diff options
author | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-09-08 01:01:14 -0300 |
---|---|---|
committer | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-09-08 01:01:14 -0300 |
commit | e5fd91f1ef340da553f7a79da9540c3db711c937 (patch) | |
tree | b11842027dc6641da63f4bcc524f8678263304a3 /arch/x86/entry/entry_64.S | |
parent | 2a9b0348e685a63d97486f6749622b61e9e3292f (diff) |
Linux-libre 4.2-gnu
Diffstat (limited to 'arch/x86/entry/entry_64.S')
-rw-r--r-- | arch/x86/entry/entry_64.S | 1557 |
1 files changed, 1557 insertions, 0 deletions
diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S new file mode 100644 index 000000000..8cb3e438f --- /dev/null +++ b/arch/x86/entry/entry_64.S @@ -0,0 +1,1557 @@ +/* + * linux/arch/x86_64/entry.S + * + * Copyright (C) 1991, 1992 Linus Torvalds + * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs + * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> + * + * entry.S contains the system-call and fault low-level handling routines. + * + * Some of this is documented in Documentation/x86/entry_64.txt + * + * A note on terminology: + * - iret frame: Architecture defined interrupt frame from SS to RIP + * at the top of the kernel process stack. + * + * Some macro usage: + * - ENTRY/END: Define functions in the symbol table. + * - TRACE_IRQ_*: Trace hardirq state for lock debugging. + * - idtentry: Define exception entry points. + */ +#include <linux/linkage.h> +#include <asm/segment.h> +#include <asm/cache.h> +#include <asm/errno.h> +#include "calling.h" +#include <asm/asm-offsets.h> +#include <asm/msr.h> +#include <asm/unistd.h> +#include <asm/thread_info.h> +#include <asm/hw_irq.h> +#include <asm/page_types.h> +#include <asm/irqflags.h> +#include <asm/paravirt.h> +#include <asm/percpu.h> +#include <asm/asm.h> +#include <asm/context_tracking.h> +#include <asm/smap.h> +#include <asm/pgtable_types.h> +#include <linux/err.h> + +/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */ +#include <linux/elf-em.h> +#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) +#define __AUDIT_ARCH_64BIT 0x80000000 +#define __AUDIT_ARCH_LE 0x40000000 + +.code64 +.section .entry.text, "ax" + +#ifdef CONFIG_PARAVIRT +ENTRY(native_usergs_sysret64) + swapgs + sysretq +ENDPROC(native_usergs_sysret64) +#endif /* CONFIG_PARAVIRT */ + +.macro TRACE_IRQS_IRETQ +#ifdef CONFIG_TRACE_IRQFLAGS + bt $9, EFLAGS(%rsp) /* interrupts off? */ + jnc 1f + TRACE_IRQS_ON +1: +#endif +.endm + +/* + * When dynamic function tracer is enabled it will add a breakpoint + * to all locations that it is about to modify, sync CPUs, update + * all the code, sync CPUs, then remove the breakpoints. In this time + * if lockdep is enabled, it might jump back into the debug handler + * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF). + * + * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to + * make sure the stack pointer does not get reset back to the top + * of the debug stack, and instead just reuses the current stack. + */ +#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS) + +.macro TRACE_IRQS_OFF_DEBUG + call debug_stack_set_zero + TRACE_IRQS_OFF + call debug_stack_reset +.endm + +.macro TRACE_IRQS_ON_DEBUG + call debug_stack_set_zero + TRACE_IRQS_ON + call debug_stack_reset +.endm + +.macro TRACE_IRQS_IRETQ_DEBUG + bt $9, EFLAGS(%rsp) /* interrupts off? */ + jnc 1f + TRACE_IRQS_ON_DEBUG +1: +.endm + +#else +# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF +# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON +# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ +#endif + +/* + * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. + * + * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, + * then loads new ss, cs, and rip from previously programmed MSRs. + * rflags gets masked by a value from another MSR (so CLD and CLAC + * are not needed). SYSCALL does not save anything on the stack + * and does not change rsp. + * + * Registers on entry: + * rax system call number + * rcx return address + * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) + * rdi arg0 + * rsi arg1 + * rdx arg2 + * r10 arg3 (needs to be moved to rcx to conform to C ABI) + * r8 arg4 + * r9 arg5 + * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) + * + * Only called from user space. + * + * When user can change pt_regs->foo always force IRET. That is because + * it deals with uncanonical addresses better. SYSRET has trouble + * with them due to bugs in both AMD and Intel CPUs. + */ + +ENTRY(entry_SYSCALL_64) + /* + * Interrupts are off on entry. + * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, + * it is too small to ever cause noticeable irq latency. + */ + SWAPGS_UNSAFE_STACK + /* + * A hypervisor implementation might want to use a label + * after the swapgs, so that it can do the swapgs + * for the guest and jump here on syscall. + */ +GLOBAL(entry_SYSCALL_64_after_swapgs) + + movq %rsp, PER_CPU_VAR(rsp_scratch) + movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp + + /* Construct struct pt_regs on stack */ + pushq $__USER_DS /* pt_regs->ss */ + pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */ + /* + * Re-enable interrupts. + * We use 'rsp_scratch' as a scratch space, hence irq-off block above + * must execute atomically in the face of possible interrupt-driven + * task preemption. We must enable interrupts only after we're done + * with using rsp_scratch: + */ + ENABLE_INTERRUPTS(CLBR_NONE) + pushq %r11 /* pt_regs->flags */ + pushq $__USER_CS /* pt_regs->cs */ + pushq %rcx /* pt_regs->ip */ + pushq %rax /* pt_regs->orig_ax */ + pushq %rdi /* pt_regs->di */ + pushq %rsi /* pt_regs->si */ + pushq %rdx /* pt_regs->dx */ + pushq %rcx /* pt_regs->cx */ + pushq $-ENOSYS /* pt_regs->ax */ + pushq %r8 /* pt_regs->r8 */ + pushq %r9 /* pt_regs->r9 */ + pushq %r10 /* pt_regs->r10 */ + pushq %r11 /* pt_regs->r11 */ + sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */ + + testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) + jnz tracesys +entry_SYSCALL_64_fastpath: +#if __SYSCALL_MASK == ~0 + cmpq $__NR_syscall_max, %rax +#else + andl $__SYSCALL_MASK, %eax + cmpl $__NR_syscall_max, %eax +#endif + ja 1f /* return -ENOSYS (already in pt_regs->ax) */ + movq %r10, %rcx + call *sys_call_table(, %rax, 8) + movq %rax, RAX(%rsp) +1: +/* + * Syscall return path ending with SYSRET (fast path). + * Has incompletely filled pt_regs. + */ + LOCKDEP_SYS_EXIT + /* + * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, + * it is too small to ever cause noticeable irq latency. + */ + DISABLE_INTERRUPTS(CLBR_NONE) + + /* + * We must check ti flags with interrupts (or at least preemption) + * off because we must *never* return to userspace without + * processing exit work that is enqueued if we're preempted here. + * In particular, returning to userspace with any of the one-shot + * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is + * very bad. + */ + testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) + jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */ + + RESTORE_C_REGS_EXCEPT_RCX_R11 + movq RIP(%rsp), %rcx + movq EFLAGS(%rsp), %r11 + movq RSP(%rsp), %rsp + /* + * 64-bit SYSRET restores rip from rcx, + * rflags from r11 (but RF and VM bits are forced to 0), + * cs and ss are loaded from MSRs. + * Restoration of rflags re-enables interrupts. + * + * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss + * descriptor is not reinitialized. This means that we should + * avoid SYSRET with SS == NULL, which could happen if we schedule, + * exit the kernel, and re-enter using an interrupt vector. (All + * interrupt entries on x86_64 set SS to NULL.) We prevent that + * from happening by reloading SS in __switch_to. (Actually + * detecting the failure in 64-bit userspace is tricky but can be + * done.) + */ + USERGS_SYSRET64 + + /* Do syscall entry tracing */ +tracesys: + movq %rsp, %rdi + movl $AUDIT_ARCH_X86_64, %esi + call syscall_trace_enter_phase1 + test %rax, %rax + jnz tracesys_phase2 /* if needed, run the slow path */ + RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */ + movq ORIG_RAX(%rsp), %rax + jmp entry_SYSCALL_64_fastpath /* and return to the fast path */ + +tracesys_phase2: + SAVE_EXTRA_REGS + movq %rsp, %rdi + movl $AUDIT_ARCH_X86_64, %esi + movq %rax, %rdx + call syscall_trace_enter_phase2 + + /* + * Reload registers from stack in case ptrace changed them. + * We don't reload %rax because syscall_trace_entry_phase2() returned + * the value it wants us to use in the table lookup. + */ + RESTORE_C_REGS_EXCEPT_RAX + RESTORE_EXTRA_REGS +#if __SYSCALL_MASK == ~0 + cmpq $__NR_syscall_max, %rax +#else + andl $__SYSCALL_MASK, %eax + cmpl $__NR_syscall_max, %eax +#endif + ja 1f /* return -ENOSYS (already in pt_regs->ax) */ + movq %r10, %rcx /* fixup for C */ + call *sys_call_table(, %rax, 8) + movq %rax, RAX(%rsp) +1: + /* Use IRET because user could have changed pt_regs->foo */ + +/* + * Syscall return path ending with IRET. + * Has correct iret frame. + */ +GLOBAL(int_ret_from_sys_call) + DISABLE_INTERRUPTS(CLBR_NONE) +int_ret_from_sys_call_irqs_off: /* jumps come here from the irqs-off SYSRET path */ + TRACE_IRQS_OFF + movl $_TIF_ALLWORK_MASK, %edi + /* edi: mask to check */ +GLOBAL(int_with_check) + LOCKDEP_SYS_EXIT_IRQ + GET_THREAD_INFO(%rcx) + movl TI_flags(%rcx), %edx + andl %edi, %edx + jnz int_careful + andl $~TS_COMPAT, TI_status(%rcx) + jmp syscall_return + + /* + * Either reschedule or signal or syscall exit tracking needed. + * First do a reschedule test. + * edx: work, edi: workmask + */ +int_careful: + bt $TIF_NEED_RESCHED, %edx + jnc int_very_careful + TRACE_IRQS_ON + ENABLE_INTERRUPTS(CLBR_NONE) + pushq %rdi + SCHEDULE_USER + popq %rdi + DISABLE_INTERRUPTS(CLBR_NONE) + TRACE_IRQS_OFF + jmp int_with_check + + /* handle signals and tracing -- both require a full pt_regs */ +int_very_careful: + TRACE_IRQS_ON + ENABLE_INTERRUPTS(CLBR_NONE) + SAVE_EXTRA_REGS + /* Check for syscall exit trace */ + testl $_TIF_WORK_SYSCALL_EXIT, %edx + jz int_signal + pushq %rdi + leaq 8(%rsp), %rdi /* &ptregs -> arg1 */ + call syscall_trace_leave + popq %rdi + andl $~(_TIF_WORK_SYSCALL_EXIT|_TIF_SYSCALL_EMU), %edi + jmp int_restore_rest + +int_signal: + testl $_TIF_DO_NOTIFY_MASK, %edx + jz 1f + movq %rsp, %rdi /* &ptregs -> arg1 */ + xorl %esi, %esi /* oldset -> arg2 */ + call do_notify_resume +1: movl $_TIF_WORK_MASK, %edi +int_restore_rest: + RESTORE_EXTRA_REGS + DISABLE_INTERRUPTS(CLBR_NONE) + TRACE_IRQS_OFF + jmp int_with_check + +syscall_return: + /* The IRETQ could re-enable interrupts: */ + DISABLE_INTERRUPTS(CLBR_ANY) + TRACE_IRQS_IRETQ + + /* + * Try to use SYSRET instead of IRET if we're returning to + * a completely clean 64-bit userspace context. + */ + movq RCX(%rsp), %rcx + movq RIP(%rsp), %r11 + cmpq %rcx, %r11 /* RCX == RIP */ + jne opportunistic_sysret_failed + + /* + * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP + * in kernel space. This essentially lets the user take over + * the kernel, since userspace controls RSP. + * + * If width of "canonical tail" ever becomes variable, this will need + * to be updated to remain correct on both old and new CPUs. + */ + .ifne __VIRTUAL_MASK_SHIFT - 47 + .error "virtual address width changed -- SYSRET checks need update" + .endif + + /* Change top 16 bits to be the sign-extension of 47th bit */ + shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx + sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx + + /* If this changed %rcx, it was not canonical */ + cmpq %rcx, %r11 + jne opportunistic_sysret_failed + + cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ + jne opportunistic_sysret_failed + + movq R11(%rsp), %r11 + cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ + jne opportunistic_sysret_failed + + /* + * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET, + * restoring TF results in a trap from userspace immediately after + * SYSRET. This would cause an infinite loop whenever #DB happens + * with register state that satisfies the opportunistic SYSRET + * conditions. For example, single-stepping this user code: + * + * movq $stuck_here, %rcx + * pushfq + * popq %r11 + * stuck_here: + * + * would never get past 'stuck_here'. + */ + testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 + jnz opportunistic_sysret_failed + + /* nothing to check for RSP */ + + cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ + jne opportunistic_sysret_failed + + /* + * We win! This label is here just for ease of understanding + * perf profiles. Nothing jumps here. + */ +syscall_return_via_sysret: + /* rcx and r11 are already restored (see code above) */ + RESTORE_C_REGS_EXCEPT_RCX_R11 + movq RSP(%rsp), %rsp + USERGS_SYSRET64 + +opportunistic_sysret_failed: + SWAPGS + jmp restore_c_regs_and_iret +END(entry_SYSCALL_64) + + + .macro FORK_LIKE func +ENTRY(stub_\func) + SAVE_EXTRA_REGS 8 + jmp sys_\func +END(stub_\func) + .endm + + FORK_LIKE clone + FORK_LIKE fork + FORK_LIKE vfork + +ENTRY(stub_execve) + call sys_execve +return_from_execve: + testl %eax, %eax + jz 1f + /* exec failed, can use fast SYSRET code path in this case */ + ret +1: + /* must use IRET code path (pt_regs->cs may have changed) */ + addq $8, %rsp + ZERO_EXTRA_REGS + movq %rax, RAX(%rsp) + jmp int_ret_from_sys_call +END(stub_execve) +/* + * Remaining execve stubs are only 7 bytes long. + * ENTRY() often aligns to 16 bytes, which in this case has no benefits. + */ + .align 8 +GLOBAL(stub_execveat) + call sys_execveat + jmp return_from_execve +END(stub_execveat) + +#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) + .align 8 +GLOBAL(stub_x32_execve) +GLOBAL(stub32_execve) + call compat_sys_execve + jmp return_from_execve +END(stub32_execve) +END(stub_x32_execve) + .align 8 +GLOBAL(stub_x32_execveat) +GLOBAL(stub32_execveat) + call compat_sys_execveat + jmp return_from_execve +END(stub32_execveat) +END(stub_x32_execveat) +#endif + +/* + * sigreturn is special because it needs to restore all registers on return. + * This cannot be done with SYSRET, so use the IRET return path instead. + */ +ENTRY(stub_rt_sigreturn) + /* + * SAVE_EXTRA_REGS result is not normally needed: + * sigreturn overwrites all pt_regs->GPREGS. + * But sigreturn can fail (!), and there is no easy way to detect that. + * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error, + * we SAVE_EXTRA_REGS here. + */ + SAVE_EXTRA_REGS 8 + call sys_rt_sigreturn +return_from_stub: + addq $8, %rsp + RESTORE_EXTRA_REGS + movq %rax, RAX(%rsp) + jmp int_ret_from_sys_call +END(stub_rt_sigreturn) + +#ifdef CONFIG_X86_X32_ABI +ENTRY(stub_x32_rt_sigreturn) + SAVE_EXTRA_REGS 8 + call sys32_x32_rt_sigreturn + jmp return_from_stub +END(stub_x32_rt_sigreturn) +#endif + +/* + * A newly forked process directly context switches into this address. + * + * rdi: prev task we switched from + */ +ENTRY(ret_from_fork) + + LOCK ; btr $TIF_FORK, TI_flags(%r8) + + pushq $0x0002 + popfq /* reset kernel eflags */ + + call schedule_tail /* rdi: 'prev' task parameter */ + + RESTORE_EXTRA_REGS + + testb $3, CS(%rsp) /* from kernel_thread? */ + + /* + * By the time we get here, we have no idea whether our pt_regs, + * ti flags, and ti status came from the 64-bit SYSCALL fast path, + * the slow path, or one of the 32-bit compat paths. + * Use IRET code path to return, since it can safely handle + * all of the above. + */ + jnz int_ret_from_sys_call + + /* + * We came from kernel_thread + * nb: we depend on RESTORE_EXTRA_REGS above + */ + movq %rbp, %rdi + call *%rbx + movl $0, RAX(%rsp) + RESTORE_EXTRA_REGS + jmp int_ret_from_sys_call +END(ret_from_fork) + +/* + * Build the entry stubs with some assembler magic. + * We pack 1 stub into every 8-byte block. + */ + .align 8 +ENTRY(irq_entries_start) + vector=FIRST_EXTERNAL_VECTOR + .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) + pushq $(~vector+0x80) /* Note: always in signed byte range */ + vector=vector+1 + jmp common_interrupt + .align 8 + .endr +END(irq_entries_start) + +/* + * Interrupt entry/exit. + * + * Interrupt entry points save only callee clobbered registers in fast path. + * + * Entry runs with interrupts off. + */ + +/* 0(%rsp): ~(interrupt number) */ + .macro interrupt func + cld + /* + * Since nothing in interrupt handling code touches r12...r15 members + * of "struct pt_regs", and since interrupts can nest, we can save + * four stack slots and simultaneously provide + * an unwind-friendly stack layout by saving "truncated" pt_regs + * exactly up to rbp slot, without these members. + */ + ALLOC_PT_GPREGS_ON_STACK -RBP + SAVE_C_REGS -RBP + /* this goes to 0(%rsp) for unwinder, not for saving the value: */ + SAVE_EXTRA_REGS_RBP -RBP + + leaq -RBP(%rsp), %rdi /* arg1 for \func (pointer to pt_regs) */ + + testb $3, CS-RBP(%rsp) + jz 1f + SWAPGS +1: + /* + * Save previous stack pointer, optionally switch to interrupt stack. + * irq_count is used to check if a CPU is already on an interrupt stack + * or not. While this is essentially redundant with preempt_count it is + * a little cheaper to use a separate counter in the PDA (short of + * moving irq_enter into assembly, which would be too much work) + */ + movq %rsp, %rsi + incl PER_CPU_VAR(irq_count) + cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp + pushq %rsi + /* We entered an interrupt context - irqs are off: */ + TRACE_IRQS_OFF + + call \func + .endm + + /* + * The interrupt stubs push (~vector+0x80) onto the stack and + * then jump to common_interrupt. + */ + .p2align CONFIG_X86_L1_CACHE_SHIFT +common_interrupt: + ASM_CLAC + addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */ + interrupt do_IRQ + /* 0(%rsp): old RSP */ +ret_from_intr: + DISABLE_INTERRUPTS(CLBR_NONE) + TRACE_IRQS_OFF + decl PER_CPU_VAR(irq_count) + + /* Restore saved previous stack */ + popq %rsi + /* return code expects complete pt_regs - adjust rsp accordingly: */ + leaq -RBP(%rsi), %rsp + + testb $3, CS(%rsp) + jz retint_kernel + /* Interrupt came from user space */ +retint_user: + GET_THREAD_INFO(%rcx) + + /* %rcx: thread info. Interrupts are off. */ +retint_with_reschedule: + movl $_TIF_WORK_MASK, %edi +retint_check: + LOCKDEP_SYS_EXIT_IRQ + movl TI_flags(%rcx), %edx + andl %edi, %edx + jnz retint_careful + +retint_swapgs: /* return to user-space */ + /* + * The iretq could re-enable interrupts: + */ + DISABLE_INTERRUPTS(CLBR_ANY) + TRACE_IRQS_IRETQ + + SWAPGS + jmp restore_c_regs_and_iret + +/* Returning to kernel space */ +retint_kernel: +#ifdef CONFIG_PREEMPT + /* Interrupts are off */ + /* Check if we need preemption */ + bt $9, EFLAGS(%rsp) /* were interrupts off? */ + jnc 1f +0: cmpl $0, PER_CPU_VAR(__preempt_count) + jnz 1f + call preempt_schedule_irq + jmp 0b +1: +#endif + /* + * The iretq could re-enable interrupts: + */ + TRACE_IRQS_IRETQ + +/* + * At this label, code paths which return to kernel and to user, + * which come from interrupts/exception and from syscalls, merge. + */ +restore_c_regs_and_iret: + RESTORE_C_REGS + REMOVE_PT_GPREGS_FROM_STACK 8 + INTERRUPT_RETURN + +ENTRY(native_iret) + /* + * Are we returning to a stack segment from the LDT? Note: in + * 64-bit mode SS:RSP on the exception stack is always valid. + */ +#ifdef CONFIG_X86_ESPFIX64 + testb $4, (SS-RIP)(%rsp) + jnz native_irq_return_ldt +#endif + +.global native_irq_return_iret +native_irq_return_iret: + /* + * This may fault. Non-paranoid faults on return to userspace are + * handled by fixup_bad_iret. These include #SS, #GP, and #NP. + * Double-faults due to espfix64 are handled in do_double_fault. + * Other faults here are fatal. + */ + iretq + +#ifdef CONFIG_X86_ESPFIX64 +native_irq_return_ldt: + pushq %rax + pushq %rdi + SWAPGS + movq PER_CPU_VAR(espfix_waddr), %rdi + movq %rax, (0*8)(%rdi) /* RAX */ + movq (2*8)(%rsp), %rax /* RIP */ + movq %rax, (1*8)(%rdi) + movq (3*8)(%rsp), %rax /* CS */ + movq %rax, (2*8)(%rdi) + movq (4*8)(%rsp), %rax /* RFLAGS */ + movq %rax, (3*8)(%rdi) + movq (6*8)(%rsp), %rax /* SS */ + movq %rax, (5*8)(%rdi) + movq (5*8)(%rsp), %rax /* RSP */ + movq %rax, (4*8)(%rdi) + andl $0xffff0000, %eax + popq %rdi + orq PER_CPU_VAR(espfix_stack), %rax + SWAPGS + movq %rax, %rsp + popq %rax + jmp native_irq_return_iret +#endif + + /* edi: workmask, edx: work */ +retint_careful: + bt $TIF_NEED_RESCHED, %edx + jnc retint_signal + TRACE_IRQS_ON + ENABLE_INTERRUPTS(CLBR_NONE) + pushq %rdi + SCHEDULE_USER + popq %rdi + GET_THREAD_INFO(%rcx) + DISABLE_INTERRUPTS(CLBR_NONE) + TRACE_IRQS_OFF + jmp retint_check + +retint_signal: + testl $_TIF_DO_NOTIFY_MASK, %edx + jz retint_swapgs + TRACE_IRQS_ON + ENABLE_INTERRUPTS(CLBR_NONE) + SAVE_EXTRA_REGS + movq $-1, ORIG_RAX(%rsp) + xorl %esi, %esi /* oldset */ + movq %rsp, %rdi /* &pt_regs */ + call do_notify_resume + RESTORE_EXTRA_REGS + DISABLE_INTERRUPTS(CLBR_NONE) + TRACE_IRQS_OFF + GET_THREAD_INFO(%rcx) + jmp retint_with_reschedule + +END(common_interrupt) + +/* + * APIC interrupts. + */ +.macro apicinterrupt3 num sym do_sym +ENTRY(\sym) + ASM_CLAC + pushq $~(\num) +.Lcommon_\sym: + interrupt \do_sym + jmp ret_from_intr +END(\sym) +.endm + +#ifdef CONFIG_TRACING +#define trace(sym) trace_##sym +#define smp_trace(sym) smp_trace_##sym + +.macro trace_apicinterrupt num sym +apicinterrupt3 \num trace(\sym) smp_trace(\sym) +.endm +#else +.macro trace_apicinterrupt num sym do_sym +.endm +#endif + +.macro apicinterrupt num sym do_sym +apicinterrupt3 \num \sym \do_sym +trace_apicinterrupt \num \sym +.endm + +#ifdef CONFIG_SMP +apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt +apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt +#endif + +#ifdef CONFIG_X86_UV +apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt +#endif + +apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt +apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi + +#ifdef CONFIG_HAVE_KVM +apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi +apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi +#endif + +#ifdef CONFIG_X86_MCE_THRESHOLD +apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt +#endif + +#ifdef CONFIG_X86_MCE_AMD +apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt +#endif + +#ifdef CONFIG_X86_THERMAL_VECTOR +apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt +#endif + +#ifdef CONFIG_SMP +apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt +apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt +apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt +#endif + +apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt +apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt + +#ifdef CONFIG_IRQ_WORK +apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt +#endif + +/* + * Exception entry points. + */ +#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8) + +.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 +ENTRY(\sym) + /* Sanity check */ + .if \shift_ist != -1 && \paranoid == 0 + .error "using shift_ist requires paranoid=1" + .endif + + ASM_CLAC + PARAVIRT_ADJUST_EXCEPTION_FRAME + + .ifeq \has_error_code + pushq $-1 /* ORIG_RAX: no syscall to restart */ + .endif + + ALLOC_PT_GPREGS_ON_STACK + + .if \paranoid + .if \paranoid == 1 + testb $3, CS(%rsp) /* If coming from userspace, switch stacks */ + jnz 1f + .endif + call paranoid_entry + .else + call error_entry + .endif + /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */ + + .if \paranoid + .if \shift_ist != -1 + TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */ + .else + TRACE_IRQS_OFF + .endif + .endif + + movq %rsp, %rdi /* pt_regs pointer */ + + .if \has_error_code + movq ORIG_RAX(%rsp), %rsi /* get error code */ + movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ + .else + xorl %esi, %esi /* no error code */ + .endif + + .if \shift_ist != -1 + subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) + .endif + + call \do_sym + + .if \shift_ist != -1 + addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) + .endif + + /* these procedures expect "no swapgs" flag in ebx */ + .if \paranoid + jmp paranoid_exit + .else + jmp error_exit + .endif + + .if \paranoid == 1 + /* + * Paranoid entry from userspace. Switch stacks and treat it + * as a normal entry. This means that paranoid handlers + * run in real process context if user_mode(regs). + */ +1: + call error_entry + + + movq %rsp, %rdi /* pt_regs pointer */ + call sync_regs + movq %rax, %rsp /* switch stack */ + + movq %rsp, %rdi /* pt_regs pointer */ + + .if \has_error_code + movq ORIG_RAX(%rsp), %rsi /* get error code */ + movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ + .else + xorl %esi, %esi /* no error code */ + .endif + + call \do_sym + + jmp error_exit /* %ebx: no swapgs flag */ + .endif +END(\sym) +.endm + +#ifdef CONFIG_TRACING +.macro trace_idtentry sym do_sym has_error_code:req +idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code +idtentry \sym \do_sym has_error_code=\has_error_code +.endm +#else +.macro trace_idtentry sym do_sym has_error_code:req +idtentry \sym \do_sym has_error_code=\has_error_code +.endm +#endif + +idtentry divide_error do_divide_error has_error_code=0 +idtentry overflow do_overflow has_error_code=0 +idtentry bounds do_bounds has_error_code=0 +idtentry invalid_op do_invalid_op has_error_code=0 +idtentry device_not_available do_device_not_available has_error_code=0 +idtentry double_fault do_double_fault has_error_code=1 paranoid=2 +idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0 +idtentry invalid_TSS do_invalid_TSS has_error_code=1 +idtentry segment_not_present do_segment_not_present has_error_code=1 +idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0 +idtentry coprocessor_error do_coprocessor_error has_error_code=0 +idtentry alignment_check do_alignment_check has_error_code=1 +idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0 + + + /* + * Reload gs selector with exception handling + * edi: new selector + */ +ENTRY(native_load_gs_index) + pushfq + DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI) + SWAPGS +gs_change: + movl %edi, %gs +2: mfence /* workaround */ + SWAPGS + popfq + ret +END(native_load_gs_index) + + _ASM_EXTABLE(gs_change, bad_gs) + .section .fixup, "ax" + /* running with kernelgs */ +bad_gs: + SWAPGS /* switch back to user gs */ + xorl %eax, %eax + movl %eax, %gs + jmp 2b + .previous + +/* Call softirq on interrupt stack. Interrupts are off. */ +ENTRY(do_softirq_own_stack) + pushq %rbp + mov %rsp, %rbp + incl PER_CPU_VAR(irq_count) + cmove PER_CPU_VAR(irq_stack_ptr), %rsp + push %rbp /* frame pointer backlink */ + call __do_softirq + leaveq + decl PER_CPU_VAR(irq_count) + ret +END(do_softirq_own_stack) + +#ifdef CONFIG_XEN +idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0 + +/* + * A note on the "critical region" in our callback handler. + * We want to avoid stacking callback handlers due to events occurring + * during handling of the last event. To do this, we keep events disabled + * until we've done all processing. HOWEVER, we must enable events before + * popping the stack frame (can't be done atomically) and so it would still + * be possible to get enough handler activations to overflow the stack. + * Although unlikely, bugs of that kind are hard to track down, so we'd + * like to avoid the possibility. + * So, on entry to the handler we detect whether we interrupted an + * existing activation in its critical region -- if so, we pop the current + * activation and restart the handler using the previous one. + */ +ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */ + +/* + * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will + * see the correct pointer to the pt_regs + */ + movq %rdi, %rsp /* we don't return, adjust the stack frame */ +11: incl PER_CPU_VAR(irq_count) + movq %rsp, %rbp + cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp + pushq %rbp /* frame pointer backlink */ + call xen_evtchn_do_upcall + popq %rsp + decl PER_CPU_VAR(irq_count) +#ifndef CONFIG_PREEMPT + call xen_maybe_preempt_hcall +#endif + jmp error_exit +END(xen_do_hypervisor_callback) + +/* + * Hypervisor uses this for application faults while it executes. + * We get here for two reasons: + * 1. Fault while reloading DS, ES, FS or GS + * 2. Fault while executing IRET + * Category 1 we do not need to fix up as Xen has already reloaded all segment + * registers that could be reloaded and zeroed the others. + * Category 2 we fix up by killing the current process. We cannot use the + * normal Linux return path in this case because if we use the IRET hypercall + * to pop the stack frame we end up in an infinite loop of failsafe callbacks. + * We distinguish between categories by comparing each saved segment register + * with its current contents: any discrepancy means we in category 1. + */ +ENTRY(xen_failsafe_callback) + movl %ds, %ecx + cmpw %cx, 0x10(%rsp) + jne 1f + movl %es, %ecx + cmpw %cx, 0x18(%rsp) + jne 1f + movl %fs, %ecx + cmpw %cx, 0x20(%rsp) + jne 1f + movl %gs, %ecx + cmpw %cx, 0x28(%rsp) + jne 1f + /* All segments match their saved values => Category 2 (Bad IRET). */ + movq (%rsp), %rcx + movq 8(%rsp), %r11 + addq $0x30, %rsp + pushq $0 /* RIP */ + pushq %r11 + pushq %rcx + jmp general_protection +1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ + movq (%rsp), %rcx + movq 8(%rsp), %r11 + addq $0x30, %rsp + pushq $-1 /* orig_ax = -1 => not a system call */ + ALLOC_PT_GPREGS_ON_STACK + SAVE_C_REGS + SAVE_EXTRA_REGS + jmp error_exit +END(xen_failsafe_callback) + +apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ + xen_hvm_callback_vector xen_evtchn_do_upcall + +#endif /* CONFIG_XEN */ + +#if IS_ENABLED(CONFIG_HYPERV) +apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ + hyperv_callback_vector hyperv_vector_handler +#endif /* CONFIG_HYPERV */ + +idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK +idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK +idtentry stack_segment do_stack_segment has_error_code=1 + +#ifdef CONFIG_XEN +idtentry xen_debug do_debug has_error_code=0 +idtentry xen_int3 do_int3 has_error_code=0 +idtentry xen_stack_segment do_stack_segment has_error_code=1 +#endif + +idtentry general_protection do_general_protection has_error_code=1 +trace_idtentry page_fault do_page_fault has_error_code=1 + +#ifdef CONFIG_KVM_GUEST +idtentry async_page_fault do_async_page_fault has_error_code=1 +#endif + +#ifdef CONFIG_X86_MCE +idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip) +#endif + +/* + * Save all registers in pt_regs, and switch gs if needed. + * Use slow, but surefire "are we in kernel?" check. + * Return: ebx=0: need swapgs on exit, ebx=1: otherwise + */ +ENTRY(paranoid_entry) + cld + SAVE_C_REGS 8 + SAVE_EXTRA_REGS 8 + movl $1, %ebx + movl $MSR_GS_BASE, %ecx + rdmsr + testl %edx, %edx + js 1f /* negative -> in kernel */ + SWAPGS + xorl %ebx, %ebx +1: ret +END(paranoid_entry) + +/* + * "Paranoid" exit path from exception stack. This is invoked + * only on return from non-NMI IST interrupts that came + * from kernel space. + * + * We may be returning to very strange contexts (e.g. very early + * in syscall entry), so checking for preemption here would + * be complicated. Fortunately, we there's no good reason + * to try to handle preemption here. + * + * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) + */ +ENTRY(paranoid_exit) + DISABLE_INTERRUPTS(CLBR_NONE) + TRACE_IRQS_OFF_DEBUG + testl %ebx, %ebx /* swapgs needed? */ + jnz paranoid_exit_no_swapgs + TRACE_IRQS_IRETQ + SWAPGS_UNSAFE_STACK + jmp paranoid_exit_restore +paranoid_exit_no_swapgs: + TRACE_IRQS_IRETQ_DEBUG +paranoid_exit_restore: + RESTORE_EXTRA_REGS + RESTORE_C_REGS + REMOVE_PT_GPREGS_FROM_STACK 8 + INTERRUPT_RETURN +END(paranoid_exit) + +/* + * Save all registers in pt_regs, and switch gs if needed. + * Return: EBX=0: came from user mode; EBX=1: otherwise + */ +ENTRY(error_entry) + cld + SAVE_C_REGS 8 + SAVE_EXTRA_REGS 8 + xorl %ebx, %ebx + testb $3, CS+8(%rsp) + jz error_kernelspace + + /* We entered from user mode */ + SWAPGS + +error_entry_done: + TRACE_IRQS_OFF + ret + + /* + * There are two places in the kernel that can potentially fault with + * usergs. Handle them here. B stepping K8s sometimes report a + * truncated RIP for IRET exceptions returning to compat mode. Check + * for these here too. + */ +error_kernelspace: + incl %ebx + leaq native_irq_return_iret(%rip), %rcx + cmpq %rcx, RIP+8(%rsp) + je error_bad_iret + movl %ecx, %eax /* zero extend */ + cmpq %rax, RIP+8(%rsp) + je bstep_iret + cmpq $gs_change, RIP+8(%rsp) + jne error_entry_done + + /* + * hack: gs_change can fail with user gsbase. If this happens, fix up + * gsbase and proceed. We'll fix up the exception and land in + * gs_change's error handler with kernel gsbase. + */ + SWAPGS + jmp error_entry_done + +bstep_iret: + /* Fix truncated RIP */ + movq %rcx, RIP+8(%rsp) + /* fall through */ + +error_bad_iret: + /* + * We came from an IRET to user mode, so we have user gsbase. + * Switch to kernel gsbase: + */ + SWAPGS + + /* + * Pretend that the exception came from user mode: set up pt_regs + * as if we faulted immediately after IRET and clear EBX so that + * error_exit knows that we will be returning to user mode. + */ + mov %rsp, %rdi + call fixup_bad_iret + mov %rax, %rsp + decl %ebx + jmp error_entry_done +END(error_entry) + + +/* + * On entry, EBS is a "return to kernel mode" flag: + * 1: already in kernel mode, don't need SWAPGS + * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode + */ +ENTRY(error_exit) + movl %ebx, %eax + RESTORE_EXTRA_REGS + DISABLE_INTERRUPTS(CLBR_NONE) + TRACE_IRQS_OFF + testl %eax, %eax + jnz retint_kernel + jmp retint_user +END(error_exit) + +/* Runs on exception stack */ +ENTRY(nmi) + PARAVIRT_ADJUST_EXCEPTION_FRAME + /* + * We allow breakpoints in NMIs. If a breakpoint occurs, then + * the iretq it performs will take us out of NMI context. + * This means that we can have nested NMIs where the next + * NMI is using the top of the stack of the previous NMI. We + * can't let it execute because the nested NMI will corrupt the + * stack of the previous NMI. NMI handlers are not re-entrant + * anyway. + * + * To handle this case we do the following: + * Check the a special location on the stack that contains + * a variable that is set when NMIs are executing. + * The interrupted task's stack is also checked to see if it + * is an NMI stack. + * If the variable is not set and the stack is not the NMI + * stack then: + * o Set the special variable on the stack + * o Copy the interrupt frame into an "outermost" location on the + * stack + * o Copy the interrupt frame into an "iret" location on the stack + * o Continue processing the NMI + * If the variable is set or the previous stack is the NMI stack: + * o Modify the "iret" location to jump to the repeat_nmi + * o return back to the first NMI + * + * Now on exit of the first NMI, we first clear the stack variable + * The NMI stack will tell any nested NMIs at that point that it is + * nested. Then we pop the stack normally with iret, and if there was + * a nested NMI that updated the copy interrupt stack frame, a + * jump will be made to the repeat_nmi code that will handle the second + * NMI. + * + * However, espfix prevents us from directly returning to userspace + * with a single IRET instruction. Similarly, IRET to user mode + * can fault. We therefore handle NMIs from user space like + * other IST entries. + */ + + /* Use %rdx as our temp variable throughout */ + pushq %rdx + + testb $3, CS-RIP+8(%rsp) + jz .Lnmi_from_kernel + + /* + * NMI from user mode. We need to run on the thread stack, but we + * can't go through the normal entry paths: NMIs are masked, and + * we don't want to enable interrupts, because then we'll end + * up in an awkward situation in which IRQs are on but NMIs + * are off. + */ + + SWAPGS + cld + movq %rsp, %rdx + movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp + pushq 5*8(%rdx) /* pt_regs->ss */ + pushq 4*8(%rdx) /* pt_regs->rsp */ + pushq 3*8(%rdx) /* pt_regs->flags */ + pushq 2*8(%rdx) /* pt_regs->cs */ + pushq 1*8(%rdx) /* pt_regs->rip */ + pushq $-1 /* pt_regs->orig_ax */ + pushq %rdi /* pt_regs->di */ + pushq %rsi /* pt_regs->si */ + pushq (%rdx) /* pt_regs->dx */ + pushq %rcx /* pt_regs->cx */ + pushq %rax /* pt_regs->ax */ + pushq %r8 /* pt_regs->r8 */ + pushq %r9 /* pt_regs->r9 */ + pushq %r10 /* pt_regs->r10 */ + pushq %r11 /* pt_regs->r11 */ + pushq %rbx /* pt_regs->rbx */ + pushq %rbp /* pt_regs->rbp */ + pushq %r12 /* pt_regs->r12 */ + pushq %r13 /* pt_regs->r13 */ + pushq %r14 /* pt_regs->r14 */ + pushq %r15 /* pt_regs->r15 */ + + /* + * At this point we no longer need to worry about stack damage + * due to nesting -- we're on the normal thread stack and we're + * done with the NMI stack. + */ + + movq %rsp, %rdi + movq $-1, %rsi + call do_nmi + + /* + * Return back to user mode. We must *not* do the normal exit + * work, because we don't want to enable interrupts. Fortunately, + * do_nmi doesn't modify pt_regs. + */ + SWAPGS + jmp restore_c_regs_and_iret + +.Lnmi_from_kernel: + /* + * Here's what our stack frame will look like: + * +---------------------------------------------------------+ + * | original SS | + * | original Return RSP | + * | original RFLAGS | + * | original CS | + * | original RIP | + * +---------------------------------------------------------+ + * | temp storage for rdx | + * +---------------------------------------------------------+ + * | "NMI executing" variable | + * +---------------------------------------------------------+ + * | iret SS } Copied from "outermost" frame | + * | iret Return RSP } on each loop iteration; overwritten | + * | iret RFLAGS } by a nested NMI to force another | + * | iret CS } iteration if needed. | + * | iret RIP } | + * +---------------------------------------------------------+ + * | outermost SS } initialized in first_nmi; | + * | outermost Return RSP } will not be changed before | + * | outermost RFLAGS } NMI processing is done. | + * | outermost CS } Copied to "iret" frame on each | + * | outermost RIP } iteration. | + * +---------------------------------------------------------+ + * | pt_regs | + * +---------------------------------------------------------+ + * + * The "original" frame is used by hardware. Before re-enabling + * NMIs, we need to be done with it, and we need to leave enough + * space for the asm code here. + * + * We return by executing IRET while RSP points to the "iret" frame. + * That will either return for real or it will loop back into NMI + * processing. + * + * The "outermost" frame is copied to the "iret" frame on each + * iteration of the loop, so each iteration starts with the "iret" + * frame pointing to the final return target. + */ + + /* + * Determine whether we're a nested NMI. + * + * If we interrupted kernel code between repeat_nmi and + * end_repeat_nmi, then we are a nested NMI. We must not + * modify the "iret" frame because it's being written by + * the outer NMI. That's okay; the outer NMI handler is + * about to about to call do_nmi anyway, so we can just + * resume the outer NMI. + */ + + movq $repeat_nmi, %rdx + cmpq 8(%rsp), %rdx + ja 1f + movq $end_repeat_nmi, %rdx + cmpq 8(%rsp), %rdx + ja nested_nmi_out +1: + + /* + * Now check "NMI executing". If it's set, then we're nested. + * This will not detect if we interrupted an outer NMI just + * before IRET. + */ + cmpl $1, -8(%rsp) + je nested_nmi + + /* + * Now test if the previous stack was an NMI stack. This covers + * the case where we interrupt an outer NMI after it clears + * "NMI executing" but before IRET. We need to be careful, though: + * there is one case in which RSP could point to the NMI stack + * despite there being no NMI active: naughty userspace controls + * RSP at the very beginning of the SYSCALL targets. We can + * pull a fast one on naughty userspace, though: we program + * SYSCALL to mask DF, so userspace cannot cause DF to be set + * if it controls the kernel's RSP. We set DF before we clear + * "NMI executing". + */ + lea 6*8(%rsp), %rdx + /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ + cmpq %rdx, 4*8(%rsp) + /* If the stack pointer is above the NMI stack, this is a normal NMI */ + ja first_nmi + + subq $EXCEPTION_STKSZ, %rdx + cmpq %rdx, 4*8(%rsp) + /* If it is below the NMI stack, it is a normal NMI */ + jb first_nmi + + /* Ah, it is within the NMI stack. */ + + testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) + jz first_nmi /* RSP was user controlled. */ + + /* This is a nested NMI. */ + +nested_nmi: + /* + * Modify the "iret" frame to point to repeat_nmi, forcing another + * iteration of NMI handling. + */ + subq $8, %rsp + leaq -10*8(%rsp), %rdx + pushq $__KERNEL_DS + pushq %rdx + pushfq + pushq $__KERNEL_CS + pushq $repeat_nmi + + /* Put stack back */ + addq $(6*8), %rsp + +nested_nmi_out: + popq %rdx + + /* We are returning to kernel mode, so this cannot result in a fault. */ + INTERRUPT_RETURN + +first_nmi: + /* Restore rdx. */ + movq (%rsp), %rdx + + /* Make room for "NMI executing". */ + pushq $0 + + /* Leave room for the "iret" frame */ + subq $(5*8), %rsp + + /* Copy the "original" frame to the "outermost" frame */ + .rept 5 + pushq 11*8(%rsp) + .endr + + /* Everything up to here is safe from nested NMIs */ + +#ifdef CONFIG_DEBUG_ENTRY + /* + * For ease of testing, unmask NMIs right away. Disabled by + * default because IRET is very expensive. + */ + pushq $0 /* SS */ + pushq %rsp /* RSP (minus 8 because of the previous push) */ + addq $8, (%rsp) /* Fix up RSP */ + pushfq /* RFLAGS */ + pushq $__KERNEL_CS /* CS */ + pushq $1f /* RIP */ + INTERRUPT_RETURN /* continues at repeat_nmi below */ +1: +#endif + +repeat_nmi: + /* + * If there was a nested NMI, the first NMI's iret will return + * here. But NMIs are still enabled and we can take another + * nested NMI. The nested NMI checks the interrupted RIP to see + * if it is between repeat_nmi and end_repeat_nmi, and if so + * it will just return, as we are about to repeat an NMI anyway. + * This makes it safe to copy to the stack frame that a nested + * NMI will update. + * + * RSP is pointing to "outermost RIP". gsbase is unknown, but, if + * we're repeating an NMI, gsbase has the same value that it had on + * the first iteration. paranoid_entry will load the kernel + * gsbase if needed before we call do_nmi. "NMI executing" + * is zero. + */ + movq $1, 10*8(%rsp) /* Set "NMI executing". */ + + /* + * Copy the "outermost" frame to the "iret" frame. NMIs that nest + * here must not modify the "iret" frame while we're writing to + * it or it will end up containing garbage. + */ + addq $(10*8), %rsp + .rept 5 + pushq -6*8(%rsp) + .endr + subq $(5*8), %rsp +end_repeat_nmi: + + /* + * Everything below this point can be preempted by a nested NMI. + * If this happens, then the inner NMI will change the "iret" + * frame to point back to repeat_nmi. + */ + pushq $-1 /* ORIG_RAX: no syscall to restart */ + ALLOC_PT_GPREGS_ON_STACK + + /* + * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit + * as we should not be calling schedule in NMI context. + * Even with normal interrupts enabled. An NMI should not be + * setting NEED_RESCHED or anything that normal interrupts and + * exceptions might do. + */ + call paranoid_entry + + /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ + movq %rsp, %rdi + movq $-1, %rsi + call do_nmi + + testl %ebx, %ebx /* swapgs needed? */ + jnz nmi_restore +nmi_swapgs: + SWAPGS_UNSAFE_STACK +nmi_restore: + RESTORE_EXTRA_REGS + RESTORE_C_REGS + + /* Point RSP at the "iret" frame. */ + REMOVE_PT_GPREGS_FROM_STACK 6*8 + + /* + * Clear "NMI executing". Set DF first so that we can easily + * distinguish the remaining code between here and IRET from + * the SYSCALL entry and exit paths. On a native kernel, we + * could just inspect RIP, but, on paravirt kernels, + * INTERRUPT_RETURN can translate into a jump into a + * hypercall page. + */ + std + movq $0, 5*8(%rsp) /* clear "NMI executing" */ + + /* + * INTERRUPT_RETURN reads the "iret" frame and exits the NMI + * stack in a single instruction. We are returning to kernel + * mode, so this cannot result in a fault. + */ + INTERRUPT_RETURN +END(nmi) + +ENTRY(ignore_sysret) + mov $-ENOSYS, %eax + sysret +END(ignore_sysret) |