%sp) |save d2 for temp use + btstb #E3,E_BYTE(%a6) |test for type E3 exception + beqs not_E3 |not type E3 exception + bfextu WBTEMP_GRS(%a6){#6:#3},%d2 |extract guard,round, sticky bit + movel #29,%d0 + lsll %d0,%d2 |shift g,r,s to their positions + movel %d2,%d0 +not_E3: + movel (%sp)+,%d2 |restore d2 + movel LOCAL_LO(%a0),FP_SCR2+LOCAL_LO(%a6) + movel %d0,FP_SCR2+LOCAL_GRS(%a6) + movel %d1,%d0 |copy the denorm threshold + subw LOCAL_EX(%a0),%d1 |d1 = threshold - uns exponent + bles no_lp |d1 <= 0 + cmpw #32,%d1 + blts case_1 |0 = d1 < 32 + cmpw #64,%d1 + blts case_2 |32 <= d1 < 64 + bra case_3 |d1 >= 64 +| +| No normalization necessary +| +no_lp: + clrb %d1 |set no inex2 reported + movel FP_SCR2+LOCAL_GRS(%a6),%d0 |restore original g,r,s + rts +| +| case (0<d1<32) +| +case_1: + movel %d2,-(%sp) + movew %d0,LOCAL_EX(%a0) |exponent = denorm threshold + movel #32,%d0 + subw %d1,%d0 |d0 = 32 - d1 + bfextu LOCAL_EX(%a0){%d0:#32},%d2 + bfextu %d2{%d1:%d0},%d2 |d2 = new LOCAL_HI + bfextu LOCAL_HI(%a0){%d0:#32},%d1 |d1 = new LOCAL_LO + bfextu FP_SCR2+LOCAL_LO(%a6){%d0:#32},%d0 |d0 = new G,R,S + movel %d2,LOCAL_HI(%a0) |store new LOCAL_HI + movel %d1,LOCAL_LO(%a0) |store new LOCAL_LO + clrb %d1 + bftst %d0{#2:#30} + beqs c1nstky + bsetl #rnd_stky_bit,%d0 + st %d1 +c1nstky: + movel FP_SCR2+LOCAL_GRS(%a6),%d2 |restore original g,r,s + andil #0xe0000000,%d2 |clear all but G,R,S + tstl %d2 |test if original G,R,S are clear + beqs grs_clear + orl #0x20000000,%d0 |set sticky bit in d0 +grs_clear: + andil #0xe0000000,%d0 |clear all but G,R,S + movel (%sp)+,%d2 + rts +| +| case (32<=d1<64) +| +case_2: + movel %d2,-(%sp) + movew %d0,LOCAL_EX(%a0) |unsigned exponent = threshold + subw #32,%d1 |d1 now between 0 and 32 + movel #32,%d0 + subw %d1,%d0 |d0 = 32 - d1 + bfextu LOCAL_EX(%a0){%d0:#32},%d2 + bfextu %d2{%d1:%d0},%d2 |d2 = new LOCAL_LO + bfextu LOCAL_HI(%a0){%d0:#32},%d1 |d1 = new G,R,S + bftst %d1{#2:#30} + bnes c2_sstky |bra if sticky bit to be set + bftst FP_SCR2+LOCAL_LO(%a6){%d0:#32} + bnes c2_sstky |bra if sticky bit to be set + movel %d1,%d0 + clrb %d1 + bras end_c2 +c2_sstky: + movel %d1,%d0 + bsetl #rnd_stky_bit,%d0 + st %d1 +end_c2: + clrl LOCAL_HI(%a0) |store LOCAL_HI = 0 + movel %d2,LOCAL_LO(%a0) |store LOCAL_LO + movel FP_SCR2+LOCAL_GRS(%a6),%d2 |restore original g,r,s + andil #0xe0000000,%d2 |clear all but G,R,S + tstl %d2 |test if original G,R,S are clear + beqs clear_grs + orl #0x20000000,%d0 |set sticky bit in d0 +clear_grs: + andil #0xe0000000,%d0 |get rid of all but G,R,S + movel (%sp)+,%d2 + rts +| +| d1 >= 64 Force the exponent to be the denorm threshold with the +| correct sign. +| +case_3: + movew %d0,LOCAL_EX(%a0) + tstw LOCAL_SGN(%a0) + bges c3con +c3neg: + orl #0x80000000,LOCAL_EX(%a0) +c3con: + cmpw #64,%d1 + beqs sixty_four + cmpw #65,%d1 + beqs sixty_five +| +| Shift value is out of range. Set d1 for inex2 flag and +| return a zero with the given threshold. +| + clrl LOCAL_HI(%a0) + clrl LOCAL_LO(%a0) + movel #0x20000000,%d0 + st %d1 + rts + +sixty_four: + movel LOCAL_HI(%a0),%d0 + bfextu %d0{#2:#30},%d1 + andil #0xc0000000,%d0 + bras c3com + +sixty_five: + movel LOCAL_HI(%a0),%d0 + bfextu %d0{#1:#31},%d1 + andil #0x80000000,%d0 + lsrl #1,%d0 |shift high bit into R bit + +c3com: + tstl %d1 + bnes c3ssticky + tstl LOCAL_LO(%a0) + bnes c3ssticky + tstb FP_SCR2+LOCAL_GRS(%a6) + bnes c3ssticky + clrb %d1 + bras c3end + +c3ssticky: + bsetl #rnd_stky_bit,%d0 + st %d1 +c3end: + clrl LOCAL_HI(%a0) + clrl LOCAL_LO(%a0) + rts + + |end diff --git a/arch/m68k/fpsp040/sacos.S b/arch/m68k/fpsp040/sacos.S new file mode 100644 index 000000000..513c7cca7 --- /dev/null +++ b/arch/m68k/fpsp040/sacos.S @@ -0,0 +1,114 @@ +| +| sacos.sa 3.3 12/19/90 +| +| Description: The entry point sAcos computes the inverse cosine of +| an input argument; sAcosd does the same except for denormalized +| input. +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The value arccos(X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 3 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program sCOS takes approximately 310 cycles. +| +| Algorithm: +| +| ACOS +| 1. If |X| >= 1, go to 3. +| +| 2. (|X| < 1) Calculate acos(X) by +| z := (1-X) / (1+X) +| acos(X) = 2 * atan( sqrt(z) ). +| Exit. +| +| 3. If |X| > 1, go to 5. +| +| 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. +| +| 5. (|X| > 1) Generate an invalid operation by 0 * infinity. +| Exit. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SACOS idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +PI: .long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 +PIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 + + |xref t_operr + |xref t_frcinx + |xref satan + + .global sacosd +sacosd: +|--ACOS(X) = PI/2 FOR DENORMALIZED X + fmovel %d1,%fpcr | ...load user's rounding mode/precision + fmovex PIBY2,%fp0 + bra t_frcinx + + .global sacos +sacos: + fmovex (%a0),%fp0 | ...LOAD INPUT + + movel (%a0),%d0 | ...pack exponent with upper 16 fraction + movew 4(%a0),%d0 + andil #0x7FFFFFFF,%d0 + cmpil #0x3FFF8000,%d0 + bges ACOSBIG + +|--THIS IS THE USUAL CASE, |X| < 1 +|--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) + + fmoves #0x3F800000,%fp1 + faddx %fp0,%fp1 | ...1+X + fnegx %fp0 | ... -X + fadds #0x3F800000,%fp0 | ...1-X + fdivx %fp1,%fp0 | ...(1-X)/(1+X) + fsqrtx %fp0 | ...SQRT((1-X)/(1+X)) + fmovemx %fp0-%fp0,(%a0) | ...overwrite input + movel %d1,-(%sp) |save original users fpcr + clrl %d1 + bsr satan | ...ATAN(SQRT([1-X]/[1+X])) + fmovel (%sp)+,%fpcr |restore users exceptions + faddx %fp0,%fp0 | ...2 * ATAN( STUFF ) + bra t_frcinx + +ACOSBIG: + fabsx %fp0 + fcmps #0x3F800000,%fp0 + fbgt t_operr |cause an operr exception + +|--|X| = 1, ACOS(X) = 0 OR PI + movel (%a0),%d0 | ...pack exponent with upper 16 fraction + movew 4(%a0),%d0 + cmpl #0,%d0 |D0 has original exponent+fraction + bgts ACOSP1 + +|--X = -1 +|Returns PI and inexact exception + fmovex PI,%fp0 + fmovel %d1,%FPCR + fadds #0x00800000,%fp0 |cause an inexact exception to be put +| ;into the 040 - will not trap until next +| ;fp inst. + bra t_frcinx + +ACOSP1: + fmovel %d1,%FPCR + fmoves #0x00000000,%fp0 + rts |Facos ; of +1 is exact + + |end diff --git a/arch/m68k/fpsp040/sasin.S b/arch/m68k/fpsp040/sasin.S new file mode 100644 index 000000000..2a269a58c --- /dev/null +++ b/arch/m68k/fpsp040/sasin.S @@ -0,0 +1,103 @@ +| +| sasin.sa 3.3 12/19/90 +| +| Description: The entry point sAsin computes the inverse sine of +| an input argument; sAsind does the same except for denormalized +| input. +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The value arcsin(X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 3 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program sASIN takes approximately 310 cycles. +| +| Algorithm: +| +| ASIN +| 1. If |X| >= 1, go to 3. +| +| 2. (|X| < 1) Calculate asin(X) by +| z := sqrt( [1-X][1+X] ) +| asin(X) = atan( x / z ). +| Exit. +| +| 3. If |X| > 1, go to 5. +| +| 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit. +| +| 5. (|X| > 1) Generate an invalid operation by 0 * infinity. +| Exit. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SASIN idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +PIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 + + |xref t_operr + |xref t_frcinx + |xref t_extdnrm + |xref satan + + .global sasind +sasind: +|--ASIN(X) = X FOR DENORMALIZED X + + bra t_extdnrm + + .global sasin +sasin: + fmovex (%a0),%fp0 | ...LOAD INPUT + + movel (%a0),%d0 + movew 4(%a0),%d0 + andil #0x7FFFFFFF,%d0 + cmpil #0x3FFF8000,%d0 + bges asinbig + +|--THIS IS THE USUAL CASE, |X| < 1 +|--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) + + fmoves #0x3F800000,%fp1 + fsubx %fp0,%fp1 | ...1-X + fmovemx %fp2-%fp2,-(%a7) + fmoves #0x3F800000,%fp2 + faddx %fp0,%fp2 | ...1+X + fmulx %fp2,%fp1 | ...(1+X)(1-X) + fmovemx (%a7)+,%fp2-%fp2 + fsqrtx %fp1 | ...SQRT([1-X][1+X]) + fdivx %fp1,%fp0 | ...X/SQRT([1-X][1+X]) + fmovemx %fp0-%fp0,(%a0) + bsr satan + bra t_frcinx + +asinbig: + fabsx %fp0 | ...|X| + fcmps #0x3F800000,%fp0 + fbgt t_operr |cause an operr exception + +|--|X| = 1, ASIN(X) = +- PI/2. + + fmovex PIBY2,%fp0 + movel (%a0),%d0 + andil #0x80000000,%d0 | ...SIGN BIT OF X + oril #0x3F800000,%d0 | ...+-1 IN SGL FORMAT + movel %d0,-(%sp) | ...push SIGN(X) IN SGL-FMT + fmovel %d1,%FPCR + fmuls (%sp)+,%fp0 + bra t_frcinx + + |end diff --git a/arch/m68k/fpsp040/satan.S b/arch/m68k/fpsp040/satan.S new file mode 100644 index 000000000..c8a664998 --- /dev/null +++ b/arch/m68k/fpsp040/satan.S @@ -0,0 +1,477 @@ +| +| satan.sa 3.3 12/19/90 +| +| The entry point satan computes the arctangent of an +| input value. satand does the same except the input value is a +| denormalized number. +| +| Input: Double-extended value in memory location pointed to by address +| register a0. +| +| Output: Arctan(X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 2 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program satan takes approximately 160 cycles for input +| argument X such that 1/16 < |X| < 16. For the other arguments, +| the program will run no worse than 10% slower. +| +| Algorithm: +| Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. +| +| Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3. +| Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits +| of X with a bit-1 attached at the 6-th bit position. Define u +| to be u = (X-F) / (1 + X*F). +| +| Step 3. Approximate arctan(u) by a polynomial poly. +| +| Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values +| calculated beforehand. Exit. +| +| Step 5. If |X| >= 16, go to Step 7. +| +| Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. +| +| Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'. +| Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|satan idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +BOUNDS1: .long 0x3FFB8000,0x4002FFFF + +ONE: .long 0x3F800000 + + .long 0x00000000 + +ATANA3: .long 0xBFF6687E,0x314987D8 +ATANA2: .long 0x4002AC69,0x34A26DB3 + +ATANA1: .long 0xBFC2476F,0x4E1DA28E +ATANB6: .long 0x3FB34444,0x7F876989 + +ATANB5: .long 0xBFB744EE,0x7FAF45DB +ATANB4: .long 0x3FBC71C6,0x46940220 + +ATANB3: .long 0xBFC24924,0x921872F9 +ATANB2: .long 0x3FC99999,0x99998FA9 + +ATANB1: .long 0xBFD55555,0x55555555 +ATANC5: .long 0xBFB70BF3,0x98539E6A + +ATANC4: .long 0x3FBC7187,0x962D1D7D +ATANC3: .long 0xBFC24924,0x827107B8 + +ATANC2: .long 0x3FC99999,0x9996263E +ATANC1: .long 0xBFD55555,0x55555536 + +PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 +NPIBY2: .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 +PTINY: .long 0x00010000,0x80000000,0x00000000,0x00000000 +NTINY: .long 0x80010000,0x80000000,0x00000000,0x00000000 + +ATANTBL: + .long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 + .long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 + .long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 + .long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 + .long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 + .long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 + .long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 + .long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 + .long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 + .long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 + .long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 + .long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 + .long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 + .long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 + .long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 + .long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 + .long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 + .long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 + .long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 + .long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 + .long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 + .long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 + .long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 + .long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 + .long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 + .long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 + .long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 + .long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 + .long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 + .long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 + .long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 + .long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 + .long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 + .long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 + .long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 + .long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 + .long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 + .long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 + .long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 + .long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 + .long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 + .long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 + .long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 + .long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 + .long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 + .long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 + .long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 + .long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 + .long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 + .long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 + .long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 + .long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 + .long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 + .long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 + .long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 + .long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 + .long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 + .long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 + .long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 + .long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 + .long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 + .long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 + .long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 + .long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 + .long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 + .long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 + .long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 + .long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 + .long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 + .long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 + .long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 + .long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 + .long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 + .long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 + .long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 + .long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 + .long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 + .long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 + .long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 + .long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 + .long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 + .long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 + .long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 + .long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 + .long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 + .long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 + .long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 + .long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 + .long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 + .long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 + .long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 + .long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 + .long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 + .long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 + .long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 + .long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 + .long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 + .long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 + .long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 + .long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 + .long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 + .long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 + .long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 + .long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 + .long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 + .long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 + .long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 + .long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 + .long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 + .long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 + .long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 + .long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 + .long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 + .long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 + .long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 + .long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 + .long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 + .long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 + .long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 + .long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 + .long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 + .long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 + .long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 + .long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 + .long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 + .long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 + .long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 + .long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 + + .set X,FP_SCR1 + .set XDCARE,X+2 + .set XFRAC,X+4 + .set XFRACLO,X+8 + + .set ATANF,FP_SCR2 + .set ATANFHI,ATANF+4 + .set ATANFLO,ATANF+8 + + + | xref t_frcinx + |xref t_extdnrm + + .global satand +satand: +|--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT + + bra t_extdnrm + + .global satan +satan: +|--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S + + fmovex (%a0),%fp0 | ...LOAD INPUT + + movel (%a0),%d0 + movew 4(%a0),%d0 + fmovex %fp0,X(%a6) + andil #0x7FFFFFFF,%d0 + + cmpil #0x3FFB8000,%d0 | ...|X| >= 1/16? + bges ATANOK1 + bra ATANSM + +ATANOK1: + cmpil #0x4002FFFF,%d0 | ...|X| < 16 ? + bles ATANMAIN + bra ATANBIG + + +|--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE +|--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). +|--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN +|--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE +|--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS +|--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR +|--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO +|--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE +|--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL +|--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE +|--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION +|--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION +|--WILL INVOLVE A VERY LONG POLYNOMIAL. + +|--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS +|--WE CHOSE F TO BE +-2^K * 1.BBBB1 +|--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE +|--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE +|--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS +|-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). + +ATANMAIN: + + movew #0x0000,XDCARE(%a6) | ...CLEAN UP X JUST IN CASE + andil #0xF8000000,XFRAC(%a6) | ...FIRST 5 BITS + oril #0x04000000,XFRAC(%a6) | ...SET 6-TH BIT TO 1 + movel #0x00000000,XFRACLO(%a6) | ...LOCATION OF X IS NOW F + + fmovex %fp0,%fp1 | ...FP1 IS X + fmulx X(%a6),%fp1 | ...FP1 IS X*F, NOTE THAT X*F > 0 + fsubx X(%a6),%fp0 | ...FP0 IS X-F + fadds #0x3F800000,%fp1 | ...FP1 IS 1 + X*F + fdivx %fp1,%fp0 | ...FP0 IS U = (X-F)/(1+X*F) + +|--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) +|--CREATE ATAN(F) AND STORE IT IN ATANF, AND +|--SAVE REGISTERS FP2. + + movel %d2,-(%a7) | ...SAVE d2 TEMPORARILY + movel %d0,%d2 | ...THE EXPO AND 16 BITS OF X + andil #0x00007800,%d0 | ...4 VARYING BITS OF F'S FRACTION + andil #0x7FFF0000,%d2 | ...EXPONENT OF F + subil #0x3FFB0000,%d2 | ...K+4 + asrl #1,%d2 + addl %d2,%d0 | ...THE 7 BITS IDENTIFYING F + asrl #7,%d0 | ...INDEX INTO TBL OF ATAN(|F|) + lea ATANTBL,%a1 + addal %d0,%a1 | ...ADDRESS OF ATAN(|F|) + movel (%a1)+,ATANF(%a6) + movel (%a1)+,ATANFHI(%a6) + movel (%a1)+,ATANFLO(%a6) | ...ATANF IS NOW ATAN(|F|) + movel X(%a6),%d0 | ...LOAD SIGN AND EXPO. AGAIN + andil #0x80000000,%d0 | ...SIGN(F) + orl %d0,ATANF(%a6) | ...ATANF IS NOW SIGN(F)*ATAN(|F|) + movel (%a7)+,%d2 | ...RESTORE d2 + +|--THAT'S ALL I HAVE TO DO FOR NOW, +|--BUT ALAS, THE DIVIDE IS STILL CRANKING! + +|--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS +|--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U +|--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. +|--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) +|--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. +|--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT +|--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED + + + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 + fmoved ATANA3,%fp2 + faddx %fp1,%fp2 | ...A3+V + fmulx %fp1,%fp2 | ...V*(A3+V) + fmulx %fp0,%fp1 | ...U*V + faddd ATANA2,%fp2 | ...A2+V*(A3+V) + fmuld ATANA1,%fp1 | ...A1*U*V + fmulx %fp2,%fp1 | ...A1*U*V*(A2+V*(A3+V)) + + faddx %fp1,%fp0 | ...ATAN(U), FP1 RELEASED + fmovel %d1,%FPCR |restore users exceptions + faddx ATANF(%a6),%fp0 | ...ATAN(X) + bra t_frcinx + +ATANBORS: +|--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. +|--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. + cmpil #0x3FFF8000,%d0 + bgt ATANBIG | ...I.E. |X| >= 16 + +ATANSM: +|--|X| <= 1/16 +|--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE +|--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) +|--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) +|--WHERE Y = X*X, AND Z = Y*Y. + + cmpil #0x3FD78000,%d0 + blt ATANTINY +|--COMPUTE POLYNOMIAL + fmulx %fp0,%fp0 | ...FP0 IS Y = X*X + + + movew #0x0000,XDCARE(%a6) + + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...FP1 IS Z = Y*Y + + fmoved ATANB6,%fp2 + fmoved ATANB5,%fp3 + + fmulx %fp1,%fp2 | ...Z*B6 + fmulx %fp1,%fp3 | ...Z*B5 + + faddd ATANB4,%fp2 | ...B4+Z*B6 + faddd ATANB3,%fp3 | ...B3+Z*B5 + + fmulx %fp1,%fp2 | ...Z*(B4+Z*B6) + fmulx %fp3,%fp1 | ...Z*(B3+Z*B5) + + faddd ATANB2,%fp2 | ...B2+Z*(B4+Z*B6) + faddd ATANB1,%fp1 | ...B1+Z*(B3+Z*B5) + + fmulx %fp0,%fp2 | ...Y*(B2+Z*(B4+Z*B6)) + fmulx X(%a6),%fp0 | ...X*Y + + faddx %fp2,%fp1 | ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] + + + fmulx %fp1,%fp0 | ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) + + fmovel %d1,%FPCR |restore users exceptions + faddx X(%a6),%fp0 + + bra t_frcinx + +ATANTINY: +|--|X| < 2^(-40), ATAN(X) = X + movew #0x0000,XDCARE(%a6) + + fmovel %d1,%FPCR |restore users exceptions + fmovex X(%a6),%fp0 |last inst - possible exception set + + bra t_frcinx + +ATANBIG: +|--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, +|--RETURN SIGN(X)*PI/2 + ATAN(-1/X). + cmpil #0x40638000,%d0 + bgt ATANHUGE + +|--APPROXIMATE ATAN(-1/X) BY +|--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' +|--THIS CAN BE RE-WRITTEN AS +|--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. + + fmoves #0xBF800000,%fp1 | ...LOAD -1 + fdivx %fp0,%fp1 | ...FP1 IS -1/X + + +|--DIVIDE IS STILL CRANKING + + fmovex %fp1,%fp0 | ...FP0 IS X' + fmulx %fp0,%fp0 | ...FP0 IS Y = X'*X' + fmovex %fp1,X(%a6) | ...X IS REALLY X' + + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...FP1 IS Z = Y*Y + + fmoved ATANC5,%fp3 + fmoved ATANC4,%fp2 + + fmulx %fp1,%fp3 | ...Z*C5 + fmulx %fp1,%fp2 | ...Z*B4 + + faddd ATANC3,%fp3 | ...C3+Z*C5 + faddd ATANC2,%fp2 | ...C2+Z*C4 + + fmulx %fp3,%fp1 | ...Z*(C3+Z*C5), FP3 RELEASED + fmulx %fp0,%fp2 | ...Y*(C2+Z*C4) + + faddd ATANC1,%fp1 | ...C1+Z*(C3+Z*C5) + fmulx X(%a6),%fp0 | ...X'*Y + + faddx %fp2,%fp1 | ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] + + + fmulx %fp1,%fp0 | ...X'*Y*([B1+Z*(B3+Z*B5)] +| ... +[Y*(B2+Z*(B4+Z*B6))]) + faddx X(%a6),%fp0 + + fmovel %d1,%FPCR |restore users exceptions + + btstb #7,(%a0) + beqs pos_big + +neg_big: + faddx NPIBY2,%fp0 + bra t_frcinx + +pos_big: + faddx PPIBY2,%fp0 + bra t_frcinx + +ATANHUGE: +|--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY + btstb #7,(%a0) + beqs pos_huge + +neg_huge: + fmovex NPIBY2,%fp0 + fmovel %d1,%fpcr + fsubx NTINY,%fp0 + bra t_frcinx + +pos_huge: + fmovex PPIBY2,%fp0 + fmovel %d1,%fpcr + fsubx PTINY,%fp0 + bra t_frcinx + + |end diff --git a/arch/m68k/fpsp040/satanh.S b/arch/m68k/fpsp040/satanh.S new file mode 100644 index 000000000..ba91f77a7 --- /dev/null +++ b/arch/m68k/fpsp040/satanh.S @@ -0,0 +1,103 @@ +| +| satanh.sa 3.3 12/19/90 +| +| The entry point satanh computes the inverse +| hyperbolic tangent of +| an input argument; satanhd does the same except for denormalized +| input. +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The value arctanh(X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 3 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program satanh takes approximately 270 cycles. +| +| Algorithm: +| +| ATANH +| 1. If |X| >= 1, go to 3. +| +| 2. (|X| < 1) Calculate atanh(X) by +| sgn := sign(X) +| y := |X| +| z := 2y/(1-y) +| atanh(X) := sgn * (1/2) * logp1(z) +| Exit. +| +| 3. If |X| > 1, go to 5. +| +| 4. (|X| = 1) Generate infinity with an appropriate sign and +| divide-by-zero by +| sgn := sign(X) +| atan(X) := sgn / (+0). +| Exit. +| +| 5. (|X| > 1) Generate an invalid operation by 0 * infinity. +| Exit. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|satanh idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + + |xref t_dz + |xref t_operr + |xref t_frcinx + |xref t_extdnrm + |xref slognp1 + + .global satanhd +satanhd: +|--ATANH(X) = X FOR DENORMALIZED X + + bra t_extdnrm + + .global satanh +satanh: + movel (%a0),%d0 + movew 4(%a0),%d0 + andil #0x7FFFFFFF,%d0 + cmpil #0x3FFF8000,%d0 + bges ATANHBIG + +|--THIS IS THE USUAL CASE, |X| < 1 +|--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). + + fabsx (%a0),%fp0 | ...Y = |X| + fmovex %fp0,%fp1 + fnegx %fp1 | ...-Y + faddx %fp0,%fp0 | ...2Y + fadds #0x3F800000,%fp1 | ...1-Y + fdivx %fp1,%fp0 | ...2Y/(1-Y) + movel (%a0),%d0 + andil #0x80000000,%d0 + oril #0x3F000000,%d0 | ...SIGN(X)*HALF + movel %d0,-(%sp) + + fmovemx %fp0-%fp0,(%a0) | ...overwrite input + movel %d1,-(%sp) + clrl %d1 + bsr slognp1 | ...LOG1P(Z) + fmovel (%sp)+,%fpcr + fmuls (%sp)+,%fp0 + bra t_frcinx + +ATANHBIG: + fabsx (%a0),%fp0 | ...|X| + fcmps #0x3F800000,%fp0 + fbgt t_operr + bra t_dz + + |end diff --git a/arch/m68k/fpsp040/scale.S b/arch/m68k/fpsp040/scale.S new file mode 100644 index 000000000..04829dd4f --- /dev/null +++ b/arch/m68k/fpsp040/scale.S @@ -0,0 +1,370 @@ +| +| scale.sa 3.3 7/30/91 +| +| The entry point sSCALE computes the destination operand +| scaled by the source operand. If the absolute value of +| the source operand is (>= 2^14) an overflow or underflow +| is returned. +| +| The entry point sscale is called from do_func to emulate +| the fscale unimplemented instruction. +| +| Input: Double-extended destination operand in FPTEMP, +| double-extended source operand in ETEMP. +| +| Output: The function returns scale(X,Y) to fp0. +| +| Modifies: fp0. +| +| Algorithm: +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SCALE idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref t_ovfl2 + |xref t_unfl + |xref round + |xref t_resdnrm + +SRC_BNDS: .short 0x3fff,0x400c + +| +| This entry point is used by the unimplemented instruction exception +| handler. +| +| +| +| FSCALE +| + .global sscale +sscale: + fmovel #0,%fpcr |clr user enabled exc + clrl %d1 + movew FPTEMP(%a6),%d1 |get dest exponent + smi L_SCR1(%a6) |use L_SCR1 to hold sign + andil #0x7fff,%d1 |strip sign + movew ETEMP(%a6),%d0 |check src bounds + andiw #0x7fff,%d0 |clr sign bit + cmp2w SRC_BNDS,%d0 + bccs src_in + cmpiw #0x400c,%d0 |test for too large + bge src_out +| +| The source input is below 1, so we check for denormalized numbers +| and set unfl. +| +src_small: + moveb DTAG(%a6),%d0 + andib #0xe0,%d0 + tstb %d0 + beqs no_denorm + st STORE_FLG(%a6) |dest already contains result + orl #unfl_mask,USER_FPSR(%a6) |set UNFL +den_done: + leal FPTEMP(%a6),%a0 + bra t_resdnrm +no_denorm: + fmovel USER_FPCR(%a6),%FPCR + fmovex FPTEMP(%a6),%fp0 |simply return dest + rts + + +| +| Source is within 2^14 range. To perform the int operation, +| move it to d0. +| +src_in: + fmovex ETEMP(%a6),%fp0 |move in src for int + fmovel #rz_mode,%fpcr |force rz for src conversion + fmovel %fp0,%d0 |int src to d0 + fmovel #0,%FPSR |clr status from above + tstw ETEMP(%a6) |check src sign + blt src_neg +| +| Source is positive. Add the src to the dest exponent. +| The result can be denormalized, if src = 0, or overflow, +| if the result of the add sets a bit in the upper word. +| +src_pos: + tstw %d1 |check for denorm + beq dst_dnrm + addl %d0,%d1 |add src to dest exp + beqs denorm |if zero, result is denorm + cmpil #0x7fff,%d1 |test for overflow + bges ovfl + tstb L_SCR1(%a6) + beqs spos_pos + orw #0x8000,%d1 +spos_pos: + movew %d1,FPTEMP(%a6) |result in FPTEMP + fmovel USER_FPCR(%a6),%FPCR + fmovex FPTEMP(%a6),%fp0 |write result to fp0 + rts +ovfl: + tstb L_SCR1(%a6) + beqs sovl_pos + orw #0x8000,%d1 +sovl_pos: + movew FPTEMP(%a6),ETEMP(%a6) |result in ETEMP + movel FPTEMP_HI(%a6),ETEMP_HI(%a6) + movel FPTEMP_LO(%a6),ETEMP_LO(%a6) + bra t_ovfl2 + +denorm: + tstb L_SCR1(%a6) + beqs den_pos + orw #0x8000,%d1 +den_pos: + tstl FPTEMP_HI(%a6) |check j bit + blts nden_exit |if set, not denorm + movew %d1,ETEMP(%a6) |input expected in ETEMP + movel FPTEMP_HI(%a6),ETEMP_HI(%a6) + movel FPTEMP_LO(%a6),ETEMP_LO(%a6) + orl #unfl_bit,USER_FPSR(%a6) |set unfl + leal ETEMP(%a6),%a0 + bra t_resdnrm +nden_exit: + movew %d1,FPTEMP(%a6) |result in FPTEMP + fmovel USER_FPCR(%a6),%FPCR + fmovex FPTEMP(%a6),%fp0 |write result to fp0 + rts + +| +| Source is negative. Add the src to the dest exponent. +| (The result exponent will be reduced). The result can be +| denormalized. +| +src_neg: + addl %d0,%d1 |add src to dest + beqs denorm |if zero, result is denorm + blts fix_dnrm |if negative, result is +| ;needing denormalization + tstb L_SCR1(%a6) + beqs sneg_pos + orw #0x8000,%d1 +sneg_pos: + movew %d1,FPTEMP(%a6) |result in FPTEMP + fmovel USER_FPCR(%a6),%FPCR + fmovex FPTEMP(%a6),%fp0 |write result to fp0 + rts + + +| +| The result exponent is below denorm value. Test for catastrophic +| underflow and force zero if true. If not, try to shift the +| mantissa right until a zero exponent exists. +| +fix_dnrm: + cmpiw #0xffc0,%d1 |lower bound for normalization + blt fix_unfl |if lower, catastrophic unfl + movew %d1,%d0 |use d0 for exp + movel %d2,-(%a7) |free d2 for norm + movel FPTEMP_HI(%a6),%d1 + movel FPTEMP_LO(%a6),%d2 + clrl L_SCR2(%a6) +fix_loop: + addw #1,%d0 |drive d0 to 0 + lsrl #1,%d1 |while shifting the + roxrl #1,%d2 |mantissa to the right + bccs no_carry + st L_SCR2(%a6) |use L_SCR2 to capture inex +no_carry: + tstw %d0 |it is finished when + blts fix_loop |d0 is zero or the mantissa + tstb L_SCR2(%a6) + beqs tst_zero + orl #unfl_inx_mask,USER_FPSR(%a6) +| ;set unfl, aunfl, ainex +| +| Test for zero. If zero, simply use fmove to return +/- zero +| to the fpu. +| +tst_zero: + clrw FPTEMP_EX(%a6) + tstb L_SCR1(%a6) |test for sign + beqs tst_con + orw #0x8000,FPTEMP_EX(%a6) |set sign bit +tst_con: + movel %d1,FPTEMP_HI(%a6) + movel %d2,FPTEMP_LO(%a6) + movel (%a7)+,%d2 + tstl %d1 + bnes not_zero + tstl FPTEMP_LO(%a6) + bnes not_zero +| +| Result is zero. Check for rounding mode to set lsb. If the +| mode is rp, and the zero is positive, return smallest denorm. +| If the mode is rm, and the zero is negative, return smallest +| negative denorm. +| + btstb #5,FPCR_MODE(%a6) |test if rm or rp + beqs no_dir + btstb #4,FPCR_MODE(%a6) |check which one + beqs zer_rm +zer_rp: + tstb L_SCR1(%a6) |check sign + bnes no_dir |if set, neg op, no inc + movel #1,FPTEMP_LO(%a6) |set lsb + bras sm_dnrm +zer_rm: + tstb L_SCR1(%a6) |check sign + beqs no_dir |if clr, neg op, no inc + movel #1,FPTEMP_LO(%a6) |set lsb + orl #neg_mask,USER_FPSR(%a6) |set N + bras sm_dnrm +no_dir: + fmovel USER_FPCR(%a6),%FPCR + fmovex FPTEMP(%a6),%fp0 |use fmove to set cc's + rts + +| +| The rounding mode changed the zero to a smallest denorm. Call +| t_resdnrm with exceptional operand in ETEMP. +| +sm_dnrm: + movel FPTEMP_EX(%a6),ETEMP_EX(%a6) + movel FPTEMP_HI(%a6),ETEMP_HI(%a6) + movel FPTEMP_LO(%a6),ETEMP_LO(%a6) + leal ETEMP(%a6),%a0 + bra t_resdnrm + +| +| Result is still denormalized. +| +not_zero: + orl #unfl_mask,USER_FPSR(%a6) |set unfl + tstb L_SCR1(%a6) |check for sign + beqs fix_exit + orl #neg_mask,USER_FPSR(%a6) |set N +fix_exit: + bras sm_dnrm + + +| +| The result has underflowed to zero. Return zero and set +| unfl, aunfl, and ainex. +| +fix_unfl: + orl #unfl_inx_mask,USER_FPSR(%a6) + btstb #5,FPCR_MODE(%a6) |test if rm or rp + beqs no_dir2 + btstb #4,FPCR_MODE(%a6) |check which one + beqs zer_rm2 +zer_rp2: + tstb L_SCR1(%a6) |check sign + bnes no_dir2 |if set, neg op, no inc + clrl FPTEMP_EX(%a6) + clrl FPTEMP_HI(%a6) + movel #1,FPTEMP_LO(%a6) |set lsb + bras sm_dnrm |return smallest denorm +zer_rm2: + tstb L_SCR1(%a6) |check sign + beqs no_dir2 |if clr, neg op, no inc + movew #0x8000,FPTEMP_EX(%a6) + clrl FPTEMP_HI(%a6) + movel #1,FPTEMP_LO(%a6) |set lsb + orl #neg_mask,USER_FPSR(%a6) |set N + bra sm_dnrm |return smallest denorm + +no_dir2: + tstb L_SCR1(%a6) + bges pos_zero +neg_zero: + clrl FP_SCR1(%a6) |clear the exceptional operand + clrl FP_SCR1+4(%a6) |for gen_except. + clrl FP_SCR1+8(%a6) + fmoves #0x80000000,%fp0 + rts +pos_zero: + clrl FP_SCR1(%a6) |clear the exceptional operand + clrl FP_SCR1+4(%a6) |for gen_except. + clrl FP_SCR1+8(%a6) + fmoves #0x00000000,%fp0 + rts + +| +| The destination is a denormalized number. It must be handled +| by first shifting the bits in the mantissa until it is normalized, +| then adding the remainder of the source to the exponent. +| +dst_dnrm: + moveml %d2/%d3,-(%a7) + movew FPTEMP_EX(%a6),%d1 + movel FPTEMP_HI(%a6),%d2 + movel FPTEMP_LO(%a6),%d3 +dst_loop: + tstl %d2 |test for normalized result + blts dst_norm |exit loop if so + tstl %d0 |otherwise, test shift count + beqs dst_fin |if zero, shifting is done + subil #1,%d0 |dec src + lsll #1,%d3 + roxll #1,%d2 + bras dst_loop +| +| Destination became normalized. Simply add the remaining +| portion of the src to the exponent. +| +dst_norm: + addw %d0,%d1 |dst is normalized; add src + tstb L_SCR1(%a6) + beqs dnrm_pos + orl #0x8000,%d1 +dnrm_pos: + movemw %d1,FPTEMP_EX(%a6) + moveml %d2,FPTEMP_HI(%a6) + moveml %d3,FPTEMP_LO(%a6) + fmovel USER_FPCR(%a6),%FPCR + fmovex FPTEMP(%a6),%fp0 + moveml (%a7)+,%d2/%d3 + rts + +| +| Destination remained denormalized. Call t_excdnrm with +| exceptional operand in ETEMP. +| +dst_fin: + tstb L_SCR1(%a6) |check for sign + beqs dst_exit + orl #neg_mask,USER_FPSR(%a6) |set N + orl #0x8000,%d1 +dst_exit: + movemw %d1,ETEMP_EX(%a6) + moveml %d2,ETEMP_HI(%a6) + moveml %d3,ETEMP_LO(%a6) + orl #unfl_mask,USER_FPSR(%a6) |set unfl + moveml (%a7)+,%d2/%d3 + leal ETEMP(%a6),%a0 + bra t_resdnrm + +| +| Source is outside of 2^14 range. Test the sign and branch +| to the appropriate exception handler. +| +src_out: + tstb L_SCR1(%a6) + beqs scro_pos + orl #0x8000,%d1 +scro_pos: + movel FPTEMP_HI(%a6),ETEMP_HI(%a6) + movel FPTEMP_LO(%a6),ETEMP_LO(%a6) + tstw ETEMP(%a6) + blts res_neg +res_pos: + movew %d1,ETEMP(%a6) |result in ETEMP + bra t_ovfl2 +res_neg: + movew %d1,ETEMP(%a6) |result in ETEMP + leal ETEMP(%a6),%a0 + bra t_unfl + |end diff --git a/arch/m68k/fpsp040/scosh.S b/arch/m68k/fpsp040/scosh.S new file mode 100644 index 000000000..07d3a4d7c --- /dev/null +++ b/arch/m68k/fpsp040/scosh.S @@ -0,0 +1,131 @@ +| +| scosh.sa 3.1 12/10/90 +| +| The entry point sCosh computes the hyperbolic cosine of +| an input argument; sCoshd does the same except for denormalized +| input. +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The value cosh(X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 3 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program sCOSH takes approximately 250 cycles. +| +| Algorithm: +| +| COSH +| 1. If |X| > 16380 log2, go to 3. +| +| 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae +| y = |X|, z = exp(Y), and +| cosh(X) = (1/2)*( z + 1/z ). +| Exit. +| +| 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. +| +| 4. (16380 log2 < |X| <= 16480 log2) +| cosh(X) = sign(X) * exp(|X|)/2. +| However, invoking exp(|X|) may cause premature overflow. +| Thus, we calculate sinh(X) as follows: +| Y := |X| +| Fact := 2**(16380) +| Y' := Y - 16381 log2 +| cosh(X) := Fact * exp(Y'). +| Exit. +| +| 5. (|X| > 16480 log2) sinh(X) must overflow. Return +| Huge*Huge to generate overflow and an infinity with +| the appropriate sign. Huge is the largest finite number in +| extended format. Exit. +| +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SCOSH idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + + |xref t_ovfl + |xref t_frcinx + |xref setox + +T1: .long 0x40C62D38,0xD3D64634 | ... 16381 LOG2 LEAD +T2: .long 0x3D6F90AE,0xB1E75CC7 | ... 16381 LOG2 TRAIL + +TWO16380: .long 0x7FFB0000,0x80000000,0x00000000,0x00000000 + + .global scoshd +scoshd: +|--COSH(X) = 1 FOR DENORMALIZED X + + fmoves #0x3F800000,%fp0 + + fmovel %d1,%FPCR + fadds #0x00800000,%fp0 + bra t_frcinx + + .global scosh +scosh: + fmovex (%a0),%fp0 | ...LOAD INPUT + + movel (%a0),%d0 + movew 4(%a0),%d0 + andil #0x7FFFFFFF,%d0 + cmpil #0x400CB167,%d0 + bgts COSHBIG + +|--THIS IS THE USUAL CASE, |X| < 16380 LOG2 +|--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) + + fabsx %fp0 | ...|X| + + movel %d1,-(%sp) + clrl %d1 + fmovemx %fp0-%fp0,(%a0) |pass parameter to setox + bsr setox | ...FP0 IS EXP(|X|) + fmuls #0x3F000000,%fp0 | ...(1/2)EXP(|X|) + movel (%sp)+,%d1 + + fmoves #0x3E800000,%fp1 | ...(1/4) + fdivx %fp0,%fp1 | ...1/(2 EXP(|X|)) + + fmovel %d1,%FPCR + faddx %fp1,%fp0 + + bra t_frcinx + +COSHBIG: + cmpil #0x400CB2B3,%d0 + bgts COSHHUGE + + fabsx %fp0 + fsubd T1(%pc),%fp0 | ...(|X|-16381LOG2_LEAD) + fsubd T2(%pc),%fp0 | ...|X| - 16381 LOG2, ACCURATE + + movel %d1,-(%sp) + clrl %d1 + fmovemx %fp0-%fp0,(%a0) + bsr setox + fmovel (%sp)+,%fpcr + + fmulx TWO16380(%pc),%fp0 + bra t_frcinx + +COSHHUGE: + fmovel #0,%fpsr |clr N bit if set by source + bclrb #7,(%a0) |always return positive value + fmovemx (%a0),%fp0-%fp0 + bra t_ovfl + + |end diff --git a/arch/m68k/fpsp040/setox.S b/arch/m68k/fpsp040/setox.S new file mode 100644 index 000000000..f1acf7e36 --- /dev/null +++ b/arch/m68k/fpsp040/setox.S @@ -0,0 +1,864 @@ +| +| setox.sa 3.1 12/10/90 +| +| The entry point setox computes the exponential of a value. +| setoxd does the same except the input value is a denormalized +| number. setoxm1 computes exp(X)-1, and setoxm1d computes +| exp(X)-1 for denormalized X. +| +| INPUT +| ----- +| Double-extended value in memory location pointed to by address +| register a0. +| +| OUTPUT +| ------ +| exp(X) or exp(X)-1 returned in floating-point register fp0. +| +| ACCURACY and MONOTONICITY +| ------------------------- +| The returned result is within 0.85 ulps in 64 significant bit, i.e. +| within 0.5001 ulp to 53 bits if the result is subsequently rounded +| to double precision. The result is provably monotonic in double +| precision. +| +| SPEED +| ----- +| Two timings are measured, both in the copy-back mode. The +| first one is measured when the function is invoked the first time +| (so the instructions and data are not in cache), and the +| second one is measured when the function is reinvoked at the same +| input argument. +| +| The program setox takes approximately 210/190 cycles for input +| argument X whose magnitude is less than 16380 log2, which +| is the usual situation. For the less common arguments, +| depending on their values, the program may run faster or slower -- +| but no worse than 10% slower even in the extreme cases. +| +| The program setoxm1 takes approximately ??? / ??? cycles for input +| argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes +| approximately ??? / ??? cycles. For the less common arguments, +| depending on their values, the program may run faster or slower -- +| but no worse than 10% slower even in the extreme cases. +| +| ALGORITHM and IMPLEMENTATION NOTES +| ---------------------------------- +| +| setoxd +| ------ +| Step 1. Set ans := 1.0 +| +| Step 2. Return ans := ans + sign(X)*2^(-126). Exit. +| Notes: This will always generate one exception -- inexact. +| +| +| setox +| ----- +| +| Step 1. Filter out extreme cases of input argument. +| 1.1 If |X| >= 2^(-65), go to Step 1.3. +| 1.2 Go to Step 7. +| 1.3 If |X| < 16380 log(2), go to Step 2. +| 1.4 Go to Step 8. +| Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. +| To avoid the use of floating-point comparisons, a +| compact representation of |X| is used. This format is a +| 32-bit integer, the upper (more significant) 16 bits are +| the sign and biased exponent field of |X|; the lower 16 +| bits are the 16 most significant fraction (including the +| explicit bit) bits of |X|. Consequently, the comparisons +| in Steps 1.1 and 1.3 can be performed by integer comparison. +| Note also that the constant 16380 log(2) used in Step 1.3 +| is also in the compact form. Thus taking the branch +| to Step 2 guarantees |X| < 16380 log(2). There is no harm +| to have a small number of cases where |X| is less than, +| but close to, 16380 log(2) and the branch to Step 9 is +| taken. +| +| Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). +| 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken) +| 2.2 N := round-to-nearest-integer( X * 64/log2 ). +| 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63. +| 2.4 Calculate M = (N - J)/64; so N = 64M + J. +| 2.5 Calculate the address of the stored value of 2^(J/64). +| 2.6 Create the value Scale = 2^M. +| Notes: The calculation in 2.2 is really performed by +| +| Z := X * constant +| N := round-to-nearest-integer(Z) +| +| where +| +| constant := single-precision( 64/log 2 ). +| +| Using a single-precision constant avoids memory access. +| Another effect of using a single-precision "constant" is +| that the calculated value Z is +| +| Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). +| +| This error has to be considered later in Steps 3 and 4. +| +| Step 3. Calculate X - N*log2/64. +| 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). +| 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). +| Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate +| the value -log2/64 to 88 bits of accuracy. +| b) N*L1 is exact because N is no longer than 22 bits and +| L1 is no longer than 24 bits. +| c) The calculation X+N*L1 is also exact due to cancellation. +| Thus, R is practically X+N(L1+L2) to full 64 bits. +| d) It is important to estimate how large can |R| be after +| Step 3.2. +| +| N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) +| X*64/log2 (1+eps) = N + f, |f| <= 0.5 +| X*64/log2 - N = f - eps*X 64/log2 +| X - N*log2/64 = f*log2/64 - eps*X +| +| +| Now |X| <= 16446 log2, thus +| +| |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 +| <= 0.57 log2/64. +| This bound will be used in Step 4. +| +| Step 4. Approximate exp(R)-1 by a polynomial +| p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) +| Notes: a) In order to reduce memory access, the coefficients are +| made as "short" as possible: A1 (which is 1/2), A4 and A5 +| are single precision; A2 and A3 are double precision. +| b) Even with the restrictions above, +| |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. +| Note that 0.0062 is slightly bigger than 0.57 log2/64. +| c) To fully utilize the pipeline, p is separated into +| two independent pieces of roughly equal complexities +| p = [ R + R*S*(A2 + S*A4) ] + +| [ S*(A1 + S*(A3 + S*A5)) ] +| where S = R*R. +| +| Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by +| ans := T + ( T*p + t) +| where T and t are the stored values for 2^(J/64). +| Notes: 2^(J/64) is stored as T and t where T+t approximates +| 2^(J/64) to roughly 85 bits; T is in extended precision +| and t is in single precision. Note also that T is rounded +| to 62 bits so that the last two bits of T are zero. The +| reason for such a special form is that T-1, T-2, and T-8 +| will all be exact --- a property that will give much +| more accurate computation of the function EXPM1. +| +| Step 6. Reconstruction of exp(X) +| exp(X) = 2^M * 2^(J/64) * exp(R). +| 6.1 If AdjFlag = 0, go to 6.3 +| 6.2 ans := ans * AdjScale +| 6.3 Restore the user FPCR +| 6.4 Return ans := ans * Scale. Exit. +| Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, +| |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will +| neither overflow nor underflow. If AdjFlag = 1, that +| means that +| X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. +| Hence, exp(X) may overflow or underflow or neither. +| When that is the case, AdjScale = 2^(M1) where M1 is +| approximately M. Thus 6.2 will never cause over/underflow. +| Possible exception in 6.4 is overflow or underflow. +| The inexact exception is not generated in 6.4. Although +| one can argue that the inexact flag should always be +| raised, to simulate that exception cost to much than the +| flag is worth in practical uses. +| +| Step 7. Return 1 + X. +| 7.1 ans := X +| 7.2 Restore user FPCR. +| 7.3 Return ans := 1 + ans. Exit +| Notes: For non-zero X, the inexact exception will always be +| raised by 7.3. That is the only exception raised by 7.3. +| Note also that we use the FMOVEM instruction to move X +| in Step 7.1 to avoid unnecessary trapping. (Although +| the FMOVEM may not seem relevant since X is normalized, +| the precaution will be useful in the library version of +| this code where the separate entry for denormalized inputs +| will be done away with.) +| +| Step 8. Handle exp(X) where |X| >= 16380log2. +| 8.1 If |X| > 16480 log2, go to Step 9. +| (mimic 2.2 - 2.6) +| 8.2 N := round-to-integer( X * 64/log2 ) +| 8.3 Calculate J = N mod 64, J = 0,1,...,63 +| 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1. +| 8.5 Calculate the address of the stored value 2^(J/64). +| 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. +| 8.7 Go to Step 3. +| Notes: Refer to notes for 2.2 - 2.6. +| +| Step 9. Handle exp(X), |X| > 16480 log2. +| 9.1 If X < 0, go to 9.3 +| 9.2 ans := Huge, go to 9.4 +| 9.3 ans := Tiny. +| 9.4 Restore user FPCR. +| 9.5 Return ans := ans * ans. Exit. +| Notes: Exp(X) will surely overflow or underflow, depending on +| X's sign. "Huge" and "Tiny" are respectively large/tiny +| extended-precision numbers whose square over/underflow +| with an inexact result. Thus, 9.5 always raises the +| inexact together with either overflow or underflow. +| +| +| setoxm1d +| -------- +| +| Step 1. Set ans := 0 +| +| Step 2. Return ans := X + ans. Exit. +| Notes: This will return X with the appropriate rounding +| precision prescribed by the user FPCR. +| +| setoxm1 +| ------- +| +| Step 1. Check |X| +| 1.1 If |X| >= 1/4, go to Step 1.3. +| 1.2 Go to Step 7. +| 1.3 If |X| < 70 log(2), go to Step 2. +| 1.4 Go to Step 10. +| Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. +| However, it is conceivable |X| can be small very often +| because EXPM1 is intended to evaluate exp(X)-1 accurately +| when |X| is small. For further details on the comparisons, +| see the notes on Step 1 of setox. +| +| Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). +| 2.1 N := round-to-nearest-integer( X * 64/log2 ). +| 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63. +| 2.3 Calculate M = (N - J)/64; so N = 64M + J. +| 2.4 Calculate the address of the stored value of 2^(J/64). +| 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M). +| Notes: See the notes on Step 2 of setox. +| +| Step 3. Calculate X - N*log2/64. +| 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). +| 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). +| Notes: Applying the analysis of Step 3 of setox in this case +| shows that |R| <= 0.0055 (note that |X| <= 70 log2 in +| this case). +| +| Step 4. Approximate exp(R)-1 by a polynomial +| p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) +| Notes: a) In order to reduce memory access, the coefficients are +| made as "short" as possible: A1 (which is 1/2), A5 and A6 +| are single precision; A2, A3 and A4 are double precision. +| b) Even with the restriction above, +| |p - (exp(R)-1)| < |R| * 2^(-72.7) +| for all |R| <= 0.0055. +| c) To fully utilize the pipeline, p is separated into +| two independent pieces of roughly equal complexity +| p = [ R*S*(A2 + S*(A4 + S*A6)) ] + +| [ R + S*(A1 + S*(A3 + S*A5)) ] +| where S = R*R. +| +| Step 5. Compute 2^(J/64)*p by +| p := T*p +| where T and t are the stored values for 2^(J/64). +| Notes: 2^(J/64) is stored as T and t where T+t approximates +| 2^(J/64) to roughly 85 bits; T is in extended precision +| and t is in single precision. Note also that T is rounded +| to 62 bits so that the last two bits of T are zero. The +| reason for such a special form is that T-1, T-2, and T-8 +| will all be exact --- a property that will be exploited +| in Step 6 below. The total relative error in p is no +| bigger than 2^(-67.7) compared to the final result. +| +| Step 6. Reconstruction of exp(X)-1 +| exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). +| 6.1 If M <= 63, go to Step 6.3. +| 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 +| 6.3 If M >= -3, go to 6.5. +| 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 +| 6.5 ans := (T + OnebySc) + (p + t). +| 6.6 Restore user FPCR. +| 6.7 Return ans := Sc * ans. Exit. +| Notes: The various arrangements of the expressions give accurate +| evaluations. +| +| Step 7. exp(X)-1 for |X| < 1/4. +| 7.1 If |X| >= 2^(-65), go to Step 9. +| 7.2 Go to Step 8. +| +| Step 8. Calculate exp(X)-1, |X| < 2^(-65). +| 8.1 If |X| < 2^(-16312), goto 8.3 +| 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit. +| 8.3 X := X * 2^(140). +| 8.4 Restore FPCR; ans := ans - 2^(-16382). +| Return ans := ans*2^(140). Exit +| Notes: The idea is to return "X - tiny" under the user +| precision and rounding modes. To avoid unnecessary +| inefficiency, we stay away from denormalized numbers the +| best we can. For |X| >= 2^(-16312), the straightforward +| 8.2 generates the inexact exception as the case warrants. +| +| Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial +| p = X + X*X*(B1 + X*(B2 + ... + X*B12)) +| Notes: a) In order to reduce memory access, the coefficients are +| made as "short" as possible: B1 (which is 1/2), B9 to B12 +| are single precision; B3 to B8 are double precision; and +| B2 is double extended. +| b) Even with the restriction above, +| |p - (exp(X)-1)| < |X| 2^(-70.6) +| for all |X| <= 0.251. +| Note that 0.251 is slightly bigger than 1/4. +| c) To fully preserve accuracy, the polynomial is computed +| as X + ( S*B1 + Q ) where S = X*X and +| Q = X*S*(B2 + X*(B3 + ... + X*B12)) +| d) To fully utilize the pipeline, Q is separated into +| two independent pieces of roughly equal complexity +| Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + +| [ S*S*(B3 + S*(B5 + ... + S*B11)) ] +| +| Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. +| 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical +| purposes. Therefore, go to Step 1 of setox. +| 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes. +| ans := -1 +| Restore user FPCR +| Return ans := ans + 2^(-126). Exit. +| Notes: 10.2 will always create an inexact and return -1 + tiny +| in the user rounding precision and mode. +| +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|setox idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +L2: .long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 + +EXPA3: .long 0x3FA55555,0x55554431 +EXPA2: .long 0x3FC55555,0x55554018 + +HUGE: .long 0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 +TINY: .long 0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 + +EM1A4: .long 0x3F811111,0x11174385 +EM1A3: .long 0x3FA55555,0x55554F5A + +EM1A2: .long 0x3FC55555,0x55555555,0x00000000,0x00000000 + +EM1B8: .long 0x3EC71DE3,0xA5774682 +EM1B7: .long 0x3EFA01A0,0x19D7CB68 + +EM1B6: .long 0x3F2A01A0,0x1A019DF3 +EM1B5: .long 0x3F56C16C,0x16C170E2 + +EM1B4: .long 0x3F811111,0x11111111 +EM1B3: .long 0x3FA55555,0x55555555 + +EM1B2: .long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB + .long 0x00000000 + +TWO140: .long 0x48B00000,0x00000000 +TWON140: .long 0x37300000,0x00000000 + +EXPTBL: + .long 0x3FFF0000,0x80000000,0x00000000,0x00000000 + .long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B + .long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 + .long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 + .long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C + .long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F + .long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 + .long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF + .long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF + .long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA + .long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 + .long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 + .long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 + .long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 + .long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D + .long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 + .long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD + .long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 + .long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 + .long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D + .long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 + .long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C + .long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 + .long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 + .long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 + .long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA + .long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A + .long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC + .long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC + .long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 + .long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 + .long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A + .long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 + .long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 + .long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC + .long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 + .long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 + .long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 + .long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 + .long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B + .long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 + .long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E + .long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 + .long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D + .long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 + .long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C + .long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 + .long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 + .long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F + .long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F + .long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 + .long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 + .long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B + .long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 + .long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A + .long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 + .long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 + .long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B + .long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 + .long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 + .long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 + .long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 + .long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 + .long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A + + .set ADJFLAG,L_SCR2 + .set SCALE,FP_SCR1 + .set ADJSCALE,FP_SCR2 + .set SC,FP_SCR3 + .set ONEBYSC,FP_SCR4 + + | xref t_frcinx + |xref t_extdnrm + |xref t_unfl + |xref t_ovfl + + .global setoxd +setoxd: +|--entry point for EXP(X), X is denormalized + movel (%a0),%d0 + andil #0x80000000,%d0 + oril #0x00800000,%d0 | ...sign(X)*2^(-126) + movel %d0,-(%sp) + fmoves #0x3F800000,%fp0 + fmovel %d1,%fpcr + fadds (%sp)+,%fp0 + bra t_frcinx + + .global setox +setox: +|--entry point for EXP(X), here X is finite, non-zero, and not NaN's + +|--Step 1. + movel (%a0),%d0 | ...load part of input X + andil #0x7FFF0000,%d0 | ...biased expo. of X + cmpil #0x3FBE0000,%d0 | ...2^(-65) + bges EXPC1 | ...normal case + bra EXPSM + +EXPC1: +|--The case |X| >= 2^(-65) + movew 4(%a0),%d0 | ...expo. and partial sig. of |X| + cmpil #0x400CB167,%d0 | ...16380 log2 trunc. 16 bits + blts EXPMAIN | ...normal case + bra EXPBIG + +EXPMAIN: +|--Step 2. +|--This is the normal branch: 2^(-65) <= |X| < 16380 log2. + fmovex (%a0),%fp0 | ...load input from (a0) + + fmovex %fp0,%fp1 + fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X + fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2 + movel #0,ADJFLAG(%a6) + fmovel %fp0,%d0 | ...N = int( X * 64/log2 ) + lea EXPTBL,%a1 + fmovel %d0,%fp0 | ...convert to floating-format + + movel %d0,L_SCR1(%a6) | ...save N temporarily + andil #0x3F,%d0 | ...D0 is J = N mod 64 + lsll #4,%d0 + addal %d0,%a1 | ...address of 2^(J/64) + movel L_SCR1(%a6),%d0 + asrl #6,%d0 | ...D0 is M + addiw #0x3FFF,%d0 | ...biased expo. of 2^(M) + movew L2,L_SCR1(%a6) | ...prefetch L2, no need in CB + +EXPCONT1: +|--Step 3. +|--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, +|--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) + fmovex %fp0,%fp2 + fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64) + fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64 + faddx %fp1,%fp0 | ...X + N*L1 + faddx %fp2,%fp0 | ...fp0 is R, reduced arg. +| MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache + +|--Step 4. +|--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL +|-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) +|--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R +|--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] + + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...fp1 IS S = R*R + + fmoves #0x3AB60B70,%fp2 | ...fp2 IS A5 +| MOVE.W #0,2(%a1) ...load 2^(J/64) in cache + + fmulx %fp1,%fp2 | ...fp2 IS S*A5 + fmovex %fp1,%fp3 + fmuls #0x3C088895,%fp3 | ...fp3 IS S*A4 + + faddd EXPA3,%fp2 | ...fp2 IS A3+S*A5 + faddd EXPA2,%fp3 | ...fp3 IS A2+S*A4 + + fmulx %fp1,%fp2 | ...fp2 IS S*(A3+S*A5) + movew %d0,SCALE(%a6) | ...SCALE is 2^(M) in extended + clrw SCALE+2(%a6) + movel #0x80000000,SCALE+4(%a6) + clrl SCALE+8(%a6) + + fmulx %fp1,%fp3 | ...fp3 IS S*(A2+S*A4) + + fadds #0x3F000000,%fp2 | ...fp2 IS A1+S*(A3+S*A5) + fmulx %fp0,%fp3 | ...fp3 IS R*S*(A2+S*A4) + + fmulx %fp1,%fp2 | ...fp2 IS S*(A1+S*(A3+S*A5)) + faddx %fp3,%fp0 | ...fp0 IS R+R*S*(A2+S*A4), +| ...fp3 released + + fmovex (%a1)+,%fp1 | ...fp1 is lead. pt. of 2^(J/64) + faddx %fp2,%fp0 | ...fp0 is EXP(R) - 1 +| ...fp2 released + +|--Step 5 +|--final reconstruction process +|--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) + + fmulx %fp1,%fp0 | ...2^(J/64)*(Exp(R)-1) + fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored + fadds (%a1),%fp0 | ...accurate 2^(J/64) + + faddx %fp1,%fp0 | ...2^(J/64) + 2^(J/64)*... + movel ADJFLAG(%a6),%d0 + +|--Step 6 + tstl %d0 + beqs NORMAL +ADJUST: + fmulx ADJSCALE(%a6),%fp0 +NORMAL: + fmovel %d1,%FPCR | ...restore user FPCR + fmulx SCALE(%a6),%fp0 | ...multiply 2^(M) + bra t_frcinx + +EXPSM: +|--Step 7 + fmovemx (%a0),%fp0-%fp0 | ...in case X is denormalized + fmovel %d1,%FPCR + fadds #0x3F800000,%fp0 | ...1+X in user mode + bra t_frcinx + +EXPBIG: +|--Step 8 + cmpil #0x400CB27C,%d0 | ...16480 log2 + bgts EXP2BIG +|--Steps 8.2 -- 8.6 + fmovex (%a0),%fp0 | ...load input from (a0) + + fmovex %fp0,%fp1 + fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X + fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2 + movel #1,ADJFLAG(%a6) + fmovel %fp0,%d0 | ...N = int( X * 64/log2 ) + lea EXPTBL,%a1 + fmovel %d0,%fp0 | ...convert to floating-format + movel %d0,L_SCR1(%a6) | ...save N temporarily + andil #0x3F,%d0 | ...D0 is J = N mod 64 + lsll #4,%d0 + addal %d0,%a1 | ...address of 2^(J/64) + movel L_SCR1(%a6),%d0 + asrl #6,%d0 | ...D0 is K + movel %d0,L_SCR1(%a6) | ...save K temporarily + asrl #1,%d0 | ...D0 is M1 + subl %d0,L_SCR1(%a6) | ...a1 is M + addiw #0x3FFF,%d0 | ...biased expo. of 2^(M1) + movew %d0,ADJSCALE(%a6) | ...ADJSCALE := 2^(M1) + clrw ADJSCALE+2(%a6) + movel #0x80000000,ADJSCALE+4(%a6) + clrl ADJSCALE+8(%a6) + movel L_SCR1(%a6),%d0 | ...D0 is M + addiw #0x3FFF,%d0 | ...biased expo. of 2^(M) + bra EXPCONT1 | ...go back to Step 3 + +EXP2BIG: +|--Step 9 + fmovel %d1,%FPCR + movel (%a0),%d0 + bclrb #sign_bit,(%a0) | ...setox always returns positive + cmpil #0,%d0 + blt t_unfl + bra t_ovfl + + .global setoxm1d +setoxm1d: +|--entry point for EXPM1(X), here X is denormalized +|--Step 0. + bra t_extdnrm + + + .global setoxm1 +setoxm1: +|--entry point for EXPM1(X), here X is finite, non-zero, non-NaN + +|--Step 1. +|--Step 1.1 + movel (%a0),%d0 | ...load part of input X + andil #0x7FFF0000,%d0 | ...biased expo. of X + cmpil #0x3FFD0000,%d0 | ...1/4 + bges EM1CON1 | ...|X| >= 1/4 + bra EM1SM + +EM1CON1: +|--Step 1.3 +|--The case |X| >= 1/4 + movew 4(%a0),%d0 | ...expo. and partial sig. of |X| + cmpil #0x4004C215,%d0 | ...70log2 rounded up to 16 bits + bles EM1MAIN | ...1/4 <= |X| <= 70log2 + bra EM1BIG + +EM1MAIN: +|--Step 2. +|--This is the case: 1/4 <= |X| <= 70 log2. + fmovex (%a0),%fp0 | ...load input from (a0) + + fmovex %fp0,%fp1 + fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X + fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2 +| MOVE.W #$3F81,EM1A4 ...prefetch in CB mode + fmovel %fp0,%d0 | ...N = int( X * 64/log2 ) + lea EXPTBL,%a1 + fmovel %d0,%fp0 | ...convert to floating-format + + movel %d0,L_SCR1(%a6) | ...save N temporarily + andil #0x3F,%d0 | ...D0 is J = N mod 64 + lsll #4,%d0 + addal %d0,%a1 | ...address of 2^(J/64) + movel L_SCR1(%a6),%d0 + asrl #6,%d0 | ...D0 is M + movel %d0,L_SCR1(%a6) | ...save a copy of M +| MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode + +|--Step 3. +|--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, +|--a0 points to 2^(J/64), D0 and a1 both contain M + fmovex %fp0,%fp2 + fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64) + fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64 + faddx %fp1,%fp0 | ...X + N*L1 + faddx %fp2,%fp0 | ...fp0 is R, reduced arg. +| MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache + addiw #0x3FFF,%d0 | ...D0 is biased expo. of 2^M + +|--Step 4. +|--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL +|-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) +|--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R +|--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] + + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...fp1 IS S = R*R + + fmoves #0x3950097B,%fp2 | ...fp2 IS a6 +| MOVE.W #0,2(%a1) ...load 2^(J/64) in cache + + fmulx %fp1,%fp2 | ...fp2 IS S*A6 + fmovex %fp1,%fp3 + fmuls #0x3AB60B6A,%fp3 | ...fp3 IS S*A5 + + faddd EM1A4,%fp2 | ...fp2 IS A4+S*A6 + faddd EM1A3,%fp3 | ...fp3 IS A3+S*A5 + movew %d0,SC(%a6) | ...SC is 2^(M) in extended + clrw SC+2(%a6) + movel #0x80000000,SC+4(%a6) + clrl SC+8(%a6) + + fmulx %fp1,%fp2 | ...fp2 IS S*(A4+S*A6) + movel L_SCR1(%a6),%d0 | ...D0 is M + negw %d0 | ...D0 is -M + fmulx %fp1,%fp3 | ...fp3 IS S*(A3+S*A5) + addiw #0x3FFF,%d0 | ...biased expo. of 2^(-M) + faddd EM1A2,%fp2 | ...fp2 IS A2+S*(A4+S*A6) + fadds #0x3F000000,%fp3 | ...fp3 IS A1+S*(A3+S*A5) + + fmulx %fp1,%fp2 | ...fp2 IS S*(A2+S*(A4+S*A6)) + oriw #0x8000,%d0 | ...signed/expo. of -2^(-M) + movew %d0,ONEBYSC(%a6) | ...OnebySc is -2^(-M) + clrw ONEBYSC+2(%a6) + movel #0x80000000,ONEBYSC+4(%a6) + clrl ONEBYSC+8(%a6) + fmulx %fp3,%fp1 | ...fp1 IS S*(A1+S*(A3+S*A5)) +| ...fp3 released + + fmulx %fp0,%fp2 | ...fp2 IS R*S*(A2+S*(A4+S*A6)) + faddx %fp1,%fp0 | ...fp0 IS R+S*(A1+S*(A3+S*A5)) +| ...fp1 released + + faddx %fp2,%fp0 | ...fp0 IS EXP(R)-1 +| ...fp2 released + fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored + +|--Step 5 +|--Compute 2^(J/64)*p + + fmulx (%a1),%fp0 | ...2^(J/64)*(Exp(R)-1) + +|--Step 6 +|--Step 6.1 + movel L_SCR1(%a6),%d0 | ...retrieve M + cmpil #63,%d0 + bles MLE63 +|--Step 6.2 M >= 64 + fmoves 12(%a1),%fp1 | ...fp1 is t + faddx ONEBYSC(%a6),%fp1 | ...fp1 is t+OnebySc + faddx %fp1,%fp0 | ...p+(t+OnebySc), fp1 released + faddx (%a1),%fp0 | ...T+(p+(t+OnebySc)) + bras EM1SCALE +MLE63: +|--Step 6.3 M <= 63 + cmpil #-3,%d0 + bges MGEN3 +MLTN3: +|--Step 6.4 M <= -4 + fadds 12(%a1),%fp0 | ...p+t + faddx (%a1),%fp0 | ...T+(p+t) + faddx ONEBYSC(%a6),%fp0 | ...OnebySc + (T+(p+t)) + bras EM1SCALE +MGEN3: +|--Step 6.5 -3 <= M <= 63 + fmovex (%a1)+,%fp1 | ...fp1 is T + fadds (%a1),%fp0 | ...fp0 is p+t + faddx ONEBYSC(%a6),%fp1 | ...fp1 is T+OnebySc + faddx %fp1,%fp0 | ...(T+OnebySc)+(p+t) + +EM1SCALE: +|--Step 6.6 + fmovel %d1,%FPCR + fmulx SC(%a6),%fp0 + + bra t_frcinx + +EM1SM: +|--Step 7 |X| < 1/4. + cmpil #0x3FBE0000,%d0 | ...2^(-65) + bges EM1POLY + +EM1TINY: +|--Step 8 |X| < 2^(-65) + cmpil #0x00330000,%d0 | ...2^(-16312) + blts EM12TINY +|--Step 8.2 + movel #0x80010000,SC(%a6) | ...SC is -2^(-16382) + movel #0x80000000,SC+4(%a6) + clrl SC+8(%a6) + fmovex (%a0),%fp0 + fmovel %d1,%FPCR + faddx SC(%a6),%fp0 + + bra t_frcinx + +EM12TINY: +|--Step 8.3 + fmovex (%a0),%fp0 + fmuld TWO140,%fp0 + movel #0x80010000,SC(%a6) + movel #0x80000000,SC+4(%a6) + clrl SC+8(%a6) + faddx SC(%a6),%fp0 + fmovel %d1,%FPCR + fmuld TWON140,%fp0 + + bra t_frcinx + +EM1POLY: +|--Step 9 exp(X)-1 by a simple polynomial + fmovex (%a0),%fp0 | ...fp0 is X + fmulx %fp0,%fp0 | ...fp0 is S := X*X + fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2 + fmoves #0x2F30CAA8,%fp1 | ...fp1 is B12 + fmulx %fp0,%fp1 | ...fp1 is S*B12 + fmoves #0x310F8290,%fp2 | ...fp2 is B11 + fadds #0x32D73220,%fp1 | ...fp1 is B10+S*B12 + + fmulx %fp0,%fp2 | ...fp2 is S*B11 + fmulx %fp0,%fp1 | ...fp1 is S*(B10 + ... + + fadds #0x3493F281,%fp2 | ...fp2 is B9+S*... + faddd EM1B8,%fp1 | ...fp1 is B8+S*... + + fmulx %fp0,%fp2 | ...fp2 is S*(B9+... + fmulx %fp0,%fp1 | ...fp1 is S*(B8+... + + faddd EM1B7,%fp2 | ...fp2 is B7+S*... + faddd EM1B6,%fp1 | ...fp1 is B6+S*... + + fmulx %fp0,%fp2 | ...fp2 is S*(B7+... + fmulx %fp0,%fp1 | ...fp1 is S*(B6+... + + faddd EM1B5,%fp2 | ...fp2 is B5+S*... + faddd EM1B4,%fp1 | ...fp1 is B4+S*... + + fmulx %fp0,%fp2 | ...fp2 is S*(B5+... + fmulx %fp0,%fp1 | ...fp1 is S*(B4+... + + faddd EM1B3,%fp2 | ...fp2 is B3+S*... + faddx EM1B2,%fp1 | ...fp1 is B2+S*... + + fmulx %fp0,%fp2 | ...fp2 is S*(B3+... + fmulx %fp0,%fp1 | ...fp1 is S*(B2+... + + fmulx %fp0,%fp2 | ...fp2 is S*S*(B3+...) + fmulx (%a0),%fp1 | ...fp1 is X*S*(B2... + + fmuls #0x3F000000,%fp0 | ...fp0 is S*B1 + faddx %fp2,%fp1 | ...fp1 is Q +| ...fp2 released + + fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored + + faddx %fp1,%fp0 | ...fp0 is S*B1+Q +| ...fp1 released + + fmovel %d1,%FPCR + faddx (%a0),%fp0 + + bra t_frcinx + +EM1BIG: +|--Step 10 |X| > 70 log2 + movel (%a0),%d0 + cmpil #0,%d0 + bgt EXPC1 +|--Step 10.2 + fmoves #0xBF800000,%fp0 | ...fp0 is -1 + fmovel %d1,%FPCR + fadds #0x00800000,%fp0 | ...-1 + 2^(-126) + + bra t_frcinx + + |end diff --git a/arch/m68k/fpsp040/sgetem.S b/arch/m68k/fpsp040/sgetem.S new file mode 100644 index 000000000..d9234f4ae --- /dev/null +++ b/arch/m68k/fpsp040/sgetem.S @@ -0,0 +1,140 @@ +| +| sgetem.sa 3.1 12/10/90 +| +| The entry point sGETEXP returns the exponent portion +| of the input argument. The exponent bias is removed +| and the exponent value is returned as an extended +| precision number in fp0. sGETEXPD handles denormalized +| numbers. +| +| The entry point sGETMAN extracts the mantissa of the +| input argument. The mantissa is converted to an +| extended precision number and returned in fp0. The +| range of the result is [1.0 - 2.0). +| +| +| Input: Double-extended number X in the ETEMP space in +| the floating-point save stack. +| +| Output: The functions return exp(X) or man(X) in fp0. +| +| Modified: fp0. +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SGETEM idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref nrm_set + +| +| This entry point is used by the unimplemented instruction exception +| handler. It points a0 to the input operand. +| +| +| +| SGETEXP +| + + .global sgetexp +sgetexp: + movew LOCAL_EX(%a0),%d0 |get the exponent + bclrl #15,%d0 |clear the sign bit + subw #0x3fff,%d0 |subtract off the bias + fmovew %d0,%fp0 |move the exp to fp0 + rts + + .global sgetexpd +sgetexpd: + bclrb #sign_bit,LOCAL_EX(%a0) + bsr nrm_set |normalize (exp will go negative) + movew LOCAL_EX(%a0),%d0 |load resulting exponent into d0 + subw #0x3fff,%d0 |subtract off the bias + fmovew %d0,%fp0 |move the exp to fp0 + rts +| +| +| This entry point is used by the unimplemented instruction exception +| handler. It points a0 to the input operand. +| +| +| +| SGETMAN +| +| +| For normalized numbers, leave the mantissa alone, simply load +| with an exponent of +/- $3fff. +| + .global sgetman +sgetman: + movel USER_FPCR(%a6),%d0 + andil #0xffffff00,%d0 |clear rounding precision and mode + fmovel %d0,%fpcr |this fpcr setting is used by the 882 + movew LOCAL_EX(%a0),%d0 |get the exp (really just want sign bit) + orw #0x7fff,%d0 |clear old exp + bclrl #14,%d0 |make it the new exp +-3fff + movew %d0,LOCAL_EX(%a0) |move the sign & exp back to fsave stack + fmovex (%a0),%fp0 |put new value back in fp0 + rts + +| +| For denormalized numbers, shift the mantissa until the j-bit = 1, +| then load the exponent with +/1 $3fff. +| + .global sgetmand +sgetmand: + movel LOCAL_HI(%a0),%d0 |load ms mant in d0 + movel LOCAL_LO(%a0),%d1 |load ls mant in d1 + bsr shft |shift mantissa bits till msbit is set + movel %d0,LOCAL_HI(%a0) |put ms mant back on stack + movel %d1,LOCAL_LO(%a0) |put ls mant back on stack + bras sgetman + +| +| SHFT +| +| Shifts the mantissa bits until msbit is set. +| input: +| ms mantissa part in d0 +| ls mantissa part in d1 +| output: +| shifted bits in d0 and d1 +shft: + tstl %d0 |if any bits set in ms mant + bnes upper |then branch +| ;else no bits set in ms mant + tstl %d1 |test if any bits set in ls mant + bnes cont |if set then continue + bras shft_end |else return +cont: + movel %d3,-(%a7) |save d3 + exg %d0,%d1 |shift ls mant to ms mant + bfffo %d0{#0:#32},%d3 |find first 1 in ls mant to d0 + lsll %d3,%d0 |shift first 1 to integer bit in ms mant + movel (%a7)+,%d3 |restore d3 + bras shft_end +upper: + + moveml %d3/%d5/%d6,-(%a7) |save registers + bfffo %d0{#0:#32},%d3 |find first 1 in ls mant to d0 + lsll %d3,%d0 |shift ms mant until j-bit is set + movel %d1,%d6 |save ls mant in d6 + lsll %d3,%d1 |shift ls mant by count + movel #32,%d5 + subl %d3,%d5 |sub 32 from shift for ls mant + lsrl %d5,%d6 |shift off all bits but those that will +| ;be shifted into ms mant + orl %d6,%d0 |shift the ls mant bits into the ms mant + moveml (%a7)+,%d3/%d5/%d6 |restore registers +shft_end: + rts + + |end diff --git a/arch/m68k/fpsp040/sint.S b/arch/m68k/fpsp040/sint.S new file mode 100644 index 000000000..0e92d4e5d --- /dev/null +++ b/arch/m68k/fpsp040/sint.S @@ -0,0 +1,246 @@ +| +| sint.sa 3.1 12/10/90 +| +| The entry point sINT computes the rounded integer +| equivalent of the input argument, sINTRZ computes +| the integer rounded to zero of the input argument. +| +| Entry points sint and sintrz are called from do_func +| to emulate the fint and fintrz unimplemented instructions, +| respectively. Entry point sintdo is used by bindec. +| +| Input: (Entry points sint and sintrz) Double-extended +| number X in the ETEMP space in the floating-point +| save stack. +| (Entry point sintdo) Double-extended number X in +| location pointed to by the address register a0. +| (Entry point sintd) Double-extended denormalized +| number X in the ETEMP space in the floating-point +| save stack. +| +| Output: The function returns int(X) or intrz(X) in fp0. +| +| Modifies: fp0. +| +| Algorithm: (sint and sintrz) +| +| 1. If exp(X) >= 63, return X. +| If exp(X) < 0, return +/- 0 or +/- 1, according to +| the rounding mode. +| +| 2. (X is in range) set rsc = 63 - exp(X). Unnormalize the +| result to the exponent $403e. +| +| 3. Round the result in the mode given in USER_FPCR. For +| sintrz, force round-to-zero mode. +| +| 4. Normalize the rounded result; store in fp0. +| +| For the denormalized cases, force the correct result +| for the given sign and rounding mode. +| +| Sign(X) +| RMODE + - +| ----- -------- +| RN +0 -0 +| RZ +0 -0 +| RM +0 -1 +| RP +1 -0 +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SINT idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref dnrm_lp + |xref nrm_set + |xref round + |xref t_inx2 + |xref ld_pone + |xref ld_mone + |xref ld_pzero + |xref ld_mzero + |xref snzrinx + +| +| FINT +| + .global sint +sint: + bfextu FPCR_MODE(%a6){#2:#2},%d1 |use user's mode for rounding +| ;implicitly has extend precision +| ;in upper word. + movel %d1,L_SCR1(%a6) |save mode bits + bras sintexc + +| +| FINT with extended denorm inputs. +| + .global sintd +sintd: + btstb #5,FPCR_MODE(%a6) + beq snzrinx |if round nearest or round zero, +/- 0 + btstb #4,FPCR_MODE(%a6) + beqs rnd_mns +rnd_pls: + btstb #sign_bit,LOCAL_EX(%a0) + bnes sintmz + bsr ld_pone |if round plus inf and pos, answer is +1 + bra t_inx2 +rnd_mns: + btstb #sign_bit,LOCAL_EX(%a0) + beqs sintpz + bsr ld_mone |if round mns inf and neg, answer is -1 + bra t_inx2 +sintpz: + bsr ld_pzero + bra t_inx2 +sintmz: + bsr ld_mzero + bra t_inx2 + +| +| FINTRZ +| + .global sintrz +sintrz: + movel #1,L_SCR1(%a6) |use rz mode for rounding +| ;implicitly has extend precision +| ;in upper word. + bras sintexc +| +| SINTDO +| +| Input: a0 points to an IEEE extended format operand +| Output: fp0 has the result +| +| Exceptions: +| +| If the subroutine results in an inexact operation, the inx2 and +| ainx bits in the USER_FPSR are set. +| +| + .global sintdo +sintdo: + bfextu FPCR_MODE(%a6){#2:#2},%d1 |use user's mode for rounding +| ;implicitly has ext precision +| ;in upper word. + movel %d1,L_SCR1(%a6) |save mode bits +| +| Real work of sint is in sintexc +| +sintexc: + bclrb #sign_bit,LOCAL_EX(%a0) |convert to internal extended +| ;format + sne LOCAL_SGN(%a0) + cmpw #0x403e,LOCAL_EX(%a0) |check if (unbiased) exp > 63 + bgts out_rnge |branch if exp < 63 + cmpw #0x3ffd,LOCAL_EX(%a0) |check if (unbiased) exp < 0 + bgt in_rnge |if 63 >= exp > 0, do calc +| +| Input is less than zero. Restore sign, and check for directed +| rounding modes. L_SCR1 contains the rmode in the lower byte. +| +un_rnge: + btstb #1,L_SCR1+3(%a6) |check for rn and rz + beqs un_rnrz + tstb LOCAL_SGN(%a0) |check for sign + bnes un_rmrp_neg +| +| Sign is +. If rp, load +1.0, if rm, load +0.0 +| + cmpib #3,L_SCR1+3(%a6) |check for rp + beqs un_ldpone |if rp, load +1.0 + bsr ld_pzero |if rm, load +0.0 + bra t_inx2 +un_ldpone: + bsr ld_pone + bra t_inx2 +| +| Sign is -. If rm, load -1.0, if rp, load -0.0 +| +un_rmrp_neg: + cmpib #2,L_SCR1+3(%a6) |check for rm + beqs un_ldmone |if rm, load -1.0 + bsr ld_mzero |if rp, load -0.0 + bra t_inx2 +un_ldmone: + bsr ld_mone + bra t_inx2 +| +| Rmode is rn or rz; return signed zero +| +un_rnrz: + tstb LOCAL_SGN(%a0) |check for sign + bnes un_rnrz_neg + bsr ld_pzero + bra t_inx2 +un_rnrz_neg: + bsr ld_mzero + bra t_inx2 + +| +| Input is greater than 2^63. All bits are significant. Return +| the input. +| +out_rnge: + bfclr LOCAL_SGN(%a0){#0:#8} |change back to IEEE ext format + beqs intps + bsetb #sign_bit,LOCAL_EX(%a0) +intps: + fmovel %fpcr,-(%sp) + fmovel #0,%fpcr + fmovex LOCAL_EX(%a0),%fp0 |if exp > 63 +| ;then return X to the user +| ;there are no fraction bits + fmovel (%sp)+,%fpcr + rts + +in_rnge: +| ;shift off fraction bits + clrl %d0 |clear d0 - initial g,r,s for +| ;dnrm_lp + movel #0x403e,%d1 |set threshold for dnrm_lp +| ;assumes a0 points to operand + bsr dnrm_lp +| ;returns unnormalized number +| ;pointed by a0 +| ;output d0 supplies g,r,s +| ;used by round + movel L_SCR1(%a6),%d1 |use selected rounding mode +| +| + bsr round |round the unnorm based on users +| ;input a0 ptr to ext X +| ; d0 g,r,s bits +| ; d1 PREC/MODE info +| ;output a0 ptr to rounded result +| ;inexact flag set in USER_FPSR +| ;if initial grs set +| +| normalize the rounded result and store value in fp0 +| + bsr nrm_set |normalize the unnorm +| ;Input: a0 points to operand to +| ;be normalized +| ;Output: a0 points to normalized +| ;result + bfclr LOCAL_SGN(%a0){#0:#8} + beqs nrmrndp + bsetb #sign_bit,LOCAL_EX(%a0) |return to IEEE extended format +nrmrndp: + fmovel %fpcr,-(%sp) + fmovel #0,%fpcr + fmovex LOCAL_EX(%a0),%fp0 |move result to fp0 + fmovel (%sp)+,%fpcr + rts + + |end diff --git a/arch/m68k/fpsp040/skeleton.S b/arch/m68k/fpsp040/skeleton.S new file mode 100644 index 000000000..a8f41615d --- /dev/null +++ b/arch/m68k/fpsp040/skeleton.S @@ -0,0 +1,513 @@ +| +| skeleton.sa 3.2 4/26/91 +| +| This file contains code that is system dependent and will +| need to be modified to install the FPSP. +| +| Each entry point for exception 'xxxx' begins with a 'jmp fpsp_xxxx'. +| Put any target system specific handling that must be done immediately +| before the jump instruction. If there no handling necessary, then +| the 'fpsp_xxxx' handler entry point should be placed in the exception +| table so that the 'jmp' can be eliminated. If the FPSP determines that the +| exception is one that must be reported then there will be a +| return from the package by a 'jmp real_xxxx'. At that point +| the machine state will be identical to the state before +| the FPSP was entered. In particular, whatever condition +| that caused the exception will still be pending when the FPSP +| package returns. Thus, there will be system specific code +| to handle the exception. +| +| If the exception was completely handled by the package, then +| the return will be via a 'jmp fpsp_done'. Unless there is +| OS specific work to be done (such as handling a context switch or +| interrupt) the user program can be resumed via 'rte'. +| +| In the following skeleton code, some typical 'real_xxxx' handling +| code is shown. This code may need to be moved to an appropriate +| place in the target system, or rewritten. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +| +| Modified for Linux-1.3.x by Jes Sorensen (jds@kom.auc.dk) +| + +#include <linux/linkage.h> +#include <asm/entry.h> +#include <asm/asm-offsets.h> + +|SKELETON idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 15 +| +| The following counters are used for standalone testing +| + + |section 8 + +#include "fpsp.h" + + |xref b1238_fix + +| +| Divide by Zero exception +| +| All dz exceptions are 'real', hence no fpsp_dz entry point. +| + .global dz + .global real_dz +dz: +real_dz: + link %a6,#-LOCAL_SIZE + fsave -(%sp) + bclrb #E1,E_BYTE(%a6) + frestore (%sp)+ + unlk %a6 + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + +| +| Inexact exception +| +| All inexact exceptions are real, but the 'real' handler +| will probably want to clear the pending exception. +| The provided code will clear the E3 exception (if pending), +| otherwise clear the E1 exception. The frestore is not really +| necessary for E1 exceptions. +| +| Code following the 'inex' label is to handle bug #1232. In this +| bug, if an E1 snan, ovfl, or unfl occurred, and the process was +| swapped out before taking the exception, the exception taken on +| return was inex, rather than the correct exception. The snan, ovfl, +| and unfl exception to be taken must not have been enabled. The +| fix is to check for E1, and the existence of one of snan, ovfl, +| or unfl bits set in the fpsr. If any of these are set, branch +| to the appropriate handler for the exception in the fpsr. Note +| that this fix is only for d43b parts, and is skipped if the +| version number is not $40. +| +| + .global real_inex + .global inex +inex: + link %a6,#-LOCAL_SIZE + fsave -(%sp) + cmpib #VER_40,(%sp) |test version number + bnes not_fmt40 + fmovel %fpsr,-(%sp) + btstb #E1,E_BYTE(%a6) |test for E1 set + beqs not_b1232 + btstb #snan_bit,2(%sp) |test for snan + beq inex_ckofl + addl #4,%sp + frestore (%sp)+ + unlk %a6 + bra snan +inex_ckofl: + btstb #ovfl_bit,2(%sp) |test for ovfl + beq inex_ckufl + addl #4,%sp + frestore (%sp)+ + unlk %a6 + bra ovfl +inex_ckufl: + btstb #unfl_bit,2(%sp) |test for unfl + beq not_b1232 + addl #4,%sp + frestore (%sp)+ + unlk %a6 + bra unfl + +| +| We do not have the bug 1232 case. Clean up the stack and call +| real_inex. +| +not_b1232: + addl #4,%sp + frestore (%sp)+ + unlk %a6 + +real_inex: + + link %a6,#-LOCAL_SIZE + fsave -(%sp) +not_fmt40: + bclrb #E3,E_BYTE(%a6) |clear and test E3 flag + beqs inex_cke1 +| +| Clear dirty bit on dest resister in the frame before branching +| to b1238_fix. +| + moveml %d0/%d1,USER_DA(%a6) + bfextu CMDREG1B(%a6){#6:#3},%d0 |get dest reg no + bclrb %d0,FPR_DIRTY_BITS(%a6) |clr dest dirty bit + bsrl b1238_fix |test for bug1238 case + moveml USER_DA(%a6),%d0/%d1 + bras inex_done +inex_cke1: + bclrb #E1,E_BYTE(%a6) +inex_done: + frestore (%sp)+ + unlk %a6 + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + +| +| Overflow exception +| + |xref fpsp_ovfl + .global real_ovfl + .global ovfl +ovfl: + jmp fpsp_ovfl +real_ovfl: + + link %a6,#-LOCAL_SIZE + fsave -(%sp) + bclrb #E3,E_BYTE(%a6) |clear and test E3 flag + bnes ovfl_done + bclrb #E1,E_BYTE(%a6) +ovfl_done: + frestore (%sp)+ + unlk %a6 + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + +| +| Underflow exception +| + |xref fpsp_unfl + .global real_unfl + .global unfl +unfl: + jmp fpsp_unfl +real_unfl: + + link %a6,#-LOCAL_SIZE + fsave -(%sp) + bclrb #E3,E_BYTE(%a6) |clear and test E3 flag + bnes unfl_done + bclrb #E1,E_BYTE(%a6) +unfl_done: + frestore (%sp)+ + unlk %a6 + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + +| +| Signalling NAN exception +| + |xref fpsp_snan + .global real_snan + .global snan +snan: + jmp fpsp_snan +real_snan: + link %a6,#-LOCAL_SIZE + fsave -(%sp) + bclrb #E1,E_BYTE(%a6) |snan is always an E1 exception + frestore (%sp)+ + unlk %a6 + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + +| +| Operand Error exception +| + |xref fpsp_operr + .global real_operr + .global operr +operr: + jmp fpsp_operr +real_operr: + link %a6,#-LOCAL_SIZE + fsave -(%sp) + bclrb #E1,E_BYTE(%a6) |operr is always an E1 exception + frestore (%sp)+ + unlk %a6 + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + + +| +| BSUN exception +| +| This sample handler simply clears the nan bit in the FPSR. +| + |xref fpsp_bsun + .global real_bsun + .global bsun +bsun: + jmp fpsp_bsun +real_bsun: + link %a6,#-LOCAL_SIZE + fsave -(%sp) + bclrb #E1,E_BYTE(%a6) |bsun is always an E1 exception + fmovel %FPSR,-(%sp) + bclrb #nan_bit,(%sp) + fmovel (%sp)+,%FPSR + frestore (%sp)+ + unlk %a6 + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + +| +| F-line exception +| +| A 'real' F-line exception is one that the FPSP isn't supposed to +| handle. E.g. an instruction with a co-processor ID that is not 1. +| +| + |xref fpsp_fline + .global real_fline + .global fline +fline: + jmp fpsp_fline +real_fline: + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + +| +| Unsupported data type exception +| + |xref fpsp_unsupp + .global real_unsupp + .global unsupp +unsupp: + jmp fpsp_unsupp +real_unsupp: + link %a6,#-LOCAL_SIZE + fsave -(%sp) + bclrb #E1,E_BYTE(%a6) |unsupp is always an E1 exception + frestore (%sp)+ + unlk %a6 + + SAVE_ALL_INT + GET_CURRENT(%d0) + movel %sp,%sp@- | stack frame pointer argument + bsrl trap_c + addql #4,%sp + bral ret_from_exception + +| +| Trace exception +| + .global real_trace +real_trace: + | + bral trap + +| +| fpsp_fmt_error --- exit point for frame format error +| +| The fpu stack frame does not match the frames existing +| or planned at the time of this writing. The fpsp is +| unable to handle frame sizes not in the following +| version:size pairs: +| +| {4060, 4160} - busy frame +| {4028, 4130} - unimp frame +| {4000, 4100} - idle frame +| +| This entry point simply holds an f-line illegal value. +| Replace this with a call to your kernel panic code or +| code to handle future revisions of the fpu. +| + .global fpsp_fmt_error +fpsp_fmt_error: + + .long 0xf27f0000 |f-line illegal + +| +| fpsp_done --- FPSP exit point +| +| The exception has been handled by the package and we are ready +| to return to user mode, but there may be OS specific code +| to execute before we do. If there is, do it now. +| +| + + .global fpsp_done +fpsp_done: + btst #0x5,%sp@ | supervisor bit set in saved SR? + beq .Lnotkern + rte +.Lnotkern: + SAVE_ALL_INT + GET_CURRENT(%d0) + | deliver signals, reschedule etc.. + jra ret_from_exception + +| +| mem_write --- write to user or supervisor address space +| +| Writes to memory while in supervisor mode. copyout accomplishes +| this via a 'moves' instruction. copyout is a UNIX SVR3 (and later) function. +| If you don't have copyout, use the local copy of the function below. +| +| a0 - supervisor source address +| a1 - user destination address +| d0 - number of bytes to write (maximum count is 12) +| +| The supervisor source address is guaranteed to point into the supervisor +| stack. The result is that a UNIX +| process is allowed to sleep as a consequence of a page fault during +| copyout. The probability of a page fault is exceedingly small because +| the 68040 always reads the destination address and thus the page +| faults should have already been handled. +| +| If the EXC_SR shows that the exception was from supervisor space, +| then just do a dumb (and slow) memory move. In a UNIX environment +| there shouldn't be any supervisor mode floating point exceptions. +| + .global mem_write +mem_write: + btstb #5,EXC_SR(%a6) |check for supervisor state + beqs user_write +super_write: + moveb (%a0)+,(%a1)+ + subql #1,%d0 + bnes super_write + rts +user_write: + movel %d1,-(%sp) |preserve d1 just in case + movel %d0,-(%sp) + movel %a1,-(%sp) + movel %a0,-(%sp) + jsr copyout + addw #12,%sp + movel (%sp)+,%d1 + rts +| +| mem_read --- read from user or supervisor address space +| +| Reads from memory while in supervisor mode. copyin accomplishes +| this via a 'moves' instruction. copyin is a UNIX SVR3 (and later) function. +| If you don't have copyin, use the local copy of the function below. +| +| The FPSP calls mem_read to read the original F-line instruction in order +| to extract the data register number when the 'Dn' addressing mode is +| used. +| +|Input: +| a0 - user source address +| a1 - supervisor destination address +| d0 - number of bytes to read (maximum count is 12) +| +| Like mem_write, mem_read always reads with a supervisor +| destination address on the supervisor stack. Also like mem_write, +| the EXC_SR is checked and a simple memory copy is done if reading +| from supervisor space is indicated. +| + .global mem_read +mem_read: + btstb #5,EXC_SR(%a6) |check for supervisor state + beqs user_read +super_read: + moveb (%a0)+,(%a1)+ + subql #1,%d0 + bnes super_read + rts +user_read: + movel %d1,-(%sp) |preserve d1 just in case + movel %d0,-(%sp) + movel %a1,-(%sp) + movel %a0,-(%sp) + jsr copyin + addw #12,%sp + movel (%sp)+,%d1 + rts + +| +| Use these routines if your kernel doesn't have copyout/copyin equivalents. +| Assumes that D0/D1/A0/A1 are scratch registers. copyout overwrites DFC, +| and copyin overwrites SFC. +| +copyout: + movel 4(%sp),%a0 | source + movel 8(%sp),%a1 | destination + movel 12(%sp),%d0 | count + subl #1,%d0 | dec count by 1 for dbra + movel #1,%d1 + +| DFC is already set +| movec %d1,%DFC | set dfc for user data space +moreout: + moveb (%a0)+,%d1 | fetch supervisor byte +out_ea: + movesb %d1,(%a1)+ | write user byte + dbf %d0,moreout + rts + +copyin: + movel 4(%sp),%a0 | source + movel 8(%sp),%a1 | destination + movel 12(%sp),%d0 | count + subl #1,%d0 | dec count by 1 for dbra + movel #1,%d1 +| SFC is already set +| movec %d1,%SFC | set sfc for user space +morein: +in_ea: + movesb (%a0)+,%d1 | fetch user byte + moveb %d1,(%a1)+ | write supervisor byte + dbf %d0,morein + rts + + .section .fixup,#alloc,#execinstr + .even +1: + jbra fpsp040_die + + .section __ex_table,#alloc + .align 4 + + .long in_ea,1b + .long out_ea,1b + + |end diff --git a/arch/m68k/fpsp040/slog2.S b/arch/m68k/fpsp040/slog2.S new file mode 100644 index 000000000..fac2c7383 --- /dev/null +++ b/arch/m68k/fpsp040/slog2.S @@ -0,0 +1,187 @@ +| +| slog2.sa 3.1 12/10/90 +| +| The entry point slog10 computes the base-10 +| logarithm of an input argument X. +| slog10d does the same except the input value is a +| denormalized number. +| sLog2 and sLog2d are the base-2 analogues. +| +| INPUT: Double-extended value in memory location pointed to +| by address register a0. +| +| OUTPUT: log_10(X) or log_2(X) returned in floating-point +| register fp0. +| +| ACCURACY and MONOTONICITY: The returned result is within 1.7 +| ulps in 64 significant bit, i.e. within 0.5003 ulp +| to 53 bits if the result is subsequently rounded +| to double precision. The result is provably monotonic +| in double precision. +| +| SPEED: Two timings are measured, both in the copy-back mode. +| The first one is measured when the function is invoked +| the first time (so the instructions and data are not +| in cache), and the second one is measured when the +| function is reinvoked at the same input argument. +| +| ALGORITHM and IMPLEMENTATION NOTES: +| +| slog10d: +| +| Step 0. If X < 0, create a NaN and raise the invalid operation +| flag. Otherwise, save FPCR in D1; set FpCR to default. +| Notes: Default means round-to-nearest mode, no floating-point +| traps, and precision control = double extended. +| +| Step 1. Call slognd to obtain Y = log(X), the natural log of X. +| Notes: Even if X is denormalized, log(X) is always normalized. +| +| Step 2. Compute log_10(X) = log(X) * (1/log(10)). +| 2.1 Restore the user FPCR +| 2.2 Return ans := Y * INV_L10. +| +| +| slog10: +| +| Step 0. If X < 0, create a NaN and raise the invalid operation +| flag. Otherwise, save FPCR in D1; set FpCR to default. +| Notes: Default means round-to-nearest mode, no floating-point +| traps, and precision control = double extended. +| +| Step 1. Call sLogN to obtain Y = log(X), the natural log of X. +| +| Step 2. Compute log_10(X) = log(X) * (1/log(10)). +| 2.1 Restore the user FPCR +| 2.2 Return ans := Y * INV_L10. +| +| +| sLog2d: +| +| Step 0. If X < 0, create a NaN and raise the invalid operation +| flag. Otherwise, save FPCR in D1; set FpCR to default. +| Notes: Default means round-to-nearest mode, no floating-point +| traps, and precision control = double extended. +| +| Step 1. Call slognd to obtain Y = log(X), the natural log of X. +| Notes: Even if X is denormalized, log(X) is always normalized. +| +| Step 2. Compute log_10(X) = log(X) * (1/log(2)). +| 2.1 Restore the user FPCR +| 2.2 Return ans := Y * INV_L2. +| +| +| sLog2: +| +| Step 0. If X < 0, create a NaN and raise the invalid operation +| flag. Otherwise, save FPCR in D1; set FpCR to default. +| Notes: Default means round-to-nearest mode, no floating-point +| traps, and precision control = double extended. +| +| Step 1. If X is not an integer power of two, i.e., X != 2^k, +| go to Step 3. +| +| Step 2. Return k. +| 2.1 Get integer k, X = 2^k. +| 2.2 Restore the user FPCR. +| 2.3 Return ans := convert-to-double-extended(k). +| +| Step 3. Call sLogN to obtain Y = log(X), the natural log of X. +| +| Step 4. Compute log_2(X) = log(X) * (1/log(2)). +| 4.1 Restore the user FPCR +| 4.2 Return ans := Y * INV_L2. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SLOG2 idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + + |xref t_frcinx + |xref t_operr + |xref slogn + |xref slognd + +INV_L10: .long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 + +INV_L2: .long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 + + .global slog10d +slog10d: +|--entry point for Log10(X), X is denormalized + movel (%a0),%d0 + blt invalid + movel %d1,-(%sp) + clrl %d1 + bsr slognd | ...log(X), X denorm. + fmovel (%sp)+,%fpcr + fmulx INV_L10,%fp0 + bra t_frcinx + + .global slog10 +slog10: +|--entry point for Log10(X), X is normalized + + movel (%a0),%d0 + blt invalid + movel %d1,-(%sp) + clrl %d1 + bsr slogn | ...log(X), X normal. + fmovel (%sp)+,%fpcr + fmulx INV_L10,%fp0 + bra t_frcinx + + + .global slog2d +slog2d: +|--entry point for Log2(X), X is denormalized + + movel (%a0),%d0 + blt invalid + movel %d1,-(%sp) + clrl %d1 + bsr slognd | ...log(X), X denorm. + fmovel (%sp)+,%fpcr + fmulx INV_L2,%fp0 + bra t_frcinx + + .global slog2 +slog2: +|--entry point for Log2(X), X is normalized + movel (%a0),%d0 + blt invalid + + movel 8(%a0),%d0 + bnes continue | ...X is not 2^k + + movel 4(%a0),%d0 + andl #0x7FFFFFFF,%d0 + tstl %d0 + bnes continue + +|--X = 2^k. + movew (%a0),%d0 + andl #0x00007FFF,%d0 + subl #0x3FFF,%d0 + fmovel %d1,%fpcr + fmovel %d0,%fp0 + bra t_frcinx + +continue: + movel %d1,-(%sp) + clrl %d1 + bsr slogn | ...log(X), X normal. + fmovel (%sp)+,%fpcr + fmulx INV_L2,%fp0 + bra t_frcinx + +invalid: + bra t_operr + + |end diff --git a/arch/m68k/fpsp040/slogn.S b/arch/m68k/fpsp040/slogn.S new file mode 100644 index 000000000..d98eaf641 --- /dev/null +++ b/arch/m68k/fpsp040/slogn.S @@ -0,0 +1,591 @@ +| +| slogn.sa 3.1 12/10/90 +| +| slogn computes the natural logarithm of an +| input value. slognd does the same except the input value is a +| denormalized number. slognp1 computes log(1+X), and slognp1d +| computes log(1+X) for denormalized X. +| +| Input: Double-extended value in memory location pointed to by address +| register a0. +| +| Output: log(X) or log(1+X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 2 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program slogn takes approximately 190 cycles for input +| argument X such that |X-1| >= 1/16, which is the usual +| situation. For those arguments, slognp1 takes approximately +| 210 cycles. For the less common arguments, the program will +| run no worse than 10% slower. +| +| Algorithm: +| LOGN: +| Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in +| u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2. +| +| Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven +| significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base +| 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7). +| +| Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, +| log(1+u) = poly. +| +| Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) +| by k*log(2) + (log(F) + poly). The values of log(F) are calculated +| beforehand and stored in the program. +| +| lognp1: +| Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in +| u where u = 2X/(2+X). Otherwise, move on to Step 2. +| +| Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2 +| of the algorithm for LOGN and compute log(1+X) as +| k*log(2) + log(F) + poly where poly approximates log(1+u), +| u = (Y-F)/F. +| +| Implementation Notes: +| Note 1. There are 64 different possible values for F, thus 64 log(F)'s +| need to be tabulated. Moreover, the values of 1/F are also +| tabulated so that the division in (Y-F)/F can be performed by a +| multiplication. +| +| Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value +| Y-F has to be calculated carefully when 1/2 <= X < 3/2. +| +| Note 3. To fully exploit the pipeline, polynomials are usually separated +| into two parts evaluated independently before being added up. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|slogn idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +BOUNDS1: .long 0x3FFEF07D,0x3FFF8841 +BOUNDS2: .long 0x3FFE8000,0x3FFFC000 + +LOGOF2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 + +one: .long 0x3F800000 +zero: .long 0x00000000 +infty: .long 0x7F800000 +negone: .long 0xBF800000 + +LOGA6: .long 0x3FC2499A,0xB5E4040B +LOGA5: .long 0xBFC555B5,0x848CB7DB + +LOGA4: .long 0x3FC99999,0x987D8730 +LOGA3: .long 0xBFCFFFFF,0xFF6F7E97 + +LOGA2: .long 0x3FD55555,0x555555a4 +LOGA1: .long 0xBFE00000,0x00000008 + +LOGB5: .long 0x3F175496,0xADD7DAD6 +LOGB4: .long 0x3F3C71C2,0xFE80C7E0 + +LOGB3: .long 0x3F624924,0x928BCCFF +LOGB2: .long 0x3F899999,0x999995EC + +LOGB1: .long 0x3FB55555,0x55555555 +TWO: .long 0x40000000,0x00000000 + +LTHOLD: .long 0x3f990000,0x80000000,0x00000000,0x00000000 + +LOGTBL: + .long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 + .long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 + .long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 + .long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 + .long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 + .long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 + .long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 + .long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 + .long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 + .long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 + .long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 + .long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 + .long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 + .long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 + .long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 + .long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 + .long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 + .long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 + .long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 + .long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 + .long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 + .long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 + .long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 + .long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 + .long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 + .long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 + .long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 + .long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 + .long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 + .long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 + .long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 + .long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 + .long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 + .long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 + .long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 + .long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 + .long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 + .long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 + .long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 + .long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 + .long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 + .long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 + .long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 + .long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 + .long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 + .long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 + .long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 + .long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 + .long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 + .long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 + .long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 + .long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 + .long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 + .long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 + .long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 + .long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 + .long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 + .long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 + .long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 + .long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 + .long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 + .long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 + .long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 + .long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 + .long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 + .long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 + .long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 + .long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 + .long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 + .long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 + .long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 + .long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 + .long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 + .long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 + .long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 + .long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 + .long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 + .long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 + .long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 + .long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 + .long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 + .long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 + .long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 + .long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 + .long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 + .long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 + .long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 + .long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 + .long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 + .long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 + .long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 + .long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 + .long 0x3FFE0000,0x94458094,0x45809446,0x00000000 + .long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 + .long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 + .long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 + .long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 + .long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 + .long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 + .long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 + .long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 + .long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 + .long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 + .long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 + .long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 + .long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 + .long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 + .long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 + .long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 + .long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 + .long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 + .long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 + .long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 + .long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 + .long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 + .long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 + .long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 + .long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 + .long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 + .long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 + .long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 + .long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 + .long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 + .long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 + .long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 + .long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 + .long 0x3FFE0000,0x80808080,0x80808081,0x00000000 + .long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 + + .set ADJK,L_SCR1 + + .set X,FP_SCR1 + .set XDCARE,X+2 + .set XFRAC,X+4 + + .set F,FP_SCR2 + .set FFRAC,F+4 + + .set KLOG2,FP_SCR3 + + .set SAVEU,FP_SCR4 + + | xref t_frcinx + |xref t_extdnrm + |xref t_operr + |xref t_dz + + .global slognd +slognd: +|--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT + + movel #-100,ADJK(%a6) | ...INPUT = 2^(ADJK) * FP0 + +|----normalize the input value by left shifting k bits (k to be determined +|----below), adjusting exponent and storing -k to ADJK +|----the value TWOTO100 is no longer needed. +|----Note that this code assumes the denormalized input is NON-ZERO. + + moveml %d2-%d7,-(%a7) | ...save some registers + movel #0x00000000,%d3 | ...D3 is exponent of smallest norm. # + movel 4(%a0),%d4 + movel 8(%a0),%d5 | ...(D4,D5) is (Hi_X,Lo_X) + clrl %d2 | ...D2 used for holding K + + tstl %d4 + bnes HiX_not0 + +HiX_0: + movel %d5,%d4 + clrl %d5 + movel #32,%d2 + clrl %d6 + bfffo %d4{#0:#32},%d6 + lsll %d6,%d4 + addl %d6,%d2 | ...(D3,D4,D5) is normalized + + movel %d3,X(%a6) + movel %d4,XFRAC(%a6) + movel %d5,XFRAC+4(%a6) + negl %d2 + movel %d2,ADJK(%a6) + fmovex X(%a6),%fp0 + moveml (%a7)+,%d2-%d7 | ...restore registers + lea X(%a6),%a0 + bras LOGBGN | ...begin regular log(X) + + +HiX_not0: + clrl %d6 + bfffo %d4{#0:#32},%d6 | ...find first 1 + movel %d6,%d2 | ...get k + lsll %d6,%d4 + movel %d5,%d7 | ...a copy of D5 + lsll %d6,%d5 + negl %d6 + addil #32,%d6 + lsrl %d6,%d7 + orl %d7,%d4 | ...(D3,D4,D5) normalized + + movel %d3,X(%a6) + movel %d4,XFRAC(%a6) + movel %d5,XFRAC+4(%a6) + negl %d2 + movel %d2,ADJK(%a6) + fmovex X(%a6),%fp0 + moveml (%a7)+,%d2-%d7 | ...restore registers + lea X(%a6),%a0 + bras LOGBGN | ...begin regular log(X) + + + .global slogn +slogn: +|--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S + + fmovex (%a0),%fp0 | ...LOAD INPUT + movel #0x00000000,ADJK(%a6) + +LOGBGN: +|--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS +|--A FINITE, NON-ZERO, NORMALIZED NUMBER. + + movel (%a0),%d0 + movew 4(%a0),%d0 + + movel (%a0),X(%a6) + movel 4(%a0),X+4(%a6) + movel 8(%a0),X+8(%a6) + + cmpil #0,%d0 | ...CHECK IF X IS NEGATIVE + blt LOGNEG | ...LOG OF NEGATIVE ARGUMENT IS INVALID + cmp2l BOUNDS1,%d0 | ...X IS POSITIVE, CHECK IF X IS NEAR 1 + bcc LOGNEAR1 | ...BOUNDS IS ROUGHLY [15/16, 17/16] + +LOGMAIN: +|--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 + +|--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. +|--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. +|--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) +|-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). +|--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING +|--LOG(1+U) CAN BE VERY EFFICIENT. +|--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO +|--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. + +|--GET K, Y, F, AND ADDRESS OF 1/F. + asrl #8,%d0 + asrl #8,%d0 | ...SHIFTED 16 BITS, BIASED EXPO. OF X + subil #0x3FFF,%d0 | ...THIS IS K + addl ADJK(%a6),%d0 | ...ADJUST K, ORIGINAL INPUT MAY BE DENORM. + lea LOGTBL,%a0 | ...BASE ADDRESS OF 1/F AND LOG(F) + fmovel %d0,%fp1 | ...CONVERT K TO FLOATING-POINT FORMAT + +|--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F + movel #0x3FFF0000,X(%a6) | ...X IS NOW Y, I.E. 2^(-K)*X + movel XFRAC(%a6),FFRAC(%a6) + andil #0xFE000000,FFRAC(%a6) | ...FIRST 7 BITS OF Y + oril #0x01000000,FFRAC(%a6) | ...GET F: ATTACH A 1 AT THE EIGHTH BIT + movel FFRAC(%a6),%d0 | ...READY TO GET ADDRESS OF 1/F + andil #0x7E000000,%d0 + asrl #8,%d0 + asrl #8,%d0 + asrl #4,%d0 | ...SHIFTED 20, D0 IS THE DISPLACEMENT + addal %d0,%a0 | ...A0 IS THE ADDRESS FOR 1/F + + fmovex X(%a6),%fp0 + movel #0x3fff0000,F(%a6) + clrl F+8(%a6) + fsubx F(%a6),%fp0 | ...Y-F + fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 WHILE FP0 IS NOT READY +|--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K +|--REGISTERS SAVED: FPCR, FP1, FP2 + +LP1CONT1: +|--AN RE-ENTRY POINT FOR LOGNP1 + fmulx (%a0),%fp0 | ...FP0 IS U = (Y-F)/F + fmulx LOGOF2,%fp1 | ...GET K*LOG2 WHILE FP0 IS NOT READY + fmovex %fp0,%fp2 + fmulx %fp2,%fp2 | ...FP2 IS V=U*U + fmovex %fp1,KLOG2(%a6) | ...PUT K*LOG2 IN MEMORY, FREE FP1 + +|--LOG(1+U) IS APPROXIMATED BY +|--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS +|--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] + + fmovex %fp2,%fp3 + fmovex %fp2,%fp1 + + fmuld LOGA6,%fp1 | ...V*A6 + fmuld LOGA5,%fp2 | ...V*A5 + + faddd LOGA4,%fp1 | ...A4+V*A6 + faddd LOGA3,%fp2 | ...A3+V*A5 + + fmulx %fp3,%fp1 | ...V*(A4+V*A6) + fmulx %fp3,%fp2 | ...V*(A3+V*A5) + + faddd LOGA2,%fp1 | ...A2+V*(A4+V*A6) + faddd LOGA1,%fp2 | ...A1+V*(A3+V*A5) + + fmulx %fp3,%fp1 | ...V*(A2+V*(A4+V*A6)) + addal #16,%a0 | ...ADDRESS OF LOG(F) + fmulx %fp3,%fp2 | ...V*(A1+V*(A3+V*A5)), FP3 RELEASED + + fmulx %fp0,%fp1 | ...U*V*(A2+V*(A4+V*A6)) + faddx %fp2,%fp0 | ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED + + faddx (%a0),%fp1 | ...LOG(F)+U*V*(A2+V*(A4+V*A6)) + fmovemx (%sp)+,%fp2-%fp2/%fp3 | ...RESTORE FP2 + faddx %fp1,%fp0 | ...FP0 IS LOG(F) + LOG(1+U) + + fmovel %d1,%fpcr + faddx KLOG2(%a6),%fp0 | ...FINAL ADD + bra t_frcinx + + +LOGNEAR1: +|--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. + fmovex %fp0,%fp1 + fsubs one,%fp1 | ...FP1 IS X-1 + fadds one,%fp0 | ...FP0 IS X+1 + faddx %fp1,%fp1 | ...FP1 IS 2(X-1) +|--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL +|--IN U, U = 2(X-1)/(X+1) = FP1/FP0 + +LP1CONT2: +|--THIS IS AN RE-ENTRY POINT FOR LOGNP1 + fdivx %fp0,%fp1 | ...FP1 IS U + fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 +|--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 +|--LET V=U*U, W=V*V, CALCULATE +|--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY +|--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) + fmovex %fp1,%fp0 + fmulx %fp0,%fp0 | ...FP0 IS V + fmovex %fp1,SAVEU(%a6) | ...STORE U IN MEMORY, FREE FP1 + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...FP1 IS W + + fmoved LOGB5,%fp3 + fmoved LOGB4,%fp2 + + fmulx %fp1,%fp3 | ...W*B5 + fmulx %fp1,%fp2 | ...W*B4 + + faddd LOGB3,%fp3 | ...B3+W*B5 + faddd LOGB2,%fp2 | ...B2+W*B4 + + fmulx %fp3,%fp1 | ...W*(B3+W*B5), FP3 RELEASED + + fmulx %fp0,%fp2 | ...V*(B2+W*B4) + + faddd LOGB1,%fp1 | ...B1+W*(B3+W*B5) + fmulx SAVEU(%a6),%fp0 | ...FP0 IS U*V + + faddx %fp2,%fp1 | ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED + fmovemx (%sp)+,%fp2-%fp2/%fp3 | ...FP2 RESTORED + + fmulx %fp1,%fp0 | ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) + + fmovel %d1,%fpcr + faddx SAVEU(%a6),%fp0 + bra t_frcinx + rts + +LOGNEG: +|--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID + bra t_operr + + .global slognp1d +slognp1d: +|--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT +| Simply return the denorm + + bra t_extdnrm + + .global slognp1 +slognp1: +|--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S + + fmovex (%a0),%fp0 | ...LOAD INPUT + fabsx %fp0 |test magnitude + fcmpx LTHOLD,%fp0 |compare with min threshold + fbgt LP1REAL |if greater, continue + fmovel #0,%fpsr |clr N flag from compare + fmovel %d1,%fpcr + fmovex (%a0),%fp0 |return signed argument + bra t_frcinx + +LP1REAL: + fmovex (%a0),%fp0 | ...LOAD INPUT + movel #0x00000000,ADJK(%a6) + fmovex %fp0,%fp1 | ...FP1 IS INPUT Z + fadds one,%fp0 | ...X := ROUND(1+Z) + fmovex %fp0,X(%a6) + movew XFRAC(%a6),XDCARE(%a6) + movel X(%a6),%d0 + cmpil #0,%d0 + ble LP1NEG0 | ...LOG OF ZERO OR -VE + cmp2l BOUNDS2,%d0 + bcs LOGMAIN | ...BOUNDS2 IS [1/2,3/2] +|--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, +|--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, +|--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). + +LP1NEAR1: +|--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) + cmp2l BOUNDS1,%d0 + bcss LP1CARE + +LP1ONE16: +|--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) +|--WHERE U = 2Z/(2+Z) = 2Z/(1+X). + faddx %fp1,%fp1 | ...FP1 IS 2Z + fadds one,%fp0 | ...FP0 IS 1+X +|--U = FP1/FP0 + bra LP1CONT2 + +LP1CARE: +|--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE +|--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST +|--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], +|--THERE ARE ONLY TWO CASES. +|--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z +|--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z +|--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF +|--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. + + movel XFRAC(%a6),FFRAC(%a6) + andil #0xFE000000,FFRAC(%a6) + oril #0x01000000,FFRAC(%a6) | ...F OBTAINED + cmpil #0x3FFF8000,%d0 | ...SEE IF 1+Z > 1 + bges KISZERO + +KISNEG1: + fmoves TWO,%fp0 + movel #0x3fff0000,F(%a6) + clrl F+8(%a6) + fsubx F(%a6),%fp0 | ...2-F + movel FFRAC(%a6),%d0 + andil #0x7E000000,%d0 + asrl #8,%d0 + asrl #8,%d0 + asrl #4,%d0 | ...D0 CONTAINS DISPLACEMENT FOR 1/F + faddx %fp1,%fp1 | ...GET 2Z + fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 + faddx %fp1,%fp0 | ...FP0 IS Y-F = (2-F)+2Z + lea LOGTBL,%a0 | ...A0 IS ADDRESS OF 1/F + addal %d0,%a0 + fmoves negone,%fp1 | ...FP1 IS K = -1 + bra LP1CONT1 + +KISZERO: + fmoves one,%fp0 + movel #0x3fff0000,F(%a6) + clrl F+8(%a6) + fsubx F(%a6),%fp0 | ...1-F + movel FFRAC(%a6),%d0 + andil #0x7E000000,%d0 + asrl #8,%d0 + asrl #8,%d0 + asrl #4,%d0 + faddx %fp1,%fp0 | ...FP0 IS Y-F + fmovemx %fp2-%fp2/%fp3,-(%sp) | ...FP2 SAVED + lea LOGTBL,%a0 + addal %d0,%a0 | ...A0 IS ADDRESS OF 1/F + fmoves zero,%fp1 | ...FP1 IS K = 0 + bra LP1CONT1 + +LP1NEG0: +|--FPCR SAVED. D0 IS X IN COMPACT FORM. + cmpil #0,%d0 + blts LP1NEG +LP1ZERO: + fmoves negone,%fp0 + + fmovel %d1,%fpcr + bra t_dz + +LP1NEG: + fmoves zero,%fp0 + + fmovel %d1,%fpcr + bra t_operr + + |end diff --git a/arch/m68k/fpsp040/smovecr.S b/arch/m68k/fpsp040/smovecr.S new file mode 100644 index 000000000..73c365120 --- /dev/null +++ b/arch/m68k/fpsp040/smovecr.S @@ -0,0 +1,161 @@ +| +| smovecr.sa 3.1 12/10/90 +| +| The entry point sMOVECR returns the constant at the +| offset given in the instruction field. +| +| Input: An offset in the instruction word. +| +| Output: The constant rounded to the user's rounding +| mode unchecked for overflow. +| +| Modified: fp0. +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SMOVECR idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref nrm_set + |xref round + |xref PIRN + |xref PIRZRM + |xref PIRP + |xref SMALRN + |xref SMALRZRM + |xref SMALRP + |xref BIGRN + |xref BIGRZRM + |xref BIGRP + +FZERO: .long 00000000 +| +| FMOVECR +| + .global smovcr +smovcr: + bfextu CMDREG1B(%a6){#9:#7},%d0 |get offset + bfextu USER_FPCR(%a6){#26:#2},%d1 |get rmode +| +| check range of offset +| + tstb %d0 |if zero, offset is to pi + beqs PI_TBL |it is pi + cmpib #0x0a,%d0 |check range $01 - $0a + bles Z_VAL |if in this range, return zero + cmpib #0x0e,%d0 |check range $0b - $0e + bles SM_TBL |valid constants in this range + cmpib #0x2f,%d0 |check range $10 - $2f + bles Z_VAL |if in this range, return zero + cmpib #0x3f,%d0 |check range $30 - $3f + ble BG_TBL |valid constants in this range +Z_VAL: + fmoves FZERO,%fp0 + rts +PI_TBL: + tstb %d1 |offset is zero, check for rmode + beqs PI_RN |if zero, rn mode + cmpib #0x3,%d1 |check for rp + beqs PI_RP |if 3, rp mode +PI_RZRM: + leal PIRZRM,%a0 |rmode is rz or rm, load PIRZRM in a0 + bra set_finx +PI_RN: + leal PIRN,%a0 |rmode is rn, load PIRN in a0 + bra set_finx +PI_RP: + leal PIRP,%a0 |rmode is rp, load PIRP in a0 + bra set_finx +SM_TBL: + subil #0xb,%d0 |make offset in 0 - 4 range + tstb %d1 |check for rmode + beqs SM_RN |if zero, rn mode + cmpib #0x3,%d1 |check for rp + beqs SM_RP |if 3, rp mode +SM_RZRM: + leal SMALRZRM,%a0 |rmode is rz or rm, load SMRZRM in a0 + cmpib #0x2,%d0 |check if result is inex + ble set_finx |if 0 - 2, it is inexact + bra no_finx |if 3, it is exact +SM_RN: + leal SMALRN,%a0 |rmode is rn, load SMRN in a0 + cmpib #0x2,%d0 |check if result is inex + ble set_finx |if 0 - 2, it is inexact + bra no_finx |if 3, it is exact +SM_RP: + leal SMALRP,%a0 |rmode is rp, load SMRP in a0 + cmpib #0x2,%d0 |check if result is inex + ble set_finx |if 0 - 2, it is inexact + bra no_finx |if 3, it is exact +BG_TBL: + subil #0x30,%d0 |make offset in 0 - f range + tstb %d1 |check for rmode + beqs BG_RN |if zero, rn mode + cmpib #0x3,%d1 |check for rp + beqs BG_RP |if 3, rp mode +BG_RZRM: + leal BIGRZRM,%a0 |rmode is rz or rm, load BGRZRM in a0 + cmpib #0x1,%d0 |check if result is inex + ble set_finx |if 0 - 1, it is inexact + cmpib #0x7,%d0 |second check + ble no_finx |if 0 - 7, it is exact + bra set_finx |if 8 - f, it is inexact +BG_RN: + leal BIGRN,%a0 |rmode is rn, load BGRN in a0 + cmpib #0x1,%d0 |check if result is inex + ble set_finx |if 0 - 1, it is inexact + cmpib #0x7,%d0 |second check + ble no_finx |if 0 - 7, it is exact + bra set_finx |if 8 - f, it is inexact +BG_RP: + leal BIGRP,%a0 |rmode is rp, load SMRP in a0 + cmpib #0x1,%d0 |check if result is inex + ble set_finx |if 0 - 1, it is inexact + cmpib #0x7,%d0 |second check + ble no_finx |if 0 - 7, it is exact +| bra set_finx ;if 8 - f, it is inexact +set_finx: + orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex +no_finx: + mulul #12,%d0 |use offset to point into tables + movel %d1,L_SCR1(%a6) |load mode for round call + bfextu USER_FPCR(%a6){#24:#2},%d1 |get precision + tstl %d1 |check if extended precision +| +| Precision is extended +| + bnes not_ext |if extended, do not call round + fmovemx (%a0,%d0),%fp0-%fp0 |return result in fp0 + rts +| +| Precision is single or double +| +not_ext: + swap %d1 |rnd prec in upper word of d1 + addl L_SCR1(%a6),%d1 |merge rmode in low word of d1 + movel (%a0,%d0),FP_SCR1(%a6) |load first word to temp storage + movel 4(%a0,%d0),FP_SCR1+4(%a6) |load second word + movel 8(%a0,%d0),FP_SCR1+8(%a6) |load third word + clrl %d0 |clear g,r,s + lea FP_SCR1(%a6),%a0 + btstb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) |convert to internal ext. format + + bsr round |go round the mantissa + + bfclr LOCAL_SGN(%a0){#0:#8} |convert back to IEEE ext format + beqs fin_fcr + bsetb #sign_bit,LOCAL_EX(%a0) +fin_fcr: + fmovemx (%a0),%fp0-%fp0 + rts + + |end diff --git a/arch/m68k/fpsp040/srem_mod.S b/arch/m68k/fpsp040/srem_mod.S new file mode 100644 index 000000000..a27e70c9a --- /dev/null +++ b/arch/m68k/fpsp040/srem_mod.S @@ -0,0 +1,421 @@ +| +| srem_mod.sa 3.1 12/10/90 +| +| The entry point sMOD computes the floating point MOD of the +| input values X and Y. The entry point sREM computes the floating +| point (IEEE) REM of the input values X and Y. +| +| INPUT +| ----- +| Double-extended value Y is pointed to by address in register +| A0. Double-extended value X is located in -12(A0). The values +| of X and Y are both nonzero and finite; although either or both +| of them can be denormalized. The special cases of zeros, NaNs, +| and infinities are handled elsewhere. +| +| OUTPUT +| ------ +| FREM(X,Y) or FMOD(X,Y), depending on entry point. +| +| ALGORITHM +| --------- +| +| Step 1. Save and strip signs of X and Y: signX := sign(X), +| signY := sign(Y), X := |X|, Y := |Y|, +| signQ := signX EOR signY. Record whether MOD or REM +| is requested. +| +| Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. +| If (L < 0) then +| R := X, go to Step 4. +| else +| R := 2^(-L)X, j := L. +| endif +| +| Step 3. Perform MOD(X,Y) +| 3.1 If R = Y, go to Step 9. +| 3.2 If R > Y, then { R := R - Y, Q := Q + 1} +| 3.3 If j = 0, go to Step 4. +| 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to +| Step 3.1. +| +| Step 4. At this point, R = X - QY = MOD(X,Y). Set +| Last_Subtract := false (used in Step 7 below). If +| MOD is requested, go to Step 6. +| +| Step 5. R = MOD(X,Y), but REM(X,Y) is requested. +| 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to +| Step 6. +| 5.2 If R > Y/2, then { set Last_Subtract := true, +| Q := Q + 1, Y := signY*Y }. Go to Step 6. +| 5.3 This is the tricky case of R = Y/2. If Q is odd, +| then { Q := Q + 1, signX := -signX }. +| +| Step 6. R := signX*R. +| +| Step 7. If Last_Subtract = true, R := R - Y. +| +| Step 8. Return signQ, last 7 bits of Q, and R as required. +| +| Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, +| X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), +| R := 0. Return signQ, last 7 bits of Q, and R. +| +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +SREM_MOD: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + .set Mod_Flag,L_SCR3 + .set SignY,FP_SCR3+4 + .set SignX,FP_SCR3+8 + .set SignQ,FP_SCR3+12 + .set Sc_Flag,FP_SCR4 + + .set Y,FP_SCR1 + .set Y_Hi,Y+4 + .set Y_Lo,Y+8 + + .set R,FP_SCR2 + .set R_Hi,R+4 + .set R_Lo,R+8 + + +Scale: .long 0x00010000,0x80000000,0x00000000,0x00000000 + + |xref t_avoid_unsupp + + .global smod +smod: + + movel #0,Mod_Flag(%a6) + bras Mod_Rem + + .global srem +srem: + + movel #1,Mod_Flag(%a6) + +Mod_Rem: +|..Save sign of X and Y + moveml %d2-%d7,-(%a7) | ...save data registers + movew (%a0),%d3 + movew %d3,SignY(%a6) + andil #0x00007FFF,%d3 | ...Y := |Y| + +| + movel 4(%a0),%d4 + movel 8(%a0),%d5 | ...(D3,D4,D5) is |Y| + + tstl %d3 + bnes Y_Normal + + movel #0x00003FFE,%d3 | ...$3FFD + 1 + tstl %d4 + bnes HiY_not0 + +HiY_0: + movel %d5,%d4 + clrl %d5 + subil #32,%d3 + clrl %d6 + bfffo %d4{#0:#32},%d6 + lsll %d6,%d4 + subl %d6,%d3 | ...(D3,D4,D5) is normalized +| ...with bias $7FFD + bras Chk_X + +HiY_not0: + clrl %d6 + bfffo %d4{#0:#32},%d6 + subl %d6,%d3 + lsll %d6,%d4 + movel %d5,%d7 | ...a copy of D5 + lsll %d6,%d5 + negl %d6 + addil #32,%d6 + lsrl %d6,%d7 + orl %d7,%d4 | ...(D3,D4,D5) normalized +| ...with bias $7FFD + bras Chk_X + +Y_Normal: + addil #0x00003FFE,%d3 | ...(D3,D4,D5) normalized +| ...with bias $7FFD + +Chk_X: + movew -12(%a0),%d0 + movew %d0,SignX(%a6) + movew SignY(%a6),%d1 + eorl %d0,%d1 + andil #0x00008000,%d1 + movew %d1,SignQ(%a6) | ...sign(Q) obtained + andil #0x00007FFF,%d0 + movel -8(%a0),%d1 + movel -4(%a0),%d2 | ...(D0,D1,D2) is |X| + tstl %d0 + bnes X_Normal + movel #0x00003FFE,%d0 + tstl %d1 + bnes HiX_not0 + +HiX_0: + movel %d2,%d1 + clrl %d2 + subil #32,%d0 + clrl %d6 + bfffo %d1{#0:#32},%d6 + lsll %d6,%d1 + subl %d6,%d0 | ...(D0,D1,D2) is normalized +| ...with bias $7FFD + bras Init + +HiX_not0: + clrl %d6 + bfffo %d1{#0:#32},%d6 + subl %d6,%d0 + lsll %d6,%d1 + movel %d2,%d7 | ...a copy of D2 + lsll %d6,%d2 + negl %d6 + addil #32,%d6 + lsrl %d6,%d7 + orl %d7,%d1 | ...(D0,D1,D2) normalized +| ...with bias $7FFD + bras Init + +X_Normal: + addil #0x00003FFE,%d0 | ...(D0,D1,D2) normalized +| ...with bias $7FFD + +Init: +| + movel %d3,L_SCR1(%a6) | ...save biased expo(Y) + movel %d0,L_SCR2(%a6) |save d0 + subl %d3,%d0 | ...L := expo(X)-expo(Y) +| Move.L D0,L ...D0 is j + clrl %d6 | ...D6 := carry <- 0 + clrl %d3 | ...D3 is Q + moveal #0,%a1 | ...A1 is k; j+k=L, Q=0 + +|..(Carry,D1,D2) is R + tstl %d0 + bges Mod_Loop + +|..expo(X) < expo(Y). Thus X = mod(X,Y) +| + movel L_SCR2(%a6),%d0 |restore d0 + bra Get_Mod + +|..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L + + +Mod_Loop: + tstl %d6 | ...test carry bit + bgts R_GT_Y + +|..At this point carry = 0, R = (D1,D2), Y = (D4,D5) + cmpl %d4,%d1 | ...compare hi(R) and hi(Y) + bnes R_NE_Y + cmpl %d5,%d2 | ...compare lo(R) and lo(Y) + bnes R_NE_Y + +|..At this point, R = Y + bra Rem_is_0 + +R_NE_Y: +|..use the borrow of the previous compare + bcss R_LT_Y | ...borrow is set iff R < Y + +R_GT_Y: +|..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 +|..and Y < (D1,D2) < 2Y. Either way, perform R - Y + subl %d5,%d2 | ...lo(R) - lo(Y) + subxl %d4,%d1 | ...hi(R) - hi(Y) + clrl %d6 | ...clear carry + addql #1,%d3 | ...Q := Q + 1 + +R_LT_Y: +|..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. + tstl %d0 | ...see if j = 0. + beqs PostLoop + + addl %d3,%d3 | ...Q := 2Q + addl %d2,%d2 | ...lo(R) = 2lo(R) + roxll #1,%d1 | ...hi(R) = 2hi(R) + carry + scs %d6 | ...set Carry if 2(R) overflows + addql #1,%a1 | ...k := k+1 + subql #1,%d0 | ...j := j - 1 +|..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. + + bras Mod_Loop + +PostLoop: +|..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. + +|..normalize R. + movel L_SCR1(%a6),%d0 | ...new biased expo of R + tstl %d1 + bnes HiR_not0 + +HiR_0: + movel %d2,%d1 + clrl %d2 + subil #32,%d0 + clrl %d6 + bfffo %d1{#0:#32},%d6 + lsll %d6,%d1 + subl %d6,%d0 | ...(D0,D1,D2) is normalized +| ...with bias $7FFD + bras Get_Mod + +HiR_not0: + clrl %d6 + bfffo %d1{#0:#32},%d6 + bmis Get_Mod | ...already normalized + subl %d6,%d0 + lsll %d6,%d1 + movel %d2,%d7 | ...a copy of D2 + lsll %d6,%d2 + negl %d6 + addil #32,%d6 + lsrl %d6,%d7 + orl %d7,%d1 | ...(D0,D1,D2) normalized + +| +Get_Mod: + cmpil #0x000041FE,%d0 + bges No_Scale +Do_Scale: + movew %d0,R(%a6) + clrw R+2(%a6) + movel %d1,R_Hi(%a6) + movel %d2,R_Lo(%a6) + movel L_SCR1(%a6),%d6 + movew %d6,Y(%a6) + clrw Y+2(%a6) + movel %d4,Y_Hi(%a6) + movel %d5,Y_Lo(%a6) + fmovex R(%a6),%fp0 | ...no exception + movel #1,Sc_Flag(%a6) + bras ModOrRem +No_Scale: + movel %d1,R_Hi(%a6) + movel %d2,R_Lo(%a6) + subil #0x3FFE,%d0 + movew %d0,R(%a6) + clrw R+2(%a6) + movel L_SCR1(%a6),%d6 + subil #0x3FFE,%d6 + movel %d6,L_SCR1(%a6) + fmovex R(%a6),%fp0 + movew %d6,Y(%a6) + movel %d4,Y_Hi(%a6) + movel %d5,Y_Lo(%a6) + movel #0,Sc_Flag(%a6) + +| + + +ModOrRem: + movel Mod_Flag(%a6),%d6 + beqs Fix_Sign + + movel L_SCR1(%a6),%d6 | ...new biased expo(Y) + subql #1,%d6 | ...biased expo(Y/2) + cmpl %d6,%d0 + blts Fix_Sign + bgts Last_Sub + + cmpl %d4,%d1 + bnes Not_EQ + cmpl %d5,%d2 + bnes Not_EQ + bra Tie_Case + +Not_EQ: + bcss Fix_Sign + +Last_Sub: +| + fsubx Y(%a6),%fp0 | ...no exceptions + addql #1,%d3 | ...Q := Q + 1 + +| + +Fix_Sign: +|..Get sign of X + movew SignX(%a6),%d6 + bges Get_Q + fnegx %fp0 + +|..Get Q +| +Get_Q: + clrl %d6 + movew SignQ(%a6),%d6 | ...D6 is sign(Q) + movel #8,%d7 + lsrl %d7,%d6 + andil #0x0000007F,%d3 | ...7 bits of Q + orl %d6,%d3 | ...sign and bits of Q + swap %d3 + fmovel %fpsr,%d6 + andil #0xFF00FFFF,%d6 + orl %d3,%d6 + fmovel %d6,%fpsr | ...put Q in fpsr + +| +Restore: + moveml (%a7)+,%d2-%d7 + fmovel USER_FPCR(%a6),%fpcr + movel Sc_Flag(%a6),%d0 + beqs Finish + fmulx Scale(%pc),%fp0 | ...may cause underflow + bra t_avoid_unsupp |check for denorm as a +| ;result of the scaling + +Finish: + fmovex %fp0,%fp0 |capture exceptions & round + rts + +Rem_is_0: +|..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) + addql #1,%d3 + cmpil #8,%d0 | ...D0 is j + bges Q_Big + + lsll %d0,%d3 + bras Set_R_0 + +Q_Big: + clrl %d3 + +Set_R_0: + fmoves #0x00000000,%fp0 + movel #0,Sc_Flag(%a6) + bra Fix_Sign + +Tie_Case: +|..Check parity of Q + movel %d3,%d6 + andil #0x00000001,%d6 + tstl %d6 + beq Fix_Sign | ...Q is even + +|..Q is odd, Q := Q + 1, signX := -signX + addql #1,%d3 + movew SignX(%a6),%d6 + eoril #0x00008000,%d6 + movew %d6,SignX(%a6) + bra Fix_Sign + + |end diff --git a/arch/m68k/fpsp040/ssin.S b/arch/m68k/fpsp040/ssin.S new file mode 100644 index 000000000..a1ef8e01b --- /dev/null +++ b/arch/m68k/fpsp040/ssin.S @@ -0,0 +1,745 @@ +| +| ssin.sa 3.3 7/29/91 +| +| The entry point sSIN computes the sine of an input argument +| sCOS computes the cosine, and sSINCOS computes both. The +| corresponding entry points with a "d" computes the same +| corresponding function values for denormalized inputs. +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or +| COS is requested. Otherwise, for SINCOS, sin(X) is returned +| in Fp0, and cos(X) is returned in Fp1. +| +| Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS. +| +| Accuracy and Monotonicity: The returned result is within 1 ulp in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The programs sSIN and sCOS take approximately 150 cycles for +| input argument X such that |X| < 15Pi, which is the usual +| situation. The speed for sSINCOS is approximately 190 cycles. +| +| Algorithm: +| +| SIN and COS: +| 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. +| +| 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. +| +| 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let +| k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite +| k by k := k + AdjN. +| +| 4. If k is even, go to 6. +| +| 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r) +| where cos(r) is approximated by an even polynomial in r, +| 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r. +| Exit. +| +| 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) +| where sin(r) is approximated by an odd polynomial in r +| r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. +| Exit. +| +| 7. If |X| > 1, go to 9. +| +| 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1. +| +| 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3. +| +| SINCOS: +| 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. +| +| 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let +| k = N mod 4, so in particular, k = 0,1,2,or 3. +| +| 3. If k is even, go to 5. +| +| 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e. +| j1 exclusive or with the l.s.b. of k. +| sgn1 := (-1)**j1, sgn2 := (-1)**j2. +| SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where +| sin(r) and cos(r) are computed as odd and even polynomials +| in r, respectively. Exit +| +| 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. +| SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where +| sin(r) and cos(r) are computed as odd and even polynomials +| in r, respectively. Exit +| +| 6. If |X| > 1, go to 8. +| +| 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. +| +| 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SSIN idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +BOUNDS1: .long 0x3FD78000,0x4004BC7E +TWOBYPI: .long 0x3FE45F30,0x6DC9C883 + +SINA7: .long 0xBD6AAA77,0xCCC994F5 +SINA6: .long 0x3DE61209,0x7AAE8DA1 + +SINA5: .long 0xBE5AE645,0x2A118AE4 +SINA4: .long 0x3EC71DE3,0xA5341531 + +SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 + +SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000 + +SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 + +COSB8: .long 0x3D2AC4D0,0xD6011EE3 +COSB7: .long 0xBDA9396F,0x9F45AC19 + +COSB6: .long 0x3E21EED9,0x0612C972 +COSB5: .long 0xBE927E4F,0xB79D9FCF + +COSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 + +COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 + +COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E +COSB1: .long 0xBF000000 + +INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A + +TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 +TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 + + |xref PITBL + + .set INARG,FP_SCR4 + + .set X,FP_SCR5 + .set XDCARE,X+2 + .set XFRAC,X+4 + + .set RPRIME,FP_SCR1 + .set SPRIME,FP_SCR2 + + .set POSNEG1,L_SCR1 + .set TWOTO63,L_SCR1 + + .set ENDFLAG,L_SCR2 + .set N,L_SCR2 + + .set ADJN,L_SCR3 + + | xref t_frcinx + |xref t_extdnrm + |xref sto_cos + + .global ssind +ssind: +|--SIN(X) = X FOR DENORMALIZED X + bra t_extdnrm + + .global scosd +scosd: +|--COS(X) = 1 FOR DENORMALIZED X + + fmoves #0x3F800000,%fp0 +| +| 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits +| + fmovel #0,%fpsr +| + bra t_frcinx + + .global ssin +ssin: +|--SET ADJN TO 0 + movel #0,ADJN(%a6) + bras SINBGN + + .global scos +scos: +|--SET ADJN TO 1 + movel #1,ADJN(%a6) + +SINBGN: +|--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE + + fmovex (%a0),%fp0 | ...LOAD INPUT + + movel (%a0),%d0 + movew 4(%a0),%d0 + fmovex %fp0,X(%a6) + andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X + + cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)? + bges SOK1 + bra SINSM + +SOK1: + cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI? + blts SINMAIN + bra REDUCEX + +SINMAIN: +|--THIS IS THE USUAL CASE, |X| <= 15 PI. +|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. + fmovex %fp0,%fp1 + fmuld TWOBYPI,%fp1 | ...X*2/PI + +|--HIDE THE NEXT THREE INSTRUCTIONS + lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32 + + +|--FP1 IS NOW READY + fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER + + movel N(%a6),%d0 + asll #4,%d0 + addal %d0,%a1 | ...A1 IS THE ADDRESS OF N*PIBY2 +| ...WHICH IS IN TWO PIECES Y1 & Y2 + + fsubx (%a1)+,%fp0 | ...X-Y1 +|--HIDE THE NEXT ONE + fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2 + +SINCONT: +|--continuation from REDUCEX + +|--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED + movel N(%a6),%d0 + addl ADJN(%a6),%d0 | ...SEE IF D0 IS ODD OR EVEN + rorl #1,%d0 | ...D0 WAS ODD IFF D0 IS NEGATIVE + cmpil #0,%d0 + blt COSPOLY + +SINPOLY: +|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. +|--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY +|--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE +|--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS +|--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) +|--WHERE T=S*S. +|--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION +|--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. + fmovex %fp0,X(%a6) | ...X IS R + fmulx %fp0,%fp0 | ...FP0 IS S +|---HIDE THE NEXT TWO WHILE WAITING FOR FP0 + fmoved SINA7,%fp3 + fmoved SINA6,%fp2 +|--FP0 IS NOW READY + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...FP1 IS T +|--HIDE THE NEXT TWO WHILE WAITING FOR FP1 + + rorl #1,%d0 + andil #0x80000000,%d0 +| ...LEAST SIG. BIT OF D0 IN SIGN POSITION + eorl %d0,X(%a6) | ...X IS NOW R'= SGN*R + + fmulx %fp1,%fp3 | ...TA7 + fmulx %fp1,%fp2 | ...TA6 + + faddd SINA5,%fp3 | ...A5+TA7 + faddd SINA4,%fp2 | ...A4+TA6 + + fmulx %fp1,%fp3 | ...T(A5+TA7) + fmulx %fp1,%fp2 | ...T(A4+TA6) + + faddd SINA3,%fp3 | ...A3+T(A5+TA7) + faddx SINA2,%fp2 | ...A2+T(A4+TA6) + + fmulx %fp3,%fp1 | ...T(A3+T(A5+TA7)) + + fmulx %fp0,%fp2 | ...S(A2+T(A4+TA6)) + faddx SINA1,%fp1 | ...A1+T(A3+T(A5+TA7)) + fmulx X(%a6),%fp0 | ...R'*S + + faddx %fp2,%fp1 | ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] +|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING +|--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING + + + fmulx %fp1,%fp0 | ...SIN(R')-R' +|--FP1 RELEASED. + + fmovel %d1,%FPCR |restore users exceptions + faddx X(%a6),%fp0 |last inst - possible exception set + bra t_frcinx + + +COSPOLY: +|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. +|--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY +|--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE +|--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS +|--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) +|--WHERE T=S*S. +|--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION +|--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 +|--AND IS THEREFORE STORED AS SINGLE PRECISION. + + fmulx %fp0,%fp0 | ...FP0 IS S +|---HIDE THE NEXT TWO WHILE WAITING FOR FP0 + fmoved COSB8,%fp2 + fmoved COSB7,%fp3 +|--FP0 IS NOW READY + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...FP1 IS T +|--HIDE THE NEXT TWO WHILE WAITING FOR FP1 + fmovex %fp0,X(%a6) | ...X IS S + rorl #1,%d0 + andil #0x80000000,%d0 +| ...LEAST SIG. BIT OF D0 IN SIGN POSITION + + fmulx %fp1,%fp2 | ...TB8 +|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU + eorl %d0,X(%a6) | ...X IS NOW S'= SGN*S + andil #0x80000000,%d0 + + fmulx %fp1,%fp3 | ...TB7 +|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU + oril #0x3F800000,%d0 | ...D0 IS SGN IN SINGLE + movel %d0,POSNEG1(%a6) + + faddd COSB6,%fp2 | ...B6+TB8 + faddd COSB5,%fp3 | ...B5+TB7 + + fmulx %fp1,%fp2 | ...T(B6+TB8) + fmulx %fp1,%fp3 | ...T(B5+TB7) + + faddd COSB4,%fp2 | ...B4+T(B6+TB8) + faddx COSB3,%fp3 | ...B3+T(B5+TB7) + + fmulx %fp1,%fp2 | ...T(B4+T(B6+TB8)) + fmulx %fp3,%fp1 | ...T(B3+T(B5+TB7)) + + faddx COSB2,%fp2 | ...B2+T(B4+T(B6+TB8)) + fadds COSB1,%fp1 | ...B1+T(B3+T(B5+TB7)) + + fmulx %fp2,%fp0 | ...S(B2+T(B4+T(B6+TB8))) +|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING +|--FP2 RELEASED. + + + faddx %fp1,%fp0 +|--FP1 RELEASED + + fmulx X(%a6),%fp0 + + fmovel %d1,%FPCR |restore users exceptions + fadds POSNEG1(%a6),%fp0 |last inst - possible exception set + bra t_frcinx + + +SINBORS: +|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. +|--IF |X| < 2**(-40), RETURN X OR 1. + cmpil #0x3FFF8000,%d0 + bgts REDUCEX + + +SINSM: + movel ADJN(%a6),%d0 + cmpil #0,%d0 + bgts COSTINY + +SINTINY: + movew #0x0000,XDCARE(%a6) | ...JUST IN CASE + fmovel %d1,%FPCR |restore users exceptions + fmovex X(%a6),%fp0 |last inst - possible exception set + bra t_frcinx + + +COSTINY: + fmoves #0x3F800000,%fp0 + + fmovel %d1,%FPCR |restore users exceptions + fsubs #0x00800000,%fp0 |last inst - possible exception set + bra t_frcinx + + +REDUCEX: +|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. +|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING +|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. + + fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5 + movel %d2,-(%a7) + fmoves #0x00000000,%fp1 +|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that +|--there is a danger of unwanted overflow in first LOOP iteration. In this +|--case, reduce argument by one remainder step to make subsequent reduction +|--safe. + cmpil #0x7ffeffff,%d0 |is argument dangerously large? + bnes LOOP + movel #0x7ffe0000,FP_SCR2(%a6) |yes +| ;create 2**16383*PI/2 + movel #0xc90fdaa2,FP_SCR2+4(%a6) + clrl FP_SCR2+8(%a6) + ftstx %fp0 |test sign of argument + movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383* +| ;PI/2 at FP_SCR3 + movel #0x85a308d3,FP_SCR3+4(%a6) + clrl FP_SCR3+8(%a6) + fblt red_neg + orw #0x8000,FP_SCR2(%a6) |positive arg + orw #0x8000,FP_SCR3(%a6) +red_neg: + faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact + fmovex %fp0,%fp1 |save high result in fp1 + faddx FP_SCR3(%a6),%fp0 |low part of reduction + fsubx %fp0,%fp1 |determine low component of result + faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument. + +|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. +|--integer quotient will be stored in N +|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1) + +LOOP: + fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2 + movew INARG(%a6),%d0 + movel %d0,%a1 | ...save a copy of D0 + andil #0x00007FFF,%d0 + subil #0x00003FFF,%d0 | ...D0 IS K + cmpil #28,%d0 + bles LASTLOOP +CONTLOOP: + subil #27,%d0 | ...D0 IS L := K-27 + movel #0,ENDFLAG(%a6) + bras WORK +LASTLOOP: + clrl %d0 | ...D0 IS L := 0 + movel #1,ENDFLAG(%a6) + +WORK: +|--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN +|--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. + +|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), +|--2**L * (PIby2_1), 2**L * (PIby2_2) + + movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI + subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI) + + movel #0xA2F9836E,FP_SCR1+4(%a6) + movel #0x4E44152A,FP_SCR1+8(%a6) + movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI) + + fmovex %fp0,%fp2 + fmulx FP_SCR1(%a6),%fp2 +|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN +|--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N +|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT +|--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE +|--US THE DESIRED VALUE IN FLOATING POINT. + +|--HIDE SIX CYCLES OF INSTRUCTION + movel %a1,%d2 + swap %d2 + andil #0x80000000,%d2 + oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL + movel %d2,TWOTO63(%a6) + + movel %d0,%d2 + addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2) + +|--FP2 IS READY + fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED + +|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2 + movew %d2,FP_SCR2(%a6) + clrw FP_SCR2+2(%a6) + movel #0xC90FDAA2,FP_SCR2+4(%a6) + clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1 + +|--FP2 IS READY + fsubs TWOTO63(%a6),%fp2 | ...FP2 is N + + addil #0x00003FDD,%d0 + movew %d0,FP_SCR3(%a6) + clrw FP_SCR3+2(%a6) + movel #0x85A308D3,FP_SCR3+4(%a6) + clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2 + + movel ENDFLAG(%a6),%d0 + +|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and +|--P2 = 2**(L) * Piby2_2 + fmovex %fp2,%fp4 + fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1 + fmovex %fp2,%fp5 + fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2 + fmovex %fp4,%fp3 +|--we want P+p = W+w but |p| <= half ulp of P +|--Then, we need to compute A := R-P and a := r-p + faddx %fp5,%fp3 | ...FP3 is P + fsubx %fp3,%fp4 | ...W-P + + fsubx %fp3,%fp0 | ...FP0 is A := R - P + faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w + + fmovex %fp0,%fp3 | ...FP3 A + fsubx %fp4,%fp1 | ...FP1 is a := r - p + +|--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but +|--|r| <= half ulp of R. + faddx %fp1,%fp0 | ...FP0 is R := A+a +|--No need to calculate r if this is the last loop + cmpil #0,%d0 + bgt RESTORE + +|--Need to calculate r + fsubx %fp0,%fp3 | ...A-R + faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a + bra LOOP + +RESTORE: + fmovel %fp2,N(%a6) + movel (%a7)+,%d2 + fmovemx (%a7)+,%fp2-%fp5 + + + movel ADJN(%a6),%d0 + cmpil #4,%d0 + + blt SINCONT + bras SCCONT + + .global ssincosd +ssincosd: +|--SIN AND COS OF X FOR DENORMALIZED X + + fmoves #0x3F800000,%fp1 + bsr sto_cos |store cosine result + bra t_extdnrm + + .global ssincos +ssincos: +|--SET ADJN TO 4 + movel #4,ADJN(%a6) + + fmovex (%a0),%fp0 | ...LOAD INPUT + + movel (%a0),%d0 + movew 4(%a0),%d0 + fmovex %fp0,X(%a6) + andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X + + cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)? + bges SCOK1 + bra SCSM + +SCOK1: + cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI? + blts SCMAIN + bra REDUCEX + + +SCMAIN: +|--THIS IS THE USUAL CASE, |X| <= 15 PI. +|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. + fmovex %fp0,%fp1 + fmuld TWOBYPI,%fp1 | ...X*2/PI + +|--HIDE THE NEXT THREE INSTRUCTIONS + lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32 + + +|--FP1 IS NOW READY + fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER + + movel N(%a6),%d0 + asll #4,%d0 + addal %d0,%a1 | ...ADDRESS OF N*PIBY2, IN Y1, Y2 + + fsubx (%a1)+,%fp0 | ...X-Y1 + fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2 + +SCCONT: +|--continuation point from REDUCEX + +|--HIDE THE NEXT TWO + movel N(%a6),%d0 + rorl #1,%d0 + + cmpil #0,%d0 | ...D0 < 0 IFF N IS ODD + bge NEVEN + +NODD: +|--REGISTERS SAVED SO FAR: D0, A0, FP2. + + fmovex %fp0,RPRIME(%a6) + fmulx %fp0,%fp0 | ...FP0 IS S = R*R + fmoved SINA7,%fp1 | ...A7 + fmoved COSB8,%fp2 | ...B8 + fmulx %fp0,%fp1 | ...SA7 + movel %d2,-(%a7) + movel %d0,%d2 + fmulx %fp0,%fp2 | ...SB8 + rorl #1,%d2 + andil #0x80000000,%d2 + + faddd SINA6,%fp1 | ...A6+SA7 + eorl %d0,%d2 + andil #0x80000000,%d2 + faddd COSB7,%fp2 | ...B7+SB8 + + fmulx %fp0,%fp1 | ...S(A6+SA7) + eorl %d2,RPRIME(%a6) + movel (%a7)+,%d2 + fmulx %fp0,%fp2 | ...S(B7+SB8) + rorl #1,%d0 + andil #0x80000000,%d0 + + faddd SINA5,%fp1 | ...A5+S(A6+SA7) + movel #0x3F800000,POSNEG1(%a6) + eorl %d0,POSNEG1(%a6) + faddd COSB6,%fp2 | ...B6+S(B7+SB8) + + fmulx %fp0,%fp1 | ...S(A5+S(A6+SA7)) + fmulx %fp0,%fp2 | ...S(B6+S(B7+SB8)) + fmovex %fp0,SPRIME(%a6) + + faddd SINA4,%fp1 | ...A4+S(A5+S(A6+SA7)) + eorl %d0,SPRIME(%a6) + faddd COSB5,%fp2 | ...B5+S(B6+S(B7+SB8)) + + fmulx %fp0,%fp1 | ...S(A4+...) + fmulx %fp0,%fp2 | ...S(B5+...) + + faddd SINA3,%fp1 | ...A3+S(A4+...) + faddd COSB4,%fp2 | ...B4+S(B5+...) + + fmulx %fp0,%fp1 | ...S(A3+...) + fmulx %fp0,%fp2 | ...S(B4+...) + + faddx SINA2,%fp1 | ...A2+S(A3+...) + faddx COSB3,%fp2 | ...B3+S(B4+...) + + fmulx %fp0,%fp1 | ...S(A2+...) + fmulx %fp0,%fp2 | ...S(B3+...) + + faddx SINA1,%fp1 | ...A1+S(A2+...) + faddx COSB2,%fp2 | ...B2+S(B3+...) + + fmulx %fp0,%fp1 | ...S(A1+...) + fmulx %fp2,%fp0 | ...S(B2+...) + + + + fmulx RPRIME(%a6),%fp1 | ...R'S(A1+...) + fadds COSB1,%fp0 | ...B1+S(B2...) + fmulx SPRIME(%a6),%fp0 | ...S'(B1+S(B2+...)) + + movel %d1,-(%sp) |restore users mode & precision + andil #0xff,%d1 |mask off all exceptions + fmovel %d1,%FPCR + faddx RPRIME(%a6),%fp1 | ...COS(X) + bsr sto_cos |store cosine result + fmovel (%sp)+,%FPCR |restore users exceptions + fadds POSNEG1(%a6),%fp0 | ...SIN(X) + + bra t_frcinx + + +NEVEN: +|--REGISTERS SAVED SO FAR: FP2. + + fmovex %fp0,RPRIME(%a6) + fmulx %fp0,%fp0 | ...FP0 IS S = R*R + fmoved COSB8,%fp1 | ...B8 + fmoved SINA7,%fp2 | ...A7 + fmulx %fp0,%fp1 | ...SB8 + fmovex %fp0,SPRIME(%a6) + fmulx %fp0,%fp2 | ...SA7 + rorl #1,%d0 + andil #0x80000000,%d0 + faddd COSB7,%fp1 | ...B7+SB8 + faddd SINA6,%fp2 | ...A6+SA7 + eorl %d0,RPRIME(%a6) + eorl %d0,SPRIME(%a6) + fmulx %fp0,%fp1 | ...S(B7+SB8) + oril #0x3F800000,%d0 + movel %d0,POSNEG1(%a6) + fmulx %fp0,%fp2 | ...S(A6+SA7) + + faddd COSB6,%fp1 | ...B6+S(B7+SB8) + faddd SINA5,%fp2 | ...A5+S(A6+SA7) + + fmulx %fp0,%fp1 | ...S(B6+S(B7+SB8)) + fmulx %fp0,%fp2 | ...S(A5+S(A6+SA7)) + + faddd COSB5,%fp1 | ...B5+S(B6+S(B7+SB8)) + faddd SINA4,%fp2 | ...A4+S(A5+S(A6+SA7)) + + fmulx %fp0,%fp1 | ...S(B5+...) + fmulx %fp0,%fp2 | ...S(A4+...) + + faddd COSB4,%fp1 | ...B4+S(B5+...) + faddd SINA3,%fp2 | ...A3+S(A4+...) + + fmulx %fp0,%fp1 | ...S(B4+...) + fmulx %fp0,%fp2 | ...S(A3+...) + + faddx COSB3,%fp1 | ...B3+S(B4+...) + faddx SINA2,%fp2 | ...A2+S(A3+...) + + fmulx %fp0,%fp1 | ...S(B3+...) + fmulx %fp0,%fp2 | ...S(A2+...) + + faddx COSB2,%fp1 | ...B2+S(B3+...) + faddx SINA1,%fp2 | ...A1+S(A2+...) + + fmulx %fp0,%fp1 | ...S(B2+...) + fmulx %fp2,%fp0 | ...s(a1+...) + + + + fadds COSB1,%fp1 | ...B1+S(B2...) + fmulx RPRIME(%a6),%fp0 | ...R'S(A1+...) + fmulx SPRIME(%a6),%fp1 | ...S'(B1+S(B2+...)) + + movel %d1,-(%sp) |save users mode & precision + andil #0xff,%d1 |mask off all exceptions + fmovel %d1,%FPCR + fadds POSNEG1(%a6),%fp1 | ...COS(X) + bsr sto_cos |store cosine result + fmovel (%sp)+,%FPCR |restore users exceptions + faddx RPRIME(%a6),%fp0 | ...SIN(X) + + bra t_frcinx + +SCBORS: + cmpil #0x3FFF8000,%d0 + bgt REDUCEX + + +SCSM: + movew #0x0000,XDCARE(%a6) + fmoves #0x3F800000,%fp1 + + movel %d1,-(%sp) |save users mode & precision + andil #0xff,%d1 |mask off all exceptions + fmovel %d1,%FPCR + fsubs #0x00800000,%fp1 + bsr sto_cos |store cosine result + fmovel (%sp)+,%FPCR |restore users exceptions + fmovex X(%a6),%fp0 + bra t_frcinx + + |end diff --git a/arch/m68k/fpsp040/ssinh.S b/arch/m68k/fpsp040/ssinh.S new file mode 100644 index 000000000..8a560edc7 --- /dev/null +++ b/arch/m68k/fpsp040/ssinh.S @@ -0,0 +1,134 @@ +| +| ssinh.sa 3.1 12/10/90 +| +| The entry point sSinh computes the hyperbolic sine of +| an input argument; sSinhd does the same except for denormalized +| input. +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The value sinh(X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 3 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program sSINH takes approximately 280 cycles. +| +| Algorithm: +| +| SINH +| 1. If |X| > 16380 log2, go to 3. +| +| 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae +| y = |X|, sgn = sign(X), and z = expm1(Y), +| sinh(X) = sgn*(1/2)*( z + z/(1+z) ). +| Exit. +| +| 3. If |X| > 16480 log2, go to 5. +| +| 4. (16380 log2 < |X| <= 16480 log2) +| sinh(X) = sign(X) * exp(|X|)/2. +| However, invoking exp(|X|) may cause premature overflow. +| Thus, we calculate sinh(X) as follows: +| Y := |X| +| sgn := sign(X) +| sgnFact := sgn * 2**(16380) +| Y' := Y - 16381 log2 +| sinh(X) := sgnFact * exp(Y'). +| Exit. +| +| 5. (|X| > 16480 log2) sinh(X) must overflow. Return +| sign(X)*Huge*Huge to generate overflow and an infinity with +| the appropriate sign. Huge is the largest finite number in +| extended format. Exit. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|SSINH idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +T1: .long 0x40C62D38,0xD3D64634 | ... 16381 LOG2 LEAD +T2: .long 0x3D6F90AE,0xB1E75CC7 | ... 16381 LOG2 TRAIL + + |xref t_frcinx + |xref t_ovfl + |xref t_extdnrm + |xref setox + |xref setoxm1 + + .global ssinhd +ssinhd: +|--SINH(X) = X FOR DENORMALIZED X + + bra t_extdnrm + + .global ssinh +ssinh: + fmovex (%a0),%fp0 | ...LOAD INPUT + + movel (%a0),%d0 + movew 4(%a0),%d0 + movel %d0,%a1 | save a copy of original (compacted) operand + andl #0x7FFFFFFF,%d0 + cmpl #0x400CB167,%d0 + bgts SINHBIG + +|--THIS IS THE USUAL CASE, |X| < 16380 LOG2 +|--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) + + fabsx %fp0 | ...Y = |X| + + moveml %a1/%d1,-(%sp) + fmovemx %fp0-%fp0,(%a0) + clrl %d1 + bsr setoxm1 | ...FP0 IS Z = EXPM1(Y) + fmovel #0,%fpcr + moveml (%sp)+,%a1/%d1 + + fmovex %fp0,%fp1 + fadds #0x3F800000,%fp1 | ...1+Z + fmovex %fp0,-(%sp) + fdivx %fp1,%fp0 | ...Z/(1+Z) + movel %a1,%d0 + andl #0x80000000,%d0 + orl #0x3F000000,%d0 + faddx (%sp)+,%fp0 + movel %d0,-(%sp) + + fmovel %d1,%fpcr + fmuls (%sp)+,%fp0 |last fp inst - possible exceptions set + + bra t_frcinx + +SINHBIG: + cmpl #0x400CB2B3,%d0 + bgt t_ovfl + fabsx %fp0 + fsubd T1(%pc),%fp0 | ...(|X|-16381LOG2_LEAD) + movel #0,-(%sp) + movel #0x80000000,-(%sp) + movel %a1,%d0 + andl #0x80000000,%d0 + orl #0x7FFB0000,%d0 + movel %d0,-(%sp) | ...EXTENDED FMT + fsubd T2(%pc),%fp0 | ...|X| - 16381 LOG2, ACCURATE + + movel %d1,-(%sp) + clrl %d1 + fmovemx %fp0-%fp0,(%a0) + bsr setox + fmovel (%sp)+,%fpcr + + fmulx (%sp)+,%fp0 |possible exception + bra t_frcinx + + |end diff --git a/arch/m68k/fpsp040/stan.S b/arch/m68k/fpsp040/stan.S new file mode 100644 index 000000000..f8553aaec --- /dev/null +++ b/arch/m68k/fpsp040/stan.S @@ -0,0 +1,454 @@ +| +| stan.sa 3.3 7/29/91 +| +| The entry point stan computes the tangent of +| an input argument; +| stand does the same except for denormalized input. +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The value tan(X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 3 ulp in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program sTAN takes approximately 170 cycles for +| input argument X such that |X| < 15Pi, which is the usual +| situation. +| +| Algorithm: +| +| 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. +| +| 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let +| k = N mod 2, so in particular, k = 0 or 1. +| +| 3. If k is odd, go to 5. +| +| 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a +| rational function U/V where +| U = r + r*s*(P1 + s*(P2 + s*P3)), and +| V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. +| Exit. +| +| 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a +| rational function U/V where +| U = r + r*s*(P1 + s*(P2 + s*P3)), and +| V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, +| -Cot(r) = -V/U. Exit. +| +| 6. If |X| > 1, go to 8. +| +| 7. (|X|<2**(-40)) Tan(X) = X. Exit. +| +| 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|STAN idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +BOUNDS1: .long 0x3FD78000,0x4004BC7E +TWOBYPI: .long 0x3FE45F30,0x6DC9C883 + +TANQ4: .long 0x3EA0B759,0xF50F8688 +TANP3: .long 0xBEF2BAA5,0xA8924F04 + +TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 + +TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 + +TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 + +TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 + +TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 + +INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 + +TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 +TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 + +|--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING +|--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT +|--MOST 69 BITS LONG. + .global PITBL +PITBL: + .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 + .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 + .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 + .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 + .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 + .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 + .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 + .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 + .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 + .long 0xC0040000,0x90836524,0x88034B96,0x20B00000 + .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 + .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 + .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 + .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 + .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 + .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 + .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 + .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 + .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 + .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 + .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 + .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 + .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 + .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 + .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 + .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 + .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 + .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 + .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 + .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 + .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 + .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 + .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 + .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 + .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 + .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 + .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 + .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 + .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 + .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 + .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 + .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 + .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 + .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 + .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 + .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 + .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 + .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 + .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 + .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 + .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 + .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 + .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 + .long 0x40040000,0x90836524,0x88034B96,0xA0B00000 + .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 + .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 + .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 + .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 + .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 + .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 + .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 + .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 + .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 + + .set INARG,FP_SCR4 + + .set TWOTO63,L_SCR1 + .set ENDFLAG,L_SCR2 + .set N,L_SCR3 + + | xref t_frcinx + |xref t_extdnrm + + .global stand +stand: +|--TAN(X) = X FOR DENORMALIZED X + + bra t_extdnrm + + .global stan +stan: + fmovex (%a0),%fp0 | ...LOAD INPUT + + movel (%a0),%d0 + movew 4(%a0),%d0 + andil #0x7FFFFFFF,%d0 + + cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)? + bges TANOK1 + bra TANSM +TANOK1: + cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI? + blts TANMAIN + bra REDUCEX + + +TANMAIN: +|--THIS IS THE USUAL CASE, |X| <= 15 PI. +|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. + fmovex %fp0,%fp1 + fmuld TWOBYPI,%fp1 | ...X*2/PI + +|--HIDE THE NEXT TWO INSTRUCTIONS + leal PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32 + +|--FP1 IS NOW READY + fmovel %fp1,%d0 | ...CONVERT TO INTEGER + + asll #4,%d0 + addal %d0,%a1 | ...ADDRESS N*PIBY2 IN Y1, Y2 + + fsubx (%a1)+,%fp0 | ...X-Y1 +|--HIDE THE NEXT ONE + + fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2 + + rorl #5,%d0 + andil #0x80000000,%d0 | ...D0 WAS ODD IFF D0 < 0 + +TANCONT: + + cmpil #0,%d0 + blt NODD + + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...S = R*R + + fmoved TANQ4,%fp3 + fmoved TANP3,%fp2 + + fmulx %fp1,%fp3 | ...SQ4 + fmulx %fp1,%fp2 | ...SP3 + + faddd TANQ3,%fp3 | ...Q3+SQ4 + faddx TANP2,%fp2 | ...P2+SP3 + + fmulx %fp1,%fp3 | ...S(Q3+SQ4) + fmulx %fp1,%fp2 | ...S(P2+SP3) + + faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4) + faddx TANP1,%fp2 | ...P1+S(P2+SP3) + + fmulx %fp1,%fp3 | ...S(Q2+S(Q3+SQ4)) + fmulx %fp1,%fp2 | ...S(P1+S(P2+SP3)) + + faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4)) + fmulx %fp0,%fp2 | ...RS(P1+S(P2+SP3)) + + fmulx %fp3,%fp1 | ...S(Q1+S(Q2+S(Q3+SQ4))) + + + faddx %fp2,%fp0 | ...R+RS(P1+S(P2+SP3)) + + + fadds #0x3F800000,%fp1 | ...1+S(Q1+...) + + fmovel %d1,%fpcr |restore users exceptions + fdivx %fp1,%fp0 |last inst - possible exception set + + bra t_frcinx + +NODD: + fmovex %fp0,%fp1 + fmulx %fp0,%fp0 | ...S = R*R + + fmoved TANQ4,%fp3 + fmoved TANP3,%fp2 + + fmulx %fp0,%fp3 | ...SQ4 + fmulx %fp0,%fp2 | ...SP3 + + faddd TANQ3,%fp3 | ...Q3+SQ4 + faddx TANP2,%fp2 | ...P2+SP3 + + fmulx %fp0,%fp3 | ...S(Q3+SQ4) + fmulx %fp0,%fp2 | ...S(P2+SP3) + + faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4) + faddx TANP1,%fp2 | ...P1+S(P2+SP3) + + fmulx %fp0,%fp3 | ...S(Q2+S(Q3+SQ4)) + fmulx %fp0,%fp2 | ...S(P1+S(P2+SP3)) + + faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4)) + fmulx %fp1,%fp2 | ...RS(P1+S(P2+SP3)) + + fmulx %fp3,%fp0 | ...S(Q1+S(Q2+S(Q3+SQ4))) + + + faddx %fp2,%fp1 | ...R+RS(P1+S(P2+SP3)) + fadds #0x3F800000,%fp0 | ...1+S(Q1+...) + + + fmovex %fp1,-(%sp) + eoril #0x80000000,(%sp) + + fmovel %d1,%fpcr |restore users exceptions + fdivx (%sp)+,%fp0 |last inst - possible exception set + + bra t_frcinx + +TANBORS: +|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. +|--IF |X| < 2**(-40), RETURN X OR 1. + cmpil #0x3FFF8000,%d0 + bgts REDUCEX + +TANSM: + + fmovex %fp0,-(%sp) + fmovel %d1,%fpcr |restore users exceptions + fmovex (%sp)+,%fp0 |last inst - possible exception set + + bra t_frcinx + + +REDUCEX: +|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. +|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING +|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. + + fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5 + movel %d2,-(%a7) + fmoves #0x00000000,%fp1 + +|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that +|--there is a danger of unwanted overflow in first LOOP iteration. In this +|--case, reduce argument by one remainder step to make subsequent reduction +|--safe. + cmpil #0x7ffeffff,%d0 |is argument dangerously large? + bnes LOOP + movel #0x7ffe0000,FP_SCR2(%a6) |yes +| ;create 2**16383*PI/2 + movel #0xc90fdaa2,FP_SCR2+4(%a6) + clrl FP_SCR2+8(%a6) + ftstx %fp0 |test sign of argument + movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383* +| ;PI/2 at FP_SCR3 + movel #0x85a308d3,FP_SCR3+4(%a6) + clrl FP_SCR3+8(%a6) + fblt red_neg + orw #0x8000,FP_SCR2(%a6) |positive arg + orw #0x8000,FP_SCR3(%a6) +red_neg: + faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact + fmovex %fp0,%fp1 |save high result in fp1 + faddx FP_SCR3(%a6),%fp0 |low part of reduction + fsubx %fp0,%fp1 |determine low component of result + faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument. + +|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. +|--integer quotient will be stored in N +|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1) + +LOOP: + fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2 + movew INARG(%a6),%d0 + movel %d0,%a1 | ...save a copy of D0 + andil #0x00007FFF,%d0 + subil #0x00003FFF,%d0 | ...D0 IS K + cmpil #28,%d0 + bles LASTLOOP +CONTLOOP: + subil #27,%d0 | ...D0 IS L := K-27 + movel #0,ENDFLAG(%a6) + bras WORK +LASTLOOP: + clrl %d0 | ...D0 IS L := 0 + movel #1,ENDFLAG(%a6) + +WORK: +|--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN +|--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. + +|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), +|--2**L * (PIby2_1), 2**L * (PIby2_2) + + movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI + subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI) + + movel #0xA2F9836E,FP_SCR1+4(%a6) + movel #0x4E44152A,FP_SCR1+8(%a6) + movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI) + + fmovex %fp0,%fp2 + fmulx FP_SCR1(%a6),%fp2 +|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN +|--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N +|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT +|--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE +|--US THE DESIRED VALUE IN FLOATING POINT. + +|--HIDE SIX CYCLES OF INSTRUCTION + movel %a1,%d2 + swap %d2 + andil #0x80000000,%d2 + oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL + movel %d2,TWOTO63(%a6) + + movel %d0,%d2 + addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2) + +|--FP2 IS READY + fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED + +|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2 + movew %d2,FP_SCR2(%a6) + clrw FP_SCR2+2(%a6) + movel #0xC90FDAA2,FP_SCR2+4(%a6) + clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1 + +|--FP2 IS READY + fsubs TWOTO63(%a6),%fp2 | ...FP2 is N + + addil #0x00003FDD,%d0 + movew %d0,FP_SCR3(%a6) + clrw FP_SCR3+2(%a6) + movel #0x85A308D3,FP_SCR3+4(%a6) + clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2 + + movel ENDFLAG(%a6),%d0 + +|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and +|--P2 = 2**(L) * Piby2_2 + fmovex %fp2,%fp4 + fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1 + fmovex %fp2,%fp5 + fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2 + fmovex %fp4,%fp3 +|--we want P+p = W+w but |p| <= half ulp of P +|--Then, we need to compute A := R-P and a := r-p + faddx %fp5,%fp3 | ...FP3 is P + fsubx %fp3,%fp4 | ...W-P + + fsubx %fp3,%fp0 | ...FP0 is A := R - P + faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w + + fmovex %fp0,%fp3 | ...FP3 A + fsubx %fp4,%fp1 | ...FP1 is a := r - p + +|--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but +|--|r| <= half ulp of R. + faddx %fp1,%fp0 | ...FP0 is R := A+a +|--No need to calculate r if this is the last loop + cmpil #0,%d0 + bgt RESTORE + +|--Need to calculate r + fsubx %fp0,%fp3 | ...A-R + faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a + bra LOOP + +RESTORE: + fmovel %fp2,N(%a6) + movel (%a7)+,%d2 + fmovemx (%a7)+,%fp2-%fp5 + + + movel N(%a6),%d0 + rorl #1,%d0 + + + bra TANCONT + + |end diff --git a/arch/m68k/fpsp040/stanh.S b/arch/m68k/fpsp040/stanh.S new file mode 100644 index 000000000..7e12e59ee --- /dev/null +++ b/arch/m68k/fpsp040/stanh.S @@ -0,0 +1,184 @@ +| +| stanh.sa 3.1 12/10/90 +| +| The entry point sTanh computes the hyperbolic tangent of +| an input argument; sTanhd does the same except for denormalized +| input. +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The value tanh(X) returned in floating-point register Fp0. +| +| Accuracy and Monotonicity: The returned result is within 3 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program stanh takes approximately 270 cycles. +| +| Algorithm: +| +| TANH +| 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. +| +| 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by +| sgn := sign(X), y := 2|X|, z := expm1(Y), and +| tanh(X) = sgn*( z/(2+z) ). +| Exit. +| +| 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, +| go to 7. +| +| 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. +| +| 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by +| sgn := sign(X), y := 2|X|, z := exp(Y), +| tanh(X) = sgn - [ sgn*2/(1+z) ]. +| Exit. +| +| 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we +| calculate Tanh(X) by +| sgn := sign(X), Tiny := 2**(-126), +| tanh(X) := sgn - sgn*Tiny. +| Exit. +| +| 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|STANH idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + .set X,FP_SCR5 + .set XDCARE,X+2 + .set XFRAC,X+4 + + .set SGN,L_SCR3 + + .set V,FP_SCR6 + +BOUNDS1: .long 0x3FD78000,0x3FFFDDCE | ... 2^(-40), (5/2)LOG2 + + |xref t_frcinx + |xref t_extdnrm + |xref setox + |xref setoxm1 + + .global stanhd +stanhd: +|--TANH(X) = X FOR DENORMALIZED X + + bra t_extdnrm + + .global stanh +stanh: + fmovex (%a0),%fp0 | ...LOAD INPUT + + fmovex %fp0,X(%a6) + movel (%a0),%d0 + movew 4(%a0),%d0 + movel %d0,X(%a6) + andl #0x7FFFFFFF,%d0 + cmp2l BOUNDS1(%pc),%d0 | ...2**(-40) < |X| < (5/2)LOG2 ? + bcss TANHBORS + +|--THIS IS THE USUAL CASE +|--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). + + movel X(%a6),%d0 + movel %d0,SGN(%a6) + andl #0x7FFF0000,%d0 + addl #0x00010000,%d0 | ...EXPONENT OF 2|X| + movel %d0,X(%a6) + andl #0x80000000,SGN(%a6) + fmovex X(%a6),%fp0 | ...FP0 IS Y = 2|X| + + movel %d1,-(%a7) + clrl %d1 + fmovemx %fp0-%fp0,(%a0) + bsr setoxm1 | ...FP0 IS Z = EXPM1(Y) + movel (%a7)+,%d1 + + fmovex %fp0,%fp1 + fadds #0x40000000,%fp1 | ...Z+2 + movel SGN(%a6),%d0 + fmovex %fp1,V(%a6) + eorl %d0,V(%a6) + + fmovel %d1,%FPCR |restore users exceptions + fdivx V(%a6),%fp0 + bra t_frcinx + +TANHBORS: + cmpl #0x3FFF8000,%d0 + blt TANHSM + + cmpl #0x40048AA1,%d0 + bgt TANHHUGE + +|-- (5/2) LOG2 < |X| < 50 LOG2, +|--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), +|--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. + + movel X(%a6),%d0 + movel %d0,SGN(%a6) + andl #0x7FFF0000,%d0 + addl #0x00010000,%d0 | ...EXPO OF 2|X| + movel %d0,X(%a6) | ...Y = 2|X| + andl #0x80000000,SGN(%a6) + movel SGN(%a6),%d0 + fmovex X(%a6),%fp0 | ...Y = 2|X| + + movel %d1,-(%a7) + clrl %d1 + fmovemx %fp0-%fp0,(%a0) + bsr setox | ...FP0 IS EXP(Y) + movel (%a7)+,%d1 + movel SGN(%a6),%d0 + fadds #0x3F800000,%fp0 | ...EXP(Y)+1 + + eorl #0xC0000000,%d0 | ...-SIGN(X)*2 + fmoves %d0,%fp1 | ...-SIGN(X)*2 IN SGL FMT + fdivx %fp0,%fp1 | ...-SIGN(X)2 / [EXP(Y)+1 ] + + movel SGN(%a6),%d0 + orl #0x3F800000,%d0 | ...SGN + fmoves %d0,%fp0 | ...SGN IN SGL FMT + + fmovel %d1,%FPCR |restore users exceptions + faddx %fp1,%fp0 + + bra t_frcinx + +TANHSM: + movew #0x0000,XDCARE(%a6) + + fmovel %d1,%FPCR |restore users exceptions + fmovex X(%a6),%fp0 |last inst - possible exception set + + bra t_frcinx + +TANHHUGE: +|---RETURN SGN(X) - SGN(X)EPS + movel X(%a6),%d0 + andl #0x80000000,%d0 + orl #0x3F800000,%d0 + fmoves %d0,%fp0 + andl #0x80000000,%d0 + eorl #0x80800000,%d0 | ...-SIGN(X)*EPS + + fmovel %d1,%FPCR |restore users exceptions + fadds %d0,%fp0 + + bra t_frcinx + + |end diff --git a/arch/m68k/fpsp040/sto_res.S b/arch/m68k/fpsp040/sto_res.S new file mode 100644 index 000000000..484b47d4e --- /dev/null +++ b/arch/m68k/fpsp040/sto_res.S @@ -0,0 +1,97 @@ +| +| sto_res.sa 3.1 12/10/90 +| +| Takes the result and puts it in where the user expects it. +| Library functions return result in fp0. If fp0 is not the +| users destination register then fp0 is moved to the +| correct floating-point destination register. fp0 and fp1 +| are then restored to the original contents. +| +| Input: result in fp0,fp1 +| +| d2 & a0 should be kept unmodified +| +| Output: moves the result to the true destination reg or mem +| +| Modifies: destination floating point register +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +STO_RES: |idnt 2,1 | Motorola 040 Floating Point Software Package + + + |section 8 + +#include "fpsp.h" + + .global sto_cos +sto_cos: + bfextu CMDREG1B(%a6){#13:#3},%d0 |extract cos destination + cmpib #3,%d0 |check for fp0/fp1 cases + bles c_fp0123 + fmovemx %fp1-%fp1,-(%a7) + moveql #7,%d1 + subl %d0,%d1 |d1 = 7- (dest. reg. no.) + clrl %d0 + bsetl %d1,%d0 |d0 is dynamic register mask + fmovemx (%a7)+,%d0 + rts +c_fp0123: + cmpib #0,%d0 + beqs c_is_fp0 + cmpib #1,%d0 + beqs c_is_fp1 + cmpib #2,%d0 + beqs c_is_fp2 +c_is_fp3: + fmovemx %fp1-%fp1,USER_FP3(%a6) + rts +c_is_fp2: + fmovemx %fp1-%fp1,USER_FP2(%a6) + rts +c_is_fp1: + fmovemx %fp1-%fp1,USER_FP1(%a6) + rts +c_is_fp0: + fmovemx %fp1-%fp1,USER_FP0(%a6) + rts + + + .global sto_res +sto_res: + bfextu CMDREG1B(%a6){#6:#3},%d0 |extract destination register + cmpib #3,%d0 |check for fp0/fp1 cases + bles fp0123 + fmovemx %fp0-%fp0,-(%a7) + moveql #7,%d1 + subl %d0,%d1 |d1 = 7- (dest. reg. no.) + clrl %d0 + bsetl %d1,%d0 |d0 is dynamic register mask + fmovemx (%a7)+,%d0 + rts +fp0123: + cmpib #0,%d0 + beqs is_fp0 + cmpib #1,%d0 + beqs is_fp1 + cmpib #2,%d0 + beqs is_fp2 +is_fp3: + fmovemx %fp0-%fp0,USER_FP3(%a6) + rts +is_fp2: + fmovemx %fp0-%fp0,USER_FP2(%a6) + rts +is_fp1: + fmovemx %fp0-%fp0,USER_FP1(%a6) + rts +is_fp0: + fmovemx %fp0-%fp0,USER_FP0(%a6) + rts + + |end diff --git a/arch/m68k/fpsp040/stwotox.S b/arch/m68k/fpsp040/stwotox.S new file mode 100644 index 000000000..0d5e6a143 --- /dev/null +++ b/arch/m68k/fpsp040/stwotox.S @@ -0,0 +1,426 @@ +| +| stwotox.sa 3.1 12/10/90 +| +| stwotox --- 2**X +| stwotoxd --- 2**X for denormalized X +| stentox --- 10**X +| stentoxd --- 10**X for denormalized X +| +| Input: Double-extended number X in location pointed to +| by address register a0. +| +| Output: The function values are returned in Fp0. +| +| Accuracy and Monotonicity: The returned result is within 2 ulps in +| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the +| result is subsequently rounded to double precision. The +| result is provably monotonic in double precision. +| +| Speed: The program stwotox takes approximately 190 cycles and the +| program stentox takes approximately 200 cycles. +| +| Algorithm: +| +| twotox +| 1. If |X| > 16480, go to ExpBig. +| +| 2. If |X| < 2**(-70), go to ExpSm. +| +| 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore +| decompose N as +| N = 64(M + M') + j, j = 0,1,2,...,63. +| +| 4. Overwrite r := r * log2. Then +| 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). +| Go to expr to compute that expression. +| +| tentox +| 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. +| +| 2. If |X| < 2**(-70), go to ExpSm. +| +| 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set +| N := round-to-int(y). Decompose N as +| N = 64(M + M') + j, j = 0,1,2,...,63. +| +| 4. Define r as +| r := ((X - N*L1)-N*L2) * L10 +| where L1, L2 are the leading and trailing parts of log_10(2)/64 +| and L10 is the natural log of 10. Then +| 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). +| Go to expr to compute that expression. +| +| expr +| 1. Fetch 2**(j/64) from table as Fact1 and Fact2. +| +| 2. Overwrite Fact1 and Fact2 by +| Fact1 := 2**(M) * Fact1 +| Fact2 := 2**(M) * Fact2 +| Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). +| +| 3. Calculate P where 1 + P approximates exp(r): +| P = r + r*r*(A1+r*(A2+...+r*A5)). +| +| 4. Let AdjFact := 2**(M'). Return +| AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). +| Exit. +| +| ExpBig +| 1. Generate overflow by Huge * Huge if X > 0; otherwise, generate +| underflow by Tiny * Tiny. +| +| ExpSm +| 1. Return 1 + X. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|STWOTOX idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + +BOUNDS1: .long 0x3FB98000,0x400D80C0 | ... 2^(-70),16480 +BOUNDS2: .long 0x3FB98000,0x400B9B07 | ... 2^(-70),16480 LOG2/LOG10 + +L2TEN64: .long 0x406A934F,0x0979A371 | ... 64LOG10/LOG2 +L10TWO1: .long 0x3F734413,0x509F8000 | ... LOG2/64LOG10 + +L10TWO2: .long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 + +LOG10: .long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 + +LOG2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 + +EXPA5: .long 0x3F56C16D,0x6F7BD0B2 +EXPA4: .long 0x3F811112,0x302C712C +EXPA3: .long 0x3FA55555,0x55554CC1 +EXPA2: .long 0x3FC55555,0x55554A54 +EXPA1: .long 0x3FE00000,0x00000000,0x00000000,0x00000000 + +HUGE: .long 0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 +TINY: .long 0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 + +EXPTBL: + .long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 + .long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA + .long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 + .long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 + .long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA + .long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C + .long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 + .long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA + .long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 + .long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 + .long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 + .long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 + .long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D + .long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 + .long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B + .long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 + .long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A + .long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B + .long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF + .long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA + .long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD + .long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E + .long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B + .long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB + .long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB + .long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 + .long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C + .long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 + .long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 + .long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 + .long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F + .long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C + .long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB + .long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB + .long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C + .long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA + .long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD + .long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 + .long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A + .long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 + .long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB + .long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 + .long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C + .long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 + .long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 + .long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE + .long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 + .long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 + .long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A + .long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 + .long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 + .long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 + .long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 + .long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE + .long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 + .long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F + .long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A + .long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A + .long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC + .long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F + .long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A + .long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 + .long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B + .long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 + + .set N,L_SCR1 + + .set X,FP_SCR1 + .set XDCARE,X+2 + .set XFRAC,X+4 + + .set ADJFACT,FP_SCR2 + + .set FACT1,FP_SCR3 + .set FACT1HI,FACT1+4 + .set FACT1LOW,FACT1+8 + + .set FACT2,FP_SCR4 + .set FACT2HI,FACT2+4 + .set FACT2LOW,FACT2+8 + + | xref t_unfl + |xref t_ovfl + |xref t_frcinx + + .global stwotoxd +stwotoxd: +|--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT + + fmovel %d1,%fpcr | ...set user's rounding mode/precision + fmoves #0x3F800000,%fp0 | ...RETURN 1 + X + movel (%a0),%d0 + orl #0x00800001,%d0 + fadds %d0,%fp0 + bra t_frcinx + + .global stwotox +stwotox: +|--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S + fmovemx (%a0),%fp0-%fp0 | ...LOAD INPUT, do not set cc's + + movel (%a0),%d0 + movew 4(%a0),%d0 + fmovex %fp0,X(%a6) + andil #0x7FFFFFFF,%d0 + + cmpil #0x3FB98000,%d0 | ...|X| >= 2**(-70)? + bges TWOOK1 + bra EXPBORS + +TWOOK1: + cmpil #0x400D80C0,%d0 | ...|X| > 16480? + bles TWOMAIN + bra EXPBORS + + +TWOMAIN: +|--USUAL CASE, 2^(-70) <= |X| <= 16480 + + fmovex %fp0,%fp1 + fmuls #0x42800000,%fp1 | ...64 * X + + fmovel %fp1,N(%a6) | ...N = ROUND-TO-INT(64 X) + movel %d2,-(%sp) + lea EXPTBL,%a1 | ...LOAD ADDRESS OF TABLE OF 2^(J/64) + fmovel N(%a6),%fp1 | ...N --> FLOATING FMT + movel N(%a6),%d0 + movel %d0,%d2 + andil #0x3F,%d0 | ...D0 IS J + asll #4,%d0 | ...DISPLACEMENT FOR 2^(J/64) + addal %d0,%a1 | ...ADDRESS FOR 2^(J/64) + asrl #6,%d2 | ...d2 IS L, N = 64L + J + movel %d2,%d0 + asrl #1,%d0 | ...D0 IS M + subl %d0,%d2 | ...d2 IS M', N = 64(M+M') + J + addil #0x3FFF,%d2 + movew %d2,ADJFACT(%a6) | ...ADJFACT IS 2^(M') + movel (%sp)+,%d2 +|--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), +|--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. +|--ADJFACT = 2^(M'). +|--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. + + fmuls #0x3C800000,%fp1 | ...(1/64)*N + movel (%a1)+,FACT1(%a6) + movel (%a1)+,FACT1HI(%a6) + movel (%a1)+,FACT1LOW(%a6) + movew (%a1)+,FACT2(%a6) + clrw FACT2+2(%a6) + + fsubx %fp1,%fp0 | ...X - (1/64)*INT(64 X) + + movew (%a1)+,FACT2HI(%a6) + clrw FACT2HI+2(%a6) + clrl FACT2LOW(%a6) + addw %d0,FACT1(%a6) + + fmulx LOG2,%fp0 | ...FP0 IS R + addw %d0,FACT2(%a6) + + bra expr + +EXPBORS: +|--FPCR, D0 SAVED + cmpil #0x3FFF8000,%d0 + bgts EXPBIG + +EXPSM: +|--|X| IS SMALL, RETURN 1 + X + + fmovel %d1,%FPCR |restore users exceptions + fadds #0x3F800000,%fp0 | ...RETURN 1 + X + + bra t_frcinx + +EXPBIG: +|--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW +|--REGISTERS SAVE SO FAR ARE FPCR AND D0 + movel X(%a6),%d0 + cmpil #0,%d0 + blts EXPNEG + + bclrb #7,(%a0) |t_ovfl expects positive value + bra t_ovfl + +EXPNEG: + bclrb #7,(%a0) |t_unfl expects positive value + bra t_unfl + + .global stentoxd +stentoxd: +|--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT + + fmovel %d1,%fpcr | ...set user's rounding mode/precision + fmoves #0x3F800000,%fp0 | ...RETURN 1 + X + movel (%a0),%d0 + orl #0x00800001,%d0 + fadds %d0,%fp0 + bra t_frcinx + + .global stentox +stentox: +|--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S + fmovemx (%a0),%fp0-%fp0 | ...LOAD INPUT, do not set cc's + + movel (%a0),%d0 + movew 4(%a0),%d0 + fmovex %fp0,X(%a6) + andil #0x7FFFFFFF,%d0 + + cmpil #0x3FB98000,%d0 | ...|X| >= 2**(-70)? + bges TENOK1 + bra EXPBORS + +TENOK1: + cmpil #0x400B9B07,%d0 | ...|X| <= 16480*log2/log10 ? + bles TENMAIN + bra EXPBORS + +TENMAIN: +|--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 + + fmovex %fp0,%fp1 + fmuld L2TEN64,%fp1 | ...X*64*LOG10/LOG2 + + fmovel %fp1,N(%a6) | ...N=INT(X*64*LOG10/LOG2) + movel %d2,-(%sp) + lea EXPTBL,%a1 | ...LOAD ADDRESS OF TABLE OF 2^(J/64) + fmovel N(%a6),%fp1 | ...N --> FLOATING FMT + movel N(%a6),%d0 + movel %d0,%d2 + andil #0x3F,%d0 | ...D0 IS J + asll #4,%d0 | ...DISPLACEMENT FOR 2^(J/64) + addal %d0,%a1 | ...ADDRESS FOR 2^(J/64) + asrl #6,%d2 | ...d2 IS L, N = 64L + J + movel %d2,%d0 + asrl #1,%d0 | ...D0 IS M + subl %d0,%d2 | ...d2 IS M', N = 64(M+M') + J + addil #0x3FFF,%d2 + movew %d2,ADJFACT(%a6) | ...ADJFACT IS 2^(M') + movel (%sp)+,%d2 + +|--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), +|--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. +|--ADJFACT = 2^(M'). +|--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. + + fmovex %fp1,%fp2 + + fmuld L10TWO1,%fp1 | ...N*(LOG2/64LOG10)_LEAD + movel (%a1)+,FACT1(%a6) + + fmulx L10TWO2,%fp2 | ...N*(LOG2/64LOG10)_TRAIL + + movel (%a1)+,FACT1HI(%a6) + movel (%a1)+,FACT1LOW(%a6) + fsubx %fp1,%fp0 | ...X - N L_LEAD + movew (%a1)+,FACT2(%a6) + + fsubx %fp2,%fp0 | ...X - N L_TRAIL + + clrw FACT2+2(%a6) + movew (%a1)+,FACT2HI(%a6) + clrw FACT2HI+2(%a6) + clrl FACT2LOW(%a6) + + fmulx LOG10,%fp0 | ...FP0 IS R + + addw %d0,FACT1(%a6) + addw %d0,FACT2(%a6) + +expr: +|--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. +|--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). +|--FP0 IS R. THE FOLLOWING CODE COMPUTES +|-- 2**(M'+M) * 2**(J/64) * EXP(R) + + fmovex %fp0,%fp1 + fmulx %fp1,%fp1 | ...FP1 IS S = R*R + + fmoved EXPA5,%fp2 | ...FP2 IS A5 + fmoved EXPA4,%fp3 | ...FP3 IS A4 + + fmulx %fp1,%fp2 | ...FP2 IS S*A5 + fmulx %fp1,%fp3 | ...FP3 IS S*A4 + + faddd EXPA3,%fp2 | ...FP2 IS A3+S*A5 + faddd EXPA2,%fp3 | ...FP3 IS A2+S*A4 + + fmulx %fp1,%fp2 | ...FP2 IS S*(A3+S*A5) + fmulx %fp1,%fp3 | ...FP3 IS S*(A2+S*A4) + + faddd EXPA1,%fp2 | ...FP2 IS A1+S*(A3+S*A5) + fmulx %fp0,%fp3 | ...FP3 IS R*S*(A2+S*A4) + + fmulx %fp1,%fp2 | ...FP2 IS S*(A1+S*(A3+S*A5)) + faddx %fp3,%fp0 | ...FP0 IS R+R*S*(A2+S*A4) + + faddx %fp2,%fp0 | ...FP0 IS EXP(R) - 1 + + +|--FINAL RECONSTRUCTION PROCESS +|--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) + + fmulx FACT1(%a6),%fp0 + faddx FACT2(%a6),%fp0 + faddx FACT1(%a6),%fp0 + + fmovel %d1,%FPCR |restore users exceptions + clrw ADJFACT+2(%a6) + movel #0x80000000,ADJFACT+4(%a6) + clrl ADJFACT+8(%a6) + fmulx ADJFACT(%a6),%fp0 | ...FINAL ADJUSTMENT + + bra t_frcinx + + |end diff --git a/arch/m68k/fpsp040/tbldo.S b/arch/m68k/fpsp040/tbldo.S new file mode 100644 index 000000000..fd5c37a5a --- /dev/null +++ b/arch/m68k/fpsp040/tbldo.S @@ -0,0 +1,553 @@ +| +| tbldo.sa 3.1 12/10/90 +| +| Modified: +| 8/16/90 chinds The table was constructed to use only one level +| of indirection in do_func for monadic +| functions. Dyadic functions require two +| levels, and the tables are still contained +| in do_func. The table is arranged for +| index with a 10-bit index, with the first +| 7 bits the opcode, and the remaining 3 +| the stag. For dyadic functions, all +| valid addresses are to the generic entry +| point. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|TBLDO idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + + |xref ld_pinf,ld_pone,ld_ppi2 + |xref t_dz2,t_operr + |xref serror,sone,szero,sinf,snzrinx + |xref sopr_inf,spi_2,src_nan,szr_inf + + |xref smovcr + |xref pmod,prem,pscale + |xref satanh,satanhd + |xref sacos,sacosd,sasin,sasind,satan,satand + |xref setox,setoxd,setoxm1,setoxm1d,setoxm1i + |xref sgetexp,sgetexpd,sgetman,sgetmand + |xref sint,sintd,sintrz + |xref ssincos,ssincosd,ssincosi,ssincosnan,ssincosz + |xref scos,scosd,ssin,ssind,stan,stand + |xref scosh,scoshd,ssinh,ssinhd,stanh,stanhd + |xref sslog10,sslog2,sslogn,sslognp1 + |xref sslog10d,sslog2d,sslognd,slognp1d + |xref stentox,stentoxd,stwotox,stwotoxd + +| instruction ;opcode-stag Notes + .global tblpre +tblpre: + .long smovcr |$00-0 fmovecr all + .long smovcr |$00-1 fmovecr all + .long smovcr |$00-2 fmovecr all + .long smovcr |$00-3 fmovecr all + .long smovcr |$00-4 fmovecr all + .long smovcr |$00-5 fmovecr all + .long smovcr |$00-6 fmovecr all + .long smovcr |$00-7 fmovecr all + + .long sint |$01-0 fint norm + .long szero |$01-1 fint zero + .long sinf |$01-2 fint inf + .long src_nan |$01-3 fint nan + .long sintd |$01-4 fint denorm inx + .long serror |$01-5 fint ERROR + .long serror |$01-6 fint ERROR + .long serror |$01-7 fint ERROR + + .long ssinh |$02-0 fsinh norm + .long szero |$02-1 fsinh zero + .long sinf |$02-2 fsinh inf + .long src_nan |$02-3 fsinh nan + .long ssinhd |$02-4 fsinh denorm + .long serror |$02-5 fsinh ERROR + .long serror |$02-6 fsinh ERROR + .long serror |$02-7 fsinh ERROR + + .long sintrz |$03-0 fintrz norm + .long szero |$03-1 fintrz zero + .long sinf |$03-2 fintrz inf + .long src_nan |$03-3 fintrz nan + .long snzrinx |$03-4 fintrz denorm inx + .long serror |$03-5 fintrz ERROR + .long serror |$03-6 fintrz ERROR + .long serror |$03-7 fintrz ERROR + + .long serror |$04-0 ERROR - illegal extension + .long serror |$04-1 ERROR - illegal extension + .long serror |$04-2 ERROR - illegal extension + .long serror |$04-3 ERROR - illegal extension + .long serror |$04-4 ERROR - illegal extension + .long serror |$04-5 ERROR - illegal extension + .long serror |$04-6 ERROR - illegal extension + .long serror |$04-7 ERROR - illegal extension + + .long serror |$05-0 ERROR - illegal extension + .long serror |$05-1 ERROR - illegal extension + .long serror |$05-2 ERROR - illegal extension + .long serror |$05-3 ERROR - illegal extension + .long serror |$05-4 ERROR - illegal extension + .long serror |$05-5 ERROR - illegal extension + .long serror |$05-6 ERROR - illegal extension + .long serror |$05-7 ERROR - illegal extension + + .long sslognp1 |$06-0 flognp1 norm + .long szero |$06-1 flognp1 zero + .long sopr_inf |$06-2 flognp1 inf + .long src_nan |$06-3 flognp1 nan + .long slognp1d |$06-4 flognp1 denorm + .long serror |$06-5 flognp1 ERROR + .long serror |$06-6 flognp1 ERROR + .long serror |$06-7 flognp1 ERROR + + .long serror |$07-0 ERROR - illegal extension + .long serror |$07-1 ERROR - illegal extension + .long serror |$07-2 ERROR - illegal extension + .long serror |$07-3 ERROR - illegal extension + .long serror |$07-4 ERROR - illegal extension + .long serror |$07-5 ERROR - illegal extension + .long serror |$07-6 ERROR - illegal extension + .long serror |$07-7 ERROR - illegal extension + + .long setoxm1 |$08-0 fetoxm1 norm + .long szero |$08-1 fetoxm1 zero + .long setoxm1i |$08-2 fetoxm1 inf + .long src_nan |$08-3 fetoxm1 nan + .long setoxm1d |$08-4 fetoxm1 denorm + .long serror |$08-5 fetoxm1 ERROR + .long serror |$08-6 fetoxm1 ERROR + .long serror |$08-7 fetoxm1 ERROR + + .long stanh |$09-0 ftanh norm + .long szero |$09-1 ftanh zero + .long sone |$09-2 ftanh inf + .long src_nan |$09-3 ftanh nan + .long stanhd |$09-4 ftanh denorm + .long serror |$09-5 ftanh ERROR + .long serror |$09-6 ftanh ERROR + .long serror |$09-7 ftanh ERROR + + .long satan |$0a-0 fatan norm + .long szero |$0a-1 fatan zero + .long spi_2 |$0a-2 fatan inf + .long src_nan |$0a-3 fatan nan + .long satand |$0a-4 fatan denorm + .long serror |$0a-5 fatan ERROR + .long serror |$0a-6 fatan ERROR + .long serror |$0a-7 fatan ERROR + + .long serror |$0b-0 ERROR - illegal extension + .long serror |$0b-1 ERROR - illegal extension + .long serror |$0b-2 ERROR - illegal extension + .long serror |$0b-3 ERROR - illegal extension + .long serror |$0b-4 ERROR - illegal extension + .long serror |$0b-5 ERROR - illegal extension + .long serror |$0b-6 ERROR - illegal extension + .long serror |$0b-7 ERROR - illegal extension + + .long sasin |$0c-0 fasin norm + .long szero |$0c-1 fasin zero + .long t_operr |$0c-2 fasin inf + .long src_nan |$0c-3 fasin nan + .long sasind |$0c-4 fasin denorm + .long serror |$0c-5 fasin ERROR + .long serror |$0c-6 fasin ERROR + .long serror |$0c-7 fasin ERROR + + .long satanh |$0d-0 fatanh norm + .long szero |$0d-1 fatanh zero + .long t_operr |$0d-2 fatanh inf + .long src_nan |$0d-3 fatanh nan + .long satanhd |$0d-4 fatanh denorm + .long serror |$0d-5 fatanh ERROR + .long serror |$0d-6 fatanh ERROR + .long serror |$0d-7 fatanh ERROR + + .long ssin |$0e-0 fsin norm + .long szero |$0e-1 fsin zero + .long t_operr |$0e-2 fsin inf + .long src_nan |$0e-3 fsin nan + .long ssind |$0e-4 fsin denorm + .long serror |$0e-5 fsin ERROR + .long serror |$0e-6 fsin ERROR + .long serror |$0e-7 fsin ERROR + + .long stan |$0f-0 ftan norm + .long szero |$0f-1 ftan zero + .long t_operr |$0f-2 ftan inf + .long src_nan |$0f-3 ftan nan + .long stand |$0f-4 ftan denorm + .long serror |$0f-5 ftan ERROR + .long serror |$0f-6 ftan ERROR + .long serror |$0f-7 ftan ERROR + + .long setox |$10-0 fetox norm + .long ld_pone |$10-1 fetox zero + .long szr_inf |$10-2 fetox inf + .long src_nan |$10-3 fetox nan + .long setoxd |$10-4 fetox denorm + .long serror |$10-5 fetox ERROR + .long serror |$10-6 fetox ERROR + .long serror |$10-7 fetox ERROR + + .long stwotox |$11-0 ftwotox norm + .long ld_pone |$11-1 ftwotox zero + .long szr_inf |$11-2 ftwotox inf + .long src_nan |$11-3 ftwotox nan + .long stwotoxd |$11-4 ftwotox denorm + .long serror |$11-5 ftwotox ERROR + .long serror |$11-6 ftwotox ERROR + .long serror |$11-7 ftwotox ERROR + + .long stentox |$12-0 ftentox norm + .long ld_pone |$12-1 ftentox zero + .long szr_inf |$12-2 ftentox inf + .long src_nan |$12-3 ftentox nan + .long stentoxd |$12-4 ftentox denorm + .long serror |$12-5 ftentox ERROR + .long serror |$12-6 ftentox ERROR + .long serror |$12-7 ftentox ERROR + + .long serror |$13-0 ERROR - illegal extension + .long serror |$13-1 ERROR - illegal extension + .long serror |$13-2 ERROR - illegal extension + .long serror |$13-3 ERROR - illegal extension + .long serror |$13-4 ERROR - illegal extension + .long serror |$13-5 ERROR - illegal extension + .long serror |$13-6 ERROR - illegal extension + .long serror |$13-7 ERROR - illegal extension + + .long sslogn |$14-0 flogn norm + .long t_dz2 |$14-1 flogn zero + .long sopr_inf |$14-2 flogn inf + .long src_nan |$14-3 flogn nan + .long sslognd |$14-4 flogn denorm + .long serror |$14-5 flogn ERROR + .long serror |$14-6 flogn ERROR + .long serror |$14-7 flogn ERROR + + .long sslog10 |$15-0 flog10 norm + .long t_dz2 |$15-1 flog10 zero + .long sopr_inf |$15-2 flog10 inf + .long src_nan |$15-3 flog10 nan + .long sslog10d |$15-4 flog10 denorm + .long serror |$15-5 flog10 ERROR + .long serror |$15-6 flog10 ERROR + .long serror |$15-7 flog10 ERROR + + .long sslog2 |$16-0 flog2 norm + .long t_dz2 |$16-1 flog2 zero + .long sopr_inf |$16-2 flog2 inf + .long src_nan |$16-3 flog2 nan + .long sslog2d |$16-4 flog2 denorm + .long serror |$16-5 flog2 ERROR + .long serror |$16-6 flog2 ERROR + .long serror |$16-7 flog2 ERROR + + .long serror |$17-0 ERROR - illegal extension + .long serror |$17-1 ERROR - illegal extension + .long serror |$17-2 ERROR - illegal extension + .long serror |$17-3 ERROR - illegal extension + .long serror |$17-4 ERROR - illegal extension + .long serror |$17-5 ERROR - illegal extension + .long serror |$17-6 ERROR - illegal extension + .long serror |$17-7 ERROR - illegal extension + + .long serror |$18-0 ERROR - illegal extension + .long serror |$18-1 ERROR - illegal extension + .long serror |$18-2 ERROR - illegal extension + .long serror |$18-3 ERROR - illegal extension + .long serror |$18-4 ERROR - illegal extension + .long serror |$18-5 ERROR - illegal extension + .long serror |$18-6 ERROR - illegal extension + .long serror |$18-7 ERROR - illegal extension + + .long scosh |$19-0 fcosh norm + .long ld_pone |$19-1 fcosh zero + .long ld_pinf |$19-2 fcosh inf + .long src_nan |$19-3 fcosh nan + .long scoshd |$19-4 fcosh denorm + .long serror |$19-5 fcosh ERROR + .long serror |$19-6 fcosh ERROR + .long serror |$19-7 fcosh ERROR + + .long serror |$1a-0 ERROR - illegal extension + .long serror |$1a-1 ERROR - illegal extension + .long serror |$1a-2 ERROR - illegal extension + .long serror |$1a-3 ERROR - illegal extension + .long serror |$1a-4 ERROR - illegal extension + .long serror |$1a-5 ERROR - illegal extension + .long serror |$1a-6 ERROR - illegal extension + .long serror |$1a-7 ERROR - illegal extension + + .long serror |$1b-0 ERROR - illegal extension + .long serror |$1b-1 ERROR - illegal extension + .long serror |$1b-2 ERROR - illegal extension + .long serror |$1b-3 ERROR - illegal extension + .long serror |$1b-4 ERROR - illegal extension + .long serror |$1b-5 ERROR - illegal extension + .long serror |$1b-6 ERROR - illegal extension + .long serror |$1b-7 ERROR - illegal extension + + .long sacos |$1c-0 facos norm + .long ld_ppi2 |$1c-1 facos zero + .long t_operr |$1c-2 facos inf + .long src_nan |$1c-3 facos nan + .long sacosd |$1c-4 facos denorm + .long serror |$1c-5 facos ERROR + .long serror |$1c-6 facos ERROR + .long serror |$1c-7 facos ERROR + + .long scos |$1d-0 fcos norm + .long ld_pone |$1d-1 fcos zero + .long t_operr |$1d-2 fcos inf + .long src_nan |$1d-3 fcos nan + .long scosd |$1d-4 fcos denorm + .long serror |$1d-5 fcos ERROR + .long serror |$1d-6 fcos ERROR + .long serror |$1d-7 fcos ERROR + + .long sgetexp |$1e-0 fgetexp norm + .long szero |$1e-1 fgetexp zero + .long t_operr |$1e-2 fgetexp inf + .long src_nan |$1e-3 fgetexp nan + .long sgetexpd |$1e-4 fgetexp denorm + .long serror |$1e-5 fgetexp ERROR + .long serror |$1e-6 fgetexp ERROR + .long serror |$1e-7 fgetexp ERROR + + .long sgetman |$1f-0 fgetman norm + .long szero |$1f-1 fgetman zero + .long t_operr |$1f-2 fgetman inf + .long src_nan |$1f-3 fgetman nan + .long sgetmand |$1f-4 fgetman denorm + .long serror |$1f-5 fgetman ERROR + .long serror |$1f-6 fgetman ERROR + .long serror |$1f-7 fgetman ERROR + + .long serror |$20-0 ERROR - illegal extension + .long serror |$20-1 ERROR - illegal extension + .long serror |$20-2 ERROR - illegal extension + .long serror |$20-3 ERROR - illegal extension + .long serror |$20-4 ERROR - illegal extension + .long serror |$20-5 ERROR - illegal extension + .long serror |$20-6 ERROR - illegal extension + .long serror |$20-7 ERROR - illegal extension + + .long pmod |$21-0 fmod all + .long pmod |$21-1 fmod all + .long pmod |$21-2 fmod all + .long pmod |$21-3 fmod all + .long pmod |$21-4 fmod all + .long serror |$21-5 fmod ERROR + .long serror |$21-6 fmod ERROR + .long serror |$21-7 fmod ERROR + + .long serror |$22-0 ERROR - illegal extension + .long serror |$22-1 ERROR - illegal extension + .long serror |$22-2 ERROR - illegal extension + .long serror |$22-3 ERROR - illegal extension + .long serror |$22-4 ERROR - illegal extension + .long serror |$22-5 ERROR - illegal extension + .long serror |$22-6 ERROR - illegal extension + .long serror |$22-7 ERROR - illegal extension + + .long serror |$23-0 ERROR - illegal extension + .long serror |$23-1 ERROR - illegal extension + .long serror |$23-2 ERROR - illegal extension + .long serror |$23-3 ERROR - illegal extension + .long serror |$23-4 ERROR - illegal extension + .long serror |$23-5 ERROR - illegal extension + .long serror |$23-6 ERROR - illegal extension + .long serror |$23-7 ERROR - illegal extension + + .long serror |$24-0 ERROR - illegal extension + .long serror |$24-1 ERROR - illegal extension + .long serror |$24-2 ERROR - illegal extension + .long serror |$24-3 ERROR - illegal extension + .long serror |$24-4 ERROR - illegal extension + .long serror |$24-5 ERROR - illegal extension + .long serror |$24-6 ERROR - illegal extension + .long serror |$24-7 ERROR - illegal extension + + .long prem |$25-0 frem all + .long prem |$25-1 frem all + .long prem |$25-2 frem all + .long prem |$25-3 frem all + .long prem |$25-4 frem all + .long serror |$25-5 frem ERROR + .long serror |$25-6 frem ERROR + .long serror |$25-7 frem ERROR + + .long pscale |$26-0 fscale all + .long pscale |$26-1 fscale all + .long pscale |$26-2 fscale all + .long pscale |$26-3 fscale all + .long pscale |$26-4 fscale all + .long serror |$26-5 fscale ERROR + .long serror |$26-6 fscale ERROR + .long serror |$26-7 fscale ERROR + + .long serror |$27-0 ERROR - illegal extension + .long serror |$27-1 ERROR - illegal extension + .long serror |$27-2 ERROR - illegal extension + .long serror |$27-3 ERROR - illegal extension + .long serror |$27-4 ERROR - illegal extension + .long serror |$27-5 ERROR - illegal extension + .long serror |$27-6 ERROR - illegal extension + .long serror |$27-7 ERROR - illegal extension + + .long serror |$28-0 ERROR - illegal extension + .long serror |$28-1 ERROR - illegal extension + .long serror |$28-2 ERROR - illegal extension + .long serror |$28-3 ERROR - illegal extension + .long serror |$28-4 ERROR - illegal extension + .long serror |$28-5 ERROR - illegal extension + .long serror |$28-6 ERROR - illegal extension + .long serror |$28-7 ERROR - illegal extension + + .long serror |$29-0 ERROR - illegal extension + .long serror |$29-1 ERROR - illegal extension + .long serror |$29-2 ERROR - illegal extension + .long serror |$29-3 ERROR - illegal extension + .long serror |$29-4 ERROR - illegal extension + .long serror |$29-5 ERROR - illegal extension + .long serror |$29-6 ERROR - illegal extension + .long serror |$29-7 ERROR - illegal extension + + .long serror |$2a-0 ERROR - illegal extension + .long serror |$2a-1 ERROR - illegal extension + .long serror |$2a-2 ERROR - illegal extension + .long serror |$2a-3 ERROR - illegal extension + .long serror |$2a-4 ERROR - illegal extension + .long serror |$2a-5 ERROR - illegal extension + .long serror |$2a-6 ERROR - illegal extension + .long serror |$2a-7 ERROR - illegal extension + + .long serror |$2b-0 ERROR - illegal extension + .long serror |$2b-1 ERROR - illegal extension + .long serror |$2b-2 ERROR - illegal extension + .long serror |$2b-3 ERROR - illegal extension + .long serror |$2b-4 ERROR - illegal extension + .long serror |$2b-5 ERROR - illegal extension + .long serror |$2b-6 ERROR - illegal extension + .long serror |$2b-7 ERROR - illegal extension + + .long serror |$2c-0 ERROR - illegal extension + .long serror |$2c-1 ERROR - illegal extension + .long serror |$2c-2 ERROR - illegal extension + .long serror |$2c-3 ERROR - illegal extension + .long serror |$2c-4 ERROR - illegal extension + .long serror |$2c-5 ERROR - illegal extension + .long serror |$2c-6 ERROR - illegal extension + .long serror |$2c-7 ERROR - illegal extension + + .long serror |$2d-0 ERROR - illegal extension + .long serror |$2d-1 ERROR - illegal extension + .long serror |$2d-2 ERROR - illegal extension + .long serror |$2d-3 ERROR - illegal extension + .long serror |$2d-4 ERROR - illegal extension + .long serror |$2d-5 ERROR - illegal extension + .long serror |$2d-6 ERROR - illegal extension + .long serror |$2d-7 ERROR - illegal extension + + .long serror |$2e-0 ERROR - illegal extension + .long serror |$2e-1 ERROR - illegal extension + .long serror |$2e-2 ERROR - illegal extension + .long serror |$2e-3 ERROR - illegal extension + .long serror |$2e-4 ERROR - illegal extension + .long serror |$2e-5 ERROR - illegal extension + .long serror |$2e-6 ERROR - illegal extension + .long serror |$2e-7 ERROR - illegal extension + + .long serror |$2f-0 ERROR - illegal extension + .long serror |$2f-1 ERROR - illegal extension + .long serror |$2f-2 ERROR - illegal extension + .long serror |$2f-3 ERROR - illegal extension + .long serror |$2f-4 ERROR - illegal extension + .long serror |$2f-5 ERROR - illegal extension + .long serror |$2f-6 ERROR - illegal extension + .long serror |$2f-7 ERROR - illegal extension + + .long ssincos |$30-0 fsincos norm + .long ssincosz |$30-1 fsincos zero + .long ssincosi |$30-2 fsincos inf + .long ssincosnan |$30-3 fsincos nan + .long ssincosd |$30-4 fsincos denorm + .long serror |$30-5 fsincos ERROR + .long serror |$30-6 fsincos ERROR + .long serror |$30-7 fsincos ERROR + + .long ssincos |$31-0 fsincos norm + .long ssincosz |$31-1 fsincos zero + .long ssincosi |$31-2 fsincos inf + .long ssincosnan |$31-3 fsincos nan + .long ssincosd |$31-4 fsincos denorm + .long serror |$31-5 fsincos ERROR + .long serror |$31-6 fsincos ERROR + .long serror |$31-7 fsincos ERROR + + .long ssincos |$32-0 fsincos norm + .long ssincosz |$32-1 fsincos zero + .long ssincosi |$32-2 fsincos inf + .long ssincosnan |$32-3 fsincos nan + .long ssincosd |$32-4 fsincos denorm + .long serror |$32-5 fsincos ERROR + .long serror |$32-6 fsincos ERROR + .long serror |$32-7 fsincos ERROR + + .long ssincos |$33-0 fsincos norm + .long ssincosz |$33-1 fsincos zero + .long ssincosi |$33-2 fsincos inf + .long ssincosnan |$33-3 fsincos nan + .long ssincosd |$33-4 fsincos denorm + .long serror |$33-5 fsincos ERROR + .long serror |$33-6 fsincos ERROR + .long serror |$33-7 fsincos ERROR + + .long ssincos |$34-0 fsincos norm + .long ssincosz |$34-1 fsincos zero + .long ssincosi |$34-2 fsincos inf + .long ssincosnan |$34-3 fsincos nan + .long ssincosd |$34-4 fsincos denorm + .long serror |$34-5 fsincos ERROR + .long serror |$34-6 fsincos ERROR + .long serror |$34-7 fsincos ERROR + + .long ssincos |$35-0 fsincos norm + .long ssincosz |$35-1 fsincos zero + .long ssincosi |$35-2 fsincos inf + .long ssincosnan |$35-3 fsincos nan + .long ssincosd |$35-4 fsincos denorm + .long serror |$35-5 fsincos ERROR + .long serror |$35-6 fsincos ERROR + .long serror |$35-7 fsincos ERROR + + .long ssincos |$36-0 fsincos norm + .long ssincosz |$36-1 fsincos zero + .long ssincosi |$36-2 fsincos inf + .long ssincosnan |$36-3 fsincos nan + .long ssincosd |$36-4 fsincos denorm + .long serror |$36-5 fsincos ERROR + .long serror |$36-6 fsincos ERROR + .long serror |$36-7 fsincos ERROR + + .long ssincos |$37-0 fsincos norm + .long ssincosz |$37-1 fsincos zero + .long ssincosi |$37-2 fsincos inf + .long ssincosnan |$37-3 fsincos nan + .long ssincosd |$37-4 fsincos denorm + .long serror |$37-5 fsincos ERROR + .long serror |$37-6 fsincos ERROR + .long serror |$37-7 fsincos ERROR + + |end diff --git a/arch/m68k/fpsp040/util.S b/arch/m68k/fpsp040/util.S new file mode 100644 index 000000000..65b26fa88 --- /dev/null +++ b/arch/m68k/fpsp040/util.S @@ -0,0 +1,747 @@ +| +| util.sa 3.7 7/29/91 +| +| This file contains routines used by other programs. +| +| ovf_res: used by overflow to force the correct +| result. ovf_r_k, ovf_r_x2, ovf_r_x3 are +| derivatives of this routine. +| get_fline: get user's opcode word +| g_dfmtou: returns the destination format. +| g_opcls: returns the opclass of the float instruction. +| g_rndpr: returns the rounding precision. +| reg_dest: write byte, word, or long data to Dn +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +|UTIL idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref mem_read + + .global g_dfmtou + .global g_opcls + .global g_rndpr + .global get_fline + .global reg_dest + +| +| Final result table for ovf_res. Note that the negative counterparts +| are unnecessary as ovf_res always returns the sign separately from +| the exponent. +| ;+inf +EXT_PINF: .long 0x7fff0000,0x00000000,0x00000000,0x00000000 +| ;largest +ext +EXT_PLRG: .long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 +| ;largest magnitude +sgl in ext +SGL_PLRG: .long 0x407e0000,0xffffff00,0x00000000,0x00000000 +| ;largest magnitude +dbl in ext +DBL_PLRG: .long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 +| ;largest -ext + +tblovfl: + .long EXT_RN + .long EXT_RZ + .long EXT_RM + .long EXT_RP + .long SGL_RN + .long SGL_RZ + .long SGL_RM + .long SGL_RP + .long DBL_RN + .long DBL_RZ + .long DBL_RM + .long DBL_RP + .long error + .long error + .long error + .long error + + +| +| ovf_r_k --- overflow result calculation +| +| This entry point is used by kernel_ex. +| +| This forces the destination precision to be extended +| +| Input: operand in ETEMP +| Output: a result is in ETEMP (internal extended format) +| + .global ovf_r_k +ovf_r_k: + lea ETEMP(%a6),%a0 |a0 points to source operand + bclrb #sign_bit,ETEMP_EX(%a6) + sne ETEMP_SGN(%a6) |convert to internal IEEE format + +| +| ovf_r_x2 --- overflow result calculation +| +| This entry point used by x_ovfl. (opclass 0 and 2) +| +| Input a0 points to an operand in the internal extended format +| Output a0 points to the result in the internal extended format +| +| This sets the round precision according to the user's FPCR unless the +| instruction is fsgldiv or fsglmul or fsadd, fdadd, fsub, fdsub, fsmul, +| fdmul, fsdiv, fddiv, fssqrt, fsmove, fdmove, fsabs, fdabs, fsneg, fdneg. +| If the instruction is fsgldiv of fsglmul, the rounding precision must be +| extended. If the instruction is not fsgldiv or fsglmul but a force- +| precision instruction, the rounding precision is then set to the force +| precision. + + .global ovf_r_x2 +ovf_r_x2: + btstb #E3,E_BYTE(%a6) |check for nu exception + beql ovf_e1_exc |it is cu exception +ovf_e3_exc: + movew CMDREG3B(%a6),%d0 |get the command word + andiw #0x00000060,%d0 |clear all bits except 6 and 5 + cmpil #0x00000040,%d0 + beql ovff_sgl |force precision is single + cmpil #0x00000060,%d0 + beql ovff_dbl |force precision is double + movew CMDREG3B(%a6),%d0 |get the command word again + andil #0x7f,%d0 |clear all except operation + cmpil #0x33,%d0 + beql ovf_fsgl |fsglmul or fsgldiv + cmpil #0x30,%d0 + beql ovf_fsgl + bra ovf_fpcr |instruction is none of the above +| ;use FPCR +ovf_e1_exc: + movew CMDREG1B(%a6),%d0 |get command word + andil #0x00000044,%d0 |clear all bits except 6 and 2 + cmpil #0x00000040,%d0 + beql ovff_sgl |the instruction is force single + cmpil #0x00000044,%d0 + beql ovff_dbl |the instruction is force double + movew CMDREG1B(%a6),%d0 |again get the command word + andil #0x0000007f,%d0 |clear all except the op code + cmpil #0x00000027,%d0 + beql ovf_fsgl |fsglmul + cmpil #0x00000024,%d0 + beql ovf_fsgl |fsgldiv + bra ovf_fpcr |none of the above, use FPCR +| +| +| Inst is either fsgldiv or fsglmul. Force extended precision. +| +ovf_fsgl: + clrl %d0 + bra ovf_res + +ovff_sgl: + movel #0x00000001,%d0 |set single + bra ovf_res +ovff_dbl: + movel #0x00000002,%d0 |set double + bra ovf_res +| +| The precision is in the fpcr. +| +ovf_fpcr: + bfextu FPCR_MODE(%a6){#0:#2},%d0 |set round precision + bra ovf_res + +| +| +| ovf_r_x3 --- overflow result calculation +| +| This entry point used by x_ovfl. (opclass 3 only) +| +| Input a0 points to an operand in the internal extended format +| Output a0 points to the result in the internal extended format +| +| This sets the round precision according to the destination size. +| + .global ovf_r_x3 +ovf_r_x3: + bsr g_dfmtou |get dest fmt in d0{1:0} +| ;for fmovout, the destination format +| ;is the rounding precision + +| +| ovf_res --- overflow result calculation +| +| Input: +| a0 points to operand in internal extended format +| Output: +| a0 points to result in internal extended format +| + .global ovf_res +ovf_res: + lsll #2,%d0 |move round precision to d0{3:2} + bfextu FPCR_MODE(%a6){#2:#2},%d1 |set round mode + orl %d1,%d0 |index is fmt:mode in d0{3:0} + leal tblovfl,%a1 |load a1 with table address + movel %a1@(%d0:l:4),%a1 |use d0 as index to the table + jmp (%a1) |go to the correct routine +| +|case DEST_FMT = EXT +| +EXT_RN: + leal EXT_PINF,%a1 |answer is +/- infinity + bsetb #inf_bit,FPSR_CC(%a6) + bra set_sign |now go set the sign +EXT_RZ: + leal EXT_PLRG,%a1 |answer is +/- large number + bra set_sign |now go set the sign +EXT_RM: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs e_rm_pos +e_rm_neg: + leal EXT_PINF,%a1 |answer is negative infinity + orl #neginf_mask,USER_FPSR(%a6) + bra end_ovfr +e_rm_pos: + leal EXT_PLRG,%a1 |answer is large positive number + bra end_ovfr +EXT_RP: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs e_rp_pos +e_rp_neg: + leal EXT_PLRG,%a1 |answer is large negative number + bsetb #neg_bit,FPSR_CC(%a6) + bra end_ovfr +e_rp_pos: + leal EXT_PINF,%a1 |answer is positive infinity + bsetb #inf_bit,FPSR_CC(%a6) + bra end_ovfr +| +|case DEST_FMT = DBL +| +DBL_RN: + leal EXT_PINF,%a1 |answer is +/- infinity + bsetb #inf_bit,FPSR_CC(%a6) + bra set_sign +DBL_RZ: + leal DBL_PLRG,%a1 |answer is +/- large number + bra set_sign |now go set the sign +DBL_RM: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs d_rm_pos +d_rm_neg: + leal EXT_PINF,%a1 |answer is negative infinity + orl #neginf_mask,USER_FPSR(%a6) + bra end_ovfr |inf is same for all precisions (ext,dbl,sgl) +d_rm_pos: + leal DBL_PLRG,%a1 |answer is large positive number + bra end_ovfr +DBL_RP: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs d_rp_pos +d_rp_neg: + leal DBL_PLRG,%a1 |answer is large negative number + bsetb #neg_bit,FPSR_CC(%a6) + bra end_ovfr +d_rp_pos: + leal EXT_PINF,%a1 |answer is positive infinity + bsetb #inf_bit,FPSR_CC(%a6) + bra end_ovfr +| +|case DEST_FMT = SGL +| +SGL_RN: + leal EXT_PINF,%a1 |answer is +/- infinity + bsetb #inf_bit,FPSR_CC(%a6) + bras set_sign +SGL_RZ: + leal SGL_PLRG,%a1 |answer is +/- large number + bras set_sign +SGL_RM: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs s_rm_pos +s_rm_neg: + leal EXT_PINF,%a1 |answer is negative infinity + orl #neginf_mask,USER_FPSR(%a6) + bras end_ovfr +s_rm_pos: + leal SGL_PLRG,%a1 |answer is large positive number + bras end_ovfr +SGL_RP: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs s_rp_pos +s_rp_neg: + leal SGL_PLRG,%a1 |answer is large negative number + bsetb #neg_bit,FPSR_CC(%a6) + bras end_ovfr +s_rp_pos: + leal EXT_PINF,%a1 |answer is positive infinity + bsetb #inf_bit,FPSR_CC(%a6) + bras end_ovfr + +set_sign: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs end_ovfr +neg_sign: + bsetb #neg_bit,FPSR_CC(%a6) + +end_ovfr: + movew LOCAL_EX(%a1),LOCAL_EX(%a0) |do not overwrite sign + movel LOCAL_HI(%a1),LOCAL_HI(%a0) + movel LOCAL_LO(%a1),LOCAL_LO(%a0) + rts + + +| +| ERROR +| +error: + rts +| +| get_fline --- get f-line opcode of interrupted instruction +| +| Returns opcode in the low word of d0. +| +get_fline: + movel USER_FPIAR(%a6),%a0 |opcode address + movel #0,-(%a7) |reserve a word on the stack + leal 2(%a7),%a1 |point to low word of temporary + movel #2,%d0 |count + bsrl mem_read + movel (%a7)+,%d0 + rts +| +| g_rndpr --- put rounding precision in d0{1:0} +| +| valid return codes are: +| 00 - extended +| 01 - single +| 10 - double +| +| begin +| get rounding precision (cmdreg3b{6:5}) +| begin +| case opclass = 011 (move out) +| get destination format - this is the also the rounding precision +| +| case opclass = 0x0 +| if E3 +| *case RndPr(from cmdreg3b{6:5} = 11 then RND_PREC = DBL +| *case RndPr(from cmdreg3b{6:5} = 10 then RND_PREC = SGL +| case RndPr(from cmdreg3b{6:5} = 00 | 01 +| use precision from FPCR{7:6} +| case 00 then RND_PREC = EXT +| case 01 then RND_PREC = SGL +| case 10 then RND_PREC = DBL +| else E1 +| use precision in FPCR{7:6} +| case 00 then RND_PREC = EXT +| case 01 then RND_PREC = SGL +| case 10 then RND_PREC = DBL +| end +| +g_rndpr: + bsr g_opcls |get opclass in d0{2:0} + cmpw #0x0003,%d0 |check for opclass 011 + bnes op_0x0 + +| +| For move out instructions (opclass 011) the destination format +| is the same as the rounding precision. Pass results from g_dfmtou. +| + bsr g_dfmtou + rts +op_0x0: + btstb #E3,E_BYTE(%a6) + beql unf_e1_exc |branch to e1 underflow +unf_e3_exc: + movel CMDREG3B(%a6),%d0 |rounding precision in d0{10:9} + bfextu %d0{#9:#2},%d0 |move the rounding prec bits to d0{1:0} + cmpil #0x2,%d0 + beql unff_sgl |force precision is single + cmpil #0x3,%d0 |force precision is double + beql unff_dbl + movew CMDREG3B(%a6),%d0 |get the command word again + andil #0x7f,%d0 |clear all except operation + cmpil #0x33,%d0 + beql unf_fsgl |fsglmul or fsgldiv + cmpil #0x30,%d0 + beql unf_fsgl |fsgldiv or fsglmul + bra unf_fpcr +unf_e1_exc: + movel CMDREG1B(%a6),%d0 |get 32 bits off the stack, 1st 16 bits +| ;are the command word + andil #0x00440000,%d0 |clear all bits except bits 6 and 2 + cmpil #0x00400000,%d0 + beql unff_sgl |force single + cmpil #0x00440000,%d0 |force double + beql unff_dbl + movel CMDREG1B(%a6),%d0 |get the command word again + andil #0x007f0000,%d0 |clear all bits except the operation + cmpil #0x00270000,%d0 + beql unf_fsgl |fsglmul + cmpil #0x00240000,%d0 + beql unf_fsgl |fsgldiv + bra unf_fpcr + +| +| Convert to return format. The values from cmdreg3b and the return +| values are: +| cmdreg3b return precision +| -------- ------ --------- +| 00,01 0 ext +| 10 1 sgl +| 11 2 dbl +| Force single +| +unff_sgl: + movel #1,%d0 |return 1 + rts +| +| Force double +| +unff_dbl: + movel #2,%d0 |return 2 + rts +| +| Force extended +| +unf_fsgl: + movel #0,%d0 + rts +| +| Get rounding precision set in FPCR{7:6}. +| +unf_fpcr: + movel USER_FPCR(%a6),%d0 |rounding precision bits in d0{7:6} + bfextu %d0{#24:#2},%d0 |move the rounding prec bits to d0{1:0} + rts +| +| g_opcls --- put opclass in d0{2:0} +| +g_opcls: + btstb #E3,E_BYTE(%a6) + beqs opc_1b |if set, go to cmdreg1b +opc_3b: + clrl %d0 |if E3, only opclass 0x0 is possible + rts +opc_1b: + movel CMDREG1B(%a6),%d0 + bfextu %d0{#0:#3},%d0 |shift opclass bits d0{31:29} to d0{2:0} + rts +| +| g_dfmtou --- put destination format in d0{1:0} +| +| If E1, the format is from cmdreg1b{12:10} +| If E3, the format is extended. +| +| Dest. Fmt. +| extended 010 -> 00 +| single 001 -> 01 +| double 101 -> 10 +| +g_dfmtou: + btstb #E3,E_BYTE(%a6) + beqs op011 + clrl %d0 |if E1, size is always ext + rts +op011: + movel CMDREG1B(%a6),%d0 + bfextu %d0{#3:#3},%d0 |dest fmt from cmdreg1b{12:10} + cmpb #1,%d0 |check for single + bnes not_sgl + movel #1,%d0 + rts +not_sgl: + cmpb #5,%d0 |check for double + bnes not_dbl + movel #2,%d0 + rts +not_dbl: + clrl %d0 |must be extended + rts + +| +| +| Final result table for unf_sub. Note that the negative counterparts +| are unnecessary as unf_sub always returns the sign separately from +| the exponent. +| ;+zero +EXT_PZRO: .long 0x00000000,0x00000000,0x00000000,0x00000000 +| ;+zero +SGL_PZRO: .long 0x3f810000,0x00000000,0x00000000,0x00000000 +| ;+zero +DBL_PZRO: .long 0x3c010000,0x00000000,0x00000000,0x00000000 +| ;smallest +ext denorm +EXT_PSML: .long 0x00000000,0x00000000,0x00000001,0x00000000 +| ;smallest +sgl denorm +SGL_PSML: .long 0x3f810000,0x00000100,0x00000000,0x00000000 +| ;smallest +dbl denorm +DBL_PSML: .long 0x3c010000,0x00000000,0x00000800,0x00000000 +| +| UNF_SUB --- underflow result calculation +| +| Input: +| d0 contains round precision +| a0 points to input operand in the internal extended format +| +| Output: +| a0 points to correct internal extended precision result. +| + +tblunf: + .long uEXT_RN + .long uEXT_RZ + .long uEXT_RM + .long uEXT_RP + .long uSGL_RN + .long uSGL_RZ + .long uSGL_RM + .long uSGL_RP + .long uDBL_RN + .long uDBL_RZ + .long uDBL_RM + .long uDBL_RP + .long uDBL_RN + .long uDBL_RZ + .long uDBL_RM + .long uDBL_RP + + .global unf_sub +unf_sub: + lsll #2,%d0 |move round precision to d0{3:2} + bfextu FPCR_MODE(%a6){#2:#2},%d1 |set round mode + orl %d1,%d0 |index is fmt:mode in d0{3:0} + leal tblunf,%a1 |load a1 with table address + movel %a1@(%d0:l:4),%a1 |use d0 as index to the table + jmp (%a1) |go to the correct routine +| +|case DEST_FMT = EXT +| +uEXT_RN: + leal EXT_PZRO,%a1 |answer is +/- zero + bsetb #z_bit,FPSR_CC(%a6) + bra uset_sign |now go set the sign +uEXT_RZ: + leal EXT_PZRO,%a1 |answer is +/- zero + bsetb #z_bit,FPSR_CC(%a6) + bra uset_sign |now go set the sign +uEXT_RM: + tstb LOCAL_SGN(%a0) |if negative underflow + beqs ue_rm_pos +ue_rm_neg: + leal EXT_PSML,%a1 |answer is negative smallest denorm + bsetb #neg_bit,FPSR_CC(%a6) + bra end_unfr +ue_rm_pos: + leal EXT_PZRO,%a1 |answer is positive zero + bsetb #z_bit,FPSR_CC(%a6) + bra end_unfr +uEXT_RP: + tstb LOCAL_SGN(%a0) |if negative underflow + beqs ue_rp_pos +ue_rp_neg: + leal EXT_PZRO,%a1 |answer is negative zero + oril #negz_mask,USER_FPSR(%a6) + bra end_unfr +ue_rp_pos: + leal EXT_PSML,%a1 |answer is positive smallest denorm + bra end_unfr +| +|case DEST_FMT = DBL +| +uDBL_RN: + leal DBL_PZRO,%a1 |answer is +/- zero + bsetb #z_bit,FPSR_CC(%a6) + bra uset_sign +uDBL_RZ: + leal DBL_PZRO,%a1 |answer is +/- zero + bsetb #z_bit,FPSR_CC(%a6) + bra uset_sign |now go set the sign +uDBL_RM: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs ud_rm_pos +ud_rm_neg: + leal DBL_PSML,%a1 |answer is smallest denormalized negative + bsetb #neg_bit,FPSR_CC(%a6) + bra end_unfr +ud_rm_pos: + leal DBL_PZRO,%a1 |answer is positive zero + bsetb #z_bit,FPSR_CC(%a6) + bra end_unfr +uDBL_RP: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs ud_rp_pos +ud_rp_neg: + leal DBL_PZRO,%a1 |answer is negative zero + oril #negz_mask,USER_FPSR(%a6) + bra end_unfr +ud_rp_pos: + leal DBL_PSML,%a1 |answer is smallest denormalized negative + bra end_unfr +| +|case DEST_FMT = SGL +| +uSGL_RN: + leal SGL_PZRO,%a1 |answer is +/- zero + bsetb #z_bit,FPSR_CC(%a6) + bras uset_sign +uSGL_RZ: + leal SGL_PZRO,%a1 |answer is +/- zero + bsetb #z_bit,FPSR_CC(%a6) + bras uset_sign +uSGL_RM: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs us_rm_pos +us_rm_neg: + leal SGL_PSML,%a1 |answer is smallest denormalized negative + bsetb #neg_bit,FPSR_CC(%a6) + bras end_unfr +us_rm_pos: + leal SGL_PZRO,%a1 |answer is positive zero + bsetb #z_bit,FPSR_CC(%a6) + bras end_unfr +uSGL_RP: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs us_rp_pos +us_rp_neg: + leal SGL_PZRO,%a1 |answer is negative zero + oril #negz_mask,USER_FPSR(%a6) + bras end_unfr +us_rp_pos: + leal SGL_PSML,%a1 |answer is smallest denormalized positive + bras end_unfr + +uset_sign: + tstb LOCAL_SGN(%a0) |if negative overflow + beqs end_unfr +uneg_sign: + bsetb #neg_bit,FPSR_CC(%a6) + +end_unfr: + movew LOCAL_EX(%a1),LOCAL_EX(%a0) |be careful not to overwrite sign + movel LOCAL_HI(%a1),LOCAL_HI(%a0) + movel LOCAL_LO(%a1),LOCAL_LO(%a0) + rts +| +| reg_dest --- write byte, word, or long data to Dn +| +| +| Input: +| L_SCR1: Data +| d1: data size and dest register number formatted as: +| +| 32 5 4 3 2 1 0 +| ----------------------------------------------- +| | 0 | Size | Dest Reg # | +| ----------------------------------------------- +| +| Size is: +| 0 - Byte +| 1 - Word +| 2 - Long/Single +| +pregdst: + .long byte_d0 + .long byte_d1 + .long byte_d2 + .long byte_d3 + .long byte_d4 + .long byte_d5 + .long byte_d6 + .long byte_d7 + .long word_d0 + .long word_d1 + .long word_d2 + .long word_d3 + .long word_d4 + .long word_d5 + .long word_d6 + .long word_d7 + .long long_d0 + .long long_d1 + .long long_d2 + .long long_d3 + .long long_d4 + .long long_d5 + .long long_d6 + .long long_d7 + +reg_dest: + leal pregdst,%a0 + movel %a0@(%d1:l:4),%a0 + jmp (%a0) + +byte_d0: + moveb L_SCR1(%a6),USER_D0+3(%a6) + rts +byte_d1: + moveb L_SCR1(%a6),USER_D1+3(%a6) + rts +byte_d2: + moveb L_SCR1(%a6),%d2 + rts +byte_d3: + moveb L_SCR1(%a6),%d3 + rts +byte_d4: + moveb L_SCR1(%a6),%d4 + rts +byte_d5: + moveb L_SCR1(%a6),%d5 + rts +byte_d6: + moveb L_SCR1(%a6),%d6 + rts +byte_d7: + moveb L_SCR1(%a6),%d7 + rts +word_d0: + movew L_SCR1(%a6),USER_D0+2(%a6) + rts +word_d1: + movew L_SCR1(%a6),USER_D1+2(%a6) + rts +word_d2: + movew L_SCR1(%a6),%d2 + rts +word_d3: + movew L_SCR1(%a6),%d3 + rts +word_d4: + movew L_SCR1(%a6),%d4 + rts +word_d5: + movew L_SCR1(%a6),%d5 + rts +word_d6: + movew L_SCR1(%a6),%d6 + rts +word_d7: + movew L_SCR1(%a6),%d7 + rts +long_d0: + movel L_SCR1(%a6),USER_D0(%a6) + rts +long_d1: + movel L_SCR1(%a6),USER_D1(%a6) + rts +long_d2: + movel L_SCR1(%a6),%d2 + rts +long_d3: + movel L_SCR1(%a6),%d3 + rts +long_d4: + movel L_SCR1(%a6),%d4 + rts +long_d5: + movel L_SCR1(%a6),%d5 + rts +long_d6: + movel L_SCR1(%a6),%d6 + rts +long_d7: + movel L_SCR1(%a6),%d7 + rts + |end diff --git a/arch/m68k/fpsp040/x_bsun.S b/arch/m68k/fpsp040/x_bsun.S new file mode 100644 index 000000000..d5a576bfa --- /dev/null +++ b/arch/m68k/fpsp040/x_bsun.S @@ -0,0 +1,46 @@ +| +| x_bsun.sa 3.3 7/1/91 +| +| fpsp_bsun --- FPSP handler for branch/set on unordered exception +| +| Copy the PC to FPIAR to maintain 881/882 compatibility +| +| The real_bsun handler will need to perform further corrective +| measures as outlined in the 040 User's Manual on pages +| 9-41f, section 9.8.3. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_BSUN: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref real_bsun + + .global fpsp_bsun +fpsp_bsun: +| + link %a6,#-LOCAL_SIZE + fsave -(%a7) + moveml %d0-%d1/%a0-%a1,USER_DA(%a6) + fmovemx %fp0-%fp3,USER_FP0(%a6) + fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) + +| + movel EXC_PC(%a6),USER_FPIAR(%a6) +| + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_bsun +| + |end diff --git a/arch/m68k/fpsp040/x_fline.S b/arch/m68k/fpsp040/x_fline.S new file mode 100644 index 000000000..264e126d1 --- /dev/null +++ b/arch/m68k/fpsp040/x_fline.S @@ -0,0 +1,103 @@ +| +| x_fline.sa 3.3 1/10/91 +| +| fpsp_fline --- FPSP handler for fline exception +| +| First determine if the exception is one of the unimplemented +| floating point instructions. If so, let fpsp_unimp handle it. +| Next, determine if the instruction is an fmovecr with a non-zero +| <ea> field. If so, handle here and return. Otherwise, it +| must be a real F-line exception. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_FLINE: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref real_fline + |xref fpsp_unimp + |xref uni_2 + |xref mem_read + |xref fpsp_fmt_error + + .global fpsp_fline +fpsp_fline: +| +| check for unimplemented vector first. Use EXC_VEC-4 because +| the equate is valid only after a 'link a6' has pushed one more +| long onto the stack. +| + cmpw #UNIMP_VEC,EXC_VEC-4(%a7) + beql fpsp_unimp + +| +| fmovecr with non-zero <ea> handling here +| + subl #4,%a7 |4 accounts for 2-word difference +| ;between six word frame (unimp) and +| ;four word frame + link %a6,#-LOCAL_SIZE + fsave -(%a7) + moveml %d0-%d1/%a0-%a1,USER_DA(%a6) + moveal EXC_PC+4(%a6),%a0 |get address of fline instruction + leal L_SCR1(%a6),%a1 |use L_SCR1 as scratch + movel #4,%d0 + addl #4,%a6 |to offset the sub.l #4,a7 above so that +| ;a6 can point correctly to the stack frame +| ;before branching to mem_read + bsrl mem_read + subl #4,%a6 + movel L_SCR1(%a6),%d0 |d0 contains the fline and command word + bfextu %d0{#4:#3},%d1 |extract coprocessor id + cmpib #1,%d1 |check if cpid=1 + bne not_mvcr |exit if not + bfextu %d0{#16:#6},%d1 + cmpib #0x17,%d1 |check if it is an FMOVECR encoding + bne not_mvcr +| ;if an FMOVECR instruction, fix stack +| ;and go to FPSP_UNIMP +fix_stack: + cmpib #VER_40,(%a7) |test for orig unimp frame + bnes ck_rev + subl #UNIMP_40_SIZE-4,%a7 |emulate an orig fsave + moveb #VER_40,(%a7) + moveb #UNIMP_40_SIZE-4,1(%a7) + clrw 2(%a7) + bras fix_con +ck_rev: + cmpib #VER_41,(%a7) |test for rev unimp frame + bnel fpsp_fmt_error |if not $40 or $41, exit with error + subl #UNIMP_41_SIZE-4,%a7 |emulate a rev fsave + moveb #VER_41,(%a7) + moveb #UNIMP_41_SIZE-4,1(%a7) + clrw 2(%a7) +fix_con: + movew EXC_SR+4(%a6),EXC_SR(%a6) |move stacked sr to new position + movel EXC_PC+4(%a6),EXC_PC(%a6) |move stacked pc to new position + fmovel EXC_PC(%a6),%FPIAR |point FPIAR to fline inst + movel #4,%d1 + addl %d1,EXC_PC(%a6) |increment stacked pc value to next inst + movew #0x202c,EXC_VEC(%a6) |reformat vector to unimp + clrl EXC_EA(%a6) |clear the EXC_EA field + movew %d0,CMDREG1B(%a6) |move the lower word into CMDREG1B + clrl E_BYTE(%a6) + bsetb #UFLAG,T_BYTE(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 |restore data registers + bral uni_2 + +not_mvcr: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 |restore data registers + frestore (%a7)+ + unlk %a6 + addl #4,%a7 + bral real_fline + + |end diff --git a/arch/m68k/fpsp040/x_operr.S b/arch/m68k/fpsp040/x_operr.S new file mode 100644 index 000000000..e2c371c3a --- /dev/null +++ b/arch/m68k/fpsp040/x_operr.S @@ -0,0 +1,355 @@ +| +| x_operr.sa 3.5 7/1/91 +| +| fpsp_operr --- FPSP handler for operand error exception +| +| See 68040 User's Manual pp. 9-44f +| +| Note 1: For trap disabled 040 does the following: +| If the dest is a fp reg, then an extended precision non_signaling +| NAN is stored in the dest reg. If the dest format is b, w, or l and +| the source op is a NAN, then garbage is stored as the result (actually +| the upper 32 bits of the mantissa are sent to the integer unit). If +| the dest format is integer (b, w, l) and the operr is caused by +| integer overflow, or the source op is inf, then the result stored is +| garbage. +| There are three cases in which operr is incorrectly signaled on the +| 040. This occurs for move_out of format b, w, or l for the largest +| negative integer (-2^7 for b, -2^15 for w, -2^31 for l). +| +| On opclass = 011 fmove.(b,w,l) that causes a conversion +| overflow -> OPERR, the exponent in wbte (and fpte) is: +| byte 56 - (62 - exp) +| word 48 - (62 - exp) +| long 32 - (62 - exp) +| +| where exp = (true exp) - 1 +| +| So, wbtemp and fptemp will contain the following on erroneously +| signalled operr: +| fpts = 1 +| fpte = $4000 (15 bit externally) +| byte fptm = $ffffffff ffffff80 +| word fptm = $ffffffff ffff8000 +| long fptm = $ffffffff 80000000 +| +| Note 2: For trap enabled 040 does the following: +| If the inst is move_out, then same as Note 1. +| If the inst is not move_out, the dest is not modified. +| The exceptional operand is not defined for integer overflow +| during a move_out. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_OPERR: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref mem_write + |xref real_operr + |xref real_inex + |xref get_fline + |xref fpsp_done + |xref reg_dest + + .global fpsp_operr +fpsp_operr: +| + link %a6,#-LOCAL_SIZE + fsave -(%a7) + moveml %d0-%d1/%a0-%a1,USER_DA(%a6) + fmovemx %fp0-%fp3,USER_FP0(%a6) + fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) + +| +| Check if this is an opclass 3 instruction. +| If so, fall through, else branch to operr_end +| + btstb #TFLAG,T_BYTE(%a6) + beqs operr_end + +| +| If the destination size is B,W,or L, the operr must be +| handled here. +| + movel CMDREG1B(%a6),%d0 + bfextu %d0{#3:#3},%d0 |0=long, 4=word, 6=byte + cmpib #0,%d0 |determine size; check long + beq operr_long + cmpib #4,%d0 |check word + beq operr_word + cmpib #6,%d0 |check byte + beq operr_byte + +| +| The size is not B,W,or L, so the operr is handled by the +| kernel handler. Set the operr bits and clean up, leaving +| only the integer exception frame on the stack, and the +| fpu in the original exceptional state. +| +operr_end: + bsetb #operr_bit,FPSR_EXCEPT(%a6) + bsetb #aiop_bit,FPSR_AEXCEPT(%a6) + + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_operr + +operr_long: + moveql #4,%d1 |write size to d1 + moveb STAG(%a6),%d0 |test stag for nan + andib #0xe0,%d0 |clr all but tag + cmpib #0x60,%d0 |check for nan + beq operr_nan + cmpil #0x80000000,FPTEMP_LO(%a6) |test if ls lword is special + bnes chklerr |if not equal, check for incorrect operr + bsr check_upper |check if exp and ms mant are special + tstl %d0 + bnes chklerr |if d0 is true, check for incorrect operr + movel #0x80000000,%d0 |store special case result + bsr operr_store + bra not_enabled |clean and exit +| +| CHECK FOR INCORRECTLY GENERATED OPERR EXCEPTION HERE +| +chklerr: + movew FPTEMP_EX(%a6),%d0 + andw #0x7FFF,%d0 |ignore sign bit + cmpw #0x3FFE,%d0 |this is the only possible exponent value + bnes chklerr2 +fixlong: + movel FPTEMP_LO(%a6),%d0 + bsr operr_store + bra not_enabled +chklerr2: + movew FPTEMP_EX(%a6),%d0 + andw #0x7FFF,%d0 |ignore sign bit + cmpw #0x4000,%d0 + bcc store_max |exponent out of range + + movel FPTEMP_LO(%a6),%d0 + andl #0x7FFF0000,%d0 |look for all 1's on bits 30-16 + cmpl #0x7FFF0000,%d0 + beqs fixlong + + tstl FPTEMP_LO(%a6) + bpls chklepos + cmpl #0xFFFFFFFF,FPTEMP_HI(%a6) + beqs fixlong + bra store_max +chklepos: + tstl FPTEMP_HI(%a6) + beqs fixlong + bra store_max + +operr_word: + moveql #2,%d1 |write size to d1 + moveb STAG(%a6),%d0 |test stag for nan + andib #0xe0,%d0 |clr all but tag + cmpib #0x60,%d0 |check for nan + beq operr_nan + cmpil #0xffff8000,FPTEMP_LO(%a6) |test if ls lword is special + bnes chkwerr |if not equal, check for incorrect operr + bsr check_upper |check if exp and ms mant are special + tstl %d0 + bnes chkwerr |if d0 is true, check for incorrect operr + movel #0x80000000,%d0 |store special case result + bsr operr_store + bra not_enabled |clean and exit +| +| CHECK FOR INCORRECTLY GENERATED OPERR EXCEPTION HERE +| +chkwerr: + movew FPTEMP_EX(%a6),%d0 + andw #0x7FFF,%d0 |ignore sign bit + cmpw #0x3FFE,%d0 |this is the only possible exponent value + bnes store_max + movel FPTEMP_LO(%a6),%d0 + swap %d0 + bsr operr_store + bra not_enabled + +operr_byte: + moveql #1,%d1 |write size to d1 + moveb STAG(%a6),%d0 |test stag for nan + andib #0xe0,%d0 |clr all but tag + cmpib #0x60,%d0 |check for nan + beqs operr_nan + cmpil #0xffffff80,FPTEMP_LO(%a6) |test if ls lword is special + bnes chkberr |if not equal, check for incorrect operr + bsr check_upper |check if exp and ms mant are special + tstl %d0 + bnes chkberr |if d0 is true, check for incorrect operr + movel #0x80000000,%d0 |store special case result + bsr operr_store + bra not_enabled |clean and exit +| +| CHECK FOR INCORRECTLY GENERATED OPERR EXCEPTION HERE +| +chkberr: + movew FPTEMP_EX(%a6),%d0 + andw #0x7FFF,%d0 |ignore sign bit + cmpw #0x3FFE,%d0 |this is the only possible exponent value + bnes store_max + movel FPTEMP_LO(%a6),%d0 + asll #8,%d0 + swap %d0 + bsr operr_store + bra not_enabled + +| +| This operr condition is not of the special case. Set operr +| and aiop and write the portion of the nan to memory for the +| given size. +| +operr_nan: + orl #opaop_mask,USER_FPSR(%a6) |set operr & aiop + + movel ETEMP_HI(%a6),%d0 |output will be from upper 32 bits + bsr operr_store + bra end_operr +| +| Store_max loads the max pos or negative for the size, sets +| the operr and aiop bits, and clears inex and ainex, incorrectly +| set by the 040. +| +store_max: + orl #opaop_mask,USER_FPSR(%a6) |set operr & aiop + bclrb #inex2_bit,FPSR_EXCEPT(%a6) + bclrb #ainex_bit,FPSR_AEXCEPT(%a6) + fmovel #0,%FPSR + + tstw FPTEMP_EX(%a6) |check sign + blts load_neg + movel #0x7fffffff,%d0 + bsr operr_store + bra end_operr +load_neg: + movel #0x80000000,%d0 + bsr operr_store + bra end_operr + +| +| This routine stores the data in d0, for the given size in d1, +| to memory or data register as required. A read of the fline +| is required to determine the destination. +| +operr_store: + movel %d0,L_SCR1(%a6) |move write data to L_SCR1 + movel %d1,-(%a7) |save register size + bsrl get_fline |fline returned in d0 + movel (%a7)+,%d1 + bftst %d0{#26:#3} |if mode is zero, dest is Dn + bnes dest_mem +| +| Destination is Dn. Get register number from d0. Data is on +| the stack at (a7). D1 has size: 1=byte,2=word,4=long/single +| + andil #7,%d0 |isolate register number + cmpil #4,%d1 + beqs op_long |the most frequent case + cmpil #2,%d1 + bnes op_con + orl #8,%d0 + bras op_con +op_long: + orl #0x10,%d0 +op_con: + movel %d0,%d1 |format size:reg for reg_dest + bral reg_dest |call to reg_dest returns to caller +| ;of operr_store +| +| Destination is memory. Get <ea> from integer exception frame +| and call mem_write. +| +dest_mem: + leal L_SCR1(%a6),%a0 |put ptr to write data in a0 + movel EXC_EA(%a6),%a1 |put user destination address in a1 + movel %d1,%d0 |put size in d0 + bsrl mem_write + rts +| +| Check the exponent for $c000 and the upper 32 bits of the +| mantissa for $ffffffff. If both are true, return d0 clr +| and store the lower n bits of the least lword of FPTEMP +| to d0 for write out. If not, it is a real operr, and set d0. +| +check_upper: + cmpil #0xffffffff,FPTEMP_HI(%a6) |check if first byte is all 1's + bnes true_operr |if not all 1's then was true operr + cmpiw #0xc000,FPTEMP_EX(%a6) |check if incorrectly signalled + beqs not_true_operr |branch if not true operr + cmpiw #0xbfff,FPTEMP_EX(%a6) |check if incorrectly signalled + beqs not_true_operr |branch if not true operr +true_operr: + movel #1,%d0 |signal real operr + rts +not_true_operr: + clrl %d0 |signal no real operr + rts + +| +| End_operr tests for operr enabled. If not, it cleans up the stack +| and does an rte. If enabled, it cleans up the stack and branches +| to the kernel operr handler with only the integer exception +| frame on the stack and the fpu in the original exceptional state +| with correct data written to the destination. +| +end_operr: + btstb #operr_bit,FPCR_ENABLE(%a6) + beqs not_enabled +enabled: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_operr + +not_enabled: +| +| It is possible to have either inex2 or inex1 exceptions with the +| operr. If the inex enable bit is set in the FPCR, and either +| inex2 or inex1 occurred, we must clean up and branch to the +| real inex handler. +| +ck_inex: + moveb FPCR_ENABLE(%a6),%d0 + andb FPSR_EXCEPT(%a6),%d0 + andib #0x3,%d0 + beq operr_exit +| +| Inexact enabled and reported, and we must take an inexact exception. +| +take_inex: + moveb #INEX_VEC,EXC_VEC+1(%a6) + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_inex +| +| Since operr is only an E1 exception, there is no need to frestore +| any state back to the fpu. +| +operr_exit: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + unlk %a6 + bral fpsp_done + + |end diff --git a/arch/m68k/fpsp040/x_ovfl.S b/arch/m68k/fpsp040/x_ovfl.S new file mode 100644 index 000000000..6fe4989ee --- /dev/null +++ b/arch/m68k/fpsp040/x_ovfl.S @@ -0,0 +1,185 @@ +| +| x_ovfl.sa 3.5 7/1/91 +| +| fpsp_ovfl --- FPSP handler for overflow exception +| +| Overflow occurs when a floating-point intermediate result is +| too large to be represented in a floating-point data register, +| or when storing to memory, the contents of a floating-point +| data register are too large to be represented in the +| destination format. +| +| Trap disabled results +| +| If the instruction is move_out, then garbage is stored in the +| destination. If the instruction is not move_out, then the +| destination is not affected. For 68881 compatibility, the +| following values should be stored at the destination, based +| on the current rounding mode: +| +| RN Infinity with the sign of the intermediate result. +| RZ Largest magnitude number, with the sign of the +| intermediate result. +| RM For pos overflow, the largest pos number. For neg overflow, +| -infinity +| RP For pos overflow, +infinity. For neg overflow, the largest +| neg number +| +| Trap enabled results +| All trap disabled code applies. In addition the exceptional +| operand needs to be made available to the users exception handler +| with a bias of $6000 subtracted from the exponent. +| +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_OVFL: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref ovf_r_x2 + |xref ovf_r_x3 + |xref store + |xref real_ovfl + |xref real_inex + |xref fpsp_done + |xref g_opcls + |xref b1238_fix + + .global fpsp_ovfl +fpsp_ovfl: + link %a6,#-LOCAL_SIZE + fsave -(%a7) + moveml %d0-%d1/%a0-%a1,USER_DA(%a6) + fmovemx %fp0-%fp3,USER_FP0(%a6) + fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) + +| +| The 040 doesn't set the AINEX bit in the FPSR, the following +| line temporarily rectifies this error. +| + bsetb #ainex_bit,FPSR_AEXCEPT(%a6) +| + bsrl ovf_adj |denormalize, round & store interm op +| +| if overflow traps not enabled check for inexact exception +| + btstb #ovfl_bit,FPCR_ENABLE(%a6) + beqs ck_inex +| + btstb #E3,E_BYTE(%a6) + beqs no_e3_1 + bfextu CMDREG3B(%a6){#6:#3},%d0 |get dest reg no + bclrb %d0,FPR_DIRTY_BITS(%a6) |clr dest dirty bit + bsrl b1238_fix + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) +no_e3_1: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_ovfl +| +| It is possible to have either inex2 or inex1 exceptions with the +| ovfl. If the inex enable bit is set in the FPCR, and either +| inex2 or inex1 occurred, we must clean up and branch to the +| real inex handler. +| +ck_inex: +| move.b FPCR_ENABLE(%a6),%d0 +| and.b FPSR_EXCEPT(%a6),%d0 +| andi.b #$3,%d0 + btstb #inex2_bit,FPCR_ENABLE(%a6) + beqs ovfl_exit +| +| Inexact enabled and reported, and we must take an inexact exception. +| +take_inex: + btstb #E3,E_BYTE(%a6) + beqs no_e3_2 + bfextu CMDREG3B(%a6){#6:#3},%d0 |get dest reg no + bclrb %d0,FPR_DIRTY_BITS(%a6) |clr dest dirty bit + bsrl b1238_fix + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) +no_e3_2: + moveb #INEX_VEC,EXC_VEC+1(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_inex + +ovfl_exit: + bclrb #E3,E_BYTE(%a6) |test and clear E3 bit + beqs e1_set +| +| Clear dirty bit on dest resister in the frame before branching +| to b1238_fix. +| + bfextu CMDREG3B(%a6){#6:#3},%d0 |get dest reg no + bclrb %d0,FPR_DIRTY_BITS(%a6) |clr dest dirty bit + bsrl b1238_fix |test for bug1238 case + + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral fpsp_done +e1_set: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + unlk %a6 + bral fpsp_done + +| +| ovf_adj +| +ovf_adj: +| +| Have a0 point to the correct operand. +| + btstb #E3,E_BYTE(%a6) |test E3 bit + beqs ovf_e1 + + lea WBTEMP(%a6),%a0 + bras ovf_com +ovf_e1: + lea ETEMP(%a6),%a0 + +ovf_com: + bclrb #sign_bit,LOCAL_EX(%a0) + sne LOCAL_SGN(%a0) + + bsrl g_opcls |returns opclass in d0 + cmpiw #3,%d0 |check for opclass3 + bnes not_opc011 + +| +| FPSR_CC is saved and restored because ovf_r_x3 affects it. The +| CCs are defined to be 'not affected' for the opclass3 instruction. +| + moveb FPSR_CC(%a6),L_SCR1(%a6) + bsrl ovf_r_x3 |returns a0 pointing to result + moveb L_SCR1(%a6),FPSR_CC(%a6) + bral store |stores to memory or register + +not_opc011: + bsrl ovf_r_x2 |returns a0 pointing to result + bral store |stores to memory or register + + |end diff --git a/arch/m68k/fpsp040/x_snan.S b/arch/m68k/fpsp040/x_snan.S new file mode 100644 index 000000000..4ed766416 --- /dev/null +++ b/arch/m68k/fpsp040/x_snan.S @@ -0,0 +1,276 @@ +| +| x_snan.sa 3.3 7/1/91 +| +| fpsp_snan --- FPSP handler for signalling NAN exception +| +| SNAN for float -> integer conversions (integer conversion of +| an SNAN) is a non-maskable run-time exception. +| +| For trap disabled the 040 does the following: +| If the dest data format is s, d, or x, then the SNAN bit in the NAN +| is set to one and the resulting non-signaling NAN (truncated if +| necessary) is transferred to the dest. If the dest format is b, w, +| or l, then garbage is written to the dest (actually the upper 32 bits +| of the mantissa are sent to the integer unit). +| +| For trap enabled the 040 does the following: +| If the inst is move_out, then the results are the same as for trap +| disabled with the exception posted. If the instruction is not move_ +| out, the dest. is not modified, and the exception is posted. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_SNAN: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref get_fline + |xref mem_write + |xref real_snan + |xref real_inex + |xref fpsp_done + |xref reg_dest + + .global fpsp_snan +fpsp_snan: + link %a6,#-LOCAL_SIZE + fsave -(%a7) + moveml %d0-%d1/%a0-%a1,USER_DA(%a6) + fmovemx %fp0-%fp3,USER_FP0(%a6) + fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) + +| +| Check if trap enabled +| + btstb #snan_bit,FPCR_ENABLE(%a6) + bnes ena |If enabled, then branch + + bsrl move_out |else SNAN disabled +| +| It is possible to have an inex1 exception with the +| snan. If the inex enable bit is set in the FPCR, and either +| inex2 or inex1 occurred, we must clean up and branch to the +| real inex handler. +| +ck_inex: + moveb FPCR_ENABLE(%a6),%d0 + andb FPSR_EXCEPT(%a6),%d0 + andib #0x3,%d0 + beq end_snan +| +| Inexact enabled and reported, and we must take an inexact exception. +| +take_inex: + moveb #INEX_VEC,EXC_VEC+1(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_inex +| +| SNAN is enabled. Check if inst is move_out. +| Make any corrections to the 040 output as necessary. +| +ena: + btstb #5,CMDREG1B(%a6) |if set, inst is move out + beq not_out + + bsrl move_out + +report_snan: + moveb (%a7),VER_TMP(%a6) + cmpib #VER_40,(%a7) |test for orig unimp frame + bnes ck_rev + moveql #13,%d0 |need to zero 14 lwords + bras rep_con +ck_rev: + moveql #11,%d0 |need to zero 12 lwords +rep_con: + clrl (%a7) +loop1: + clrl -(%a7) |clear and dec a7 + dbra %d0,loop1 + moveb VER_TMP(%a6),(%a7) |format a busy frame + moveb #BUSY_SIZE-4,1(%a7) + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_snan +| +| Exit snan handler by expanding the unimp frame into a busy frame +| +end_snan: + bclrb #E1,E_BYTE(%a6) + + moveb (%a7),VER_TMP(%a6) + cmpib #VER_40,(%a7) |test for orig unimp frame + bnes ck_rev2 + moveql #13,%d0 |need to zero 14 lwords + bras rep_con2 +ck_rev2: + moveql #11,%d0 |need to zero 12 lwords +rep_con2: + clrl (%a7) +loop2: + clrl -(%a7) |clear and dec a7 + dbra %d0,loop2 + moveb VER_TMP(%a6),(%a7) |format a busy frame + moveb #BUSY_SIZE-4,1(%a7) |write busy size + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral fpsp_done + +| +| Move_out +| +move_out: + movel EXC_EA(%a6),%a0 |get <ea> from exc frame + + bfextu CMDREG1B(%a6){#3:#3},%d0 |move rx field to d0{2:0} + cmpil #0,%d0 |check for long + beqs sto_long |branch if move_out long + + cmpil #4,%d0 |check for word + beqs sto_word |branch if move_out word + + cmpil #6,%d0 |check for byte + beqs sto_byte |branch if move_out byte + +| +| Not byte, word or long +| + rts +| +| Get the 32 most significant bits of etemp mantissa +| +sto_long: + movel ETEMP_HI(%a6),%d1 + movel #4,%d0 |load byte count +| +| Set signalling nan bit +| + bsetl #30,%d1 +| +| Store to the users destination address +| + tstl %a0 |check if <ea> is 0 + beqs wrt_dn |destination is a data register + + movel %d1,-(%a7) |move the snan onto the stack + movel %a0,%a1 |load dest addr into a1 + movel %a7,%a0 |load src addr of snan into a0 + bsrl mem_write |write snan to user memory + movel (%a7)+,%d1 |clear off stack + rts +| +| Get the 16 most significant bits of etemp mantissa +| +sto_word: + movel ETEMP_HI(%a6),%d1 + movel #2,%d0 |load byte count +| +| Set signalling nan bit +| + bsetl #30,%d1 +| +| Store to the users destination address +| + tstl %a0 |check if <ea> is 0 + beqs wrt_dn |destination is a data register + + movel %d1,-(%a7) |move the snan onto the stack + movel %a0,%a1 |load dest addr into a1 + movel %a7,%a0 |point to low word + bsrl mem_write |write snan to user memory + movel (%a7)+,%d1 |clear off stack + rts +| +| Get the 8 most significant bits of etemp mantissa +| +sto_byte: + movel ETEMP_HI(%a6),%d1 + movel #1,%d0 |load byte count +| +| Set signalling nan bit +| + bsetl #30,%d1 +| +| Store to the users destination address +| + tstl %a0 |check if <ea> is 0 + beqs wrt_dn |destination is a data register + movel %d1,-(%a7) |move the snan onto the stack + movel %a0,%a1 |load dest addr into a1 + movel %a7,%a0 |point to source byte + bsrl mem_write |write snan to user memory + movel (%a7)+,%d1 |clear off stack + rts + +| +| wrt_dn --- write to a data register +| +| We get here with D1 containing the data to write and D0 the +| number of bytes to write: 1=byte,2=word,4=long. +| +wrt_dn: + movel %d1,L_SCR1(%a6) |data + movel %d0,-(%a7) |size + bsrl get_fline |returns fline word in d0 + movel %d0,%d1 + andil #0x7,%d1 |d1 now holds register number + movel (%sp)+,%d0 |get original size + cmpil #4,%d0 + beqs wrt_long + cmpil #2,%d0 + bnes wrt_byte +wrt_word: + orl #0x8,%d1 + bral reg_dest +wrt_long: + orl #0x10,%d1 + bral reg_dest +wrt_byte: + bral reg_dest +| +| Check if it is a src nan or dst nan +| +not_out: + movel DTAG(%a6),%d0 + bfextu %d0{#0:#3},%d0 |isolate dtag in lsbs + + cmpib #3,%d0 |check for nan in destination + bnes issrc |destination nan has priority +dst_nan: + btstb #6,FPTEMP_HI(%a6) |check if dest nan is an snan + bnes issrc |no, so check source for snan + movew FPTEMP_EX(%a6),%d0 + bras cont +issrc: + movew ETEMP_EX(%a6),%d0 +cont: + btstl #15,%d0 |test for sign of snan + beqs clr_neg + bsetb #neg_bit,FPSR_CC(%a6) + bra report_snan +clr_neg: + bclrb #neg_bit,FPSR_CC(%a6) + bra report_snan + + |end diff --git a/arch/m68k/fpsp040/x_store.S b/arch/m68k/fpsp040/x_store.S new file mode 100644 index 000000000..402dc0c0e --- /dev/null +++ b/arch/m68k/fpsp040/x_store.S @@ -0,0 +1,255 @@ +| +| x_store.sa 3.2 1/24/91 +| +| store --- store operand to memory or register +| +| Used by underflow and overflow handlers. +| +| a6 = points to fp value to be stored. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_STORE: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +fpreg_mask: + .byte 0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01 + +#include "fpsp.h" + + |xref mem_write + |xref get_fline + |xref g_opcls + |xref g_dfmtou + |xref reg_dest + + .global dest_ext + .global dest_dbl + .global dest_sgl + + .global store +store: + btstb #E3,E_BYTE(%a6) + beqs E1_sto +E3_sto: + movel CMDREG3B(%a6),%d0 + bfextu %d0{#6:#3},%d0 |isolate dest. reg from cmdreg3b +sto_fp: + lea fpreg_mask,%a1 + moveb (%a1,%d0.w),%d0 |convert reg# to dynamic register mask + tstb LOCAL_SGN(%a0) + beqs is_pos + bsetb #sign_bit,LOCAL_EX(%a0) +is_pos: + fmovemx (%a0),%d0 |move to correct register +| +| if fp0-fp3 is being modified, we must put a copy +| in the USER_FPn variable on the stack because all exception +| handlers restore fp0-fp3 from there. +| + cmpb #0x80,%d0 + bnes not_fp0 + fmovemx %fp0-%fp0,USER_FP0(%a6) + rts +not_fp0: + cmpb #0x40,%d0 + bnes not_fp1 + fmovemx %fp1-%fp1,USER_FP1(%a6) + rts +not_fp1: + cmpb #0x20,%d0 + bnes not_fp2 + fmovemx %fp2-%fp2,USER_FP2(%a6) + rts +not_fp2: + cmpb #0x10,%d0 + bnes not_fp3 + fmovemx %fp3-%fp3,USER_FP3(%a6) + rts +not_fp3: + rts + +E1_sto: + bsrl g_opcls |returns opclass in d0 + cmpib #3,%d0 + beq opc011 |branch if opclass 3 + movel CMDREG1B(%a6),%d0 + bfextu %d0{#6:#3},%d0 |extract destination register + bras sto_fp + +opc011: + bsrl g_dfmtou |returns dest format in d0 +| ;ext=00, sgl=01, dbl=10 + movel %a0,%a1 |save source addr in a1 + movel EXC_EA(%a6),%a0 |get the address + cmpil #0,%d0 |if dest format is extended + beq dest_ext |then branch + cmpil #1,%d0 |if dest format is single + beq dest_sgl |then branch +| +| fall through to dest_dbl +| + +| +| dest_dbl --- write double precision value to user space +| +|Input +| a0 -> destination address +| a1 -> source in extended precision +|Output +| a0 -> destroyed +| a1 -> destroyed +| d0 -> 0 +| +|Changes extended precision to double precision. +| Note: no attempt is made to round the extended value to double. +| dbl_sign = ext_sign +| dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) +| get rid of ext integer bit +| dbl_mant = ext_mant{62:12} +| +| --------------- --------------- --------------- +| extended -> |s| exp | |1| ms mant | | ls mant | +| --------------- --------------- --------------- +| 95 64 63 62 32 31 11 0 +| | | +| | | +| | | +| v v +| --------------- --------------- +| double -> |s|exp| mant | | mant | +| --------------- --------------- +| 63 51 32 31 0 +| +dest_dbl: + clrl %d0 |clear d0 + movew LOCAL_EX(%a1),%d0 |get exponent + subw #0x3fff,%d0 |subtract extended precision bias + cmpw #0x4000,%d0 |check if inf + beqs inf |if so, special case + addw #0x3ff,%d0 |add double precision bias + swap %d0 |d0 now in upper word + lsll #4,%d0 |d0 now in proper place for dbl prec exp + tstb LOCAL_SGN(%a1) + beqs get_mant |if positive, go process mantissa + bsetl #31,%d0 |if negative, put in sign information +| ; before continuing + bras get_mant |go process mantissa +inf: + movel #0x7ff00000,%d0 |load dbl inf exponent + clrl LOCAL_HI(%a1) |clear msb + tstb LOCAL_SGN(%a1) + beqs dbl_inf |if positive, go ahead and write it + bsetl #31,%d0 |if negative put in sign information +dbl_inf: + movel %d0,LOCAL_EX(%a1) |put the new exp back on the stack + bras dbl_wrt +get_mant: + movel LOCAL_HI(%a1),%d1 |get ms mantissa + bfextu %d1{#1:#20},%d1 |get upper 20 bits of ms + orl %d1,%d0 |put these bits in ms word of double + movel %d0,LOCAL_EX(%a1) |put the new exp back on the stack + movel LOCAL_HI(%a1),%d1 |get ms mantissa + movel #21,%d0 |load shift count + lsll %d0,%d1 |put lower 11 bits in upper bits + movel %d1,LOCAL_HI(%a1) |build lower lword in memory + movel LOCAL_LO(%a1),%d1 |get ls mantissa + bfextu %d1{#0:#21},%d0 |get ls 21 bits of double + orl %d0,LOCAL_HI(%a1) |put them in double result +dbl_wrt: + movel #0x8,%d0 |byte count for double precision number + exg %a0,%a1 |a0=supervisor source, a1=user dest + bsrl mem_write |move the number to the user's memory + rts +| +| dest_sgl --- write single precision value to user space +| +|Input +| a0 -> destination address +| a1 -> source in extended precision +| +|Output +| a0 -> destroyed +| a1 -> destroyed +| d0 -> 0 +| +|Changes extended precision to single precision. +| sgl_sign = ext_sign +| sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) +| get rid of ext integer bit +| sgl_mant = ext_mant{62:12} +| +| --------------- --------------- --------------- +| extended -> |s| exp | |1| ms mant | | ls mant | +| --------------- --------------- --------------- +| 95 64 63 62 40 32 31 12 0 +| | | +| | | +| | | +| v v +| --------------- +| single -> |s|exp| mant | +| --------------- +| 31 22 0 +| +dest_sgl: + clrl %d0 + movew LOCAL_EX(%a1),%d0 |get exponent + subw #0x3fff,%d0 |subtract extended precision bias + cmpw #0x4000,%d0 |check if inf + beqs sinf |if so, special case + addw #0x7f,%d0 |add single precision bias + swap %d0 |put exp in upper word of d0 + lsll #7,%d0 |shift it into single exp bits + tstb LOCAL_SGN(%a1) + beqs get_sman |if positive, continue + bsetl #31,%d0 |if negative, put in sign first + bras get_sman |get mantissa +sinf: + movel #0x7f800000,%d0 |load single inf exp to d0 + tstb LOCAL_SGN(%a1) + beqs sgl_wrt |if positive, continue + bsetl #31,%d0 |if negative, put in sign info + bras sgl_wrt + +get_sman: + movel LOCAL_HI(%a1),%d1 |get ms mantissa + bfextu %d1{#1:#23},%d1 |get upper 23 bits of ms + orl %d1,%d0 |put these bits in ms word of single + +sgl_wrt: + movel %d0,L_SCR1(%a6) |put the new exp back on the stack + movel #0x4,%d0 |byte count for single precision number + tstl %a0 |users destination address + beqs sgl_Dn |destination is a data register + exg %a0,%a1 |a0=supervisor source, a1=user dest + leal L_SCR1(%a6),%a0 |point a0 to data + bsrl mem_write |move the number to the user's memory + rts +sgl_Dn: + bsrl get_fline |returns fline word in d0 + andw #0x7,%d0 |isolate register number + movel %d0,%d1 |d1 has size:reg formatted for reg_dest + orl #0x10,%d1 |reg_dest wants size added to reg# + bral reg_dest |size is X, rts in reg_dest will +| ;return to caller of dest_sgl + +dest_ext: + tstb LOCAL_SGN(%a1) |put back sign into exponent word + beqs dstx_cont + bsetb #sign_bit,LOCAL_EX(%a1) +dstx_cont: + clrb LOCAL_SGN(%a1) |clear out the sign byte + + movel #0x0c,%d0 |byte count for extended number + exg %a0,%a1 |a0=supervisor source, a1=user dest + bsrl mem_write |move the number to the user's memory + rts + + |end diff --git a/arch/m68k/fpsp040/x_unfl.S b/arch/m68k/fpsp040/x_unfl.S new file mode 100644 index 000000000..eb772ff3b --- /dev/null +++ b/arch/m68k/fpsp040/x_unfl.S @@ -0,0 +1,268 @@ +| +| x_unfl.sa 3.4 7/1/91 +| +| fpsp_unfl --- FPSP handler for underflow exception +| +| Trap disabled results +| For 881/2 compatibility, sw must denormalize the intermediate +| result, then store the result. Denormalization is accomplished +| by taking the intermediate result (which is always normalized) and +| shifting the mantissa right while incrementing the exponent until +| it is equal to the denormalized exponent for the destination +| format. After denormalization, the result is rounded to the +| destination format. +| +| Trap enabled results +| All trap disabled code applies. In addition the exceptional +| operand needs to made available to the user with a bias of $6000 +| added to the exponent. +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_UNFL: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref denorm + |xref round + |xref store + |xref g_rndpr + |xref g_opcls + |xref g_dfmtou + |xref real_unfl + |xref real_inex + |xref fpsp_done + |xref b1238_fix + + .global fpsp_unfl +fpsp_unfl: + link %a6,#-LOCAL_SIZE + fsave -(%a7) + moveml %d0-%d1/%a0-%a1,USER_DA(%a6) + fmovemx %fp0-%fp3,USER_FP0(%a6) + fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) + +| + bsrl unf_res |denormalize, round & store interm op +| +| If underflow exceptions are not enabled, check for inexact +| exception +| + btstb #unfl_bit,FPCR_ENABLE(%a6) + beqs ck_inex + + btstb #E3,E_BYTE(%a6) + beqs no_e3_1 +| +| Clear dirty bit on dest resister in the frame before branching +| to b1238_fix. +| + bfextu CMDREG3B(%a6){#6:#3},%d0 |get dest reg no + bclrb %d0,FPR_DIRTY_BITS(%a6) |clr dest dirty bit + bsrl b1238_fix |test for bug1238 case + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) +no_e3_1: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_unfl +| +| It is possible to have either inex2 or inex1 exceptions with the +| unfl. If the inex enable bit is set in the FPCR, and either +| inex2 or inex1 occurred, we must clean up and branch to the +| real inex handler. +| +ck_inex: + moveb FPCR_ENABLE(%a6),%d0 + andb FPSR_EXCEPT(%a6),%d0 + andib #0x3,%d0 + beqs unfl_done + +| +| Inexact enabled and reported, and we must take an inexact exception +| +take_inex: + btstb #E3,E_BYTE(%a6) + beqs no_e3_2 +| +| Clear dirty bit on dest resister in the frame before branching +| to b1238_fix. +| + bfextu CMDREG3B(%a6){#6:#3},%d0 |get dest reg no + bclrb %d0,FPR_DIRTY_BITS(%a6) |clr dest dirty bit + bsrl b1238_fix |test for bug1238 case + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) +no_e3_2: + moveb #INEX_VEC,EXC_VEC+1(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral real_inex + +unfl_done: + bclrb #E3,E_BYTE(%a6) + beqs e1_set |if set then branch +| +| Clear dirty bit on dest resister in the frame before branching +| to b1238_fix. +| + bfextu CMDREG3B(%a6){#6:#3},%d0 |get dest reg no + bclrb %d0,FPR_DIRTY_BITS(%a6) |clr dest dirty bit + bsrl b1238_fix |test for bug1238 case + movel USER_FPSR(%a6),FPSR_SHADOW(%a6) + orl #sx_mask,E_BYTE(%a6) + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + frestore (%a7)+ + unlk %a6 + bral fpsp_done +e1_set: + moveml USER_DA(%a6),%d0-%d1/%a0-%a1 + fmovemx USER_FP0(%a6),%fp0-%fp3 + fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar + unlk %a6 + bral fpsp_done +| +| unf_res --- underflow result calculation +| +unf_res: + bsrl g_rndpr |returns RND_PREC in d0 0=ext, +| ;1=sgl, 2=dbl +| ;we need the RND_PREC in the +| ;upper word for round + movew #0,-(%a7) + movew %d0,-(%a7) |copy RND_PREC to stack +| +| +| If the exception bit set is E3, the exceptional operand from the +| fpu is in WBTEMP; else it is in FPTEMP. +| + btstb #E3,E_BYTE(%a6) + beqs unf_E1 +unf_E3: + lea WBTEMP(%a6),%a0 |a0 now points to operand +| +| Test for fsgldiv and fsglmul. If the inst was one of these, then +| force the precision to extended for the denorm routine. Use +| the user's precision for the round routine. +| + movew CMDREG3B(%a6),%d1 |check for fsgldiv or fsglmul + andiw #0x7f,%d1 + cmpiw #0x30,%d1 |check for sgldiv + beqs unf_sgl + cmpiw #0x33,%d1 |check for sglmul + bnes unf_cont |if not, use fpcr prec in round +unf_sgl: + clrl %d0 + movew #0x1,(%a7) |override g_rndpr precision +| ;force single + bras unf_cont +unf_E1: + lea FPTEMP(%a6),%a0 |a0 now points to operand +unf_cont: + bclrb #sign_bit,LOCAL_EX(%a0) |clear sign bit + sne LOCAL_SGN(%a0) |store sign + + bsrl denorm |returns denorm, a0 points to it +| +| WARNING: +| ;d0 has guard,round sticky bit +| ;make sure that it is not corrupted +| ;before it reaches the round subroutine +| ;also ensure that a0 isn't corrupted + +| +| Set up d1 for round subroutine d1 contains the PREC/MODE +| information respectively on upper/lower register halves. +| + bfextu FPCR_MODE(%a6){#2:#2},%d1 |get mode from FPCR +| ;mode in lower d1 + addl (%a7)+,%d1 |merge PREC/MODE +| +| WARNING: a0 and d0 are assumed to be intact between the denorm and +| round subroutines. All code between these two subroutines +| must not corrupt a0 and d0. +| +| +| Perform Round +| Input: a0 points to input operand +| d0{31:29} has guard, round, sticky +| d1{01:00} has rounding mode +| d1{17:16} has rounding precision +| Output: a0 points to rounded operand +| + + bsrl round |returns rounded denorm at (a0) +| +| Differentiate between store to memory vs. store to register +| +unf_store: + bsrl g_opcls |returns opclass in d0{2:0} + cmpib #0x3,%d0 + bnes not_opc011 +| +| At this point, a store to memory is pending +| +opc011: + bsrl g_dfmtou + tstb %d0 + beqs ext_opc011 |If extended, do not subtract +| ;If destination format is sgl/dbl, + tstb LOCAL_HI(%a0) |If rounded result is normal,don't +| ;subtract + bmis ext_opc011 + subqw #1,LOCAL_EX(%a0) |account for denorm bias vs. +| ;normalized bias +| ; normalized denormalized +| ;single $7f $7e +| ;double $3ff $3fe +| +ext_opc011: + bsrl store |stores to memory + bras unf_done |finish up + +| +| At this point, a store to a float register is pending +| +not_opc011: + bsrl store |stores to float register +| ;a0 is not corrupted on a store to a +| ;float register. +| +| Set the condition codes according to result +| + tstl LOCAL_HI(%a0) |check upper mantissa + bnes ck_sgn + tstl LOCAL_LO(%a0) |check lower mantissa + bnes ck_sgn + bsetb #z_bit,FPSR_CC(%a6) |set condition codes if zero +ck_sgn: + btstb #sign_bit,LOCAL_EX(%a0) |check the sign bit + beqs unf_done + bsetb #neg_bit,FPSR_CC(%a6) + +| +| Finish. +| +unf_done: + btstb #inex2_bit,FPSR_EXCEPT(%a6) + beqs no_aunfl + bsetb #aunfl_bit,FPSR_AEXCEPT(%a6) +no_aunfl: + rts + + |end diff --git a/arch/m68k/fpsp040/x_unimp.S b/arch/m68k/fpsp040/x_unimp.S new file mode 100644 index 000000000..6f382b212 --- /dev/null +++ b/arch/m68k/fpsp040/x_unimp.S @@ -0,0 +1,76 @@ +| +| x_unimp.sa 3.3 7/1/91 +| +| fpsp_unimp --- FPSP handler for unimplemented instruction +| exception. +| +| Invoked when the user program encounters a floating-point +| op-code that hardware does not support. Trap vector# 11 +| (See table 8-1 MC68030 User's Manual). +| +| +| Note: An fsave for an unimplemented inst. will create a short +| fsave stack. +| +| Input: 1. Six word stack frame for unimplemented inst, four word +| for illegal +| (See table 8-7 MC68030 User's Manual). +| 2. Unimp (short) fsave state frame created here by fsave +| instruction. +| +| +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_UNIMP: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref get_op + |xref do_func + |xref sto_res + |xref gen_except + |xref fpsp_fmt_error + + .global fpsp_unimp + .global uni_2 +fpsp_unimp: + link %a6,#-LOCAL_SIZE + fsave -(%a7) +uni_2: + moveml %d0-%d1/%a0-%a1,USER_DA(%a6) + fmovemx %fp0-%fp3,USER_FP0(%a6) + fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) + moveb (%a7),%d0 |test for valid version num + andib #0xf0,%d0 |test for $4x + cmpib #VER_4,%d0 |must be $4x or exit + bnel fpsp_fmt_error +| +| Temporary D25B Fix +| The following lines are used to ensure that the FPSR +| exception byte and condition codes are clear before proceeding +| + movel USER_FPSR(%a6),%d0 + andl #0xFF00FF,%d0 |clear all but accrued exceptions + movel %d0,USER_FPSR(%a6) + fmovel #0,%FPSR |clear all user bits + fmovel #0,%FPCR |clear all user exceptions for FPSP + + clrb UFLG_TMP(%a6) |clr flag for unsupp data + + bsrl get_op |go get operand(s) + clrb STORE_FLG(%a6) + bsrl do_func |do the function + fsave -(%a7) |capture possible exc state + tstb STORE_FLG(%a6) + bnes no_store |if STORE_FLG is set, no store + bsrl sto_res |store the result in user space +no_store: + bral gen_except |post any exceptions and return + + |end diff --git a/arch/m68k/fpsp040/x_unsupp.S b/arch/m68k/fpsp040/x_unsupp.S new file mode 100644 index 000000000..d7cf46208 --- /dev/null +++ b/arch/m68k/fpsp040/x_unsupp.S @@ -0,0 +1,82 @@ +| +| x_unsupp.sa 3.3 7/1/91 +| +| fpsp_unsupp --- FPSP handler for unsupported data type exception +| +| Trap vector #55 (See table 8-1 Mc68030 User's manual). +| Invoked when the user program encounters a data format (packed) that +| hardware does not support or a data type (denormalized numbers or un- +| normalized numbers). +| Normalizes denorms and unnorms, unpacks packed numbers then stores +| them back into the machine to let the 040 finish the operation. +| +| Unsupp calls two routines: +| 1. get_op - gets the operand(s) +| 2. res_func - restore the function back into the 040 or +| if fmove.p fpm,<ea> then pack source (fpm) +| and store in users memory <ea>. +| +| Input: Long fsave stack frame +| +| + +| Copyright (C) Motorola, Inc. 1990 +| All Rights Reserved +| +| For details on the license for this file, please see the +| file, README, in this same directory. + +X_UNSUPP: |idnt 2,1 | Motorola 040 Floating Point Software Package + + |section 8 + +#include "fpsp.h" + + |xref get_op + |xref res_func + |xref gen_except + |xref fpsp_fmt_error + + .global fpsp_unsupp +fpsp_unsupp: +| + link %a6,#-LOCAL_SIZE + fsave -(%a7) + moveml %d0-%d1/%a0-%a1,USER_DA(%a6) + fmovemx %fp0-%fp3,USER_FP0(%a6) + fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) + + + moveb (%a7),VER_TMP(%a6) |save version number + moveb (%a7),%d0 |test for valid version num + andib #0xf0,%d0 |test for $4x + cmpib #VER_4,%d0 |must be $4x or exit + bnel fpsp_fmt_error + + fmovel #0,%FPSR |clear all user status bits + fmovel #0,%FPCR |clear all user control bits +| +| The following lines are used to ensure that the FPSR +| exception byte and condition codes are clear before proceeding, +| except in the case of fmove, which leaves the cc's intact. +| +unsupp_con: + movel USER_FPSR(%a6),%d1 + btst #5,CMDREG1B(%a6) |looking for fmove out + bne fmove_con + andl #0xFF00FF,%d1 |clear all but aexcs and qbyte + bras end_fix +fmove_con: + andl #0x0FFF40FF,%d1 |clear all but cc's, snan bit, aexcs, and qbyte +end_fix: + movel %d1,USER_FPSR(%a6) + + st UFLG_TMP(%a6) |set flag for unsupp data + + bsrl get_op |everything okay, go get operand(s) + bsrl res_func |fix up stack frame so can restore it + clrl -(%a7) + moveb VER_TMP(%a6),(%a7) |move idle fmt word to top of stack + bral gen_except +| + |end |