diff options
author | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
---|---|---|
committer | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
commit | 57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch) | |
tree | 5e910f0e82173f4ef4f51111366a3f1299037a7b /arch/tile/kernel/time.c |
Initial import
Diffstat (limited to 'arch/tile/kernel/time.c')
-rw-r--r-- | arch/tile/kernel/time.c | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/arch/tile/kernel/time.c b/arch/tile/kernel/time.c new file mode 100644 index 000000000..00178ecf9 --- /dev/null +++ b/arch/tile/kernel/time.c @@ -0,0 +1,300 @@ +/* + * Copyright 2010 Tilera Corporation. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, version 2. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or + * NON INFRINGEMENT. See the GNU General Public License for + * more details. + * + * Support the cycle counter clocksource and tile timer clock event device. + */ + +#include <linux/time.h> +#include <linux/timex.h> +#include <linux/clocksource.h> +#include <linux/clockchips.h> +#include <linux/hardirq.h> +#include <linux/sched.h> +#include <linux/smp.h> +#include <linux/delay.h> +#include <linux/module.h> +#include <linux/timekeeper_internal.h> +#include <asm/irq_regs.h> +#include <asm/traps.h> +#include <asm/vdso.h> +#include <hv/hypervisor.h> +#include <arch/interrupts.h> +#include <arch/spr_def.h> + + +/* + * Define the cycle counter clock source. + */ + +/* How many cycles per second we are running at. */ +static cycles_t cycles_per_sec __write_once; + +cycles_t get_clock_rate(void) +{ + return cycles_per_sec; +} + +#if CHIP_HAS_SPLIT_CYCLE() +cycles_t get_cycles(void) +{ + unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH); + unsigned int low = __insn_mfspr(SPR_CYCLE_LOW); + unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH); + + while (unlikely(high != high2)) { + low = __insn_mfspr(SPR_CYCLE_LOW); + high = high2; + high2 = __insn_mfspr(SPR_CYCLE_HIGH); + } + + return (((cycles_t)high) << 32) | low; +} +EXPORT_SYMBOL(get_cycles); +#endif + +/* + * We use a relatively small shift value so that sched_clock() + * won't wrap around very often. + */ +#define SCHED_CLOCK_SHIFT 10 + +static unsigned long sched_clock_mult __write_once; + +static cycles_t clocksource_get_cycles(struct clocksource *cs) +{ + return get_cycles(); +} + +static struct clocksource cycle_counter_cs = { + .name = "cycle counter", + .rating = 300, + .read = clocksource_get_cycles, + .mask = CLOCKSOURCE_MASK(64), + .flags = CLOCK_SOURCE_IS_CONTINUOUS, +}; + +/* + * Called very early from setup_arch() to set cycles_per_sec. + * We initialize it early so we can use it to set up loops_per_jiffy. + */ +void __init setup_clock(void) +{ + cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED); + sched_clock_mult = + clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT); +} + +void __init calibrate_delay(void) +{ + loops_per_jiffy = get_clock_rate() / HZ; + pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n", + loops_per_jiffy / (500000 / HZ), + (loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy); +} + +/* Called fairly late in init/main.c, but before we go smp. */ +void __init time_init(void) +{ + /* Initialize and register the clock source. */ + clocksource_register_hz(&cycle_counter_cs, cycles_per_sec); + + /* Start up the tile-timer interrupt source on the boot cpu. */ + setup_tile_timer(); +} + +/* + * Define the tile timer clock event device. The timer is driven by + * the TILE_TIMER_CONTROL register, which consists of a 31-bit down + * counter, plus bit 31, which signifies that the counter has wrapped + * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be + * raised as long as bit 31 is set. + * + * The TILE_MINSEC value represents the largest range of real-time + * we can possibly cover with the timer, based on MAX_TICK combined + * with the slowest reasonable clock rate we might run at. + */ + +#define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */ +#define TILE_MINSEC 5 /* timer covers no more than 5 seconds */ + +static int tile_timer_set_next_event(unsigned long ticks, + struct clock_event_device *evt) +{ + BUG_ON(ticks > MAX_TICK); + __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks); + arch_local_irq_unmask_now(INT_TILE_TIMER); + return 0; +} + +/* + * Whenever anyone tries to change modes, we just mask interrupts + * and wait for the next event to get set. + */ +static void tile_timer_set_mode(enum clock_event_mode mode, + struct clock_event_device *evt) +{ + arch_local_irq_mask_now(INT_TILE_TIMER); +} + +/* + * Set min_delta_ns to 1 microsecond, since it takes about + * that long to fire the interrupt. + */ +static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = { + .name = "tile timer", + .features = CLOCK_EVT_FEAT_ONESHOT, + .min_delta_ns = 1000, + .rating = 100, + .irq = -1, + .set_next_event = tile_timer_set_next_event, + .set_mode = tile_timer_set_mode, +}; + +void setup_tile_timer(void) +{ + struct clock_event_device *evt = this_cpu_ptr(&tile_timer); + + /* Fill in fields that are speed-specific. */ + clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC); + evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt); + + /* Mark as being for this cpu only. */ + evt->cpumask = cpumask_of(smp_processor_id()); + + /* Start out with timer not firing. */ + arch_local_irq_mask_now(INT_TILE_TIMER); + + /* Register tile timer. */ + clockevents_register_device(evt); +} + +/* Called from the interrupt vector. */ +void do_timer_interrupt(struct pt_regs *regs, int fault_num) +{ + struct pt_regs *old_regs = set_irq_regs(regs); + struct clock_event_device *evt = this_cpu_ptr(&tile_timer); + + /* + * Mask the timer interrupt here, since we are a oneshot timer + * and there are now by definition no events pending. + */ + arch_local_irq_mask(INT_TILE_TIMER); + + /* Track time spent here in an interrupt context */ + irq_enter(); + + /* Track interrupt count. */ + __this_cpu_inc(irq_stat.irq_timer_count); + + /* Call the generic timer handler */ + evt->event_handler(evt); + + /* + * Track time spent against the current process again and + * process any softirqs if they are waiting. + */ + irq_exit(); + + set_irq_regs(old_regs); +} + +/* + * Scheduler clock - returns current time in nanosec units. + * Note that with LOCKDEP, this is called during lockdep_init(), and + * we will claim that sched_clock() is zero for a little while, until + * we run setup_clock(), above. + */ +unsigned long long sched_clock(void) +{ + return clocksource_cyc2ns(get_cycles(), + sched_clock_mult, SCHED_CLOCK_SHIFT); +} + +int setup_profiling_timer(unsigned int multiplier) +{ + return -EINVAL; +} + +/* + * Use the tile timer to convert nsecs to core clock cycles, relying + * on it having the same frequency as SPR_CYCLE. + */ +cycles_t ns2cycles(unsigned long nsecs) +{ + /* + * We do not have to disable preemption here as each core has the same + * clock frequency. + */ + struct clock_event_device *dev = raw_cpu_ptr(&tile_timer); + + /* + * as in clocksource.h and x86's timer.h, we split the calculation + * into 2 parts to avoid unecessary overflow of the intermediate + * value. This will not lead to any loss of precision. + */ + u64 quot = (u64)nsecs >> dev->shift; + u64 rem = (u64)nsecs & ((1ULL << dev->shift) - 1); + return quot * dev->mult + ((rem * dev->mult) >> dev->shift); +} + +void update_vsyscall_tz(void) +{ + write_seqcount_begin(&vdso_data->tz_seq); + vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; + vdso_data->tz_dsttime = sys_tz.tz_dsttime; + write_seqcount_end(&vdso_data->tz_seq); +} + +void update_vsyscall(struct timekeeper *tk) +{ + if (tk->tkr_mono.clock != &cycle_counter_cs) + return; + + write_seqcount_begin(&vdso_data->tb_seq); + + vdso_data->cycle_last = tk->tkr_mono.cycle_last; + vdso_data->mask = tk->tkr_mono.mask; + vdso_data->mult = tk->tkr_mono.mult; + vdso_data->shift = tk->tkr_mono.shift; + + vdso_data->wall_time_sec = tk->xtime_sec; + vdso_data->wall_time_snsec = tk->tkr_mono.xtime_nsec; + + vdso_data->monotonic_time_sec = tk->xtime_sec + + tk->wall_to_monotonic.tv_sec; + vdso_data->monotonic_time_snsec = tk->tkr_mono.xtime_nsec + + ((u64)tk->wall_to_monotonic.tv_nsec + << tk->tkr_mono.shift); + while (vdso_data->monotonic_time_snsec >= + (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { + vdso_data->monotonic_time_snsec -= + ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift; + vdso_data->monotonic_time_sec++; + } + + vdso_data->wall_time_coarse_sec = tk->xtime_sec; + vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >> + tk->tkr_mono.shift); + + vdso_data->monotonic_time_coarse_sec = + vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec; + vdso_data->monotonic_time_coarse_nsec = + vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec; + + while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) { + vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC; + vdso_data->monotonic_time_coarse_sec++; + } + + write_seqcount_end(&vdso_data->tb_seq); +} |