diff options
author | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
---|---|---|
committer | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
commit | 57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch) | |
tree | 5e910f0e82173f4ef4f51111366a3f1299037a7b /arch/x86/kvm |
Initial import
Diffstat (limited to 'arch/x86/kvm')
31 files changed, 44183 insertions, 0 deletions
diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig new file mode 100644 index 000000000..413a7bf9e --- /dev/null +++ b/arch/x86/kvm/Kconfig @@ -0,0 +1,104 @@ +# +# KVM configuration +# + +source "virt/kvm/Kconfig" + +menuconfig VIRTUALIZATION + bool "Virtualization" + depends on HAVE_KVM || X86 + default y + ---help--- + Say Y here to get to see options for using your Linux host to run other + operating systems inside virtual machines (guests). + This option alone does not add any kernel code. + + If you say N, all options in this submenu will be skipped and disabled. + +if VIRTUALIZATION + +config KVM + tristate "Kernel-based Virtual Machine (KVM) support" + depends on HAVE_KVM + depends on HIGH_RES_TIMERS + # for TASKSTATS/TASK_DELAY_ACCT: + depends on NET + select PREEMPT_NOTIFIERS + select MMU_NOTIFIER + select ANON_INODES + select HAVE_KVM_IRQCHIP + select HAVE_KVM_IRQFD + select HAVE_KVM_IRQ_ROUTING + select HAVE_KVM_EVENTFD + select KVM_APIC_ARCHITECTURE + select KVM_ASYNC_PF + select USER_RETURN_NOTIFIER + select KVM_MMIO + select TASKSTATS + select TASK_DELAY_ACCT + select PERF_EVENTS + select HAVE_KVM_MSI + select HAVE_KVM_CPU_RELAX_INTERCEPT + select KVM_GENERIC_DIRTYLOG_READ_PROTECT + select KVM_VFIO + select SRCU + ---help--- + Support hosting fully virtualized guest machines using hardware + virtualization extensions. You will need a fairly recent + processor equipped with virtualization extensions. You will also + need to select one or more of the processor modules below. + + This module provides access to the hardware capabilities through + a character device node named /dev/kvm. + + To compile this as a module, choose M here: the module + will be called kvm. + + If unsure, say N. + +config KVM_INTEL + tristate "KVM for Intel processors support" + depends on KVM + # for perf_guest_get_msrs(): + depends on CPU_SUP_INTEL + ---help--- + Provides support for KVM on Intel processors equipped with the VT + extensions. + + To compile this as a module, choose M here: the module + will be called kvm-intel. + +config KVM_AMD + tristate "KVM for AMD processors support" + depends on KVM + ---help--- + Provides support for KVM on AMD processors equipped with the AMD-V + (SVM) extensions. + + To compile this as a module, choose M here: the module + will be called kvm-amd. + +config KVM_MMU_AUDIT + bool "Audit KVM MMU" + depends on KVM && TRACEPOINTS + ---help--- + This option adds a R/W kVM module parameter 'mmu_audit', which allows + auditing of KVM MMU events at runtime. + +config KVM_DEVICE_ASSIGNMENT + bool "KVM legacy PCI device assignment support" + depends on KVM && PCI && IOMMU_API + default y + ---help--- + Provide support for legacy PCI device assignment through KVM. The + kernel now also supports a full featured userspace device driver + framework through VFIO, which supersedes much of this support. + + If unsure, say Y. + +# OK, it's a little counter-intuitive to do this, but it puts it neatly under +# the virtualization menu. +source drivers/vhost/Kconfig +source drivers/lguest/Kconfig + +endif # VIRTUALIZATION diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile new file mode 100644 index 000000000..16e8f962e --- /dev/null +++ b/arch/x86/kvm/Makefile @@ -0,0 +1,22 @@ + +ccflags-y += -Iarch/x86/kvm + +CFLAGS_x86.o := -I. +CFLAGS_svm.o := -I. +CFLAGS_vmx.o := -I. + +KVM := ../../../virt/kvm + +kvm-y += $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o \ + $(KVM)/eventfd.o $(KVM)/irqchip.o $(KVM)/vfio.o +kvm-$(CONFIG_KVM_ASYNC_PF) += $(KVM)/async_pf.o + +kvm-y += x86.o mmu.o emulate.o i8259.o irq.o lapic.o \ + i8254.o ioapic.o irq_comm.o cpuid.o pmu.o +kvm-$(CONFIG_KVM_DEVICE_ASSIGNMENT) += assigned-dev.o iommu.o +kvm-intel-y += vmx.o +kvm-amd-y += svm.o + +obj-$(CONFIG_KVM) += kvm.o +obj-$(CONFIG_KVM_INTEL) += kvm-intel.o +obj-$(CONFIG_KVM_AMD) += kvm-amd.o diff --git a/arch/x86/kvm/assigned-dev.c b/arch/x86/kvm/assigned-dev.c new file mode 100644 index 000000000..d090ecf08 --- /dev/null +++ b/arch/x86/kvm/assigned-dev.c @@ -0,0 +1,1052 @@ +/* + * Kernel-based Virtual Machine - device assignment support + * + * Copyright (C) 2010 Red Hat, Inc. and/or its affiliates. + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include <linux/kvm_host.h> +#include <linux/kvm.h> +#include <linux/uaccess.h> +#include <linux/vmalloc.h> +#include <linux/errno.h> +#include <linux/spinlock.h> +#include <linux/pci.h> +#include <linux/interrupt.h> +#include <linux/slab.h> +#include <linux/namei.h> +#include <linux/fs.h> +#include "irq.h" +#include "assigned-dev.h" + +struct kvm_assigned_dev_kernel { + struct kvm_irq_ack_notifier ack_notifier; + struct list_head list; + int assigned_dev_id; + int host_segnr; + int host_busnr; + int host_devfn; + unsigned int entries_nr; + int host_irq; + bool host_irq_disabled; + bool pci_2_3; + struct msix_entry *host_msix_entries; + int guest_irq; + struct msix_entry *guest_msix_entries; + unsigned long irq_requested_type; + int irq_source_id; + int flags; + struct pci_dev *dev; + struct kvm *kvm; + spinlock_t intx_lock; + spinlock_t intx_mask_lock; + char irq_name[32]; + struct pci_saved_state *pci_saved_state; +}; + +static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head, + int assigned_dev_id) +{ + struct list_head *ptr; + struct kvm_assigned_dev_kernel *match; + + list_for_each(ptr, head) { + match = list_entry(ptr, struct kvm_assigned_dev_kernel, list); + if (match->assigned_dev_id == assigned_dev_id) + return match; + } + return NULL; +} + +static int find_index_from_host_irq(struct kvm_assigned_dev_kernel + *assigned_dev, int irq) +{ + int i, index; + struct msix_entry *host_msix_entries; + + host_msix_entries = assigned_dev->host_msix_entries; + + index = -1; + for (i = 0; i < assigned_dev->entries_nr; i++) + if (irq == host_msix_entries[i].vector) { + index = i; + break; + } + if (index < 0) + printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n"); + + return index; +} + +static irqreturn_t kvm_assigned_dev_intx(int irq, void *dev_id) +{ + struct kvm_assigned_dev_kernel *assigned_dev = dev_id; + int ret; + + spin_lock(&assigned_dev->intx_lock); + if (pci_check_and_mask_intx(assigned_dev->dev)) { + assigned_dev->host_irq_disabled = true; + ret = IRQ_WAKE_THREAD; + } else + ret = IRQ_NONE; + spin_unlock(&assigned_dev->intx_lock); + + return ret; +} + +static void +kvm_assigned_dev_raise_guest_irq(struct kvm_assigned_dev_kernel *assigned_dev, + int vector) +{ + if (unlikely(assigned_dev->irq_requested_type & + KVM_DEV_IRQ_GUEST_INTX)) { + spin_lock(&assigned_dev->intx_mask_lock); + if (!(assigned_dev->flags & KVM_DEV_ASSIGN_MASK_INTX)) + kvm_set_irq(assigned_dev->kvm, + assigned_dev->irq_source_id, vector, 1, + false); + spin_unlock(&assigned_dev->intx_mask_lock); + } else + kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id, + vector, 1, false); +} + +static irqreturn_t kvm_assigned_dev_thread_intx(int irq, void *dev_id) +{ + struct kvm_assigned_dev_kernel *assigned_dev = dev_id; + + if (!(assigned_dev->flags & KVM_DEV_ASSIGN_PCI_2_3)) { + spin_lock_irq(&assigned_dev->intx_lock); + disable_irq_nosync(irq); + assigned_dev->host_irq_disabled = true; + spin_unlock_irq(&assigned_dev->intx_lock); + } + + kvm_assigned_dev_raise_guest_irq(assigned_dev, + assigned_dev->guest_irq); + + return IRQ_HANDLED; +} + +#ifdef __KVM_HAVE_MSI +static irqreturn_t kvm_assigned_dev_msi(int irq, void *dev_id) +{ + struct kvm_assigned_dev_kernel *assigned_dev = dev_id; + int ret = kvm_set_irq_inatomic(assigned_dev->kvm, + assigned_dev->irq_source_id, + assigned_dev->guest_irq, 1); + return unlikely(ret == -EWOULDBLOCK) ? IRQ_WAKE_THREAD : IRQ_HANDLED; +} + +static irqreturn_t kvm_assigned_dev_thread_msi(int irq, void *dev_id) +{ + struct kvm_assigned_dev_kernel *assigned_dev = dev_id; + + kvm_assigned_dev_raise_guest_irq(assigned_dev, + assigned_dev->guest_irq); + + return IRQ_HANDLED; +} +#endif + +#ifdef __KVM_HAVE_MSIX +static irqreturn_t kvm_assigned_dev_msix(int irq, void *dev_id) +{ + struct kvm_assigned_dev_kernel *assigned_dev = dev_id; + int index = find_index_from_host_irq(assigned_dev, irq); + u32 vector; + int ret = 0; + + if (index >= 0) { + vector = assigned_dev->guest_msix_entries[index].vector; + ret = kvm_set_irq_inatomic(assigned_dev->kvm, + assigned_dev->irq_source_id, + vector, 1); + } + + return unlikely(ret == -EWOULDBLOCK) ? IRQ_WAKE_THREAD : IRQ_HANDLED; +} + +static irqreturn_t kvm_assigned_dev_thread_msix(int irq, void *dev_id) +{ + struct kvm_assigned_dev_kernel *assigned_dev = dev_id; + int index = find_index_from_host_irq(assigned_dev, irq); + u32 vector; + + if (index >= 0) { + vector = assigned_dev->guest_msix_entries[index].vector; + kvm_assigned_dev_raise_guest_irq(assigned_dev, vector); + } + + return IRQ_HANDLED; +} +#endif + +/* Ack the irq line for an assigned device */ +static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian) +{ + struct kvm_assigned_dev_kernel *dev = + container_of(kian, struct kvm_assigned_dev_kernel, + ack_notifier); + + kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0, false); + + spin_lock(&dev->intx_mask_lock); + + if (!(dev->flags & KVM_DEV_ASSIGN_MASK_INTX)) { + bool reassert = false; + + spin_lock_irq(&dev->intx_lock); + /* + * The guest IRQ may be shared so this ack can come from an + * IRQ for another guest device. + */ + if (dev->host_irq_disabled) { + if (!(dev->flags & KVM_DEV_ASSIGN_PCI_2_3)) + enable_irq(dev->host_irq); + else if (!pci_check_and_unmask_intx(dev->dev)) + reassert = true; + dev->host_irq_disabled = reassert; + } + spin_unlock_irq(&dev->intx_lock); + + if (reassert) + kvm_set_irq(dev->kvm, dev->irq_source_id, + dev->guest_irq, 1, false); + } + + spin_unlock(&dev->intx_mask_lock); +} + +static void deassign_guest_irq(struct kvm *kvm, + struct kvm_assigned_dev_kernel *assigned_dev) +{ + if (assigned_dev->ack_notifier.gsi != -1) + kvm_unregister_irq_ack_notifier(kvm, + &assigned_dev->ack_notifier); + + kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id, + assigned_dev->guest_irq, 0, false); + + if (assigned_dev->irq_source_id != -1) + kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id); + assigned_dev->irq_source_id = -1; + assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK); +} + +/* The function implicit hold kvm->lock mutex due to cancel_work_sync() */ +static void deassign_host_irq(struct kvm *kvm, + struct kvm_assigned_dev_kernel *assigned_dev) +{ + /* + * We disable irq here to prevent further events. + * + * Notice this maybe result in nested disable if the interrupt type is + * INTx, but it's OK for we are going to free it. + * + * If this function is a part of VM destroy, please ensure that till + * now, the kvm state is still legal for probably we also have to wait + * on a currently running IRQ handler. + */ + if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) { + int i; + for (i = 0; i < assigned_dev->entries_nr; i++) + disable_irq(assigned_dev->host_msix_entries[i].vector); + + for (i = 0; i < assigned_dev->entries_nr; i++) + free_irq(assigned_dev->host_msix_entries[i].vector, + assigned_dev); + + assigned_dev->entries_nr = 0; + kfree(assigned_dev->host_msix_entries); + kfree(assigned_dev->guest_msix_entries); + pci_disable_msix(assigned_dev->dev); + } else { + /* Deal with MSI and INTx */ + if ((assigned_dev->irq_requested_type & + KVM_DEV_IRQ_HOST_INTX) && + (assigned_dev->flags & KVM_DEV_ASSIGN_PCI_2_3)) { + spin_lock_irq(&assigned_dev->intx_lock); + pci_intx(assigned_dev->dev, false); + spin_unlock_irq(&assigned_dev->intx_lock); + synchronize_irq(assigned_dev->host_irq); + } else + disable_irq(assigned_dev->host_irq); + + free_irq(assigned_dev->host_irq, assigned_dev); + + if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI) + pci_disable_msi(assigned_dev->dev); + } + + assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK); +} + +static int kvm_deassign_irq(struct kvm *kvm, + struct kvm_assigned_dev_kernel *assigned_dev, + unsigned long irq_requested_type) +{ + unsigned long guest_irq_type, host_irq_type; + + if (!irqchip_in_kernel(kvm)) + return -EINVAL; + /* no irq assignment to deassign */ + if (!assigned_dev->irq_requested_type) + return -ENXIO; + + host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK; + guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK; + + if (host_irq_type) + deassign_host_irq(kvm, assigned_dev); + if (guest_irq_type) + deassign_guest_irq(kvm, assigned_dev); + + return 0; +} + +static void kvm_free_assigned_irq(struct kvm *kvm, + struct kvm_assigned_dev_kernel *assigned_dev) +{ + kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type); +} + +static void kvm_free_assigned_device(struct kvm *kvm, + struct kvm_assigned_dev_kernel + *assigned_dev) +{ + kvm_free_assigned_irq(kvm, assigned_dev); + + pci_reset_function(assigned_dev->dev); + if (pci_load_and_free_saved_state(assigned_dev->dev, + &assigned_dev->pci_saved_state)) + printk(KERN_INFO "%s: Couldn't reload %s saved state\n", + __func__, dev_name(&assigned_dev->dev->dev)); + else + pci_restore_state(assigned_dev->dev); + + pci_clear_dev_assigned(assigned_dev->dev); + + pci_release_regions(assigned_dev->dev); + pci_disable_device(assigned_dev->dev); + pci_dev_put(assigned_dev->dev); + + list_del(&assigned_dev->list); + kfree(assigned_dev); +} + +void kvm_free_all_assigned_devices(struct kvm *kvm) +{ + struct list_head *ptr, *ptr2; + struct kvm_assigned_dev_kernel *assigned_dev; + + list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) { + assigned_dev = list_entry(ptr, + struct kvm_assigned_dev_kernel, + list); + + kvm_free_assigned_device(kvm, assigned_dev); + } +} + +static int assigned_device_enable_host_intx(struct kvm *kvm, + struct kvm_assigned_dev_kernel *dev) +{ + irq_handler_t irq_handler; + unsigned long flags; + + dev->host_irq = dev->dev->irq; + + /* + * We can only share the IRQ line with other host devices if we are + * able to disable the IRQ source at device-level - independently of + * the guest driver. Otherwise host devices may suffer from unbounded + * IRQ latencies when the guest keeps the line asserted. + */ + if (dev->flags & KVM_DEV_ASSIGN_PCI_2_3) { + irq_handler = kvm_assigned_dev_intx; + flags = IRQF_SHARED; + } else { + irq_handler = NULL; + flags = IRQF_ONESHOT; + } + if (request_threaded_irq(dev->host_irq, irq_handler, + kvm_assigned_dev_thread_intx, flags, + dev->irq_name, dev)) + return -EIO; + + if (dev->flags & KVM_DEV_ASSIGN_PCI_2_3) { + spin_lock_irq(&dev->intx_lock); + pci_intx(dev->dev, true); + spin_unlock_irq(&dev->intx_lock); + } + return 0; +} + +#ifdef __KVM_HAVE_MSI +static int assigned_device_enable_host_msi(struct kvm *kvm, + struct kvm_assigned_dev_kernel *dev) +{ + int r; + + if (!dev->dev->msi_enabled) { + r = pci_enable_msi(dev->dev); + if (r) + return r; + } + + dev->host_irq = dev->dev->irq; + if (request_threaded_irq(dev->host_irq, kvm_assigned_dev_msi, + kvm_assigned_dev_thread_msi, 0, + dev->irq_name, dev)) { + pci_disable_msi(dev->dev); + return -EIO; + } + + return 0; +} +#endif + +#ifdef __KVM_HAVE_MSIX +static int assigned_device_enable_host_msix(struct kvm *kvm, + struct kvm_assigned_dev_kernel *dev) +{ + int i, r = -EINVAL; + + /* host_msix_entries and guest_msix_entries should have been + * initialized */ + if (dev->entries_nr == 0) + return r; + + r = pci_enable_msix_exact(dev->dev, + dev->host_msix_entries, dev->entries_nr); + if (r) + return r; + + for (i = 0; i < dev->entries_nr; i++) { + r = request_threaded_irq(dev->host_msix_entries[i].vector, + kvm_assigned_dev_msix, + kvm_assigned_dev_thread_msix, + 0, dev->irq_name, dev); + if (r) + goto err; + } + + return 0; +err: + for (i -= 1; i >= 0; i--) + free_irq(dev->host_msix_entries[i].vector, dev); + pci_disable_msix(dev->dev); + return r; +} + +#endif + +static int assigned_device_enable_guest_intx(struct kvm *kvm, + struct kvm_assigned_dev_kernel *dev, + struct kvm_assigned_irq *irq) +{ + dev->guest_irq = irq->guest_irq; + dev->ack_notifier.gsi = irq->guest_irq; + return 0; +} + +#ifdef __KVM_HAVE_MSI +static int assigned_device_enable_guest_msi(struct kvm *kvm, + struct kvm_assigned_dev_kernel *dev, + struct kvm_assigned_irq *irq) +{ + dev->guest_irq = irq->guest_irq; + dev->ack_notifier.gsi = -1; + return 0; +} +#endif + +#ifdef __KVM_HAVE_MSIX +static int assigned_device_enable_guest_msix(struct kvm *kvm, + struct kvm_assigned_dev_kernel *dev, + struct kvm_assigned_irq *irq) +{ + dev->guest_irq = irq->guest_irq; + dev->ack_notifier.gsi = -1; + return 0; +} +#endif + +static int assign_host_irq(struct kvm *kvm, + struct kvm_assigned_dev_kernel *dev, + __u32 host_irq_type) +{ + int r = -EEXIST; + + if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK) + return r; + + snprintf(dev->irq_name, sizeof(dev->irq_name), "kvm:%s", + pci_name(dev->dev)); + + switch (host_irq_type) { + case KVM_DEV_IRQ_HOST_INTX: + r = assigned_device_enable_host_intx(kvm, dev); + break; +#ifdef __KVM_HAVE_MSI + case KVM_DEV_IRQ_HOST_MSI: + r = assigned_device_enable_host_msi(kvm, dev); + break; +#endif +#ifdef __KVM_HAVE_MSIX + case KVM_DEV_IRQ_HOST_MSIX: + r = assigned_device_enable_host_msix(kvm, dev); + break; +#endif + default: + r = -EINVAL; + } + dev->host_irq_disabled = false; + + if (!r) + dev->irq_requested_type |= host_irq_type; + + return r; +} + +static int assign_guest_irq(struct kvm *kvm, + struct kvm_assigned_dev_kernel *dev, + struct kvm_assigned_irq *irq, + unsigned long guest_irq_type) +{ + int id; + int r = -EEXIST; + + if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK) + return r; + + id = kvm_request_irq_source_id(kvm); + if (id < 0) + return id; + + dev->irq_source_id = id; + + switch (guest_irq_type) { + case KVM_DEV_IRQ_GUEST_INTX: + r = assigned_device_enable_guest_intx(kvm, dev, irq); + break; +#ifdef __KVM_HAVE_MSI + case KVM_DEV_IRQ_GUEST_MSI: + r = assigned_device_enable_guest_msi(kvm, dev, irq); + break; +#endif +#ifdef __KVM_HAVE_MSIX + case KVM_DEV_IRQ_GUEST_MSIX: + r = assigned_device_enable_guest_msix(kvm, dev, irq); + break; +#endif + default: + r = -EINVAL; + } + + if (!r) { + dev->irq_requested_type |= guest_irq_type; + if (dev->ack_notifier.gsi != -1) + kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier); + } else { + kvm_free_irq_source_id(kvm, dev->irq_source_id); + dev->irq_source_id = -1; + } + + return r; +} + +/* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */ +static int kvm_vm_ioctl_assign_irq(struct kvm *kvm, + struct kvm_assigned_irq *assigned_irq) +{ + int r = -EINVAL; + struct kvm_assigned_dev_kernel *match; + unsigned long host_irq_type, guest_irq_type; + + if (!irqchip_in_kernel(kvm)) + return r; + + mutex_lock(&kvm->lock); + r = -ENODEV; + match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head, + assigned_irq->assigned_dev_id); + if (!match) + goto out; + + host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK); + guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK); + + r = -EINVAL; + /* can only assign one type at a time */ + if (hweight_long(host_irq_type) > 1) + goto out; + if (hweight_long(guest_irq_type) > 1) + goto out; + if (host_irq_type == 0 && guest_irq_type == 0) + goto out; + + r = 0; + if (host_irq_type) + r = assign_host_irq(kvm, match, host_irq_type); + if (r) + goto out; + + if (guest_irq_type) + r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type); +out: + mutex_unlock(&kvm->lock); + return r; +} + +static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm, + struct kvm_assigned_irq + *assigned_irq) +{ + int r = -ENODEV; + struct kvm_assigned_dev_kernel *match; + unsigned long irq_type; + + mutex_lock(&kvm->lock); + + match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head, + assigned_irq->assigned_dev_id); + if (!match) + goto out; + + irq_type = assigned_irq->flags & (KVM_DEV_IRQ_HOST_MASK | + KVM_DEV_IRQ_GUEST_MASK); + r = kvm_deassign_irq(kvm, match, irq_type); +out: + mutex_unlock(&kvm->lock); + return r; +} + +/* + * We want to test whether the caller has been granted permissions to + * use this device. To be able to configure and control the device, + * the user needs access to PCI configuration space and BAR resources. + * These are accessed through PCI sysfs. PCI config space is often + * passed to the process calling this ioctl via file descriptor, so we + * can't rely on access to that file. We can check for permissions + * on each of the BAR resource files, which is a pretty clear + * indicator that the user has been granted access to the device. + */ +static int probe_sysfs_permissions(struct pci_dev *dev) +{ +#ifdef CONFIG_SYSFS + int i; + bool bar_found = false; + + for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++) { + char *kpath, *syspath; + struct path path; + struct inode *inode; + int r; + + if (!pci_resource_len(dev, i)) + continue; + + kpath = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); + if (!kpath) + return -ENOMEM; + + /* Per sysfs-rules, sysfs is always at /sys */ + syspath = kasprintf(GFP_KERNEL, "/sys%s/resource%d", kpath, i); + kfree(kpath); + if (!syspath) + return -ENOMEM; + + r = kern_path(syspath, LOOKUP_FOLLOW, &path); + kfree(syspath); + if (r) + return r; + + inode = d_backing_inode(path.dentry); + + r = inode_permission(inode, MAY_READ | MAY_WRITE | MAY_ACCESS); + path_put(&path); + if (r) + return r; + + bar_found = true; + } + + /* If no resources, probably something special */ + if (!bar_found) + return -EPERM; + + return 0; +#else + return -EINVAL; /* No way to control the device without sysfs */ +#endif +} + +static int kvm_vm_ioctl_assign_device(struct kvm *kvm, + struct kvm_assigned_pci_dev *assigned_dev) +{ + int r = 0, idx; + struct kvm_assigned_dev_kernel *match; + struct pci_dev *dev; + + if (!(assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)) + return -EINVAL; + + mutex_lock(&kvm->lock); + idx = srcu_read_lock(&kvm->srcu); + + match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head, + assigned_dev->assigned_dev_id); + if (match) { + /* device already assigned */ + r = -EEXIST; + goto out; + } + + match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL); + if (match == NULL) { + printk(KERN_INFO "%s: Couldn't allocate memory\n", + __func__); + r = -ENOMEM; + goto out; + } + dev = pci_get_domain_bus_and_slot(assigned_dev->segnr, + assigned_dev->busnr, + assigned_dev->devfn); + if (!dev) { + printk(KERN_INFO "%s: host device not found\n", __func__); + r = -EINVAL; + goto out_free; + } + + /* Don't allow bridges to be assigned */ + if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) { + r = -EPERM; + goto out_put; + } + + r = probe_sysfs_permissions(dev); + if (r) + goto out_put; + + if (pci_enable_device(dev)) { + printk(KERN_INFO "%s: Could not enable PCI device\n", __func__); + r = -EBUSY; + goto out_put; + } + r = pci_request_regions(dev, "kvm_assigned_device"); + if (r) { + printk(KERN_INFO "%s: Could not get access to device regions\n", + __func__); + goto out_disable; + } + + pci_reset_function(dev); + pci_save_state(dev); + match->pci_saved_state = pci_store_saved_state(dev); + if (!match->pci_saved_state) + printk(KERN_DEBUG "%s: Couldn't store %s saved state\n", + __func__, dev_name(&dev->dev)); + + if (!pci_intx_mask_supported(dev)) + assigned_dev->flags &= ~KVM_DEV_ASSIGN_PCI_2_3; + + match->assigned_dev_id = assigned_dev->assigned_dev_id; + match->host_segnr = assigned_dev->segnr; + match->host_busnr = assigned_dev->busnr; + match->host_devfn = assigned_dev->devfn; + match->flags = assigned_dev->flags; + match->dev = dev; + spin_lock_init(&match->intx_lock); + spin_lock_init(&match->intx_mask_lock); + match->irq_source_id = -1; + match->kvm = kvm; + match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq; + + list_add(&match->list, &kvm->arch.assigned_dev_head); + + if (!kvm->arch.iommu_domain) { + r = kvm_iommu_map_guest(kvm); + if (r) + goto out_list_del; + } + r = kvm_assign_device(kvm, match->dev); + if (r) + goto out_list_del; + +out: + srcu_read_unlock(&kvm->srcu, idx); + mutex_unlock(&kvm->lock); + return r; +out_list_del: + if (pci_load_and_free_saved_state(dev, &match->pci_saved_state)) + printk(KERN_INFO "%s: Couldn't reload %s saved state\n", + __func__, dev_name(&dev->dev)); + list_del(&match->list); + pci_release_regions(dev); +out_disable: + pci_disable_device(dev); +out_put: + pci_dev_put(dev); +out_free: + kfree(match); + srcu_read_unlock(&kvm->srcu, idx); + mutex_unlock(&kvm->lock); + return r; +} + +static int kvm_vm_ioctl_deassign_device(struct kvm *kvm, + struct kvm_assigned_pci_dev *assigned_dev) +{ + int r = 0; + struct kvm_assigned_dev_kernel *match; + + mutex_lock(&kvm->lock); + + match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head, + assigned_dev->assigned_dev_id); + if (!match) { + printk(KERN_INFO "%s: device hasn't been assigned before, " + "so cannot be deassigned\n", __func__); + r = -EINVAL; + goto out; + } + + kvm_deassign_device(kvm, match->dev); + + kvm_free_assigned_device(kvm, match); + +out: + mutex_unlock(&kvm->lock); + return r; +} + + +#ifdef __KVM_HAVE_MSIX +static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm, + struct kvm_assigned_msix_nr *entry_nr) +{ + int r = 0; + struct kvm_assigned_dev_kernel *adev; + + mutex_lock(&kvm->lock); + + adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head, + entry_nr->assigned_dev_id); + if (!adev) { + r = -EINVAL; + goto msix_nr_out; + } + + if (adev->entries_nr == 0) { + adev->entries_nr = entry_nr->entry_nr; + if (adev->entries_nr == 0 || + adev->entries_nr > KVM_MAX_MSIX_PER_DEV) { + r = -EINVAL; + goto msix_nr_out; + } + + adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) * + entry_nr->entry_nr, + GFP_KERNEL); + if (!adev->host_msix_entries) { + r = -ENOMEM; + goto msix_nr_out; + } + adev->guest_msix_entries = + kzalloc(sizeof(struct msix_entry) * entry_nr->entry_nr, + GFP_KERNEL); + if (!adev->guest_msix_entries) { + kfree(adev->host_msix_entries); + r = -ENOMEM; + goto msix_nr_out; + } + } else /* Not allowed set MSI-X number twice */ + r = -EINVAL; +msix_nr_out: + mutex_unlock(&kvm->lock); + return r; +} + +static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm, + struct kvm_assigned_msix_entry *entry) +{ + int r = 0, i; + struct kvm_assigned_dev_kernel *adev; + + mutex_lock(&kvm->lock); + + adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head, + entry->assigned_dev_id); + + if (!adev) { + r = -EINVAL; + goto msix_entry_out; + } + + for (i = 0; i < adev->entries_nr; i++) + if (adev->guest_msix_entries[i].vector == 0 || + adev->guest_msix_entries[i].entry == entry->entry) { + adev->guest_msix_entries[i].entry = entry->entry; + adev->guest_msix_entries[i].vector = entry->gsi; + adev->host_msix_entries[i].entry = entry->entry; + break; + } + if (i == adev->entries_nr) { + r = -ENOSPC; + goto msix_entry_out; + } + +msix_entry_out: + mutex_unlock(&kvm->lock); + + return r; +} +#endif + +static int kvm_vm_ioctl_set_pci_irq_mask(struct kvm *kvm, + struct kvm_assigned_pci_dev *assigned_dev) +{ + int r = 0; + struct kvm_assigned_dev_kernel *match; + + mutex_lock(&kvm->lock); + + match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head, + assigned_dev->assigned_dev_id); + if (!match) { + r = -ENODEV; + goto out; + } + + spin_lock(&match->intx_mask_lock); + + match->flags &= ~KVM_DEV_ASSIGN_MASK_INTX; + match->flags |= assigned_dev->flags & KVM_DEV_ASSIGN_MASK_INTX; + + if (match->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) { + if (assigned_dev->flags & KVM_DEV_ASSIGN_MASK_INTX) { + kvm_set_irq(match->kvm, match->irq_source_id, + match->guest_irq, 0, false); + /* + * Masking at hardware-level is performed on demand, + * i.e. when an IRQ actually arrives at the host. + */ + } else if (!(assigned_dev->flags & KVM_DEV_ASSIGN_PCI_2_3)) { + /* + * Unmask the IRQ line if required. Unmasking at + * device level will be performed by user space. + */ + spin_lock_irq(&match->intx_lock); + if (match->host_irq_disabled) { + enable_irq(match->host_irq); + match->host_irq_disabled = false; + } + spin_unlock_irq(&match->intx_lock); + } + } + + spin_unlock(&match->intx_mask_lock); + +out: + mutex_unlock(&kvm->lock); + return r; +} + +long kvm_vm_ioctl_assigned_device(struct kvm *kvm, unsigned ioctl, + unsigned long arg) +{ + void __user *argp = (void __user *)arg; + int r; + + switch (ioctl) { + case KVM_ASSIGN_PCI_DEVICE: { + struct kvm_assigned_pci_dev assigned_dev; + + r = -EFAULT; + if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev)) + goto out; + r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev); + if (r) + goto out; + break; + } + case KVM_ASSIGN_IRQ: { + r = -EOPNOTSUPP; + break; + } + case KVM_ASSIGN_DEV_IRQ: { + struct kvm_assigned_irq assigned_irq; + + r = -EFAULT; + if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq)) + goto out; + r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq); + if (r) + goto out; + break; + } + case KVM_DEASSIGN_DEV_IRQ: { + struct kvm_assigned_irq assigned_irq; + + r = -EFAULT; + if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq)) + goto out; + r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq); + if (r) + goto out; + break; + } + case KVM_DEASSIGN_PCI_DEVICE: { + struct kvm_assigned_pci_dev assigned_dev; + + r = -EFAULT; + if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev)) + goto out; + r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev); + if (r) + goto out; + break; + } +#ifdef __KVM_HAVE_MSIX + case KVM_ASSIGN_SET_MSIX_NR: { + struct kvm_assigned_msix_nr entry_nr; + r = -EFAULT; + if (copy_from_user(&entry_nr, argp, sizeof entry_nr)) + goto out; + r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr); + if (r) + goto out; + break; + } + case KVM_ASSIGN_SET_MSIX_ENTRY: { + struct kvm_assigned_msix_entry entry; + r = -EFAULT; + if (copy_from_user(&entry, argp, sizeof entry)) + goto out; + r = kvm_vm_ioctl_set_msix_entry(kvm, &entry); + if (r) + goto out; + break; + } +#endif + case KVM_ASSIGN_SET_INTX_MASK: { + struct kvm_assigned_pci_dev assigned_dev; + + r = -EFAULT; + if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev)) + goto out; + r = kvm_vm_ioctl_set_pci_irq_mask(kvm, &assigned_dev); + break; + } + default: + r = -ENOTTY; + break; + } +out: + return r; +} diff --git a/arch/x86/kvm/assigned-dev.h b/arch/x86/kvm/assigned-dev.h new file mode 100644 index 000000000..a428c1a21 --- /dev/null +++ b/arch/x86/kvm/assigned-dev.h @@ -0,0 +1,32 @@ +#ifndef ARCH_X86_KVM_ASSIGNED_DEV_H +#define ARCH_X86_KVM_ASSIGNED_DEV_H + +#include <linux/kvm_host.h> + +#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT +int kvm_assign_device(struct kvm *kvm, struct pci_dev *pdev); +int kvm_deassign_device(struct kvm *kvm, struct pci_dev *pdev); + +int kvm_iommu_map_guest(struct kvm *kvm); +int kvm_iommu_unmap_guest(struct kvm *kvm); + +long kvm_vm_ioctl_assigned_device(struct kvm *kvm, unsigned ioctl, + unsigned long arg); + +void kvm_free_all_assigned_devices(struct kvm *kvm); +#else +static inline int kvm_iommu_unmap_guest(struct kvm *kvm) +{ + return 0; +} + +static inline long kvm_vm_ioctl_assigned_device(struct kvm *kvm, unsigned ioctl, + unsigned long arg) +{ + return -ENOTTY; +} + +static inline void kvm_free_all_assigned_devices(struct kvm *kvm) {} +#endif /* CONFIG_KVM_DEVICE_ASSIGNMENT */ + +#endif /* ARCH_X86_KVM_ASSIGNED_DEV_H */ diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c new file mode 100644 index 000000000..1d08ad358 --- /dev/null +++ b/arch/x86/kvm/cpuid.c @@ -0,0 +1,843 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * cpuid support routines + * + * derived from arch/x86/kvm/x86.c + * + * Copyright 2011 Red Hat, Inc. and/or its affiliates. + * Copyright IBM Corporation, 2008 + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include <linux/kvm_host.h> +#include <linux/module.h> +#include <linux/vmalloc.h> +#include <linux/uaccess.h> +#include <asm/i387.h> /* For use_eager_fpu. Ugh! */ +#include <asm/fpu-internal.h> /* For use_eager_fpu. Ugh! */ +#include <asm/user.h> +#include <asm/xsave.h> +#include "cpuid.h" +#include "lapic.h" +#include "mmu.h" +#include "trace.h" + +static u32 xstate_required_size(u64 xstate_bv, bool compacted) +{ + int feature_bit = 0; + u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; + + xstate_bv &= XSTATE_EXTEND_MASK; + while (xstate_bv) { + if (xstate_bv & 0x1) { + u32 eax, ebx, ecx, edx, offset; + cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); + offset = compacted ? ret : ebx; + ret = max(ret, offset + eax); + } + + xstate_bv >>= 1; + feature_bit++; + } + + return ret; +} + +u64 kvm_supported_xcr0(void) +{ + u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0; + + if (!kvm_x86_ops->mpx_supported()) + xcr0 &= ~(XSTATE_BNDREGS | XSTATE_BNDCSR); + + return xcr0; +} + +#define F(x) bit(X86_FEATURE_##x) + +int kvm_update_cpuid(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + struct kvm_lapic *apic = vcpu->arch.apic; + + best = kvm_find_cpuid_entry(vcpu, 1, 0); + if (!best) + return 0; + + /* Update OSXSAVE bit */ + if (cpu_has_xsave && best->function == 0x1) { + best->ecx &= ~F(OSXSAVE); + if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) + best->ecx |= F(OSXSAVE); + } + + if (apic) { + if (best->ecx & F(TSC_DEADLINE_TIMER)) + apic->lapic_timer.timer_mode_mask = 3 << 17; + else + apic->lapic_timer.timer_mode_mask = 1 << 17; + } + + best = kvm_find_cpuid_entry(vcpu, 0xD, 0); + if (!best) { + vcpu->arch.guest_supported_xcr0 = 0; + vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; + } else { + vcpu->arch.guest_supported_xcr0 = + (best->eax | ((u64)best->edx << 32)) & + kvm_supported_xcr0(); + vcpu->arch.guest_xstate_size = best->ebx = + xstate_required_size(vcpu->arch.xcr0, false); + } + + best = kvm_find_cpuid_entry(vcpu, 0xD, 1); + if (best && (best->eax & (F(XSAVES) | F(XSAVEC)))) + best->ebx = xstate_required_size(vcpu->arch.xcr0, true); + + vcpu->arch.eager_fpu = guest_cpuid_has_mpx(vcpu); + + /* + * The existing code assumes virtual address is 48-bit in the canonical + * address checks; exit if it is ever changed. + */ + best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); + if (best && ((best->eax & 0xff00) >> 8) != 48 && + ((best->eax & 0xff00) >> 8) != 0) + return -EINVAL; + + /* Update physical-address width */ + vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); + + kvm_pmu_cpuid_update(vcpu); + return 0; +} + +static int is_efer_nx(void) +{ + unsigned long long efer = 0; + + rdmsrl_safe(MSR_EFER, &efer); + return efer & EFER_NX; +} + +static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) +{ + int i; + struct kvm_cpuid_entry2 *e, *entry; + + entry = NULL; + for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { + e = &vcpu->arch.cpuid_entries[i]; + if (e->function == 0x80000001) { + entry = e; + break; + } + } + if (entry && (entry->edx & F(NX)) && !is_efer_nx()) { + entry->edx &= ~F(NX); + printk(KERN_INFO "kvm: guest NX capability removed\n"); + } +} + +int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); + if (!best || best->eax < 0x80000008) + goto not_found; + best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); + if (best) + return best->eax & 0xff; +not_found: + return 36; +} +EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr); + +/* when an old userspace process fills a new kernel module */ +int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, + struct kvm_cpuid *cpuid, + struct kvm_cpuid_entry __user *entries) +{ + int r, i; + struct kvm_cpuid_entry *cpuid_entries; + + r = -E2BIG; + if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) + goto out; + r = -ENOMEM; + cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); + if (!cpuid_entries) + goto out; + r = -EFAULT; + if (copy_from_user(cpuid_entries, entries, + cpuid->nent * sizeof(struct kvm_cpuid_entry))) + goto out_free; + for (i = 0; i < cpuid->nent; i++) { + vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; + vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; + vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; + vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; + vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; + vcpu->arch.cpuid_entries[i].index = 0; + vcpu->arch.cpuid_entries[i].flags = 0; + vcpu->arch.cpuid_entries[i].padding[0] = 0; + vcpu->arch.cpuid_entries[i].padding[1] = 0; + vcpu->arch.cpuid_entries[i].padding[2] = 0; + } + vcpu->arch.cpuid_nent = cpuid->nent; + cpuid_fix_nx_cap(vcpu); + kvm_apic_set_version(vcpu); + kvm_x86_ops->cpuid_update(vcpu); + r = kvm_update_cpuid(vcpu); + +out_free: + vfree(cpuid_entries); +out: + return r; +} + +int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, + struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries) +{ + int r; + + r = -E2BIG; + if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) + goto out; + r = -EFAULT; + if (copy_from_user(&vcpu->arch.cpuid_entries, entries, + cpuid->nent * sizeof(struct kvm_cpuid_entry2))) + goto out; + vcpu->arch.cpuid_nent = cpuid->nent; + kvm_apic_set_version(vcpu); + kvm_x86_ops->cpuid_update(vcpu); + r = kvm_update_cpuid(vcpu); +out: + return r; +} + +int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, + struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries) +{ + int r; + + r = -E2BIG; + if (cpuid->nent < vcpu->arch.cpuid_nent) + goto out; + r = -EFAULT; + if (copy_to_user(entries, &vcpu->arch.cpuid_entries, + vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) + goto out; + return 0; + +out: + cpuid->nent = vcpu->arch.cpuid_nent; + return r; +} + +static void cpuid_mask(u32 *word, int wordnum) +{ + *word &= boot_cpu_data.x86_capability[wordnum]; +} + +static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, + u32 index) +{ + entry->function = function; + entry->index = index; + cpuid_count(entry->function, entry->index, + &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); + entry->flags = 0; +} + +static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry, + u32 func, u32 index, int *nent, int maxnent) +{ + switch (func) { + case 0: + entry->eax = 1; /* only one leaf currently */ + ++*nent; + break; + case 1: + entry->ecx = F(MOVBE); + ++*nent; + break; + default: + break; + } + + entry->function = func; + entry->index = index; + + return 0; +} + +static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, + u32 index, int *nent, int maxnent) +{ + int r; + unsigned f_nx = is_efer_nx() ? F(NX) : 0; +#ifdef CONFIG_X86_64 + unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL) + ? F(GBPAGES) : 0; + unsigned f_lm = F(LM); +#else + unsigned f_gbpages = 0; + unsigned f_lm = 0; +#endif + unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0; + unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0; + unsigned f_mpx = kvm_x86_ops->mpx_supported() ? F(MPX) : 0; + unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0; + + /* cpuid 1.edx */ + const u32 kvm_supported_word0_x86_features = + F(FPU) | F(VME) | F(DE) | F(PSE) | + F(TSC) | F(MSR) | F(PAE) | F(MCE) | + F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | + F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | + F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | + 0 /* Reserved, DS, ACPI */ | F(MMX) | + F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | + 0 /* HTT, TM, Reserved, PBE */; + /* cpuid 0x80000001.edx */ + const u32 kvm_supported_word1_x86_features = + F(FPU) | F(VME) | F(DE) | F(PSE) | + F(TSC) | F(MSR) | F(PAE) | F(MCE) | + F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | + F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | + F(PAT) | F(PSE36) | 0 /* Reserved */ | + f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | + F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp | + 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); + /* cpuid 1.ecx */ + const u32 kvm_supported_word4_x86_features = + /* NOTE: MONITOR (and MWAIT) are emulated as NOP, + * but *not* advertised to guests via CPUID ! */ + F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | + 0 /* DS-CPL, VMX, SMX, EST */ | + 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | + F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ | + F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | + F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | + 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | + F(F16C) | F(RDRAND); + /* cpuid 0x80000001.ecx */ + const u32 kvm_supported_word6_x86_features = + F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | + F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | + F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | + 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM); + + /* cpuid 0xC0000001.edx */ + const u32 kvm_supported_word5_x86_features = + F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | + F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | + F(PMM) | F(PMM_EN); + + /* cpuid 7.0.ebx */ + const u32 kvm_supported_word9_x86_features = + F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) | + F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) | + F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) | + F(AVX512CD); + + /* cpuid 0xD.1.eax */ + const u32 kvm_supported_word10_x86_features = + F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves; + + /* all calls to cpuid_count() should be made on the same cpu */ + get_cpu(); + + r = -E2BIG; + + if (*nent >= maxnent) + goto out; + + do_cpuid_1_ent(entry, function, index); + ++*nent; + + switch (function) { + case 0: + entry->eax = min(entry->eax, (u32)0xd); + break; + case 1: + entry->edx &= kvm_supported_word0_x86_features; + cpuid_mask(&entry->edx, 0); + entry->ecx &= kvm_supported_word4_x86_features; + cpuid_mask(&entry->ecx, 4); + /* we support x2apic emulation even if host does not support + * it since we emulate x2apic in software */ + entry->ecx |= F(X2APIC); + break; + /* function 2 entries are STATEFUL. That is, repeated cpuid commands + * may return different values. This forces us to get_cpu() before + * issuing the first command, and also to emulate this annoying behavior + * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ + case 2: { + int t, times = entry->eax & 0xff; + + entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; + entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; + for (t = 1; t < times; ++t) { + if (*nent >= maxnent) + goto out; + + do_cpuid_1_ent(&entry[t], function, 0); + entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; + ++*nent; + } + break; + } + /* function 4 has additional index. */ + case 4: { + int i, cache_type; + + entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + /* read more entries until cache_type is zero */ + for (i = 1; ; ++i) { + if (*nent >= maxnent) + goto out; + + cache_type = entry[i - 1].eax & 0x1f; + if (!cache_type) + break; + do_cpuid_1_ent(&entry[i], function, i); + entry[i].flags |= + KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + ++*nent; + } + break; + } + case 7: { + entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + /* Mask ebx against host capability word 9 */ + if (index == 0) { + entry->ebx &= kvm_supported_word9_x86_features; + cpuid_mask(&entry->ebx, 9); + // TSC_ADJUST is emulated + entry->ebx |= F(TSC_ADJUST); + } else + entry->ebx = 0; + entry->eax = 0; + entry->ecx = 0; + entry->edx = 0; + break; + } + case 9: + break; + case 0xa: { /* Architectural Performance Monitoring */ + struct x86_pmu_capability cap; + union cpuid10_eax eax; + union cpuid10_edx edx; + + perf_get_x86_pmu_capability(&cap); + + /* + * Only support guest architectural pmu on a host + * with architectural pmu. + */ + if (!cap.version) + memset(&cap, 0, sizeof(cap)); + + eax.split.version_id = min(cap.version, 2); + eax.split.num_counters = cap.num_counters_gp; + eax.split.bit_width = cap.bit_width_gp; + eax.split.mask_length = cap.events_mask_len; + + edx.split.num_counters_fixed = cap.num_counters_fixed; + edx.split.bit_width_fixed = cap.bit_width_fixed; + edx.split.reserved = 0; + + entry->eax = eax.full; + entry->ebx = cap.events_mask; + entry->ecx = 0; + entry->edx = edx.full; + break; + } + /* function 0xb has additional index. */ + case 0xb: { + int i, level_type; + + entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + /* read more entries until level_type is zero */ + for (i = 1; ; ++i) { + if (*nent >= maxnent) + goto out; + + level_type = entry[i - 1].ecx & 0xff00; + if (!level_type) + break; + do_cpuid_1_ent(&entry[i], function, i); + entry[i].flags |= + KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + ++*nent; + } + break; + } + case 0xd: { + int idx, i; + u64 supported = kvm_supported_xcr0(); + + entry->eax &= supported; + entry->ebx = xstate_required_size(supported, false); + entry->ecx = entry->ebx; + entry->edx &= supported >> 32; + entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + if (!supported) + break; + + for (idx = 1, i = 1; idx < 64; ++idx) { + u64 mask = ((u64)1 << idx); + if (*nent >= maxnent) + goto out; + + do_cpuid_1_ent(&entry[i], function, idx); + if (idx == 1) { + entry[i].eax &= kvm_supported_word10_x86_features; + entry[i].ebx = 0; + if (entry[i].eax & (F(XSAVES)|F(XSAVEC))) + entry[i].ebx = + xstate_required_size(supported, + true); + } else { + if (entry[i].eax == 0 || !(supported & mask)) + continue; + if (WARN_ON_ONCE(entry[i].ecx & 1)) + continue; + } + entry[i].ecx = 0; + entry[i].edx = 0; + entry[i].flags |= + KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + ++*nent; + ++i; + } + break; + } + case KVM_CPUID_SIGNATURE: { + static const char signature[12] = "KVMKVMKVM\0\0"; + const u32 *sigptr = (const u32 *)signature; + entry->eax = KVM_CPUID_FEATURES; + entry->ebx = sigptr[0]; + entry->ecx = sigptr[1]; + entry->edx = sigptr[2]; + break; + } + case KVM_CPUID_FEATURES: + entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | + (1 << KVM_FEATURE_NOP_IO_DELAY) | + (1 << KVM_FEATURE_CLOCKSOURCE2) | + (1 << KVM_FEATURE_ASYNC_PF) | + (1 << KVM_FEATURE_PV_EOI) | + (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | + (1 << KVM_FEATURE_PV_UNHALT); + + if (sched_info_on()) + entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); + + entry->ebx = 0; + entry->ecx = 0; + entry->edx = 0; + break; + case 0x80000000: + entry->eax = min(entry->eax, 0x8000001a); + break; + case 0x80000001: + entry->edx &= kvm_supported_word1_x86_features; + cpuid_mask(&entry->edx, 1); + entry->ecx &= kvm_supported_word6_x86_features; + cpuid_mask(&entry->ecx, 6); + break; + case 0x80000007: /* Advanced power management */ + /* invariant TSC is CPUID.80000007H:EDX[8] */ + entry->edx &= (1 << 8); + /* mask against host */ + entry->edx &= boot_cpu_data.x86_power; + entry->eax = entry->ebx = entry->ecx = 0; + break; + case 0x80000008: { + unsigned g_phys_as = (entry->eax >> 16) & 0xff; + unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); + unsigned phys_as = entry->eax & 0xff; + + if (!g_phys_as) + g_phys_as = phys_as; + entry->eax = g_phys_as | (virt_as << 8); + entry->ebx = entry->edx = 0; + break; + } + case 0x80000019: + entry->ecx = entry->edx = 0; + break; + case 0x8000001a: + break; + case 0x8000001d: + break; + /*Add support for Centaur's CPUID instruction*/ + case 0xC0000000: + /*Just support up to 0xC0000004 now*/ + entry->eax = min(entry->eax, 0xC0000004); + break; + case 0xC0000001: + entry->edx &= kvm_supported_word5_x86_features; + cpuid_mask(&entry->edx, 5); + break; + case 3: /* Processor serial number */ + case 5: /* MONITOR/MWAIT */ + case 6: /* Thermal management */ + case 0xC0000002: + case 0xC0000003: + case 0xC0000004: + default: + entry->eax = entry->ebx = entry->ecx = entry->edx = 0; + break; + } + + kvm_x86_ops->set_supported_cpuid(function, entry); + + r = 0; + +out: + put_cpu(); + + return r; +} + +static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func, + u32 idx, int *nent, int maxnent, unsigned int type) +{ + if (type == KVM_GET_EMULATED_CPUID) + return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent); + + return __do_cpuid_ent(entry, func, idx, nent, maxnent); +} + +#undef F + +struct kvm_cpuid_param { + u32 func; + u32 idx; + bool has_leaf_count; + bool (*qualifier)(const struct kvm_cpuid_param *param); +}; + +static bool is_centaur_cpu(const struct kvm_cpuid_param *param) +{ + return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR; +} + +static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, + __u32 num_entries, unsigned int ioctl_type) +{ + int i; + __u32 pad[3]; + + if (ioctl_type != KVM_GET_EMULATED_CPUID) + return false; + + /* + * We want to make sure that ->padding is being passed clean from + * userspace in case we want to use it for something in the future. + * + * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we + * have to give ourselves satisfied only with the emulated side. /me + * sheds a tear. + */ + for (i = 0; i < num_entries; i++) { + if (copy_from_user(pad, entries[i].padding, sizeof(pad))) + return true; + + if (pad[0] || pad[1] || pad[2]) + return true; + } + return false; +} + +int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries, + unsigned int type) +{ + struct kvm_cpuid_entry2 *cpuid_entries; + int limit, nent = 0, r = -E2BIG, i; + u32 func; + static const struct kvm_cpuid_param param[] = { + { .func = 0, .has_leaf_count = true }, + { .func = 0x80000000, .has_leaf_count = true }, + { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true }, + { .func = KVM_CPUID_SIGNATURE }, + { .func = KVM_CPUID_FEATURES }, + }; + + if (cpuid->nent < 1) + goto out; + if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) + cpuid->nent = KVM_MAX_CPUID_ENTRIES; + + if (sanity_check_entries(entries, cpuid->nent, type)) + return -EINVAL; + + r = -ENOMEM; + cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); + if (!cpuid_entries) + goto out; + + r = 0; + for (i = 0; i < ARRAY_SIZE(param); i++) { + const struct kvm_cpuid_param *ent = ¶m[i]; + + if (ent->qualifier && !ent->qualifier(ent)) + continue; + + r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx, + &nent, cpuid->nent, type); + + if (r) + goto out_free; + + if (!ent->has_leaf_count) + continue; + + limit = cpuid_entries[nent - 1].eax; + for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func) + r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx, + &nent, cpuid->nent, type); + + if (r) + goto out_free; + } + + r = -EFAULT; + if (copy_to_user(entries, cpuid_entries, + nent * sizeof(struct kvm_cpuid_entry2))) + goto out_free; + cpuid->nent = nent; + r = 0; + +out_free: + vfree(cpuid_entries); +out: + return r; +} + +static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) +{ + struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; + int j, nent = vcpu->arch.cpuid_nent; + + e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; + /* when no next entry is found, the current entry[i] is reselected */ + for (j = i + 1; ; j = (j + 1) % nent) { + struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; + if (ej->function == e->function) { + ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; + return j; + } + } + return 0; /* silence gcc, even though control never reaches here */ +} + +/* find an entry with matching function, matching index (if needed), and that + * should be read next (if it's stateful) */ +static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, + u32 function, u32 index) +{ + if (e->function != function) + return 0; + if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) + return 0; + if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && + !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) + return 0; + return 1; +} + +struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, + u32 function, u32 index) +{ + int i; + struct kvm_cpuid_entry2 *best = NULL; + + for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { + struct kvm_cpuid_entry2 *e; + + e = &vcpu->arch.cpuid_entries[i]; + if (is_matching_cpuid_entry(e, function, index)) { + if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) + move_to_next_stateful_cpuid_entry(vcpu, i); + best = e; + break; + } + } + return best; +} +EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); + +/* + * If no match is found, check whether we exceed the vCPU's limit + * and return the content of the highest valid _standard_ leaf instead. + * This is to satisfy the CPUID specification. + */ +static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu, + u32 function, u32 index) +{ + struct kvm_cpuid_entry2 *maxlevel; + + maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0); + if (!maxlevel || maxlevel->eax >= function) + return NULL; + if (function & 0x80000000) { + maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0); + if (!maxlevel) + return NULL; + } + return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index); +} + +void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) +{ + u32 function = *eax, index = *ecx; + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, function, index); + + if (!best) + best = check_cpuid_limit(vcpu, function, index); + + /* + * Perfmon not yet supported for L2 guest. + */ + if (is_guest_mode(vcpu) && function == 0xa) + best = NULL; + + if (best) { + *eax = best->eax; + *ebx = best->ebx; + *ecx = best->ecx; + *edx = best->edx; + } else + *eax = *ebx = *ecx = *edx = 0; + trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx); +} +EXPORT_SYMBOL_GPL(kvm_cpuid); + +void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) +{ + u32 function, eax, ebx, ecx, edx; + + function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX); + ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); + kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx); + kvm_register_write(vcpu, VCPU_REGS_RAX, eax); + kvm_register_write(vcpu, VCPU_REGS_RBX, ebx); + kvm_register_write(vcpu, VCPU_REGS_RCX, ecx); + kvm_register_write(vcpu, VCPU_REGS_RDX, edx); + kvm_x86_ops->skip_emulated_instruction(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); diff --git a/arch/x86/kvm/cpuid.h b/arch/x86/kvm/cpuid.h new file mode 100644 index 000000000..496b3695d --- /dev/null +++ b/arch/x86/kvm/cpuid.h @@ -0,0 +1,128 @@ +#ifndef ARCH_X86_KVM_CPUID_H +#define ARCH_X86_KVM_CPUID_H + +#include "x86.h" + +int kvm_update_cpuid(struct kvm_vcpu *vcpu); +struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, + u32 function, u32 index); +int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries, + unsigned int type); +int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, + struct kvm_cpuid *cpuid, + struct kvm_cpuid_entry __user *entries); +int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, + struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries); +int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, + struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries); +void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx); + +int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu); + +static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.maxphyaddr; +} + +static inline bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + if (!static_cpu_has(X86_FEATURE_XSAVE)) + return false; + + best = kvm_find_cpuid_entry(vcpu, 1, 0); + return best && (best->ecx & bit(X86_FEATURE_XSAVE)); +} + +static inline bool guest_cpuid_has_tsc_adjust(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 7, 0); + return best && (best->ebx & bit(X86_FEATURE_TSC_ADJUST)); +} + +static inline bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 7, 0); + return best && (best->ebx & bit(X86_FEATURE_SMEP)); +} + +static inline bool guest_cpuid_has_smap(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 7, 0); + return best && (best->ebx & bit(X86_FEATURE_SMAP)); +} + +static inline bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 7, 0); + return best && (best->ebx & bit(X86_FEATURE_FSGSBASE)); +} + +static inline bool guest_cpuid_has_osvw(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); + return best && (best->ecx & bit(X86_FEATURE_OSVW)); +} + +static inline bool guest_cpuid_has_pcid(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 1, 0); + return best && (best->ecx & bit(X86_FEATURE_PCID)); +} + +static inline bool guest_cpuid_has_x2apic(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 1, 0); + return best && (best->ecx & bit(X86_FEATURE_X2APIC)); +} + +static inline bool guest_cpuid_is_amd(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 0, 0); + return best && best->ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx; +} + +static inline bool guest_cpuid_has_gbpages(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); + return best && (best->edx & bit(X86_FEATURE_GBPAGES)); +} + +static inline bool guest_cpuid_has_rtm(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 7, 0); + return best && (best->ebx & bit(X86_FEATURE_RTM)); +} + +static inline bool guest_cpuid_has_mpx(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + + best = kvm_find_cpuid_entry(vcpu, 7, 0); + return best && (best->ebx & bit(X86_FEATURE_MPX)); +} +#endif diff --git a/arch/x86/kvm/emulate.c b/arch/x86/kvm/emulate.c new file mode 100644 index 000000000..630bcb0d7 --- /dev/null +++ b/arch/x86/kvm/emulate.c @@ -0,0 +1,5181 @@ +/****************************************************************************** + * emulate.c + * + * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. + * + * Copyright (c) 2005 Keir Fraser + * + * Linux coding style, mod r/m decoder, segment base fixes, real-mode + * privileged instructions: + * + * Copyright (C) 2006 Qumranet + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Avi Kivity <avi@qumranet.com> + * Yaniv Kamay <yaniv@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 + */ + +#include <linux/kvm_host.h> +#include "kvm_cache_regs.h" +#include <linux/module.h> +#include <asm/kvm_emulate.h> +#include <linux/stringify.h> + +#include "x86.h" +#include "tss.h" + +/* + * Operand types + */ +#define OpNone 0ull +#define OpImplicit 1ull /* No generic decode */ +#define OpReg 2ull /* Register */ +#define OpMem 3ull /* Memory */ +#define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */ +#define OpDI 5ull /* ES:DI/EDI/RDI */ +#define OpMem64 6ull /* Memory, 64-bit */ +#define OpImmUByte 7ull /* Zero-extended 8-bit immediate */ +#define OpDX 8ull /* DX register */ +#define OpCL 9ull /* CL register (for shifts) */ +#define OpImmByte 10ull /* 8-bit sign extended immediate */ +#define OpOne 11ull /* Implied 1 */ +#define OpImm 12ull /* Sign extended up to 32-bit immediate */ +#define OpMem16 13ull /* Memory operand (16-bit). */ +#define OpMem32 14ull /* Memory operand (32-bit). */ +#define OpImmU 15ull /* Immediate operand, zero extended */ +#define OpSI 16ull /* SI/ESI/RSI */ +#define OpImmFAddr 17ull /* Immediate far address */ +#define OpMemFAddr 18ull /* Far address in memory */ +#define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */ +#define OpES 20ull /* ES */ +#define OpCS 21ull /* CS */ +#define OpSS 22ull /* SS */ +#define OpDS 23ull /* DS */ +#define OpFS 24ull /* FS */ +#define OpGS 25ull /* GS */ +#define OpMem8 26ull /* 8-bit zero extended memory operand */ +#define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */ +#define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */ +#define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */ +#define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */ + +#define OpBits 5 /* Width of operand field */ +#define OpMask ((1ull << OpBits) - 1) + +/* + * Opcode effective-address decode tables. + * Note that we only emulate instructions that have at least one memory + * operand (excluding implicit stack references). We assume that stack + * references and instruction fetches will never occur in special memory + * areas that require emulation. So, for example, 'mov <imm>,<reg>' need + * not be handled. + */ + +/* Operand sizes: 8-bit operands or specified/overridden size. */ +#define ByteOp (1<<0) /* 8-bit operands. */ +/* Destination operand type. */ +#define DstShift 1 +#define ImplicitOps (OpImplicit << DstShift) +#define DstReg (OpReg << DstShift) +#define DstMem (OpMem << DstShift) +#define DstAcc (OpAcc << DstShift) +#define DstDI (OpDI << DstShift) +#define DstMem64 (OpMem64 << DstShift) +#define DstMem16 (OpMem16 << DstShift) +#define DstImmUByte (OpImmUByte << DstShift) +#define DstDX (OpDX << DstShift) +#define DstAccLo (OpAccLo << DstShift) +#define DstMask (OpMask << DstShift) +/* Source operand type. */ +#define SrcShift 6 +#define SrcNone (OpNone << SrcShift) +#define SrcReg (OpReg << SrcShift) +#define SrcMem (OpMem << SrcShift) +#define SrcMem16 (OpMem16 << SrcShift) +#define SrcMem32 (OpMem32 << SrcShift) +#define SrcImm (OpImm << SrcShift) +#define SrcImmByte (OpImmByte << SrcShift) +#define SrcOne (OpOne << SrcShift) +#define SrcImmUByte (OpImmUByte << SrcShift) +#define SrcImmU (OpImmU << SrcShift) +#define SrcSI (OpSI << SrcShift) +#define SrcXLat (OpXLat << SrcShift) +#define SrcImmFAddr (OpImmFAddr << SrcShift) +#define SrcMemFAddr (OpMemFAddr << SrcShift) +#define SrcAcc (OpAcc << SrcShift) +#define SrcImmU16 (OpImmU16 << SrcShift) +#define SrcImm64 (OpImm64 << SrcShift) +#define SrcDX (OpDX << SrcShift) +#define SrcMem8 (OpMem8 << SrcShift) +#define SrcAccHi (OpAccHi << SrcShift) +#define SrcMask (OpMask << SrcShift) +#define BitOp (1<<11) +#define MemAbs (1<<12) /* Memory operand is absolute displacement */ +#define String (1<<13) /* String instruction (rep capable) */ +#define Stack (1<<14) /* Stack instruction (push/pop) */ +#define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */ +#define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */ +#define GroupDual (2<<15) /* Alternate decoding of mod == 3 */ +#define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */ +#define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */ +#define Escape (5<<15) /* Escape to coprocessor instruction */ +#define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */ +#define ModeDual (7<<15) /* Different instruction for 32/64 bit */ +#define Sse (1<<18) /* SSE Vector instruction */ +/* Generic ModRM decode. */ +#define ModRM (1<<19) +/* Destination is only written; never read. */ +#define Mov (1<<20) +/* Misc flags */ +#define Prot (1<<21) /* instruction generates #UD if not in prot-mode */ +#define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */ +#define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */ +#define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */ +#define Undefined (1<<25) /* No Such Instruction */ +#define Lock (1<<26) /* lock prefix is allowed for the instruction */ +#define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ +#define No64 (1<<28) +#define PageTable (1 << 29) /* instruction used to write page table */ +#define NotImpl (1 << 30) /* instruction is not implemented */ +/* Source 2 operand type */ +#define Src2Shift (31) +#define Src2None (OpNone << Src2Shift) +#define Src2Mem (OpMem << Src2Shift) +#define Src2CL (OpCL << Src2Shift) +#define Src2ImmByte (OpImmByte << Src2Shift) +#define Src2One (OpOne << Src2Shift) +#define Src2Imm (OpImm << Src2Shift) +#define Src2ES (OpES << Src2Shift) +#define Src2CS (OpCS << Src2Shift) +#define Src2SS (OpSS << Src2Shift) +#define Src2DS (OpDS << Src2Shift) +#define Src2FS (OpFS << Src2Shift) +#define Src2GS (OpGS << Src2Shift) +#define Src2Mask (OpMask << Src2Shift) +#define Mmx ((u64)1 << 40) /* MMX Vector instruction */ +#define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */ +#define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */ +#define Avx ((u64)1 << 43) /* Advanced Vector Extensions */ +#define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */ +#define NoWrite ((u64)1 << 45) /* No writeback */ +#define SrcWrite ((u64)1 << 46) /* Write back src operand */ +#define NoMod ((u64)1 << 47) /* Mod field is ignored */ +#define Intercept ((u64)1 << 48) /* Has valid intercept field */ +#define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */ +#define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */ +#define NearBranch ((u64)1 << 52) /* Near branches */ +#define No16 ((u64)1 << 53) /* No 16 bit operand */ +#define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */ + +#define DstXacc (DstAccLo | SrcAccHi | SrcWrite) + +#define X2(x...) x, x +#define X3(x...) X2(x), x +#define X4(x...) X2(x), X2(x) +#define X5(x...) X4(x), x +#define X6(x...) X4(x), X2(x) +#define X7(x...) X4(x), X3(x) +#define X8(x...) X4(x), X4(x) +#define X16(x...) X8(x), X8(x) + +#define NR_FASTOP (ilog2(sizeof(ulong)) + 1) +#define FASTOP_SIZE 8 + +/* + * fastop functions have a special calling convention: + * + * dst: rax (in/out) + * src: rdx (in/out) + * src2: rcx (in) + * flags: rflags (in/out) + * ex: rsi (in:fastop pointer, out:zero if exception) + * + * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for + * different operand sizes can be reached by calculation, rather than a jump + * table (which would be bigger than the code). + * + * fastop functions are declared as taking a never-defined fastop parameter, + * so they can't be called from C directly. + */ + +struct fastop; + +struct opcode { + u64 flags : 56; + u64 intercept : 8; + union { + int (*execute)(struct x86_emulate_ctxt *ctxt); + const struct opcode *group; + const struct group_dual *gdual; + const struct gprefix *gprefix; + const struct escape *esc; + const struct instr_dual *idual; + const struct mode_dual *mdual; + void (*fastop)(struct fastop *fake); + } u; + int (*check_perm)(struct x86_emulate_ctxt *ctxt); +}; + +struct group_dual { + struct opcode mod012[8]; + struct opcode mod3[8]; +}; + +struct gprefix { + struct opcode pfx_no; + struct opcode pfx_66; + struct opcode pfx_f2; + struct opcode pfx_f3; +}; + +struct escape { + struct opcode op[8]; + struct opcode high[64]; +}; + +struct instr_dual { + struct opcode mod012; + struct opcode mod3; +}; + +struct mode_dual { + struct opcode mode32; + struct opcode mode64; +}; + +#define EFLG_RESERVED_ZEROS_MASK 0xffc0802a + +enum x86_transfer_type { + X86_TRANSFER_NONE, + X86_TRANSFER_CALL_JMP, + X86_TRANSFER_RET, + X86_TRANSFER_TASK_SWITCH, +}; + +static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr) +{ + if (!(ctxt->regs_valid & (1 << nr))) { + ctxt->regs_valid |= 1 << nr; + ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr); + } + return ctxt->_regs[nr]; +} + +static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr) +{ + ctxt->regs_valid |= 1 << nr; + ctxt->regs_dirty |= 1 << nr; + return &ctxt->_regs[nr]; +} + +static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr) +{ + reg_read(ctxt, nr); + return reg_write(ctxt, nr); +} + +static void writeback_registers(struct x86_emulate_ctxt *ctxt) +{ + unsigned reg; + + for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16) + ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]); +} + +static void invalidate_registers(struct x86_emulate_ctxt *ctxt) +{ + ctxt->regs_dirty = 0; + ctxt->regs_valid = 0; +} + +/* + * These EFLAGS bits are restored from saved value during emulation, and + * any changes are written back to the saved value after emulation. + */ +#define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\ + X86_EFLAGS_PF|X86_EFLAGS_CF) + +#ifdef CONFIG_X86_64 +#define ON64(x) x +#else +#define ON64(x) +#endif + +static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *)); + +#define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t" +#define FOP_RET "ret \n\t" + +#define FOP_START(op) \ + extern void em_##op(struct fastop *fake); \ + asm(".pushsection .text, \"ax\" \n\t" \ + ".global em_" #op " \n\t" \ + FOP_ALIGN \ + "em_" #op ": \n\t" + +#define FOP_END \ + ".popsection") + +#define FOPNOP() FOP_ALIGN FOP_RET + +#define FOP1E(op, dst) \ + FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET + +#define FOP1EEX(op, dst) \ + FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception) + +#define FASTOP1(op) \ + FOP_START(op) \ + FOP1E(op##b, al) \ + FOP1E(op##w, ax) \ + FOP1E(op##l, eax) \ + ON64(FOP1E(op##q, rax)) \ + FOP_END + +/* 1-operand, using src2 (for MUL/DIV r/m) */ +#define FASTOP1SRC2(op, name) \ + FOP_START(name) \ + FOP1E(op, cl) \ + FOP1E(op, cx) \ + FOP1E(op, ecx) \ + ON64(FOP1E(op, rcx)) \ + FOP_END + +/* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */ +#define FASTOP1SRC2EX(op, name) \ + FOP_START(name) \ + FOP1EEX(op, cl) \ + FOP1EEX(op, cx) \ + FOP1EEX(op, ecx) \ + ON64(FOP1EEX(op, rcx)) \ + FOP_END + +#define FOP2E(op, dst, src) \ + FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET + +#define FASTOP2(op) \ + FOP_START(op) \ + FOP2E(op##b, al, dl) \ + FOP2E(op##w, ax, dx) \ + FOP2E(op##l, eax, edx) \ + ON64(FOP2E(op##q, rax, rdx)) \ + FOP_END + +/* 2 operand, word only */ +#define FASTOP2W(op) \ + FOP_START(op) \ + FOPNOP() \ + FOP2E(op##w, ax, dx) \ + FOP2E(op##l, eax, edx) \ + ON64(FOP2E(op##q, rax, rdx)) \ + FOP_END + +/* 2 operand, src is CL */ +#define FASTOP2CL(op) \ + FOP_START(op) \ + FOP2E(op##b, al, cl) \ + FOP2E(op##w, ax, cl) \ + FOP2E(op##l, eax, cl) \ + ON64(FOP2E(op##q, rax, cl)) \ + FOP_END + +/* 2 operand, src and dest are reversed */ +#define FASTOP2R(op, name) \ + FOP_START(name) \ + FOP2E(op##b, dl, al) \ + FOP2E(op##w, dx, ax) \ + FOP2E(op##l, edx, eax) \ + ON64(FOP2E(op##q, rdx, rax)) \ + FOP_END + +#define FOP3E(op, dst, src, src2) \ + FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET + +/* 3-operand, word-only, src2=cl */ +#define FASTOP3WCL(op) \ + FOP_START(op) \ + FOPNOP() \ + FOP3E(op##w, ax, dx, cl) \ + FOP3E(op##l, eax, edx, cl) \ + ON64(FOP3E(op##q, rax, rdx, cl)) \ + FOP_END + +/* Special case for SETcc - 1 instruction per cc */ +#define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t" + +asm(".global kvm_fastop_exception \n" + "kvm_fastop_exception: xor %esi, %esi; ret"); + +FOP_START(setcc) +FOP_SETCC(seto) +FOP_SETCC(setno) +FOP_SETCC(setc) +FOP_SETCC(setnc) +FOP_SETCC(setz) +FOP_SETCC(setnz) +FOP_SETCC(setbe) +FOP_SETCC(setnbe) +FOP_SETCC(sets) +FOP_SETCC(setns) +FOP_SETCC(setp) +FOP_SETCC(setnp) +FOP_SETCC(setl) +FOP_SETCC(setnl) +FOP_SETCC(setle) +FOP_SETCC(setnle) +FOP_END; + +FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET +FOP_END; + +static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt, + enum x86_intercept intercept, + enum x86_intercept_stage stage) +{ + struct x86_instruction_info info = { + .intercept = intercept, + .rep_prefix = ctxt->rep_prefix, + .modrm_mod = ctxt->modrm_mod, + .modrm_reg = ctxt->modrm_reg, + .modrm_rm = ctxt->modrm_rm, + .src_val = ctxt->src.val64, + .dst_val = ctxt->dst.val64, + .src_bytes = ctxt->src.bytes, + .dst_bytes = ctxt->dst.bytes, + .ad_bytes = ctxt->ad_bytes, + .next_rip = ctxt->eip, + }; + + return ctxt->ops->intercept(ctxt, &info, stage); +} + +static void assign_masked(ulong *dest, ulong src, ulong mask) +{ + *dest = (*dest & ~mask) | (src & mask); +} + +static void assign_register(unsigned long *reg, u64 val, int bytes) +{ + /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ + switch (bytes) { + case 1: + *(u8 *)reg = (u8)val; + break; + case 2: + *(u16 *)reg = (u16)val; + break; + case 4: + *reg = (u32)val; + break; /* 64b: zero-extend */ + case 8: + *reg = val; + break; + } +} + +static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt) +{ + return (1UL << (ctxt->ad_bytes << 3)) - 1; +} + +static ulong stack_mask(struct x86_emulate_ctxt *ctxt) +{ + u16 sel; + struct desc_struct ss; + + if (ctxt->mode == X86EMUL_MODE_PROT64) + return ~0UL; + ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS); + return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */ +} + +static int stack_size(struct x86_emulate_ctxt *ctxt) +{ + return (__fls(stack_mask(ctxt)) + 1) >> 3; +} + +/* Access/update address held in a register, based on addressing mode. */ +static inline unsigned long +address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg) +{ + if (ctxt->ad_bytes == sizeof(unsigned long)) + return reg; + else + return reg & ad_mask(ctxt); +} + +static inline unsigned long +register_address(struct x86_emulate_ctxt *ctxt, int reg) +{ + return address_mask(ctxt, reg_read(ctxt, reg)); +} + +static void masked_increment(ulong *reg, ulong mask, int inc) +{ + assign_masked(reg, *reg + inc, mask); +} + +static inline void +register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc) +{ + ulong mask; + + if (ctxt->ad_bytes == sizeof(unsigned long)) + mask = ~0UL; + else + mask = ad_mask(ctxt); + masked_increment(reg_rmw(ctxt, reg), mask, inc); +} + +static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc) +{ + masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc); +} + +static u32 desc_limit_scaled(struct desc_struct *desc) +{ + u32 limit = get_desc_limit(desc); + + return desc->g ? (limit << 12) | 0xfff : limit; +} + +static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg) +{ + if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS) + return 0; + + return ctxt->ops->get_cached_segment_base(ctxt, seg); +} + +static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec, + u32 error, bool valid) +{ + WARN_ON(vec > 0x1f); + ctxt->exception.vector = vec; + ctxt->exception.error_code = error; + ctxt->exception.error_code_valid = valid; + return X86EMUL_PROPAGATE_FAULT; +} + +static int emulate_db(struct x86_emulate_ctxt *ctxt) +{ + return emulate_exception(ctxt, DB_VECTOR, 0, false); +} + +static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err) +{ + return emulate_exception(ctxt, GP_VECTOR, err, true); +} + +static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err) +{ + return emulate_exception(ctxt, SS_VECTOR, err, true); +} + +static int emulate_ud(struct x86_emulate_ctxt *ctxt) +{ + return emulate_exception(ctxt, UD_VECTOR, 0, false); +} + +static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err) +{ + return emulate_exception(ctxt, TS_VECTOR, err, true); +} + +static int emulate_de(struct x86_emulate_ctxt *ctxt) +{ + return emulate_exception(ctxt, DE_VECTOR, 0, false); +} + +static int emulate_nm(struct x86_emulate_ctxt *ctxt) +{ + return emulate_exception(ctxt, NM_VECTOR, 0, false); +} + +static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg) +{ + u16 selector; + struct desc_struct desc; + + ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg); + return selector; +} + +static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector, + unsigned seg) +{ + u16 dummy; + u32 base3; + struct desc_struct desc; + + ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg); + ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg); +} + +/* + * x86 defines three classes of vector instructions: explicitly + * aligned, explicitly unaligned, and the rest, which change behaviour + * depending on whether they're AVX encoded or not. + * + * Also included is CMPXCHG16B which is not a vector instruction, yet it is + * subject to the same check. + */ +static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size) +{ + if (likely(size < 16)) + return false; + + if (ctxt->d & Aligned) + return true; + else if (ctxt->d & Unaligned) + return false; + else if (ctxt->d & Avx) + return false; + else + return true; +} + +static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt, + struct segmented_address addr, + unsigned *max_size, unsigned size, + bool write, bool fetch, + enum x86emul_mode mode, ulong *linear) +{ + struct desc_struct desc; + bool usable; + ulong la; + u32 lim; + u16 sel; + + la = seg_base(ctxt, addr.seg) + addr.ea; + *max_size = 0; + switch (mode) { + case X86EMUL_MODE_PROT64: + if (is_noncanonical_address(la)) + goto bad; + + *max_size = min_t(u64, ~0u, (1ull << 48) - la); + if (size > *max_size) + goto bad; + break; + default: + usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL, + addr.seg); + if (!usable) + goto bad; + /* code segment in protected mode or read-only data segment */ + if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) + || !(desc.type & 2)) && write) + goto bad; + /* unreadable code segment */ + if (!fetch && (desc.type & 8) && !(desc.type & 2)) + goto bad; + lim = desc_limit_scaled(&desc); + if (!(desc.type & 8) && (desc.type & 4)) { + /* expand-down segment */ + if (addr.ea <= lim) + goto bad; + lim = desc.d ? 0xffffffff : 0xffff; + } + if (addr.ea > lim) + goto bad; + if (lim == 0xffffffff) + *max_size = ~0u; + else { + *max_size = (u64)lim + 1 - addr.ea; + if (size > *max_size) + goto bad; + } + la &= (u32)-1; + break; + } + if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0)) + return emulate_gp(ctxt, 0); + *linear = la; + return X86EMUL_CONTINUE; +bad: + if (addr.seg == VCPU_SREG_SS) + return emulate_ss(ctxt, 0); + else + return emulate_gp(ctxt, 0); +} + +static int linearize(struct x86_emulate_ctxt *ctxt, + struct segmented_address addr, + unsigned size, bool write, + ulong *linear) +{ + unsigned max_size; + return __linearize(ctxt, addr, &max_size, size, write, false, + ctxt->mode, linear); +} + +static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst, + enum x86emul_mode mode) +{ + ulong linear; + int rc; + unsigned max_size; + struct segmented_address addr = { .seg = VCPU_SREG_CS, + .ea = dst }; + + if (ctxt->op_bytes != sizeof(unsigned long)) + addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1); + rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear); + if (rc == X86EMUL_CONTINUE) + ctxt->_eip = addr.ea; + return rc; +} + +static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst) +{ + return assign_eip(ctxt, dst, ctxt->mode); +} + +static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst, + const struct desc_struct *cs_desc) +{ + enum x86emul_mode mode = ctxt->mode; + int rc; + +#ifdef CONFIG_X86_64 + if (ctxt->mode >= X86EMUL_MODE_PROT16) { + if (cs_desc->l) { + u64 efer = 0; + + ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); + if (efer & EFER_LMA) + mode = X86EMUL_MODE_PROT64; + } else + mode = X86EMUL_MODE_PROT32; /* temporary value */ + } +#endif + if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32) + mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; + rc = assign_eip(ctxt, dst, mode); + if (rc == X86EMUL_CONTINUE) + ctxt->mode = mode; + return rc; +} + +static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel) +{ + return assign_eip_near(ctxt, ctxt->_eip + rel); +} + +static int segmented_read_std(struct x86_emulate_ctxt *ctxt, + struct segmented_address addr, + void *data, + unsigned size) +{ + int rc; + ulong linear; + + rc = linearize(ctxt, addr, size, false, &linear); + if (rc != X86EMUL_CONTINUE) + return rc; + return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception); +} + +/* + * Prefetch the remaining bytes of the instruction without crossing page + * boundary if they are not in fetch_cache yet. + */ +static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size) +{ + int rc; + unsigned size, max_size; + unsigned long linear; + int cur_size = ctxt->fetch.end - ctxt->fetch.data; + struct segmented_address addr = { .seg = VCPU_SREG_CS, + .ea = ctxt->eip + cur_size }; + + /* + * We do not know exactly how many bytes will be needed, and + * __linearize is expensive, so fetch as much as possible. We + * just have to avoid going beyond the 15 byte limit, the end + * of the segment, or the end of the page. + * + * __linearize is called with size 0 so that it does not do any + * boundary check itself. Instead, we use max_size to check + * against op_size. + */ + rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode, + &linear); + if (unlikely(rc != X86EMUL_CONTINUE)) + return rc; + + size = min_t(unsigned, 15UL ^ cur_size, max_size); + size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear)); + + /* + * One instruction can only straddle two pages, + * and one has been loaded at the beginning of + * x86_decode_insn. So, if not enough bytes + * still, we must have hit the 15-byte boundary. + */ + if (unlikely(size < op_size)) + return emulate_gp(ctxt, 0); + + rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end, + size, &ctxt->exception); + if (unlikely(rc != X86EMUL_CONTINUE)) + return rc; + ctxt->fetch.end += size; + return X86EMUL_CONTINUE; +} + +static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, + unsigned size) +{ + unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr; + + if (unlikely(done_size < size)) + return __do_insn_fetch_bytes(ctxt, size - done_size); + else + return X86EMUL_CONTINUE; +} + +/* Fetch next part of the instruction being emulated. */ +#define insn_fetch(_type, _ctxt) \ +({ _type _x; \ + \ + rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \ + if (rc != X86EMUL_CONTINUE) \ + goto done; \ + ctxt->_eip += sizeof(_type); \ + _x = *(_type __aligned(1) *) ctxt->fetch.ptr; \ + ctxt->fetch.ptr += sizeof(_type); \ + _x; \ +}) + +#define insn_fetch_arr(_arr, _size, _ctxt) \ +({ \ + rc = do_insn_fetch_bytes(_ctxt, _size); \ + if (rc != X86EMUL_CONTINUE) \ + goto done; \ + ctxt->_eip += (_size); \ + memcpy(_arr, ctxt->fetch.ptr, _size); \ + ctxt->fetch.ptr += (_size); \ +}) + +/* + * Given the 'reg' portion of a ModRM byte, and a register block, return a + * pointer into the block that addresses the relevant register. + * @highbyte_regs specifies whether to decode AH,CH,DH,BH. + */ +static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg, + int byteop) +{ + void *p; + int highbyte_regs = (ctxt->rex_prefix == 0) && byteop; + + if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8) + p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1; + else + p = reg_rmw(ctxt, modrm_reg); + return p; +} + +static int read_descriptor(struct x86_emulate_ctxt *ctxt, + struct segmented_address addr, + u16 *size, unsigned long *address, int op_bytes) +{ + int rc; + + if (op_bytes == 2) + op_bytes = 3; + *address = 0; + rc = segmented_read_std(ctxt, addr, size, 2); + if (rc != X86EMUL_CONTINUE) + return rc; + addr.ea += 2; + rc = segmented_read_std(ctxt, addr, address, op_bytes); + return rc; +} + +FASTOP2(add); +FASTOP2(or); +FASTOP2(adc); +FASTOP2(sbb); +FASTOP2(and); +FASTOP2(sub); +FASTOP2(xor); +FASTOP2(cmp); +FASTOP2(test); + +FASTOP1SRC2(mul, mul_ex); +FASTOP1SRC2(imul, imul_ex); +FASTOP1SRC2EX(div, div_ex); +FASTOP1SRC2EX(idiv, idiv_ex); + +FASTOP3WCL(shld); +FASTOP3WCL(shrd); + +FASTOP2W(imul); + +FASTOP1(not); +FASTOP1(neg); +FASTOP1(inc); +FASTOP1(dec); + +FASTOP2CL(rol); +FASTOP2CL(ror); +FASTOP2CL(rcl); +FASTOP2CL(rcr); +FASTOP2CL(shl); +FASTOP2CL(shr); +FASTOP2CL(sar); + +FASTOP2W(bsf); +FASTOP2W(bsr); +FASTOP2W(bt); +FASTOP2W(bts); +FASTOP2W(btr); +FASTOP2W(btc); + +FASTOP2(xadd); + +FASTOP2R(cmp, cmp_r); + +static int em_bsf_c(struct x86_emulate_ctxt *ctxt) +{ + /* If src is zero, do not writeback, but update flags */ + if (ctxt->src.val == 0) + ctxt->dst.type = OP_NONE; + return fastop(ctxt, em_bsf); +} + +static int em_bsr_c(struct x86_emulate_ctxt *ctxt) +{ + /* If src is zero, do not writeback, but update flags */ + if (ctxt->src.val == 0) + ctxt->dst.type = OP_NONE; + return fastop(ctxt, em_bsr); +} + +static u8 test_cc(unsigned int condition, unsigned long flags) +{ + u8 rc; + void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf); + + flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF; + asm("push %[flags]; popf; call *%[fastop]" + : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags)); + return rc; +} + +static void fetch_register_operand(struct operand *op) +{ + switch (op->bytes) { + case 1: + op->val = *(u8 *)op->addr.reg; + break; + case 2: + op->val = *(u16 *)op->addr.reg; + break; + case 4: + op->val = *(u32 *)op->addr.reg; + break; + case 8: + op->val = *(u64 *)op->addr.reg; + break; + } +} + +static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg) +{ + ctxt->ops->get_fpu(ctxt); + switch (reg) { + case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break; + case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break; + case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break; + case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break; + case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break; + case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break; + case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break; + case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break; +#ifdef CONFIG_X86_64 + case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break; + case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break; + case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break; + case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break; + case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break; + case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break; + case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break; + case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break; +#endif + default: BUG(); + } + ctxt->ops->put_fpu(ctxt); +} + +static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, + int reg) +{ + ctxt->ops->get_fpu(ctxt); + switch (reg) { + case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break; + case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break; + case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break; + case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break; + case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break; + case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break; + case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break; + case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break; +#ifdef CONFIG_X86_64 + case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break; + case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break; + case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break; + case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break; + case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break; + case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break; + case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break; + case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break; +#endif + default: BUG(); + } + ctxt->ops->put_fpu(ctxt); +} + +static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg) +{ + ctxt->ops->get_fpu(ctxt); + switch (reg) { + case 0: asm("movq %%mm0, %0" : "=m"(*data)); break; + case 1: asm("movq %%mm1, %0" : "=m"(*data)); break; + case 2: asm("movq %%mm2, %0" : "=m"(*data)); break; + case 3: asm("movq %%mm3, %0" : "=m"(*data)); break; + case 4: asm("movq %%mm4, %0" : "=m"(*data)); break; + case 5: asm("movq %%mm5, %0" : "=m"(*data)); break; + case 6: asm("movq %%mm6, %0" : "=m"(*data)); break; + case 7: asm("movq %%mm7, %0" : "=m"(*data)); break; + default: BUG(); + } + ctxt->ops->put_fpu(ctxt); +} + +static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg) +{ + ctxt->ops->get_fpu(ctxt); + switch (reg) { + case 0: asm("movq %0, %%mm0" : : "m"(*data)); break; + case 1: asm("movq %0, %%mm1" : : "m"(*data)); break; + case 2: asm("movq %0, %%mm2" : : "m"(*data)); break; + case 3: asm("movq %0, %%mm3" : : "m"(*data)); break; + case 4: asm("movq %0, %%mm4" : : "m"(*data)); break; + case 5: asm("movq %0, %%mm5" : : "m"(*data)); break; + case 6: asm("movq %0, %%mm6" : : "m"(*data)); break; + case 7: asm("movq %0, %%mm7" : : "m"(*data)); break; + default: BUG(); + } + ctxt->ops->put_fpu(ctxt); +} + +static int em_fninit(struct x86_emulate_ctxt *ctxt) +{ + if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) + return emulate_nm(ctxt); + + ctxt->ops->get_fpu(ctxt); + asm volatile("fninit"); + ctxt->ops->put_fpu(ctxt); + return X86EMUL_CONTINUE; +} + +static int em_fnstcw(struct x86_emulate_ctxt *ctxt) +{ + u16 fcw; + + if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) + return emulate_nm(ctxt); + + ctxt->ops->get_fpu(ctxt); + asm volatile("fnstcw %0": "+m"(fcw)); + ctxt->ops->put_fpu(ctxt); + + ctxt->dst.val = fcw; + + return X86EMUL_CONTINUE; +} + +static int em_fnstsw(struct x86_emulate_ctxt *ctxt) +{ + u16 fsw; + + if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) + return emulate_nm(ctxt); + + ctxt->ops->get_fpu(ctxt); + asm volatile("fnstsw %0": "+m"(fsw)); + ctxt->ops->put_fpu(ctxt); + + ctxt->dst.val = fsw; + + return X86EMUL_CONTINUE; +} + +static void decode_register_operand(struct x86_emulate_ctxt *ctxt, + struct operand *op) +{ + unsigned reg = ctxt->modrm_reg; + + if (!(ctxt->d & ModRM)) + reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3); + + if (ctxt->d & Sse) { + op->type = OP_XMM; + op->bytes = 16; + op->addr.xmm = reg; + read_sse_reg(ctxt, &op->vec_val, reg); + return; + } + if (ctxt->d & Mmx) { + reg &= 7; + op->type = OP_MM; + op->bytes = 8; + op->addr.mm = reg; + return; + } + + op->type = OP_REG; + op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; + op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp); + + fetch_register_operand(op); + op->orig_val = op->val; +} + +static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg) +{ + if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP) + ctxt->modrm_seg = VCPU_SREG_SS; +} + +static int decode_modrm(struct x86_emulate_ctxt *ctxt, + struct operand *op) +{ + u8 sib; + int index_reg, base_reg, scale; + int rc = X86EMUL_CONTINUE; + ulong modrm_ea = 0; + + ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */ + index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */ + base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */ + + ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6; + ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3; + ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07); + ctxt->modrm_seg = VCPU_SREG_DS; + + if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) { + op->type = OP_REG; + op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; + op->addr.reg = decode_register(ctxt, ctxt->modrm_rm, + ctxt->d & ByteOp); + if (ctxt->d & Sse) { + op->type = OP_XMM; + op->bytes = 16; + op->addr.xmm = ctxt->modrm_rm; + read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm); + return rc; + } + if (ctxt->d & Mmx) { + op->type = OP_MM; + op->bytes = 8; + op->addr.mm = ctxt->modrm_rm & 7; + return rc; + } + fetch_register_operand(op); + return rc; + } + + op->type = OP_MEM; + + if (ctxt->ad_bytes == 2) { + unsigned bx = reg_read(ctxt, VCPU_REGS_RBX); + unsigned bp = reg_read(ctxt, VCPU_REGS_RBP); + unsigned si = reg_read(ctxt, VCPU_REGS_RSI); + unsigned di = reg_read(ctxt, VCPU_REGS_RDI); + + /* 16-bit ModR/M decode. */ + switch (ctxt->modrm_mod) { + case 0: + if (ctxt->modrm_rm == 6) + modrm_ea += insn_fetch(u16, ctxt); + break; + case 1: + modrm_ea += insn_fetch(s8, ctxt); + break; + case 2: + modrm_ea += insn_fetch(u16, ctxt); + break; + } + switch (ctxt->modrm_rm) { + case 0: + modrm_ea += bx + si; + break; + case 1: + modrm_ea += bx + di; + break; + case 2: + modrm_ea += bp + si; + break; + case 3: + modrm_ea += bp + di; + break; + case 4: + modrm_ea += si; + break; + case 5: + modrm_ea += di; + break; + case 6: + if (ctxt->modrm_mod != 0) + modrm_ea += bp; + break; + case 7: + modrm_ea += bx; + break; + } + if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 || + (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0)) + ctxt->modrm_seg = VCPU_SREG_SS; + modrm_ea = (u16)modrm_ea; + } else { + /* 32/64-bit ModR/M decode. */ + if ((ctxt->modrm_rm & 7) == 4) { + sib = insn_fetch(u8, ctxt); + index_reg |= (sib >> 3) & 7; + base_reg |= sib & 7; + scale = sib >> 6; + + if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0) + modrm_ea += insn_fetch(s32, ctxt); + else { + modrm_ea += reg_read(ctxt, base_reg); + adjust_modrm_seg(ctxt, base_reg); + /* Increment ESP on POP [ESP] */ + if ((ctxt->d & IncSP) && + base_reg == VCPU_REGS_RSP) + modrm_ea += ctxt->op_bytes; + } + if (index_reg != 4) + modrm_ea += reg_read(ctxt, index_reg) << scale; + } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) { + modrm_ea += insn_fetch(s32, ctxt); + if (ctxt->mode == X86EMUL_MODE_PROT64) + ctxt->rip_relative = 1; + } else { + base_reg = ctxt->modrm_rm; + modrm_ea += reg_read(ctxt, base_reg); + adjust_modrm_seg(ctxt, base_reg); + } + switch (ctxt->modrm_mod) { + case 1: + modrm_ea += insn_fetch(s8, ctxt); + break; + case 2: + modrm_ea += insn_fetch(s32, ctxt); + break; + } + } + op->addr.mem.ea = modrm_ea; + if (ctxt->ad_bytes != 8) + ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea; + +done: + return rc; +} + +static int decode_abs(struct x86_emulate_ctxt *ctxt, + struct operand *op) +{ + int rc = X86EMUL_CONTINUE; + + op->type = OP_MEM; + switch (ctxt->ad_bytes) { + case 2: + op->addr.mem.ea = insn_fetch(u16, ctxt); + break; + case 4: + op->addr.mem.ea = insn_fetch(u32, ctxt); + break; + case 8: + op->addr.mem.ea = insn_fetch(u64, ctxt); + break; + } +done: + return rc; +} + +static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt) +{ + long sv = 0, mask; + + if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) { + mask = ~((long)ctxt->dst.bytes * 8 - 1); + + if (ctxt->src.bytes == 2) + sv = (s16)ctxt->src.val & (s16)mask; + else if (ctxt->src.bytes == 4) + sv = (s32)ctxt->src.val & (s32)mask; + else + sv = (s64)ctxt->src.val & (s64)mask; + + ctxt->dst.addr.mem.ea = address_mask(ctxt, + ctxt->dst.addr.mem.ea + (sv >> 3)); + } + + /* only subword offset */ + ctxt->src.val &= (ctxt->dst.bytes << 3) - 1; +} + +static int read_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, void *dest, unsigned size) +{ + int rc; + struct read_cache *mc = &ctxt->mem_read; + + if (mc->pos < mc->end) + goto read_cached; + + WARN_ON((mc->end + size) >= sizeof(mc->data)); + + rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size, + &ctxt->exception); + if (rc != X86EMUL_CONTINUE) + return rc; + + mc->end += size; + +read_cached: + memcpy(dest, mc->data + mc->pos, size); + mc->pos += size; + return X86EMUL_CONTINUE; +} + +static int segmented_read(struct x86_emulate_ctxt *ctxt, + struct segmented_address addr, + void *data, + unsigned size) +{ + int rc; + ulong linear; + + rc = linearize(ctxt, addr, size, false, &linear); + if (rc != X86EMUL_CONTINUE) + return rc; + return read_emulated(ctxt, linear, data, size); +} + +static int segmented_write(struct x86_emulate_ctxt *ctxt, + struct segmented_address addr, + const void *data, + unsigned size) +{ + int rc; + ulong linear; + + rc = linearize(ctxt, addr, size, true, &linear); + if (rc != X86EMUL_CONTINUE) + return rc; + return ctxt->ops->write_emulated(ctxt, linear, data, size, + &ctxt->exception); +} + +static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt, + struct segmented_address addr, + const void *orig_data, const void *data, + unsigned size) +{ + int rc; + ulong linear; + + rc = linearize(ctxt, addr, size, true, &linear); + if (rc != X86EMUL_CONTINUE) + return rc; + return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data, + size, &ctxt->exception); +} + +static int pio_in_emulated(struct x86_emulate_ctxt *ctxt, + unsigned int size, unsigned short port, + void *dest) +{ + struct read_cache *rc = &ctxt->io_read; + + if (rc->pos == rc->end) { /* refill pio read ahead */ + unsigned int in_page, n; + unsigned int count = ctxt->rep_prefix ? + address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1; + in_page = (ctxt->eflags & X86_EFLAGS_DF) ? + offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) : + PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)); + n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count); + if (n == 0) + n = 1; + rc->pos = rc->end = 0; + if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n)) + return 0; + rc->end = n * size; + } + + if (ctxt->rep_prefix && (ctxt->d & String) && + !(ctxt->eflags & X86_EFLAGS_DF)) { + ctxt->dst.data = rc->data + rc->pos; + ctxt->dst.type = OP_MEM_STR; + ctxt->dst.count = (rc->end - rc->pos) / size; + rc->pos = rc->end; + } else { + memcpy(dest, rc->data + rc->pos, size); + rc->pos += size; + } + return 1; +} + +static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt, + u16 index, struct desc_struct *desc) +{ + struct desc_ptr dt; + ulong addr; + + ctxt->ops->get_idt(ctxt, &dt); + + if (dt.size < index * 8 + 7) + return emulate_gp(ctxt, index << 3 | 0x2); + + addr = dt.address + index * 8; + return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc, + &ctxt->exception); +} + +static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt, + u16 selector, struct desc_ptr *dt) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + u32 base3 = 0; + + if (selector & 1 << 2) { + struct desc_struct desc; + u16 sel; + + memset (dt, 0, sizeof *dt); + if (!ops->get_segment(ctxt, &sel, &desc, &base3, + VCPU_SREG_LDTR)) + return; + + dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */ + dt->address = get_desc_base(&desc) | ((u64)base3 << 32); + } else + ops->get_gdt(ctxt, dt); +} + +static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt, + u16 selector, ulong *desc_addr_p) +{ + struct desc_ptr dt; + u16 index = selector >> 3; + ulong addr; + + get_descriptor_table_ptr(ctxt, selector, &dt); + + if (dt.size < index * 8 + 7) + return emulate_gp(ctxt, selector & 0xfffc); + + addr = dt.address + index * 8; + +#ifdef CONFIG_X86_64 + if (addr >> 32 != 0) { + u64 efer = 0; + + ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); + if (!(efer & EFER_LMA)) + addr &= (u32)-1; + } +#endif + + *desc_addr_p = addr; + return X86EMUL_CONTINUE; +} + +/* allowed just for 8 bytes segments */ +static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt, + u16 selector, struct desc_struct *desc, + ulong *desc_addr_p) +{ + int rc; + + rc = get_descriptor_ptr(ctxt, selector, desc_addr_p); + if (rc != X86EMUL_CONTINUE) + return rc; + + return ctxt->ops->read_std(ctxt, *desc_addr_p, desc, sizeof(*desc), + &ctxt->exception); +} + +/* allowed just for 8 bytes segments */ +static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt, + u16 selector, struct desc_struct *desc) +{ + int rc; + ulong addr; + + rc = get_descriptor_ptr(ctxt, selector, &addr); + if (rc != X86EMUL_CONTINUE) + return rc; + + return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc, + &ctxt->exception); +} + +/* Does not support long mode */ +static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt, + u16 selector, int seg, u8 cpl, + enum x86_transfer_type transfer, + struct desc_struct *desc) +{ + struct desc_struct seg_desc, old_desc; + u8 dpl, rpl; + unsigned err_vec = GP_VECTOR; + u32 err_code = 0; + bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */ + ulong desc_addr; + int ret; + u16 dummy; + u32 base3 = 0; + + memset(&seg_desc, 0, sizeof seg_desc); + + if (ctxt->mode == X86EMUL_MODE_REAL) { + /* set real mode segment descriptor (keep limit etc. for + * unreal mode) */ + ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg); + set_desc_base(&seg_desc, selector << 4); + goto load; + } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) { + /* VM86 needs a clean new segment descriptor */ + set_desc_base(&seg_desc, selector << 4); + set_desc_limit(&seg_desc, 0xffff); + seg_desc.type = 3; + seg_desc.p = 1; + seg_desc.s = 1; + seg_desc.dpl = 3; + goto load; + } + + rpl = selector & 3; + + /* NULL selector is not valid for TR, CS and SS (except for long mode) */ + if ((seg == VCPU_SREG_CS + || (seg == VCPU_SREG_SS + && (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)) + || seg == VCPU_SREG_TR) + && null_selector) + goto exception; + + /* TR should be in GDT only */ + if (seg == VCPU_SREG_TR && (selector & (1 << 2))) + goto exception; + + if (null_selector) /* for NULL selector skip all following checks */ + goto load; + + ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr); + if (ret != X86EMUL_CONTINUE) + return ret; + + err_code = selector & 0xfffc; + err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR : + GP_VECTOR; + + /* can't load system descriptor into segment selector */ + if (seg <= VCPU_SREG_GS && !seg_desc.s) { + if (transfer == X86_TRANSFER_CALL_JMP) + return X86EMUL_UNHANDLEABLE; + goto exception; + } + + if (!seg_desc.p) { + err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR; + goto exception; + } + + dpl = seg_desc.dpl; + + switch (seg) { + case VCPU_SREG_SS: + /* + * segment is not a writable data segment or segment + * selector's RPL != CPL or segment selector's RPL != CPL + */ + if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl) + goto exception; + break; + case VCPU_SREG_CS: + if (!(seg_desc.type & 8)) + goto exception; + + if (seg_desc.type & 4) { + /* conforming */ + if (dpl > cpl) + goto exception; + } else { + /* nonconforming */ + if (rpl > cpl || dpl != cpl) + goto exception; + } + /* in long-mode d/b must be clear if l is set */ + if (seg_desc.d && seg_desc.l) { + u64 efer = 0; + + ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); + if (efer & EFER_LMA) + goto exception; + } + + /* CS(RPL) <- CPL */ + selector = (selector & 0xfffc) | cpl; + break; + case VCPU_SREG_TR: + if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9)) + goto exception; + old_desc = seg_desc; + seg_desc.type |= 2; /* busy */ + ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc, + sizeof(seg_desc), &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + break; + case VCPU_SREG_LDTR: + if (seg_desc.s || seg_desc.type != 2) + goto exception; + break; + default: /* DS, ES, FS, or GS */ + /* + * segment is not a data or readable code segment or + * ((segment is a data or nonconforming code segment) + * and (both RPL and CPL > DPL)) + */ + if ((seg_desc.type & 0xa) == 0x8 || + (((seg_desc.type & 0xc) != 0xc) && + (rpl > dpl && cpl > dpl))) + goto exception; + break; + } + + if (seg_desc.s) { + /* mark segment as accessed */ + if (!(seg_desc.type & 1)) { + seg_desc.type |= 1; + ret = write_segment_descriptor(ctxt, selector, + &seg_desc); + if (ret != X86EMUL_CONTINUE) + return ret; + } + } else if (ctxt->mode == X86EMUL_MODE_PROT64) { + ret = ctxt->ops->read_std(ctxt, desc_addr+8, &base3, + sizeof(base3), &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + if (is_noncanonical_address(get_desc_base(&seg_desc) | + ((u64)base3 << 32))) + return emulate_gp(ctxt, 0); + } +load: + ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg); + if (desc) + *desc = seg_desc; + return X86EMUL_CONTINUE; +exception: + return emulate_exception(ctxt, err_vec, err_code, true); +} + +static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt, + u16 selector, int seg) +{ + u8 cpl = ctxt->ops->cpl(ctxt); + return __load_segment_descriptor(ctxt, selector, seg, cpl, + X86_TRANSFER_NONE, NULL); +} + +static void write_register_operand(struct operand *op) +{ + return assign_register(op->addr.reg, op->val, op->bytes); +} + +static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op) +{ + switch (op->type) { + case OP_REG: + write_register_operand(op); + break; + case OP_MEM: + if (ctxt->lock_prefix) + return segmented_cmpxchg(ctxt, + op->addr.mem, + &op->orig_val, + &op->val, + op->bytes); + else + return segmented_write(ctxt, + op->addr.mem, + &op->val, + op->bytes); + break; + case OP_MEM_STR: + return segmented_write(ctxt, + op->addr.mem, + op->data, + op->bytes * op->count); + break; + case OP_XMM: + write_sse_reg(ctxt, &op->vec_val, op->addr.xmm); + break; + case OP_MM: + write_mmx_reg(ctxt, &op->mm_val, op->addr.mm); + break; + case OP_NONE: + /* no writeback */ + break; + default: + break; + } + return X86EMUL_CONTINUE; +} + +static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes) +{ + struct segmented_address addr; + + rsp_increment(ctxt, -bytes); + addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); + addr.seg = VCPU_SREG_SS; + + return segmented_write(ctxt, addr, data, bytes); +} + +static int em_push(struct x86_emulate_ctxt *ctxt) +{ + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return push(ctxt, &ctxt->src.val, ctxt->op_bytes); +} + +static int emulate_pop(struct x86_emulate_ctxt *ctxt, + void *dest, int len) +{ + int rc; + struct segmented_address addr; + + addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); + addr.seg = VCPU_SREG_SS; + rc = segmented_read(ctxt, addr, dest, len); + if (rc != X86EMUL_CONTINUE) + return rc; + + rsp_increment(ctxt, len); + return rc; +} + +static int em_pop(struct x86_emulate_ctxt *ctxt) +{ + return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes); +} + +static int emulate_popf(struct x86_emulate_ctxt *ctxt, + void *dest, int len) +{ + int rc; + unsigned long val, change_mask; + int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; + int cpl = ctxt->ops->cpl(ctxt); + + rc = emulate_pop(ctxt, &val, len); + if (rc != X86EMUL_CONTINUE) + return rc; + + change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | + X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF | + X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT | + X86_EFLAGS_AC | X86_EFLAGS_ID; + + switch(ctxt->mode) { + case X86EMUL_MODE_PROT64: + case X86EMUL_MODE_PROT32: + case X86EMUL_MODE_PROT16: + if (cpl == 0) + change_mask |= X86_EFLAGS_IOPL; + if (cpl <= iopl) + change_mask |= X86_EFLAGS_IF; + break; + case X86EMUL_MODE_VM86: + if (iopl < 3) + return emulate_gp(ctxt, 0); + change_mask |= X86_EFLAGS_IF; + break; + default: /* real mode */ + change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF); + break; + } + + *(unsigned long *)dest = + (ctxt->eflags & ~change_mask) | (val & change_mask); + + return rc; +} + +static int em_popf(struct x86_emulate_ctxt *ctxt) +{ + ctxt->dst.type = OP_REG; + ctxt->dst.addr.reg = &ctxt->eflags; + ctxt->dst.bytes = ctxt->op_bytes; + return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes); +} + +static int em_enter(struct x86_emulate_ctxt *ctxt) +{ + int rc; + unsigned frame_size = ctxt->src.val; + unsigned nesting_level = ctxt->src2.val & 31; + ulong rbp; + + if (nesting_level) + return X86EMUL_UNHANDLEABLE; + + rbp = reg_read(ctxt, VCPU_REGS_RBP); + rc = push(ctxt, &rbp, stack_size(ctxt)); + if (rc != X86EMUL_CONTINUE) + return rc; + assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP), + stack_mask(ctxt)); + assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), + reg_read(ctxt, VCPU_REGS_RSP) - frame_size, + stack_mask(ctxt)); + return X86EMUL_CONTINUE; +} + +static int em_leave(struct x86_emulate_ctxt *ctxt) +{ + assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP), + stack_mask(ctxt)); + return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes); +} + +static int em_push_sreg(struct x86_emulate_ctxt *ctxt) +{ + int seg = ctxt->src2.val; + + ctxt->src.val = get_segment_selector(ctxt, seg); + if (ctxt->op_bytes == 4) { + rsp_increment(ctxt, -2); + ctxt->op_bytes = 2; + } + + return em_push(ctxt); +} + +static int em_pop_sreg(struct x86_emulate_ctxt *ctxt) +{ + int seg = ctxt->src2.val; + unsigned long selector; + int rc; + + rc = emulate_pop(ctxt, &selector, 2); + if (rc != X86EMUL_CONTINUE) + return rc; + + if (ctxt->modrm_reg == VCPU_SREG_SS) + ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; + if (ctxt->op_bytes > 2) + rsp_increment(ctxt, ctxt->op_bytes - 2); + + rc = load_segment_descriptor(ctxt, (u16)selector, seg); + return rc; +} + +static int em_pusha(struct x86_emulate_ctxt *ctxt) +{ + unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP); + int rc = X86EMUL_CONTINUE; + int reg = VCPU_REGS_RAX; + + while (reg <= VCPU_REGS_RDI) { + (reg == VCPU_REGS_RSP) ? + (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg)); + + rc = em_push(ctxt); + if (rc != X86EMUL_CONTINUE) + return rc; + + ++reg; + } + + return rc; +} + +static int em_pushf(struct x86_emulate_ctxt *ctxt) +{ + ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM; + return em_push(ctxt); +} + +static int em_popa(struct x86_emulate_ctxt *ctxt) +{ + int rc = X86EMUL_CONTINUE; + int reg = VCPU_REGS_RDI; + u32 val; + + while (reg >= VCPU_REGS_RAX) { + if (reg == VCPU_REGS_RSP) { + rsp_increment(ctxt, ctxt->op_bytes); + --reg; + } + + rc = emulate_pop(ctxt, &val, ctxt->op_bytes); + if (rc != X86EMUL_CONTINUE) + break; + assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes); + --reg; + } + return rc; +} + +static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + int rc; + struct desc_ptr dt; + gva_t cs_addr; + gva_t eip_addr; + u16 cs, eip; + + /* TODO: Add limit checks */ + ctxt->src.val = ctxt->eflags; + rc = em_push(ctxt); + if (rc != X86EMUL_CONTINUE) + return rc; + + ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC); + + ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS); + rc = em_push(ctxt); + if (rc != X86EMUL_CONTINUE) + return rc; + + ctxt->src.val = ctxt->_eip; + rc = em_push(ctxt); + if (rc != X86EMUL_CONTINUE) + return rc; + + ops->get_idt(ctxt, &dt); + + eip_addr = dt.address + (irq << 2); + cs_addr = dt.address + (irq << 2) + 2; + + rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception); + if (rc != X86EMUL_CONTINUE) + return rc; + + rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception); + if (rc != X86EMUL_CONTINUE) + return rc; + + rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS); + if (rc != X86EMUL_CONTINUE) + return rc; + + ctxt->_eip = eip; + + return rc; +} + +int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) +{ + int rc; + + invalidate_registers(ctxt); + rc = __emulate_int_real(ctxt, irq); + if (rc == X86EMUL_CONTINUE) + writeback_registers(ctxt); + return rc; +} + +static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq) +{ + switch(ctxt->mode) { + case X86EMUL_MODE_REAL: + return __emulate_int_real(ctxt, irq); + case X86EMUL_MODE_VM86: + case X86EMUL_MODE_PROT16: + case X86EMUL_MODE_PROT32: + case X86EMUL_MODE_PROT64: + default: + /* Protected mode interrupts unimplemented yet */ + return X86EMUL_UNHANDLEABLE; + } +} + +static int emulate_iret_real(struct x86_emulate_ctxt *ctxt) +{ + int rc = X86EMUL_CONTINUE; + unsigned long temp_eip = 0; + unsigned long temp_eflags = 0; + unsigned long cs = 0; + unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | + X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF | + X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF | + X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF | + X86_EFLAGS_AC | X86_EFLAGS_ID | + X86_EFLAGS_FIXED; + unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF | + X86_EFLAGS_VIP; + + /* TODO: Add stack limit check */ + + rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes); + + if (rc != X86EMUL_CONTINUE) + return rc; + + if (temp_eip & ~0xffff) + return emulate_gp(ctxt, 0); + + rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); + + if (rc != X86EMUL_CONTINUE) + return rc; + + rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes); + + if (rc != X86EMUL_CONTINUE) + return rc; + + rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS); + + if (rc != X86EMUL_CONTINUE) + return rc; + + ctxt->_eip = temp_eip; + + if (ctxt->op_bytes == 4) + ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask)); + else if (ctxt->op_bytes == 2) { + ctxt->eflags &= ~0xffff; + ctxt->eflags |= temp_eflags; + } + + ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */ + ctxt->eflags |= X86_EFLAGS_FIXED; + ctxt->ops->set_nmi_mask(ctxt, false); + + return rc; +} + +static int em_iret(struct x86_emulate_ctxt *ctxt) +{ + switch(ctxt->mode) { + case X86EMUL_MODE_REAL: + return emulate_iret_real(ctxt); + case X86EMUL_MODE_VM86: + case X86EMUL_MODE_PROT16: + case X86EMUL_MODE_PROT32: + case X86EMUL_MODE_PROT64: + default: + /* iret from protected mode unimplemented yet */ + return X86EMUL_UNHANDLEABLE; + } +} + +static int em_jmp_far(struct x86_emulate_ctxt *ctxt) +{ + int rc; + unsigned short sel, old_sel; + struct desc_struct old_desc, new_desc; + const struct x86_emulate_ops *ops = ctxt->ops; + u8 cpl = ctxt->ops->cpl(ctxt); + + /* Assignment of RIP may only fail in 64-bit mode */ + if (ctxt->mode == X86EMUL_MODE_PROT64) + ops->get_segment(ctxt, &old_sel, &old_desc, NULL, + VCPU_SREG_CS); + + memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); + + rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, + X86_TRANSFER_CALL_JMP, + &new_desc); + if (rc != X86EMUL_CONTINUE) + return rc; + + rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc); + if (rc != X86EMUL_CONTINUE) { + WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64); + /* assigning eip failed; restore the old cs */ + ops->set_segment(ctxt, old_sel, &old_desc, 0, VCPU_SREG_CS); + return rc; + } + return rc; +} + +static int em_jmp_abs(struct x86_emulate_ctxt *ctxt) +{ + return assign_eip_near(ctxt, ctxt->src.val); +} + +static int em_call_near_abs(struct x86_emulate_ctxt *ctxt) +{ + int rc; + long int old_eip; + + old_eip = ctxt->_eip; + rc = assign_eip_near(ctxt, ctxt->src.val); + if (rc != X86EMUL_CONTINUE) + return rc; + ctxt->src.val = old_eip; + rc = em_push(ctxt); + return rc; +} + +static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt) +{ + u64 old = ctxt->dst.orig_val64; + + if (ctxt->dst.bytes == 16) + return X86EMUL_UNHANDLEABLE; + + if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) || + ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) { + *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0); + *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32); + ctxt->eflags &= ~X86_EFLAGS_ZF; + } else { + ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) | + (u32) reg_read(ctxt, VCPU_REGS_RBX); + + ctxt->eflags |= X86_EFLAGS_ZF; + } + return X86EMUL_CONTINUE; +} + +static int em_ret(struct x86_emulate_ctxt *ctxt) +{ + int rc; + unsigned long eip; + + rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); + if (rc != X86EMUL_CONTINUE) + return rc; + + return assign_eip_near(ctxt, eip); +} + +static int em_ret_far(struct x86_emulate_ctxt *ctxt) +{ + int rc; + unsigned long eip, cs; + u16 old_cs; + int cpl = ctxt->ops->cpl(ctxt); + struct desc_struct old_desc, new_desc; + const struct x86_emulate_ops *ops = ctxt->ops; + + if (ctxt->mode == X86EMUL_MODE_PROT64) + ops->get_segment(ctxt, &old_cs, &old_desc, NULL, + VCPU_SREG_CS); + + rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); + if (rc != X86EMUL_CONTINUE) + return rc; + rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); + if (rc != X86EMUL_CONTINUE) + return rc; + /* Outer-privilege level return is not implemented */ + if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl) + return X86EMUL_UNHANDLEABLE; + rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl, + X86_TRANSFER_RET, + &new_desc); + if (rc != X86EMUL_CONTINUE) + return rc; + rc = assign_eip_far(ctxt, eip, &new_desc); + if (rc != X86EMUL_CONTINUE) { + WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64); + ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS); + } + return rc; +} + +static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt) +{ + int rc; + + rc = em_ret_far(ctxt); + if (rc != X86EMUL_CONTINUE) + return rc; + rsp_increment(ctxt, ctxt->src.val); + return X86EMUL_CONTINUE; +} + +static int em_cmpxchg(struct x86_emulate_ctxt *ctxt) +{ + /* Save real source value, then compare EAX against destination. */ + ctxt->dst.orig_val = ctxt->dst.val; + ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX); + ctxt->src.orig_val = ctxt->src.val; + ctxt->src.val = ctxt->dst.orig_val; + fastop(ctxt, em_cmp); + + if (ctxt->eflags & X86_EFLAGS_ZF) { + /* Success: write back to memory; no update of EAX */ + ctxt->src.type = OP_NONE; + ctxt->dst.val = ctxt->src.orig_val; + } else { + /* Failure: write the value we saw to EAX. */ + ctxt->src.type = OP_REG; + ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); + ctxt->src.val = ctxt->dst.orig_val; + /* Create write-cycle to dest by writing the same value */ + ctxt->dst.val = ctxt->dst.orig_val; + } + return X86EMUL_CONTINUE; +} + +static int em_lseg(struct x86_emulate_ctxt *ctxt) +{ + int seg = ctxt->src2.val; + unsigned short sel; + int rc; + + memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); + + rc = load_segment_descriptor(ctxt, sel, seg); + if (rc != X86EMUL_CONTINUE) + return rc; + + ctxt->dst.val = ctxt->src.val; + return rc; +} + +static void +setup_syscalls_segments(struct x86_emulate_ctxt *ctxt, + struct desc_struct *cs, struct desc_struct *ss) +{ + cs->l = 0; /* will be adjusted later */ + set_desc_base(cs, 0); /* flat segment */ + cs->g = 1; /* 4kb granularity */ + set_desc_limit(cs, 0xfffff); /* 4GB limit */ + cs->type = 0x0b; /* Read, Execute, Accessed */ + cs->s = 1; + cs->dpl = 0; /* will be adjusted later */ + cs->p = 1; + cs->d = 1; + cs->avl = 0; + + set_desc_base(ss, 0); /* flat segment */ + set_desc_limit(ss, 0xfffff); /* 4GB limit */ + ss->g = 1; /* 4kb granularity */ + ss->s = 1; + ss->type = 0x03; /* Read/Write, Accessed */ + ss->d = 1; /* 32bit stack segment */ + ss->dpl = 0; + ss->p = 1; + ss->l = 0; + ss->avl = 0; +} + +static bool vendor_intel(struct x86_emulate_ctxt *ctxt) +{ + u32 eax, ebx, ecx, edx; + + eax = ecx = 0; + ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx); + return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx + && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx + && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx; +} + +static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + u32 eax, ebx, ecx, edx; + + /* + * syscall should always be enabled in longmode - so only become + * vendor specific (cpuid) if other modes are active... + */ + if (ctxt->mode == X86EMUL_MODE_PROT64) + return true; + + eax = 0x00000000; + ecx = 0x00000000; + ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx); + /* + * Intel ("GenuineIntel") + * remark: Intel CPUs only support "syscall" in 64bit + * longmode. Also an 64bit guest with a + * 32bit compat-app running will #UD !! While this + * behaviour can be fixed (by emulating) into AMD + * response - CPUs of AMD can't behave like Intel. + */ + if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx && + ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx && + edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx) + return false; + + /* AMD ("AuthenticAMD") */ + if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx && + ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx && + edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx) + return true; + + /* AMD ("AMDisbetter!") */ + if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx && + ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx && + edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx) + return true; + + /* default: (not Intel, not AMD), apply Intel's stricter rules... */ + return false; +} + +static int em_syscall(struct x86_emulate_ctxt *ctxt) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + struct desc_struct cs, ss; + u64 msr_data; + u16 cs_sel, ss_sel; + u64 efer = 0; + + /* syscall is not available in real mode */ + if (ctxt->mode == X86EMUL_MODE_REAL || + ctxt->mode == X86EMUL_MODE_VM86) + return emulate_ud(ctxt); + + if (!(em_syscall_is_enabled(ctxt))) + return emulate_ud(ctxt); + + ops->get_msr(ctxt, MSR_EFER, &efer); + setup_syscalls_segments(ctxt, &cs, &ss); + + if (!(efer & EFER_SCE)) + return emulate_ud(ctxt); + + ops->get_msr(ctxt, MSR_STAR, &msr_data); + msr_data >>= 32; + cs_sel = (u16)(msr_data & 0xfffc); + ss_sel = (u16)(msr_data + 8); + + if (efer & EFER_LMA) { + cs.d = 0; + cs.l = 1; + } + ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); + ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); + + *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip; + if (efer & EFER_LMA) { +#ifdef CONFIG_X86_64 + *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags; + + ops->get_msr(ctxt, + ctxt->mode == X86EMUL_MODE_PROT64 ? + MSR_LSTAR : MSR_CSTAR, &msr_data); + ctxt->_eip = msr_data; + + ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data); + ctxt->eflags &= ~msr_data; + ctxt->eflags |= X86_EFLAGS_FIXED; +#endif + } else { + /* legacy mode */ + ops->get_msr(ctxt, MSR_STAR, &msr_data); + ctxt->_eip = (u32)msr_data; + + ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); + } + + return X86EMUL_CONTINUE; +} + +static int em_sysenter(struct x86_emulate_ctxt *ctxt) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + struct desc_struct cs, ss; + u64 msr_data; + u16 cs_sel, ss_sel; + u64 efer = 0; + + ops->get_msr(ctxt, MSR_EFER, &efer); + /* inject #GP if in real mode */ + if (ctxt->mode == X86EMUL_MODE_REAL) + return emulate_gp(ctxt, 0); + + /* + * Not recognized on AMD in compat mode (but is recognized in legacy + * mode). + */ + if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) + && !vendor_intel(ctxt)) + return emulate_ud(ctxt); + + /* sysenter/sysexit have not been tested in 64bit mode. */ + if (ctxt->mode == X86EMUL_MODE_PROT64) + return X86EMUL_UNHANDLEABLE; + + setup_syscalls_segments(ctxt, &cs, &ss); + + ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); + if ((msr_data & 0xfffc) == 0x0) + return emulate_gp(ctxt, 0); + + ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); + cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK; + ss_sel = cs_sel + 8; + if (efer & EFER_LMA) { + cs.d = 0; + cs.l = 1; + } + + ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); + ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); + + ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data); + ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data; + + ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data); + *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data : + (u32)msr_data; + + return X86EMUL_CONTINUE; +} + +static int em_sysexit(struct x86_emulate_ctxt *ctxt) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + struct desc_struct cs, ss; + u64 msr_data, rcx, rdx; + int usermode; + u16 cs_sel = 0, ss_sel = 0; + + /* inject #GP if in real mode or Virtual 8086 mode */ + if (ctxt->mode == X86EMUL_MODE_REAL || + ctxt->mode == X86EMUL_MODE_VM86) + return emulate_gp(ctxt, 0); + + setup_syscalls_segments(ctxt, &cs, &ss); + + if ((ctxt->rex_prefix & 0x8) != 0x0) + usermode = X86EMUL_MODE_PROT64; + else + usermode = X86EMUL_MODE_PROT32; + + rcx = reg_read(ctxt, VCPU_REGS_RCX); + rdx = reg_read(ctxt, VCPU_REGS_RDX); + + cs.dpl = 3; + ss.dpl = 3; + ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); + switch (usermode) { + case X86EMUL_MODE_PROT32: + cs_sel = (u16)(msr_data + 16); + if ((msr_data & 0xfffc) == 0x0) + return emulate_gp(ctxt, 0); + ss_sel = (u16)(msr_data + 24); + rcx = (u32)rcx; + rdx = (u32)rdx; + break; + case X86EMUL_MODE_PROT64: + cs_sel = (u16)(msr_data + 32); + if (msr_data == 0x0) + return emulate_gp(ctxt, 0); + ss_sel = cs_sel + 8; + cs.d = 0; + cs.l = 1; + if (is_noncanonical_address(rcx) || + is_noncanonical_address(rdx)) + return emulate_gp(ctxt, 0); + break; + } + cs_sel |= SEGMENT_RPL_MASK; + ss_sel |= SEGMENT_RPL_MASK; + + ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); + ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); + + ctxt->_eip = rdx; + *reg_write(ctxt, VCPU_REGS_RSP) = rcx; + + return X86EMUL_CONTINUE; +} + +static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt) +{ + int iopl; + if (ctxt->mode == X86EMUL_MODE_REAL) + return false; + if (ctxt->mode == X86EMUL_MODE_VM86) + return true; + iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; + return ctxt->ops->cpl(ctxt) > iopl; +} + +static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt, + u16 port, u16 len) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + struct desc_struct tr_seg; + u32 base3; + int r; + u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7; + unsigned mask = (1 << len) - 1; + unsigned long base; + + ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR); + if (!tr_seg.p) + return false; + if (desc_limit_scaled(&tr_seg) < 103) + return false; + base = get_desc_base(&tr_seg); +#ifdef CONFIG_X86_64 + base |= ((u64)base3) << 32; +#endif + r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL); + if (r != X86EMUL_CONTINUE) + return false; + if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg)) + return false; + r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL); + if (r != X86EMUL_CONTINUE) + return false; + if ((perm >> bit_idx) & mask) + return false; + return true; +} + +static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt, + u16 port, u16 len) +{ + if (ctxt->perm_ok) + return true; + + if (emulator_bad_iopl(ctxt)) + if (!emulator_io_port_access_allowed(ctxt, port, len)) + return false; + + ctxt->perm_ok = true; + + return true; +} + +static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt, + struct tss_segment_16 *tss) +{ + tss->ip = ctxt->_eip; + tss->flag = ctxt->eflags; + tss->ax = reg_read(ctxt, VCPU_REGS_RAX); + tss->cx = reg_read(ctxt, VCPU_REGS_RCX); + tss->dx = reg_read(ctxt, VCPU_REGS_RDX); + tss->bx = reg_read(ctxt, VCPU_REGS_RBX); + tss->sp = reg_read(ctxt, VCPU_REGS_RSP); + tss->bp = reg_read(ctxt, VCPU_REGS_RBP); + tss->si = reg_read(ctxt, VCPU_REGS_RSI); + tss->di = reg_read(ctxt, VCPU_REGS_RDI); + + tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); + tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); + tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); + tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); + tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR); +} + +static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt, + struct tss_segment_16 *tss) +{ + int ret; + u8 cpl; + + ctxt->_eip = tss->ip; + ctxt->eflags = tss->flag | 2; + *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax; + *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx; + *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx; + *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx; + *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp; + *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp; + *reg_write(ctxt, VCPU_REGS_RSI) = tss->si; + *reg_write(ctxt, VCPU_REGS_RDI) = tss->di; + + /* + * SDM says that segment selectors are loaded before segment + * descriptors + */ + set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR); + set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); + set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); + set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); + set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); + + cpl = tss->cs & 3; + + /* + * Now load segment descriptors. If fault happens at this stage + * it is handled in a context of new task + */ + ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + + return X86EMUL_CONTINUE; +} + +static int task_switch_16(struct x86_emulate_ctxt *ctxt, + u16 tss_selector, u16 old_tss_sel, + ulong old_tss_base, struct desc_struct *new_desc) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + struct tss_segment_16 tss_seg; + int ret; + u32 new_tss_base = get_desc_base(new_desc); + + ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg, + &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + + save_state_to_tss16(ctxt, &tss_seg); + + ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg, + &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + + ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg, + &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + + if (old_tss_sel != 0xffff) { + tss_seg.prev_task_link = old_tss_sel; + + ret = ops->write_std(ctxt, new_tss_base, + &tss_seg.prev_task_link, + sizeof tss_seg.prev_task_link, + &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + } + + return load_state_from_tss16(ctxt, &tss_seg); +} + +static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt, + struct tss_segment_32 *tss) +{ + /* CR3 and ldt selector are not saved intentionally */ + tss->eip = ctxt->_eip; + tss->eflags = ctxt->eflags; + tss->eax = reg_read(ctxt, VCPU_REGS_RAX); + tss->ecx = reg_read(ctxt, VCPU_REGS_RCX); + tss->edx = reg_read(ctxt, VCPU_REGS_RDX); + tss->ebx = reg_read(ctxt, VCPU_REGS_RBX); + tss->esp = reg_read(ctxt, VCPU_REGS_RSP); + tss->ebp = reg_read(ctxt, VCPU_REGS_RBP); + tss->esi = reg_read(ctxt, VCPU_REGS_RSI); + tss->edi = reg_read(ctxt, VCPU_REGS_RDI); + + tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); + tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); + tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); + tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); + tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS); + tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS); +} + +static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt, + struct tss_segment_32 *tss) +{ + int ret; + u8 cpl; + + if (ctxt->ops->set_cr(ctxt, 3, tss->cr3)) + return emulate_gp(ctxt, 0); + ctxt->_eip = tss->eip; + ctxt->eflags = tss->eflags | 2; + + /* General purpose registers */ + *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax; + *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx; + *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx; + *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx; + *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp; + *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp; + *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi; + *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi; + + /* + * SDM says that segment selectors are loaded before segment + * descriptors. This is important because CPL checks will + * use CS.RPL. + */ + set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR); + set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); + set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); + set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); + set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); + set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS); + set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS); + + /* + * If we're switching between Protected Mode and VM86, we need to make + * sure to update the mode before loading the segment descriptors so + * that the selectors are interpreted correctly. + */ + if (ctxt->eflags & X86_EFLAGS_VM) { + ctxt->mode = X86EMUL_MODE_VM86; + cpl = 3; + } else { + ctxt->mode = X86EMUL_MODE_PROT32; + cpl = tss->cs & 3; + } + + /* + * Now load segment descriptors. If fault happenes at this stage + * it is handled in a context of new task + */ + ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR, + cpl, X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl, + X86_TRANSFER_TASK_SWITCH, NULL); + + return ret; +} + +static int task_switch_32(struct x86_emulate_ctxt *ctxt, + u16 tss_selector, u16 old_tss_sel, + ulong old_tss_base, struct desc_struct *new_desc) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + struct tss_segment_32 tss_seg; + int ret; + u32 new_tss_base = get_desc_base(new_desc); + u32 eip_offset = offsetof(struct tss_segment_32, eip); + u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector); + + ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg, + &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + + save_state_to_tss32(ctxt, &tss_seg); + + /* Only GP registers and segment selectors are saved */ + ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip, + ldt_sel_offset - eip_offset, &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + + ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg, + &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + + if (old_tss_sel != 0xffff) { + tss_seg.prev_task_link = old_tss_sel; + + ret = ops->write_std(ctxt, new_tss_base, + &tss_seg.prev_task_link, + sizeof tss_seg.prev_task_link, + &ctxt->exception); + if (ret != X86EMUL_CONTINUE) + return ret; + } + + return load_state_from_tss32(ctxt, &tss_seg); +} + +static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt, + u16 tss_selector, int idt_index, int reason, + bool has_error_code, u32 error_code) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + struct desc_struct curr_tss_desc, next_tss_desc; + int ret; + u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR); + ulong old_tss_base = + ops->get_cached_segment_base(ctxt, VCPU_SREG_TR); + u32 desc_limit; + ulong desc_addr; + + /* FIXME: old_tss_base == ~0 ? */ + + ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr); + if (ret != X86EMUL_CONTINUE) + return ret; + ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr); + if (ret != X86EMUL_CONTINUE) + return ret; + + /* FIXME: check that next_tss_desc is tss */ + + /* + * Check privileges. The three cases are task switch caused by... + * + * 1. jmp/call/int to task gate: Check against DPL of the task gate + * 2. Exception/IRQ/iret: No check is performed + * 3. jmp/call to TSS/task-gate: No check is performed since the + * hardware checks it before exiting. + */ + if (reason == TASK_SWITCH_GATE) { + if (idt_index != -1) { + /* Software interrupts */ + struct desc_struct task_gate_desc; + int dpl; + + ret = read_interrupt_descriptor(ctxt, idt_index, + &task_gate_desc); + if (ret != X86EMUL_CONTINUE) + return ret; + + dpl = task_gate_desc.dpl; + if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl) + return emulate_gp(ctxt, (idt_index << 3) | 0x2); + } + } + + desc_limit = desc_limit_scaled(&next_tss_desc); + if (!next_tss_desc.p || + ((desc_limit < 0x67 && (next_tss_desc.type & 8)) || + desc_limit < 0x2b)) { + return emulate_ts(ctxt, tss_selector & 0xfffc); + } + + if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { + curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */ + write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc); + } + + if (reason == TASK_SWITCH_IRET) + ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT; + + /* set back link to prev task only if NT bit is set in eflags + note that old_tss_sel is not used after this point */ + if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) + old_tss_sel = 0xffff; + + if (next_tss_desc.type & 8) + ret = task_switch_32(ctxt, tss_selector, old_tss_sel, + old_tss_base, &next_tss_desc); + else + ret = task_switch_16(ctxt, tss_selector, old_tss_sel, + old_tss_base, &next_tss_desc); + if (ret != X86EMUL_CONTINUE) + return ret; + + if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) + ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT; + + if (reason != TASK_SWITCH_IRET) { + next_tss_desc.type |= (1 << 1); /* set busy flag */ + write_segment_descriptor(ctxt, tss_selector, &next_tss_desc); + } + + ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS); + ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR); + + if (has_error_code) { + ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2; + ctxt->lock_prefix = 0; + ctxt->src.val = (unsigned long) error_code; + ret = em_push(ctxt); + } + + return ret; +} + +int emulator_task_switch(struct x86_emulate_ctxt *ctxt, + u16 tss_selector, int idt_index, int reason, + bool has_error_code, u32 error_code) +{ + int rc; + + invalidate_registers(ctxt); + ctxt->_eip = ctxt->eip; + ctxt->dst.type = OP_NONE; + + rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason, + has_error_code, error_code); + + if (rc == X86EMUL_CONTINUE) { + ctxt->eip = ctxt->_eip; + writeback_registers(ctxt); + } + + return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; +} + +static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg, + struct operand *op) +{ + int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count; + + register_address_increment(ctxt, reg, df * op->bytes); + op->addr.mem.ea = register_address(ctxt, reg); +} + +static int em_das(struct x86_emulate_ctxt *ctxt) +{ + u8 al, old_al; + bool af, cf, old_cf; + + cf = ctxt->eflags & X86_EFLAGS_CF; + al = ctxt->dst.val; + + old_al = al; + old_cf = cf; + cf = false; + af = ctxt->eflags & X86_EFLAGS_AF; + if ((al & 0x0f) > 9 || af) { + al -= 6; + cf = old_cf | (al >= 250); + af = true; + } else { + af = false; + } + if (old_al > 0x99 || old_cf) { + al -= 0x60; + cf = true; + } + + ctxt->dst.val = al; + /* Set PF, ZF, SF */ + ctxt->src.type = OP_IMM; + ctxt->src.val = 0; + ctxt->src.bytes = 1; + fastop(ctxt, em_or); + ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF); + if (cf) + ctxt->eflags |= X86_EFLAGS_CF; + if (af) + ctxt->eflags |= X86_EFLAGS_AF; + return X86EMUL_CONTINUE; +} + +static int em_aam(struct x86_emulate_ctxt *ctxt) +{ + u8 al, ah; + + if (ctxt->src.val == 0) + return emulate_de(ctxt); + + al = ctxt->dst.val & 0xff; + ah = al / ctxt->src.val; + al %= ctxt->src.val; + + ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8); + + /* Set PF, ZF, SF */ + ctxt->src.type = OP_IMM; + ctxt->src.val = 0; + ctxt->src.bytes = 1; + fastop(ctxt, em_or); + + return X86EMUL_CONTINUE; +} + +static int em_aad(struct x86_emulate_ctxt *ctxt) +{ + u8 al = ctxt->dst.val & 0xff; + u8 ah = (ctxt->dst.val >> 8) & 0xff; + + al = (al + (ah * ctxt->src.val)) & 0xff; + + ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al; + + /* Set PF, ZF, SF */ + ctxt->src.type = OP_IMM; + ctxt->src.val = 0; + ctxt->src.bytes = 1; + fastop(ctxt, em_or); + + return X86EMUL_CONTINUE; +} + +static int em_call(struct x86_emulate_ctxt *ctxt) +{ + int rc; + long rel = ctxt->src.val; + + ctxt->src.val = (unsigned long)ctxt->_eip; + rc = jmp_rel(ctxt, rel); + if (rc != X86EMUL_CONTINUE) + return rc; + return em_push(ctxt); +} + +static int em_call_far(struct x86_emulate_ctxt *ctxt) +{ + u16 sel, old_cs; + ulong old_eip; + int rc; + struct desc_struct old_desc, new_desc; + const struct x86_emulate_ops *ops = ctxt->ops; + int cpl = ctxt->ops->cpl(ctxt); + enum x86emul_mode prev_mode = ctxt->mode; + + old_eip = ctxt->_eip; + ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS); + + memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); + rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, + X86_TRANSFER_CALL_JMP, &new_desc); + if (rc != X86EMUL_CONTINUE) + return rc; + + rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc); + if (rc != X86EMUL_CONTINUE) + goto fail; + + ctxt->src.val = old_cs; + rc = em_push(ctxt); + if (rc != X86EMUL_CONTINUE) + goto fail; + + ctxt->src.val = old_eip; + rc = em_push(ctxt); + /* If we failed, we tainted the memory, but the very least we should + restore cs */ + if (rc != X86EMUL_CONTINUE) { + pr_warn_once("faulting far call emulation tainted memory\n"); + goto fail; + } + return rc; +fail: + ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS); + ctxt->mode = prev_mode; + return rc; + +} + +static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt) +{ + int rc; + unsigned long eip; + + rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); + if (rc != X86EMUL_CONTINUE) + return rc; + rc = assign_eip_near(ctxt, eip); + if (rc != X86EMUL_CONTINUE) + return rc; + rsp_increment(ctxt, ctxt->src.val); + return X86EMUL_CONTINUE; +} + +static int em_xchg(struct x86_emulate_ctxt *ctxt) +{ + /* Write back the register source. */ + ctxt->src.val = ctxt->dst.val; + write_register_operand(&ctxt->src); + + /* Write back the memory destination with implicit LOCK prefix. */ + ctxt->dst.val = ctxt->src.orig_val; + ctxt->lock_prefix = 1; + return X86EMUL_CONTINUE; +} + +static int em_imul_3op(struct x86_emulate_ctxt *ctxt) +{ + ctxt->dst.val = ctxt->src2.val; + return fastop(ctxt, em_imul); +} + +static int em_cwd(struct x86_emulate_ctxt *ctxt) +{ + ctxt->dst.type = OP_REG; + ctxt->dst.bytes = ctxt->src.bytes; + ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); + ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1); + + return X86EMUL_CONTINUE; +} + +static int em_rdtsc(struct x86_emulate_ctxt *ctxt) +{ + u64 tsc = 0; + + ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc); + *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc; + *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32; + return X86EMUL_CONTINUE; +} + +static int em_rdpmc(struct x86_emulate_ctxt *ctxt) +{ + u64 pmc; + + if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc)) + return emulate_gp(ctxt, 0); + *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc; + *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32; + return X86EMUL_CONTINUE; +} + +static int em_mov(struct x86_emulate_ctxt *ctxt) +{ + memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr)); + return X86EMUL_CONTINUE; +} + +#define FFL(x) bit(X86_FEATURE_##x) + +static int em_movbe(struct x86_emulate_ctxt *ctxt) +{ + u32 ebx, ecx, edx, eax = 1; + u16 tmp; + + /* + * Check MOVBE is set in the guest-visible CPUID leaf. + */ + ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx); + if (!(ecx & FFL(MOVBE))) + return emulate_ud(ctxt); + + switch (ctxt->op_bytes) { + case 2: + /* + * From MOVBE definition: "...When the operand size is 16 bits, + * the upper word of the destination register remains unchanged + * ..." + * + * Both casting ->valptr and ->val to u16 breaks strict aliasing + * rules so we have to do the operation almost per hand. + */ + tmp = (u16)ctxt->src.val; + ctxt->dst.val &= ~0xffffUL; + ctxt->dst.val |= (unsigned long)swab16(tmp); + break; + case 4: + ctxt->dst.val = swab32((u32)ctxt->src.val); + break; + case 8: + ctxt->dst.val = swab64(ctxt->src.val); + break; + default: + BUG(); + } + return X86EMUL_CONTINUE; +} + +static int em_cr_write(struct x86_emulate_ctxt *ctxt) +{ + if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val)) + return emulate_gp(ctxt, 0); + + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return X86EMUL_CONTINUE; +} + +static int em_dr_write(struct x86_emulate_ctxt *ctxt) +{ + unsigned long val; + + if (ctxt->mode == X86EMUL_MODE_PROT64) + val = ctxt->src.val & ~0ULL; + else + val = ctxt->src.val & ~0U; + + /* #UD condition is already handled. */ + if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0) + return emulate_gp(ctxt, 0); + + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return X86EMUL_CONTINUE; +} + +static int em_wrmsr(struct x86_emulate_ctxt *ctxt) +{ + u64 msr_data; + + msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX) + | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32); + if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data)) + return emulate_gp(ctxt, 0); + + return X86EMUL_CONTINUE; +} + +static int em_rdmsr(struct x86_emulate_ctxt *ctxt) +{ + u64 msr_data; + + if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data)) + return emulate_gp(ctxt, 0); + + *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data; + *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32; + return X86EMUL_CONTINUE; +} + +static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt) +{ + if (ctxt->modrm_reg > VCPU_SREG_GS) + return emulate_ud(ctxt); + + ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg); + if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM) + ctxt->dst.bytes = 2; + return X86EMUL_CONTINUE; +} + +static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt) +{ + u16 sel = ctxt->src.val; + + if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS) + return emulate_ud(ctxt); + + if (ctxt->modrm_reg == VCPU_SREG_SS) + ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; + + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg); +} + +static int em_lldt(struct x86_emulate_ctxt *ctxt) +{ + u16 sel = ctxt->src.val; + + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR); +} + +static int em_ltr(struct x86_emulate_ctxt *ctxt) +{ + u16 sel = ctxt->src.val; + + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR); +} + +static int em_invlpg(struct x86_emulate_ctxt *ctxt) +{ + int rc; + ulong linear; + + rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear); + if (rc == X86EMUL_CONTINUE) + ctxt->ops->invlpg(ctxt, linear); + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return X86EMUL_CONTINUE; +} + +static int em_clts(struct x86_emulate_ctxt *ctxt) +{ + ulong cr0; + + cr0 = ctxt->ops->get_cr(ctxt, 0); + cr0 &= ~X86_CR0_TS; + ctxt->ops->set_cr(ctxt, 0, cr0); + return X86EMUL_CONTINUE; +} + +static int em_hypercall(struct x86_emulate_ctxt *ctxt) +{ + int rc = ctxt->ops->fix_hypercall(ctxt); + + if (rc != X86EMUL_CONTINUE) + return rc; + + /* Let the processor re-execute the fixed hypercall */ + ctxt->_eip = ctxt->eip; + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return X86EMUL_CONTINUE; +} + +static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt, + void (*get)(struct x86_emulate_ctxt *ctxt, + struct desc_ptr *ptr)) +{ + struct desc_ptr desc_ptr; + + if (ctxt->mode == X86EMUL_MODE_PROT64) + ctxt->op_bytes = 8; + get(ctxt, &desc_ptr); + if (ctxt->op_bytes == 2) { + ctxt->op_bytes = 4; + desc_ptr.address &= 0x00ffffff; + } + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return segmented_write(ctxt, ctxt->dst.addr.mem, + &desc_ptr, 2 + ctxt->op_bytes); +} + +static int em_sgdt(struct x86_emulate_ctxt *ctxt) +{ + return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt); +} + +static int em_sidt(struct x86_emulate_ctxt *ctxt) +{ + return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt); +} + +static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt) +{ + struct desc_ptr desc_ptr; + int rc; + + if (ctxt->mode == X86EMUL_MODE_PROT64) + ctxt->op_bytes = 8; + rc = read_descriptor(ctxt, ctxt->src.addr.mem, + &desc_ptr.size, &desc_ptr.address, + ctxt->op_bytes); + if (rc != X86EMUL_CONTINUE) + return rc; + if (ctxt->mode == X86EMUL_MODE_PROT64 && + is_noncanonical_address(desc_ptr.address)) + return emulate_gp(ctxt, 0); + if (lgdt) + ctxt->ops->set_gdt(ctxt, &desc_ptr); + else + ctxt->ops->set_idt(ctxt, &desc_ptr); + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return X86EMUL_CONTINUE; +} + +static int em_lgdt(struct x86_emulate_ctxt *ctxt) +{ + return em_lgdt_lidt(ctxt, true); +} + +static int em_lidt(struct x86_emulate_ctxt *ctxt) +{ + return em_lgdt_lidt(ctxt, false); +} + +static int em_smsw(struct x86_emulate_ctxt *ctxt) +{ + if (ctxt->dst.type == OP_MEM) + ctxt->dst.bytes = 2; + ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0); + return X86EMUL_CONTINUE; +} + +static int em_lmsw(struct x86_emulate_ctxt *ctxt) +{ + ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul) + | (ctxt->src.val & 0x0f)); + ctxt->dst.type = OP_NONE; + return X86EMUL_CONTINUE; +} + +static int em_loop(struct x86_emulate_ctxt *ctxt) +{ + int rc = X86EMUL_CONTINUE; + + register_address_increment(ctxt, VCPU_REGS_RCX, -1); + if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) && + (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags))) + rc = jmp_rel(ctxt, ctxt->src.val); + + return rc; +} + +static int em_jcxz(struct x86_emulate_ctxt *ctxt) +{ + int rc = X86EMUL_CONTINUE; + + if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) + rc = jmp_rel(ctxt, ctxt->src.val); + + return rc; +} + +static int em_in(struct x86_emulate_ctxt *ctxt) +{ + if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val, + &ctxt->dst.val)) + return X86EMUL_IO_NEEDED; + + return X86EMUL_CONTINUE; +} + +static int em_out(struct x86_emulate_ctxt *ctxt) +{ + ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val, + &ctxt->src.val, 1); + /* Disable writeback. */ + ctxt->dst.type = OP_NONE; + return X86EMUL_CONTINUE; +} + +static int em_cli(struct x86_emulate_ctxt *ctxt) +{ + if (emulator_bad_iopl(ctxt)) + return emulate_gp(ctxt, 0); + + ctxt->eflags &= ~X86_EFLAGS_IF; + return X86EMUL_CONTINUE; +} + +static int em_sti(struct x86_emulate_ctxt *ctxt) +{ + if (emulator_bad_iopl(ctxt)) + return emulate_gp(ctxt, 0); + + ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; + ctxt->eflags |= X86_EFLAGS_IF; + return X86EMUL_CONTINUE; +} + +static int em_cpuid(struct x86_emulate_ctxt *ctxt) +{ + u32 eax, ebx, ecx, edx; + + eax = reg_read(ctxt, VCPU_REGS_RAX); + ecx = reg_read(ctxt, VCPU_REGS_RCX); + ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx); + *reg_write(ctxt, VCPU_REGS_RAX) = eax; + *reg_write(ctxt, VCPU_REGS_RBX) = ebx; + *reg_write(ctxt, VCPU_REGS_RCX) = ecx; + *reg_write(ctxt, VCPU_REGS_RDX) = edx; + return X86EMUL_CONTINUE; +} + +static int em_sahf(struct x86_emulate_ctxt *ctxt) +{ + u32 flags; + + flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | + X86_EFLAGS_SF; + flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8; + + ctxt->eflags &= ~0xffUL; + ctxt->eflags |= flags | X86_EFLAGS_FIXED; + return X86EMUL_CONTINUE; +} + +static int em_lahf(struct x86_emulate_ctxt *ctxt) +{ + *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL; + *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8; + return X86EMUL_CONTINUE; +} + +static int em_bswap(struct x86_emulate_ctxt *ctxt) +{ + switch (ctxt->op_bytes) { +#ifdef CONFIG_X86_64 + case 8: + asm("bswap %0" : "+r"(ctxt->dst.val)); + break; +#endif + default: + asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val)); + break; + } + return X86EMUL_CONTINUE; +} + +static int em_clflush(struct x86_emulate_ctxt *ctxt) +{ + /* emulating clflush regardless of cpuid */ + return X86EMUL_CONTINUE; +} + +static int em_movsxd(struct x86_emulate_ctxt *ctxt) +{ + ctxt->dst.val = (s32) ctxt->src.val; + return X86EMUL_CONTINUE; +} + +static bool valid_cr(int nr) +{ + switch (nr) { + case 0: + case 2 ... 4: + case 8: + return true; + default: + return false; + } +} + +static int check_cr_read(struct x86_emulate_ctxt *ctxt) +{ + if (!valid_cr(ctxt->modrm_reg)) + return emulate_ud(ctxt); + + return X86EMUL_CONTINUE; +} + +static int check_cr_write(struct x86_emulate_ctxt *ctxt) +{ + u64 new_val = ctxt->src.val64; + int cr = ctxt->modrm_reg; + u64 efer = 0; + + static u64 cr_reserved_bits[] = { + 0xffffffff00000000ULL, + 0, 0, 0, /* CR3 checked later */ + CR4_RESERVED_BITS, + 0, 0, 0, + CR8_RESERVED_BITS, + }; + + if (!valid_cr(cr)) + return emulate_ud(ctxt); + + if (new_val & cr_reserved_bits[cr]) + return emulate_gp(ctxt, 0); + + switch (cr) { + case 0: { + u64 cr4; + if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) || + ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD))) + return emulate_gp(ctxt, 0); + + cr4 = ctxt->ops->get_cr(ctxt, 4); + ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); + + if ((new_val & X86_CR0_PG) && (efer & EFER_LME) && + !(cr4 & X86_CR4_PAE)) + return emulate_gp(ctxt, 0); + + break; + } + case 3: { + u64 rsvd = 0; + + ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); + if (efer & EFER_LMA) + rsvd = CR3_L_MODE_RESERVED_BITS & ~CR3_PCID_INVD; + + if (new_val & rsvd) + return emulate_gp(ctxt, 0); + + break; + } + case 4: { + ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); + + if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE)) + return emulate_gp(ctxt, 0); + + break; + } + } + + return X86EMUL_CONTINUE; +} + +static int check_dr7_gd(struct x86_emulate_ctxt *ctxt) +{ + unsigned long dr7; + + ctxt->ops->get_dr(ctxt, 7, &dr7); + + /* Check if DR7.Global_Enable is set */ + return dr7 & (1 << 13); +} + +static int check_dr_read(struct x86_emulate_ctxt *ctxt) +{ + int dr = ctxt->modrm_reg; + u64 cr4; + + if (dr > 7) + return emulate_ud(ctxt); + + cr4 = ctxt->ops->get_cr(ctxt, 4); + if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5)) + return emulate_ud(ctxt); + + if (check_dr7_gd(ctxt)) { + ulong dr6; + + ctxt->ops->get_dr(ctxt, 6, &dr6); + dr6 &= ~15; + dr6 |= DR6_BD | DR6_RTM; + ctxt->ops->set_dr(ctxt, 6, dr6); + return emulate_db(ctxt); + } + + return X86EMUL_CONTINUE; +} + +static int check_dr_write(struct x86_emulate_ctxt *ctxt) +{ + u64 new_val = ctxt->src.val64; + int dr = ctxt->modrm_reg; + + if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL)) + return emulate_gp(ctxt, 0); + + return check_dr_read(ctxt); +} + +static int check_svme(struct x86_emulate_ctxt *ctxt) +{ + u64 efer; + + ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); + + if (!(efer & EFER_SVME)) + return emulate_ud(ctxt); + + return X86EMUL_CONTINUE; +} + +static int check_svme_pa(struct x86_emulate_ctxt *ctxt) +{ + u64 rax = reg_read(ctxt, VCPU_REGS_RAX); + + /* Valid physical address? */ + if (rax & 0xffff000000000000ULL) + return emulate_gp(ctxt, 0); + + return check_svme(ctxt); +} + +static int check_rdtsc(struct x86_emulate_ctxt *ctxt) +{ + u64 cr4 = ctxt->ops->get_cr(ctxt, 4); + + if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt)) + return emulate_ud(ctxt); + + return X86EMUL_CONTINUE; +} + +static int check_rdpmc(struct x86_emulate_ctxt *ctxt) +{ + u64 cr4 = ctxt->ops->get_cr(ctxt, 4); + u64 rcx = reg_read(ctxt, VCPU_REGS_RCX); + + if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) || + ctxt->ops->check_pmc(ctxt, rcx)) + return emulate_gp(ctxt, 0); + + return X86EMUL_CONTINUE; +} + +static int check_perm_in(struct x86_emulate_ctxt *ctxt) +{ + ctxt->dst.bytes = min(ctxt->dst.bytes, 4u); + if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes)) + return emulate_gp(ctxt, 0); + + return X86EMUL_CONTINUE; +} + +static int check_perm_out(struct x86_emulate_ctxt *ctxt) +{ + ctxt->src.bytes = min(ctxt->src.bytes, 4u); + if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes)) + return emulate_gp(ctxt, 0); + + return X86EMUL_CONTINUE; +} + +#define D(_y) { .flags = (_y) } +#define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i } +#define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \ + .intercept = x86_intercept_##_i, .check_perm = (_p) } +#define N D(NotImpl) +#define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) } +#define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) } +#define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) } +#define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) } +#define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) } +#define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) } +#define I(_f, _e) { .flags = (_f), .u.execute = (_e) } +#define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) } +#define II(_f, _e, _i) \ + { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i } +#define IIP(_f, _e, _i, _p) \ + { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \ + .intercept = x86_intercept_##_i, .check_perm = (_p) } +#define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) } + +#define D2bv(_f) D((_f) | ByteOp), D(_f) +#define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p) +#define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e) +#define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e) +#define I2bvIP(_f, _e, _i, _p) \ + IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p) + +#define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \ + F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \ + F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e) + +static const struct opcode group7_rm0[] = { + N, + I(SrcNone | Priv | EmulateOnUD, em_hypercall), + N, N, N, N, N, N, +}; + +static const struct opcode group7_rm1[] = { + DI(SrcNone | Priv, monitor), + DI(SrcNone | Priv, mwait), + N, N, N, N, N, N, +}; + +static const struct opcode group7_rm3[] = { + DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa), + II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall), + DIP(SrcNone | Prot | Priv, vmload, check_svme_pa), + DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa), + DIP(SrcNone | Prot | Priv, stgi, check_svme), + DIP(SrcNone | Prot | Priv, clgi, check_svme), + DIP(SrcNone | Prot | Priv, skinit, check_svme), + DIP(SrcNone | Prot | Priv, invlpga, check_svme), +}; + +static const struct opcode group7_rm7[] = { + N, + DIP(SrcNone, rdtscp, check_rdtsc), + N, N, N, N, N, N, +}; + +static const struct opcode group1[] = { + F(Lock, em_add), + F(Lock | PageTable, em_or), + F(Lock, em_adc), + F(Lock, em_sbb), + F(Lock | PageTable, em_and), + F(Lock, em_sub), + F(Lock, em_xor), + F(NoWrite, em_cmp), +}; + +static const struct opcode group1A[] = { + I(DstMem | SrcNone | Mov | Stack | IncSP, em_pop), N, N, N, N, N, N, N, +}; + +static const struct opcode group2[] = { + F(DstMem | ModRM, em_rol), + F(DstMem | ModRM, em_ror), + F(DstMem | ModRM, em_rcl), + F(DstMem | ModRM, em_rcr), + F(DstMem | ModRM, em_shl), + F(DstMem | ModRM, em_shr), + F(DstMem | ModRM, em_shl), + F(DstMem | ModRM, em_sar), +}; + +static const struct opcode group3[] = { + F(DstMem | SrcImm | NoWrite, em_test), + F(DstMem | SrcImm | NoWrite, em_test), + F(DstMem | SrcNone | Lock, em_not), + F(DstMem | SrcNone | Lock, em_neg), + F(DstXacc | Src2Mem, em_mul_ex), + F(DstXacc | Src2Mem, em_imul_ex), + F(DstXacc | Src2Mem, em_div_ex), + F(DstXacc | Src2Mem, em_idiv_ex), +}; + +static const struct opcode group4[] = { + F(ByteOp | DstMem | SrcNone | Lock, em_inc), + F(ByteOp | DstMem | SrcNone | Lock, em_dec), + N, N, N, N, N, N, +}; + +static const struct opcode group5[] = { + F(DstMem | SrcNone | Lock, em_inc), + F(DstMem | SrcNone | Lock, em_dec), + I(SrcMem | NearBranch, em_call_near_abs), + I(SrcMemFAddr | ImplicitOps | Stack, em_call_far), + I(SrcMem | NearBranch, em_jmp_abs), + I(SrcMemFAddr | ImplicitOps, em_jmp_far), + I(SrcMem | Stack, em_push), D(Undefined), +}; + +static const struct opcode group6[] = { + DI(Prot | DstMem, sldt), + DI(Prot | DstMem, str), + II(Prot | Priv | SrcMem16, em_lldt, lldt), + II(Prot | Priv | SrcMem16, em_ltr, ltr), + N, N, N, N, +}; + +static const struct group_dual group7 = { { + II(Mov | DstMem, em_sgdt, sgdt), + II(Mov | DstMem, em_sidt, sidt), + II(SrcMem | Priv, em_lgdt, lgdt), + II(SrcMem | Priv, em_lidt, lidt), + II(SrcNone | DstMem | Mov, em_smsw, smsw), N, + II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), + II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg), +}, { + EXT(0, group7_rm0), + EXT(0, group7_rm1), + N, EXT(0, group7_rm3), + II(SrcNone | DstMem | Mov, em_smsw, smsw), N, + II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), + EXT(0, group7_rm7), +} }; + +static const struct opcode group8[] = { + N, N, N, N, + F(DstMem | SrcImmByte | NoWrite, em_bt), + F(DstMem | SrcImmByte | Lock | PageTable, em_bts), + F(DstMem | SrcImmByte | Lock, em_btr), + F(DstMem | SrcImmByte | Lock | PageTable, em_btc), +}; + +static const struct group_dual group9 = { { + N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N, +}, { + N, N, N, N, N, N, N, N, +} }; + +static const struct opcode group11[] = { + I(DstMem | SrcImm | Mov | PageTable, em_mov), + X7(D(Undefined)), +}; + +static const struct gprefix pfx_0f_ae_7 = { + I(SrcMem | ByteOp, em_clflush), N, N, N, +}; + +static const struct group_dual group15 = { { + N, N, N, N, N, N, N, GP(0, &pfx_0f_ae_7), +}, { + N, N, N, N, N, N, N, N, +} }; + +static const struct gprefix pfx_0f_6f_0f_7f = { + I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov), +}; + +static const struct instr_dual instr_dual_0f_2b = { + I(0, em_mov), N +}; + +static const struct gprefix pfx_0f_2b = { + ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N, +}; + +static const struct gprefix pfx_0f_28_0f_29 = { + I(Aligned, em_mov), I(Aligned, em_mov), N, N, +}; + +static const struct gprefix pfx_0f_e7 = { + N, I(Sse, em_mov), N, N, +}; + +static const struct escape escape_d9 = { { + N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw), +}, { + /* 0xC0 - 0xC7 */ + N, N, N, N, N, N, N, N, + /* 0xC8 - 0xCF */ + N, N, N, N, N, N, N, N, + /* 0xD0 - 0xC7 */ + N, N, N, N, N, N, N, N, + /* 0xD8 - 0xDF */ + N, N, N, N, N, N, N, N, + /* 0xE0 - 0xE7 */ + N, N, N, N, N, N, N, N, + /* 0xE8 - 0xEF */ + N, N, N, N, N, N, N, N, + /* 0xF0 - 0xF7 */ + N, N, N, N, N, N, N, N, + /* 0xF8 - 0xFF */ + N, N, N, N, N, N, N, N, +} }; + +static const struct escape escape_db = { { + N, N, N, N, N, N, N, N, +}, { + /* 0xC0 - 0xC7 */ + N, N, N, N, N, N, N, N, + /* 0xC8 - 0xCF */ + N, N, N, N, N, N, N, N, + /* 0xD0 - 0xC7 */ + N, N, N, N, N, N, N, N, + /* 0xD8 - 0xDF */ + N, N, N, N, N, N, N, N, + /* 0xE0 - 0xE7 */ + N, N, N, I(ImplicitOps, em_fninit), N, N, N, N, + /* 0xE8 - 0xEF */ + N, N, N, N, N, N, N, N, + /* 0xF0 - 0xF7 */ + N, N, N, N, N, N, N, N, + /* 0xF8 - 0xFF */ + N, N, N, N, N, N, N, N, +} }; + +static const struct escape escape_dd = { { + N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw), +}, { + /* 0xC0 - 0xC7 */ + N, N, N, N, N, N, N, N, + /* 0xC8 - 0xCF */ + N, N, N, N, N, N, N, N, + /* 0xD0 - 0xC7 */ + N, N, N, N, N, N, N, N, + /* 0xD8 - 0xDF */ + N, N, N, N, N, N, N, N, + /* 0xE0 - 0xE7 */ + N, N, N, N, N, N, N, N, + /* 0xE8 - 0xEF */ + N, N, N, N, N, N, N, N, + /* 0xF0 - 0xF7 */ + N, N, N, N, N, N, N, N, + /* 0xF8 - 0xFF */ + N, N, N, N, N, N, N, N, +} }; + +static const struct instr_dual instr_dual_0f_c3 = { + I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N +}; + +static const struct mode_dual mode_dual_63 = { + N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd) +}; + +static const struct opcode opcode_table[256] = { + /* 0x00 - 0x07 */ + F6ALU(Lock, em_add), + I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg), + I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg), + /* 0x08 - 0x0F */ + F6ALU(Lock | PageTable, em_or), + I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg), + N, + /* 0x10 - 0x17 */ + F6ALU(Lock, em_adc), + I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg), + I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg), + /* 0x18 - 0x1F */ + F6ALU(Lock, em_sbb), + I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg), + I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg), + /* 0x20 - 0x27 */ + F6ALU(Lock | PageTable, em_and), N, N, + /* 0x28 - 0x2F */ + F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das), + /* 0x30 - 0x37 */ + F6ALU(Lock, em_xor), N, N, + /* 0x38 - 0x3F */ + F6ALU(NoWrite, em_cmp), N, N, + /* 0x40 - 0x4F */ + X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)), + /* 0x50 - 0x57 */ + X8(I(SrcReg | Stack, em_push)), + /* 0x58 - 0x5F */ + X8(I(DstReg | Stack, em_pop)), + /* 0x60 - 0x67 */ + I(ImplicitOps | Stack | No64, em_pusha), + I(ImplicitOps | Stack | No64, em_popa), + N, MD(ModRM, &mode_dual_63), + N, N, N, N, + /* 0x68 - 0x6F */ + I(SrcImm | Mov | Stack, em_push), + I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op), + I(SrcImmByte | Mov | Stack, em_push), + I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op), + I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */ + I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */ + /* 0x70 - 0x7F */ + X16(D(SrcImmByte | NearBranch)), + /* 0x80 - 0x87 */ + G(ByteOp | DstMem | SrcImm, group1), + G(DstMem | SrcImm, group1), + G(ByteOp | DstMem | SrcImm | No64, group1), + G(DstMem | SrcImmByte, group1), + F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test), + I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg), + /* 0x88 - 0x8F */ + I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov), + I2bv(DstReg | SrcMem | ModRM | Mov, em_mov), + I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg), + D(ModRM | SrcMem | NoAccess | DstReg), + I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm), + G(0, group1A), + /* 0x90 - 0x97 */ + DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)), + /* 0x98 - 0x9F */ + D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd), + I(SrcImmFAddr | No64, em_call_far), N, + II(ImplicitOps | Stack, em_pushf, pushf), + II(ImplicitOps | Stack, em_popf, popf), + I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf), + /* 0xA0 - 0xA7 */ + I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov), + I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov), + I2bv(SrcSI | DstDI | Mov | String, em_mov), + F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r), + /* 0xA8 - 0xAF */ + F2bv(DstAcc | SrcImm | NoWrite, em_test), + I2bv(SrcAcc | DstDI | Mov | String, em_mov), + I2bv(SrcSI | DstAcc | Mov | String, em_mov), + F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r), + /* 0xB0 - 0xB7 */ + X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)), + /* 0xB8 - 0xBF */ + X8(I(DstReg | SrcImm64 | Mov, em_mov)), + /* 0xC0 - 0xC7 */ + G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2), + I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm), + I(ImplicitOps | NearBranch, em_ret), + I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg), + I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg), + G(ByteOp, group11), G(0, group11), + /* 0xC8 - 0xCF */ + I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave), + I(ImplicitOps | SrcImmU16, em_ret_far_imm), + I(ImplicitOps, em_ret_far), + D(ImplicitOps), DI(SrcImmByte, intn), + D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret), + /* 0xD0 - 0xD7 */ + G(Src2One | ByteOp, group2), G(Src2One, group2), + G(Src2CL | ByteOp, group2), G(Src2CL, group2), + I(DstAcc | SrcImmUByte | No64, em_aam), + I(DstAcc | SrcImmUByte | No64, em_aad), + F(DstAcc | ByteOp | No64, em_salc), + I(DstAcc | SrcXLat | ByteOp, em_mov), + /* 0xD8 - 0xDF */ + N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N, + /* 0xE0 - 0xE7 */ + X3(I(SrcImmByte | NearBranch, em_loop)), + I(SrcImmByte | NearBranch, em_jcxz), + I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in), + I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out), + /* 0xE8 - 0xEF */ + I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch), + I(SrcImmFAddr | No64, em_jmp_far), + D(SrcImmByte | ImplicitOps | NearBranch), + I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in), + I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out), + /* 0xF0 - 0xF7 */ + N, DI(ImplicitOps, icebp), N, N, + DI(ImplicitOps | Priv, hlt), D(ImplicitOps), + G(ByteOp, group3), G(0, group3), + /* 0xF8 - 0xFF */ + D(ImplicitOps), D(ImplicitOps), + I(ImplicitOps, em_cli), I(ImplicitOps, em_sti), + D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5), +}; + +static const struct opcode twobyte_table[256] = { + /* 0x00 - 0x0F */ + G(0, group6), GD(0, &group7), N, N, + N, I(ImplicitOps | EmulateOnUD, em_syscall), + II(ImplicitOps | Priv, em_clts, clts), N, + DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N, + N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, + /* 0x10 - 0x1F */ + N, N, N, N, N, N, N, N, + D(ImplicitOps | ModRM | SrcMem | NoAccess), + N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess), + /* 0x20 - 0x2F */ + DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read), + DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read), + IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write, + check_cr_write), + IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write, + check_dr_write), + N, N, N, N, + GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29), + GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29), + N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b), + N, N, N, N, + /* 0x30 - 0x3F */ + II(ImplicitOps | Priv, em_wrmsr, wrmsr), + IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc), + II(ImplicitOps | Priv, em_rdmsr, rdmsr), + IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc), + I(ImplicitOps | EmulateOnUD, em_sysenter), + I(ImplicitOps | Priv | EmulateOnUD, em_sysexit), + N, N, + N, N, N, N, N, N, N, N, + /* 0x40 - 0x4F */ + X16(D(DstReg | SrcMem | ModRM)), + /* 0x50 - 0x5F */ + N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, + /* 0x60 - 0x6F */ + N, N, N, N, + N, N, N, N, + N, N, N, N, + N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f), + /* 0x70 - 0x7F */ + N, N, N, N, + N, N, N, N, + N, N, N, N, + N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f), + /* 0x80 - 0x8F */ + X16(D(SrcImm | NearBranch)), + /* 0x90 - 0x9F */ + X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)), + /* 0xA0 - 0xA7 */ + I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg), + II(ImplicitOps, em_cpuid, cpuid), + F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt), + F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld), + F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N, + /* 0xA8 - 0xAF */ + I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg), + DI(ImplicitOps, rsm), + F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts), + F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd), + F(DstMem | SrcReg | Src2CL | ModRM, em_shrd), + GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul), + /* 0xB0 - 0xB7 */ + I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg), + I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg), + F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr), + I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg), + I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg), + D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), + /* 0xB8 - 0xBF */ + N, N, + G(BitOp, group8), + F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc), + I(DstReg | SrcMem | ModRM, em_bsf_c), + I(DstReg | SrcMem | ModRM, em_bsr_c), + D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), + /* 0xC0 - 0xC7 */ + F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd), + N, ID(0, &instr_dual_0f_c3), + N, N, N, GD(0, &group9), + /* 0xC8 - 0xCF */ + X8(I(DstReg, em_bswap)), + /* 0xD0 - 0xDF */ + N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, + /* 0xE0 - 0xEF */ + N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7), + N, N, N, N, N, N, N, N, + /* 0xF0 - 0xFF */ + N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N +}; + +static const struct instr_dual instr_dual_0f_38_f0 = { + I(DstReg | SrcMem | Mov, em_movbe), N +}; + +static const struct instr_dual instr_dual_0f_38_f1 = { + I(DstMem | SrcReg | Mov, em_movbe), N +}; + +static const struct gprefix three_byte_0f_38_f0 = { + ID(0, &instr_dual_0f_38_f0), N, N, N +}; + +static const struct gprefix three_byte_0f_38_f1 = { + ID(0, &instr_dual_0f_38_f1), N, N, N +}; + +/* + * Insns below are selected by the prefix which indexed by the third opcode + * byte. + */ +static const struct opcode opcode_map_0f_38[256] = { + /* 0x00 - 0x7f */ + X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), + /* 0x80 - 0xef */ + X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), + /* 0xf0 - 0xf1 */ + GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0), + GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1), + /* 0xf2 - 0xff */ + N, N, X4(N), X8(N) +}; + +#undef D +#undef N +#undef G +#undef GD +#undef I +#undef GP +#undef EXT +#undef MD +#undef ID + +#undef D2bv +#undef D2bvIP +#undef I2bv +#undef I2bvIP +#undef I6ALU + +static unsigned imm_size(struct x86_emulate_ctxt *ctxt) +{ + unsigned size; + + size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; + if (size == 8) + size = 4; + return size; +} + +static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op, + unsigned size, bool sign_extension) +{ + int rc = X86EMUL_CONTINUE; + + op->type = OP_IMM; + op->bytes = size; + op->addr.mem.ea = ctxt->_eip; + /* NB. Immediates are sign-extended as necessary. */ + switch (op->bytes) { + case 1: + op->val = insn_fetch(s8, ctxt); + break; + case 2: + op->val = insn_fetch(s16, ctxt); + break; + case 4: + op->val = insn_fetch(s32, ctxt); + break; + case 8: + op->val = insn_fetch(s64, ctxt); + break; + } + if (!sign_extension) { + switch (op->bytes) { + case 1: + op->val &= 0xff; + break; + case 2: + op->val &= 0xffff; + break; + case 4: + op->val &= 0xffffffff; + break; + } + } +done: + return rc; +} + +static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op, + unsigned d) +{ + int rc = X86EMUL_CONTINUE; + + switch (d) { + case OpReg: + decode_register_operand(ctxt, op); + break; + case OpImmUByte: + rc = decode_imm(ctxt, op, 1, false); + break; + case OpMem: + ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; + mem_common: + *op = ctxt->memop; + ctxt->memopp = op; + if (ctxt->d & BitOp) + fetch_bit_operand(ctxt); + op->orig_val = op->val; + break; + case OpMem64: + ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8; + goto mem_common; + case OpAcc: + op->type = OP_REG; + op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; + op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); + fetch_register_operand(op); + op->orig_val = op->val; + break; + case OpAccLo: + op->type = OP_REG; + op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes; + op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); + fetch_register_operand(op); + op->orig_val = op->val; + break; + case OpAccHi: + if (ctxt->d & ByteOp) { + op->type = OP_NONE; + break; + } + op->type = OP_REG; + op->bytes = ctxt->op_bytes; + op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); + fetch_register_operand(op); + op->orig_val = op->val; + break; + case OpDI: + op->type = OP_MEM; + op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; + op->addr.mem.ea = + register_address(ctxt, VCPU_REGS_RDI); + op->addr.mem.seg = VCPU_SREG_ES; + op->val = 0; + op->count = 1; + break; + case OpDX: + op->type = OP_REG; + op->bytes = 2; + op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); + fetch_register_operand(op); + break; + case OpCL: + op->type = OP_IMM; + op->bytes = 1; + op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff; + break; + case OpImmByte: + rc = decode_imm(ctxt, op, 1, true); + break; + case OpOne: + op->type = OP_IMM; + op->bytes = 1; + op->val = 1; + break; + case OpImm: + rc = decode_imm(ctxt, op, imm_size(ctxt), true); + break; + case OpImm64: + rc = decode_imm(ctxt, op, ctxt->op_bytes, true); + break; + case OpMem8: + ctxt->memop.bytes = 1; + if (ctxt->memop.type == OP_REG) { + ctxt->memop.addr.reg = decode_register(ctxt, + ctxt->modrm_rm, true); + fetch_register_operand(&ctxt->memop); + } + goto mem_common; + case OpMem16: + ctxt->memop.bytes = 2; + goto mem_common; + case OpMem32: + ctxt->memop.bytes = 4; + goto mem_common; + case OpImmU16: + rc = decode_imm(ctxt, op, 2, false); + break; + case OpImmU: + rc = decode_imm(ctxt, op, imm_size(ctxt), false); + break; + case OpSI: + op->type = OP_MEM; + op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; + op->addr.mem.ea = + register_address(ctxt, VCPU_REGS_RSI); + op->addr.mem.seg = ctxt->seg_override; + op->val = 0; + op->count = 1; + break; + case OpXLat: + op->type = OP_MEM; + op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; + op->addr.mem.ea = + address_mask(ctxt, + reg_read(ctxt, VCPU_REGS_RBX) + + (reg_read(ctxt, VCPU_REGS_RAX) & 0xff)); + op->addr.mem.seg = ctxt->seg_override; + op->val = 0; + break; + case OpImmFAddr: + op->type = OP_IMM; + op->addr.mem.ea = ctxt->_eip; + op->bytes = ctxt->op_bytes + 2; + insn_fetch_arr(op->valptr, op->bytes, ctxt); + break; + case OpMemFAddr: + ctxt->memop.bytes = ctxt->op_bytes + 2; + goto mem_common; + case OpES: + op->type = OP_IMM; + op->val = VCPU_SREG_ES; + break; + case OpCS: + op->type = OP_IMM; + op->val = VCPU_SREG_CS; + break; + case OpSS: + op->type = OP_IMM; + op->val = VCPU_SREG_SS; + break; + case OpDS: + op->type = OP_IMM; + op->val = VCPU_SREG_DS; + break; + case OpFS: + op->type = OP_IMM; + op->val = VCPU_SREG_FS; + break; + case OpGS: + op->type = OP_IMM; + op->val = VCPU_SREG_GS; + break; + case OpImplicit: + /* Special instructions do their own operand decoding. */ + default: + op->type = OP_NONE; /* Disable writeback. */ + break; + } + +done: + return rc; +} + +int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len) +{ + int rc = X86EMUL_CONTINUE; + int mode = ctxt->mode; + int def_op_bytes, def_ad_bytes, goffset, simd_prefix; + bool op_prefix = false; + bool has_seg_override = false; + struct opcode opcode; + + ctxt->memop.type = OP_NONE; + ctxt->memopp = NULL; + ctxt->_eip = ctxt->eip; + ctxt->fetch.ptr = ctxt->fetch.data; + ctxt->fetch.end = ctxt->fetch.data + insn_len; + ctxt->opcode_len = 1; + if (insn_len > 0) + memcpy(ctxt->fetch.data, insn, insn_len); + else { + rc = __do_insn_fetch_bytes(ctxt, 1); + if (rc != X86EMUL_CONTINUE) + return rc; + } + + switch (mode) { + case X86EMUL_MODE_REAL: + case X86EMUL_MODE_VM86: + case X86EMUL_MODE_PROT16: + def_op_bytes = def_ad_bytes = 2; + break; + case X86EMUL_MODE_PROT32: + def_op_bytes = def_ad_bytes = 4; + break; +#ifdef CONFIG_X86_64 + case X86EMUL_MODE_PROT64: + def_op_bytes = 4; + def_ad_bytes = 8; + break; +#endif + default: + return EMULATION_FAILED; + } + + ctxt->op_bytes = def_op_bytes; + ctxt->ad_bytes = def_ad_bytes; + + /* Legacy prefixes. */ + for (;;) { + switch (ctxt->b = insn_fetch(u8, ctxt)) { + case 0x66: /* operand-size override */ + op_prefix = true; + /* switch between 2/4 bytes */ + ctxt->op_bytes = def_op_bytes ^ 6; + break; + case 0x67: /* address-size override */ + if (mode == X86EMUL_MODE_PROT64) + /* switch between 4/8 bytes */ + ctxt->ad_bytes = def_ad_bytes ^ 12; + else + /* switch between 2/4 bytes */ + ctxt->ad_bytes = def_ad_bytes ^ 6; + break; + case 0x26: /* ES override */ + case 0x2e: /* CS override */ + case 0x36: /* SS override */ + case 0x3e: /* DS override */ + has_seg_override = true; + ctxt->seg_override = (ctxt->b >> 3) & 3; + break; + case 0x64: /* FS override */ + case 0x65: /* GS override */ + has_seg_override = true; + ctxt->seg_override = ctxt->b & 7; + break; + case 0x40 ... 0x4f: /* REX */ + if (mode != X86EMUL_MODE_PROT64) + goto done_prefixes; + ctxt->rex_prefix = ctxt->b; + continue; + case 0xf0: /* LOCK */ + ctxt->lock_prefix = 1; + break; + case 0xf2: /* REPNE/REPNZ */ + case 0xf3: /* REP/REPE/REPZ */ + ctxt->rep_prefix = ctxt->b; + break; + default: + goto done_prefixes; + } + + /* Any legacy prefix after a REX prefix nullifies its effect. */ + + ctxt->rex_prefix = 0; + } + +done_prefixes: + + /* REX prefix. */ + if (ctxt->rex_prefix & 8) + ctxt->op_bytes = 8; /* REX.W */ + + /* Opcode byte(s). */ + opcode = opcode_table[ctxt->b]; + /* Two-byte opcode? */ + if (ctxt->b == 0x0f) { + ctxt->opcode_len = 2; + ctxt->b = insn_fetch(u8, ctxt); + opcode = twobyte_table[ctxt->b]; + + /* 0F_38 opcode map */ + if (ctxt->b == 0x38) { + ctxt->opcode_len = 3; + ctxt->b = insn_fetch(u8, ctxt); + opcode = opcode_map_0f_38[ctxt->b]; + } + } + ctxt->d = opcode.flags; + + if (ctxt->d & ModRM) + ctxt->modrm = insn_fetch(u8, ctxt); + + /* vex-prefix instructions are not implemented */ + if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) && + (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) { + ctxt->d = NotImpl; + } + + while (ctxt->d & GroupMask) { + switch (ctxt->d & GroupMask) { + case Group: + goffset = (ctxt->modrm >> 3) & 7; + opcode = opcode.u.group[goffset]; + break; + case GroupDual: + goffset = (ctxt->modrm >> 3) & 7; + if ((ctxt->modrm >> 6) == 3) + opcode = opcode.u.gdual->mod3[goffset]; + else + opcode = opcode.u.gdual->mod012[goffset]; + break; + case RMExt: + goffset = ctxt->modrm & 7; + opcode = opcode.u.group[goffset]; + break; + case Prefix: + if (ctxt->rep_prefix && op_prefix) + return EMULATION_FAILED; + simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix; + switch (simd_prefix) { + case 0x00: opcode = opcode.u.gprefix->pfx_no; break; + case 0x66: opcode = opcode.u.gprefix->pfx_66; break; + case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break; + case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break; + } + break; + case Escape: + if (ctxt->modrm > 0xbf) + opcode = opcode.u.esc->high[ctxt->modrm - 0xc0]; + else + opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7]; + break; + case InstrDual: + if ((ctxt->modrm >> 6) == 3) + opcode = opcode.u.idual->mod3; + else + opcode = opcode.u.idual->mod012; + break; + case ModeDual: + if (ctxt->mode == X86EMUL_MODE_PROT64) + opcode = opcode.u.mdual->mode64; + else + opcode = opcode.u.mdual->mode32; + break; + default: + return EMULATION_FAILED; + } + + ctxt->d &= ~(u64)GroupMask; + ctxt->d |= opcode.flags; + } + + /* Unrecognised? */ + if (ctxt->d == 0) + return EMULATION_FAILED; + + ctxt->execute = opcode.u.execute; + + if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD))) + return EMULATION_FAILED; + + if (unlikely(ctxt->d & + (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch| + No16))) { + /* + * These are copied unconditionally here, and checked unconditionally + * in x86_emulate_insn. + */ + ctxt->check_perm = opcode.check_perm; + ctxt->intercept = opcode.intercept; + + if (ctxt->d & NotImpl) + return EMULATION_FAILED; + + if (mode == X86EMUL_MODE_PROT64) { + if (ctxt->op_bytes == 4 && (ctxt->d & Stack)) + ctxt->op_bytes = 8; + else if (ctxt->d & NearBranch) + ctxt->op_bytes = 8; + } + + if (ctxt->d & Op3264) { + if (mode == X86EMUL_MODE_PROT64) + ctxt->op_bytes = 8; + else + ctxt->op_bytes = 4; + } + + if ((ctxt->d & No16) && ctxt->op_bytes == 2) + ctxt->op_bytes = 4; + + if (ctxt->d & Sse) + ctxt->op_bytes = 16; + else if (ctxt->d & Mmx) + ctxt->op_bytes = 8; + } + + /* ModRM and SIB bytes. */ + if (ctxt->d & ModRM) { + rc = decode_modrm(ctxt, &ctxt->memop); + if (!has_seg_override) { + has_seg_override = true; + ctxt->seg_override = ctxt->modrm_seg; + } + } else if (ctxt->d & MemAbs) + rc = decode_abs(ctxt, &ctxt->memop); + if (rc != X86EMUL_CONTINUE) + goto done; + + if (!has_seg_override) + ctxt->seg_override = VCPU_SREG_DS; + + ctxt->memop.addr.mem.seg = ctxt->seg_override; + + /* + * Decode and fetch the source operand: register, memory + * or immediate. + */ + rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask); + if (rc != X86EMUL_CONTINUE) + goto done; + + /* + * Decode and fetch the second source operand: register, memory + * or immediate. + */ + rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask); + if (rc != X86EMUL_CONTINUE) + goto done; + + /* Decode and fetch the destination operand: register or memory. */ + rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask); + + if (ctxt->rip_relative) + ctxt->memopp->addr.mem.ea = address_mask(ctxt, + ctxt->memopp->addr.mem.ea + ctxt->_eip); + +done: + return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK; +} + +bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt) +{ + return ctxt->d & PageTable; +} + +static bool string_insn_completed(struct x86_emulate_ctxt *ctxt) +{ + /* The second termination condition only applies for REPE + * and REPNE. Test if the repeat string operation prefix is + * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the + * corresponding termination condition according to: + * - if REPE/REPZ and ZF = 0 then done + * - if REPNE/REPNZ and ZF = 1 then done + */ + if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) || + (ctxt->b == 0xae) || (ctxt->b == 0xaf)) + && (((ctxt->rep_prefix == REPE_PREFIX) && + ((ctxt->eflags & X86_EFLAGS_ZF) == 0)) + || ((ctxt->rep_prefix == REPNE_PREFIX) && + ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF)))) + return true; + + return false; +} + +static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt) +{ + bool fault = false; + + ctxt->ops->get_fpu(ctxt); + asm volatile("1: fwait \n\t" + "2: \n\t" + ".pushsection .fixup,\"ax\" \n\t" + "3: \n\t" + "movb $1, %[fault] \n\t" + "jmp 2b \n\t" + ".popsection \n\t" + _ASM_EXTABLE(1b, 3b) + : [fault]"+qm"(fault)); + ctxt->ops->put_fpu(ctxt); + + if (unlikely(fault)) + return emulate_exception(ctxt, MF_VECTOR, 0, false); + + return X86EMUL_CONTINUE; +} + +static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt, + struct operand *op) +{ + if (op->type == OP_MM) + read_mmx_reg(ctxt, &op->mm_val, op->addr.mm); +} + +static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *)) +{ + ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; + if (!(ctxt->d & ByteOp)) + fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE; + asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n" + : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags), + [fastop]"+S"(fop) + : "c"(ctxt->src2.val)); + ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); + if (!fop) /* exception is returned in fop variable */ + return emulate_de(ctxt); + return X86EMUL_CONTINUE; +} + +void init_decode_cache(struct x86_emulate_ctxt *ctxt) +{ + memset(&ctxt->rip_relative, 0, + (void *)&ctxt->modrm - (void *)&ctxt->rip_relative); + + ctxt->io_read.pos = 0; + ctxt->io_read.end = 0; + ctxt->mem_read.end = 0; +} + +int x86_emulate_insn(struct x86_emulate_ctxt *ctxt) +{ + const struct x86_emulate_ops *ops = ctxt->ops; + int rc = X86EMUL_CONTINUE; + int saved_dst_type = ctxt->dst.type; + + ctxt->mem_read.pos = 0; + + /* LOCK prefix is allowed only with some instructions */ + if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) { + rc = emulate_ud(ctxt); + goto done; + } + + if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) { + rc = emulate_ud(ctxt); + goto done; + } + + if (unlikely(ctxt->d & + (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) { + if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) || + (ctxt->d & Undefined)) { + rc = emulate_ud(ctxt); + goto done; + } + + if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) + || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) { + rc = emulate_ud(ctxt); + goto done; + } + + if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) { + rc = emulate_nm(ctxt); + goto done; + } + + if (ctxt->d & Mmx) { + rc = flush_pending_x87_faults(ctxt); + if (rc != X86EMUL_CONTINUE) + goto done; + /* + * Now that we know the fpu is exception safe, we can fetch + * operands from it. + */ + fetch_possible_mmx_operand(ctxt, &ctxt->src); + fetch_possible_mmx_operand(ctxt, &ctxt->src2); + if (!(ctxt->d & Mov)) + fetch_possible_mmx_operand(ctxt, &ctxt->dst); + } + + if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) { + rc = emulator_check_intercept(ctxt, ctxt->intercept, + X86_ICPT_PRE_EXCEPT); + if (rc != X86EMUL_CONTINUE) + goto done; + } + + /* Instruction can only be executed in protected mode */ + if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) { + rc = emulate_ud(ctxt); + goto done; + } + + /* Privileged instruction can be executed only in CPL=0 */ + if ((ctxt->d & Priv) && ops->cpl(ctxt)) { + if (ctxt->d & PrivUD) + rc = emulate_ud(ctxt); + else + rc = emulate_gp(ctxt, 0); + goto done; + } + + /* Do instruction specific permission checks */ + if (ctxt->d & CheckPerm) { + rc = ctxt->check_perm(ctxt); + if (rc != X86EMUL_CONTINUE) + goto done; + } + + if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) { + rc = emulator_check_intercept(ctxt, ctxt->intercept, + X86_ICPT_POST_EXCEPT); + if (rc != X86EMUL_CONTINUE) + goto done; + } + + if (ctxt->rep_prefix && (ctxt->d & String)) { + /* All REP prefixes have the same first termination condition */ + if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) { + ctxt->eip = ctxt->_eip; + ctxt->eflags &= ~X86_EFLAGS_RF; + goto done; + } + } + } + + if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) { + rc = segmented_read(ctxt, ctxt->src.addr.mem, + ctxt->src.valptr, ctxt->src.bytes); + if (rc != X86EMUL_CONTINUE) + goto done; + ctxt->src.orig_val64 = ctxt->src.val64; + } + + if (ctxt->src2.type == OP_MEM) { + rc = segmented_read(ctxt, ctxt->src2.addr.mem, + &ctxt->src2.val, ctxt->src2.bytes); + if (rc != X86EMUL_CONTINUE) + goto done; + } + + if ((ctxt->d & DstMask) == ImplicitOps) + goto special_insn; + + + if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) { + /* optimisation - avoid slow emulated read if Mov */ + rc = segmented_read(ctxt, ctxt->dst.addr.mem, + &ctxt->dst.val, ctxt->dst.bytes); + if (rc != X86EMUL_CONTINUE) { + if (!(ctxt->d & NoWrite) && + rc == X86EMUL_PROPAGATE_FAULT && + ctxt->exception.vector == PF_VECTOR) + ctxt->exception.error_code |= PFERR_WRITE_MASK; + goto done; + } + } + /* Copy full 64-bit value for CMPXCHG8B. */ + ctxt->dst.orig_val64 = ctxt->dst.val64; + +special_insn: + + if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) { + rc = emulator_check_intercept(ctxt, ctxt->intercept, + X86_ICPT_POST_MEMACCESS); + if (rc != X86EMUL_CONTINUE) + goto done; + } + + if (ctxt->rep_prefix && (ctxt->d & String)) + ctxt->eflags |= X86_EFLAGS_RF; + else + ctxt->eflags &= ~X86_EFLAGS_RF; + + if (ctxt->execute) { + if (ctxt->d & Fastop) { + void (*fop)(struct fastop *) = (void *)ctxt->execute; + rc = fastop(ctxt, fop); + if (rc != X86EMUL_CONTINUE) + goto done; + goto writeback; + } + rc = ctxt->execute(ctxt); + if (rc != X86EMUL_CONTINUE) + goto done; + goto writeback; + } + + if (ctxt->opcode_len == 2) + goto twobyte_insn; + else if (ctxt->opcode_len == 3) + goto threebyte_insn; + + switch (ctxt->b) { + case 0x70 ... 0x7f: /* jcc (short) */ + if (test_cc(ctxt->b, ctxt->eflags)) + rc = jmp_rel(ctxt, ctxt->src.val); + break; + case 0x8d: /* lea r16/r32, m */ + ctxt->dst.val = ctxt->src.addr.mem.ea; + break; + case 0x90 ... 0x97: /* nop / xchg reg, rax */ + if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX)) + ctxt->dst.type = OP_NONE; + else + rc = em_xchg(ctxt); + break; + case 0x98: /* cbw/cwde/cdqe */ + switch (ctxt->op_bytes) { + case 2: ctxt->dst.val = (s8)ctxt->dst.val; break; + case 4: ctxt->dst.val = (s16)ctxt->dst.val; break; + case 8: ctxt->dst.val = (s32)ctxt->dst.val; break; + } + break; + case 0xcc: /* int3 */ + rc = emulate_int(ctxt, 3); + break; + case 0xcd: /* int n */ + rc = emulate_int(ctxt, ctxt->src.val); + break; + case 0xce: /* into */ + if (ctxt->eflags & X86_EFLAGS_OF) + rc = emulate_int(ctxt, 4); + break; + case 0xe9: /* jmp rel */ + case 0xeb: /* jmp rel short */ + rc = jmp_rel(ctxt, ctxt->src.val); + ctxt->dst.type = OP_NONE; /* Disable writeback. */ + break; + case 0xf4: /* hlt */ + ctxt->ops->halt(ctxt); + break; + case 0xf5: /* cmc */ + /* complement carry flag from eflags reg */ + ctxt->eflags ^= X86_EFLAGS_CF; + break; + case 0xf8: /* clc */ + ctxt->eflags &= ~X86_EFLAGS_CF; + break; + case 0xf9: /* stc */ + ctxt->eflags |= X86_EFLAGS_CF; + break; + case 0xfc: /* cld */ + ctxt->eflags &= ~X86_EFLAGS_DF; + break; + case 0xfd: /* std */ + ctxt->eflags |= X86_EFLAGS_DF; + break; + default: + goto cannot_emulate; + } + + if (rc != X86EMUL_CONTINUE) + goto done; + +writeback: + if (ctxt->d & SrcWrite) { + BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR); + rc = writeback(ctxt, &ctxt->src); + if (rc != X86EMUL_CONTINUE) + goto done; + } + if (!(ctxt->d & NoWrite)) { + rc = writeback(ctxt, &ctxt->dst); + if (rc != X86EMUL_CONTINUE) + goto done; + } + + /* + * restore dst type in case the decoding will be reused + * (happens for string instruction ) + */ + ctxt->dst.type = saved_dst_type; + + if ((ctxt->d & SrcMask) == SrcSI) + string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src); + + if ((ctxt->d & DstMask) == DstDI) + string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst); + + if (ctxt->rep_prefix && (ctxt->d & String)) { + unsigned int count; + struct read_cache *r = &ctxt->io_read; + if ((ctxt->d & SrcMask) == SrcSI) + count = ctxt->src.count; + else + count = ctxt->dst.count; + register_address_increment(ctxt, VCPU_REGS_RCX, -count); + + if (!string_insn_completed(ctxt)) { + /* + * Re-enter guest when pio read ahead buffer is empty + * or, if it is not used, after each 1024 iteration. + */ + if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) && + (r->end == 0 || r->end != r->pos)) { + /* + * Reset read cache. Usually happens before + * decode, but since instruction is restarted + * we have to do it here. + */ + ctxt->mem_read.end = 0; + writeback_registers(ctxt); + return EMULATION_RESTART; + } + goto done; /* skip rip writeback */ + } + ctxt->eflags &= ~X86_EFLAGS_RF; + } + + ctxt->eip = ctxt->_eip; + +done: + if (rc == X86EMUL_PROPAGATE_FAULT) { + WARN_ON(ctxt->exception.vector > 0x1f); + ctxt->have_exception = true; + } + if (rc == X86EMUL_INTERCEPTED) + return EMULATION_INTERCEPTED; + + if (rc == X86EMUL_CONTINUE) + writeback_registers(ctxt); + + return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; + +twobyte_insn: + switch (ctxt->b) { + case 0x09: /* wbinvd */ + (ctxt->ops->wbinvd)(ctxt); + break; + case 0x08: /* invd */ + case 0x0d: /* GrpP (prefetch) */ + case 0x18: /* Grp16 (prefetch/nop) */ + case 0x1f: /* nop */ + break; + case 0x20: /* mov cr, reg */ + ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg); + break; + case 0x21: /* mov from dr to reg */ + ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val); + break; + case 0x40 ... 0x4f: /* cmov */ + if (test_cc(ctxt->b, ctxt->eflags)) + ctxt->dst.val = ctxt->src.val; + else if (ctxt->op_bytes != 4) + ctxt->dst.type = OP_NONE; /* no writeback */ + break; + case 0x80 ... 0x8f: /* jnz rel, etc*/ + if (test_cc(ctxt->b, ctxt->eflags)) + rc = jmp_rel(ctxt, ctxt->src.val); + break; + case 0x90 ... 0x9f: /* setcc r/m8 */ + ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags); + break; + case 0xb6 ... 0xb7: /* movzx */ + ctxt->dst.bytes = ctxt->op_bytes; + ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val + : (u16) ctxt->src.val; + break; + case 0xbe ... 0xbf: /* movsx */ + ctxt->dst.bytes = ctxt->op_bytes; + ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val : + (s16) ctxt->src.val; + break; + default: + goto cannot_emulate; + } + +threebyte_insn: + + if (rc != X86EMUL_CONTINUE) + goto done; + + goto writeback; + +cannot_emulate: + return EMULATION_FAILED; +} + +void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt) +{ + invalidate_registers(ctxt); +} + +void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt) +{ + writeback_registers(ctxt); +} diff --git a/arch/x86/kvm/i8254.c b/arch/x86/kvm/i8254.c new file mode 100644 index 000000000..f90952f64 --- /dev/null +++ b/arch/x86/kvm/i8254.c @@ -0,0 +1,781 @@ +/* + * 8253/8254 interval timer emulation + * + * Copyright (c) 2003-2004 Fabrice Bellard + * Copyright (c) 2006 Intel Corporation + * Copyright (c) 2007 Keir Fraser, XenSource Inc + * Copyright (c) 2008 Intel Corporation + * Copyright 2009 Red Hat, Inc. and/or its affiliates. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + * + * Authors: + * Sheng Yang <sheng.yang@intel.com> + * Based on QEMU and Xen. + */ + +#define pr_fmt(fmt) "pit: " fmt + +#include <linux/kvm_host.h> +#include <linux/slab.h> + +#include "irq.h" +#include "i8254.h" +#include "x86.h" + +#ifndef CONFIG_X86_64 +#define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) +#else +#define mod_64(x, y) ((x) % (y)) +#endif + +#define RW_STATE_LSB 1 +#define RW_STATE_MSB 2 +#define RW_STATE_WORD0 3 +#define RW_STATE_WORD1 4 + +/* Compute with 96 bit intermediate result: (a*b)/c */ +static u64 muldiv64(u64 a, u32 b, u32 c) +{ + union { + u64 ll; + struct { + u32 low, high; + } l; + } u, res; + u64 rl, rh; + + u.ll = a; + rl = (u64)u.l.low * (u64)b; + rh = (u64)u.l.high * (u64)b; + rh += (rl >> 32); + res.l.high = div64_u64(rh, c); + res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); + return res.ll; +} + +static void pit_set_gate(struct kvm *kvm, int channel, u32 val) +{ + struct kvm_kpit_channel_state *c = + &kvm->arch.vpit->pit_state.channels[channel]; + + WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); + + switch (c->mode) { + default: + case 0: + case 4: + /* XXX: just disable/enable counting */ + break; + case 1: + case 2: + case 3: + case 5: + /* Restart counting on rising edge. */ + if (c->gate < val) + c->count_load_time = ktime_get(); + break; + } + + c->gate = val; +} + +static int pit_get_gate(struct kvm *kvm, int channel) +{ + WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); + + return kvm->arch.vpit->pit_state.channels[channel].gate; +} + +static s64 __kpit_elapsed(struct kvm *kvm) +{ + s64 elapsed; + ktime_t remaining; + struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; + + if (!ps->period) + return 0; + + /* + * The Counter does not stop when it reaches zero. In + * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to + * the highest count, either FFFF hex for binary counting + * or 9999 for BCD counting, and continues counting. + * Modes 2 and 3 are periodic; the Counter reloads + * itself with the initial count and continues counting + * from there. + */ + remaining = hrtimer_get_remaining(&ps->timer); + elapsed = ps->period - ktime_to_ns(remaining); + + return elapsed; +} + +static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c, + int channel) +{ + if (channel == 0) + return __kpit_elapsed(kvm); + + return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); +} + +static int pit_get_count(struct kvm *kvm, int channel) +{ + struct kvm_kpit_channel_state *c = + &kvm->arch.vpit->pit_state.channels[channel]; + s64 d, t; + int counter; + + WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); + + t = kpit_elapsed(kvm, c, channel); + d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); + + switch (c->mode) { + case 0: + case 1: + case 4: + case 5: + counter = (c->count - d) & 0xffff; + break; + case 3: + /* XXX: may be incorrect for odd counts */ + counter = c->count - (mod_64((2 * d), c->count)); + break; + default: + counter = c->count - mod_64(d, c->count); + break; + } + return counter; +} + +static int pit_get_out(struct kvm *kvm, int channel) +{ + struct kvm_kpit_channel_state *c = + &kvm->arch.vpit->pit_state.channels[channel]; + s64 d, t; + int out; + + WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); + + t = kpit_elapsed(kvm, c, channel); + d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); + + switch (c->mode) { + default: + case 0: + out = (d >= c->count); + break; + case 1: + out = (d < c->count); + break; + case 2: + out = ((mod_64(d, c->count) == 0) && (d != 0)); + break; + case 3: + out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); + break; + case 4: + case 5: + out = (d == c->count); + break; + } + + return out; +} + +static void pit_latch_count(struct kvm *kvm, int channel) +{ + struct kvm_kpit_channel_state *c = + &kvm->arch.vpit->pit_state.channels[channel]; + + WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); + + if (!c->count_latched) { + c->latched_count = pit_get_count(kvm, channel); + c->count_latched = c->rw_mode; + } +} + +static void pit_latch_status(struct kvm *kvm, int channel) +{ + struct kvm_kpit_channel_state *c = + &kvm->arch.vpit->pit_state.channels[channel]; + + WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); + + if (!c->status_latched) { + /* TODO: Return NULL COUNT (bit 6). */ + c->status = ((pit_get_out(kvm, channel) << 7) | + (c->rw_mode << 4) | + (c->mode << 1) | + c->bcd); + c->status_latched = 1; + } +} + +static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) +{ + struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, + irq_ack_notifier); + int value; + + spin_lock(&ps->inject_lock); + value = atomic_dec_return(&ps->pending); + if (value < 0) + /* spurious acks can be generated if, for example, the + * PIC is being reset. Handle it gracefully here + */ + atomic_inc(&ps->pending); + else if (value > 0) + /* in this case, we had multiple outstanding pit interrupts + * that we needed to inject. Reinject + */ + queue_kthread_work(&ps->pit->worker, &ps->pit->expired); + ps->irq_ack = 1; + spin_unlock(&ps->inject_lock); +} + +void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) +{ + struct kvm_pit *pit = vcpu->kvm->arch.vpit; + struct hrtimer *timer; + + if (!kvm_vcpu_is_bsp(vcpu) || !pit) + return; + + timer = &pit->pit_state.timer; + mutex_lock(&pit->pit_state.lock); + if (hrtimer_cancel(timer)) + hrtimer_start_expires(timer, HRTIMER_MODE_ABS); + mutex_unlock(&pit->pit_state.lock); +} + +static void destroy_pit_timer(struct kvm_pit *pit) +{ + hrtimer_cancel(&pit->pit_state.timer); + flush_kthread_work(&pit->expired); +} + +static void pit_do_work(struct kthread_work *work) +{ + struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); + struct kvm *kvm = pit->kvm; + struct kvm_vcpu *vcpu; + int i; + struct kvm_kpit_state *ps = &pit->pit_state; + int inject = 0; + + /* Try to inject pending interrupts when + * last one has been acked. + */ + spin_lock(&ps->inject_lock); + if (ps->irq_ack) { + ps->irq_ack = 0; + inject = 1; + } + spin_unlock(&ps->inject_lock); + if (inject) { + kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false); + kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false); + + /* + * Provides NMI watchdog support via Virtual Wire mode. + * The route is: PIT -> PIC -> LVT0 in NMI mode. + * + * Note: Our Virtual Wire implementation is simplified, only + * propagating PIT interrupts to all VCPUs when they have set + * LVT0 to NMI delivery. Other PIC interrupts are just sent to + * VCPU0, and only if its LVT0 is in EXTINT mode. + */ + if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0) + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_apic_nmi_wd_deliver(vcpu); + } +} + +static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) +{ + struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer); + struct kvm_pit *pt = ps->kvm->arch.vpit; + + if (ps->reinject || !atomic_read(&ps->pending)) { + atomic_inc(&ps->pending); + queue_kthread_work(&pt->worker, &pt->expired); + } + + if (ps->is_periodic) { + hrtimer_add_expires_ns(&ps->timer, ps->period); + return HRTIMER_RESTART; + } else + return HRTIMER_NORESTART; +} + +static void create_pit_timer(struct kvm *kvm, u32 val, int is_period) +{ + struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; + s64 interval; + + if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY) + return; + + interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); + + pr_debug("create pit timer, interval is %llu nsec\n", interval); + + /* TODO The new value only affected after the retriggered */ + hrtimer_cancel(&ps->timer); + flush_kthread_work(&ps->pit->expired); + ps->period = interval; + ps->is_periodic = is_period; + + ps->timer.function = pit_timer_fn; + ps->kvm = ps->pit->kvm; + + atomic_set(&ps->pending, 0); + ps->irq_ack = 1; + + /* + * Do not allow the guest to program periodic timers with small + * interval, since the hrtimers are not throttled by the host + * scheduler. + */ + if (ps->is_periodic) { + s64 min_period = min_timer_period_us * 1000LL; + + if (ps->period < min_period) { + pr_info_ratelimited( + "kvm: requested %lld ns " + "i8254 timer period limited to %lld ns\n", + ps->period, min_period); + ps->period = min_period; + } + } + + hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval), + HRTIMER_MODE_ABS); +} + +static void pit_load_count(struct kvm *kvm, int channel, u32 val) +{ + struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; + + WARN_ON(!mutex_is_locked(&ps->lock)); + + pr_debug("load_count val is %d, channel is %d\n", val, channel); + + /* + * The largest possible initial count is 0; this is equivalent + * to 216 for binary counting and 104 for BCD counting. + */ + if (val == 0) + val = 0x10000; + + ps->channels[channel].count = val; + + if (channel != 0) { + ps->channels[channel].count_load_time = ktime_get(); + return; + } + + /* Two types of timer + * mode 1 is one shot, mode 2 is period, otherwise del timer */ + switch (ps->channels[0].mode) { + case 0: + case 1: + /* FIXME: enhance mode 4 precision */ + case 4: + create_pit_timer(kvm, val, 0); + break; + case 2: + case 3: + create_pit_timer(kvm, val, 1); + break; + default: + destroy_pit_timer(kvm->arch.vpit); + } +} + +void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start) +{ + u8 saved_mode; + if (hpet_legacy_start) { + /* save existing mode for later reenablement */ + saved_mode = kvm->arch.vpit->pit_state.channels[0].mode; + kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */ + pit_load_count(kvm, channel, val); + kvm->arch.vpit->pit_state.channels[0].mode = saved_mode; + } else { + pit_load_count(kvm, channel, val); + } +} + +static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) +{ + return container_of(dev, struct kvm_pit, dev); +} + +static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) +{ + return container_of(dev, struct kvm_pit, speaker_dev); +} + +static inline int pit_in_range(gpa_t addr) +{ + return ((addr >= KVM_PIT_BASE_ADDRESS) && + (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); +} + +static int pit_ioport_write(struct kvm_vcpu *vcpu, + struct kvm_io_device *this, + gpa_t addr, int len, const void *data) +{ + struct kvm_pit *pit = dev_to_pit(this); + struct kvm_kpit_state *pit_state = &pit->pit_state; + struct kvm *kvm = pit->kvm; + int channel, access; + struct kvm_kpit_channel_state *s; + u32 val = *(u32 *) data; + if (!pit_in_range(addr)) + return -EOPNOTSUPP; + + val &= 0xff; + addr &= KVM_PIT_CHANNEL_MASK; + + mutex_lock(&pit_state->lock); + + if (val != 0) + pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", + (unsigned int)addr, len, val); + + if (addr == 3) { + channel = val >> 6; + if (channel == 3) { + /* Read-Back Command. */ + for (channel = 0; channel < 3; channel++) { + s = &pit_state->channels[channel]; + if (val & (2 << channel)) { + if (!(val & 0x20)) + pit_latch_count(kvm, channel); + if (!(val & 0x10)) + pit_latch_status(kvm, channel); + } + } + } else { + /* Select Counter <channel>. */ + s = &pit_state->channels[channel]; + access = (val >> 4) & KVM_PIT_CHANNEL_MASK; + if (access == 0) { + pit_latch_count(kvm, channel); + } else { + s->rw_mode = access; + s->read_state = access; + s->write_state = access; + s->mode = (val >> 1) & 7; + if (s->mode > 5) + s->mode -= 4; + s->bcd = val & 1; + } + } + } else { + /* Write Count. */ + s = &pit_state->channels[addr]; + switch (s->write_state) { + default: + case RW_STATE_LSB: + pit_load_count(kvm, addr, val); + break; + case RW_STATE_MSB: + pit_load_count(kvm, addr, val << 8); + break; + case RW_STATE_WORD0: + s->write_latch = val; + s->write_state = RW_STATE_WORD1; + break; + case RW_STATE_WORD1: + pit_load_count(kvm, addr, s->write_latch | (val << 8)); + s->write_state = RW_STATE_WORD0; + break; + } + } + + mutex_unlock(&pit_state->lock); + return 0; +} + +static int pit_ioport_read(struct kvm_vcpu *vcpu, + struct kvm_io_device *this, + gpa_t addr, int len, void *data) +{ + struct kvm_pit *pit = dev_to_pit(this); + struct kvm_kpit_state *pit_state = &pit->pit_state; + struct kvm *kvm = pit->kvm; + int ret, count; + struct kvm_kpit_channel_state *s; + if (!pit_in_range(addr)) + return -EOPNOTSUPP; + + addr &= KVM_PIT_CHANNEL_MASK; + if (addr == 3) + return 0; + + s = &pit_state->channels[addr]; + + mutex_lock(&pit_state->lock); + + if (s->status_latched) { + s->status_latched = 0; + ret = s->status; + } else if (s->count_latched) { + switch (s->count_latched) { + default: + case RW_STATE_LSB: + ret = s->latched_count & 0xff; + s->count_latched = 0; + break; + case RW_STATE_MSB: + ret = s->latched_count >> 8; + s->count_latched = 0; + break; + case RW_STATE_WORD0: + ret = s->latched_count & 0xff; + s->count_latched = RW_STATE_MSB; + break; + } + } else { + switch (s->read_state) { + default: + case RW_STATE_LSB: + count = pit_get_count(kvm, addr); + ret = count & 0xff; + break; + case RW_STATE_MSB: + count = pit_get_count(kvm, addr); + ret = (count >> 8) & 0xff; + break; + case RW_STATE_WORD0: + count = pit_get_count(kvm, addr); + ret = count & 0xff; + s->read_state = RW_STATE_WORD1; + break; + case RW_STATE_WORD1: + count = pit_get_count(kvm, addr); + ret = (count >> 8) & 0xff; + s->read_state = RW_STATE_WORD0; + break; + } + } + + if (len > sizeof(ret)) + len = sizeof(ret); + memcpy(data, (char *)&ret, len); + + mutex_unlock(&pit_state->lock); + return 0; +} + +static int speaker_ioport_write(struct kvm_vcpu *vcpu, + struct kvm_io_device *this, + gpa_t addr, int len, const void *data) +{ + struct kvm_pit *pit = speaker_to_pit(this); + struct kvm_kpit_state *pit_state = &pit->pit_state; + struct kvm *kvm = pit->kvm; + u32 val = *(u32 *) data; + if (addr != KVM_SPEAKER_BASE_ADDRESS) + return -EOPNOTSUPP; + + mutex_lock(&pit_state->lock); + pit_state->speaker_data_on = (val >> 1) & 1; + pit_set_gate(kvm, 2, val & 1); + mutex_unlock(&pit_state->lock); + return 0; +} + +static int speaker_ioport_read(struct kvm_vcpu *vcpu, + struct kvm_io_device *this, + gpa_t addr, int len, void *data) +{ + struct kvm_pit *pit = speaker_to_pit(this); + struct kvm_kpit_state *pit_state = &pit->pit_state; + struct kvm *kvm = pit->kvm; + unsigned int refresh_clock; + int ret; + if (addr != KVM_SPEAKER_BASE_ADDRESS) + return -EOPNOTSUPP; + + /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ + refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; + + mutex_lock(&pit_state->lock); + ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | + (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); + if (len > sizeof(ret)) + len = sizeof(ret); + memcpy(data, (char *)&ret, len); + mutex_unlock(&pit_state->lock); + return 0; +} + +void kvm_pit_reset(struct kvm_pit *pit) +{ + int i; + struct kvm_kpit_channel_state *c; + + mutex_lock(&pit->pit_state.lock); + pit->pit_state.flags = 0; + for (i = 0; i < 3; i++) { + c = &pit->pit_state.channels[i]; + c->mode = 0xff; + c->gate = (i != 2); + pit_load_count(pit->kvm, i, 0); + } + mutex_unlock(&pit->pit_state.lock); + + atomic_set(&pit->pit_state.pending, 0); + pit->pit_state.irq_ack = 1; +} + +static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) +{ + struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); + + if (!mask) { + atomic_set(&pit->pit_state.pending, 0); + pit->pit_state.irq_ack = 1; + } +} + +static const struct kvm_io_device_ops pit_dev_ops = { + .read = pit_ioport_read, + .write = pit_ioport_write, +}; + +static const struct kvm_io_device_ops speaker_dev_ops = { + .read = speaker_ioport_read, + .write = speaker_ioport_write, +}; + +/* Caller must hold slots_lock */ +struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) +{ + struct kvm_pit *pit; + struct kvm_kpit_state *pit_state; + struct pid *pid; + pid_t pid_nr; + int ret; + + pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); + if (!pit) + return NULL; + + pit->irq_source_id = kvm_request_irq_source_id(kvm); + if (pit->irq_source_id < 0) { + kfree(pit); + return NULL; + } + + mutex_init(&pit->pit_state.lock); + mutex_lock(&pit->pit_state.lock); + spin_lock_init(&pit->pit_state.inject_lock); + + pid = get_pid(task_tgid(current)); + pid_nr = pid_vnr(pid); + put_pid(pid); + + init_kthread_worker(&pit->worker); + pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker, + "kvm-pit/%d", pid_nr); + if (IS_ERR(pit->worker_task)) { + mutex_unlock(&pit->pit_state.lock); + kvm_free_irq_source_id(kvm, pit->irq_source_id); + kfree(pit); + return NULL; + } + init_kthread_work(&pit->expired, pit_do_work); + + kvm->arch.vpit = pit; + pit->kvm = kvm; + + pit_state = &pit->pit_state; + pit_state->pit = pit; + hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); + pit_state->irq_ack_notifier.gsi = 0; + pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; + kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); + pit_state->reinject = true; + mutex_unlock(&pit->pit_state.lock); + + kvm_pit_reset(pit); + + pit->mask_notifier.func = pit_mask_notifer; + kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); + + kvm_iodevice_init(&pit->dev, &pit_dev_ops); + ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS, + KVM_PIT_MEM_LENGTH, &pit->dev); + if (ret < 0) + goto fail; + + if (flags & KVM_PIT_SPEAKER_DUMMY) { + kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); + ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, + KVM_SPEAKER_BASE_ADDRESS, 4, + &pit->speaker_dev); + if (ret < 0) + goto fail_unregister; + } + + return pit; + +fail_unregister: + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); + +fail: + kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); + kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); + kvm_free_irq_source_id(kvm, pit->irq_source_id); + kthread_stop(pit->worker_task); + kfree(pit); + return NULL; +} + +void kvm_free_pit(struct kvm *kvm) +{ + struct hrtimer *timer; + + if (kvm->arch.vpit) { + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, + &kvm->arch.vpit->speaker_dev); + kvm_unregister_irq_mask_notifier(kvm, 0, + &kvm->arch.vpit->mask_notifier); + kvm_unregister_irq_ack_notifier(kvm, + &kvm->arch.vpit->pit_state.irq_ack_notifier); + mutex_lock(&kvm->arch.vpit->pit_state.lock); + timer = &kvm->arch.vpit->pit_state.timer; + hrtimer_cancel(timer); + flush_kthread_work(&kvm->arch.vpit->expired); + kthread_stop(kvm->arch.vpit->worker_task); + kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id); + mutex_unlock(&kvm->arch.vpit->pit_state.lock); + kfree(kvm->arch.vpit); + } +} diff --git a/arch/x86/kvm/i8254.h b/arch/x86/kvm/i8254.h new file mode 100644 index 000000000..c84990b42 --- /dev/null +++ b/arch/x86/kvm/i8254.h @@ -0,0 +1,65 @@ +#ifndef __I8254_H +#define __I8254_H + +#include <linux/kthread.h> + +#include <kvm/iodev.h> + +struct kvm_kpit_channel_state { + u32 count; /* can be 65536 */ + u16 latched_count; + u8 count_latched; + u8 status_latched; + u8 status; + u8 read_state; + u8 write_state; + u8 write_latch; + u8 rw_mode; + u8 mode; + u8 bcd; /* not supported */ + u8 gate; /* timer start */ + ktime_t count_load_time; +}; + +struct kvm_kpit_state { + struct kvm_kpit_channel_state channels[3]; + u32 flags; + bool is_periodic; + s64 period; /* unit: ns */ + struct hrtimer timer; + atomic_t pending; /* accumulated triggered timers */ + bool reinject; + struct kvm *kvm; + u32 speaker_data_on; + struct mutex lock; + struct kvm_pit *pit; + spinlock_t inject_lock; + unsigned long irq_ack; + struct kvm_irq_ack_notifier irq_ack_notifier; +}; + +struct kvm_pit { + struct kvm_io_device dev; + struct kvm_io_device speaker_dev; + struct kvm *kvm; + struct kvm_kpit_state pit_state; + int irq_source_id; + struct kvm_irq_mask_notifier mask_notifier; + struct kthread_worker worker; + struct task_struct *worker_task; + struct kthread_work expired; +}; + +#define KVM_PIT_BASE_ADDRESS 0x40 +#define KVM_SPEAKER_BASE_ADDRESS 0x61 +#define KVM_PIT_MEM_LENGTH 4 +#define KVM_PIT_FREQ 1193181 +#define KVM_MAX_PIT_INTR_INTERVAL HZ / 100 +#define KVM_PIT_CHANNEL_MASK 0x3 + +void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start); +struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags); +void kvm_free_pit(struct kvm *kvm); +void kvm_pit_reset(struct kvm_pit *pit); + +#endif diff --git a/arch/x86/kvm/i8259.c b/arch/x86/kvm/i8259.c new file mode 100644 index 000000000..fef922ff2 --- /dev/null +++ b/arch/x86/kvm/i8259.c @@ -0,0 +1,665 @@ +/* + * 8259 interrupt controller emulation + * + * Copyright (c) 2003-2004 Fabrice Bellard + * Copyright (c) 2007 Intel Corporation + * Copyright 2009 Red Hat, Inc. and/or its affiliates. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + * Authors: + * Yaozu (Eddie) Dong <Eddie.dong@intel.com> + * Port from Qemu. + */ +#include <linux/mm.h> +#include <linux/slab.h> +#include <linux/bitops.h> +#include "irq.h" + +#include <linux/kvm_host.h> +#include "trace.h" + +#define pr_pic_unimpl(fmt, ...) \ + pr_err_ratelimited("kvm: pic: " fmt, ## __VA_ARGS__) + +static void pic_irq_request(struct kvm *kvm, int level); + +static void pic_lock(struct kvm_pic *s) + __acquires(&s->lock) +{ + spin_lock(&s->lock); +} + +static void pic_unlock(struct kvm_pic *s) + __releases(&s->lock) +{ + bool wakeup = s->wakeup_needed; + struct kvm_vcpu *vcpu, *found = NULL; + int i; + + s->wakeup_needed = false; + + spin_unlock(&s->lock); + + if (wakeup) { + kvm_for_each_vcpu(i, vcpu, s->kvm) { + if (kvm_apic_accept_pic_intr(vcpu)) { + found = vcpu; + break; + } + } + + if (!found) + return; + + kvm_make_request(KVM_REQ_EVENT, found); + kvm_vcpu_kick(found); + } +} + +static void pic_clear_isr(struct kvm_kpic_state *s, int irq) +{ + s->isr &= ~(1 << irq); + if (s != &s->pics_state->pics[0]) + irq += 8; + /* + * We are dropping lock while calling ack notifiers since ack + * notifier callbacks for assigned devices call into PIC recursively. + * Other interrupt may be delivered to PIC while lock is dropped but + * it should be safe since PIC state is already updated at this stage. + */ + pic_unlock(s->pics_state); + kvm_notify_acked_irq(s->pics_state->kvm, SELECT_PIC(irq), irq); + pic_lock(s->pics_state); +} + +/* + * set irq level. If an edge is detected, then the IRR is set to 1 + */ +static inline int pic_set_irq1(struct kvm_kpic_state *s, int irq, int level) +{ + int mask, ret = 1; + mask = 1 << irq; + if (s->elcr & mask) /* level triggered */ + if (level) { + ret = !(s->irr & mask); + s->irr |= mask; + s->last_irr |= mask; + } else { + s->irr &= ~mask; + s->last_irr &= ~mask; + } + else /* edge triggered */ + if (level) { + if ((s->last_irr & mask) == 0) { + ret = !(s->irr & mask); + s->irr |= mask; + } + s->last_irr |= mask; + } else + s->last_irr &= ~mask; + + return (s->imr & mask) ? -1 : ret; +} + +/* + * return the highest priority found in mask (highest = smallest + * number). Return 8 if no irq + */ +static inline int get_priority(struct kvm_kpic_state *s, int mask) +{ + int priority; + if (mask == 0) + return 8; + priority = 0; + while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0) + priority++; + return priority; +} + +/* + * return the pic wanted interrupt. return -1 if none + */ +static int pic_get_irq(struct kvm_kpic_state *s) +{ + int mask, cur_priority, priority; + + mask = s->irr & ~s->imr; + priority = get_priority(s, mask); + if (priority == 8) + return -1; + /* + * compute current priority. If special fully nested mode on the + * master, the IRQ coming from the slave is not taken into account + * for the priority computation. + */ + mask = s->isr; + if (s->special_fully_nested_mode && s == &s->pics_state->pics[0]) + mask &= ~(1 << 2); + cur_priority = get_priority(s, mask); + if (priority < cur_priority) + /* + * higher priority found: an irq should be generated + */ + return (priority + s->priority_add) & 7; + else + return -1; +} + +/* + * raise irq to CPU if necessary. must be called every time the active + * irq may change + */ +static void pic_update_irq(struct kvm_pic *s) +{ + int irq2, irq; + + irq2 = pic_get_irq(&s->pics[1]); + if (irq2 >= 0) { + /* + * if irq request by slave pic, signal master PIC + */ + pic_set_irq1(&s->pics[0], 2, 1); + pic_set_irq1(&s->pics[0], 2, 0); + } + irq = pic_get_irq(&s->pics[0]); + pic_irq_request(s->kvm, irq >= 0); +} + +void kvm_pic_update_irq(struct kvm_pic *s) +{ + pic_lock(s); + pic_update_irq(s); + pic_unlock(s); +} + +int kvm_pic_set_irq(struct kvm_pic *s, int irq, int irq_source_id, int level) +{ + int ret, irq_level; + + BUG_ON(irq < 0 || irq >= PIC_NUM_PINS); + + pic_lock(s); + irq_level = __kvm_irq_line_state(&s->irq_states[irq], + irq_source_id, level); + ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, irq_level); + pic_update_irq(s); + trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr, + s->pics[irq >> 3].imr, ret == 0); + pic_unlock(s); + + return ret; +} + +void kvm_pic_clear_all(struct kvm_pic *s, int irq_source_id) +{ + int i; + + pic_lock(s); + for (i = 0; i < PIC_NUM_PINS; i++) + __clear_bit(irq_source_id, &s->irq_states[i]); + pic_unlock(s); +} + +/* + * acknowledge interrupt 'irq' + */ +static inline void pic_intack(struct kvm_kpic_state *s, int irq) +{ + s->isr |= 1 << irq; + /* + * We don't clear a level sensitive interrupt here + */ + if (!(s->elcr & (1 << irq))) + s->irr &= ~(1 << irq); + + if (s->auto_eoi) { + if (s->rotate_on_auto_eoi) + s->priority_add = (irq + 1) & 7; + pic_clear_isr(s, irq); + } + +} + +int kvm_pic_read_irq(struct kvm *kvm) +{ + int irq, irq2, intno; + struct kvm_pic *s = pic_irqchip(kvm); + + s->output = 0; + + pic_lock(s); + irq = pic_get_irq(&s->pics[0]); + if (irq >= 0) { + pic_intack(&s->pics[0], irq); + if (irq == 2) { + irq2 = pic_get_irq(&s->pics[1]); + if (irq2 >= 0) + pic_intack(&s->pics[1], irq2); + else + /* + * spurious IRQ on slave controller + */ + irq2 = 7; + intno = s->pics[1].irq_base + irq2; + irq = irq2 + 8; + } else + intno = s->pics[0].irq_base + irq; + } else { + /* + * spurious IRQ on host controller + */ + irq = 7; + intno = s->pics[0].irq_base + irq; + } + pic_update_irq(s); + pic_unlock(s); + + return intno; +} + +void kvm_pic_reset(struct kvm_kpic_state *s) +{ + int irq, i; + struct kvm_vcpu *vcpu; + u8 edge_irr = s->irr & ~s->elcr; + bool found = false; + + s->last_irr = 0; + s->irr &= s->elcr; + s->imr = 0; + s->priority_add = 0; + s->special_mask = 0; + s->read_reg_select = 0; + if (!s->init4) { + s->special_fully_nested_mode = 0; + s->auto_eoi = 0; + } + s->init_state = 1; + + kvm_for_each_vcpu(i, vcpu, s->pics_state->kvm) + if (kvm_apic_accept_pic_intr(vcpu)) { + found = true; + break; + } + + + if (!found) + return; + + for (irq = 0; irq < PIC_NUM_PINS/2; irq++) + if (edge_irr & (1 << irq)) + pic_clear_isr(s, irq); +} + +static void pic_ioport_write(void *opaque, u32 addr, u32 val) +{ + struct kvm_kpic_state *s = opaque; + int priority, cmd, irq; + + addr &= 1; + if (addr == 0) { + if (val & 0x10) { + s->init4 = val & 1; + if (val & 0x02) + pr_pic_unimpl("single mode not supported"); + if (val & 0x08) + pr_pic_unimpl( + "level sensitive irq not supported"); + kvm_pic_reset(s); + } else if (val & 0x08) { + if (val & 0x04) + s->poll = 1; + if (val & 0x02) + s->read_reg_select = val & 1; + if (val & 0x40) + s->special_mask = (val >> 5) & 1; + } else { + cmd = val >> 5; + switch (cmd) { + case 0: + case 4: + s->rotate_on_auto_eoi = cmd >> 2; + break; + case 1: /* end of interrupt */ + case 5: + priority = get_priority(s, s->isr); + if (priority != 8) { + irq = (priority + s->priority_add) & 7; + if (cmd == 5) + s->priority_add = (irq + 1) & 7; + pic_clear_isr(s, irq); + pic_update_irq(s->pics_state); + } + break; + case 3: + irq = val & 7; + pic_clear_isr(s, irq); + pic_update_irq(s->pics_state); + break; + case 6: + s->priority_add = (val + 1) & 7; + pic_update_irq(s->pics_state); + break; + case 7: + irq = val & 7; + s->priority_add = (irq + 1) & 7; + pic_clear_isr(s, irq); + pic_update_irq(s->pics_state); + break; + default: + break; /* no operation */ + } + } + } else + switch (s->init_state) { + case 0: { /* normal mode */ + u8 imr_diff = s->imr ^ val, + off = (s == &s->pics_state->pics[0]) ? 0 : 8; + s->imr = val; + for (irq = 0; irq < PIC_NUM_PINS/2; irq++) + if (imr_diff & (1 << irq)) + kvm_fire_mask_notifiers( + s->pics_state->kvm, + SELECT_PIC(irq + off), + irq + off, + !!(s->imr & (1 << irq))); + pic_update_irq(s->pics_state); + break; + } + case 1: + s->irq_base = val & 0xf8; + s->init_state = 2; + break; + case 2: + if (s->init4) + s->init_state = 3; + else + s->init_state = 0; + break; + case 3: + s->special_fully_nested_mode = (val >> 4) & 1; + s->auto_eoi = (val >> 1) & 1; + s->init_state = 0; + break; + } +} + +static u32 pic_poll_read(struct kvm_kpic_state *s, u32 addr1) +{ + int ret; + + ret = pic_get_irq(s); + if (ret >= 0) { + if (addr1 >> 7) { + s->pics_state->pics[0].isr &= ~(1 << 2); + s->pics_state->pics[0].irr &= ~(1 << 2); + } + s->irr &= ~(1 << ret); + pic_clear_isr(s, ret); + if (addr1 >> 7 || ret != 2) + pic_update_irq(s->pics_state); + } else { + ret = 0x07; + pic_update_irq(s->pics_state); + } + + return ret; +} + +static u32 pic_ioport_read(void *opaque, u32 addr1) +{ + struct kvm_kpic_state *s = opaque; + unsigned int addr; + int ret; + + addr = addr1; + addr &= 1; + if (s->poll) { + ret = pic_poll_read(s, addr1); + s->poll = 0; + } else + if (addr == 0) + if (s->read_reg_select) + ret = s->isr; + else + ret = s->irr; + else + ret = s->imr; + return ret; +} + +static void elcr_ioport_write(void *opaque, u32 addr, u32 val) +{ + struct kvm_kpic_state *s = opaque; + s->elcr = val & s->elcr_mask; +} + +static u32 elcr_ioport_read(void *opaque, u32 addr1) +{ + struct kvm_kpic_state *s = opaque; + return s->elcr; +} + +static int picdev_in_range(gpa_t addr) +{ + switch (addr) { + case 0x20: + case 0x21: + case 0xa0: + case 0xa1: + case 0x4d0: + case 0x4d1: + return 1; + default: + return 0; + } +} + +static int picdev_write(struct kvm_pic *s, + gpa_t addr, int len, const void *val) +{ + unsigned char data = *(unsigned char *)val; + if (!picdev_in_range(addr)) + return -EOPNOTSUPP; + + if (len != 1) { + pr_pic_unimpl("non byte write\n"); + return 0; + } + pic_lock(s); + switch (addr) { + case 0x20: + case 0x21: + case 0xa0: + case 0xa1: + pic_ioport_write(&s->pics[addr >> 7], addr, data); + break; + case 0x4d0: + case 0x4d1: + elcr_ioport_write(&s->pics[addr & 1], addr, data); + break; + } + pic_unlock(s); + return 0; +} + +static int picdev_read(struct kvm_pic *s, + gpa_t addr, int len, void *val) +{ + unsigned char data = 0; + if (!picdev_in_range(addr)) + return -EOPNOTSUPP; + + if (len != 1) { + memset(val, 0, len); + pr_pic_unimpl("non byte read\n"); + return 0; + } + pic_lock(s); + switch (addr) { + case 0x20: + case 0x21: + case 0xa0: + case 0xa1: + data = pic_ioport_read(&s->pics[addr >> 7], addr); + break; + case 0x4d0: + case 0x4d1: + data = elcr_ioport_read(&s->pics[addr & 1], addr); + break; + } + *(unsigned char *)val = data; + pic_unlock(s); + return 0; +} + +static int picdev_master_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, + gpa_t addr, int len, const void *val) +{ + return picdev_write(container_of(dev, struct kvm_pic, dev_master), + addr, len, val); +} + +static int picdev_master_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, + gpa_t addr, int len, void *val) +{ + return picdev_read(container_of(dev, struct kvm_pic, dev_master), + addr, len, val); +} + +static int picdev_slave_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, + gpa_t addr, int len, const void *val) +{ + return picdev_write(container_of(dev, struct kvm_pic, dev_slave), + addr, len, val); +} + +static int picdev_slave_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, + gpa_t addr, int len, void *val) +{ + return picdev_read(container_of(dev, struct kvm_pic, dev_slave), + addr, len, val); +} + +static int picdev_eclr_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, + gpa_t addr, int len, const void *val) +{ + return picdev_write(container_of(dev, struct kvm_pic, dev_eclr), + addr, len, val); +} + +static int picdev_eclr_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, + gpa_t addr, int len, void *val) +{ + return picdev_read(container_of(dev, struct kvm_pic, dev_eclr), + addr, len, val); +} + +/* + * callback when PIC0 irq status changed + */ +static void pic_irq_request(struct kvm *kvm, int level) +{ + struct kvm_pic *s = pic_irqchip(kvm); + + if (!s->output) + s->wakeup_needed = true; + s->output = level; +} + +static const struct kvm_io_device_ops picdev_master_ops = { + .read = picdev_master_read, + .write = picdev_master_write, +}; + +static const struct kvm_io_device_ops picdev_slave_ops = { + .read = picdev_slave_read, + .write = picdev_slave_write, +}; + +static const struct kvm_io_device_ops picdev_eclr_ops = { + .read = picdev_eclr_read, + .write = picdev_eclr_write, +}; + +struct kvm_pic *kvm_create_pic(struct kvm *kvm) +{ + struct kvm_pic *s; + int ret; + + s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL); + if (!s) + return NULL; + spin_lock_init(&s->lock); + s->kvm = kvm; + s->pics[0].elcr_mask = 0xf8; + s->pics[1].elcr_mask = 0xde; + s->pics[0].pics_state = s; + s->pics[1].pics_state = s; + + /* + * Initialize PIO device + */ + kvm_iodevice_init(&s->dev_master, &picdev_master_ops); + kvm_iodevice_init(&s->dev_slave, &picdev_slave_ops); + kvm_iodevice_init(&s->dev_eclr, &picdev_eclr_ops); + mutex_lock(&kvm->slots_lock); + ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0x20, 2, + &s->dev_master); + if (ret < 0) + goto fail_unlock; + + ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0xa0, 2, &s->dev_slave); + if (ret < 0) + goto fail_unreg_2; + + ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0x4d0, 2, &s->dev_eclr); + if (ret < 0) + goto fail_unreg_1; + + mutex_unlock(&kvm->slots_lock); + + return s; + +fail_unreg_1: + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_slave); + +fail_unreg_2: + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_master); + +fail_unlock: + mutex_unlock(&kvm->slots_lock); + + kfree(s); + + return NULL; +} + +void kvm_destroy_pic(struct kvm *kvm) +{ + struct kvm_pic *vpic = kvm->arch.vpic; + + if (vpic) { + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_master); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_slave); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_eclr); + kvm->arch.vpic = NULL; + kfree(vpic); + } +} diff --git a/arch/x86/kvm/ioapic.c b/arch/x86/kvm/ioapic.c new file mode 100644 index 000000000..28146f03c --- /dev/null +++ b/arch/x86/kvm/ioapic.c @@ -0,0 +1,675 @@ +/* + * Copyright (C) 2001 MandrakeSoft S.A. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * MandrakeSoft S.A. + * 43, rue d'Aboukir + * 75002 Paris - France + * http://www.linux-mandrake.com/ + * http://www.mandrakesoft.com/ + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * Yunhong Jiang <yunhong.jiang@intel.com> + * Yaozu (Eddie) Dong <eddie.dong@intel.com> + * Based on Xen 3.1 code. + */ + +#include <linux/kvm_host.h> +#include <linux/kvm.h> +#include <linux/mm.h> +#include <linux/highmem.h> +#include <linux/smp.h> +#include <linux/hrtimer.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/export.h> +#include <asm/processor.h> +#include <asm/page.h> +#include <asm/current.h> +#include <trace/events/kvm.h> + +#include "ioapic.h" +#include "lapic.h" +#include "irq.h" + +#if 0 +#define ioapic_debug(fmt,arg...) printk(KERN_WARNING fmt,##arg) +#else +#define ioapic_debug(fmt, arg...) +#endif +static int ioapic_service(struct kvm_ioapic *vioapic, int irq, + bool line_status); + +static unsigned long ioapic_read_indirect(struct kvm_ioapic *ioapic, + unsigned long addr, + unsigned long length) +{ + unsigned long result = 0; + + switch (ioapic->ioregsel) { + case IOAPIC_REG_VERSION: + result = ((((IOAPIC_NUM_PINS - 1) & 0xff) << 16) + | (IOAPIC_VERSION_ID & 0xff)); + break; + + case IOAPIC_REG_APIC_ID: + case IOAPIC_REG_ARB_ID: + result = ((ioapic->id & 0xf) << 24); + break; + + default: + { + u32 redir_index = (ioapic->ioregsel - 0x10) >> 1; + u64 redir_content; + + if (redir_index < IOAPIC_NUM_PINS) + redir_content = + ioapic->redirtbl[redir_index].bits; + else + redir_content = ~0ULL; + + result = (ioapic->ioregsel & 0x1) ? + (redir_content >> 32) & 0xffffffff : + redir_content & 0xffffffff; + break; + } + } + + return result; +} + +static void rtc_irq_eoi_tracking_reset(struct kvm_ioapic *ioapic) +{ + ioapic->rtc_status.pending_eoi = 0; + bitmap_zero(ioapic->rtc_status.dest_map, KVM_MAX_VCPUS); +} + +static void kvm_rtc_eoi_tracking_restore_all(struct kvm_ioapic *ioapic); + +static void rtc_status_pending_eoi_check_valid(struct kvm_ioapic *ioapic) +{ + if (WARN_ON(ioapic->rtc_status.pending_eoi < 0)) + kvm_rtc_eoi_tracking_restore_all(ioapic); +} + +static void __rtc_irq_eoi_tracking_restore_one(struct kvm_vcpu *vcpu) +{ + bool new_val, old_val; + struct kvm_ioapic *ioapic = vcpu->kvm->arch.vioapic; + union kvm_ioapic_redirect_entry *e; + + e = &ioapic->redirtbl[RTC_GSI]; + if (!kvm_apic_match_dest(vcpu, NULL, 0, e->fields.dest_id, + e->fields.dest_mode)) + return; + + new_val = kvm_apic_pending_eoi(vcpu, e->fields.vector); + old_val = test_bit(vcpu->vcpu_id, ioapic->rtc_status.dest_map); + + if (new_val == old_val) + return; + + if (new_val) { + __set_bit(vcpu->vcpu_id, ioapic->rtc_status.dest_map); + ioapic->rtc_status.pending_eoi++; + } else { + __clear_bit(vcpu->vcpu_id, ioapic->rtc_status.dest_map); + ioapic->rtc_status.pending_eoi--; + rtc_status_pending_eoi_check_valid(ioapic); + } +} + +void kvm_rtc_eoi_tracking_restore_one(struct kvm_vcpu *vcpu) +{ + struct kvm_ioapic *ioapic = vcpu->kvm->arch.vioapic; + + spin_lock(&ioapic->lock); + __rtc_irq_eoi_tracking_restore_one(vcpu); + spin_unlock(&ioapic->lock); +} + +static void kvm_rtc_eoi_tracking_restore_all(struct kvm_ioapic *ioapic) +{ + struct kvm_vcpu *vcpu; + int i; + + if (RTC_GSI >= IOAPIC_NUM_PINS) + return; + + rtc_irq_eoi_tracking_reset(ioapic); + kvm_for_each_vcpu(i, vcpu, ioapic->kvm) + __rtc_irq_eoi_tracking_restore_one(vcpu); +} + +static void rtc_irq_eoi(struct kvm_ioapic *ioapic, struct kvm_vcpu *vcpu) +{ + if (test_and_clear_bit(vcpu->vcpu_id, ioapic->rtc_status.dest_map)) { + --ioapic->rtc_status.pending_eoi; + rtc_status_pending_eoi_check_valid(ioapic); + } +} + +static bool rtc_irq_check_coalesced(struct kvm_ioapic *ioapic) +{ + if (ioapic->rtc_status.pending_eoi > 0) + return true; /* coalesced */ + + return false; +} + +static int ioapic_set_irq(struct kvm_ioapic *ioapic, unsigned int irq, + int irq_level, bool line_status) +{ + union kvm_ioapic_redirect_entry entry; + u32 mask = 1 << irq; + u32 old_irr; + int edge, ret; + + entry = ioapic->redirtbl[irq]; + edge = (entry.fields.trig_mode == IOAPIC_EDGE_TRIG); + + if (!irq_level) { + ioapic->irr &= ~mask; + ret = 1; + goto out; + } + + /* + * Return 0 for coalesced interrupts; for edge-triggered interrupts, + * this only happens if a previous edge has not been delivered due + * do masking. For level interrupts, the remote_irr field tells + * us if the interrupt is waiting for an EOI. + * + * RTC is special: it is edge-triggered, but userspace likes to know + * if it has been already ack-ed via EOI because coalesced RTC + * interrupts lead to time drift in Windows guests. So we track + * EOI manually for the RTC interrupt. + */ + if (irq == RTC_GSI && line_status && + rtc_irq_check_coalesced(ioapic)) { + ret = 0; + goto out; + } + + old_irr = ioapic->irr; + ioapic->irr |= mask; + if (edge) + ioapic->irr_delivered &= ~mask; + if ((edge && old_irr == ioapic->irr) || + (!edge && entry.fields.remote_irr)) { + ret = 0; + goto out; + } + + ret = ioapic_service(ioapic, irq, line_status); + +out: + trace_kvm_ioapic_set_irq(entry.bits, irq, ret == 0); + return ret; +} + +static void kvm_ioapic_inject_all(struct kvm_ioapic *ioapic, unsigned long irr) +{ + u32 idx; + + rtc_irq_eoi_tracking_reset(ioapic); + for_each_set_bit(idx, &irr, IOAPIC_NUM_PINS) + ioapic_set_irq(ioapic, idx, 1, true); + + kvm_rtc_eoi_tracking_restore_all(ioapic); +} + + +static void update_handled_vectors(struct kvm_ioapic *ioapic) +{ + DECLARE_BITMAP(handled_vectors, 256); + int i; + + memset(handled_vectors, 0, sizeof(handled_vectors)); + for (i = 0; i < IOAPIC_NUM_PINS; ++i) + __set_bit(ioapic->redirtbl[i].fields.vector, handled_vectors); + memcpy(ioapic->handled_vectors, handled_vectors, + sizeof(handled_vectors)); + smp_wmb(); +} + +void kvm_ioapic_scan_entry(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap, + u32 *tmr) +{ + struct kvm_ioapic *ioapic = vcpu->kvm->arch.vioapic; + union kvm_ioapic_redirect_entry *e; + int index; + + spin_lock(&ioapic->lock); + for (index = 0; index < IOAPIC_NUM_PINS; index++) { + e = &ioapic->redirtbl[index]; + if (e->fields.trig_mode == IOAPIC_LEVEL_TRIG || + kvm_irq_has_notifier(ioapic->kvm, KVM_IRQCHIP_IOAPIC, index) || + index == RTC_GSI) { + if (kvm_apic_match_dest(vcpu, NULL, 0, + e->fields.dest_id, e->fields.dest_mode)) { + __set_bit(e->fields.vector, + (unsigned long *)eoi_exit_bitmap); + if (e->fields.trig_mode == IOAPIC_LEVEL_TRIG) + __set_bit(e->fields.vector, + (unsigned long *)tmr); + } + } + } + spin_unlock(&ioapic->lock); +} + +void kvm_vcpu_request_scan_ioapic(struct kvm *kvm) +{ + struct kvm_ioapic *ioapic = kvm->arch.vioapic; + + if (!ioapic) + return; + kvm_make_scan_ioapic_request(kvm); +} + +static void ioapic_write_indirect(struct kvm_ioapic *ioapic, u32 val) +{ + unsigned index; + bool mask_before, mask_after; + union kvm_ioapic_redirect_entry *e; + + switch (ioapic->ioregsel) { + case IOAPIC_REG_VERSION: + /* Writes are ignored. */ + break; + + case IOAPIC_REG_APIC_ID: + ioapic->id = (val >> 24) & 0xf; + break; + + case IOAPIC_REG_ARB_ID: + break; + + default: + index = (ioapic->ioregsel - 0x10) >> 1; + + ioapic_debug("change redir index %x val %x\n", index, val); + if (index >= IOAPIC_NUM_PINS) + return; + e = &ioapic->redirtbl[index]; + mask_before = e->fields.mask; + if (ioapic->ioregsel & 1) { + e->bits &= 0xffffffff; + e->bits |= (u64) val << 32; + } else { + e->bits &= ~0xffffffffULL; + e->bits |= (u32) val; + e->fields.remote_irr = 0; + } + update_handled_vectors(ioapic); + mask_after = e->fields.mask; + if (mask_before != mask_after) + kvm_fire_mask_notifiers(ioapic->kvm, KVM_IRQCHIP_IOAPIC, index, mask_after); + if (e->fields.trig_mode == IOAPIC_LEVEL_TRIG + && ioapic->irr & (1 << index)) + ioapic_service(ioapic, index, false); + kvm_vcpu_request_scan_ioapic(ioapic->kvm); + break; + } +} + +static int ioapic_service(struct kvm_ioapic *ioapic, int irq, bool line_status) +{ + union kvm_ioapic_redirect_entry *entry = &ioapic->redirtbl[irq]; + struct kvm_lapic_irq irqe; + int ret; + + if (entry->fields.mask) + return -1; + + ioapic_debug("dest=%x dest_mode=%x delivery_mode=%x " + "vector=%x trig_mode=%x\n", + entry->fields.dest_id, entry->fields.dest_mode, + entry->fields.delivery_mode, entry->fields.vector, + entry->fields.trig_mode); + + irqe.dest_id = entry->fields.dest_id; + irqe.vector = entry->fields.vector; + irqe.dest_mode = entry->fields.dest_mode; + irqe.trig_mode = entry->fields.trig_mode; + irqe.delivery_mode = entry->fields.delivery_mode << 8; + irqe.level = 1; + irqe.shorthand = 0; + + if (irqe.trig_mode == IOAPIC_EDGE_TRIG) + ioapic->irr_delivered |= 1 << irq; + + if (irq == RTC_GSI && line_status) { + /* + * pending_eoi cannot ever become negative (see + * rtc_status_pending_eoi_check_valid) and the caller + * ensures that it is only called if it is >= zero, namely + * if rtc_irq_check_coalesced returns false). + */ + BUG_ON(ioapic->rtc_status.pending_eoi != 0); + ret = kvm_irq_delivery_to_apic(ioapic->kvm, NULL, &irqe, + ioapic->rtc_status.dest_map); + ioapic->rtc_status.pending_eoi = (ret < 0 ? 0 : ret); + } else + ret = kvm_irq_delivery_to_apic(ioapic->kvm, NULL, &irqe, NULL); + + if (ret && irqe.trig_mode == IOAPIC_LEVEL_TRIG) + entry->fields.remote_irr = 1; + + return ret; +} + +int kvm_ioapic_set_irq(struct kvm_ioapic *ioapic, int irq, int irq_source_id, + int level, bool line_status) +{ + int ret, irq_level; + + BUG_ON(irq < 0 || irq >= IOAPIC_NUM_PINS); + + spin_lock(&ioapic->lock); + irq_level = __kvm_irq_line_state(&ioapic->irq_states[irq], + irq_source_id, level); + ret = ioapic_set_irq(ioapic, irq, irq_level, line_status); + + spin_unlock(&ioapic->lock); + + return ret; +} + +void kvm_ioapic_clear_all(struct kvm_ioapic *ioapic, int irq_source_id) +{ + int i; + + spin_lock(&ioapic->lock); + for (i = 0; i < KVM_IOAPIC_NUM_PINS; i++) + __clear_bit(irq_source_id, &ioapic->irq_states[i]); + spin_unlock(&ioapic->lock); +} + +static void kvm_ioapic_eoi_inject_work(struct work_struct *work) +{ + int i; + struct kvm_ioapic *ioapic = container_of(work, struct kvm_ioapic, + eoi_inject.work); + spin_lock(&ioapic->lock); + for (i = 0; i < IOAPIC_NUM_PINS; i++) { + union kvm_ioapic_redirect_entry *ent = &ioapic->redirtbl[i]; + + if (ent->fields.trig_mode != IOAPIC_LEVEL_TRIG) + continue; + + if (ioapic->irr & (1 << i) && !ent->fields.remote_irr) + ioapic_service(ioapic, i, false); + } + spin_unlock(&ioapic->lock); +} + +#define IOAPIC_SUCCESSIVE_IRQ_MAX_COUNT 10000 + +static void __kvm_ioapic_update_eoi(struct kvm_vcpu *vcpu, + struct kvm_ioapic *ioapic, int vector, int trigger_mode) +{ + int i; + struct kvm_lapic *apic = vcpu->arch.apic; + + for (i = 0; i < IOAPIC_NUM_PINS; i++) { + union kvm_ioapic_redirect_entry *ent = &ioapic->redirtbl[i]; + + if (ent->fields.vector != vector) + continue; + + if (i == RTC_GSI) + rtc_irq_eoi(ioapic, vcpu); + /* + * We are dropping lock while calling ack notifiers because ack + * notifier callbacks for assigned devices call into IOAPIC + * recursively. Since remote_irr is cleared only after call + * to notifiers if the same vector will be delivered while lock + * is dropped it will be put into irr and will be delivered + * after ack notifier returns. + */ + spin_unlock(&ioapic->lock); + kvm_notify_acked_irq(ioapic->kvm, KVM_IRQCHIP_IOAPIC, i); + spin_lock(&ioapic->lock); + + if (trigger_mode != IOAPIC_LEVEL_TRIG || + kvm_apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI) + continue; + + ASSERT(ent->fields.trig_mode == IOAPIC_LEVEL_TRIG); + ent->fields.remote_irr = 0; + if (!ent->fields.mask && (ioapic->irr & (1 << i))) { + ++ioapic->irq_eoi[i]; + if (ioapic->irq_eoi[i] == IOAPIC_SUCCESSIVE_IRQ_MAX_COUNT) { + /* + * Real hardware does not deliver the interrupt + * immediately during eoi broadcast, and this + * lets a buggy guest make slow progress + * even if it does not correctly handle a + * level-triggered interrupt. Emulate this + * behavior if we detect an interrupt storm. + */ + schedule_delayed_work(&ioapic->eoi_inject, HZ / 100); + ioapic->irq_eoi[i] = 0; + trace_kvm_ioapic_delayed_eoi_inj(ent->bits); + } else { + ioapic_service(ioapic, i, false); + } + } else { + ioapic->irq_eoi[i] = 0; + } + } +} + +void kvm_ioapic_update_eoi(struct kvm_vcpu *vcpu, int vector, int trigger_mode) +{ + struct kvm_ioapic *ioapic = vcpu->kvm->arch.vioapic; + + spin_lock(&ioapic->lock); + __kvm_ioapic_update_eoi(vcpu, ioapic, vector, trigger_mode); + spin_unlock(&ioapic->lock); +} + +static inline struct kvm_ioapic *to_ioapic(struct kvm_io_device *dev) +{ + return container_of(dev, struct kvm_ioapic, dev); +} + +static inline int ioapic_in_range(struct kvm_ioapic *ioapic, gpa_t addr) +{ + return ((addr >= ioapic->base_address && + (addr < ioapic->base_address + IOAPIC_MEM_LENGTH))); +} + +static int ioapic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, + gpa_t addr, int len, void *val) +{ + struct kvm_ioapic *ioapic = to_ioapic(this); + u32 result; + if (!ioapic_in_range(ioapic, addr)) + return -EOPNOTSUPP; + + ioapic_debug("addr %lx\n", (unsigned long)addr); + ASSERT(!(addr & 0xf)); /* check alignment */ + + addr &= 0xff; + spin_lock(&ioapic->lock); + switch (addr) { + case IOAPIC_REG_SELECT: + result = ioapic->ioregsel; + break; + + case IOAPIC_REG_WINDOW: + result = ioapic_read_indirect(ioapic, addr, len); + break; + + default: + result = 0; + break; + } + spin_unlock(&ioapic->lock); + + switch (len) { + case 8: + *(u64 *) val = result; + break; + case 1: + case 2: + case 4: + memcpy(val, (char *)&result, len); + break; + default: + printk(KERN_WARNING "ioapic: wrong length %d\n", len); + } + return 0; +} + +static int ioapic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, + gpa_t addr, int len, const void *val) +{ + struct kvm_ioapic *ioapic = to_ioapic(this); + u32 data; + if (!ioapic_in_range(ioapic, addr)) + return -EOPNOTSUPP; + + ioapic_debug("ioapic_mmio_write addr=%p len=%d val=%p\n", + (void*)addr, len, val); + ASSERT(!(addr & 0xf)); /* check alignment */ + + switch (len) { + case 8: + case 4: + data = *(u32 *) val; + break; + case 2: + data = *(u16 *) val; + break; + case 1: + data = *(u8 *) val; + break; + default: + printk(KERN_WARNING "ioapic: Unsupported size %d\n", len); + return 0; + } + + addr &= 0xff; + spin_lock(&ioapic->lock); + switch (addr) { + case IOAPIC_REG_SELECT: + ioapic->ioregsel = data & 0xFF; /* 8-bit register */ + break; + + case IOAPIC_REG_WINDOW: + ioapic_write_indirect(ioapic, data); + break; + + default: + break; + } + spin_unlock(&ioapic->lock); + return 0; +} + +static void kvm_ioapic_reset(struct kvm_ioapic *ioapic) +{ + int i; + + cancel_delayed_work_sync(&ioapic->eoi_inject); + for (i = 0; i < IOAPIC_NUM_PINS; i++) + ioapic->redirtbl[i].fields.mask = 1; + ioapic->base_address = IOAPIC_DEFAULT_BASE_ADDRESS; + ioapic->ioregsel = 0; + ioapic->irr = 0; + ioapic->irr_delivered = 0; + ioapic->id = 0; + memset(ioapic->irq_eoi, 0x00, IOAPIC_NUM_PINS); + rtc_irq_eoi_tracking_reset(ioapic); + update_handled_vectors(ioapic); +} + +static const struct kvm_io_device_ops ioapic_mmio_ops = { + .read = ioapic_mmio_read, + .write = ioapic_mmio_write, +}; + +int kvm_ioapic_init(struct kvm *kvm) +{ + struct kvm_ioapic *ioapic; + int ret; + + ioapic = kzalloc(sizeof(struct kvm_ioapic), GFP_KERNEL); + if (!ioapic) + return -ENOMEM; + spin_lock_init(&ioapic->lock); + INIT_DELAYED_WORK(&ioapic->eoi_inject, kvm_ioapic_eoi_inject_work); + kvm->arch.vioapic = ioapic; + kvm_ioapic_reset(ioapic); + kvm_iodevice_init(&ioapic->dev, &ioapic_mmio_ops); + ioapic->kvm = kvm; + mutex_lock(&kvm->slots_lock); + ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, ioapic->base_address, + IOAPIC_MEM_LENGTH, &ioapic->dev); + mutex_unlock(&kvm->slots_lock); + if (ret < 0) { + kvm->arch.vioapic = NULL; + kfree(ioapic); + } + + return ret; +} + +void kvm_ioapic_destroy(struct kvm *kvm) +{ + struct kvm_ioapic *ioapic = kvm->arch.vioapic; + + cancel_delayed_work_sync(&ioapic->eoi_inject); + if (ioapic) { + kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &ioapic->dev); + kvm->arch.vioapic = NULL; + kfree(ioapic); + } +} + +int kvm_get_ioapic(struct kvm *kvm, struct kvm_ioapic_state *state) +{ + struct kvm_ioapic *ioapic = ioapic_irqchip(kvm); + if (!ioapic) + return -EINVAL; + + spin_lock(&ioapic->lock); + memcpy(state, ioapic, sizeof(struct kvm_ioapic_state)); + state->irr &= ~ioapic->irr_delivered; + spin_unlock(&ioapic->lock); + return 0; +} + +int kvm_set_ioapic(struct kvm *kvm, struct kvm_ioapic_state *state) +{ + struct kvm_ioapic *ioapic = ioapic_irqchip(kvm); + if (!ioapic) + return -EINVAL; + + spin_lock(&ioapic->lock); + memcpy(ioapic, state, sizeof(struct kvm_ioapic_state)); + ioapic->irr = 0; + ioapic->irr_delivered = 0; + update_handled_vectors(ioapic); + kvm_vcpu_request_scan_ioapic(kvm); + kvm_ioapic_inject_all(ioapic, state->irr); + spin_unlock(&ioapic->lock); + return 0; +} diff --git a/arch/x86/kvm/ioapic.h b/arch/x86/kvm/ioapic.h new file mode 100644 index 000000000..ca0b0b4e6 --- /dev/null +++ b/arch/x86/kvm/ioapic.h @@ -0,0 +1,126 @@ +#ifndef __KVM_IO_APIC_H +#define __KVM_IO_APIC_H + +#include <linux/kvm_host.h> + +#include <kvm/iodev.h> + +struct kvm; +struct kvm_vcpu; + +#define IOAPIC_NUM_PINS KVM_IOAPIC_NUM_PINS +#define IOAPIC_VERSION_ID 0x11 /* IOAPIC version */ +#define IOAPIC_EDGE_TRIG 0 +#define IOAPIC_LEVEL_TRIG 1 + +#define IOAPIC_DEFAULT_BASE_ADDRESS 0xfec00000 +#define IOAPIC_MEM_LENGTH 0x100 + +/* Direct registers. */ +#define IOAPIC_REG_SELECT 0x00 +#define IOAPIC_REG_WINDOW 0x10 + +/* Indirect registers. */ +#define IOAPIC_REG_APIC_ID 0x00 /* x86 IOAPIC only */ +#define IOAPIC_REG_VERSION 0x01 +#define IOAPIC_REG_ARB_ID 0x02 /* x86 IOAPIC only */ + +/*ioapic delivery mode*/ +#define IOAPIC_FIXED 0x0 +#define IOAPIC_LOWEST_PRIORITY 0x1 +#define IOAPIC_PMI 0x2 +#define IOAPIC_NMI 0x4 +#define IOAPIC_INIT 0x5 +#define IOAPIC_EXTINT 0x7 + +#ifdef CONFIG_X86 +#define RTC_GSI 8 +#else +#define RTC_GSI -1U +#endif + +struct rtc_status { + int pending_eoi; + DECLARE_BITMAP(dest_map, KVM_MAX_VCPUS); +}; + +union kvm_ioapic_redirect_entry { + u64 bits; + struct { + u8 vector; + u8 delivery_mode:3; + u8 dest_mode:1; + u8 delivery_status:1; + u8 polarity:1; + u8 remote_irr:1; + u8 trig_mode:1; + u8 mask:1; + u8 reserve:7; + u8 reserved[4]; + u8 dest_id; + } fields; +}; + +struct kvm_ioapic { + u64 base_address; + u32 ioregsel; + u32 id; + u32 irr; + u32 pad; + union kvm_ioapic_redirect_entry redirtbl[IOAPIC_NUM_PINS]; + unsigned long irq_states[IOAPIC_NUM_PINS]; + struct kvm_io_device dev; + struct kvm *kvm; + void (*ack_notifier)(void *opaque, int irq); + spinlock_t lock; + DECLARE_BITMAP(handled_vectors, 256); + struct rtc_status rtc_status; + struct delayed_work eoi_inject; + u32 irq_eoi[IOAPIC_NUM_PINS]; + u32 irr_delivered; +}; + +#ifdef DEBUG +#define ASSERT(x) \ +do { \ + if (!(x)) { \ + printk(KERN_EMERG "assertion failed %s: %d: %s\n", \ + __FILE__, __LINE__, #x); \ + BUG(); \ + } \ +} while (0) +#else +#define ASSERT(x) do { } while (0) +#endif + +static inline struct kvm_ioapic *ioapic_irqchip(struct kvm *kvm) +{ + return kvm->arch.vioapic; +} + +static inline bool kvm_ioapic_handles_vector(struct kvm *kvm, int vector) +{ + struct kvm_ioapic *ioapic = kvm->arch.vioapic; + smp_rmb(); + return test_bit(vector, ioapic->handled_vectors); +} + +void kvm_rtc_eoi_tracking_restore_one(struct kvm_vcpu *vcpu); +bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, + int short_hand, unsigned int dest, int dest_mode); +int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2); +void kvm_ioapic_update_eoi(struct kvm_vcpu *vcpu, int vector, + int trigger_mode); +int kvm_ioapic_init(struct kvm *kvm); +void kvm_ioapic_destroy(struct kvm *kvm); +int kvm_ioapic_set_irq(struct kvm_ioapic *ioapic, int irq, int irq_source_id, + int level, bool line_status); +void kvm_ioapic_clear_all(struct kvm_ioapic *ioapic, int irq_source_id); +int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src, + struct kvm_lapic_irq *irq, unsigned long *dest_map); +int kvm_get_ioapic(struct kvm *kvm, struct kvm_ioapic_state *state); +int kvm_set_ioapic(struct kvm *kvm, struct kvm_ioapic_state *state); +void kvm_ioapic_scan_entry(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap, + u32 *tmr); + +#endif diff --git a/arch/x86/kvm/iommu.c b/arch/x86/kvm/iommu.c new file mode 100644 index 000000000..7dbced309 --- /dev/null +++ b/arch/x86/kvm/iommu.c @@ -0,0 +1,355 @@ +/* + * Copyright (c) 2006, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 Temple + * Place - Suite 330, Boston, MA 02111-1307 USA. + * + * Copyright (C) 2006-2008 Intel Corporation + * Copyright IBM Corporation, 2008 + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Author: Allen M. Kay <allen.m.kay@intel.com> + * Author: Weidong Han <weidong.han@intel.com> + * Author: Ben-Ami Yassour <benami@il.ibm.com> + */ + +#include <linux/list.h> +#include <linux/kvm_host.h> +#include <linux/module.h> +#include <linux/pci.h> +#include <linux/stat.h> +#include <linux/dmar.h> +#include <linux/iommu.h> +#include <linux/intel-iommu.h> +#include "assigned-dev.h" + +static bool allow_unsafe_assigned_interrupts; +module_param_named(allow_unsafe_assigned_interrupts, + allow_unsafe_assigned_interrupts, bool, S_IRUGO | S_IWUSR); +MODULE_PARM_DESC(allow_unsafe_assigned_interrupts, + "Enable device assignment on platforms without interrupt remapping support."); + +static int kvm_iommu_unmap_memslots(struct kvm *kvm); +static void kvm_iommu_put_pages(struct kvm *kvm, + gfn_t base_gfn, unsigned long npages); + +static pfn_t kvm_pin_pages(struct kvm_memory_slot *slot, gfn_t gfn, + unsigned long npages) +{ + gfn_t end_gfn; + pfn_t pfn; + + pfn = gfn_to_pfn_memslot(slot, gfn); + end_gfn = gfn + npages; + gfn += 1; + + if (is_error_noslot_pfn(pfn)) + return pfn; + + while (gfn < end_gfn) + gfn_to_pfn_memslot(slot, gfn++); + + return pfn; +} + +static void kvm_unpin_pages(struct kvm *kvm, pfn_t pfn, unsigned long npages) +{ + unsigned long i; + + for (i = 0; i < npages; ++i) + kvm_release_pfn_clean(pfn + i); +} + +int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot) +{ + gfn_t gfn, end_gfn; + pfn_t pfn; + int r = 0; + struct iommu_domain *domain = kvm->arch.iommu_domain; + int flags; + + /* check if iommu exists and in use */ + if (!domain) + return 0; + + gfn = slot->base_gfn; + end_gfn = gfn + slot->npages; + + flags = IOMMU_READ; + if (!(slot->flags & KVM_MEM_READONLY)) + flags |= IOMMU_WRITE; + if (!kvm->arch.iommu_noncoherent) + flags |= IOMMU_CACHE; + + + while (gfn < end_gfn) { + unsigned long page_size; + + /* Check if already mapped */ + if (iommu_iova_to_phys(domain, gfn_to_gpa(gfn))) { + gfn += 1; + continue; + } + + /* Get the page size we could use to map */ + page_size = kvm_host_page_size(kvm, gfn); + + /* Make sure the page_size does not exceed the memslot */ + while ((gfn + (page_size >> PAGE_SHIFT)) > end_gfn) + page_size >>= 1; + + /* Make sure gfn is aligned to the page size we want to map */ + while ((gfn << PAGE_SHIFT) & (page_size - 1)) + page_size >>= 1; + + /* Make sure hva is aligned to the page size we want to map */ + while (__gfn_to_hva_memslot(slot, gfn) & (page_size - 1)) + page_size >>= 1; + + /* + * Pin all pages we are about to map in memory. This is + * important because we unmap and unpin in 4kb steps later. + */ + pfn = kvm_pin_pages(slot, gfn, page_size >> PAGE_SHIFT); + if (is_error_noslot_pfn(pfn)) { + gfn += 1; + continue; + } + + /* Map into IO address space */ + r = iommu_map(domain, gfn_to_gpa(gfn), pfn_to_hpa(pfn), + page_size, flags); + if (r) { + printk(KERN_ERR "kvm_iommu_map_address:" + "iommu failed to map pfn=%llx\n", pfn); + kvm_unpin_pages(kvm, pfn, page_size >> PAGE_SHIFT); + goto unmap_pages; + } + + gfn += page_size >> PAGE_SHIFT; + + cond_resched(); + } + + return 0; + +unmap_pages: + kvm_iommu_put_pages(kvm, slot->base_gfn, gfn - slot->base_gfn); + return r; +} + +static int kvm_iommu_map_memslots(struct kvm *kvm) +{ + int idx, r = 0; + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + + if (kvm->arch.iommu_noncoherent) + kvm_arch_register_noncoherent_dma(kvm); + + idx = srcu_read_lock(&kvm->srcu); + slots = kvm_memslots(kvm); + + kvm_for_each_memslot(memslot, slots) { + r = kvm_iommu_map_pages(kvm, memslot); + if (r) + break; + } + srcu_read_unlock(&kvm->srcu, idx); + + return r; +} + +int kvm_assign_device(struct kvm *kvm, struct pci_dev *pdev) +{ + struct iommu_domain *domain = kvm->arch.iommu_domain; + int r; + bool noncoherent; + + /* check if iommu exists and in use */ + if (!domain) + return 0; + + if (pdev == NULL) + return -ENODEV; + + r = iommu_attach_device(domain, &pdev->dev); + if (r) { + dev_err(&pdev->dev, "kvm assign device failed ret %d", r); + return r; + } + + noncoherent = !iommu_capable(&pci_bus_type, IOMMU_CAP_CACHE_COHERENCY); + + /* Check if need to update IOMMU page table for guest memory */ + if (noncoherent != kvm->arch.iommu_noncoherent) { + kvm_iommu_unmap_memslots(kvm); + kvm->arch.iommu_noncoherent = noncoherent; + r = kvm_iommu_map_memslots(kvm); + if (r) + goto out_unmap; + } + + pci_set_dev_assigned(pdev); + + dev_info(&pdev->dev, "kvm assign device\n"); + + return 0; +out_unmap: + kvm_iommu_unmap_memslots(kvm); + return r; +} + +int kvm_deassign_device(struct kvm *kvm, struct pci_dev *pdev) +{ + struct iommu_domain *domain = kvm->arch.iommu_domain; + + /* check if iommu exists and in use */ + if (!domain) + return 0; + + if (pdev == NULL) + return -ENODEV; + + iommu_detach_device(domain, &pdev->dev); + + pci_clear_dev_assigned(pdev); + + dev_info(&pdev->dev, "kvm deassign device\n"); + + return 0; +} + +int kvm_iommu_map_guest(struct kvm *kvm) +{ + int r; + + if (!iommu_present(&pci_bus_type)) { + printk(KERN_ERR "%s: iommu not found\n", __func__); + return -ENODEV; + } + + mutex_lock(&kvm->slots_lock); + + kvm->arch.iommu_domain = iommu_domain_alloc(&pci_bus_type); + if (!kvm->arch.iommu_domain) { + r = -ENOMEM; + goto out_unlock; + } + + if (!allow_unsafe_assigned_interrupts && + !iommu_capable(&pci_bus_type, IOMMU_CAP_INTR_REMAP)) { + printk(KERN_WARNING "%s: No interrupt remapping support," + " disallowing device assignment." + " Re-enble with \"allow_unsafe_assigned_interrupts=1\"" + " module option.\n", __func__); + iommu_domain_free(kvm->arch.iommu_domain); + kvm->arch.iommu_domain = NULL; + r = -EPERM; + goto out_unlock; + } + + r = kvm_iommu_map_memslots(kvm); + if (r) + kvm_iommu_unmap_memslots(kvm); + +out_unlock: + mutex_unlock(&kvm->slots_lock); + return r; +} + +static void kvm_iommu_put_pages(struct kvm *kvm, + gfn_t base_gfn, unsigned long npages) +{ + struct iommu_domain *domain; + gfn_t end_gfn, gfn; + pfn_t pfn; + u64 phys; + + domain = kvm->arch.iommu_domain; + end_gfn = base_gfn + npages; + gfn = base_gfn; + + /* check if iommu exists and in use */ + if (!domain) + return; + + while (gfn < end_gfn) { + unsigned long unmap_pages; + size_t size; + + /* Get physical address */ + phys = iommu_iova_to_phys(domain, gfn_to_gpa(gfn)); + + if (!phys) { + gfn++; + continue; + } + + pfn = phys >> PAGE_SHIFT; + + /* Unmap address from IO address space */ + size = iommu_unmap(domain, gfn_to_gpa(gfn), PAGE_SIZE); + unmap_pages = 1ULL << get_order(size); + + /* Unpin all pages we just unmapped to not leak any memory */ + kvm_unpin_pages(kvm, pfn, unmap_pages); + + gfn += unmap_pages; + + cond_resched(); + } +} + +void kvm_iommu_unmap_pages(struct kvm *kvm, struct kvm_memory_slot *slot) +{ + kvm_iommu_put_pages(kvm, slot->base_gfn, slot->npages); +} + +static int kvm_iommu_unmap_memslots(struct kvm *kvm) +{ + int idx; + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + + idx = srcu_read_lock(&kvm->srcu); + slots = kvm_memslots(kvm); + + kvm_for_each_memslot(memslot, slots) + kvm_iommu_unmap_pages(kvm, memslot); + + srcu_read_unlock(&kvm->srcu, idx); + + if (kvm->arch.iommu_noncoherent) + kvm_arch_unregister_noncoherent_dma(kvm); + + return 0; +} + +int kvm_iommu_unmap_guest(struct kvm *kvm) +{ + struct iommu_domain *domain = kvm->arch.iommu_domain; + + /* check if iommu exists and in use */ + if (!domain) + return 0; + + mutex_lock(&kvm->slots_lock); + kvm_iommu_unmap_memslots(kvm); + kvm->arch.iommu_domain = NULL; + kvm->arch.iommu_noncoherent = false; + mutex_unlock(&kvm->slots_lock); + + iommu_domain_free(domain); + return 0; +} diff --git a/arch/x86/kvm/irq.c b/arch/x86/kvm/irq.c new file mode 100644 index 000000000..a1ec6a50a --- /dev/null +++ b/arch/x86/kvm/irq.c @@ -0,0 +1,129 @@ +/* + * irq.c: API for in kernel interrupt controller + * Copyright (c) 2007, Intel Corporation. + * Copyright 2009 Red Hat, Inc. and/or its affiliates. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 Temple + * Place - Suite 330, Boston, MA 02111-1307 USA. + * Authors: + * Yaozu (Eddie) Dong <Eddie.dong@intel.com> + * + */ + +#include <linux/module.h> +#include <linux/kvm_host.h> + +#include "irq.h" +#include "i8254.h" +#include "x86.h" + +/* + * check if there are pending timer events + * to be processed. + */ +int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) +{ + return apic_has_pending_timer(vcpu); +} +EXPORT_SYMBOL(kvm_cpu_has_pending_timer); + +/* + * check if there is pending interrupt from + * non-APIC source without intack. + */ +static int kvm_cpu_has_extint(struct kvm_vcpu *v) +{ + if (kvm_apic_accept_pic_intr(v)) + return pic_irqchip(v->kvm)->output; /* PIC */ + else + return 0; +} + +/* + * check if there is injectable interrupt: + * when virtual interrupt delivery enabled, + * interrupt from apic will handled by hardware, + * we don't need to check it here. + */ +int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v) +{ + if (!irqchip_in_kernel(v->kvm)) + return v->arch.interrupt.pending; + + if (kvm_cpu_has_extint(v)) + return 1; + + if (kvm_apic_vid_enabled(v->kvm)) + return 0; + + return kvm_apic_has_interrupt(v) != -1; /* LAPIC */ +} + +/* + * check if there is pending interrupt without + * intack. + */ +int kvm_cpu_has_interrupt(struct kvm_vcpu *v) +{ + if (!irqchip_in_kernel(v->kvm)) + return v->arch.interrupt.pending; + + if (kvm_cpu_has_extint(v)) + return 1; + + return kvm_apic_has_interrupt(v) != -1; /* LAPIC */ +} +EXPORT_SYMBOL_GPL(kvm_cpu_has_interrupt); + +/* + * Read pending interrupt(from non-APIC source) + * vector and intack. + */ +static int kvm_cpu_get_extint(struct kvm_vcpu *v) +{ + if (kvm_cpu_has_extint(v)) + return kvm_pic_read_irq(v->kvm); /* PIC */ + return -1; +} + +/* + * Read pending interrupt vector and intack. + */ +int kvm_cpu_get_interrupt(struct kvm_vcpu *v) +{ + int vector; + + if (!irqchip_in_kernel(v->kvm)) + return v->arch.interrupt.nr; + + vector = kvm_cpu_get_extint(v); + + if (vector != -1) + return vector; /* PIC */ + + return kvm_get_apic_interrupt(v); /* APIC */ +} +EXPORT_SYMBOL_GPL(kvm_cpu_get_interrupt); + +void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu) +{ + kvm_inject_apic_timer_irqs(vcpu); + /* TODO: PIT, RTC etc. */ +} +EXPORT_SYMBOL_GPL(kvm_inject_pending_timer_irqs); + +void __kvm_migrate_timers(struct kvm_vcpu *vcpu) +{ + __kvm_migrate_apic_timer(vcpu); + __kvm_migrate_pit_timer(vcpu); +} diff --git a/arch/x86/kvm/irq.h b/arch/x86/kvm/irq.h new file mode 100644 index 000000000..ad68c7300 --- /dev/null +++ b/arch/x86/kvm/irq.h @@ -0,0 +1,106 @@ +/* + * irq.h: in kernel interrupt controller related definitions + * Copyright (c) 2007, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 Temple + * Place - Suite 330, Boston, MA 02111-1307 USA. + * Authors: + * Yaozu (Eddie) Dong <Eddie.dong@intel.com> + * + */ + +#ifndef __IRQ_H +#define __IRQ_H + +#include <linux/mm_types.h> +#include <linux/hrtimer.h> +#include <linux/kvm_host.h> +#include <linux/spinlock.h> + +#include <kvm/iodev.h> +#include "ioapic.h" +#include "lapic.h" + +#define PIC_NUM_PINS 16 +#define SELECT_PIC(irq) \ + ((irq) < 8 ? KVM_IRQCHIP_PIC_MASTER : KVM_IRQCHIP_PIC_SLAVE) + +struct kvm; +struct kvm_vcpu; + +struct kvm_kpic_state { + u8 last_irr; /* edge detection */ + u8 irr; /* interrupt request register */ + u8 imr; /* interrupt mask register */ + u8 isr; /* interrupt service register */ + u8 priority_add; /* highest irq priority */ + u8 irq_base; + u8 read_reg_select; + u8 poll; + u8 special_mask; + u8 init_state; + u8 auto_eoi; + u8 rotate_on_auto_eoi; + u8 special_fully_nested_mode; + u8 init4; /* true if 4 byte init */ + u8 elcr; /* PIIX edge/trigger selection */ + u8 elcr_mask; + u8 isr_ack; /* interrupt ack detection */ + struct kvm_pic *pics_state; +}; + +struct kvm_pic { + spinlock_t lock; + bool wakeup_needed; + unsigned pending_acks; + struct kvm *kvm; + struct kvm_kpic_state pics[2]; /* 0 is master pic, 1 is slave pic */ + int output; /* intr from master PIC */ + struct kvm_io_device dev_master; + struct kvm_io_device dev_slave; + struct kvm_io_device dev_eclr; + void (*ack_notifier)(void *opaque, int irq); + unsigned long irq_states[PIC_NUM_PINS]; +}; + +struct kvm_pic *kvm_create_pic(struct kvm *kvm); +void kvm_destroy_pic(struct kvm *kvm); +int kvm_pic_read_irq(struct kvm *kvm); +void kvm_pic_update_irq(struct kvm_pic *s); + +static inline struct kvm_pic *pic_irqchip(struct kvm *kvm) +{ + return kvm->arch.vpic; +} + +static inline int irqchip_in_kernel(struct kvm *kvm) +{ + int ret; + + ret = (pic_irqchip(kvm) != NULL); + smp_rmb(); + return ret; +} + +void kvm_pic_reset(struct kvm_kpic_state *s); + +void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu); +void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu); +void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu); +void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu); +void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu); +void __kvm_migrate_timers(struct kvm_vcpu *vcpu); + +int apic_has_pending_timer(struct kvm_vcpu *vcpu); + +#endif diff --git a/arch/x86/kvm/irq_comm.c b/arch/x86/kvm/irq_comm.c new file mode 100644 index 000000000..72298b3ac --- /dev/null +++ b/arch/x86/kvm/irq_comm.c @@ -0,0 +1,332 @@ +/* + * irq_comm.c: Common API for in kernel interrupt controller + * Copyright (c) 2007, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 Temple + * Place - Suite 330, Boston, MA 02111-1307 USA. + * Authors: + * Yaozu (Eddie) Dong <Eddie.dong@intel.com> + * + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + */ + +#include <linux/kvm_host.h> +#include <linux/slab.h> +#include <linux/export.h> +#include <trace/events/kvm.h> + +#include <asm/msidef.h> + +#include "irq.h" + +#include "ioapic.h" + +static int kvm_set_pic_irq(struct kvm_kernel_irq_routing_entry *e, + struct kvm *kvm, int irq_source_id, int level, + bool line_status) +{ + struct kvm_pic *pic = pic_irqchip(kvm); + return kvm_pic_set_irq(pic, e->irqchip.pin, irq_source_id, level); +} + +static int kvm_set_ioapic_irq(struct kvm_kernel_irq_routing_entry *e, + struct kvm *kvm, int irq_source_id, int level, + bool line_status) +{ + struct kvm_ioapic *ioapic = kvm->arch.vioapic; + return kvm_ioapic_set_irq(ioapic, e->irqchip.pin, irq_source_id, level, + line_status); +} + +inline static bool kvm_is_dm_lowest_prio(struct kvm_lapic_irq *irq) +{ + return irq->delivery_mode == APIC_DM_LOWEST; +} + +int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src, + struct kvm_lapic_irq *irq, unsigned long *dest_map) +{ + int i, r = -1; + struct kvm_vcpu *vcpu, *lowest = NULL; + + if (irq->dest_mode == 0 && irq->dest_id == 0xff && + kvm_is_dm_lowest_prio(irq)) { + printk(KERN_INFO "kvm: apic: phys broadcast and lowest prio\n"); + irq->delivery_mode = APIC_DM_FIXED; + } + + if (kvm_irq_delivery_to_apic_fast(kvm, src, irq, &r, dest_map)) + return r; + + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!kvm_apic_present(vcpu)) + continue; + + if (!kvm_apic_match_dest(vcpu, src, irq->shorthand, + irq->dest_id, irq->dest_mode)) + continue; + + if (!kvm_is_dm_lowest_prio(irq)) { + if (r < 0) + r = 0; + r += kvm_apic_set_irq(vcpu, irq, dest_map); + } else if (kvm_lapic_enabled(vcpu)) { + if (!lowest) + lowest = vcpu; + else if (kvm_apic_compare_prio(vcpu, lowest) < 0) + lowest = vcpu; + } + } + + if (lowest) + r = kvm_apic_set_irq(lowest, irq, dest_map); + + return r; +} + +static inline void kvm_set_msi_irq(struct kvm_kernel_irq_routing_entry *e, + struct kvm_lapic_irq *irq) +{ + trace_kvm_msi_set_irq(e->msi.address_lo, e->msi.data); + + irq->dest_id = (e->msi.address_lo & + MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT; + irq->vector = (e->msi.data & + MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT; + irq->dest_mode = (1 << MSI_ADDR_DEST_MODE_SHIFT) & e->msi.address_lo; + irq->trig_mode = (1 << MSI_DATA_TRIGGER_SHIFT) & e->msi.data; + irq->delivery_mode = e->msi.data & 0x700; + irq->level = 1; + irq->shorthand = 0; + /* TODO Deal with RH bit of MSI message address */ +} + +int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, + struct kvm *kvm, int irq_source_id, int level, bool line_status) +{ + struct kvm_lapic_irq irq; + + if (!level) + return -1; + + kvm_set_msi_irq(e, &irq); + + return kvm_irq_delivery_to_apic(kvm, NULL, &irq, NULL); +} + + +static int kvm_set_msi_inatomic(struct kvm_kernel_irq_routing_entry *e, + struct kvm *kvm) +{ + struct kvm_lapic_irq irq; + int r; + + kvm_set_msi_irq(e, &irq); + + if (kvm_irq_delivery_to_apic_fast(kvm, NULL, &irq, &r, NULL)) + return r; + else + return -EWOULDBLOCK; +} + +/* + * Deliver an IRQ in an atomic context if we can, or return a failure, + * user can retry in a process context. + * Return value: + * -EWOULDBLOCK - Can't deliver in atomic context: retry in a process context. + * Other values - No need to retry. + */ +int kvm_set_irq_inatomic(struct kvm *kvm, int irq_source_id, u32 irq, int level) +{ + struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS]; + struct kvm_kernel_irq_routing_entry *e; + int ret = -EINVAL; + int idx; + + trace_kvm_set_irq(irq, level, irq_source_id); + + /* + * Injection into either PIC or IOAPIC might need to scan all CPUs, + * which would need to be retried from thread context; when same GSI + * is connected to both PIC and IOAPIC, we'd have to report a + * partial failure here. + * Since there's no easy way to do this, we only support injecting MSI + * which is limited to 1:1 GSI mapping. + */ + idx = srcu_read_lock(&kvm->irq_srcu); + if (kvm_irq_map_gsi(kvm, entries, irq) > 0) { + e = &entries[0]; + if (likely(e->type == KVM_IRQ_ROUTING_MSI)) + ret = kvm_set_msi_inatomic(e, kvm); + else + ret = -EWOULDBLOCK; + } + srcu_read_unlock(&kvm->irq_srcu, idx); + return ret; +} + +int kvm_request_irq_source_id(struct kvm *kvm) +{ + unsigned long *bitmap = &kvm->arch.irq_sources_bitmap; + int irq_source_id; + + mutex_lock(&kvm->irq_lock); + irq_source_id = find_first_zero_bit(bitmap, BITS_PER_LONG); + + if (irq_source_id >= BITS_PER_LONG) { + printk(KERN_WARNING "kvm: exhaust allocatable IRQ sources!\n"); + irq_source_id = -EFAULT; + goto unlock; + } + + ASSERT(irq_source_id != KVM_USERSPACE_IRQ_SOURCE_ID); + ASSERT(irq_source_id != KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID); + set_bit(irq_source_id, bitmap); +unlock: + mutex_unlock(&kvm->irq_lock); + + return irq_source_id; +} + +void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id) +{ + ASSERT(irq_source_id != KVM_USERSPACE_IRQ_SOURCE_ID); + ASSERT(irq_source_id != KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID); + + mutex_lock(&kvm->irq_lock); + if (irq_source_id < 0 || + irq_source_id >= BITS_PER_LONG) { + printk(KERN_ERR "kvm: IRQ source ID out of range!\n"); + goto unlock; + } + clear_bit(irq_source_id, &kvm->arch.irq_sources_bitmap); + if (!irqchip_in_kernel(kvm)) + goto unlock; + + kvm_ioapic_clear_all(kvm->arch.vioapic, irq_source_id); + kvm_pic_clear_all(pic_irqchip(kvm), irq_source_id); +unlock: + mutex_unlock(&kvm->irq_lock); +} + +void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, + struct kvm_irq_mask_notifier *kimn) +{ + mutex_lock(&kvm->irq_lock); + kimn->irq = irq; + hlist_add_head_rcu(&kimn->link, &kvm->arch.mask_notifier_list); + mutex_unlock(&kvm->irq_lock); +} + +void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, + struct kvm_irq_mask_notifier *kimn) +{ + mutex_lock(&kvm->irq_lock); + hlist_del_rcu(&kimn->link); + mutex_unlock(&kvm->irq_lock); + synchronize_srcu(&kvm->irq_srcu); +} + +void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, + bool mask) +{ + struct kvm_irq_mask_notifier *kimn; + int idx, gsi; + + idx = srcu_read_lock(&kvm->irq_srcu); + gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); + if (gsi != -1) + hlist_for_each_entry_rcu(kimn, &kvm->arch.mask_notifier_list, link) + if (kimn->irq == gsi) + kimn->func(kimn, mask); + srcu_read_unlock(&kvm->irq_srcu, idx); +} + +int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e, + const struct kvm_irq_routing_entry *ue) +{ + int r = -EINVAL; + int delta; + unsigned max_pin; + + switch (ue->type) { + case KVM_IRQ_ROUTING_IRQCHIP: + delta = 0; + switch (ue->u.irqchip.irqchip) { + case KVM_IRQCHIP_PIC_MASTER: + e->set = kvm_set_pic_irq; + max_pin = PIC_NUM_PINS; + break; + case KVM_IRQCHIP_PIC_SLAVE: + e->set = kvm_set_pic_irq; + max_pin = PIC_NUM_PINS; + delta = 8; + break; + case KVM_IRQCHIP_IOAPIC: + max_pin = KVM_IOAPIC_NUM_PINS; + e->set = kvm_set_ioapic_irq; + break; + default: + goto out; + } + e->irqchip.irqchip = ue->u.irqchip.irqchip; + e->irqchip.pin = ue->u.irqchip.pin + delta; + if (e->irqchip.pin >= max_pin) + goto out; + break; + case KVM_IRQ_ROUTING_MSI: + e->set = kvm_set_msi; + e->msi.address_lo = ue->u.msi.address_lo; + e->msi.address_hi = ue->u.msi.address_hi; + e->msi.data = ue->u.msi.data; + break; + default: + goto out; + } + + r = 0; +out: + return r; +} + +#define IOAPIC_ROUTING_ENTRY(irq) \ + { .gsi = irq, .type = KVM_IRQ_ROUTING_IRQCHIP, \ + .u.irqchip = { .irqchip = KVM_IRQCHIP_IOAPIC, .pin = (irq) } } +#define ROUTING_ENTRY1(irq) IOAPIC_ROUTING_ENTRY(irq) + +#define PIC_ROUTING_ENTRY(irq) \ + { .gsi = irq, .type = KVM_IRQ_ROUTING_IRQCHIP, \ + .u.irqchip = { .irqchip = SELECT_PIC(irq), .pin = (irq) % 8 } } +#define ROUTING_ENTRY2(irq) \ + IOAPIC_ROUTING_ENTRY(irq), PIC_ROUTING_ENTRY(irq) + +static const struct kvm_irq_routing_entry default_routing[] = { + ROUTING_ENTRY2(0), ROUTING_ENTRY2(1), + ROUTING_ENTRY2(2), ROUTING_ENTRY2(3), + ROUTING_ENTRY2(4), ROUTING_ENTRY2(5), + ROUTING_ENTRY2(6), ROUTING_ENTRY2(7), + ROUTING_ENTRY2(8), ROUTING_ENTRY2(9), + ROUTING_ENTRY2(10), ROUTING_ENTRY2(11), + ROUTING_ENTRY2(12), ROUTING_ENTRY2(13), + ROUTING_ENTRY2(14), ROUTING_ENTRY2(15), + ROUTING_ENTRY1(16), ROUTING_ENTRY1(17), + ROUTING_ENTRY1(18), ROUTING_ENTRY1(19), + ROUTING_ENTRY1(20), ROUTING_ENTRY1(21), + ROUTING_ENTRY1(22), ROUTING_ENTRY1(23), +}; + +int kvm_setup_default_irq_routing(struct kvm *kvm) +{ + return kvm_set_irq_routing(kvm, default_routing, + ARRAY_SIZE(default_routing), 0); +} diff --git a/arch/x86/kvm/kvm_cache_regs.h b/arch/x86/kvm/kvm_cache_regs.h new file mode 100644 index 000000000..544076c4f --- /dev/null +++ b/arch/x86/kvm/kvm_cache_regs.h @@ -0,0 +1,102 @@ +#ifndef ASM_KVM_CACHE_REGS_H +#define ASM_KVM_CACHE_REGS_H + +#define KVM_POSSIBLE_CR0_GUEST_BITS X86_CR0_TS +#define KVM_POSSIBLE_CR4_GUEST_BITS \ + (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ + | X86_CR4_OSXMMEXCPT | X86_CR4_PGE) + +static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, + enum kvm_reg reg) +{ + if (!test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail)) + kvm_x86_ops->cache_reg(vcpu, reg); + + return vcpu->arch.regs[reg]; +} + +static inline void kvm_register_write(struct kvm_vcpu *vcpu, + enum kvm_reg reg, + unsigned long val) +{ + vcpu->arch.regs[reg] = val; + __set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty); + __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); +} + +static inline unsigned long kvm_rip_read(struct kvm_vcpu *vcpu) +{ + return kvm_register_read(vcpu, VCPU_REGS_RIP); +} + +static inline void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val) +{ + kvm_register_write(vcpu, VCPU_REGS_RIP, val); +} + +static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index) +{ + might_sleep(); /* on svm */ + + if (!test_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_avail)) + kvm_x86_ops->cache_reg(vcpu, VCPU_EXREG_PDPTR); + + return vcpu->arch.walk_mmu->pdptrs[index]; +} + +static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask) +{ + ulong tmask = mask & KVM_POSSIBLE_CR0_GUEST_BITS; + if (tmask & vcpu->arch.cr0_guest_owned_bits) + kvm_x86_ops->decache_cr0_guest_bits(vcpu); + return vcpu->arch.cr0 & mask; +} + +static inline ulong kvm_read_cr0(struct kvm_vcpu *vcpu) +{ + return kvm_read_cr0_bits(vcpu, ~0UL); +} + +static inline ulong kvm_read_cr4_bits(struct kvm_vcpu *vcpu, ulong mask) +{ + ulong tmask = mask & KVM_POSSIBLE_CR4_GUEST_BITS; + if (tmask & vcpu->arch.cr4_guest_owned_bits) + kvm_x86_ops->decache_cr4_guest_bits(vcpu); + return vcpu->arch.cr4 & mask; +} + +static inline ulong kvm_read_cr3(struct kvm_vcpu *vcpu) +{ + if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) + kvm_x86_ops->decache_cr3(vcpu); + return vcpu->arch.cr3; +} + +static inline ulong kvm_read_cr4(struct kvm_vcpu *vcpu) +{ + return kvm_read_cr4_bits(vcpu, ~0UL); +} + +static inline u64 kvm_read_edx_eax(struct kvm_vcpu *vcpu) +{ + return (kvm_register_read(vcpu, VCPU_REGS_RAX) & -1u) + | ((u64)(kvm_register_read(vcpu, VCPU_REGS_RDX) & -1u) << 32); +} + +static inline void enter_guest_mode(struct kvm_vcpu *vcpu) +{ + vcpu->arch.hflags |= HF_GUEST_MASK; +} + +static inline void leave_guest_mode(struct kvm_vcpu *vcpu) +{ + vcpu->arch.hflags &= ~HF_GUEST_MASK; +} + +static inline bool is_guest_mode(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.hflags & HF_GUEST_MASK; +} + +#endif diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c new file mode 100644 index 000000000..67d07e051 --- /dev/null +++ b/arch/x86/kvm/lapic.c @@ -0,0 +1,2080 @@ + +/* + * Local APIC virtualization + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright (C) 2007 Novell + * Copyright (C) 2007 Intel + * Copyright 2009 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Dor Laor <dor.laor@qumranet.com> + * Gregory Haskins <ghaskins@novell.com> + * Yaozu (Eddie) Dong <eddie.dong@intel.com> + * + * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + */ + +#include <linux/kvm_host.h> +#include <linux/kvm.h> +#include <linux/mm.h> +#include <linux/highmem.h> +#include <linux/smp.h> +#include <linux/hrtimer.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/math64.h> +#include <linux/slab.h> +#include <asm/processor.h> +#include <asm/msr.h> +#include <asm/page.h> +#include <asm/current.h> +#include <asm/apicdef.h> +#include <asm/delay.h> +#include <linux/atomic.h> +#include <linux/jump_label.h> +#include "kvm_cache_regs.h" +#include "irq.h" +#include "trace.h" +#include "x86.h" +#include "cpuid.h" + +#ifndef CONFIG_X86_64 +#define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) +#else +#define mod_64(x, y) ((x) % (y)) +#endif + +#define PRId64 "d" +#define PRIx64 "llx" +#define PRIu64 "u" +#define PRIo64 "o" + +#define APIC_BUS_CYCLE_NS 1 + +/* #define apic_debug(fmt,arg...) printk(KERN_WARNING fmt,##arg) */ +#define apic_debug(fmt, arg...) + +#define APIC_LVT_NUM 6 +/* 14 is the version for Xeon and Pentium 8.4.8*/ +#define APIC_VERSION (0x14UL | ((APIC_LVT_NUM - 1) << 16)) +#define LAPIC_MMIO_LENGTH (1 << 12) +/* followed define is not in apicdef.h */ +#define APIC_SHORT_MASK 0xc0000 +#define APIC_DEST_NOSHORT 0x0 +#define APIC_DEST_MASK 0x800 +#define MAX_APIC_VECTOR 256 +#define APIC_VECTORS_PER_REG 32 + +#define APIC_BROADCAST 0xFF +#define X2APIC_BROADCAST 0xFFFFFFFFul + +#define VEC_POS(v) ((v) & (32 - 1)) +#define REG_POS(v) (((v) >> 5) << 4) + +static inline void apic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) +{ + *((u32 *) (apic->regs + reg_off)) = val; +} + +static inline int apic_test_vector(int vec, void *bitmap) +{ + return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); +} + +bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + return apic_test_vector(vector, apic->regs + APIC_ISR) || + apic_test_vector(vector, apic->regs + APIC_IRR); +} + +static inline void apic_set_vector(int vec, void *bitmap) +{ + set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); +} + +static inline void apic_clear_vector(int vec, void *bitmap) +{ + clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); +} + +static inline int __apic_test_and_set_vector(int vec, void *bitmap) +{ + return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); +} + +static inline int __apic_test_and_clear_vector(int vec, void *bitmap) +{ + return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); +} + +struct static_key_deferred apic_hw_disabled __read_mostly; +struct static_key_deferred apic_sw_disabled __read_mostly; + +static inline int apic_enabled(struct kvm_lapic *apic) +{ + return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); +} + +#define LVT_MASK \ + (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) + +#define LINT_MASK \ + (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ + APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) + +static inline int kvm_apic_id(struct kvm_lapic *apic) +{ + return (kvm_apic_get_reg(apic, APIC_ID) >> 24) & 0xff; +} + +/* The logical map is definitely wrong if we have multiple + * modes at the same time. (Physical map is always right.) + */ +static inline bool kvm_apic_logical_map_valid(struct kvm_apic_map *map) +{ + return !(map->mode & (map->mode - 1)); +} + +static inline void +apic_logical_id(struct kvm_apic_map *map, u32 dest_id, u16 *cid, u16 *lid) +{ + unsigned lid_bits; + + BUILD_BUG_ON(KVM_APIC_MODE_XAPIC_CLUSTER != 4); + BUILD_BUG_ON(KVM_APIC_MODE_XAPIC_FLAT != 8); + BUILD_BUG_ON(KVM_APIC_MODE_X2APIC != 16); + lid_bits = map->mode; + + *cid = dest_id >> lid_bits; + *lid = dest_id & ((1 << lid_bits) - 1); +} + +static void recalculate_apic_map(struct kvm *kvm) +{ + struct kvm_apic_map *new, *old = NULL; + struct kvm_vcpu *vcpu; + int i; + + new = kzalloc(sizeof(struct kvm_apic_map), GFP_KERNEL); + + mutex_lock(&kvm->arch.apic_map_lock); + + if (!new) + goto out; + + kvm_for_each_vcpu(i, vcpu, kvm) { + struct kvm_lapic *apic = vcpu->arch.apic; + u16 cid, lid; + u32 ldr, aid; + + if (!kvm_apic_present(vcpu)) + continue; + + aid = kvm_apic_id(apic); + ldr = kvm_apic_get_reg(apic, APIC_LDR); + + if (aid < ARRAY_SIZE(new->phys_map)) + new->phys_map[aid] = apic; + + if (apic_x2apic_mode(apic)) { + new->mode |= KVM_APIC_MODE_X2APIC; + } else if (ldr) { + ldr = GET_APIC_LOGICAL_ID(ldr); + if (kvm_apic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) + new->mode |= KVM_APIC_MODE_XAPIC_FLAT; + else + new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; + } + + if (!kvm_apic_logical_map_valid(new)) + continue; + + apic_logical_id(new, ldr, &cid, &lid); + + if (lid && cid < ARRAY_SIZE(new->logical_map)) + new->logical_map[cid][ffs(lid) - 1] = apic; + } +out: + old = rcu_dereference_protected(kvm->arch.apic_map, + lockdep_is_held(&kvm->arch.apic_map_lock)); + rcu_assign_pointer(kvm->arch.apic_map, new); + mutex_unlock(&kvm->arch.apic_map_lock); + + if (old) + kfree_rcu(old, rcu); + + kvm_vcpu_request_scan_ioapic(kvm); +} + +static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) +{ + bool enabled = val & APIC_SPIV_APIC_ENABLED; + + apic_set_reg(apic, APIC_SPIV, val); + + if (enabled != apic->sw_enabled) { + apic->sw_enabled = enabled; + if (enabled) { + static_key_slow_dec_deferred(&apic_sw_disabled); + recalculate_apic_map(apic->vcpu->kvm); + } else + static_key_slow_inc(&apic_sw_disabled.key); + } +} + +static inline void kvm_apic_set_id(struct kvm_lapic *apic, u8 id) +{ + apic_set_reg(apic, APIC_ID, id << 24); + recalculate_apic_map(apic->vcpu->kvm); +} + +static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) +{ + apic_set_reg(apic, APIC_LDR, id); + recalculate_apic_map(apic->vcpu->kvm); +} + +static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) +{ + return !(kvm_apic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); +} + +static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type) +{ + return kvm_apic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK; +} + +static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) +{ + return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; +} + +static inline int apic_lvtt_period(struct kvm_lapic *apic) +{ + return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; +} + +static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) +{ + return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; +} + +static inline int apic_lvt_nmi_mode(u32 lvt_val) +{ + return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; +} + +void kvm_apic_set_version(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + struct kvm_cpuid_entry2 *feat; + u32 v = APIC_VERSION; + + if (!kvm_vcpu_has_lapic(vcpu)) + return; + + feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); + if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31)))) + v |= APIC_LVR_DIRECTED_EOI; + apic_set_reg(apic, APIC_LVR, v); +} + +static const unsigned int apic_lvt_mask[APIC_LVT_NUM] = { + LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ + LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ + LVT_MASK | APIC_MODE_MASK, /* LVTPC */ + LINT_MASK, LINT_MASK, /* LVT0-1 */ + LVT_MASK /* LVTERR */ +}; + +static int find_highest_vector(void *bitmap) +{ + int vec; + u32 *reg; + + for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; + vec >= 0; vec -= APIC_VECTORS_PER_REG) { + reg = bitmap + REG_POS(vec); + if (*reg) + return fls(*reg) - 1 + vec; + } + + return -1; +} + +static u8 count_vectors(void *bitmap) +{ + int vec; + u32 *reg; + u8 count = 0; + + for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { + reg = bitmap + REG_POS(vec); + count += hweight32(*reg); + } + + return count; +} + +void __kvm_apic_update_irr(u32 *pir, void *regs) +{ + u32 i, pir_val; + + for (i = 0; i <= 7; i++) { + pir_val = xchg(&pir[i], 0); + if (pir_val) + *((u32 *)(regs + APIC_IRR + i * 0x10)) |= pir_val; + } +} +EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); + +void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + __kvm_apic_update_irr(pir, apic->regs); +} +EXPORT_SYMBOL_GPL(kvm_apic_update_irr); + +static inline void apic_set_irr(int vec, struct kvm_lapic *apic) +{ + apic_set_vector(vec, apic->regs + APIC_IRR); + /* + * irr_pending must be true if any interrupt is pending; set it after + * APIC_IRR to avoid race with apic_clear_irr + */ + apic->irr_pending = true; +} + +static inline int apic_search_irr(struct kvm_lapic *apic) +{ + return find_highest_vector(apic->regs + APIC_IRR); +} + +static inline int apic_find_highest_irr(struct kvm_lapic *apic) +{ + int result; + + /* + * Note that irr_pending is just a hint. It will be always + * true with virtual interrupt delivery enabled. + */ + if (!apic->irr_pending) + return -1; + + kvm_x86_ops->sync_pir_to_irr(apic->vcpu); + result = apic_search_irr(apic); + ASSERT(result == -1 || result >= 16); + + return result; +} + +static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) +{ + struct kvm_vcpu *vcpu; + + vcpu = apic->vcpu; + + if (unlikely(kvm_apic_vid_enabled(vcpu->kvm))) { + /* try to update RVI */ + apic_clear_vector(vec, apic->regs + APIC_IRR); + kvm_make_request(KVM_REQ_EVENT, vcpu); + } else { + apic->irr_pending = false; + apic_clear_vector(vec, apic->regs + APIC_IRR); + if (apic_search_irr(apic) != -1) + apic->irr_pending = true; + } +} + +static inline void apic_set_isr(int vec, struct kvm_lapic *apic) +{ + struct kvm_vcpu *vcpu; + + if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) + return; + + vcpu = apic->vcpu; + + /* + * With APIC virtualization enabled, all caching is disabled + * because the processor can modify ISR under the hood. Instead + * just set SVI. + */ + if (unlikely(kvm_x86_ops->hwapic_isr_update)) + kvm_x86_ops->hwapic_isr_update(vcpu->kvm, vec); + else { + ++apic->isr_count; + BUG_ON(apic->isr_count > MAX_APIC_VECTOR); + /* + * ISR (in service register) bit is set when injecting an interrupt. + * The highest vector is injected. Thus the latest bit set matches + * the highest bit in ISR. + */ + apic->highest_isr_cache = vec; + } +} + +static inline int apic_find_highest_isr(struct kvm_lapic *apic) +{ + int result; + + /* + * Note that isr_count is always 1, and highest_isr_cache + * is always -1, with APIC virtualization enabled. + */ + if (!apic->isr_count) + return -1; + if (likely(apic->highest_isr_cache != -1)) + return apic->highest_isr_cache; + + result = find_highest_vector(apic->regs + APIC_ISR); + ASSERT(result == -1 || result >= 16); + + return result; +} + +static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) +{ + struct kvm_vcpu *vcpu; + if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) + return; + + vcpu = apic->vcpu; + + /* + * We do get here for APIC virtualization enabled if the guest + * uses the Hyper-V APIC enlightenment. In this case we may need + * to trigger a new interrupt delivery by writing the SVI field; + * on the other hand isr_count and highest_isr_cache are unused + * and must be left alone. + */ + if (unlikely(kvm_x86_ops->hwapic_isr_update)) + kvm_x86_ops->hwapic_isr_update(vcpu->kvm, + apic_find_highest_isr(apic)); + else { + --apic->isr_count; + BUG_ON(apic->isr_count < 0); + apic->highest_isr_cache = -1; + } +} + +int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) +{ + int highest_irr; + + /* This may race with setting of irr in __apic_accept_irq() and + * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq + * will cause vmexit immediately and the value will be recalculated + * on the next vmentry. + */ + if (!kvm_vcpu_has_lapic(vcpu)) + return 0; + highest_irr = apic_find_highest_irr(vcpu->arch.apic); + + return highest_irr; +} + +static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, + int vector, int level, int trig_mode, + unsigned long *dest_map); + +int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, + unsigned long *dest_map) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, + irq->level, irq->trig_mode, dest_map); +} + +static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) +{ + + return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, + sizeof(val)); +} + +static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) +{ + + return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, + sizeof(*val)); +} + +static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; +} + +static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) +{ + u8 val; + if (pv_eoi_get_user(vcpu, &val) < 0) + apic_debug("Can't read EOI MSR value: 0x%llx\n", + (unsigned long long)vcpu->arch.pv_eoi.msr_val); + return val & 0x1; +} + +static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) +{ + if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { + apic_debug("Can't set EOI MSR value: 0x%llx\n", + (unsigned long long)vcpu->arch.pv_eoi.msr_val); + return; + } + __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); +} + +static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) +{ + if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { + apic_debug("Can't clear EOI MSR value: 0x%llx\n", + (unsigned long long)vcpu->arch.pv_eoi.msr_val); + return; + } + __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); +} + +void kvm_apic_update_tmr(struct kvm_vcpu *vcpu, u32 *tmr) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + int i; + + for (i = 0; i < 8; i++) + apic_set_reg(apic, APIC_TMR + 0x10 * i, tmr[i]); +} + +static void apic_update_ppr(struct kvm_lapic *apic) +{ + u32 tpr, isrv, ppr, old_ppr; + int isr; + + old_ppr = kvm_apic_get_reg(apic, APIC_PROCPRI); + tpr = kvm_apic_get_reg(apic, APIC_TASKPRI); + isr = apic_find_highest_isr(apic); + isrv = (isr != -1) ? isr : 0; + + if ((tpr & 0xf0) >= (isrv & 0xf0)) + ppr = tpr & 0xff; + else + ppr = isrv & 0xf0; + + apic_debug("vlapic %p, ppr 0x%x, isr 0x%x, isrv 0x%x", + apic, ppr, isr, isrv); + + if (old_ppr != ppr) { + apic_set_reg(apic, APIC_PROCPRI, ppr); + if (ppr < old_ppr) + kvm_make_request(KVM_REQ_EVENT, apic->vcpu); + } +} + +static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) +{ + apic_set_reg(apic, APIC_TASKPRI, tpr); + apic_update_ppr(apic); +} + +static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) +{ + if (apic_x2apic_mode(apic)) + return mda == X2APIC_BROADCAST; + + return GET_APIC_DEST_FIELD(mda) == APIC_BROADCAST; +} + +static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) +{ + if (kvm_apic_broadcast(apic, mda)) + return true; + + if (apic_x2apic_mode(apic)) + return mda == kvm_apic_id(apic); + + return mda == SET_APIC_DEST_FIELD(kvm_apic_id(apic)); +} + +static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) +{ + u32 logical_id; + + if (kvm_apic_broadcast(apic, mda)) + return true; + + logical_id = kvm_apic_get_reg(apic, APIC_LDR); + + if (apic_x2apic_mode(apic)) + return ((logical_id >> 16) == (mda >> 16)) + && (logical_id & mda & 0xffff) != 0; + + logical_id = GET_APIC_LOGICAL_ID(logical_id); + mda = GET_APIC_DEST_FIELD(mda); + + switch (kvm_apic_get_reg(apic, APIC_DFR)) { + case APIC_DFR_FLAT: + return (logical_id & mda) != 0; + case APIC_DFR_CLUSTER: + return ((logical_id >> 4) == (mda >> 4)) + && (logical_id & mda & 0xf) != 0; + default: + apic_debug("Bad DFR vcpu %d: %08x\n", + apic->vcpu->vcpu_id, kvm_apic_get_reg(apic, APIC_DFR)); + return false; + } +} + +/* KVM APIC implementation has two quirks + * - dest always begins at 0 while xAPIC MDA has offset 24, + * - IOxAPIC messages have to be delivered (directly) to x2APIC. + */ +static u32 kvm_apic_mda(unsigned int dest_id, struct kvm_lapic *source, + struct kvm_lapic *target) +{ + bool ipi = source != NULL; + bool x2apic_mda = apic_x2apic_mode(ipi ? source : target); + + if (!ipi && dest_id == APIC_BROADCAST && x2apic_mda) + return X2APIC_BROADCAST; + + return x2apic_mda ? dest_id : SET_APIC_DEST_FIELD(dest_id); +} + +bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, + int short_hand, unsigned int dest, int dest_mode) +{ + struct kvm_lapic *target = vcpu->arch.apic; + u32 mda = kvm_apic_mda(dest, source, target); + + apic_debug("target %p, source %p, dest 0x%x, " + "dest_mode 0x%x, short_hand 0x%x\n", + target, source, dest, dest_mode, short_hand); + + ASSERT(target); + switch (short_hand) { + case APIC_DEST_NOSHORT: + if (dest_mode == APIC_DEST_PHYSICAL) + return kvm_apic_match_physical_addr(target, mda); + else + return kvm_apic_match_logical_addr(target, mda); + case APIC_DEST_SELF: + return target == source; + case APIC_DEST_ALLINC: + return true; + case APIC_DEST_ALLBUT: + return target != source; + default: + apic_debug("kvm: apic: Bad dest shorthand value %x\n", + short_hand); + return false; + } +} + +bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, + struct kvm_lapic_irq *irq, int *r, unsigned long *dest_map) +{ + struct kvm_apic_map *map; + unsigned long bitmap = 1; + struct kvm_lapic **dst; + int i; + bool ret, x2apic_ipi; + + *r = -1; + + if (irq->shorthand == APIC_DEST_SELF) { + *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); + return true; + } + + if (irq->shorthand) + return false; + + x2apic_ipi = src && apic_x2apic_mode(src); + if (irq->dest_id == (x2apic_ipi ? X2APIC_BROADCAST : APIC_BROADCAST)) + return false; + + ret = true; + rcu_read_lock(); + map = rcu_dereference(kvm->arch.apic_map); + + if (!map) { + ret = false; + goto out; + } + + if (irq->dest_mode == APIC_DEST_PHYSICAL) { + if (irq->dest_id >= ARRAY_SIZE(map->phys_map)) + goto out; + + dst = &map->phys_map[irq->dest_id]; + } else { + u16 cid; + + if (!kvm_apic_logical_map_valid(map)) { + ret = false; + goto out; + } + + apic_logical_id(map, irq->dest_id, &cid, (u16 *)&bitmap); + + if (cid >= ARRAY_SIZE(map->logical_map)) + goto out; + + dst = map->logical_map[cid]; + + if (irq->delivery_mode == APIC_DM_LOWEST) { + int l = -1; + for_each_set_bit(i, &bitmap, 16) { + if (!dst[i]) + continue; + if (l < 0) + l = i; + else if (kvm_apic_compare_prio(dst[i]->vcpu, dst[l]->vcpu) < 0) + l = i; + } + + bitmap = (l >= 0) ? 1 << l : 0; + } + } + + for_each_set_bit(i, &bitmap, 16) { + if (!dst[i]) + continue; + if (*r < 0) + *r = 0; + *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); + } +out: + rcu_read_unlock(); + return ret; +} + +/* + * Add a pending IRQ into lapic. + * Return 1 if successfully added and 0 if discarded. + */ +static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, + int vector, int level, int trig_mode, + unsigned long *dest_map) +{ + int result = 0; + struct kvm_vcpu *vcpu = apic->vcpu; + + trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, + trig_mode, vector); + switch (delivery_mode) { + case APIC_DM_LOWEST: + vcpu->arch.apic_arb_prio++; + case APIC_DM_FIXED: + /* FIXME add logic for vcpu on reset */ + if (unlikely(!apic_enabled(apic))) + break; + + result = 1; + + if (dest_map) + __set_bit(vcpu->vcpu_id, dest_map); + + if (kvm_x86_ops->deliver_posted_interrupt) + kvm_x86_ops->deliver_posted_interrupt(vcpu, vector); + else { + apic_set_irr(vector, apic); + + kvm_make_request(KVM_REQ_EVENT, vcpu); + kvm_vcpu_kick(vcpu); + } + break; + + case APIC_DM_REMRD: + result = 1; + vcpu->arch.pv.pv_unhalted = 1; + kvm_make_request(KVM_REQ_EVENT, vcpu); + kvm_vcpu_kick(vcpu); + break; + + case APIC_DM_SMI: + apic_debug("Ignoring guest SMI\n"); + break; + + case APIC_DM_NMI: + result = 1; + kvm_inject_nmi(vcpu); + kvm_vcpu_kick(vcpu); + break; + + case APIC_DM_INIT: + if (!trig_mode || level) { + result = 1; + /* assumes that there are only KVM_APIC_INIT/SIPI */ + apic->pending_events = (1UL << KVM_APIC_INIT); + /* make sure pending_events is visible before sending + * the request */ + smp_wmb(); + kvm_make_request(KVM_REQ_EVENT, vcpu); + kvm_vcpu_kick(vcpu); + } else { + apic_debug("Ignoring de-assert INIT to vcpu %d\n", + vcpu->vcpu_id); + } + break; + + case APIC_DM_STARTUP: + apic_debug("SIPI to vcpu %d vector 0x%02x\n", + vcpu->vcpu_id, vector); + result = 1; + apic->sipi_vector = vector; + /* make sure sipi_vector is visible for the receiver */ + smp_wmb(); + set_bit(KVM_APIC_SIPI, &apic->pending_events); + kvm_make_request(KVM_REQ_EVENT, vcpu); + kvm_vcpu_kick(vcpu); + break; + + case APIC_DM_EXTINT: + /* + * Should only be called by kvm_apic_local_deliver() with LVT0, + * before NMI watchdog was enabled. Already handled by + * kvm_apic_accept_pic_intr(). + */ + break; + + default: + printk(KERN_ERR "TODO: unsupported delivery mode %x\n", + delivery_mode); + break; + } + return result; +} + +int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) +{ + return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; +} + +static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) +{ + if (kvm_ioapic_handles_vector(apic->vcpu->kvm, vector)) { + int trigger_mode; + if (apic_test_vector(vector, apic->regs + APIC_TMR)) + trigger_mode = IOAPIC_LEVEL_TRIG; + else + trigger_mode = IOAPIC_EDGE_TRIG; + kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); + } +} + +static int apic_set_eoi(struct kvm_lapic *apic) +{ + int vector = apic_find_highest_isr(apic); + + trace_kvm_eoi(apic, vector); + + /* + * Not every write EOI will has corresponding ISR, + * one example is when Kernel check timer on setup_IO_APIC + */ + if (vector == -1) + return vector; + + apic_clear_isr(vector, apic); + apic_update_ppr(apic); + + kvm_ioapic_send_eoi(apic, vector); + kvm_make_request(KVM_REQ_EVENT, apic->vcpu); + return vector; +} + +/* + * this interface assumes a trap-like exit, which has already finished + * desired side effect including vISR and vPPR update. + */ +void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + trace_kvm_eoi(apic, vector); + + kvm_ioapic_send_eoi(apic, vector); + kvm_make_request(KVM_REQ_EVENT, apic->vcpu); +} +EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); + +static void apic_send_ipi(struct kvm_lapic *apic) +{ + u32 icr_low = kvm_apic_get_reg(apic, APIC_ICR); + u32 icr_high = kvm_apic_get_reg(apic, APIC_ICR2); + struct kvm_lapic_irq irq; + + irq.vector = icr_low & APIC_VECTOR_MASK; + irq.delivery_mode = icr_low & APIC_MODE_MASK; + irq.dest_mode = icr_low & APIC_DEST_MASK; + irq.level = icr_low & APIC_INT_ASSERT; + irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; + irq.shorthand = icr_low & APIC_SHORT_MASK; + if (apic_x2apic_mode(apic)) + irq.dest_id = icr_high; + else + irq.dest_id = GET_APIC_DEST_FIELD(icr_high); + + trace_kvm_apic_ipi(icr_low, irq.dest_id); + + apic_debug("icr_high 0x%x, icr_low 0x%x, " + "short_hand 0x%x, dest 0x%x, trig_mode 0x%x, level 0x%x, " + "dest_mode 0x%x, delivery_mode 0x%x, vector 0x%x\n", + icr_high, icr_low, irq.shorthand, irq.dest_id, + irq.trig_mode, irq.level, irq.dest_mode, irq.delivery_mode, + irq.vector); + + kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); +} + +static u32 apic_get_tmcct(struct kvm_lapic *apic) +{ + ktime_t remaining; + s64 ns; + u32 tmcct; + + ASSERT(apic != NULL); + + /* if initial count is 0, current count should also be 0 */ + if (kvm_apic_get_reg(apic, APIC_TMICT) == 0 || + apic->lapic_timer.period == 0) + return 0; + + remaining = hrtimer_get_remaining(&apic->lapic_timer.timer); + if (ktime_to_ns(remaining) < 0) + remaining = ktime_set(0, 0); + + ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); + tmcct = div64_u64(ns, + (APIC_BUS_CYCLE_NS * apic->divide_count)); + + return tmcct; +} + +static void __report_tpr_access(struct kvm_lapic *apic, bool write) +{ + struct kvm_vcpu *vcpu = apic->vcpu; + struct kvm_run *run = vcpu->run; + + kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); + run->tpr_access.rip = kvm_rip_read(vcpu); + run->tpr_access.is_write = write; +} + +static inline void report_tpr_access(struct kvm_lapic *apic, bool write) +{ + if (apic->vcpu->arch.tpr_access_reporting) + __report_tpr_access(apic, write); +} + +static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) +{ + u32 val = 0; + + if (offset >= LAPIC_MMIO_LENGTH) + return 0; + + switch (offset) { + case APIC_ID: + if (apic_x2apic_mode(apic)) + val = kvm_apic_id(apic); + else + val = kvm_apic_id(apic) << 24; + break; + case APIC_ARBPRI: + apic_debug("Access APIC ARBPRI register which is for P6\n"); + break; + + case APIC_TMCCT: /* Timer CCR */ + if (apic_lvtt_tscdeadline(apic)) + return 0; + + val = apic_get_tmcct(apic); + break; + case APIC_PROCPRI: + apic_update_ppr(apic); + val = kvm_apic_get_reg(apic, offset); + break; + case APIC_TASKPRI: + report_tpr_access(apic, false); + /* fall thru */ + default: + val = kvm_apic_get_reg(apic, offset); + break; + } + + return val; +} + +static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) +{ + return container_of(dev, struct kvm_lapic, dev); +} + +static int apic_reg_read(struct kvm_lapic *apic, u32 offset, int len, + void *data) +{ + unsigned char alignment = offset & 0xf; + u32 result; + /* this bitmask has a bit cleared for each reserved register */ + static const u64 rmask = 0x43ff01ffffffe70cULL; + + if ((alignment + len) > 4) { + apic_debug("KVM_APIC_READ: alignment error %x %d\n", + offset, len); + return 1; + } + + if (offset > 0x3f0 || !(rmask & (1ULL << (offset >> 4)))) { + apic_debug("KVM_APIC_READ: read reserved register %x\n", + offset); + return 1; + } + + result = __apic_read(apic, offset & ~0xf); + + trace_kvm_apic_read(offset, result); + + switch (len) { + case 1: + case 2: + case 4: + memcpy(data, (char *)&result + alignment, len); + break; + default: + printk(KERN_ERR "Local APIC read with len = %x, " + "should be 1,2, or 4 instead\n", len); + break; + } + return 0; +} + +static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) +{ + return kvm_apic_hw_enabled(apic) && + addr >= apic->base_address && + addr < apic->base_address + LAPIC_MMIO_LENGTH; +} + +static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, + gpa_t address, int len, void *data) +{ + struct kvm_lapic *apic = to_lapic(this); + u32 offset = address - apic->base_address; + + if (!apic_mmio_in_range(apic, address)) + return -EOPNOTSUPP; + + apic_reg_read(apic, offset, len, data); + + return 0; +} + +static void update_divide_count(struct kvm_lapic *apic) +{ + u32 tmp1, tmp2, tdcr; + + tdcr = kvm_apic_get_reg(apic, APIC_TDCR); + tmp1 = tdcr & 0xf; + tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; + apic->divide_count = 0x1 << (tmp2 & 0x7); + + apic_debug("timer divide count is 0x%x\n", + apic->divide_count); +} + +static void apic_update_lvtt(struct kvm_lapic *apic) +{ + u32 timer_mode = kvm_apic_get_reg(apic, APIC_LVTT) & + apic->lapic_timer.timer_mode_mask; + + if (apic->lapic_timer.timer_mode != timer_mode) { + apic->lapic_timer.timer_mode = timer_mode; + hrtimer_cancel(&apic->lapic_timer.timer); + } +} + +static void apic_timer_expired(struct kvm_lapic *apic) +{ + struct kvm_vcpu *vcpu = apic->vcpu; + wait_queue_head_t *q = &vcpu->wq; + struct kvm_timer *ktimer = &apic->lapic_timer; + + if (atomic_read(&apic->lapic_timer.pending)) + return; + + atomic_inc(&apic->lapic_timer.pending); + kvm_set_pending_timer(vcpu); + + if (waitqueue_active(q)) + wake_up_interruptible(q); + + if (apic_lvtt_tscdeadline(apic)) + ktimer->expired_tscdeadline = ktimer->tscdeadline; +} + +/* + * On APICv, this test will cause a busy wait + * during a higher-priority task. + */ + +static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + u32 reg = kvm_apic_get_reg(apic, APIC_LVTT); + + if (kvm_apic_hw_enabled(apic)) { + int vec = reg & APIC_VECTOR_MASK; + void *bitmap = apic->regs + APIC_ISR; + + if (kvm_x86_ops->deliver_posted_interrupt) + bitmap = apic->regs + APIC_IRR; + + if (apic_test_vector(vec, bitmap)) + return true; + } + return false; +} + +void wait_lapic_expire(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + u64 guest_tsc, tsc_deadline; + + if (!kvm_vcpu_has_lapic(vcpu)) + return; + + if (apic->lapic_timer.expired_tscdeadline == 0) + return; + + if (!lapic_timer_int_injected(vcpu)) + return; + + tsc_deadline = apic->lapic_timer.expired_tscdeadline; + apic->lapic_timer.expired_tscdeadline = 0; + guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, native_read_tsc()); + trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); + + /* __delay is delay_tsc whenever the hardware has TSC, thus always. */ + if (guest_tsc < tsc_deadline) + __delay(tsc_deadline - guest_tsc); +} + +static void start_apic_timer(struct kvm_lapic *apic) +{ + ktime_t now; + + atomic_set(&apic->lapic_timer.pending, 0); + + if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { + /* lapic timer in oneshot or periodic mode */ + now = apic->lapic_timer.timer.base->get_time(); + apic->lapic_timer.period = (u64)kvm_apic_get_reg(apic, APIC_TMICT) + * APIC_BUS_CYCLE_NS * apic->divide_count; + + if (!apic->lapic_timer.period) + return; + /* + * Do not allow the guest to program periodic timers with small + * interval, since the hrtimers are not throttled by the host + * scheduler. + */ + if (apic_lvtt_period(apic)) { + s64 min_period = min_timer_period_us * 1000LL; + + if (apic->lapic_timer.period < min_period) { + pr_info_ratelimited( + "kvm: vcpu %i: requested %lld ns " + "lapic timer period limited to %lld ns\n", + apic->vcpu->vcpu_id, + apic->lapic_timer.period, min_period); + apic->lapic_timer.period = min_period; + } + } + + hrtimer_start(&apic->lapic_timer.timer, + ktime_add_ns(now, apic->lapic_timer.period), + HRTIMER_MODE_ABS); + + apic_debug("%s: bus cycle is %" PRId64 "ns, now 0x%016" + PRIx64 ", " + "timer initial count 0x%x, period %lldns, " + "expire @ 0x%016" PRIx64 ".\n", __func__, + APIC_BUS_CYCLE_NS, ktime_to_ns(now), + kvm_apic_get_reg(apic, APIC_TMICT), + apic->lapic_timer.period, + ktime_to_ns(ktime_add_ns(now, + apic->lapic_timer.period))); + } else if (apic_lvtt_tscdeadline(apic)) { + /* lapic timer in tsc deadline mode */ + u64 guest_tsc, tscdeadline = apic->lapic_timer.tscdeadline; + u64 ns = 0; + ktime_t expire; + struct kvm_vcpu *vcpu = apic->vcpu; + unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; + unsigned long flags; + + if (unlikely(!tscdeadline || !this_tsc_khz)) + return; + + local_irq_save(flags); + + now = apic->lapic_timer.timer.base->get_time(); + guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, native_read_tsc()); + if (likely(tscdeadline > guest_tsc)) { + ns = (tscdeadline - guest_tsc) * 1000000ULL; + do_div(ns, this_tsc_khz); + expire = ktime_add_ns(now, ns); + expire = ktime_sub_ns(expire, lapic_timer_advance_ns); + hrtimer_start(&apic->lapic_timer.timer, + expire, HRTIMER_MODE_ABS); + } else + apic_timer_expired(apic); + + local_irq_restore(flags); + } +} + +static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) +{ + int nmi_wd_enabled = apic_lvt_nmi_mode(kvm_apic_get_reg(apic, APIC_LVT0)); + + if (apic_lvt_nmi_mode(lvt0_val)) { + if (!nmi_wd_enabled) { + apic_debug("Receive NMI setting on APIC_LVT0 " + "for cpu %d\n", apic->vcpu->vcpu_id); + atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); + } + } else if (nmi_wd_enabled) + atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); +} + +static int apic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) +{ + int ret = 0; + + trace_kvm_apic_write(reg, val); + + switch (reg) { + case APIC_ID: /* Local APIC ID */ + if (!apic_x2apic_mode(apic)) + kvm_apic_set_id(apic, val >> 24); + else + ret = 1; + break; + + case APIC_TASKPRI: + report_tpr_access(apic, true); + apic_set_tpr(apic, val & 0xff); + break; + + case APIC_EOI: + apic_set_eoi(apic); + break; + + case APIC_LDR: + if (!apic_x2apic_mode(apic)) + kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); + else + ret = 1; + break; + + case APIC_DFR: + if (!apic_x2apic_mode(apic)) { + apic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); + recalculate_apic_map(apic->vcpu->kvm); + } else + ret = 1; + break; + + case APIC_SPIV: { + u32 mask = 0x3ff; + if (kvm_apic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) + mask |= APIC_SPIV_DIRECTED_EOI; + apic_set_spiv(apic, val & mask); + if (!(val & APIC_SPIV_APIC_ENABLED)) { + int i; + u32 lvt_val; + + for (i = 0; i < APIC_LVT_NUM; i++) { + lvt_val = kvm_apic_get_reg(apic, + APIC_LVTT + 0x10 * i); + apic_set_reg(apic, APIC_LVTT + 0x10 * i, + lvt_val | APIC_LVT_MASKED); + } + apic_update_lvtt(apic); + atomic_set(&apic->lapic_timer.pending, 0); + + } + break; + } + case APIC_ICR: + /* No delay here, so we always clear the pending bit */ + apic_set_reg(apic, APIC_ICR, val & ~(1 << 12)); + apic_send_ipi(apic); + break; + + case APIC_ICR2: + if (!apic_x2apic_mode(apic)) + val &= 0xff000000; + apic_set_reg(apic, APIC_ICR2, val); + break; + + case APIC_LVT0: + apic_manage_nmi_watchdog(apic, val); + case APIC_LVTTHMR: + case APIC_LVTPC: + case APIC_LVT1: + case APIC_LVTERR: + /* TODO: Check vector */ + if (!kvm_apic_sw_enabled(apic)) + val |= APIC_LVT_MASKED; + + val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4]; + apic_set_reg(apic, reg, val); + + break; + + case APIC_LVTT: + if (!kvm_apic_sw_enabled(apic)) + val |= APIC_LVT_MASKED; + val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); + apic_set_reg(apic, APIC_LVTT, val); + apic_update_lvtt(apic); + break; + + case APIC_TMICT: + if (apic_lvtt_tscdeadline(apic)) + break; + + hrtimer_cancel(&apic->lapic_timer.timer); + apic_set_reg(apic, APIC_TMICT, val); + start_apic_timer(apic); + break; + + case APIC_TDCR: + if (val & 4) + apic_debug("KVM_WRITE:TDCR %x\n", val); + apic_set_reg(apic, APIC_TDCR, val); + update_divide_count(apic); + break; + + case APIC_ESR: + if (apic_x2apic_mode(apic) && val != 0) { + apic_debug("KVM_WRITE:ESR not zero %x\n", val); + ret = 1; + } + break; + + case APIC_SELF_IPI: + if (apic_x2apic_mode(apic)) { + apic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); + } else + ret = 1; + break; + default: + ret = 1; + break; + } + if (ret) + apic_debug("Local APIC Write to read-only register %x\n", reg); + return ret; +} + +static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, + gpa_t address, int len, const void *data) +{ + struct kvm_lapic *apic = to_lapic(this); + unsigned int offset = address - apic->base_address; + u32 val; + + if (!apic_mmio_in_range(apic, address)) + return -EOPNOTSUPP; + + /* + * APIC register must be aligned on 128-bits boundary. + * 32/64/128 bits registers must be accessed thru 32 bits. + * Refer SDM 8.4.1 + */ + if (len != 4 || (offset & 0xf)) { + /* Don't shout loud, $infamous_os would cause only noise. */ + apic_debug("apic write: bad size=%d %lx\n", len, (long)address); + return 0; + } + + val = *(u32*)data; + + /* too common printing */ + if (offset != APIC_EOI) + apic_debug("%s: offset 0x%x with length 0x%x, and value is " + "0x%x\n", __func__, offset, len, val); + + apic_reg_write(apic, offset & 0xff0, val); + + return 0; +} + +void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) +{ + if (kvm_vcpu_has_lapic(vcpu)) + apic_reg_write(vcpu->arch.apic, APIC_EOI, 0); +} +EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); + +/* emulate APIC access in a trap manner */ +void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) +{ + u32 val = 0; + + /* hw has done the conditional check and inst decode */ + offset &= 0xff0; + + apic_reg_read(vcpu->arch.apic, offset, 4, &val); + + /* TODO: optimize to just emulate side effect w/o one more write */ + apic_reg_write(vcpu->arch.apic, offset, val); +} +EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); + +void kvm_free_lapic(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + if (!vcpu->arch.apic) + return; + + hrtimer_cancel(&apic->lapic_timer.timer); + + if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) + static_key_slow_dec_deferred(&apic_hw_disabled); + + if (!apic->sw_enabled) + static_key_slow_dec_deferred(&apic_sw_disabled); + + if (apic->regs) + free_page((unsigned long)apic->regs); + + kfree(apic); +} + +/* + *---------------------------------------------------------------------- + * LAPIC interface + *---------------------------------------------------------------------- + */ + +u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + if (!kvm_vcpu_has_lapic(vcpu) || apic_lvtt_oneshot(apic) || + apic_lvtt_period(apic)) + return 0; + + return apic->lapic_timer.tscdeadline; +} + +void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + if (!kvm_vcpu_has_lapic(vcpu) || apic_lvtt_oneshot(apic) || + apic_lvtt_period(apic)) + return; + + hrtimer_cancel(&apic->lapic_timer.timer); + apic->lapic_timer.tscdeadline = data; + start_apic_timer(apic); +} + +void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + if (!kvm_vcpu_has_lapic(vcpu)) + return; + + apic_set_tpr(apic, ((cr8 & 0x0f) << 4) + | (kvm_apic_get_reg(apic, APIC_TASKPRI) & 4)); +} + +u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) +{ + u64 tpr; + + if (!kvm_vcpu_has_lapic(vcpu)) + return 0; + + tpr = (u64) kvm_apic_get_reg(vcpu->arch.apic, APIC_TASKPRI); + + return (tpr & 0xf0) >> 4; +} + +void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) +{ + u64 old_value = vcpu->arch.apic_base; + struct kvm_lapic *apic = vcpu->arch.apic; + + if (!apic) { + value |= MSR_IA32_APICBASE_BSP; + vcpu->arch.apic_base = value; + return; + } + + vcpu->arch.apic_base = value; + + /* update jump label if enable bit changes */ + if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { + if (value & MSR_IA32_APICBASE_ENABLE) + static_key_slow_dec_deferred(&apic_hw_disabled); + else + static_key_slow_inc(&apic_hw_disabled.key); + recalculate_apic_map(vcpu->kvm); + } + + if ((old_value ^ value) & X2APIC_ENABLE) { + if (value & X2APIC_ENABLE) { + u32 id = kvm_apic_id(apic); + u32 ldr = ((id >> 4) << 16) | (1 << (id & 0xf)); + kvm_apic_set_ldr(apic, ldr); + kvm_x86_ops->set_virtual_x2apic_mode(vcpu, true); + } else + kvm_x86_ops->set_virtual_x2apic_mode(vcpu, false); + } + + apic->base_address = apic->vcpu->arch.apic_base & + MSR_IA32_APICBASE_BASE; + + if ((value & MSR_IA32_APICBASE_ENABLE) && + apic->base_address != APIC_DEFAULT_PHYS_BASE) + pr_warn_once("APIC base relocation is unsupported by KVM"); + + /* with FSB delivery interrupt, we can restart APIC functionality */ + apic_debug("apic base msr is 0x%016" PRIx64 ", and base address is " + "0x%lx.\n", apic->vcpu->arch.apic_base, apic->base_address); + +} + +void kvm_lapic_reset(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic; + int i; + + apic_debug("%s\n", __func__); + + ASSERT(vcpu); + apic = vcpu->arch.apic; + ASSERT(apic != NULL); + + /* Stop the timer in case it's a reset to an active apic */ + hrtimer_cancel(&apic->lapic_timer.timer); + + kvm_apic_set_id(apic, vcpu->vcpu_id); + kvm_apic_set_version(apic->vcpu); + + for (i = 0; i < APIC_LVT_NUM; i++) + apic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); + apic_update_lvtt(apic); + apic_set_reg(apic, APIC_LVT0, + SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); + + apic_set_reg(apic, APIC_DFR, 0xffffffffU); + apic_set_spiv(apic, 0xff); + apic_set_reg(apic, APIC_TASKPRI, 0); + kvm_apic_set_ldr(apic, 0); + apic_set_reg(apic, APIC_ESR, 0); + apic_set_reg(apic, APIC_ICR, 0); + apic_set_reg(apic, APIC_ICR2, 0); + apic_set_reg(apic, APIC_TDCR, 0); + apic_set_reg(apic, APIC_TMICT, 0); + for (i = 0; i < 8; i++) { + apic_set_reg(apic, APIC_IRR + 0x10 * i, 0); + apic_set_reg(apic, APIC_ISR + 0x10 * i, 0); + apic_set_reg(apic, APIC_TMR + 0x10 * i, 0); + } + apic->irr_pending = kvm_apic_vid_enabled(vcpu->kvm); + apic->isr_count = kvm_x86_ops->hwapic_isr_update ? 1 : 0; + apic->highest_isr_cache = -1; + update_divide_count(apic); + atomic_set(&apic->lapic_timer.pending, 0); + if (kvm_vcpu_is_bsp(vcpu)) + kvm_lapic_set_base(vcpu, + vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); + vcpu->arch.pv_eoi.msr_val = 0; + apic_update_ppr(apic); + + vcpu->arch.apic_arb_prio = 0; + vcpu->arch.apic_attention = 0; + + apic_debug("%s: vcpu=%p, id=%d, base_msr=" + "0x%016" PRIx64 ", base_address=0x%0lx.\n", __func__, + vcpu, kvm_apic_id(apic), + vcpu->arch.apic_base, apic->base_address); +} + +/* + *---------------------------------------------------------------------- + * timer interface + *---------------------------------------------------------------------- + */ + +static bool lapic_is_periodic(struct kvm_lapic *apic) +{ + return apic_lvtt_period(apic); +} + +int apic_has_pending_timer(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + if (kvm_vcpu_has_lapic(vcpu) && apic_enabled(apic) && + apic_lvt_enabled(apic, APIC_LVTT)) + return atomic_read(&apic->lapic_timer.pending); + + return 0; +} + +int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) +{ + u32 reg = kvm_apic_get_reg(apic, lvt_type); + int vector, mode, trig_mode; + + if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { + vector = reg & APIC_VECTOR_MASK; + mode = reg & APIC_MODE_MASK; + trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; + return __apic_accept_irq(apic, mode, vector, 1, trig_mode, + NULL); + } + return 0; +} + +void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + if (apic) + kvm_apic_local_deliver(apic, APIC_LVT0); +} + +static const struct kvm_io_device_ops apic_mmio_ops = { + .read = apic_mmio_read, + .write = apic_mmio_write, +}; + +static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) +{ + struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); + struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); + + apic_timer_expired(apic); + + if (lapic_is_periodic(apic)) { + hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); + return HRTIMER_RESTART; + } else + return HRTIMER_NORESTART; +} + +int kvm_create_lapic(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic; + + ASSERT(vcpu != NULL); + apic_debug("apic_init %d\n", vcpu->vcpu_id); + + apic = kzalloc(sizeof(*apic), GFP_KERNEL); + if (!apic) + goto nomem; + + vcpu->arch.apic = apic; + + apic->regs = (void *)get_zeroed_page(GFP_KERNEL); + if (!apic->regs) { + printk(KERN_ERR "malloc apic regs error for vcpu %x\n", + vcpu->vcpu_id); + goto nomem_free_apic; + } + apic->vcpu = vcpu; + + hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, + HRTIMER_MODE_ABS); + apic->lapic_timer.timer.function = apic_timer_fn; + + /* + * APIC is created enabled. This will prevent kvm_lapic_set_base from + * thinking that APIC satet has changed. + */ + vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; + kvm_lapic_set_base(vcpu, + APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE); + + static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ + kvm_lapic_reset(vcpu); + kvm_iodevice_init(&apic->dev, &apic_mmio_ops); + + return 0; +nomem_free_apic: + kfree(apic); +nomem: + return -ENOMEM; +} + +int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + int highest_irr; + + if (!kvm_vcpu_has_lapic(vcpu) || !apic_enabled(apic)) + return -1; + + apic_update_ppr(apic); + highest_irr = apic_find_highest_irr(apic); + if ((highest_irr == -1) || + ((highest_irr & 0xF0) <= kvm_apic_get_reg(apic, APIC_PROCPRI))) + return -1; + return highest_irr; +} + +int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) +{ + u32 lvt0 = kvm_apic_get_reg(vcpu->arch.apic, APIC_LVT0); + int r = 0; + + if (!kvm_apic_hw_enabled(vcpu->arch.apic)) + r = 1; + if ((lvt0 & APIC_LVT_MASKED) == 0 && + GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) + r = 1; + return r; +} + +void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + if (!kvm_vcpu_has_lapic(vcpu)) + return; + + if (atomic_read(&apic->lapic_timer.pending) > 0) { + kvm_apic_local_deliver(apic, APIC_LVTT); + if (apic_lvtt_tscdeadline(apic)) + apic->lapic_timer.tscdeadline = 0; + atomic_set(&apic->lapic_timer.pending, 0); + } +} + +int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) +{ + int vector = kvm_apic_has_interrupt(vcpu); + struct kvm_lapic *apic = vcpu->arch.apic; + + if (vector == -1) + return -1; + + /* + * We get here even with APIC virtualization enabled, if doing + * nested virtualization and L1 runs with the "acknowledge interrupt + * on exit" mode. Then we cannot inject the interrupt via RVI, + * because the process would deliver it through the IDT. + */ + + apic_set_isr(vector, apic); + apic_update_ppr(apic); + apic_clear_irr(vector, apic); + return vector; +} + +void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu, + struct kvm_lapic_state *s) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); + /* set SPIV separately to get count of SW disabled APICs right */ + apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); + memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); + /* call kvm_apic_set_id() to put apic into apic_map */ + kvm_apic_set_id(apic, kvm_apic_id(apic)); + kvm_apic_set_version(vcpu); + + apic_update_ppr(apic); + hrtimer_cancel(&apic->lapic_timer.timer); + apic_update_lvtt(apic); + apic_manage_nmi_watchdog(apic, kvm_apic_get_reg(apic, APIC_LVT0)); + update_divide_count(apic); + start_apic_timer(apic); + apic->irr_pending = true; + apic->isr_count = kvm_x86_ops->hwapic_isr_update ? + 1 : count_vectors(apic->regs + APIC_ISR); + apic->highest_isr_cache = -1; + if (kvm_x86_ops->hwapic_irr_update) + kvm_x86_ops->hwapic_irr_update(vcpu, + apic_find_highest_irr(apic)); + if (unlikely(kvm_x86_ops->hwapic_isr_update)) + kvm_x86_ops->hwapic_isr_update(vcpu->kvm, + apic_find_highest_isr(apic)); + kvm_make_request(KVM_REQ_EVENT, vcpu); + kvm_rtc_eoi_tracking_restore_one(vcpu); +} + +void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) +{ + struct hrtimer *timer; + + if (!kvm_vcpu_has_lapic(vcpu)) + return; + + timer = &vcpu->arch.apic->lapic_timer.timer; + if (hrtimer_cancel(timer)) + hrtimer_start_expires(timer, HRTIMER_MODE_ABS); +} + +/* + * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt + * + * Detect whether guest triggered PV EOI since the + * last entry. If yes, set EOI on guests's behalf. + * Clear PV EOI in guest memory in any case. + */ +static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, + struct kvm_lapic *apic) +{ + bool pending; + int vector; + /* + * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host + * and KVM_PV_EOI_ENABLED in guest memory as follows: + * + * KVM_APIC_PV_EOI_PENDING is unset: + * -> host disabled PV EOI. + * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: + * -> host enabled PV EOI, guest did not execute EOI yet. + * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: + * -> host enabled PV EOI, guest executed EOI. + */ + BUG_ON(!pv_eoi_enabled(vcpu)); + pending = pv_eoi_get_pending(vcpu); + /* + * Clear pending bit in any case: it will be set again on vmentry. + * While this might not be ideal from performance point of view, + * this makes sure pv eoi is only enabled when we know it's safe. + */ + pv_eoi_clr_pending(vcpu); + if (pending) + return; + vector = apic_set_eoi(apic); + trace_kvm_pv_eoi(apic, vector); +} + +void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) +{ + u32 data; + + if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) + apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); + + if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) + return; + + kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, + sizeof(u32)); + + apic_set_tpr(vcpu->arch.apic, data & 0xff); +} + +/* + * apic_sync_pv_eoi_to_guest - called before vmentry + * + * Detect whether it's safe to enable PV EOI and + * if yes do so. + */ +static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, + struct kvm_lapic *apic) +{ + if (!pv_eoi_enabled(vcpu) || + /* IRR set or many bits in ISR: could be nested. */ + apic->irr_pending || + /* Cache not set: could be safe but we don't bother. */ + apic->highest_isr_cache == -1 || + /* Need EOI to update ioapic. */ + kvm_ioapic_handles_vector(vcpu->kvm, apic->highest_isr_cache)) { + /* + * PV EOI was disabled by apic_sync_pv_eoi_from_guest + * so we need not do anything here. + */ + return; + } + + pv_eoi_set_pending(apic->vcpu); +} + +void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) +{ + u32 data, tpr; + int max_irr, max_isr; + struct kvm_lapic *apic = vcpu->arch.apic; + + apic_sync_pv_eoi_to_guest(vcpu, apic); + + if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) + return; + + tpr = kvm_apic_get_reg(apic, APIC_TASKPRI) & 0xff; + max_irr = apic_find_highest_irr(apic); + if (max_irr < 0) + max_irr = 0; + max_isr = apic_find_highest_isr(apic); + if (max_isr < 0) + max_isr = 0; + data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); + + kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, + sizeof(u32)); +} + +int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) +{ + if (vapic_addr) { + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, + &vcpu->arch.apic->vapic_cache, + vapic_addr, sizeof(u32))) + return -EINVAL; + __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); + } else { + __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); + } + + vcpu->arch.apic->vapic_addr = vapic_addr; + return 0; +} + +int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + u32 reg = (msr - APIC_BASE_MSR) << 4; + + if (!irqchip_in_kernel(vcpu->kvm) || !apic_x2apic_mode(apic)) + return 1; + + if (reg == APIC_ICR2) + return 1; + + /* if this is ICR write vector before command */ + if (reg == APIC_ICR) + apic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); + return apic_reg_write(apic, reg, (u32)data); +} + +int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; + + if (!irqchip_in_kernel(vcpu->kvm) || !apic_x2apic_mode(apic)) + return 1; + + if (reg == APIC_DFR || reg == APIC_ICR2) { + apic_debug("KVM_APIC_READ: read x2apic reserved register %x\n", + reg); + return 1; + } + + if (apic_reg_read(apic, reg, 4, &low)) + return 1; + if (reg == APIC_ICR) + apic_reg_read(apic, APIC_ICR2, 4, &high); + + *data = (((u64)high) << 32) | low; + + return 0; +} + +int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + + if (!kvm_vcpu_has_lapic(vcpu)) + return 1; + + /* if this is ICR write vector before command */ + if (reg == APIC_ICR) + apic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); + return apic_reg_write(apic, reg, (u32)data); +} + +int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + u32 low, high = 0; + + if (!kvm_vcpu_has_lapic(vcpu)) + return 1; + + if (apic_reg_read(apic, reg, 4, &low)) + return 1; + if (reg == APIC_ICR) + apic_reg_read(apic, APIC_ICR2, 4, &high); + + *data = (((u64)high) << 32) | low; + + return 0; +} + +int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data) +{ + u64 addr = data & ~KVM_MSR_ENABLED; + if (!IS_ALIGNED(addr, 4)) + return 1; + + vcpu->arch.pv_eoi.msr_val = data; + if (!pv_eoi_enabled(vcpu)) + return 0; + return kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_eoi.data, + addr, sizeof(u8)); +} + +void kvm_apic_accept_events(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + u8 sipi_vector; + unsigned long pe; + + if (!kvm_vcpu_has_lapic(vcpu) || !apic->pending_events) + return; + + pe = xchg(&apic->pending_events, 0); + + if (test_bit(KVM_APIC_INIT, &pe)) { + kvm_lapic_reset(vcpu); + kvm_vcpu_reset(vcpu); + if (kvm_vcpu_is_bsp(apic->vcpu)) + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + else + vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; + } + if (test_bit(KVM_APIC_SIPI, &pe) && + vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { + /* evaluate pending_events before reading the vector */ + smp_rmb(); + sipi_vector = apic->sipi_vector; + apic_debug("vcpu %d received sipi with vector # %x\n", + vcpu->vcpu_id, sipi_vector); + kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + } +} + +void kvm_lapic_init(void) +{ + /* do not patch jump label more than once per second */ + jump_label_rate_limit(&apic_hw_disabled, HZ); + jump_label_rate_limit(&apic_sw_disabled, HZ); +} diff --git a/arch/x86/kvm/lapic.h b/arch/x86/kvm/lapic.h new file mode 100644 index 000000000..9d28383fc --- /dev/null +++ b/arch/x86/kvm/lapic.h @@ -0,0 +1,160 @@ +#ifndef __KVM_X86_LAPIC_H +#define __KVM_X86_LAPIC_H + +#include <kvm/iodev.h> + +#include <linux/kvm_host.h> + +#define KVM_APIC_INIT 0 +#define KVM_APIC_SIPI 1 + +struct kvm_timer { + struct hrtimer timer; + s64 period; /* unit: ns */ + u32 timer_mode; + u32 timer_mode_mask; + u64 tscdeadline; + u64 expired_tscdeadline; + atomic_t pending; /* accumulated triggered timers */ +}; + +struct kvm_lapic { + unsigned long base_address; + struct kvm_io_device dev; + struct kvm_timer lapic_timer; + u32 divide_count; + struct kvm_vcpu *vcpu; + bool sw_enabled; + bool irr_pending; + /* Number of bits set in ISR. */ + s16 isr_count; + /* The highest vector set in ISR; if -1 - invalid, must scan ISR. */ + int highest_isr_cache; + /** + * APIC register page. The layout matches the register layout seen by + * the guest 1:1, because it is accessed by the vmx microcode. + * Note: Only one register, the TPR, is used by the microcode. + */ + void *regs; + gpa_t vapic_addr; + struct gfn_to_hva_cache vapic_cache; + unsigned long pending_events; + unsigned int sipi_vector; +}; +int kvm_create_lapic(struct kvm_vcpu *vcpu); +void kvm_free_lapic(struct kvm_vcpu *vcpu); + +int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu); +int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu); +int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu); +void kvm_apic_accept_events(struct kvm_vcpu *vcpu); +void kvm_lapic_reset(struct kvm_vcpu *vcpu); +u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu); +void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8); +void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu); +void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value); +u64 kvm_lapic_get_base(struct kvm_vcpu *vcpu); +void kvm_apic_set_version(struct kvm_vcpu *vcpu); + +void kvm_apic_update_tmr(struct kvm_vcpu *vcpu, u32 *tmr); +void __kvm_apic_update_irr(u32 *pir, void *regs); +void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir); +int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, + unsigned long *dest_map); +int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type); + +bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, + struct kvm_lapic_irq *irq, int *r, unsigned long *dest_map); + +u64 kvm_get_apic_base(struct kvm_vcpu *vcpu); +int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info); +void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu, + struct kvm_lapic_state *s); +int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu); + +u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu); +void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data); + +void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset); +void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector); + +int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr); +void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu); +void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu); + +int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data); +int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data); + +int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data); +int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data); + +static inline bool kvm_hv_vapic_assist_page_enabled(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.hv_vapic & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE; +} + +int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data); +void kvm_lapic_init(void); + +static inline u32 kvm_apic_get_reg(struct kvm_lapic *apic, int reg_off) +{ + return *((u32 *) (apic->regs + reg_off)); +} + +extern struct static_key kvm_no_apic_vcpu; + +static inline bool kvm_vcpu_has_lapic(struct kvm_vcpu *vcpu) +{ + if (static_key_false(&kvm_no_apic_vcpu)) + return vcpu->arch.apic; + return true; +} + +extern struct static_key_deferred apic_hw_disabled; + +static inline int kvm_apic_hw_enabled(struct kvm_lapic *apic) +{ + if (static_key_false(&apic_hw_disabled.key)) + return apic->vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE; + return MSR_IA32_APICBASE_ENABLE; +} + +extern struct static_key_deferred apic_sw_disabled; + +static inline bool kvm_apic_sw_enabled(struct kvm_lapic *apic) +{ + if (static_key_false(&apic_sw_disabled.key)) + return apic->sw_enabled; + return true; +} + +static inline bool kvm_apic_present(struct kvm_vcpu *vcpu) +{ + return kvm_vcpu_has_lapic(vcpu) && kvm_apic_hw_enabled(vcpu->arch.apic); +} + +static inline int kvm_lapic_enabled(struct kvm_vcpu *vcpu) +{ + return kvm_apic_present(vcpu) && kvm_apic_sw_enabled(vcpu->arch.apic); +} + +static inline int apic_x2apic_mode(struct kvm_lapic *apic) +{ + return apic->vcpu->arch.apic_base & X2APIC_ENABLE; +} + +static inline bool kvm_apic_vid_enabled(struct kvm *kvm) +{ + return kvm_x86_ops->vm_has_apicv(kvm); +} + +static inline bool kvm_apic_has_events(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.apic->pending_events; +} + +bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector); + +void wait_lapic_expire(struct kvm_vcpu *vcpu); + +#endif diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c new file mode 100644 index 000000000..b73337634 --- /dev/null +++ b/arch/x86/kvm/mmu.c @@ -0,0 +1,4920 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * This module enables machines with Intel VT-x extensions to run virtual + * machines without emulation or binary translation. + * + * MMU support + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Yaniv Kamay <yaniv@qumranet.com> + * Avi Kivity <avi@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include "irq.h" +#include "mmu.h" +#include "x86.h" +#include "kvm_cache_regs.h" +#include "cpuid.h" + +#include <linux/kvm_host.h> +#include <linux/types.h> +#include <linux/string.h> +#include <linux/mm.h> +#include <linux/highmem.h> +#include <linux/module.h> +#include <linux/swap.h> +#include <linux/hugetlb.h> +#include <linux/compiler.h> +#include <linux/srcu.h> +#include <linux/slab.h> +#include <linux/uaccess.h> + +#include <asm/page.h> +#include <asm/cmpxchg.h> +#include <asm/io.h> +#include <asm/vmx.h> + +/* + * When setting this variable to true it enables Two-Dimensional-Paging + * where the hardware walks 2 page tables: + * 1. the guest-virtual to guest-physical + * 2. while doing 1. it walks guest-physical to host-physical + * If the hardware supports that we don't need to do shadow paging. + */ +bool tdp_enabled = false; + +enum { + AUDIT_PRE_PAGE_FAULT, + AUDIT_POST_PAGE_FAULT, + AUDIT_PRE_PTE_WRITE, + AUDIT_POST_PTE_WRITE, + AUDIT_PRE_SYNC, + AUDIT_POST_SYNC +}; + +#undef MMU_DEBUG + +#ifdef MMU_DEBUG +static bool dbg = 0; +module_param(dbg, bool, 0644); + +#define pgprintk(x...) do { if (dbg) printk(x); } while (0) +#define rmap_printk(x...) do { if (dbg) printk(x); } while (0) +#define MMU_WARN_ON(x) WARN_ON(x) +#else +#define pgprintk(x...) do { } while (0) +#define rmap_printk(x...) do { } while (0) +#define MMU_WARN_ON(x) do { } while (0) +#endif + +#define PTE_PREFETCH_NUM 8 + +#define PT_FIRST_AVAIL_BITS_SHIFT 10 +#define PT64_SECOND_AVAIL_BITS_SHIFT 52 + +#define PT64_LEVEL_BITS 9 + +#define PT64_LEVEL_SHIFT(level) \ + (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) + +#define PT64_INDEX(address, level)\ + (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) + + +#define PT32_LEVEL_BITS 10 + +#define PT32_LEVEL_SHIFT(level) \ + (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) + +#define PT32_LVL_OFFSET_MASK(level) \ + (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ + * PT32_LEVEL_BITS))) - 1)) + +#define PT32_INDEX(address, level)\ + (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) + + +#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) +#define PT64_DIR_BASE_ADDR_MASK \ + (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) +#define PT64_LVL_ADDR_MASK(level) \ + (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ + * PT64_LEVEL_BITS))) - 1)) +#define PT64_LVL_OFFSET_MASK(level) \ + (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ + * PT64_LEVEL_BITS))) - 1)) + +#define PT32_BASE_ADDR_MASK PAGE_MASK +#define PT32_DIR_BASE_ADDR_MASK \ + (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) +#define PT32_LVL_ADDR_MASK(level) \ + (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ + * PT32_LEVEL_BITS))) - 1)) + +#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ + | shadow_x_mask | shadow_nx_mask) + +#define ACC_EXEC_MASK 1 +#define ACC_WRITE_MASK PT_WRITABLE_MASK +#define ACC_USER_MASK PT_USER_MASK +#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) + +#include <trace/events/kvm.h> + +#define CREATE_TRACE_POINTS +#include "mmutrace.h" + +#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) +#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) + +#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) + +/* make pte_list_desc fit well in cache line */ +#define PTE_LIST_EXT 3 + +struct pte_list_desc { + u64 *sptes[PTE_LIST_EXT]; + struct pte_list_desc *more; +}; + +struct kvm_shadow_walk_iterator { + u64 addr; + hpa_t shadow_addr; + u64 *sptep; + int level; + unsigned index; +}; + +#define for_each_shadow_entry(_vcpu, _addr, _walker) \ + for (shadow_walk_init(&(_walker), _vcpu, _addr); \ + shadow_walk_okay(&(_walker)); \ + shadow_walk_next(&(_walker))) + +#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ + for (shadow_walk_init(&(_walker), _vcpu, _addr); \ + shadow_walk_okay(&(_walker)) && \ + ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ + __shadow_walk_next(&(_walker), spte)) + +static struct kmem_cache *pte_list_desc_cache; +static struct kmem_cache *mmu_page_header_cache; +static struct percpu_counter kvm_total_used_mmu_pages; + +static u64 __read_mostly shadow_nx_mask; +static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ +static u64 __read_mostly shadow_user_mask; +static u64 __read_mostly shadow_accessed_mask; +static u64 __read_mostly shadow_dirty_mask; +static u64 __read_mostly shadow_mmio_mask; + +static void mmu_spte_set(u64 *sptep, u64 spte); +static void mmu_free_roots(struct kvm_vcpu *vcpu); + +void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask) +{ + shadow_mmio_mask = mmio_mask; +} +EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); + +/* + * the low bit of the generation number is always presumed to be zero. + * This disables mmio caching during memslot updates. The concept is + * similar to a seqcount but instead of retrying the access we just punt + * and ignore the cache. + * + * spte bits 3-11 are used as bits 1-9 of the generation number, + * the bits 52-61 are used as bits 10-19 of the generation number. + */ +#define MMIO_SPTE_GEN_LOW_SHIFT 2 +#define MMIO_SPTE_GEN_HIGH_SHIFT 52 + +#define MMIO_GEN_SHIFT 20 +#define MMIO_GEN_LOW_SHIFT 10 +#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2) +#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1) + +static u64 generation_mmio_spte_mask(unsigned int gen) +{ + u64 mask; + + WARN_ON(gen & ~MMIO_GEN_MASK); + + mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT; + mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT; + return mask; +} + +static unsigned int get_mmio_spte_generation(u64 spte) +{ + unsigned int gen; + + spte &= ~shadow_mmio_mask; + + gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK; + gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT; + return gen; +} + +static unsigned int kvm_current_mmio_generation(struct kvm *kvm) +{ + return kvm_memslots(kvm)->generation & MMIO_GEN_MASK; +} + +static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn, + unsigned access) +{ + unsigned int gen = kvm_current_mmio_generation(kvm); + u64 mask = generation_mmio_spte_mask(gen); + + access &= ACC_WRITE_MASK | ACC_USER_MASK; + mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT; + + trace_mark_mmio_spte(sptep, gfn, access, gen); + mmu_spte_set(sptep, mask); +} + +static bool is_mmio_spte(u64 spte) +{ + return (spte & shadow_mmio_mask) == shadow_mmio_mask; +} + +static gfn_t get_mmio_spte_gfn(u64 spte) +{ + u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; + return (spte & ~mask) >> PAGE_SHIFT; +} + +static unsigned get_mmio_spte_access(u64 spte) +{ + u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; + return (spte & ~mask) & ~PAGE_MASK; +} + +static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn, + pfn_t pfn, unsigned access) +{ + if (unlikely(is_noslot_pfn(pfn))) { + mark_mmio_spte(kvm, sptep, gfn, access); + return true; + } + + return false; +} + +static bool check_mmio_spte(struct kvm *kvm, u64 spte) +{ + unsigned int kvm_gen, spte_gen; + + kvm_gen = kvm_current_mmio_generation(kvm); + spte_gen = get_mmio_spte_generation(spte); + + trace_check_mmio_spte(spte, kvm_gen, spte_gen); + return likely(kvm_gen == spte_gen); +} + +void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, + u64 dirty_mask, u64 nx_mask, u64 x_mask) +{ + shadow_user_mask = user_mask; + shadow_accessed_mask = accessed_mask; + shadow_dirty_mask = dirty_mask; + shadow_nx_mask = nx_mask; + shadow_x_mask = x_mask; +} +EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); + +static int is_cpuid_PSE36(void) +{ + return 1; +} + +static int is_nx(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.efer & EFER_NX; +} + +static int is_shadow_present_pte(u64 pte) +{ + return pte & PT_PRESENT_MASK && !is_mmio_spte(pte); +} + +static int is_large_pte(u64 pte) +{ + return pte & PT_PAGE_SIZE_MASK; +} + +static int is_rmap_spte(u64 pte) +{ + return is_shadow_present_pte(pte); +} + +static int is_last_spte(u64 pte, int level) +{ + if (level == PT_PAGE_TABLE_LEVEL) + return 1; + if (is_large_pte(pte)) + return 1; + return 0; +} + +static pfn_t spte_to_pfn(u64 pte) +{ + return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; +} + +static gfn_t pse36_gfn_delta(u32 gpte) +{ + int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; + + return (gpte & PT32_DIR_PSE36_MASK) << shift; +} + +#ifdef CONFIG_X86_64 +static void __set_spte(u64 *sptep, u64 spte) +{ + *sptep = spte; +} + +static void __update_clear_spte_fast(u64 *sptep, u64 spte) +{ + *sptep = spte; +} + +static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) +{ + return xchg(sptep, spte); +} + +static u64 __get_spte_lockless(u64 *sptep) +{ + return ACCESS_ONCE(*sptep); +} + +static bool __check_direct_spte_mmio_pf(u64 spte) +{ + /* It is valid if the spte is zapped. */ + return spte == 0ull; +} +#else +union split_spte { + struct { + u32 spte_low; + u32 spte_high; + }; + u64 spte; +}; + +static void count_spte_clear(u64 *sptep, u64 spte) +{ + struct kvm_mmu_page *sp = page_header(__pa(sptep)); + + if (is_shadow_present_pte(spte)) + return; + + /* Ensure the spte is completely set before we increase the count */ + smp_wmb(); + sp->clear_spte_count++; +} + +static void __set_spte(u64 *sptep, u64 spte) +{ + union split_spte *ssptep, sspte; + + ssptep = (union split_spte *)sptep; + sspte = (union split_spte)spte; + + ssptep->spte_high = sspte.spte_high; + + /* + * If we map the spte from nonpresent to present, We should store + * the high bits firstly, then set present bit, so cpu can not + * fetch this spte while we are setting the spte. + */ + smp_wmb(); + + ssptep->spte_low = sspte.spte_low; +} + +static void __update_clear_spte_fast(u64 *sptep, u64 spte) +{ + union split_spte *ssptep, sspte; + + ssptep = (union split_spte *)sptep; + sspte = (union split_spte)spte; + + ssptep->spte_low = sspte.spte_low; + + /* + * If we map the spte from present to nonpresent, we should clear + * present bit firstly to avoid vcpu fetch the old high bits. + */ + smp_wmb(); + + ssptep->spte_high = sspte.spte_high; + count_spte_clear(sptep, spte); +} + +static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) +{ + union split_spte *ssptep, sspte, orig; + + ssptep = (union split_spte *)sptep; + sspte = (union split_spte)spte; + + /* xchg acts as a barrier before the setting of the high bits */ + orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); + orig.spte_high = ssptep->spte_high; + ssptep->spte_high = sspte.spte_high; + count_spte_clear(sptep, spte); + + return orig.spte; +} + +/* + * The idea using the light way get the spte on x86_32 guest is from + * gup_get_pte(arch/x86/mm/gup.c). + * + * An spte tlb flush may be pending, because kvm_set_pte_rmapp + * coalesces them and we are running out of the MMU lock. Therefore + * we need to protect against in-progress updates of the spte. + * + * Reading the spte while an update is in progress may get the old value + * for the high part of the spte. The race is fine for a present->non-present + * change (because the high part of the spte is ignored for non-present spte), + * but for a present->present change we must reread the spte. + * + * All such changes are done in two steps (present->non-present and + * non-present->present), hence it is enough to count the number of + * present->non-present updates: if it changed while reading the spte, + * we might have hit the race. This is done using clear_spte_count. + */ +static u64 __get_spte_lockless(u64 *sptep) +{ + struct kvm_mmu_page *sp = page_header(__pa(sptep)); + union split_spte spte, *orig = (union split_spte *)sptep; + int count; + +retry: + count = sp->clear_spte_count; + smp_rmb(); + + spte.spte_low = orig->spte_low; + smp_rmb(); + + spte.spte_high = orig->spte_high; + smp_rmb(); + + if (unlikely(spte.spte_low != orig->spte_low || + count != sp->clear_spte_count)) + goto retry; + + return spte.spte; +} + +static bool __check_direct_spte_mmio_pf(u64 spte) +{ + union split_spte sspte = (union split_spte)spte; + u32 high_mmio_mask = shadow_mmio_mask >> 32; + + /* It is valid if the spte is zapped. */ + if (spte == 0ull) + return true; + + /* It is valid if the spte is being zapped. */ + if (sspte.spte_low == 0ull && + (sspte.spte_high & high_mmio_mask) == high_mmio_mask) + return true; + + return false; +} +#endif + +static bool spte_is_locklessly_modifiable(u64 spte) +{ + return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == + (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); +} + +static bool spte_has_volatile_bits(u64 spte) +{ + /* + * Always atomicly update spte if it can be updated + * out of mmu-lock, it can ensure dirty bit is not lost, + * also, it can help us to get a stable is_writable_pte() + * to ensure tlb flush is not missed. + */ + if (spte_is_locklessly_modifiable(spte)) + return true; + + if (!shadow_accessed_mask) + return false; + + if (!is_shadow_present_pte(spte)) + return false; + + if ((spte & shadow_accessed_mask) && + (!is_writable_pte(spte) || (spte & shadow_dirty_mask))) + return false; + + return true; +} + +static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask) +{ + return (old_spte & bit_mask) && !(new_spte & bit_mask); +} + +static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask) +{ + return (old_spte & bit_mask) != (new_spte & bit_mask); +} + +/* Rules for using mmu_spte_set: + * Set the sptep from nonpresent to present. + * Note: the sptep being assigned *must* be either not present + * or in a state where the hardware will not attempt to update + * the spte. + */ +static void mmu_spte_set(u64 *sptep, u64 new_spte) +{ + WARN_ON(is_shadow_present_pte(*sptep)); + __set_spte(sptep, new_spte); +} + +/* Rules for using mmu_spte_update: + * Update the state bits, it means the mapped pfn is not changged. + * + * Whenever we overwrite a writable spte with a read-only one we + * should flush remote TLBs. Otherwise rmap_write_protect + * will find a read-only spte, even though the writable spte + * might be cached on a CPU's TLB, the return value indicates this + * case. + */ +static bool mmu_spte_update(u64 *sptep, u64 new_spte) +{ + u64 old_spte = *sptep; + bool ret = false; + + WARN_ON(!is_rmap_spte(new_spte)); + + if (!is_shadow_present_pte(old_spte)) { + mmu_spte_set(sptep, new_spte); + return ret; + } + + if (!spte_has_volatile_bits(old_spte)) + __update_clear_spte_fast(sptep, new_spte); + else + old_spte = __update_clear_spte_slow(sptep, new_spte); + + /* + * For the spte updated out of mmu-lock is safe, since + * we always atomicly update it, see the comments in + * spte_has_volatile_bits(). + */ + if (spte_is_locklessly_modifiable(old_spte) && + !is_writable_pte(new_spte)) + ret = true; + + if (!shadow_accessed_mask) + return ret; + + /* + * Flush TLB when accessed/dirty bits are changed in the page tables, + * to guarantee consistency between TLB and page tables. + */ + if (spte_is_bit_changed(old_spte, new_spte, + shadow_accessed_mask | shadow_dirty_mask)) + ret = true; + + if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask)) + kvm_set_pfn_accessed(spte_to_pfn(old_spte)); + if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask)) + kvm_set_pfn_dirty(spte_to_pfn(old_spte)); + + return ret; +} + +/* + * Rules for using mmu_spte_clear_track_bits: + * It sets the sptep from present to nonpresent, and track the + * state bits, it is used to clear the last level sptep. + */ +static int mmu_spte_clear_track_bits(u64 *sptep) +{ + pfn_t pfn; + u64 old_spte = *sptep; + + if (!spte_has_volatile_bits(old_spte)) + __update_clear_spte_fast(sptep, 0ull); + else + old_spte = __update_clear_spte_slow(sptep, 0ull); + + if (!is_rmap_spte(old_spte)) + return 0; + + pfn = spte_to_pfn(old_spte); + + /* + * KVM does not hold the refcount of the page used by + * kvm mmu, before reclaiming the page, we should + * unmap it from mmu first. + */ + WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); + + if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) + kvm_set_pfn_accessed(pfn); + if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask)) + kvm_set_pfn_dirty(pfn); + return 1; +} + +/* + * Rules for using mmu_spte_clear_no_track: + * Directly clear spte without caring the state bits of sptep, + * it is used to set the upper level spte. + */ +static void mmu_spte_clear_no_track(u64 *sptep) +{ + __update_clear_spte_fast(sptep, 0ull); +} + +static u64 mmu_spte_get_lockless(u64 *sptep) +{ + return __get_spte_lockless(sptep); +} + +static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) +{ + /* + * Prevent page table teardown by making any free-er wait during + * kvm_flush_remote_tlbs() IPI to all active vcpus. + */ + local_irq_disable(); + vcpu->mode = READING_SHADOW_PAGE_TABLES; + /* + * Make sure a following spte read is not reordered ahead of the write + * to vcpu->mode. + */ + smp_mb(); +} + +static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) +{ + /* + * Make sure the write to vcpu->mode is not reordered in front of + * reads to sptes. If it does, kvm_commit_zap_page() can see us + * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. + */ + smp_mb(); + vcpu->mode = OUTSIDE_GUEST_MODE; + local_irq_enable(); +} + +static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, + struct kmem_cache *base_cache, int min) +{ + void *obj; + + if (cache->nobjs >= min) + return 0; + while (cache->nobjs < ARRAY_SIZE(cache->objects)) { + obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); + if (!obj) + return -ENOMEM; + cache->objects[cache->nobjs++] = obj; + } + return 0; +} + +static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) +{ + return cache->nobjs; +} + +static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, + struct kmem_cache *cache) +{ + while (mc->nobjs) + kmem_cache_free(cache, mc->objects[--mc->nobjs]); +} + +static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, + int min) +{ + void *page; + + if (cache->nobjs >= min) + return 0; + while (cache->nobjs < ARRAY_SIZE(cache->objects)) { + page = (void *)__get_free_page(GFP_KERNEL); + if (!page) + return -ENOMEM; + cache->objects[cache->nobjs++] = page; + } + return 0; +} + +static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) +{ + while (mc->nobjs) + free_page((unsigned long)mc->objects[--mc->nobjs]); +} + +static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) +{ + int r; + + r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, + pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); + if (r) + goto out; + r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); + if (r) + goto out; + r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, + mmu_page_header_cache, 4); +out: + return r; +} + +static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) +{ + mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, + pte_list_desc_cache); + mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); + mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, + mmu_page_header_cache); +} + +static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) +{ + void *p; + + BUG_ON(!mc->nobjs); + p = mc->objects[--mc->nobjs]; + return p; +} + +static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) +{ + return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); +} + +static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) +{ + kmem_cache_free(pte_list_desc_cache, pte_list_desc); +} + +static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) +{ + if (!sp->role.direct) + return sp->gfns[index]; + + return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); +} + +static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) +{ + if (sp->role.direct) + BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index)); + else + sp->gfns[index] = gfn; +} + +/* + * Return the pointer to the large page information for a given gfn, + * handling slots that are not large page aligned. + */ +static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, + struct kvm_memory_slot *slot, + int level) +{ + unsigned long idx; + + idx = gfn_to_index(gfn, slot->base_gfn, level); + return &slot->arch.lpage_info[level - 2][idx]; +} + +static void account_shadowed(struct kvm *kvm, gfn_t gfn) +{ + struct kvm_memory_slot *slot; + struct kvm_lpage_info *linfo; + int i; + + slot = gfn_to_memslot(kvm, gfn); + for (i = PT_DIRECTORY_LEVEL; + i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { + linfo = lpage_info_slot(gfn, slot, i); + linfo->write_count += 1; + } + kvm->arch.indirect_shadow_pages++; +} + +static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn) +{ + struct kvm_memory_slot *slot; + struct kvm_lpage_info *linfo; + int i; + + slot = gfn_to_memslot(kvm, gfn); + for (i = PT_DIRECTORY_LEVEL; + i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { + linfo = lpage_info_slot(gfn, slot, i); + linfo->write_count -= 1; + WARN_ON(linfo->write_count < 0); + } + kvm->arch.indirect_shadow_pages--; +} + +static int has_wrprotected_page(struct kvm *kvm, + gfn_t gfn, + int level) +{ + struct kvm_memory_slot *slot; + struct kvm_lpage_info *linfo; + + slot = gfn_to_memslot(kvm, gfn); + if (slot) { + linfo = lpage_info_slot(gfn, slot, level); + return linfo->write_count; + } + + return 1; +} + +static int host_mapping_level(struct kvm *kvm, gfn_t gfn) +{ + unsigned long page_size; + int i, ret = 0; + + page_size = kvm_host_page_size(kvm, gfn); + + for (i = PT_PAGE_TABLE_LEVEL; + i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) { + if (page_size >= KVM_HPAGE_SIZE(i)) + ret = i; + else + break; + } + + return ret; +} + +static struct kvm_memory_slot * +gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, + bool no_dirty_log) +{ + struct kvm_memory_slot *slot; + + slot = gfn_to_memslot(vcpu->kvm, gfn); + if (!slot || slot->flags & KVM_MEMSLOT_INVALID || + (no_dirty_log && slot->dirty_bitmap)) + slot = NULL; + + return slot; +} + +static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn) +{ + return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true); +} + +static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn) +{ + int host_level, level, max_level; + + host_level = host_mapping_level(vcpu->kvm, large_gfn); + + if (host_level == PT_PAGE_TABLE_LEVEL) + return host_level; + + max_level = min(kvm_x86_ops->get_lpage_level(), host_level); + + for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) + if (has_wrprotected_page(vcpu->kvm, large_gfn, level)) + break; + + return level - 1; +} + +/* + * Pte mapping structures: + * + * If pte_list bit zero is zero, then pte_list point to the spte. + * + * If pte_list bit zero is one, (then pte_list & ~1) points to a struct + * pte_list_desc containing more mappings. + * + * Returns the number of pte entries before the spte was added or zero if + * the spte was not added. + * + */ +static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, + unsigned long *pte_list) +{ + struct pte_list_desc *desc; + int i, count = 0; + + if (!*pte_list) { + rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); + *pte_list = (unsigned long)spte; + } else if (!(*pte_list & 1)) { + rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); + desc = mmu_alloc_pte_list_desc(vcpu); + desc->sptes[0] = (u64 *)*pte_list; + desc->sptes[1] = spte; + *pte_list = (unsigned long)desc | 1; + ++count; + } else { + rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); + desc = (struct pte_list_desc *)(*pte_list & ~1ul); + while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { + desc = desc->more; + count += PTE_LIST_EXT; + } + if (desc->sptes[PTE_LIST_EXT-1]) { + desc->more = mmu_alloc_pte_list_desc(vcpu); + desc = desc->more; + } + for (i = 0; desc->sptes[i]; ++i) + ++count; + desc->sptes[i] = spte; + } + return count; +} + +static void +pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc, + int i, struct pte_list_desc *prev_desc) +{ + int j; + + for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) + ; + desc->sptes[i] = desc->sptes[j]; + desc->sptes[j] = NULL; + if (j != 0) + return; + if (!prev_desc && !desc->more) + *pte_list = (unsigned long)desc->sptes[0]; + else + if (prev_desc) + prev_desc->more = desc->more; + else + *pte_list = (unsigned long)desc->more | 1; + mmu_free_pte_list_desc(desc); +} + +static void pte_list_remove(u64 *spte, unsigned long *pte_list) +{ + struct pte_list_desc *desc; + struct pte_list_desc *prev_desc; + int i; + + if (!*pte_list) { + printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte); + BUG(); + } else if (!(*pte_list & 1)) { + rmap_printk("pte_list_remove: %p 1->0\n", spte); + if ((u64 *)*pte_list != spte) { + printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte); + BUG(); + } + *pte_list = 0; + } else { + rmap_printk("pte_list_remove: %p many->many\n", spte); + desc = (struct pte_list_desc *)(*pte_list & ~1ul); + prev_desc = NULL; + while (desc) { + for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) + if (desc->sptes[i] == spte) { + pte_list_desc_remove_entry(pte_list, + desc, i, + prev_desc); + return; + } + prev_desc = desc; + desc = desc->more; + } + pr_err("pte_list_remove: %p many->many\n", spte); + BUG(); + } +} + +typedef void (*pte_list_walk_fn) (u64 *spte); +static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn) +{ + struct pte_list_desc *desc; + int i; + + if (!*pte_list) + return; + + if (!(*pte_list & 1)) + return fn((u64 *)*pte_list); + + desc = (struct pte_list_desc *)(*pte_list & ~1ul); + while (desc) { + for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) + fn(desc->sptes[i]); + desc = desc->more; + } +} + +static unsigned long *__gfn_to_rmap(gfn_t gfn, int level, + struct kvm_memory_slot *slot) +{ + unsigned long idx; + + idx = gfn_to_index(gfn, slot->base_gfn, level); + return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx]; +} + +/* + * Take gfn and return the reverse mapping to it. + */ +static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level) +{ + struct kvm_memory_slot *slot; + + slot = gfn_to_memslot(kvm, gfn); + return __gfn_to_rmap(gfn, level, slot); +} + +static bool rmap_can_add(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu_memory_cache *cache; + + cache = &vcpu->arch.mmu_pte_list_desc_cache; + return mmu_memory_cache_free_objects(cache); +} + +static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) +{ + struct kvm_mmu_page *sp; + unsigned long *rmapp; + + sp = page_header(__pa(spte)); + kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); + rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); + return pte_list_add(vcpu, spte, rmapp); +} + +static void rmap_remove(struct kvm *kvm, u64 *spte) +{ + struct kvm_mmu_page *sp; + gfn_t gfn; + unsigned long *rmapp; + + sp = page_header(__pa(spte)); + gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); + rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); + pte_list_remove(spte, rmapp); +} + +/* + * Used by the following functions to iterate through the sptes linked by a + * rmap. All fields are private and not assumed to be used outside. + */ +struct rmap_iterator { + /* private fields */ + struct pte_list_desc *desc; /* holds the sptep if not NULL */ + int pos; /* index of the sptep */ +}; + +/* + * Iteration must be started by this function. This should also be used after + * removing/dropping sptes from the rmap link because in such cases the + * information in the itererator may not be valid. + * + * Returns sptep if found, NULL otherwise. + */ +static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter) +{ + if (!rmap) + return NULL; + + if (!(rmap & 1)) { + iter->desc = NULL; + return (u64 *)rmap; + } + + iter->desc = (struct pte_list_desc *)(rmap & ~1ul); + iter->pos = 0; + return iter->desc->sptes[iter->pos]; +} + +/* + * Must be used with a valid iterator: e.g. after rmap_get_first(). + * + * Returns sptep if found, NULL otherwise. + */ +static u64 *rmap_get_next(struct rmap_iterator *iter) +{ + if (iter->desc) { + if (iter->pos < PTE_LIST_EXT - 1) { + u64 *sptep; + + ++iter->pos; + sptep = iter->desc->sptes[iter->pos]; + if (sptep) + return sptep; + } + + iter->desc = iter->desc->more; + + if (iter->desc) { + iter->pos = 0; + /* desc->sptes[0] cannot be NULL */ + return iter->desc->sptes[iter->pos]; + } + } + + return NULL; +} + +static void drop_spte(struct kvm *kvm, u64 *sptep) +{ + if (mmu_spte_clear_track_bits(sptep)) + rmap_remove(kvm, sptep); +} + + +static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) +{ + if (is_large_pte(*sptep)) { + WARN_ON(page_header(__pa(sptep))->role.level == + PT_PAGE_TABLE_LEVEL); + drop_spte(kvm, sptep); + --kvm->stat.lpages; + return true; + } + + return false; +} + +static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) +{ + if (__drop_large_spte(vcpu->kvm, sptep)) + kvm_flush_remote_tlbs(vcpu->kvm); +} + +/* + * Write-protect on the specified @sptep, @pt_protect indicates whether + * spte write-protection is caused by protecting shadow page table. + * + * Note: write protection is difference between dirty logging and spte + * protection: + * - for dirty logging, the spte can be set to writable at anytime if + * its dirty bitmap is properly set. + * - for spte protection, the spte can be writable only after unsync-ing + * shadow page. + * + * Return true if tlb need be flushed. + */ +static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect) +{ + u64 spte = *sptep; + + if (!is_writable_pte(spte) && + !(pt_protect && spte_is_locklessly_modifiable(spte))) + return false; + + rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); + + if (pt_protect) + spte &= ~SPTE_MMU_WRITEABLE; + spte = spte & ~PT_WRITABLE_MASK; + + return mmu_spte_update(sptep, spte); +} + +static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, + bool pt_protect) +{ + u64 *sptep; + struct rmap_iterator iter; + bool flush = false; + + for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { + BUG_ON(!(*sptep & PT_PRESENT_MASK)); + + flush |= spte_write_protect(kvm, sptep, pt_protect); + sptep = rmap_get_next(&iter); + } + + return flush; +} + +static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep) +{ + u64 spte = *sptep; + + rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); + + spte &= ~shadow_dirty_mask; + + return mmu_spte_update(sptep, spte); +} + +static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp) +{ + u64 *sptep; + struct rmap_iterator iter; + bool flush = false; + + for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { + BUG_ON(!(*sptep & PT_PRESENT_MASK)); + + flush |= spte_clear_dirty(kvm, sptep); + sptep = rmap_get_next(&iter); + } + + return flush; +} + +static bool spte_set_dirty(struct kvm *kvm, u64 *sptep) +{ + u64 spte = *sptep; + + rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); + + spte |= shadow_dirty_mask; + + return mmu_spte_update(sptep, spte); +} + +static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp) +{ + u64 *sptep; + struct rmap_iterator iter; + bool flush = false; + + for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { + BUG_ON(!(*sptep & PT_PRESENT_MASK)); + + flush |= spte_set_dirty(kvm, sptep); + sptep = rmap_get_next(&iter); + } + + return flush; +} + +/** + * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages + * @kvm: kvm instance + * @slot: slot to protect + * @gfn_offset: start of the BITS_PER_LONG pages we care about + * @mask: indicates which pages we should protect + * + * Used when we do not need to care about huge page mappings: e.g. during dirty + * logging we do not have any such mappings. + */ +static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + unsigned long *rmapp; + + while (mask) { + rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), + PT_PAGE_TABLE_LEVEL, slot); + __rmap_write_protect(kvm, rmapp, false); + + /* clear the first set bit */ + mask &= mask - 1; + } +} + +/** + * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages + * @kvm: kvm instance + * @slot: slot to clear D-bit + * @gfn_offset: start of the BITS_PER_LONG pages we care about + * @mask: indicates which pages we should clear D-bit + * + * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. + */ +void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + unsigned long *rmapp; + + while (mask) { + rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), + PT_PAGE_TABLE_LEVEL, slot); + __rmap_clear_dirty(kvm, rmapp); + + /* clear the first set bit */ + mask &= mask - 1; + } +} +EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); + +/** + * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected + * PT level pages. + * + * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to + * enable dirty logging for them. + * + * Used when we do not need to care about huge page mappings: e.g. during dirty + * logging we do not have any such mappings. + */ +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + if (kvm_x86_ops->enable_log_dirty_pt_masked) + kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset, + mask); + else + kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); +} + +static bool rmap_write_protect(struct kvm *kvm, u64 gfn) +{ + struct kvm_memory_slot *slot; + unsigned long *rmapp; + int i; + bool write_protected = false; + + slot = gfn_to_memslot(kvm, gfn); + + for (i = PT_PAGE_TABLE_LEVEL; + i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { + rmapp = __gfn_to_rmap(gfn, i, slot); + write_protected |= __rmap_write_protect(kvm, rmapp, true); + } + + return write_protected; +} + +static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + unsigned long data) +{ + u64 *sptep; + struct rmap_iterator iter; + int need_tlb_flush = 0; + + while ((sptep = rmap_get_first(*rmapp, &iter))) { + BUG_ON(!(*sptep & PT_PRESENT_MASK)); + rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n", + sptep, *sptep, gfn, level); + + drop_spte(kvm, sptep); + need_tlb_flush = 1; + } + + return need_tlb_flush; +} + +static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + unsigned long data) +{ + u64 *sptep; + struct rmap_iterator iter; + int need_flush = 0; + u64 new_spte; + pte_t *ptep = (pte_t *)data; + pfn_t new_pfn; + + WARN_ON(pte_huge(*ptep)); + new_pfn = pte_pfn(*ptep); + + for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { + BUG_ON(!is_shadow_present_pte(*sptep)); + rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", + sptep, *sptep, gfn, level); + + need_flush = 1; + + if (pte_write(*ptep)) { + drop_spte(kvm, sptep); + sptep = rmap_get_first(*rmapp, &iter); + } else { + new_spte = *sptep & ~PT64_BASE_ADDR_MASK; + new_spte |= (u64)new_pfn << PAGE_SHIFT; + + new_spte &= ~PT_WRITABLE_MASK; + new_spte &= ~SPTE_HOST_WRITEABLE; + new_spte &= ~shadow_accessed_mask; + + mmu_spte_clear_track_bits(sptep); + mmu_spte_set(sptep, new_spte); + sptep = rmap_get_next(&iter); + } + } + + if (need_flush) + kvm_flush_remote_tlbs(kvm); + + return 0; +} + +static int kvm_handle_hva_range(struct kvm *kvm, + unsigned long start, + unsigned long end, + unsigned long data, + int (*handler)(struct kvm *kvm, + unsigned long *rmapp, + struct kvm_memory_slot *slot, + gfn_t gfn, + int level, + unsigned long data)) +{ + int j; + int ret = 0; + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + + slots = kvm_memslots(kvm); + + kvm_for_each_memslot(memslot, slots) { + unsigned long hva_start, hva_end; + gfn_t gfn_start, gfn_end; + + hva_start = max(start, memslot->userspace_addr); + hva_end = min(end, memslot->userspace_addr + + (memslot->npages << PAGE_SHIFT)); + if (hva_start >= hva_end) + continue; + /* + * {gfn(page) | page intersects with [hva_start, hva_end)} = + * {gfn_start, gfn_start+1, ..., gfn_end-1}. + */ + gfn_start = hva_to_gfn_memslot(hva_start, memslot); + gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); + + for (j = PT_PAGE_TABLE_LEVEL; + j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) { + unsigned long idx, idx_end; + unsigned long *rmapp; + gfn_t gfn = gfn_start; + + /* + * {idx(page_j) | page_j intersects with + * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}. + */ + idx = gfn_to_index(gfn_start, memslot->base_gfn, j); + idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j); + + rmapp = __gfn_to_rmap(gfn_start, j, memslot); + + for (; idx <= idx_end; + ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j))) + ret |= handler(kvm, rmapp++, memslot, + gfn, j, data); + } + } + + return ret; +} + +static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, + unsigned long data, + int (*handler)(struct kvm *kvm, unsigned long *rmapp, + struct kvm_memory_slot *slot, + gfn_t gfn, int level, + unsigned long data)) +{ + return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); +} + +int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) +{ + return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp); +} + +int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) +{ + return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); +} + +void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) +{ + kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); +} + +static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + unsigned long data) +{ + u64 *sptep; + struct rmap_iterator uninitialized_var(iter); + int young = 0; + + BUG_ON(!shadow_accessed_mask); + + for (sptep = rmap_get_first(*rmapp, &iter); sptep; + sptep = rmap_get_next(&iter)) { + BUG_ON(!is_shadow_present_pte(*sptep)); + + if (*sptep & shadow_accessed_mask) { + young = 1; + clear_bit((ffs(shadow_accessed_mask) - 1), + (unsigned long *)sptep); + } + } + trace_kvm_age_page(gfn, level, slot, young); + return young; +} + +static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp, + struct kvm_memory_slot *slot, gfn_t gfn, + int level, unsigned long data) +{ + u64 *sptep; + struct rmap_iterator iter; + int young = 0; + + /* + * If there's no access bit in the secondary pte set by the + * hardware it's up to gup-fast/gup to set the access bit in + * the primary pte or in the page structure. + */ + if (!shadow_accessed_mask) + goto out; + + for (sptep = rmap_get_first(*rmapp, &iter); sptep; + sptep = rmap_get_next(&iter)) { + BUG_ON(!is_shadow_present_pte(*sptep)); + + if (*sptep & shadow_accessed_mask) { + young = 1; + break; + } + } +out: + return young; +} + +#define RMAP_RECYCLE_THRESHOLD 1000 + +static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) +{ + unsigned long *rmapp; + struct kvm_mmu_page *sp; + + sp = page_header(__pa(spte)); + + rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); + + kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0); + kvm_flush_remote_tlbs(vcpu->kvm); +} + +int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) +{ + /* + * In case of absence of EPT Access and Dirty Bits supports, + * emulate the accessed bit for EPT, by checking if this page has + * an EPT mapping, and clearing it if it does. On the next access, + * a new EPT mapping will be established. + * This has some overhead, but not as much as the cost of swapping + * out actively used pages or breaking up actively used hugepages. + */ + if (!shadow_accessed_mask) { + /* + * We are holding the kvm->mmu_lock, and we are blowing up + * shadow PTEs. MMU notifier consumers need to be kept at bay. + * This is correct as long as we don't decouple the mmu_lock + * protected regions (like invalidate_range_start|end does). + */ + kvm->mmu_notifier_seq++; + return kvm_handle_hva_range(kvm, start, end, 0, + kvm_unmap_rmapp); + } + + return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); +} + +int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) +{ + return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); +} + +#ifdef MMU_DEBUG +static int is_empty_shadow_page(u64 *spt) +{ + u64 *pos; + u64 *end; + + for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) + if (is_shadow_present_pte(*pos)) { + printk(KERN_ERR "%s: %p %llx\n", __func__, + pos, *pos); + return 0; + } + return 1; +} +#endif + +/* + * This value is the sum of all of the kvm instances's + * kvm->arch.n_used_mmu_pages values. We need a global, + * aggregate version in order to make the slab shrinker + * faster + */ +static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) +{ + kvm->arch.n_used_mmu_pages += nr; + percpu_counter_add(&kvm_total_used_mmu_pages, nr); +} + +static void kvm_mmu_free_page(struct kvm_mmu_page *sp) +{ + MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); + hlist_del(&sp->hash_link); + list_del(&sp->link); + free_page((unsigned long)sp->spt); + if (!sp->role.direct) + free_page((unsigned long)sp->gfns); + kmem_cache_free(mmu_page_header_cache, sp); +} + +static unsigned kvm_page_table_hashfn(gfn_t gfn) +{ + return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1); +} + +static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, u64 *parent_pte) +{ + if (!parent_pte) + return; + + pte_list_add(vcpu, parent_pte, &sp->parent_ptes); +} + +static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, + u64 *parent_pte) +{ + pte_list_remove(parent_pte, &sp->parent_ptes); +} + +static void drop_parent_pte(struct kvm_mmu_page *sp, + u64 *parent_pte) +{ + mmu_page_remove_parent_pte(sp, parent_pte); + mmu_spte_clear_no_track(parent_pte); +} + +static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, + u64 *parent_pte, int direct) +{ + struct kvm_mmu_page *sp; + + sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); + sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); + if (!direct) + sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); + set_page_private(virt_to_page(sp->spt), (unsigned long)sp); + + /* + * The active_mmu_pages list is the FIFO list, do not move the + * page until it is zapped. kvm_zap_obsolete_pages depends on + * this feature. See the comments in kvm_zap_obsolete_pages(). + */ + list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); + sp->parent_ptes = 0; + mmu_page_add_parent_pte(vcpu, sp, parent_pte); + kvm_mod_used_mmu_pages(vcpu->kvm, +1); + return sp; +} + +static void mark_unsync(u64 *spte); +static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) +{ + pte_list_walk(&sp->parent_ptes, mark_unsync); +} + +static void mark_unsync(u64 *spte) +{ + struct kvm_mmu_page *sp; + unsigned int index; + + sp = page_header(__pa(spte)); + index = spte - sp->spt; + if (__test_and_set_bit(index, sp->unsync_child_bitmap)) + return; + if (sp->unsync_children++) + return; + kvm_mmu_mark_parents_unsync(sp); +} + +static int nonpaging_sync_page(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp) +{ + return 1; +} + +static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva) +{ +} + +static void nonpaging_update_pte(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, u64 *spte, + const void *pte) +{ + WARN_ON(1); +} + +#define KVM_PAGE_ARRAY_NR 16 + +struct kvm_mmu_pages { + struct mmu_page_and_offset { + struct kvm_mmu_page *sp; + unsigned int idx; + } page[KVM_PAGE_ARRAY_NR]; + unsigned int nr; +}; + +static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, + int idx) +{ + int i; + + if (sp->unsync) + for (i=0; i < pvec->nr; i++) + if (pvec->page[i].sp == sp) + return 0; + + pvec->page[pvec->nr].sp = sp; + pvec->page[pvec->nr].idx = idx; + pvec->nr++; + return (pvec->nr == KVM_PAGE_ARRAY_NR); +} + +static int __mmu_unsync_walk(struct kvm_mmu_page *sp, + struct kvm_mmu_pages *pvec) +{ + int i, ret, nr_unsync_leaf = 0; + + for_each_set_bit(i, sp->unsync_child_bitmap, 512) { + struct kvm_mmu_page *child; + u64 ent = sp->spt[i]; + + if (!is_shadow_present_pte(ent) || is_large_pte(ent)) + goto clear_child_bitmap; + + child = page_header(ent & PT64_BASE_ADDR_MASK); + + if (child->unsync_children) { + if (mmu_pages_add(pvec, child, i)) + return -ENOSPC; + + ret = __mmu_unsync_walk(child, pvec); + if (!ret) + goto clear_child_bitmap; + else if (ret > 0) + nr_unsync_leaf += ret; + else + return ret; + } else if (child->unsync) { + nr_unsync_leaf++; + if (mmu_pages_add(pvec, child, i)) + return -ENOSPC; + } else + goto clear_child_bitmap; + + continue; + +clear_child_bitmap: + __clear_bit(i, sp->unsync_child_bitmap); + sp->unsync_children--; + WARN_ON((int)sp->unsync_children < 0); + } + + + return nr_unsync_leaf; +} + +static int mmu_unsync_walk(struct kvm_mmu_page *sp, + struct kvm_mmu_pages *pvec) +{ + if (!sp->unsync_children) + return 0; + + mmu_pages_add(pvec, sp, 0); + return __mmu_unsync_walk(sp, pvec); +} + +static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + WARN_ON(!sp->unsync); + trace_kvm_mmu_sync_page(sp); + sp->unsync = 0; + --kvm->stat.mmu_unsync; +} + +static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, + struct list_head *invalid_list); +static void kvm_mmu_commit_zap_page(struct kvm *kvm, + struct list_head *invalid_list); + +/* + * NOTE: we should pay more attention on the zapped-obsolete page + * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk + * since it has been deleted from active_mmu_pages but still can be found + * at hast list. + * + * for_each_gfn_indirect_valid_sp has skipped that kind of page and + * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped + * all the obsolete pages. + */ +#define for_each_gfn_sp(_kvm, _sp, _gfn) \ + hlist_for_each_entry(_sp, \ + &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ + if ((_sp)->gfn != (_gfn)) {} else + +#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ + for_each_gfn_sp(_kvm, _sp, _gfn) \ + if ((_sp)->role.direct || (_sp)->role.invalid) {} else + +/* @sp->gfn should be write-protected at the call site */ +static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + struct list_head *invalid_list, bool clear_unsync) +{ + if (sp->role.cr4_pae != !!is_pae(vcpu)) { + kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); + return 1; + } + + if (clear_unsync) + kvm_unlink_unsync_page(vcpu->kvm, sp); + + if (vcpu->arch.mmu.sync_page(vcpu, sp)) { + kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); + return 1; + } + + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + return 0; +} + +static int kvm_sync_page_transient(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp) +{ + LIST_HEAD(invalid_list); + int ret; + + ret = __kvm_sync_page(vcpu, sp, &invalid_list, false); + if (ret) + kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); + + return ret; +} + +#ifdef CONFIG_KVM_MMU_AUDIT +#include "mmu_audit.c" +#else +static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } +static void mmu_audit_disable(void) { } +#endif + +static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + struct list_head *invalid_list) +{ + return __kvm_sync_page(vcpu, sp, invalid_list, true); +} + +/* @gfn should be write-protected at the call site */ +static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + struct kvm_mmu_page *s; + LIST_HEAD(invalid_list); + bool flush = false; + + for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { + if (!s->unsync) + continue; + + WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); + kvm_unlink_unsync_page(vcpu->kvm, s); + if ((s->role.cr4_pae != !!is_pae(vcpu)) || + (vcpu->arch.mmu.sync_page(vcpu, s))) { + kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list); + continue; + } + flush = true; + } + + kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); + if (flush) + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); +} + +struct mmu_page_path { + struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1]; + unsigned int idx[PT64_ROOT_LEVEL-1]; +}; + +#define for_each_sp(pvec, sp, parents, i) \ + for (i = mmu_pages_next(&pvec, &parents, -1), \ + sp = pvec.page[i].sp; \ + i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ + i = mmu_pages_next(&pvec, &parents, i)) + +static int mmu_pages_next(struct kvm_mmu_pages *pvec, + struct mmu_page_path *parents, + int i) +{ + int n; + + for (n = i+1; n < pvec->nr; n++) { + struct kvm_mmu_page *sp = pvec->page[n].sp; + + if (sp->role.level == PT_PAGE_TABLE_LEVEL) { + parents->idx[0] = pvec->page[n].idx; + return n; + } + + parents->parent[sp->role.level-2] = sp; + parents->idx[sp->role.level-1] = pvec->page[n].idx; + } + + return n; +} + +static void mmu_pages_clear_parents(struct mmu_page_path *parents) +{ + struct kvm_mmu_page *sp; + unsigned int level = 0; + + do { + unsigned int idx = parents->idx[level]; + + sp = parents->parent[level]; + if (!sp) + return; + + --sp->unsync_children; + WARN_ON((int)sp->unsync_children < 0); + __clear_bit(idx, sp->unsync_child_bitmap); + level++; + } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children); +} + +static void kvm_mmu_pages_init(struct kvm_mmu_page *parent, + struct mmu_page_path *parents, + struct kvm_mmu_pages *pvec) +{ + parents->parent[parent->role.level-1] = NULL; + pvec->nr = 0; +} + +static void mmu_sync_children(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *parent) +{ + int i; + struct kvm_mmu_page *sp; + struct mmu_page_path parents; + struct kvm_mmu_pages pages; + LIST_HEAD(invalid_list); + + kvm_mmu_pages_init(parent, &parents, &pages); + while (mmu_unsync_walk(parent, &pages)) { + bool protected = false; + + for_each_sp(pages, sp, parents, i) + protected |= rmap_write_protect(vcpu->kvm, sp->gfn); + + if (protected) + kvm_flush_remote_tlbs(vcpu->kvm); + + for_each_sp(pages, sp, parents, i) { + kvm_sync_page(vcpu, sp, &invalid_list); + mmu_pages_clear_parents(&parents); + } + kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); + cond_resched_lock(&vcpu->kvm->mmu_lock); + kvm_mmu_pages_init(parent, &parents, &pages); + } +} + +static void init_shadow_page_table(struct kvm_mmu_page *sp) +{ + int i; + + for (i = 0; i < PT64_ENT_PER_PAGE; ++i) + sp->spt[i] = 0ull; +} + +static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) +{ + sp->write_flooding_count = 0; +} + +static void clear_sp_write_flooding_count(u64 *spte) +{ + struct kvm_mmu_page *sp = page_header(__pa(spte)); + + __clear_sp_write_flooding_count(sp); +} + +static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); +} + +static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, + gfn_t gfn, + gva_t gaddr, + unsigned level, + int direct, + unsigned access, + u64 *parent_pte) +{ + union kvm_mmu_page_role role; + unsigned quadrant; + struct kvm_mmu_page *sp; + bool need_sync = false; + + role = vcpu->arch.mmu.base_role; + role.level = level; + role.direct = direct; + if (role.direct) + role.cr4_pae = 0; + role.access = access; + if (!vcpu->arch.mmu.direct_map + && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { + quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); + quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; + role.quadrant = quadrant; + } + for_each_gfn_sp(vcpu->kvm, sp, gfn) { + if (is_obsolete_sp(vcpu->kvm, sp)) + continue; + + if (!need_sync && sp->unsync) + need_sync = true; + + if (sp->role.word != role.word) + continue; + + if (sp->unsync && kvm_sync_page_transient(vcpu, sp)) + break; + + mmu_page_add_parent_pte(vcpu, sp, parent_pte); + if (sp->unsync_children) { + kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); + kvm_mmu_mark_parents_unsync(sp); + } else if (sp->unsync) + kvm_mmu_mark_parents_unsync(sp); + + __clear_sp_write_flooding_count(sp); + trace_kvm_mmu_get_page(sp, false); + return sp; + } + ++vcpu->kvm->stat.mmu_cache_miss; + sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct); + if (!sp) + return sp; + sp->gfn = gfn; + sp->role = role; + hlist_add_head(&sp->hash_link, + &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); + if (!direct) { + if (rmap_write_protect(vcpu->kvm, gfn)) + kvm_flush_remote_tlbs(vcpu->kvm); + if (level > PT_PAGE_TABLE_LEVEL && need_sync) + kvm_sync_pages(vcpu, gfn); + + account_shadowed(vcpu->kvm, gfn); + } + sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; + init_shadow_page_table(sp); + trace_kvm_mmu_get_page(sp, true); + return sp; +} + +static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, + struct kvm_vcpu *vcpu, u64 addr) +{ + iterator->addr = addr; + iterator->shadow_addr = vcpu->arch.mmu.root_hpa; + iterator->level = vcpu->arch.mmu.shadow_root_level; + + if (iterator->level == PT64_ROOT_LEVEL && + vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL && + !vcpu->arch.mmu.direct_map) + --iterator->level; + + if (iterator->level == PT32E_ROOT_LEVEL) { + iterator->shadow_addr + = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; + iterator->shadow_addr &= PT64_BASE_ADDR_MASK; + --iterator->level; + if (!iterator->shadow_addr) + iterator->level = 0; + } +} + +static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) +{ + if (iterator->level < PT_PAGE_TABLE_LEVEL) + return false; + + iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); + iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; + return true; +} + +static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, + u64 spte) +{ + if (is_last_spte(spte, iterator->level)) { + iterator->level = 0; + return; + } + + iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; + --iterator->level; +} + +static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) +{ + return __shadow_walk_next(iterator, *iterator->sptep); +} + +static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed) +{ + u64 spte; + + BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK || + VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); + + spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK | + shadow_user_mask | shadow_x_mask; + + if (accessed) + spte |= shadow_accessed_mask; + + mmu_spte_set(sptep, spte); +} + +static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, + unsigned direct_access) +{ + if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { + struct kvm_mmu_page *child; + + /* + * For the direct sp, if the guest pte's dirty bit + * changed form clean to dirty, it will corrupt the + * sp's access: allow writable in the read-only sp, + * so we should update the spte at this point to get + * a new sp with the correct access. + */ + child = page_header(*sptep & PT64_BASE_ADDR_MASK); + if (child->role.access == direct_access) + return; + + drop_parent_pte(child, sptep); + kvm_flush_remote_tlbs(vcpu->kvm); + } +} + +static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, + u64 *spte) +{ + u64 pte; + struct kvm_mmu_page *child; + + pte = *spte; + if (is_shadow_present_pte(pte)) { + if (is_last_spte(pte, sp->role.level)) { + drop_spte(kvm, spte); + if (is_large_pte(pte)) + --kvm->stat.lpages; + } else { + child = page_header(pte & PT64_BASE_ADDR_MASK); + drop_parent_pte(child, spte); + } + return true; + } + + if (is_mmio_spte(pte)) + mmu_spte_clear_no_track(spte); + + return false; +} + +static void kvm_mmu_page_unlink_children(struct kvm *kvm, + struct kvm_mmu_page *sp) +{ + unsigned i; + + for (i = 0; i < PT64_ENT_PER_PAGE; ++i) + mmu_page_zap_pte(kvm, sp, sp->spt + i); +} + +static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte) +{ + mmu_page_remove_parent_pte(sp, parent_pte); +} + +static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + u64 *sptep; + struct rmap_iterator iter; + + while ((sptep = rmap_get_first(sp->parent_ptes, &iter))) + drop_parent_pte(sp, sptep); +} + +static int mmu_zap_unsync_children(struct kvm *kvm, + struct kvm_mmu_page *parent, + struct list_head *invalid_list) +{ + int i, zapped = 0; + struct mmu_page_path parents; + struct kvm_mmu_pages pages; + + if (parent->role.level == PT_PAGE_TABLE_LEVEL) + return 0; + + kvm_mmu_pages_init(parent, &parents, &pages); + while (mmu_unsync_walk(parent, &pages)) { + struct kvm_mmu_page *sp; + + for_each_sp(pages, sp, parents, i) { + kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); + mmu_pages_clear_parents(&parents); + zapped++; + } + kvm_mmu_pages_init(parent, &parents, &pages); + } + + return zapped; +} + +static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, + struct list_head *invalid_list) +{ + int ret; + + trace_kvm_mmu_prepare_zap_page(sp); + ++kvm->stat.mmu_shadow_zapped; + ret = mmu_zap_unsync_children(kvm, sp, invalid_list); + kvm_mmu_page_unlink_children(kvm, sp); + kvm_mmu_unlink_parents(kvm, sp); + + if (!sp->role.invalid && !sp->role.direct) + unaccount_shadowed(kvm, sp->gfn); + + if (sp->unsync) + kvm_unlink_unsync_page(kvm, sp); + if (!sp->root_count) { + /* Count self */ + ret++; + list_move(&sp->link, invalid_list); + kvm_mod_used_mmu_pages(kvm, -1); + } else { + list_move(&sp->link, &kvm->arch.active_mmu_pages); + + /* + * The obsolete pages can not be used on any vcpus. + * See the comments in kvm_mmu_invalidate_zap_all_pages(). + */ + if (!sp->role.invalid && !is_obsolete_sp(kvm, sp)) + kvm_reload_remote_mmus(kvm); + } + + sp->role.invalid = 1; + return ret; +} + +static void kvm_mmu_commit_zap_page(struct kvm *kvm, + struct list_head *invalid_list) +{ + struct kvm_mmu_page *sp, *nsp; + + if (list_empty(invalid_list)) + return; + + /* + * wmb: make sure everyone sees our modifications to the page tables + * rmb: make sure we see changes to vcpu->mode + */ + smp_mb(); + + /* + * Wait for all vcpus to exit guest mode and/or lockless shadow + * page table walks. + */ + kvm_flush_remote_tlbs(kvm); + + list_for_each_entry_safe(sp, nsp, invalid_list, link) { + WARN_ON(!sp->role.invalid || sp->root_count); + kvm_mmu_free_page(sp); + } +} + +static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, + struct list_head *invalid_list) +{ + struct kvm_mmu_page *sp; + + if (list_empty(&kvm->arch.active_mmu_pages)) + return false; + + sp = list_entry(kvm->arch.active_mmu_pages.prev, + struct kvm_mmu_page, link); + kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); + + return true; +} + +/* + * Changing the number of mmu pages allocated to the vm + * Note: if goal_nr_mmu_pages is too small, you will get dead lock + */ +void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) +{ + LIST_HEAD(invalid_list); + + spin_lock(&kvm->mmu_lock); + + if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { + /* Need to free some mmu pages to achieve the goal. */ + while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) + if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) + break; + + kvm_mmu_commit_zap_page(kvm, &invalid_list); + goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; + } + + kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; + + spin_unlock(&kvm->mmu_lock); +} + +int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) +{ + struct kvm_mmu_page *sp; + LIST_HEAD(invalid_list); + int r; + + pgprintk("%s: looking for gfn %llx\n", __func__, gfn); + r = 0; + spin_lock(&kvm->mmu_lock); + for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { + pgprintk("%s: gfn %llx role %x\n", __func__, gfn, + sp->role.word); + r = 1; + kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); + } + kvm_mmu_commit_zap_page(kvm, &invalid_list); + spin_unlock(&kvm->mmu_lock); + + return r; +} +EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); + +/* + * The function is based on mtrr_type_lookup() in + * arch/x86/kernel/cpu/mtrr/generic.c + */ +static int get_mtrr_type(struct mtrr_state_type *mtrr_state, + u64 start, u64 end) +{ + int i; + u64 base, mask; + u8 prev_match, curr_match; + int num_var_ranges = KVM_NR_VAR_MTRR; + + if (!mtrr_state->enabled) + return 0xFF; + + /* Make end inclusive end, instead of exclusive */ + end--; + + /* Look in fixed ranges. Just return the type as per start */ + if (mtrr_state->have_fixed && (start < 0x100000)) { + int idx; + + if (start < 0x80000) { + idx = 0; + idx += (start >> 16); + return mtrr_state->fixed_ranges[idx]; + } else if (start < 0xC0000) { + idx = 1 * 8; + idx += ((start - 0x80000) >> 14); + return mtrr_state->fixed_ranges[idx]; + } else if (start < 0x1000000) { + idx = 3 * 8; + idx += ((start - 0xC0000) >> 12); + return mtrr_state->fixed_ranges[idx]; + } + } + + /* + * Look in variable ranges + * Look of multiple ranges matching this address and pick type + * as per MTRR precedence + */ + if (!(mtrr_state->enabled & 2)) + return mtrr_state->def_type; + + prev_match = 0xFF; + for (i = 0; i < num_var_ranges; ++i) { + unsigned short start_state, end_state; + + if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11))) + continue; + + base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) + + (mtrr_state->var_ranges[i].base_lo & PAGE_MASK); + mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) + + (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK); + + start_state = ((start & mask) == (base & mask)); + end_state = ((end & mask) == (base & mask)); + if (start_state != end_state) + return 0xFE; + + if ((start & mask) != (base & mask)) + continue; + + curr_match = mtrr_state->var_ranges[i].base_lo & 0xff; + if (prev_match == 0xFF) { + prev_match = curr_match; + continue; + } + + if (prev_match == MTRR_TYPE_UNCACHABLE || + curr_match == MTRR_TYPE_UNCACHABLE) + return MTRR_TYPE_UNCACHABLE; + + if ((prev_match == MTRR_TYPE_WRBACK && + curr_match == MTRR_TYPE_WRTHROUGH) || + (prev_match == MTRR_TYPE_WRTHROUGH && + curr_match == MTRR_TYPE_WRBACK)) { + prev_match = MTRR_TYPE_WRTHROUGH; + curr_match = MTRR_TYPE_WRTHROUGH; + } + + if (prev_match != curr_match) + return MTRR_TYPE_UNCACHABLE; + } + + if (prev_match != 0xFF) + return prev_match; + + return mtrr_state->def_type; +} + +u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + u8 mtrr; + + mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT, + (gfn << PAGE_SHIFT) + PAGE_SIZE); + if (mtrr == 0xfe || mtrr == 0xff) + mtrr = MTRR_TYPE_WRBACK; + return mtrr; +} +EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type); + +static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) +{ + trace_kvm_mmu_unsync_page(sp); + ++vcpu->kvm->stat.mmu_unsync; + sp->unsync = 1; + + kvm_mmu_mark_parents_unsync(sp); +} + +static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + struct kvm_mmu_page *s; + + for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { + if (s->unsync) + continue; + WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); + __kvm_unsync_page(vcpu, s); + } +} + +static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, + bool can_unsync) +{ + struct kvm_mmu_page *s; + bool need_unsync = false; + + for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { + if (!can_unsync) + return 1; + + if (s->role.level != PT_PAGE_TABLE_LEVEL) + return 1; + + if (!s->unsync) + need_unsync = true; + } + if (need_unsync) + kvm_unsync_pages(vcpu, gfn); + return 0; +} + +static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, + unsigned pte_access, int level, + gfn_t gfn, pfn_t pfn, bool speculative, + bool can_unsync, bool host_writable) +{ + u64 spte; + int ret = 0; + + if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access)) + return 0; + + spte = PT_PRESENT_MASK; + if (!speculative) + spte |= shadow_accessed_mask; + + if (pte_access & ACC_EXEC_MASK) + spte |= shadow_x_mask; + else + spte |= shadow_nx_mask; + + if (pte_access & ACC_USER_MASK) + spte |= shadow_user_mask; + + if (level > PT_PAGE_TABLE_LEVEL) + spte |= PT_PAGE_SIZE_MASK; + if (tdp_enabled) + spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, + kvm_is_reserved_pfn(pfn)); + + if (host_writable) + spte |= SPTE_HOST_WRITEABLE; + else + pte_access &= ~ACC_WRITE_MASK; + + spte |= (u64)pfn << PAGE_SHIFT; + + if (pte_access & ACC_WRITE_MASK) { + + /* + * Other vcpu creates new sp in the window between + * mapping_level() and acquiring mmu-lock. We can + * allow guest to retry the access, the mapping can + * be fixed if guest refault. + */ + if (level > PT_PAGE_TABLE_LEVEL && + has_wrprotected_page(vcpu->kvm, gfn, level)) + goto done; + + spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; + + /* + * Optimization: for pte sync, if spte was writable the hash + * lookup is unnecessary (and expensive). Write protection + * is responsibility of mmu_get_page / kvm_sync_page. + * Same reasoning can be applied to dirty page accounting. + */ + if (!can_unsync && is_writable_pte(*sptep)) + goto set_pte; + + if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { + pgprintk("%s: found shadow page for %llx, marking ro\n", + __func__, gfn); + ret = 1; + pte_access &= ~ACC_WRITE_MASK; + spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); + } + } + + if (pte_access & ACC_WRITE_MASK) { + mark_page_dirty(vcpu->kvm, gfn); + spte |= shadow_dirty_mask; + } + +set_pte: + if (mmu_spte_update(sptep, spte)) + kvm_flush_remote_tlbs(vcpu->kvm); +done: + return ret; +} + +static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, + unsigned pte_access, int write_fault, int *emulate, + int level, gfn_t gfn, pfn_t pfn, bool speculative, + bool host_writable) +{ + int was_rmapped = 0; + int rmap_count; + + pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, + *sptep, write_fault, gfn); + + if (is_rmap_spte(*sptep)) { + /* + * If we overwrite a PTE page pointer with a 2MB PMD, unlink + * the parent of the now unreachable PTE. + */ + if (level > PT_PAGE_TABLE_LEVEL && + !is_large_pte(*sptep)) { + struct kvm_mmu_page *child; + u64 pte = *sptep; + + child = page_header(pte & PT64_BASE_ADDR_MASK); + drop_parent_pte(child, sptep); + kvm_flush_remote_tlbs(vcpu->kvm); + } else if (pfn != spte_to_pfn(*sptep)) { + pgprintk("hfn old %llx new %llx\n", + spte_to_pfn(*sptep), pfn); + drop_spte(vcpu->kvm, sptep); + kvm_flush_remote_tlbs(vcpu->kvm); + } else + was_rmapped = 1; + } + + if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative, + true, host_writable)) { + if (write_fault) + *emulate = 1; + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + } + + if (unlikely(is_mmio_spte(*sptep) && emulate)) + *emulate = 1; + + pgprintk("%s: setting spte %llx\n", __func__, *sptep); + pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", + is_large_pte(*sptep)? "2MB" : "4kB", + *sptep & PT_PRESENT_MASK ?"RW":"R", gfn, + *sptep, sptep); + if (!was_rmapped && is_large_pte(*sptep)) + ++vcpu->kvm->stat.lpages; + + if (is_shadow_present_pte(*sptep)) { + if (!was_rmapped) { + rmap_count = rmap_add(vcpu, sptep, gfn); + if (rmap_count > RMAP_RECYCLE_THRESHOLD) + rmap_recycle(vcpu, sptep, gfn); + } + } + + kvm_release_pfn_clean(pfn); +} + +static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, + bool no_dirty_log) +{ + struct kvm_memory_slot *slot; + + slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); + if (!slot) + return KVM_PFN_ERR_FAULT; + + return gfn_to_pfn_memslot_atomic(slot, gfn); +} + +static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, + u64 *start, u64 *end) +{ + struct page *pages[PTE_PREFETCH_NUM]; + unsigned access = sp->role.access; + int i, ret; + gfn_t gfn; + + gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); + if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK)) + return -1; + + ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start); + if (ret <= 0) + return -1; + + for (i = 0; i < ret; i++, gfn++, start++) + mmu_set_spte(vcpu, start, access, 0, NULL, + sp->role.level, gfn, page_to_pfn(pages[i]), + true, true); + + return 0; +} + +static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, u64 *sptep) +{ + u64 *spte, *start = NULL; + int i; + + WARN_ON(!sp->role.direct); + + i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); + spte = sp->spt + i; + + for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { + if (is_shadow_present_pte(*spte) || spte == sptep) { + if (!start) + continue; + if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) + break; + start = NULL; + } else if (!start) + start = spte; + } +} + +static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) +{ + struct kvm_mmu_page *sp; + + /* + * Since it's no accessed bit on EPT, it's no way to + * distinguish between actually accessed translations + * and prefetched, so disable pte prefetch if EPT is + * enabled. + */ + if (!shadow_accessed_mask) + return; + + sp = page_header(__pa(sptep)); + if (sp->role.level > PT_PAGE_TABLE_LEVEL) + return; + + __direct_pte_prefetch(vcpu, sp, sptep); +} + +static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, + int map_writable, int level, gfn_t gfn, pfn_t pfn, + bool prefault) +{ + struct kvm_shadow_walk_iterator iterator; + struct kvm_mmu_page *sp; + int emulate = 0; + gfn_t pseudo_gfn; + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + return 0; + + for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) { + if (iterator.level == level) { + mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, + write, &emulate, level, gfn, pfn, + prefault, map_writable); + direct_pte_prefetch(vcpu, iterator.sptep); + ++vcpu->stat.pf_fixed; + break; + } + + drop_large_spte(vcpu, iterator.sptep); + if (!is_shadow_present_pte(*iterator.sptep)) { + u64 base_addr = iterator.addr; + + base_addr &= PT64_LVL_ADDR_MASK(iterator.level); + pseudo_gfn = base_addr >> PAGE_SHIFT; + sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr, + iterator.level - 1, + 1, ACC_ALL, iterator.sptep); + + link_shadow_page(iterator.sptep, sp, true); + } + } + return emulate; +} + +static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) +{ + siginfo_t info; + + info.si_signo = SIGBUS; + info.si_errno = 0; + info.si_code = BUS_MCEERR_AR; + info.si_addr = (void __user *)address; + info.si_addr_lsb = PAGE_SHIFT; + + send_sig_info(SIGBUS, &info, tsk); +} + +static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn) +{ + /* + * Do not cache the mmio info caused by writing the readonly gfn + * into the spte otherwise read access on readonly gfn also can + * caused mmio page fault and treat it as mmio access. + * Return 1 to tell kvm to emulate it. + */ + if (pfn == KVM_PFN_ERR_RO_FAULT) + return 1; + + if (pfn == KVM_PFN_ERR_HWPOISON) { + kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current); + return 0; + } + + return -EFAULT; +} + +static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, + gfn_t *gfnp, pfn_t *pfnp, int *levelp) +{ + pfn_t pfn = *pfnp; + gfn_t gfn = *gfnp; + int level = *levelp; + + /* + * Check if it's a transparent hugepage. If this would be an + * hugetlbfs page, level wouldn't be set to + * PT_PAGE_TABLE_LEVEL and there would be no adjustment done + * here. + */ + if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) && + level == PT_PAGE_TABLE_LEVEL && + PageTransCompound(pfn_to_page(pfn)) && + !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) { + unsigned long mask; + /* + * mmu_notifier_retry was successful and we hold the + * mmu_lock here, so the pmd can't become splitting + * from under us, and in turn + * __split_huge_page_refcount() can't run from under + * us and we can safely transfer the refcount from + * PG_tail to PG_head as we switch the pfn to tail to + * head. + */ + *levelp = level = PT_DIRECTORY_LEVEL; + mask = KVM_PAGES_PER_HPAGE(level) - 1; + VM_BUG_ON((gfn & mask) != (pfn & mask)); + if (pfn & mask) { + gfn &= ~mask; + *gfnp = gfn; + kvm_release_pfn_clean(pfn); + pfn &= ~mask; + kvm_get_pfn(pfn); + *pfnp = pfn; + } + } +} + +static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, + pfn_t pfn, unsigned access, int *ret_val) +{ + bool ret = true; + + /* The pfn is invalid, report the error! */ + if (unlikely(is_error_pfn(pfn))) { + *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); + goto exit; + } + + if (unlikely(is_noslot_pfn(pfn))) + vcpu_cache_mmio_info(vcpu, gva, gfn, access); + + ret = false; +exit: + return ret; +} + +static bool page_fault_can_be_fast(u32 error_code) +{ + /* + * Do not fix the mmio spte with invalid generation number which + * need to be updated by slow page fault path. + */ + if (unlikely(error_code & PFERR_RSVD_MASK)) + return false; + + /* + * #PF can be fast only if the shadow page table is present and it + * is caused by write-protect, that means we just need change the + * W bit of the spte which can be done out of mmu-lock. + */ + if (!(error_code & PFERR_PRESENT_MASK) || + !(error_code & PFERR_WRITE_MASK)) + return false; + + return true; +} + +static bool +fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + u64 *sptep, u64 spte) +{ + gfn_t gfn; + + WARN_ON(!sp->role.direct); + + /* + * The gfn of direct spte is stable since it is calculated + * by sp->gfn. + */ + gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); + + /* + * Theoretically we could also set dirty bit (and flush TLB) here in + * order to eliminate unnecessary PML logging. See comments in + * set_spte. But fast_page_fault is very unlikely to happen with PML + * enabled, so we do not do this. This might result in the same GPA + * to be logged in PML buffer again when the write really happens, and + * eventually to be called by mark_page_dirty twice. But it's also no + * harm. This also avoids the TLB flush needed after setting dirty bit + * so non-PML cases won't be impacted. + * + * Compare with set_spte where instead shadow_dirty_mask is set. + */ + if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte) + mark_page_dirty(vcpu->kvm, gfn); + + return true; +} + +/* + * Return value: + * - true: let the vcpu to access on the same address again. + * - false: let the real page fault path to fix it. + */ +static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, + u32 error_code) +{ + struct kvm_shadow_walk_iterator iterator; + struct kvm_mmu_page *sp; + bool ret = false; + u64 spte = 0ull; + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + return false; + + if (!page_fault_can_be_fast(error_code)) + return false; + + walk_shadow_page_lockless_begin(vcpu); + for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) + if (!is_shadow_present_pte(spte) || iterator.level < level) + break; + + /* + * If the mapping has been changed, let the vcpu fault on the + * same address again. + */ + if (!is_rmap_spte(spte)) { + ret = true; + goto exit; + } + + sp = page_header(__pa(iterator.sptep)); + if (!is_last_spte(spte, sp->role.level)) + goto exit; + + /* + * Check if it is a spurious fault caused by TLB lazily flushed. + * + * Need not check the access of upper level table entries since + * they are always ACC_ALL. + */ + if (is_writable_pte(spte)) { + ret = true; + goto exit; + } + + /* + * Currently, to simplify the code, only the spte write-protected + * by dirty-log can be fast fixed. + */ + if (!spte_is_locklessly_modifiable(spte)) + goto exit; + + /* + * Do not fix write-permission on the large spte since we only dirty + * the first page into the dirty-bitmap in fast_pf_fix_direct_spte() + * that means other pages are missed if its slot is dirty-logged. + * + * Instead, we let the slow page fault path create a normal spte to + * fix the access. + * + * See the comments in kvm_arch_commit_memory_region(). + */ + if (sp->role.level > PT_PAGE_TABLE_LEVEL) + goto exit; + + /* + * Currently, fast page fault only works for direct mapping since + * the gfn is not stable for indirect shadow page. + * See Documentation/virtual/kvm/locking.txt to get more detail. + */ + ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte); +exit: + trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, + spte, ret); + walk_shadow_page_lockless_end(vcpu); + + return ret; +} + +static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, + gva_t gva, pfn_t *pfn, bool write, bool *writable); +static void make_mmu_pages_available(struct kvm_vcpu *vcpu); + +static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, + gfn_t gfn, bool prefault) +{ + int r; + int level; + int force_pt_level; + pfn_t pfn; + unsigned long mmu_seq; + bool map_writable, write = error_code & PFERR_WRITE_MASK; + + force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); + if (likely(!force_pt_level)) { + level = mapping_level(vcpu, gfn); + /* + * This path builds a PAE pagetable - so we can map + * 2mb pages at maximum. Therefore check if the level + * is larger than that. + */ + if (level > PT_DIRECTORY_LEVEL) + level = PT_DIRECTORY_LEVEL; + + gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); + } else + level = PT_PAGE_TABLE_LEVEL; + + if (fast_page_fault(vcpu, v, level, error_code)) + return 0; + + mmu_seq = vcpu->kvm->mmu_notifier_seq; + smp_rmb(); + + if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) + return 0; + + if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) + return r; + + spin_lock(&vcpu->kvm->mmu_lock); + if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) + goto out_unlock; + make_mmu_pages_available(vcpu); + if (likely(!force_pt_level)) + transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); + r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn, + prefault); + spin_unlock(&vcpu->kvm->mmu_lock); + + + return r; + +out_unlock: + spin_unlock(&vcpu->kvm->mmu_lock); + kvm_release_pfn_clean(pfn); + return 0; +} + + +static void mmu_free_roots(struct kvm_vcpu *vcpu) +{ + int i; + struct kvm_mmu_page *sp; + LIST_HEAD(invalid_list); + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + return; + + if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL && + (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL || + vcpu->arch.mmu.direct_map)) { + hpa_t root = vcpu->arch.mmu.root_hpa; + + spin_lock(&vcpu->kvm->mmu_lock); + sp = page_header(root); + --sp->root_count; + if (!sp->root_count && sp->role.invalid) { + kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); + kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); + } + spin_unlock(&vcpu->kvm->mmu_lock); + vcpu->arch.mmu.root_hpa = INVALID_PAGE; + return; + } + + spin_lock(&vcpu->kvm->mmu_lock); + for (i = 0; i < 4; ++i) { + hpa_t root = vcpu->arch.mmu.pae_root[i]; + + if (root) { + root &= PT64_BASE_ADDR_MASK; + sp = page_header(root); + --sp->root_count; + if (!sp->root_count && sp->role.invalid) + kvm_mmu_prepare_zap_page(vcpu->kvm, sp, + &invalid_list); + } + vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; + } + kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); + spin_unlock(&vcpu->kvm->mmu_lock); + vcpu->arch.mmu.root_hpa = INVALID_PAGE; +} + +static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) +{ + int ret = 0; + + if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + ret = 1; + } + + return ret; +} + +static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu_page *sp; + unsigned i; + + if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { + spin_lock(&vcpu->kvm->mmu_lock); + make_mmu_pages_available(vcpu); + sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, + 1, ACC_ALL, NULL); + ++sp->root_count; + spin_unlock(&vcpu->kvm->mmu_lock); + vcpu->arch.mmu.root_hpa = __pa(sp->spt); + } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) { + for (i = 0; i < 4; ++i) { + hpa_t root = vcpu->arch.mmu.pae_root[i]; + + MMU_WARN_ON(VALID_PAGE(root)); + spin_lock(&vcpu->kvm->mmu_lock); + make_mmu_pages_available(vcpu); + sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), + i << 30, + PT32_ROOT_LEVEL, 1, ACC_ALL, + NULL); + root = __pa(sp->spt); + ++sp->root_count; + spin_unlock(&vcpu->kvm->mmu_lock); + vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; + } + vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); + } else + BUG(); + + return 0; +} + +static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu_page *sp; + u64 pdptr, pm_mask; + gfn_t root_gfn; + int i; + + root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT; + + if (mmu_check_root(vcpu, root_gfn)) + return 1; + + /* + * Do we shadow a long mode page table? If so we need to + * write-protect the guests page table root. + */ + if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { + hpa_t root = vcpu->arch.mmu.root_hpa; + + MMU_WARN_ON(VALID_PAGE(root)); + + spin_lock(&vcpu->kvm->mmu_lock); + make_mmu_pages_available(vcpu); + sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL, + 0, ACC_ALL, NULL); + root = __pa(sp->spt); + ++sp->root_count; + spin_unlock(&vcpu->kvm->mmu_lock); + vcpu->arch.mmu.root_hpa = root; + return 0; + } + + /* + * We shadow a 32 bit page table. This may be a legacy 2-level + * or a PAE 3-level page table. In either case we need to be aware that + * the shadow page table may be a PAE or a long mode page table. + */ + pm_mask = PT_PRESENT_MASK; + if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) + pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; + + for (i = 0; i < 4; ++i) { + hpa_t root = vcpu->arch.mmu.pae_root[i]; + + MMU_WARN_ON(VALID_PAGE(root)); + if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { + pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i); + if (!is_present_gpte(pdptr)) { + vcpu->arch.mmu.pae_root[i] = 0; + continue; + } + root_gfn = pdptr >> PAGE_SHIFT; + if (mmu_check_root(vcpu, root_gfn)) + return 1; + } + spin_lock(&vcpu->kvm->mmu_lock); + make_mmu_pages_available(vcpu); + sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, + PT32_ROOT_LEVEL, 0, + ACC_ALL, NULL); + root = __pa(sp->spt); + ++sp->root_count; + spin_unlock(&vcpu->kvm->mmu_lock); + + vcpu->arch.mmu.pae_root[i] = root | pm_mask; + } + vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); + + /* + * If we shadow a 32 bit page table with a long mode page + * table we enter this path. + */ + if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { + if (vcpu->arch.mmu.lm_root == NULL) { + /* + * The additional page necessary for this is only + * allocated on demand. + */ + + u64 *lm_root; + + lm_root = (void*)get_zeroed_page(GFP_KERNEL); + if (lm_root == NULL) + return 1; + + lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask; + + vcpu->arch.mmu.lm_root = lm_root; + } + + vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root); + } + + return 0; +} + +static int mmu_alloc_roots(struct kvm_vcpu *vcpu) +{ + if (vcpu->arch.mmu.direct_map) + return mmu_alloc_direct_roots(vcpu); + else + return mmu_alloc_shadow_roots(vcpu); +} + +static void mmu_sync_roots(struct kvm_vcpu *vcpu) +{ + int i; + struct kvm_mmu_page *sp; + + if (vcpu->arch.mmu.direct_map) + return; + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + return; + + vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); + kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); + if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { + hpa_t root = vcpu->arch.mmu.root_hpa; + sp = page_header(root); + mmu_sync_children(vcpu, sp); + kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); + return; + } + for (i = 0; i < 4; ++i) { + hpa_t root = vcpu->arch.mmu.pae_root[i]; + + if (root && VALID_PAGE(root)) { + root &= PT64_BASE_ADDR_MASK; + sp = page_header(root); + mmu_sync_children(vcpu, sp); + } + } + kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); +} + +void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) +{ + spin_lock(&vcpu->kvm->mmu_lock); + mmu_sync_roots(vcpu); + spin_unlock(&vcpu->kvm->mmu_lock); +} +EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); + +static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, + u32 access, struct x86_exception *exception) +{ + if (exception) + exception->error_code = 0; + return vaddr; +} + +static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, + u32 access, + struct x86_exception *exception) +{ + if (exception) + exception->error_code = 0; + return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); +} + +static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct) +{ + if (direct) + return vcpu_match_mmio_gpa(vcpu, addr); + + return vcpu_match_mmio_gva(vcpu, addr); +} + + +/* + * On direct hosts, the last spte is only allows two states + * for mmio page fault: + * - It is the mmio spte + * - It is zapped or it is being zapped. + * + * This function completely checks the spte when the last spte + * is not the mmio spte. + */ +static bool check_direct_spte_mmio_pf(u64 spte) +{ + return __check_direct_spte_mmio_pf(spte); +} + +static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr) +{ + struct kvm_shadow_walk_iterator iterator; + u64 spte = 0ull; + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + return spte; + + walk_shadow_page_lockless_begin(vcpu); + for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) + if (!is_shadow_present_pte(spte)) + break; + walk_shadow_page_lockless_end(vcpu); + + return spte; +} + +int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct) +{ + u64 spte; + + if (quickly_check_mmio_pf(vcpu, addr, direct)) + return RET_MMIO_PF_EMULATE; + + spte = walk_shadow_page_get_mmio_spte(vcpu, addr); + + if (is_mmio_spte(spte)) { + gfn_t gfn = get_mmio_spte_gfn(spte); + unsigned access = get_mmio_spte_access(spte); + + if (!check_mmio_spte(vcpu->kvm, spte)) + return RET_MMIO_PF_INVALID; + + if (direct) + addr = 0; + + trace_handle_mmio_page_fault(addr, gfn, access); + vcpu_cache_mmio_info(vcpu, addr, gfn, access); + return RET_MMIO_PF_EMULATE; + } + + /* + * It's ok if the gva is remapped by other cpus on shadow guest, + * it's a BUG if the gfn is not a mmio page. + */ + if (direct && !check_direct_spte_mmio_pf(spte)) + return RET_MMIO_PF_BUG; + + /* + * If the page table is zapped by other cpus, let CPU fault again on + * the address. + */ + return RET_MMIO_PF_RETRY; +} +EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common); + +static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, + u32 error_code, bool direct) +{ + int ret; + + ret = handle_mmio_page_fault_common(vcpu, addr, direct); + WARN_ON(ret == RET_MMIO_PF_BUG); + return ret; +} + +static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, + u32 error_code, bool prefault) +{ + gfn_t gfn; + int r; + + pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); + + if (unlikely(error_code & PFERR_RSVD_MASK)) { + r = handle_mmio_page_fault(vcpu, gva, error_code, true); + + if (likely(r != RET_MMIO_PF_INVALID)) + return r; + } + + r = mmu_topup_memory_caches(vcpu); + if (r) + return r; + + MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); + + gfn = gva >> PAGE_SHIFT; + + return nonpaging_map(vcpu, gva & PAGE_MASK, + error_code, gfn, prefault); +} + +static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) +{ + struct kvm_arch_async_pf arch; + + arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; + arch.gfn = gfn; + arch.direct_map = vcpu->arch.mmu.direct_map; + arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu); + + return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch); +} + +static bool can_do_async_pf(struct kvm_vcpu *vcpu) +{ + if (unlikely(!irqchip_in_kernel(vcpu->kvm) || + kvm_event_needs_reinjection(vcpu))) + return false; + + return kvm_x86_ops->interrupt_allowed(vcpu); +} + +static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, + gva_t gva, pfn_t *pfn, bool write, bool *writable) +{ + bool async; + + *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable); + + if (!async) + return false; /* *pfn has correct page already */ + + if (!prefault && can_do_async_pf(vcpu)) { + trace_kvm_try_async_get_page(gva, gfn); + if (kvm_find_async_pf_gfn(vcpu, gfn)) { + trace_kvm_async_pf_doublefault(gva, gfn); + kvm_make_request(KVM_REQ_APF_HALT, vcpu); + return true; + } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) + return true; + } + + *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable); + + return false; +} + +static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, + bool prefault) +{ + pfn_t pfn; + int r; + int level; + int force_pt_level; + gfn_t gfn = gpa >> PAGE_SHIFT; + unsigned long mmu_seq; + int write = error_code & PFERR_WRITE_MASK; + bool map_writable; + + MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); + + if (unlikely(error_code & PFERR_RSVD_MASK)) { + r = handle_mmio_page_fault(vcpu, gpa, error_code, true); + + if (likely(r != RET_MMIO_PF_INVALID)) + return r; + } + + r = mmu_topup_memory_caches(vcpu); + if (r) + return r; + + force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); + if (likely(!force_pt_level)) { + level = mapping_level(vcpu, gfn); + gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); + } else + level = PT_PAGE_TABLE_LEVEL; + + if (fast_page_fault(vcpu, gpa, level, error_code)) + return 0; + + mmu_seq = vcpu->kvm->mmu_notifier_seq; + smp_rmb(); + + if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) + return 0; + + if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) + return r; + + spin_lock(&vcpu->kvm->mmu_lock); + if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) + goto out_unlock; + make_mmu_pages_available(vcpu); + if (likely(!force_pt_level)) + transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); + r = __direct_map(vcpu, gpa, write, map_writable, + level, gfn, pfn, prefault); + spin_unlock(&vcpu->kvm->mmu_lock); + + return r; + +out_unlock: + spin_unlock(&vcpu->kvm->mmu_lock); + kvm_release_pfn_clean(pfn); + return 0; +} + +static void nonpaging_init_context(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + context->page_fault = nonpaging_page_fault; + context->gva_to_gpa = nonpaging_gva_to_gpa; + context->sync_page = nonpaging_sync_page; + context->invlpg = nonpaging_invlpg; + context->update_pte = nonpaging_update_pte; + context->root_level = 0; + context->shadow_root_level = PT32E_ROOT_LEVEL; + context->root_hpa = INVALID_PAGE; + context->direct_map = true; + context->nx = false; +} + +void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu) +{ + mmu_free_roots(vcpu); +} + +static unsigned long get_cr3(struct kvm_vcpu *vcpu) +{ + return kvm_read_cr3(vcpu); +} + +static void inject_page_fault(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + vcpu->arch.mmu.inject_page_fault(vcpu, fault); +} + +static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn, + unsigned access, int *nr_present) +{ + if (unlikely(is_mmio_spte(*sptep))) { + if (gfn != get_mmio_spte_gfn(*sptep)) { + mmu_spte_clear_no_track(sptep); + return true; + } + + (*nr_present)++; + mark_mmio_spte(kvm, sptep, gfn, access); + return true; + } + + return false; +} + +static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte) +{ + unsigned index; + + index = level - 1; + index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2); + return mmu->last_pte_bitmap & (1 << index); +} + +#define PTTYPE_EPT 18 /* arbitrary */ +#define PTTYPE PTTYPE_EPT +#include "paging_tmpl.h" +#undef PTTYPE + +#define PTTYPE 64 +#include "paging_tmpl.h" +#undef PTTYPE + +#define PTTYPE 32 +#include "paging_tmpl.h" +#undef PTTYPE + +static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + int maxphyaddr = cpuid_maxphyaddr(vcpu); + u64 exb_bit_rsvd = 0; + u64 gbpages_bit_rsvd = 0; + u64 nonleaf_bit8_rsvd = 0; + + context->bad_mt_xwr = 0; + + if (!context->nx) + exb_bit_rsvd = rsvd_bits(63, 63); + if (!guest_cpuid_has_gbpages(vcpu)) + gbpages_bit_rsvd = rsvd_bits(7, 7); + + /* + * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for + * leaf entries) on AMD CPUs only. + */ + if (guest_cpuid_is_amd(vcpu)) + nonleaf_bit8_rsvd = rsvd_bits(8, 8); + + switch (context->root_level) { + case PT32_ROOT_LEVEL: + /* no rsvd bits for 2 level 4K page table entries */ + context->rsvd_bits_mask[0][1] = 0; + context->rsvd_bits_mask[0][0] = 0; + context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; + + if (!is_pse(vcpu)) { + context->rsvd_bits_mask[1][1] = 0; + break; + } + + if (is_cpuid_PSE36()) + /* 36bits PSE 4MB page */ + context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); + else + /* 32 bits PSE 4MB page */ + context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); + break; + case PT32E_ROOT_LEVEL: + context->rsvd_bits_mask[0][2] = + rsvd_bits(maxphyaddr, 63) | + rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ + context->rsvd_bits_mask[0][1] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 62); /* PDE */ + context->rsvd_bits_mask[0][0] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 62); /* PTE */ + context->rsvd_bits_mask[1][1] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 62) | + rsvd_bits(13, 20); /* large page */ + context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; + break; + case PT64_ROOT_LEVEL: + context->rsvd_bits_mask[0][3] = exb_bit_rsvd | + nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51); + context->rsvd_bits_mask[0][2] = exb_bit_rsvd | + nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51); + context->rsvd_bits_mask[0][1] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 51); + context->rsvd_bits_mask[0][0] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 51); + context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3]; + context->rsvd_bits_mask[1][2] = exb_bit_rsvd | + gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | + rsvd_bits(13, 29); + context->rsvd_bits_mask[1][1] = exb_bit_rsvd | + rsvd_bits(maxphyaddr, 51) | + rsvd_bits(13, 20); /* large page */ + context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; + break; + } +} + +static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, + struct kvm_mmu *context, bool execonly) +{ + int maxphyaddr = cpuid_maxphyaddr(vcpu); + int pte; + + context->rsvd_bits_mask[0][3] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); + context->rsvd_bits_mask[0][2] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); + context->rsvd_bits_mask[0][1] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); + context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); + + /* large page */ + context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3]; + context->rsvd_bits_mask[1][2] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); + context->rsvd_bits_mask[1][1] = + rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); + context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; + + for (pte = 0; pte < 64; pte++) { + int rwx_bits = pte & 7; + int mt = pte >> 3; + if (mt == 0x2 || mt == 0x3 || mt == 0x7 || + rwx_bits == 0x2 || rwx_bits == 0x6 || + (rwx_bits == 0x4 && !execonly)) + context->bad_mt_xwr |= (1ull << pte); + } +} + +static void update_permission_bitmask(struct kvm_vcpu *vcpu, + struct kvm_mmu *mmu, bool ept) +{ + unsigned bit, byte, pfec; + u8 map; + bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0; + + cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); + cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); + for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { + pfec = byte << 1; + map = 0; + wf = pfec & PFERR_WRITE_MASK; + uf = pfec & PFERR_USER_MASK; + ff = pfec & PFERR_FETCH_MASK; + /* + * PFERR_RSVD_MASK bit is set in PFEC if the access is not + * subject to SMAP restrictions, and cleared otherwise. The + * bit is only meaningful if the SMAP bit is set in CR4. + */ + smapf = !(pfec & PFERR_RSVD_MASK); + for (bit = 0; bit < 8; ++bit) { + x = bit & ACC_EXEC_MASK; + w = bit & ACC_WRITE_MASK; + u = bit & ACC_USER_MASK; + + if (!ept) { + /* Not really needed: !nx will cause pte.nx to fault */ + x |= !mmu->nx; + /* Allow supervisor writes if !cr0.wp */ + w |= !is_write_protection(vcpu) && !uf; + /* Disallow supervisor fetches of user code if cr4.smep */ + x &= !(cr4_smep && u && !uf); + + /* + * SMAP:kernel-mode data accesses from user-mode + * mappings should fault. A fault is considered + * as a SMAP violation if all of the following + * conditions are ture: + * - X86_CR4_SMAP is set in CR4 + * - An user page is accessed + * - Page fault in kernel mode + * - if CPL = 3 or X86_EFLAGS_AC is clear + * + * Here, we cover the first three conditions. + * The fourth is computed dynamically in + * permission_fault() and is in smapf. + * + * Also, SMAP does not affect instruction + * fetches, add the !ff check here to make it + * clearer. + */ + smap = cr4_smap && u && !uf && !ff; + } else + /* Not really needed: no U/S accesses on ept */ + u = 1; + + fault = (ff && !x) || (uf && !u) || (wf && !w) || + (smapf && smap); + map |= fault << bit; + } + mmu->permissions[byte] = map; + } +} + +static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) +{ + u8 map; + unsigned level, root_level = mmu->root_level; + const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */ + + if (root_level == PT32E_ROOT_LEVEL) + --root_level; + /* PT_PAGE_TABLE_LEVEL always terminates */ + map = 1 | (1 << ps_set_index); + for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) { + if (level <= PT_PDPE_LEVEL + && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu))) + map |= 1 << (ps_set_index | (level - 1)); + } + mmu->last_pte_bitmap = map; +} + +static void paging64_init_context_common(struct kvm_vcpu *vcpu, + struct kvm_mmu *context, + int level) +{ + context->nx = is_nx(vcpu); + context->root_level = level; + + reset_rsvds_bits_mask(vcpu, context); + update_permission_bitmask(vcpu, context, false); + update_last_pte_bitmap(vcpu, context); + + MMU_WARN_ON(!is_pae(vcpu)); + context->page_fault = paging64_page_fault; + context->gva_to_gpa = paging64_gva_to_gpa; + context->sync_page = paging64_sync_page; + context->invlpg = paging64_invlpg; + context->update_pte = paging64_update_pte; + context->shadow_root_level = level; + context->root_hpa = INVALID_PAGE; + context->direct_map = false; +} + +static void paging64_init_context(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL); +} + +static void paging32_init_context(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + context->nx = false; + context->root_level = PT32_ROOT_LEVEL; + + reset_rsvds_bits_mask(vcpu, context); + update_permission_bitmask(vcpu, context, false); + update_last_pte_bitmap(vcpu, context); + + context->page_fault = paging32_page_fault; + context->gva_to_gpa = paging32_gva_to_gpa; + context->sync_page = paging32_sync_page; + context->invlpg = paging32_invlpg; + context->update_pte = paging32_update_pte; + context->shadow_root_level = PT32E_ROOT_LEVEL; + context->root_hpa = INVALID_PAGE; + context->direct_map = false; +} + +static void paging32E_init_context(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) +{ + paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); +} + +static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *context = &vcpu->arch.mmu; + + context->base_role.word = 0; + context->page_fault = tdp_page_fault; + context->sync_page = nonpaging_sync_page; + context->invlpg = nonpaging_invlpg; + context->update_pte = nonpaging_update_pte; + context->shadow_root_level = kvm_x86_ops->get_tdp_level(); + context->root_hpa = INVALID_PAGE; + context->direct_map = true; + context->set_cr3 = kvm_x86_ops->set_tdp_cr3; + context->get_cr3 = get_cr3; + context->get_pdptr = kvm_pdptr_read; + context->inject_page_fault = kvm_inject_page_fault; + + if (!is_paging(vcpu)) { + context->nx = false; + context->gva_to_gpa = nonpaging_gva_to_gpa; + context->root_level = 0; + } else if (is_long_mode(vcpu)) { + context->nx = is_nx(vcpu); + context->root_level = PT64_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, context); + context->gva_to_gpa = paging64_gva_to_gpa; + } else if (is_pae(vcpu)) { + context->nx = is_nx(vcpu); + context->root_level = PT32E_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, context); + context->gva_to_gpa = paging64_gva_to_gpa; + } else { + context->nx = false; + context->root_level = PT32_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, context); + context->gva_to_gpa = paging32_gva_to_gpa; + } + + update_permission_bitmask(vcpu, context, false); + update_last_pte_bitmap(vcpu, context); +} + +void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu) +{ + bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); + bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); + struct kvm_mmu *context = &vcpu->arch.mmu; + + MMU_WARN_ON(VALID_PAGE(context->root_hpa)); + + if (!is_paging(vcpu)) + nonpaging_init_context(vcpu, context); + else if (is_long_mode(vcpu)) + paging64_init_context(vcpu, context); + else if (is_pae(vcpu)) + paging32E_init_context(vcpu, context); + else + paging32_init_context(vcpu, context); + + context->base_role.nxe = is_nx(vcpu); + context->base_role.cr4_pae = !!is_pae(vcpu); + context->base_role.cr0_wp = is_write_protection(vcpu); + context->base_role.smep_andnot_wp + = smep && !is_write_protection(vcpu); + context->base_role.smap_andnot_wp + = smap && !is_write_protection(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); + +void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly) +{ + struct kvm_mmu *context = &vcpu->arch.mmu; + + MMU_WARN_ON(VALID_PAGE(context->root_hpa)); + + context->shadow_root_level = kvm_x86_ops->get_tdp_level(); + + context->nx = true; + context->page_fault = ept_page_fault; + context->gva_to_gpa = ept_gva_to_gpa; + context->sync_page = ept_sync_page; + context->invlpg = ept_invlpg; + context->update_pte = ept_update_pte; + context->root_level = context->shadow_root_level; + context->root_hpa = INVALID_PAGE; + context->direct_map = false; + + update_permission_bitmask(vcpu, context, true); + reset_rsvds_bits_mask_ept(vcpu, context, execonly); +} +EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); + +static void init_kvm_softmmu(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *context = &vcpu->arch.mmu; + + kvm_init_shadow_mmu(vcpu); + context->set_cr3 = kvm_x86_ops->set_cr3; + context->get_cr3 = get_cr3; + context->get_pdptr = kvm_pdptr_read; + context->inject_page_fault = kvm_inject_page_fault; +} + +static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; + + g_context->get_cr3 = get_cr3; + g_context->get_pdptr = kvm_pdptr_read; + g_context->inject_page_fault = kvm_inject_page_fault; + + /* + * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The + * translation of l2_gpa to l1_gpa addresses is done using the + * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa + * functions between mmu and nested_mmu are swapped. + */ + if (!is_paging(vcpu)) { + g_context->nx = false; + g_context->root_level = 0; + g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; + } else if (is_long_mode(vcpu)) { + g_context->nx = is_nx(vcpu); + g_context->root_level = PT64_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, g_context); + g_context->gva_to_gpa = paging64_gva_to_gpa_nested; + } else if (is_pae(vcpu)) { + g_context->nx = is_nx(vcpu); + g_context->root_level = PT32E_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, g_context); + g_context->gva_to_gpa = paging64_gva_to_gpa_nested; + } else { + g_context->nx = false; + g_context->root_level = PT32_ROOT_LEVEL; + reset_rsvds_bits_mask(vcpu, g_context); + g_context->gva_to_gpa = paging32_gva_to_gpa_nested; + } + + update_permission_bitmask(vcpu, g_context, false); + update_last_pte_bitmap(vcpu, g_context); +} + +static void init_kvm_mmu(struct kvm_vcpu *vcpu) +{ + if (mmu_is_nested(vcpu)) + init_kvm_nested_mmu(vcpu); + else if (tdp_enabled) + init_kvm_tdp_mmu(vcpu); + else + init_kvm_softmmu(vcpu); +} + +void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) +{ + kvm_mmu_unload(vcpu); + init_kvm_mmu(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); + +int kvm_mmu_load(struct kvm_vcpu *vcpu) +{ + int r; + + r = mmu_topup_memory_caches(vcpu); + if (r) + goto out; + r = mmu_alloc_roots(vcpu); + kvm_mmu_sync_roots(vcpu); + if (r) + goto out; + /* set_cr3() should ensure TLB has been flushed */ + vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa); +out: + return r; +} +EXPORT_SYMBOL_GPL(kvm_mmu_load); + +void kvm_mmu_unload(struct kvm_vcpu *vcpu) +{ + mmu_free_roots(vcpu); + WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa)); +} +EXPORT_SYMBOL_GPL(kvm_mmu_unload); + +static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, u64 *spte, + const void *new) +{ + if (sp->role.level != PT_PAGE_TABLE_LEVEL) { + ++vcpu->kvm->stat.mmu_pde_zapped; + return; + } + + ++vcpu->kvm->stat.mmu_pte_updated; + vcpu->arch.mmu.update_pte(vcpu, sp, spte, new); +} + +static bool need_remote_flush(u64 old, u64 new) +{ + if (!is_shadow_present_pte(old)) + return false; + if (!is_shadow_present_pte(new)) + return true; + if ((old ^ new) & PT64_BASE_ADDR_MASK) + return true; + old ^= shadow_nx_mask; + new ^= shadow_nx_mask; + return (old & ~new & PT64_PERM_MASK) != 0; +} + +static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page, + bool remote_flush, bool local_flush) +{ + if (zap_page) + return; + + if (remote_flush) + kvm_flush_remote_tlbs(vcpu->kvm); + else if (local_flush) + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); +} + +static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, + const u8 *new, int *bytes) +{ + u64 gentry; + int r; + + /* + * Assume that the pte write on a page table of the same type + * as the current vcpu paging mode since we update the sptes only + * when they have the same mode. + */ + if (is_pae(vcpu) && *bytes == 4) { + /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ + *gpa &= ~(gpa_t)7; + *bytes = 8; + r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8); + if (r) + gentry = 0; + new = (const u8 *)&gentry; + } + + switch (*bytes) { + case 4: + gentry = *(const u32 *)new; + break; + case 8: + gentry = *(const u64 *)new; + break; + default: + gentry = 0; + break; + } + + return gentry; +} + +/* + * If we're seeing too many writes to a page, it may no longer be a page table, + * or we may be forking, in which case it is better to unmap the page. + */ +static bool detect_write_flooding(struct kvm_mmu_page *sp) +{ + /* + * Skip write-flooding detected for the sp whose level is 1, because + * it can become unsync, then the guest page is not write-protected. + */ + if (sp->role.level == PT_PAGE_TABLE_LEVEL) + return false; + + return ++sp->write_flooding_count >= 3; +} + +/* + * Misaligned accesses are too much trouble to fix up; also, they usually + * indicate a page is not used as a page table. + */ +static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, + int bytes) +{ + unsigned offset, pte_size, misaligned; + + pgprintk("misaligned: gpa %llx bytes %d role %x\n", + gpa, bytes, sp->role.word); + + offset = offset_in_page(gpa); + pte_size = sp->role.cr4_pae ? 8 : 4; + + /* + * Sometimes, the OS only writes the last one bytes to update status + * bits, for example, in linux, andb instruction is used in clear_bit(). + */ + if (!(offset & (pte_size - 1)) && bytes == 1) + return false; + + misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); + misaligned |= bytes < 4; + + return misaligned; +} + +static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) +{ + unsigned page_offset, quadrant; + u64 *spte; + int level; + + page_offset = offset_in_page(gpa); + level = sp->role.level; + *nspte = 1; + if (!sp->role.cr4_pae) { + page_offset <<= 1; /* 32->64 */ + /* + * A 32-bit pde maps 4MB while the shadow pdes map + * only 2MB. So we need to double the offset again + * and zap two pdes instead of one. + */ + if (level == PT32_ROOT_LEVEL) { + page_offset &= ~7; /* kill rounding error */ + page_offset <<= 1; + *nspte = 2; + } + quadrant = page_offset >> PAGE_SHIFT; + page_offset &= ~PAGE_MASK; + if (quadrant != sp->role.quadrant) + return NULL; + } + + spte = &sp->spt[page_offset / sizeof(*spte)]; + return spte; +} + +void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, + const u8 *new, int bytes) +{ + gfn_t gfn = gpa >> PAGE_SHIFT; + struct kvm_mmu_page *sp; + LIST_HEAD(invalid_list); + u64 entry, gentry, *spte; + int npte; + bool remote_flush, local_flush, zap_page; + union kvm_mmu_page_role mask = { }; + + mask.cr0_wp = 1; + mask.cr4_pae = 1; + mask.nxe = 1; + mask.smep_andnot_wp = 1; + mask.smap_andnot_wp = 1; + + /* + * If we don't have indirect shadow pages, it means no page is + * write-protected, so we can exit simply. + */ + if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) + return; + + zap_page = remote_flush = local_flush = false; + + pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); + + gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes); + + /* + * No need to care whether allocation memory is successful + * or not since pte prefetch is skiped if it does not have + * enough objects in the cache. + */ + mmu_topup_memory_caches(vcpu); + + spin_lock(&vcpu->kvm->mmu_lock); + ++vcpu->kvm->stat.mmu_pte_write; + kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); + + for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { + if (detect_write_misaligned(sp, gpa, bytes) || + detect_write_flooding(sp)) { + zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp, + &invalid_list); + ++vcpu->kvm->stat.mmu_flooded; + continue; + } + + spte = get_written_sptes(sp, gpa, &npte); + if (!spte) + continue; + + local_flush = true; + while (npte--) { + entry = *spte; + mmu_page_zap_pte(vcpu->kvm, sp, spte); + if (gentry && + !((sp->role.word ^ vcpu->arch.mmu.base_role.word) + & mask.word) && rmap_can_add(vcpu)) + mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); + if (need_remote_flush(entry, *spte)) + remote_flush = true; + ++spte; + } + } + mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush); + kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); + kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); + spin_unlock(&vcpu->kvm->mmu_lock); +} + +int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) +{ + gpa_t gpa; + int r; + + if (vcpu->arch.mmu.direct_map) + return 0; + + gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); + + r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); + + return r; +} +EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); + +static void make_mmu_pages_available(struct kvm_vcpu *vcpu) +{ + LIST_HEAD(invalid_list); + + if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) + return; + + while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { + if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) + break; + + ++vcpu->kvm->stat.mmu_recycled; + } + kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); +} + +static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr) +{ + if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu)) + return vcpu_match_mmio_gpa(vcpu, addr); + + return vcpu_match_mmio_gva(vcpu, addr); +} + +int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code, + void *insn, int insn_len) +{ + int r, emulation_type = EMULTYPE_RETRY; + enum emulation_result er; + + r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false); + if (r < 0) + goto out; + + if (!r) { + r = 1; + goto out; + } + + if (is_mmio_page_fault(vcpu, cr2)) + emulation_type = 0; + + er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len); + + switch (er) { + case EMULATE_DONE: + return 1; + case EMULATE_USER_EXIT: + ++vcpu->stat.mmio_exits; + /* fall through */ + case EMULATE_FAIL: + return 0; + default: + BUG(); + } +out: + return r; +} +EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); + +void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) +{ + vcpu->arch.mmu.invlpg(vcpu, gva); + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + ++vcpu->stat.invlpg; +} +EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); + +void kvm_enable_tdp(void) +{ + tdp_enabled = true; +} +EXPORT_SYMBOL_GPL(kvm_enable_tdp); + +void kvm_disable_tdp(void) +{ + tdp_enabled = false; +} +EXPORT_SYMBOL_GPL(kvm_disable_tdp); + +static void free_mmu_pages(struct kvm_vcpu *vcpu) +{ + free_page((unsigned long)vcpu->arch.mmu.pae_root); + if (vcpu->arch.mmu.lm_root != NULL) + free_page((unsigned long)vcpu->arch.mmu.lm_root); +} + +static int alloc_mmu_pages(struct kvm_vcpu *vcpu) +{ + struct page *page; + int i; + + /* + * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. + * Therefore we need to allocate shadow page tables in the first + * 4GB of memory, which happens to fit the DMA32 zone. + */ + page = alloc_page(GFP_KERNEL | __GFP_DMA32); + if (!page) + return -ENOMEM; + + vcpu->arch.mmu.pae_root = page_address(page); + for (i = 0; i < 4; ++i) + vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; + + return 0; +} + +int kvm_mmu_create(struct kvm_vcpu *vcpu) +{ + vcpu->arch.walk_mmu = &vcpu->arch.mmu; + vcpu->arch.mmu.root_hpa = INVALID_PAGE; + vcpu->arch.mmu.translate_gpa = translate_gpa; + vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; + + return alloc_mmu_pages(vcpu); +} + +void kvm_mmu_setup(struct kvm_vcpu *vcpu) +{ + MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa)); + + init_kvm_mmu(vcpu); +} + +void kvm_mmu_slot_remove_write_access(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + gfn_t last_gfn; + int i; + bool flush = false; + + last_gfn = memslot->base_gfn + memslot->npages - 1; + + spin_lock(&kvm->mmu_lock); + + for (i = PT_PAGE_TABLE_LEVEL; + i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { + unsigned long *rmapp; + unsigned long last_index, index; + + rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL]; + last_index = gfn_to_index(last_gfn, memslot->base_gfn, i); + + for (index = 0; index <= last_index; ++index, ++rmapp) { + if (*rmapp) + flush |= __rmap_write_protect(kvm, rmapp, + false); + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) + cond_resched_lock(&kvm->mmu_lock); + } + } + + spin_unlock(&kvm->mmu_lock); + + /* + * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() + * which do tlb flush out of mmu-lock should be serialized by + * kvm->slots_lock otherwise tlb flush would be missed. + */ + lockdep_assert_held(&kvm->slots_lock); + + /* + * We can flush all the TLBs out of the mmu lock without TLB + * corruption since we just change the spte from writable to + * readonly so that we only need to care the case of changing + * spte from present to present (changing the spte from present + * to nonpresent will flush all the TLBs immediately), in other + * words, the only case we care is mmu_spte_update() where we + * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE + * instead of PT_WRITABLE_MASK, that means it does not depend + * on PT_WRITABLE_MASK anymore. + */ + if (flush) + kvm_flush_remote_tlbs(kvm); +} + +static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, + unsigned long *rmapp) +{ + u64 *sptep; + struct rmap_iterator iter; + int need_tlb_flush = 0; + pfn_t pfn; + struct kvm_mmu_page *sp; + + for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { + BUG_ON(!(*sptep & PT_PRESENT_MASK)); + + sp = page_header(__pa(sptep)); + pfn = spte_to_pfn(*sptep); + + /* + * We cannot do huge page mapping for indirect shadow pages, + * which are found on the last rmap (level = 1) when not using + * tdp; such shadow pages are synced with the page table in + * the guest, and the guest page table is using 4K page size + * mapping if the indirect sp has level = 1. + */ + if (sp->role.direct && + !kvm_is_reserved_pfn(pfn) && + PageTransCompound(pfn_to_page(pfn))) { + drop_spte(kvm, sptep); + sptep = rmap_get_first(*rmapp, &iter); + need_tlb_flush = 1; + } else + sptep = rmap_get_next(&iter); + } + + return need_tlb_flush; +} + +void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + bool flush = false; + unsigned long *rmapp; + unsigned long last_index, index; + + spin_lock(&kvm->mmu_lock); + + rmapp = memslot->arch.rmap[0]; + last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1, + memslot->base_gfn, PT_PAGE_TABLE_LEVEL); + + for (index = 0; index <= last_index; ++index, ++rmapp) { + if (*rmapp) + flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp); + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { + if (flush) { + kvm_flush_remote_tlbs(kvm); + flush = false; + } + cond_resched_lock(&kvm->mmu_lock); + } + } + + if (flush) + kvm_flush_remote_tlbs(kvm); + + spin_unlock(&kvm->mmu_lock); +} + +void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + gfn_t last_gfn; + unsigned long *rmapp; + unsigned long last_index, index; + bool flush = false; + + last_gfn = memslot->base_gfn + memslot->npages - 1; + + spin_lock(&kvm->mmu_lock); + + rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1]; + last_index = gfn_to_index(last_gfn, memslot->base_gfn, + PT_PAGE_TABLE_LEVEL); + + for (index = 0; index <= last_index; ++index, ++rmapp) { + if (*rmapp) + flush |= __rmap_clear_dirty(kvm, rmapp); + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) + cond_resched_lock(&kvm->mmu_lock); + } + + spin_unlock(&kvm->mmu_lock); + + lockdep_assert_held(&kvm->slots_lock); + + /* + * It's also safe to flush TLBs out of mmu lock here as currently this + * function is only used for dirty logging, in which case flushing TLB + * out of mmu lock also guarantees no dirty pages will be lost in + * dirty_bitmap. + */ + if (flush) + kvm_flush_remote_tlbs(kvm); +} +EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); + +void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + gfn_t last_gfn; + int i; + bool flush = false; + + last_gfn = memslot->base_gfn + memslot->npages - 1; + + spin_lock(&kvm->mmu_lock); + + for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */ + i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { + unsigned long *rmapp; + unsigned long last_index, index; + + rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL]; + last_index = gfn_to_index(last_gfn, memslot->base_gfn, i); + + for (index = 0; index <= last_index; ++index, ++rmapp) { + if (*rmapp) + flush |= __rmap_write_protect(kvm, rmapp, + false); + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) + cond_resched_lock(&kvm->mmu_lock); + } + } + spin_unlock(&kvm->mmu_lock); + + /* see kvm_mmu_slot_remove_write_access */ + lockdep_assert_held(&kvm->slots_lock); + + if (flush) + kvm_flush_remote_tlbs(kvm); +} +EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); + +void kvm_mmu_slot_set_dirty(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + gfn_t last_gfn; + int i; + bool flush = false; + + last_gfn = memslot->base_gfn + memslot->npages - 1; + + spin_lock(&kvm->mmu_lock); + + for (i = PT_PAGE_TABLE_LEVEL; + i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { + unsigned long *rmapp; + unsigned long last_index, index; + + rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL]; + last_index = gfn_to_index(last_gfn, memslot->base_gfn, i); + + for (index = 0; index <= last_index; ++index, ++rmapp) { + if (*rmapp) + flush |= __rmap_set_dirty(kvm, rmapp); + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) + cond_resched_lock(&kvm->mmu_lock); + } + } + + spin_unlock(&kvm->mmu_lock); + + lockdep_assert_held(&kvm->slots_lock); + + /* see kvm_mmu_slot_leaf_clear_dirty */ + if (flush) + kvm_flush_remote_tlbs(kvm); +} +EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); + +#define BATCH_ZAP_PAGES 10 +static void kvm_zap_obsolete_pages(struct kvm *kvm) +{ + struct kvm_mmu_page *sp, *node; + int batch = 0; + +restart: + list_for_each_entry_safe_reverse(sp, node, + &kvm->arch.active_mmu_pages, link) { + int ret; + + /* + * No obsolete page exists before new created page since + * active_mmu_pages is the FIFO list. + */ + if (!is_obsolete_sp(kvm, sp)) + break; + + /* + * Since we are reversely walking the list and the invalid + * list will be moved to the head, skip the invalid page + * can help us to avoid the infinity list walking. + */ + if (sp->role.invalid) + continue; + + /* + * Need not flush tlb since we only zap the sp with invalid + * generation number. + */ + if (batch >= BATCH_ZAP_PAGES && + cond_resched_lock(&kvm->mmu_lock)) { + batch = 0; + goto restart; + } + + ret = kvm_mmu_prepare_zap_page(kvm, sp, + &kvm->arch.zapped_obsolete_pages); + batch += ret; + + if (ret) + goto restart; + } + + /* + * Should flush tlb before free page tables since lockless-walking + * may use the pages. + */ + kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); +} + +/* + * Fast invalidate all shadow pages and use lock-break technique + * to zap obsolete pages. + * + * It's required when memslot is being deleted or VM is being + * destroyed, in these cases, we should ensure that KVM MMU does + * not use any resource of the being-deleted slot or all slots + * after calling the function. + */ +void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm) +{ + spin_lock(&kvm->mmu_lock); + trace_kvm_mmu_invalidate_zap_all_pages(kvm); + kvm->arch.mmu_valid_gen++; + + /* + * Notify all vcpus to reload its shadow page table + * and flush TLB. Then all vcpus will switch to new + * shadow page table with the new mmu_valid_gen. + * + * Note: we should do this under the protection of + * mmu-lock, otherwise, vcpu would purge shadow page + * but miss tlb flush. + */ + kvm_reload_remote_mmus(kvm); + + kvm_zap_obsolete_pages(kvm); + spin_unlock(&kvm->mmu_lock); +} + +static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) +{ + return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); +} + +void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm) +{ + /* + * The very rare case: if the generation-number is round, + * zap all shadow pages. + */ + if (unlikely(kvm_current_mmio_generation(kvm) == 0)) { + printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n"); + kvm_mmu_invalidate_zap_all_pages(kvm); + } +} + +static unsigned long +mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) +{ + struct kvm *kvm; + int nr_to_scan = sc->nr_to_scan; + unsigned long freed = 0; + + spin_lock(&kvm_lock); + + list_for_each_entry(kvm, &vm_list, vm_list) { + int idx; + LIST_HEAD(invalid_list); + + /* + * Never scan more than sc->nr_to_scan VM instances. + * Will not hit this condition practically since we do not try + * to shrink more than one VM and it is very unlikely to see + * !n_used_mmu_pages so many times. + */ + if (!nr_to_scan--) + break; + /* + * n_used_mmu_pages is accessed without holding kvm->mmu_lock + * here. We may skip a VM instance errorneosly, but we do not + * want to shrink a VM that only started to populate its MMU + * anyway. + */ + if (!kvm->arch.n_used_mmu_pages && + !kvm_has_zapped_obsolete_pages(kvm)) + continue; + + idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + + if (kvm_has_zapped_obsolete_pages(kvm)) { + kvm_mmu_commit_zap_page(kvm, + &kvm->arch.zapped_obsolete_pages); + goto unlock; + } + + if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) + freed++; + kvm_mmu_commit_zap_page(kvm, &invalid_list); + +unlock: + spin_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, idx); + + /* + * unfair on small ones + * per-vm shrinkers cry out + * sadness comes quickly + */ + list_move_tail(&kvm->vm_list, &vm_list); + break; + } + + spin_unlock(&kvm_lock); + return freed; +} + +static unsigned long +mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) +{ + return percpu_counter_read_positive(&kvm_total_used_mmu_pages); +} + +static struct shrinker mmu_shrinker = { + .count_objects = mmu_shrink_count, + .scan_objects = mmu_shrink_scan, + .seeks = DEFAULT_SEEKS * 10, +}; + +static void mmu_destroy_caches(void) +{ + if (pte_list_desc_cache) + kmem_cache_destroy(pte_list_desc_cache); + if (mmu_page_header_cache) + kmem_cache_destroy(mmu_page_header_cache); +} + +int kvm_mmu_module_init(void) +{ + pte_list_desc_cache = kmem_cache_create("pte_list_desc", + sizeof(struct pte_list_desc), + 0, 0, NULL); + if (!pte_list_desc_cache) + goto nomem; + + mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", + sizeof(struct kvm_mmu_page), + 0, 0, NULL); + if (!mmu_page_header_cache) + goto nomem; + + if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) + goto nomem; + + register_shrinker(&mmu_shrinker); + + return 0; + +nomem: + mmu_destroy_caches(); + return -ENOMEM; +} + +/* + * Caculate mmu pages needed for kvm. + */ +unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) +{ + unsigned int nr_mmu_pages; + unsigned int nr_pages = 0; + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + + slots = kvm_memslots(kvm); + + kvm_for_each_memslot(memslot, slots) + nr_pages += memslot->npages; + + nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; + nr_mmu_pages = max(nr_mmu_pages, + (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); + + return nr_mmu_pages; +} + +int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]) +{ + struct kvm_shadow_walk_iterator iterator; + u64 spte; + int nr_sptes = 0; + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + return nr_sptes; + + walk_shadow_page_lockless_begin(vcpu); + for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { + sptes[iterator.level-1] = spte; + nr_sptes++; + if (!is_shadow_present_pte(spte)) + break; + } + walk_shadow_page_lockless_end(vcpu); + + return nr_sptes; +} +EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy); + +void kvm_mmu_destroy(struct kvm_vcpu *vcpu) +{ + kvm_mmu_unload(vcpu); + free_mmu_pages(vcpu); + mmu_free_memory_caches(vcpu); +} + +void kvm_mmu_module_exit(void) +{ + mmu_destroy_caches(); + percpu_counter_destroy(&kvm_total_used_mmu_pages); + unregister_shrinker(&mmu_shrinker); + mmu_audit_disable(); +} diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h new file mode 100644 index 000000000..0ada65ecd --- /dev/null +++ b/arch/x86/kvm/mmu.h @@ -0,0 +1,173 @@ +#ifndef __KVM_X86_MMU_H +#define __KVM_X86_MMU_H + +#include <linux/kvm_host.h> +#include "kvm_cache_regs.h" + +#define PT64_PT_BITS 9 +#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) +#define PT32_PT_BITS 10 +#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) + +#define PT_WRITABLE_SHIFT 1 + +#define PT_PRESENT_MASK (1ULL << 0) +#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) +#define PT_USER_MASK (1ULL << 2) +#define PT_PWT_MASK (1ULL << 3) +#define PT_PCD_MASK (1ULL << 4) +#define PT_ACCESSED_SHIFT 5 +#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) +#define PT_DIRTY_SHIFT 6 +#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) +#define PT_PAGE_SIZE_SHIFT 7 +#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) +#define PT_PAT_MASK (1ULL << 7) +#define PT_GLOBAL_MASK (1ULL << 8) +#define PT64_NX_SHIFT 63 +#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) + +#define PT_PAT_SHIFT 7 +#define PT_DIR_PAT_SHIFT 12 +#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) + +#define PT32_DIR_PSE36_SIZE 4 +#define PT32_DIR_PSE36_SHIFT 13 +#define PT32_DIR_PSE36_MASK \ + (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) + +#define PT64_ROOT_LEVEL 4 +#define PT32_ROOT_LEVEL 2 +#define PT32E_ROOT_LEVEL 3 + +#define PT_PDPE_LEVEL 3 +#define PT_DIRECTORY_LEVEL 2 +#define PT_PAGE_TABLE_LEVEL 1 + +static inline u64 rsvd_bits(int s, int e) +{ + return ((1ULL << (e - s + 1)) - 1) << s; +} + +int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]); +void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask); + +/* + * Return values of handle_mmio_page_fault_common: + * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction + * directly. + * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page + * fault path update the mmio spte. + * RET_MMIO_PF_RETRY: let CPU fault again on the address. + * RET_MMIO_PF_BUG: bug is detected. + */ +enum { + RET_MMIO_PF_EMULATE = 1, + RET_MMIO_PF_INVALID = 2, + RET_MMIO_PF_RETRY = 0, + RET_MMIO_PF_BUG = -1 +}; + +int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct); +void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu); +void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly); + +static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm) +{ + if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) + return kvm->arch.n_max_mmu_pages - + kvm->arch.n_used_mmu_pages; + + return 0; +} + +static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) +{ + if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE)) + return 0; + + return kvm_mmu_load(vcpu); +} + +static inline int is_present_gpte(unsigned long pte) +{ + return pte & PT_PRESENT_MASK; +} + +/* + * Currently, we have two sorts of write-protection, a) the first one + * write-protects guest page to sync the guest modification, b) another one is + * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences + * between these two sorts are: + * 1) the first case clears SPTE_MMU_WRITEABLE bit. + * 2) the first case requires flushing tlb immediately avoiding corrupting + * shadow page table between all vcpus so it should be in the protection of + * mmu-lock. And the another case does not need to flush tlb until returning + * the dirty bitmap to userspace since it only write-protects the page + * logged in the bitmap, that means the page in the dirty bitmap is not + * missed, so it can flush tlb out of mmu-lock. + * + * So, there is the problem: the first case can meet the corrupted tlb caused + * by another case which write-protects pages but without flush tlb + * immediately. In order to making the first case be aware this problem we let + * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit + * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit. + * + * Anyway, whenever a spte is updated (only permission and status bits are + * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes + * readonly, if that happens, we need to flush tlb. Fortunately, + * mmu_spte_update() has already handled it perfectly. + * + * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK: + * - if we want to see if it has writable tlb entry or if the spte can be + * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most + * case, otherwise + * - if we fix page fault on the spte or do write-protection by dirty logging, + * check PT_WRITABLE_MASK. + * + * TODO: introduce APIs to split these two cases. + */ +static inline int is_writable_pte(unsigned long pte) +{ + return pte & PT_WRITABLE_MASK; +} + +static inline bool is_write_protection(struct kvm_vcpu *vcpu) +{ + return kvm_read_cr0_bits(vcpu, X86_CR0_WP); +} + +/* + * Will a fault with a given page-fault error code (pfec) cause a permission + * fault with the given access (in ACC_* format)? + */ +static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + unsigned pte_access, unsigned pfec) +{ + int cpl = kvm_x86_ops->get_cpl(vcpu); + unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); + + /* + * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. + * + * If CPL = 3, SMAP applies to all supervisor-mode data accesses + * (these are implicit supervisor accesses) regardless of the value + * of EFLAGS.AC. + * + * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving + * the result in X86_EFLAGS_AC. We then insert it in place of + * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, + * but it will be one in index if SMAP checks are being overridden. + * It is important to keep this branchless. + */ + unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); + int index = (pfec >> 1) + + (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); + + WARN_ON(pfec & PFERR_RSVD_MASK); + + return (mmu->permissions[index] >> pte_access) & 1; +} + +void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm); +#endif diff --git a/arch/x86/kvm/mmu_audit.c b/arch/x86/kvm/mmu_audit.c new file mode 100644 index 000000000..9ade5cfb5 --- /dev/null +++ b/arch/x86/kvm/mmu_audit.c @@ -0,0 +1,299 @@ +/* + * mmu_audit.c: + * + * Audit code for KVM MMU + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Yaniv Kamay <yaniv@qumranet.com> + * Avi Kivity <avi@qumranet.com> + * Marcelo Tosatti <mtosatti@redhat.com> + * Xiao Guangrong <xiaoguangrong@cn.fujitsu.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include <linux/ratelimit.h> + +char const *audit_point_name[] = { + "pre page fault", + "post page fault", + "pre pte write", + "post pte write", + "pre sync", + "post sync" +}; + +#define audit_printk(kvm, fmt, args...) \ + printk(KERN_ERR "audit: (%s) error: " \ + fmt, audit_point_name[kvm->arch.audit_point], ##args) + +typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level); + +static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + inspect_spte_fn fn, int level) +{ + int i; + + for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { + u64 *ent = sp->spt; + + fn(vcpu, ent + i, level); + + if (is_shadow_present_pte(ent[i]) && + !is_last_spte(ent[i], level)) { + struct kvm_mmu_page *child; + + child = page_header(ent[i] & PT64_BASE_ADDR_MASK); + __mmu_spte_walk(vcpu, child, fn, level - 1); + } + } +} + +static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn) +{ + int i; + struct kvm_mmu_page *sp; + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + return; + + if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { + hpa_t root = vcpu->arch.mmu.root_hpa; + + sp = page_header(root); + __mmu_spte_walk(vcpu, sp, fn, PT64_ROOT_LEVEL); + return; + } + + for (i = 0; i < 4; ++i) { + hpa_t root = vcpu->arch.mmu.pae_root[i]; + + if (root && VALID_PAGE(root)) { + root &= PT64_BASE_ADDR_MASK; + sp = page_header(root); + __mmu_spte_walk(vcpu, sp, fn, 2); + } + } + + return; +} + +typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp); + +static void walk_all_active_sps(struct kvm *kvm, sp_handler fn) +{ + struct kvm_mmu_page *sp; + + list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) + fn(kvm, sp); +} + +static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level) +{ + struct kvm_mmu_page *sp; + gfn_t gfn; + pfn_t pfn; + hpa_t hpa; + + sp = page_header(__pa(sptep)); + + if (sp->unsync) { + if (level != PT_PAGE_TABLE_LEVEL) { + audit_printk(vcpu->kvm, "unsync sp: %p " + "level = %d\n", sp, level); + return; + } + } + + if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level)) + return; + + gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); + pfn = gfn_to_pfn_atomic(vcpu->kvm, gfn); + + if (is_error_pfn(pfn)) + return; + + hpa = pfn << PAGE_SHIFT; + if ((*sptep & PT64_BASE_ADDR_MASK) != hpa) + audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx " + "ent %llxn", vcpu->arch.mmu.root_level, pfn, + hpa, *sptep); +} + +static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep) +{ + static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); + unsigned long *rmapp; + struct kvm_mmu_page *rev_sp; + gfn_t gfn; + + rev_sp = page_header(__pa(sptep)); + gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt); + + if (!gfn_to_memslot(kvm, gfn)) { + if (!__ratelimit(&ratelimit_state)) + return; + audit_printk(kvm, "no memslot for gfn %llx\n", gfn); + audit_printk(kvm, "index %ld of sp (gfn=%llx)\n", + (long int)(sptep - rev_sp->spt), rev_sp->gfn); + dump_stack(); + return; + } + + rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level); + if (!*rmapp) { + if (!__ratelimit(&ratelimit_state)) + return; + audit_printk(kvm, "no rmap for writable spte %llx\n", + *sptep); + dump_stack(); + } +} + +static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level) +{ + if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level)) + inspect_spte_has_rmap(vcpu->kvm, sptep); +} + +static void audit_spte_after_sync(struct kvm_vcpu *vcpu, u64 *sptep, int level) +{ + struct kvm_mmu_page *sp = page_header(__pa(sptep)); + + if (vcpu->kvm->arch.audit_point == AUDIT_POST_SYNC && sp->unsync) + audit_printk(vcpu->kvm, "meet unsync sp(%p) after sync " + "root.\n", sp); +} + +static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + int i; + + if (sp->role.level != PT_PAGE_TABLE_LEVEL) + return; + + for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { + if (!is_rmap_spte(sp->spt[i])) + continue; + + inspect_spte_has_rmap(kvm, sp->spt + i); + } +} + +static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + unsigned long *rmapp; + u64 *sptep; + struct rmap_iterator iter; + + if (sp->role.direct || sp->unsync || sp->role.invalid) + return; + + rmapp = gfn_to_rmap(kvm, sp->gfn, PT_PAGE_TABLE_LEVEL); + + for (sptep = rmap_get_first(*rmapp, &iter); sptep; + sptep = rmap_get_next(&iter)) { + if (is_writable_pte(*sptep)) + audit_printk(kvm, "shadow page has writable " + "mappings: gfn %llx role %x\n", + sp->gfn, sp->role.word); + } +} + +static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + check_mappings_rmap(kvm, sp); + audit_write_protection(kvm, sp); +} + +static void audit_all_active_sps(struct kvm *kvm) +{ + walk_all_active_sps(kvm, audit_sp); +} + +static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level) +{ + audit_sptes_have_rmaps(vcpu, sptep, level); + audit_mappings(vcpu, sptep, level); + audit_spte_after_sync(vcpu, sptep, level); +} + +static void audit_vcpu_spte(struct kvm_vcpu *vcpu) +{ + mmu_spte_walk(vcpu, audit_spte); +} + +static bool mmu_audit; +static struct static_key mmu_audit_key; + +static void __kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) +{ + static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); + + if (!__ratelimit(&ratelimit_state)) + return; + + vcpu->kvm->arch.audit_point = point; + audit_all_active_sps(vcpu->kvm); + audit_vcpu_spte(vcpu); +} + +static inline void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) +{ + if (static_key_false((&mmu_audit_key))) + __kvm_mmu_audit(vcpu, point); +} + +static void mmu_audit_enable(void) +{ + if (mmu_audit) + return; + + static_key_slow_inc(&mmu_audit_key); + mmu_audit = true; +} + +static void mmu_audit_disable(void) +{ + if (!mmu_audit) + return; + + static_key_slow_dec(&mmu_audit_key); + mmu_audit = false; +} + +static int mmu_audit_set(const char *val, const struct kernel_param *kp) +{ + int ret; + unsigned long enable; + + ret = kstrtoul(val, 10, &enable); + if (ret < 0) + return -EINVAL; + + switch (enable) { + case 0: + mmu_audit_disable(); + break; + case 1: + mmu_audit_enable(); + break; + default: + return -EINVAL; + } + + return 0; +} + +static struct kernel_param_ops audit_param_ops = { + .set = mmu_audit_set, + .get = param_get_bool, +}; + +arch_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644); diff --git a/arch/x86/kvm/mmutrace.h b/arch/x86/kvm/mmutrace.h new file mode 100644 index 000000000..ce463a9cc --- /dev/null +++ b/arch/x86/kvm/mmutrace.h @@ -0,0 +1,333 @@ +#if !defined(_TRACE_KVMMMU_H) || defined(TRACE_HEADER_MULTI_READ) +#define _TRACE_KVMMMU_H + +#include <linux/tracepoint.h> +#include <linux/ftrace_event.h> + +#undef TRACE_SYSTEM +#define TRACE_SYSTEM kvmmmu + +#define KVM_MMU_PAGE_FIELDS \ + __field(unsigned long, mmu_valid_gen) \ + __field(__u64, gfn) \ + __field(__u32, role) \ + __field(__u32, root_count) \ + __field(bool, unsync) + +#define KVM_MMU_PAGE_ASSIGN(sp) \ + __entry->mmu_valid_gen = sp->mmu_valid_gen; \ + __entry->gfn = sp->gfn; \ + __entry->role = sp->role.word; \ + __entry->root_count = sp->root_count; \ + __entry->unsync = sp->unsync; + +#define KVM_MMU_PAGE_PRINTK() ({ \ + const char *saved_ptr = trace_seq_buffer_ptr(p); \ + static const char *access_str[] = { \ + "---", "--x", "w--", "w-x", "-u-", "-ux", "wu-", "wux" \ + }; \ + union kvm_mmu_page_role role; \ + \ + role.word = __entry->role; \ + \ + trace_seq_printf(p, "sp gen %lx gfn %llx %u%s q%u%s %s%s" \ + " %snxe root %u %s%c", __entry->mmu_valid_gen, \ + __entry->gfn, role.level, \ + role.cr4_pae ? " pae" : "", \ + role.quadrant, \ + role.direct ? " direct" : "", \ + access_str[role.access], \ + role.invalid ? " invalid" : "", \ + role.nxe ? "" : "!", \ + __entry->root_count, \ + __entry->unsync ? "unsync" : "sync", 0); \ + saved_ptr; \ + }) + +#define kvm_mmu_trace_pferr_flags \ + { PFERR_PRESENT_MASK, "P" }, \ + { PFERR_WRITE_MASK, "W" }, \ + { PFERR_USER_MASK, "U" }, \ + { PFERR_RSVD_MASK, "RSVD" }, \ + { PFERR_FETCH_MASK, "F" } + +/* + * A pagetable walk has started + */ +TRACE_EVENT( + kvm_mmu_pagetable_walk, + TP_PROTO(u64 addr, u32 pferr), + TP_ARGS(addr, pferr), + + TP_STRUCT__entry( + __field(__u64, addr) + __field(__u32, pferr) + ), + + TP_fast_assign( + __entry->addr = addr; + __entry->pferr = pferr; + ), + + TP_printk("addr %llx pferr %x %s", __entry->addr, __entry->pferr, + __print_flags(__entry->pferr, "|", kvm_mmu_trace_pferr_flags)) +); + + +/* We just walked a paging element */ +TRACE_EVENT( + kvm_mmu_paging_element, + TP_PROTO(u64 pte, int level), + TP_ARGS(pte, level), + + TP_STRUCT__entry( + __field(__u64, pte) + __field(__u32, level) + ), + + TP_fast_assign( + __entry->pte = pte; + __entry->level = level; + ), + + TP_printk("pte %llx level %u", __entry->pte, __entry->level) +); + +DECLARE_EVENT_CLASS(kvm_mmu_set_bit_class, + + TP_PROTO(unsigned long table_gfn, unsigned index, unsigned size), + + TP_ARGS(table_gfn, index, size), + + TP_STRUCT__entry( + __field(__u64, gpa) + ), + + TP_fast_assign( + __entry->gpa = ((u64)table_gfn << PAGE_SHIFT) + + index * size; + ), + + TP_printk("gpa %llx", __entry->gpa) +); + +/* We set a pte accessed bit */ +DEFINE_EVENT(kvm_mmu_set_bit_class, kvm_mmu_set_accessed_bit, + + TP_PROTO(unsigned long table_gfn, unsigned index, unsigned size), + + TP_ARGS(table_gfn, index, size) +); + +/* We set a pte dirty bit */ +DEFINE_EVENT(kvm_mmu_set_bit_class, kvm_mmu_set_dirty_bit, + + TP_PROTO(unsigned long table_gfn, unsigned index, unsigned size), + + TP_ARGS(table_gfn, index, size) +); + +TRACE_EVENT( + kvm_mmu_walker_error, + TP_PROTO(u32 pferr), + TP_ARGS(pferr), + + TP_STRUCT__entry( + __field(__u32, pferr) + ), + + TP_fast_assign( + __entry->pferr = pferr; + ), + + TP_printk("pferr %x %s", __entry->pferr, + __print_flags(__entry->pferr, "|", kvm_mmu_trace_pferr_flags)) +); + +TRACE_EVENT( + kvm_mmu_get_page, + TP_PROTO(struct kvm_mmu_page *sp, bool created), + TP_ARGS(sp, created), + + TP_STRUCT__entry( + KVM_MMU_PAGE_FIELDS + __field(bool, created) + ), + + TP_fast_assign( + KVM_MMU_PAGE_ASSIGN(sp) + __entry->created = created; + ), + + TP_printk("%s %s", KVM_MMU_PAGE_PRINTK(), + __entry->created ? "new" : "existing") +); + +DECLARE_EVENT_CLASS(kvm_mmu_page_class, + + TP_PROTO(struct kvm_mmu_page *sp), + TP_ARGS(sp), + + TP_STRUCT__entry( + KVM_MMU_PAGE_FIELDS + ), + + TP_fast_assign( + KVM_MMU_PAGE_ASSIGN(sp) + ), + + TP_printk("%s", KVM_MMU_PAGE_PRINTK()) +); + +DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_sync_page, + TP_PROTO(struct kvm_mmu_page *sp), + + TP_ARGS(sp) +); + +DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_unsync_page, + TP_PROTO(struct kvm_mmu_page *sp), + + TP_ARGS(sp) +); + +DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_prepare_zap_page, + TP_PROTO(struct kvm_mmu_page *sp), + + TP_ARGS(sp) +); + +TRACE_EVENT( + mark_mmio_spte, + TP_PROTO(u64 *sptep, gfn_t gfn, unsigned access, unsigned int gen), + TP_ARGS(sptep, gfn, access, gen), + + TP_STRUCT__entry( + __field(void *, sptep) + __field(gfn_t, gfn) + __field(unsigned, access) + __field(unsigned int, gen) + ), + + TP_fast_assign( + __entry->sptep = sptep; + __entry->gfn = gfn; + __entry->access = access; + __entry->gen = gen; + ), + + TP_printk("sptep:%p gfn %llx access %x gen %x", __entry->sptep, + __entry->gfn, __entry->access, __entry->gen) +); + +TRACE_EVENT( + handle_mmio_page_fault, + TP_PROTO(u64 addr, gfn_t gfn, unsigned access), + TP_ARGS(addr, gfn, access), + + TP_STRUCT__entry( + __field(u64, addr) + __field(gfn_t, gfn) + __field(unsigned, access) + ), + + TP_fast_assign( + __entry->addr = addr; + __entry->gfn = gfn; + __entry->access = access; + ), + + TP_printk("addr:%llx gfn %llx access %x", __entry->addr, __entry->gfn, + __entry->access) +); + +#define __spte_satisfied(__spte) \ + (__entry->retry && is_writable_pte(__entry->__spte)) + +TRACE_EVENT( + fast_page_fault, + TP_PROTO(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code, + u64 *sptep, u64 old_spte, bool retry), + TP_ARGS(vcpu, gva, error_code, sptep, old_spte, retry), + + TP_STRUCT__entry( + __field(int, vcpu_id) + __field(gva_t, gva) + __field(u32, error_code) + __field(u64 *, sptep) + __field(u64, old_spte) + __field(u64, new_spte) + __field(bool, retry) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu->vcpu_id; + __entry->gva = gva; + __entry->error_code = error_code; + __entry->sptep = sptep; + __entry->old_spte = old_spte; + __entry->new_spte = *sptep; + __entry->retry = retry; + ), + + TP_printk("vcpu %d gva %lx error_code %s sptep %p old %#llx" + " new %llx spurious %d fixed %d", __entry->vcpu_id, + __entry->gva, __print_flags(__entry->error_code, "|", + kvm_mmu_trace_pferr_flags), __entry->sptep, + __entry->old_spte, __entry->new_spte, + __spte_satisfied(old_spte), __spte_satisfied(new_spte) + ) +); + +TRACE_EVENT( + kvm_mmu_invalidate_zap_all_pages, + TP_PROTO(struct kvm *kvm), + TP_ARGS(kvm), + + TP_STRUCT__entry( + __field(unsigned long, mmu_valid_gen) + __field(unsigned int, mmu_used_pages) + ), + + TP_fast_assign( + __entry->mmu_valid_gen = kvm->arch.mmu_valid_gen; + __entry->mmu_used_pages = kvm->arch.n_used_mmu_pages; + ), + + TP_printk("kvm-mmu-valid-gen %lx used_pages %x", + __entry->mmu_valid_gen, __entry->mmu_used_pages + ) +); + + +TRACE_EVENT( + check_mmio_spte, + TP_PROTO(u64 spte, unsigned int kvm_gen, unsigned int spte_gen), + TP_ARGS(spte, kvm_gen, spte_gen), + + TP_STRUCT__entry( + __field(unsigned int, kvm_gen) + __field(unsigned int, spte_gen) + __field(u64, spte) + ), + + TP_fast_assign( + __entry->kvm_gen = kvm_gen; + __entry->spte_gen = spte_gen; + __entry->spte = spte; + ), + + TP_printk("spte %llx kvm_gen %x spte-gen %x valid %d", __entry->spte, + __entry->kvm_gen, __entry->spte_gen, + __entry->kvm_gen == __entry->spte_gen + ) +); +#endif /* _TRACE_KVMMMU_H */ + +#undef TRACE_INCLUDE_PATH +#define TRACE_INCLUDE_PATH . +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_FILE mmutrace + +/* This part must be outside protection */ +#include <trace/define_trace.h> diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h new file mode 100644 index 000000000..6e6d115fe --- /dev/null +++ b/arch/x86/kvm/paging_tmpl.h @@ -0,0 +1,1011 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * This module enables machines with Intel VT-x extensions to run virtual + * machines without emulation or binary translation. + * + * MMU support + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Yaniv Kamay <yaniv@qumranet.com> + * Avi Kivity <avi@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +/* + * We need the mmu code to access both 32-bit and 64-bit guest ptes, + * so the code in this file is compiled twice, once per pte size. + */ + +/* + * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro + * uses for EPT without A/D paging type. + */ +extern u64 __pure __using_nonexistent_pte_bit(void) + __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT"); + +#if PTTYPE == 64 + #define pt_element_t u64 + #define guest_walker guest_walker64 + #define FNAME(name) paging##64_##name + #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK + #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) + #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) + #define PT_INDEX(addr, level) PT64_INDEX(addr, level) + #define PT_LEVEL_BITS PT64_LEVEL_BITS + #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK + #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK + #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT + #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT + #ifdef CONFIG_X86_64 + #define PT_MAX_FULL_LEVELS 4 + #define CMPXCHG cmpxchg + #else + #define CMPXCHG cmpxchg64 + #define PT_MAX_FULL_LEVELS 2 + #endif +#elif PTTYPE == 32 + #define pt_element_t u32 + #define guest_walker guest_walker32 + #define FNAME(name) paging##32_##name + #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK + #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) + #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) + #define PT_INDEX(addr, level) PT32_INDEX(addr, level) + #define PT_LEVEL_BITS PT32_LEVEL_BITS + #define PT_MAX_FULL_LEVELS 2 + #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK + #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK + #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT + #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT + #define CMPXCHG cmpxchg +#elif PTTYPE == PTTYPE_EPT + #define pt_element_t u64 + #define guest_walker guest_walkerEPT + #define FNAME(name) ept_##name + #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK + #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) + #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) + #define PT_INDEX(addr, level) PT64_INDEX(addr, level) + #define PT_LEVEL_BITS PT64_LEVEL_BITS + #define PT_GUEST_ACCESSED_MASK 0 + #define PT_GUEST_DIRTY_MASK 0 + #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit() + #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit() + #define CMPXCHG cmpxchg64 + #define PT_MAX_FULL_LEVELS 4 +#else + #error Invalid PTTYPE value +#endif + +#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) +#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) + +/* + * The guest_walker structure emulates the behavior of the hardware page + * table walker. + */ +struct guest_walker { + int level; + unsigned max_level; + gfn_t table_gfn[PT_MAX_FULL_LEVELS]; + pt_element_t ptes[PT_MAX_FULL_LEVELS]; + pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; + gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; + pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; + bool pte_writable[PT_MAX_FULL_LEVELS]; + unsigned pt_access; + unsigned pte_access; + gfn_t gfn; + struct x86_exception fault; +}; + +static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) +{ + return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; +} + +static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte) +{ + unsigned mask; + + /* dirty bit is not supported, so no need to track it */ + if (!PT_GUEST_DIRTY_MASK) + return; + + BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); + + mask = (unsigned)~ACC_WRITE_MASK; + /* Allow write access to dirty gptes */ + mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & + PT_WRITABLE_MASK; + *access &= mask; +} + +static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) +{ + int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f; + + return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) | + ((mmu->bad_mt_xwr & (1ull << low6)) != 0); +} + +static inline int FNAME(is_present_gpte)(unsigned long pte) +{ +#if PTTYPE != PTTYPE_EPT + return is_present_gpte(pte); +#else + return pte & 7; +#endif +} + +static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + pt_element_t __user *ptep_user, unsigned index, + pt_element_t orig_pte, pt_element_t new_pte) +{ + int npages; + pt_element_t ret; + pt_element_t *table; + struct page *page; + + npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page); + /* Check if the user is doing something meaningless. */ + if (unlikely(npages != 1)) + return -EFAULT; + + table = kmap_atomic(page); + ret = CMPXCHG(&table[index], orig_pte, new_pte); + kunmap_atomic(table); + + kvm_release_page_dirty(page); + + return (ret != orig_pte); +} + +static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, u64 *spte, + u64 gpte) +{ + if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) + goto no_present; + + if (!FNAME(is_present_gpte)(gpte)) + goto no_present; + + /* if accessed bit is not supported prefetch non accessed gpte */ + if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK)) + goto no_present; + + return false; + +no_present: + drop_spte(vcpu->kvm, spte); + return true; +} + +static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte) +{ + unsigned access; +#if PTTYPE == PTTYPE_EPT + access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | + ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | + ACC_USER_MASK; +#else + access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK; + access &= ~(gpte >> PT64_NX_SHIFT); +#endif + + return access; +} + +static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, + struct kvm_mmu *mmu, + struct guest_walker *walker, + int write_fault) +{ + unsigned level, index; + pt_element_t pte, orig_pte; + pt_element_t __user *ptep_user; + gfn_t table_gfn; + int ret; + + /* dirty/accessed bits are not supported, so no need to update them */ + if (!PT_GUEST_DIRTY_MASK) + return 0; + + for (level = walker->max_level; level >= walker->level; --level) { + pte = orig_pte = walker->ptes[level - 1]; + table_gfn = walker->table_gfn[level - 1]; + ptep_user = walker->ptep_user[level - 1]; + index = offset_in_page(ptep_user) / sizeof(pt_element_t); + if (!(pte & PT_GUEST_ACCESSED_MASK)) { + trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); + pte |= PT_GUEST_ACCESSED_MASK; + } + if (level == walker->level && write_fault && + !(pte & PT_GUEST_DIRTY_MASK)) { + trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); + pte |= PT_GUEST_DIRTY_MASK; + } + if (pte == orig_pte) + continue; + + /* + * If the slot is read-only, simply do not process the accessed + * and dirty bits. This is the correct thing to do if the slot + * is ROM, and page tables in read-as-ROM/write-as-MMIO slots + * are only supported if the accessed and dirty bits are already + * set in the ROM (so that MMIO writes are never needed). + * + * Note that NPT does not allow this at all and faults, since + * it always wants nested page table entries for the guest + * page tables to be writable. And EPT works but will simply + * overwrite the read-only memory to set the accessed and dirty + * bits. + */ + if (unlikely(!walker->pte_writable[level - 1])) + continue; + + ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); + if (ret) + return ret; + + mark_page_dirty(vcpu->kvm, table_gfn); + walker->ptes[level] = pte; + } + return 0; +} + +/* + * Fetch a guest pte for a guest virtual address + */ +static int FNAME(walk_addr_generic)(struct guest_walker *walker, + struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + gva_t addr, u32 access) +{ + int ret; + pt_element_t pte; + pt_element_t __user *uninitialized_var(ptep_user); + gfn_t table_gfn; + unsigned index, pt_access, pte_access, accessed_dirty; + gpa_t pte_gpa; + int offset; + const int write_fault = access & PFERR_WRITE_MASK; + const int user_fault = access & PFERR_USER_MASK; + const int fetch_fault = access & PFERR_FETCH_MASK; + u16 errcode = 0; + gpa_t real_gpa; + gfn_t gfn; + + trace_kvm_mmu_pagetable_walk(addr, access); +retry_walk: + walker->level = mmu->root_level; + pte = mmu->get_cr3(vcpu); + +#if PTTYPE == 64 + if (walker->level == PT32E_ROOT_LEVEL) { + pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); + trace_kvm_mmu_paging_element(pte, walker->level); + if (!FNAME(is_present_gpte)(pte)) + goto error; + --walker->level; + } +#endif + walker->max_level = walker->level; + ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); + + accessed_dirty = PT_GUEST_ACCESSED_MASK; + pt_access = pte_access = ACC_ALL; + ++walker->level; + + do { + gfn_t real_gfn; + unsigned long host_addr; + + pt_access &= pte_access; + --walker->level; + + index = PT_INDEX(addr, walker->level); + + table_gfn = gpte_to_gfn(pte); + offset = index * sizeof(pt_element_t); + pte_gpa = gfn_to_gpa(table_gfn) + offset; + walker->table_gfn[walker->level - 1] = table_gfn; + walker->pte_gpa[walker->level - 1] = pte_gpa; + + real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), + PFERR_USER_MASK|PFERR_WRITE_MASK, + &walker->fault); + + /* + * FIXME: This can happen if emulation (for of an INS/OUTS + * instruction) triggers a nested page fault. The exit + * qualification / exit info field will incorrectly have + * "guest page access" as the nested page fault's cause, + * instead of "guest page structure access". To fix this, + * the x86_exception struct should be augmented with enough + * information to fix the exit_qualification or exit_info_1 + * fields. + */ + if (unlikely(real_gfn == UNMAPPED_GVA)) + return 0; + + real_gfn = gpa_to_gfn(real_gfn); + + host_addr = gfn_to_hva_prot(vcpu->kvm, real_gfn, + &walker->pte_writable[walker->level - 1]); + if (unlikely(kvm_is_error_hva(host_addr))) + goto error; + + ptep_user = (pt_element_t __user *)((void *)host_addr + offset); + if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) + goto error; + walker->ptep_user[walker->level - 1] = ptep_user; + + trace_kvm_mmu_paging_element(pte, walker->level); + + if (unlikely(!FNAME(is_present_gpte)(pte))) + goto error; + + if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, + walker->level))) { + errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK; + goto error; + } + + accessed_dirty &= pte; + pte_access = pt_access & FNAME(gpte_access)(vcpu, pte); + + walker->ptes[walker->level - 1] = pte; + } while (!is_last_gpte(mmu, walker->level, pte)); + + if (unlikely(permission_fault(vcpu, mmu, pte_access, access))) { + errcode |= PFERR_PRESENT_MASK; + goto error; + } + + gfn = gpte_to_gfn_lvl(pte, walker->level); + gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; + + if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) + gfn += pse36_gfn_delta(pte); + + real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); + if (real_gpa == UNMAPPED_GVA) + return 0; + + walker->gfn = real_gpa >> PAGE_SHIFT; + + if (!write_fault) + FNAME(protect_clean_gpte)(&pte_access, pte); + else + /* + * On a write fault, fold the dirty bit into accessed_dirty. + * For modes without A/D bits support accessed_dirty will be + * always clear. + */ + accessed_dirty &= pte >> + (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); + + if (unlikely(!accessed_dirty)) { + ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); + if (unlikely(ret < 0)) + goto error; + else if (ret) + goto retry_walk; + } + + walker->pt_access = pt_access; + walker->pte_access = pte_access; + pgprintk("%s: pte %llx pte_access %x pt_access %x\n", + __func__, (u64)pte, pte_access, pt_access); + return 1; + +error: + errcode |= write_fault | user_fault; + if (fetch_fault && (mmu->nx || + kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) + errcode |= PFERR_FETCH_MASK; + + walker->fault.vector = PF_VECTOR; + walker->fault.error_code_valid = true; + walker->fault.error_code = errcode; + +#if PTTYPE == PTTYPE_EPT + /* + * Use PFERR_RSVD_MASK in error_code to to tell if EPT + * misconfiguration requires to be injected. The detection is + * done by is_rsvd_bits_set() above. + * + * We set up the value of exit_qualification to inject: + * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation + * [5:3] - Calculated by the page walk of the guest EPT page tables + * [7:8] - Derived from [7:8] of real exit_qualification + * + * The other bits are set to 0. + */ + if (!(errcode & PFERR_RSVD_MASK)) { + vcpu->arch.exit_qualification &= 0x187; + vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3; + } +#endif + walker->fault.address = addr; + walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; + + trace_kvm_mmu_walker_error(walker->fault.error_code); + return 0; +} + +static int FNAME(walk_addr)(struct guest_walker *walker, + struct kvm_vcpu *vcpu, gva_t addr, u32 access) +{ + return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, + access); +} + +#if PTTYPE != PTTYPE_EPT +static int FNAME(walk_addr_nested)(struct guest_walker *walker, + struct kvm_vcpu *vcpu, gva_t addr, + u32 access) +{ + return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, + addr, access); +} +#endif + +static bool +FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + u64 *spte, pt_element_t gpte, bool no_dirty_log) +{ + unsigned pte_access; + gfn_t gfn; + pfn_t pfn; + + if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) + return false; + + pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); + + gfn = gpte_to_gfn(gpte); + pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); + FNAME(protect_clean_gpte)(&pte_access, gpte); + pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, + no_dirty_log && (pte_access & ACC_WRITE_MASK)); + if (is_error_pfn(pfn)) + return false; + + /* + * we call mmu_set_spte() with host_writable = true because + * pte_prefetch_gfn_to_pfn always gets a writable pfn. + */ + mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL, + gfn, pfn, true, true); + + return true; +} + +static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + u64 *spte, const void *pte) +{ + pt_element_t gpte = *(const pt_element_t *)pte; + + FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); +} + +static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, + struct guest_walker *gw, int level) +{ + pt_element_t curr_pte; + gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; + u64 mask; + int r, index; + + if (level == PT_PAGE_TABLE_LEVEL) { + mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; + base_gpa = pte_gpa & ~mask; + index = (pte_gpa - base_gpa) / sizeof(pt_element_t); + + r = kvm_read_guest_atomic(vcpu->kvm, base_gpa, + gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); + curr_pte = gw->prefetch_ptes[index]; + } else + r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, + &curr_pte, sizeof(curr_pte)); + + return r || curr_pte != gw->ptes[level - 1]; +} + +static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, + u64 *sptep) +{ + struct kvm_mmu_page *sp; + pt_element_t *gptep = gw->prefetch_ptes; + u64 *spte; + int i; + + sp = page_header(__pa(sptep)); + + if (sp->role.level > PT_PAGE_TABLE_LEVEL) + return; + + if (sp->role.direct) + return __direct_pte_prefetch(vcpu, sp, sptep); + + i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); + spte = sp->spt + i; + + for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { + if (spte == sptep) + continue; + + if (is_shadow_present_pte(*spte)) + continue; + + if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) + break; + } +} + +/* + * Fetch a shadow pte for a specific level in the paging hierarchy. + * If the guest tries to write a write-protected page, we need to + * emulate this operation, return 1 to indicate this case. + */ +static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, + struct guest_walker *gw, + int write_fault, int hlevel, + pfn_t pfn, bool map_writable, bool prefault) +{ + struct kvm_mmu_page *sp = NULL; + struct kvm_shadow_walk_iterator it; + unsigned direct_access, access = gw->pt_access; + int top_level, emulate = 0; + + direct_access = gw->pte_access; + + top_level = vcpu->arch.mmu.root_level; + if (top_level == PT32E_ROOT_LEVEL) + top_level = PT32_ROOT_LEVEL; + /* + * Verify that the top-level gpte is still there. Since the page + * is a root page, it is either write protected (and cannot be + * changed from now on) or it is invalid (in which case, we don't + * really care if it changes underneath us after this point). + */ + if (FNAME(gpte_changed)(vcpu, gw, top_level)) + goto out_gpte_changed; + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + goto out_gpte_changed; + + for (shadow_walk_init(&it, vcpu, addr); + shadow_walk_okay(&it) && it.level > gw->level; + shadow_walk_next(&it)) { + gfn_t table_gfn; + + clear_sp_write_flooding_count(it.sptep); + drop_large_spte(vcpu, it.sptep); + + sp = NULL; + if (!is_shadow_present_pte(*it.sptep)) { + table_gfn = gw->table_gfn[it.level - 2]; + sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, + false, access, it.sptep); + } + + /* + * Verify that the gpte in the page we've just write + * protected is still there. + */ + if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) + goto out_gpte_changed; + + if (sp) + link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK); + } + + for (; + shadow_walk_okay(&it) && it.level > hlevel; + shadow_walk_next(&it)) { + gfn_t direct_gfn; + + clear_sp_write_flooding_count(it.sptep); + validate_direct_spte(vcpu, it.sptep, direct_access); + + drop_large_spte(vcpu, it.sptep); + + if (is_shadow_present_pte(*it.sptep)) + continue; + + direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); + + sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1, + true, direct_access, it.sptep); + link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK); + } + + clear_sp_write_flooding_count(it.sptep); + mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate, + it.level, gw->gfn, pfn, prefault, map_writable); + FNAME(pte_prefetch)(vcpu, gw, it.sptep); + + return emulate; + +out_gpte_changed: + if (sp) + kvm_mmu_put_page(sp, it.sptep); + kvm_release_pfn_clean(pfn); + return 0; +} + + /* + * To see whether the mapped gfn can write its page table in the current + * mapping. + * + * It is the helper function of FNAME(page_fault). When guest uses large page + * size to map the writable gfn which is used as current page table, we should + * force kvm to use small page size to map it because new shadow page will be + * created when kvm establishes shadow page table that stop kvm using large + * page size. Do it early can avoid unnecessary #PF and emulation. + * + * @write_fault_to_shadow_pgtable will return true if the fault gfn is + * currently used as its page table. + * + * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok + * since the PDPT is always shadowed, that means, we can not use large page + * size to map the gfn which is used as PDPT. + */ +static bool +FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, + struct guest_walker *walker, int user_fault, + bool *write_fault_to_shadow_pgtable) +{ + int level; + gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); + bool self_changed = false; + + if (!(walker->pte_access & ACC_WRITE_MASK || + (!is_write_protection(vcpu) && !user_fault))) + return false; + + for (level = walker->level; level <= walker->max_level; level++) { + gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; + + self_changed |= !(gfn & mask); + *write_fault_to_shadow_pgtable |= !gfn; + } + + return self_changed; +} + +/* + * Page fault handler. There are several causes for a page fault: + * - there is no shadow pte for the guest pte + * - write access through a shadow pte marked read only so that we can set + * the dirty bit + * - write access to a shadow pte marked read only so we can update the page + * dirty bitmap, when userspace requests it + * - mmio access; in this case we will never install a present shadow pte + * - normal guest page fault due to the guest pte marked not present, not + * writable, or not executable + * + * Returns: 1 if we need to emulate the instruction, 0 otherwise, or + * a negative value on error. + */ +static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, + bool prefault) +{ + int write_fault = error_code & PFERR_WRITE_MASK; + int user_fault = error_code & PFERR_USER_MASK; + struct guest_walker walker; + int r; + pfn_t pfn; + int level = PT_PAGE_TABLE_LEVEL; + int force_pt_level; + unsigned long mmu_seq; + bool map_writable, is_self_change_mapping; + + pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); + + if (unlikely(error_code & PFERR_RSVD_MASK)) { + r = handle_mmio_page_fault(vcpu, addr, error_code, + mmu_is_nested(vcpu)); + if (likely(r != RET_MMIO_PF_INVALID)) + return r; + + /* + * page fault with PFEC.RSVD = 1 is caused by shadow + * page fault, should not be used to walk guest page + * table. + */ + error_code &= ~PFERR_RSVD_MASK; + }; + + r = mmu_topup_memory_caches(vcpu); + if (r) + return r; + + /* + * Look up the guest pte for the faulting address. + */ + r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); + + /* + * The page is not mapped by the guest. Let the guest handle it. + */ + if (!r) { + pgprintk("%s: guest page fault\n", __func__); + if (!prefault) + inject_page_fault(vcpu, &walker.fault); + + return 0; + } + + vcpu->arch.write_fault_to_shadow_pgtable = false; + + is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, + &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); + + if (walker.level >= PT_DIRECTORY_LEVEL) + force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn) + || is_self_change_mapping; + else + force_pt_level = 1; + if (!force_pt_level) { + level = min(walker.level, mapping_level(vcpu, walker.gfn)); + walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); + } + + mmu_seq = vcpu->kvm->mmu_notifier_seq; + smp_rmb(); + + if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, + &map_writable)) + return 0; + + if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr, + walker.gfn, pfn, walker.pte_access, &r)) + return r; + + /* + * Do not change pte_access if the pfn is a mmio page, otherwise + * we will cache the incorrect access into mmio spte. + */ + if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && + !is_write_protection(vcpu) && !user_fault && + !is_noslot_pfn(pfn)) { + walker.pte_access |= ACC_WRITE_MASK; + walker.pte_access &= ~ACC_USER_MASK; + + /* + * If we converted a user page to a kernel page, + * so that the kernel can write to it when cr0.wp=0, + * then we should prevent the kernel from executing it + * if SMEP is enabled. + */ + if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) + walker.pte_access &= ~ACC_EXEC_MASK; + } + + spin_lock(&vcpu->kvm->mmu_lock); + if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) + goto out_unlock; + + kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); + make_mmu_pages_available(vcpu); + if (!force_pt_level) + transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level); + r = FNAME(fetch)(vcpu, addr, &walker, write_fault, + level, pfn, map_writable, prefault); + ++vcpu->stat.pf_fixed; + kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); + spin_unlock(&vcpu->kvm->mmu_lock); + + return r; + +out_unlock: + spin_unlock(&vcpu->kvm->mmu_lock); + kvm_release_pfn_clean(pfn); + return 0; +} + +static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) +{ + int offset = 0; + + WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); + + if (PTTYPE == 32) + offset = sp->role.quadrant << PT64_LEVEL_BITS; + + return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); +} + +static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva) +{ + struct kvm_shadow_walk_iterator iterator; + struct kvm_mmu_page *sp; + int level; + u64 *sptep; + + vcpu_clear_mmio_info(vcpu, gva); + + /* + * No need to check return value here, rmap_can_add() can + * help us to skip pte prefetch later. + */ + mmu_topup_memory_caches(vcpu); + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) { + WARN_ON(1); + return; + } + + spin_lock(&vcpu->kvm->mmu_lock); + for_each_shadow_entry(vcpu, gva, iterator) { + level = iterator.level; + sptep = iterator.sptep; + + sp = page_header(__pa(sptep)); + if (is_last_spte(*sptep, level)) { + pt_element_t gpte; + gpa_t pte_gpa; + + if (!sp->unsync) + break; + + pte_gpa = FNAME(get_level1_sp_gpa)(sp); + pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); + + if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) + kvm_flush_remote_tlbs(vcpu->kvm); + + if (!rmap_can_add(vcpu)) + break; + + if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte, + sizeof(pt_element_t))) + break; + + FNAME(update_pte)(vcpu, sp, sptep, &gpte); + } + + if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) + break; + } + spin_unlock(&vcpu->kvm->mmu_lock); +} + +static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, + struct x86_exception *exception) +{ + struct guest_walker walker; + gpa_t gpa = UNMAPPED_GVA; + int r; + + r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); + + if (r) { + gpa = gfn_to_gpa(walker.gfn); + gpa |= vaddr & ~PAGE_MASK; + } else if (exception) + *exception = walker.fault; + + return gpa; +} + +#if PTTYPE != PTTYPE_EPT +static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, + u32 access, + struct x86_exception *exception) +{ + struct guest_walker walker; + gpa_t gpa = UNMAPPED_GVA; + int r; + + r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); + + if (r) { + gpa = gfn_to_gpa(walker.gfn); + gpa |= vaddr & ~PAGE_MASK; + } else if (exception) + *exception = walker.fault; + + return gpa; +} +#endif + +/* + * Using the cached information from sp->gfns is safe because: + * - The spte has a reference to the struct page, so the pfn for a given gfn + * can't change unless all sptes pointing to it are nuked first. + * + * Note: + * We should flush all tlbs if spte is dropped even though guest is + * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page + * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't + * used by guest then tlbs are not flushed, so guest is allowed to access the + * freed pages. + * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. + */ +static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) +{ + int i, nr_present = 0; + bool host_writable; + gpa_t first_pte_gpa; + + /* direct kvm_mmu_page can not be unsync. */ + BUG_ON(sp->role.direct); + + first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); + + for (i = 0; i < PT64_ENT_PER_PAGE; i++) { + unsigned pte_access; + pt_element_t gpte; + gpa_t pte_gpa; + gfn_t gfn; + + if (!sp->spt[i]) + continue; + + pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); + + if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte, + sizeof(pt_element_t))) + return -EINVAL; + + if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { + vcpu->kvm->tlbs_dirty++; + continue; + } + + gfn = gpte_to_gfn(gpte); + pte_access = sp->role.access; + pte_access &= FNAME(gpte_access)(vcpu, gpte); + FNAME(protect_clean_gpte)(&pte_access, gpte); + + if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access, + &nr_present)) + continue; + + if (gfn != sp->gfns[i]) { + drop_spte(vcpu->kvm, &sp->spt[i]); + vcpu->kvm->tlbs_dirty++; + continue; + } + + nr_present++; + + host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; + + set_spte(vcpu, &sp->spt[i], pte_access, + PT_PAGE_TABLE_LEVEL, gfn, + spte_to_pfn(sp->spt[i]), true, false, + host_writable); + } + + return !nr_present; +} + +#undef pt_element_t +#undef guest_walker +#undef FNAME +#undef PT_BASE_ADDR_MASK +#undef PT_INDEX +#undef PT_LVL_ADDR_MASK +#undef PT_LVL_OFFSET_MASK +#undef PT_LEVEL_BITS +#undef PT_MAX_FULL_LEVELS +#undef gpte_to_gfn +#undef gpte_to_gfn_lvl +#undef CMPXCHG +#undef PT_GUEST_ACCESSED_MASK +#undef PT_GUEST_DIRTY_MASK +#undef PT_GUEST_DIRTY_SHIFT +#undef PT_GUEST_ACCESSED_SHIFT diff --git a/arch/x86/kvm/pmu.c b/arch/x86/kvm/pmu.c new file mode 100644 index 000000000..29fbf9dfd --- /dev/null +++ b/arch/x86/kvm/pmu.c @@ -0,0 +1,576 @@ +/* + * Kernel-based Virtual Machine -- Performance Monitoring Unit support + * + * Copyright 2011 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Avi Kivity <avi@redhat.com> + * Gleb Natapov <gleb@redhat.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include <linux/types.h> +#include <linux/kvm_host.h> +#include <linux/perf_event.h> +#include <asm/perf_event.h> +#include "x86.h" +#include "cpuid.h" +#include "lapic.h" + +static struct kvm_arch_event_perf_mapping { + u8 eventsel; + u8 unit_mask; + unsigned event_type; + bool inexact; +} arch_events[] = { + /* Index must match CPUID 0x0A.EBX bit vector */ + [0] = { 0x3c, 0x00, PERF_COUNT_HW_CPU_CYCLES }, + [1] = { 0xc0, 0x00, PERF_COUNT_HW_INSTRUCTIONS }, + [2] = { 0x3c, 0x01, PERF_COUNT_HW_BUS_CYCLES }, + [3] = { 0x2e, 0x4f, PERF_COUNT_HW_CACHE_REFERENCES }, + [4] = { 0x2e, 0x41, PERF_COUNT_HW_CACHE_MISSES }, + [5] = { 0xc4, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, + [6] = { 0xc5, 0x00, PERF_COUNT_HW_BRANCH_MISSES }, + [7] = { 0x00, 0x30, PERF_COUNT_HW_REF_CPU_CYCLES }, +}; + +/* mapping between fixed pmc index and arch_events array */ +static int fixed_pmc_events[] = {1, 0, 7}; + +static bool pmc_is_gp(struct kvm_pmc *pmc) +{ + return pmc->type == KVM_PMC_GP; +} + +static inline u64 pmc_bitmask(struct kvm_pmc *pmc) +{ + struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu; + + return pmu->counter_bitmask[pmc->type]; +} + +static inline bool pmc_enabled(struct kvm_pmc *pmc) +{ + struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu; + return test_bit(pmc->idx, (unsigned long *)&pmu->global_ctrl); +} + +static inline struct kvm_pmc *get_gp_pmc(struct kvm_pmu *pmu, u32 msr, + u32 base) +{ + if (msr >= base && msr < base + pmu->nr_arch_gp_counters) + return &pmu->gp_counters[msr - base]; + return NULL; +} + +static inline struct kvm_pmc *get_fixed_pmc(struct kvm_pmu *pmu, u32 msr) +{ + int base = MSR_CORE_PERF_FIXED_CTR0; + if (msr >= base && msr < base + pmu->nr_arch_fixed_counters) + return &pmu->fixed_counters[msr - base]; + return NULL; +} + +static inline struct kvm_pmc *get_fixed_pmc_idx(struct kvm_pmu *pmu, int idx) +{ + return get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + idx); +} + +static struct kvm_pmc *global_idx_to_pmc(struct kvm_pmu *pmu, int idx) +{ + if (idx < INTEL_PMC_IDX_FIXED) + return get_gp_pmc(pmu, MSR_P6_EVNTSEL0 + idx, MSR_P6_EVNTSEL0); + else + return get_fixed_pmc_idx(pmu, idx - INTEL_PMC_IDX_FIXED); +} + +void kvm_deliver_pmi(struct kvm_vcpu *vcpu) +{ + if (vcpu->arch.apic) + kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); +} + +static void trigger_pmi(struct irq_work *irq_work) +{ + struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, + irq_work); + struct kvm_vcpu *vcpu = container_of(pmu, struct kvm_vcpu, + arch.pmu); + + kvm_deliver_pmi(vcpu); +} + +static void kvm_perf_overflow(struct perf_event *perf_event, + struct perf_sample_data *data, + struct pt_regs *regs) +{ + struct kvm_pmc *pmc = perf_event->overflow_handler_context; + struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu; + if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) { + __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); + kvm_make_request(KVM_REQ_PMU, pmc->vcpu); + } +} + +static void kvm_perf_overflow_intr(struct perf_event *perf_event, + struct perf_sample_data *data, struct pt_regs *regs) +{ + struct kvm_pmc *pmc = perf_event->overflow_handler_context; + struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu; + if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) { + __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); + kvm_make_request(KVM_REQ_PMU, pmc->vcpu); + /* + * Inject PMI. If vcpu was in a guest mode during NMI PMI + * can be ejected on a guest mode re-entry. Otherwise we can't + * be sure that vcpu wasn't executing hlt instruction at the + * time of vmexit and is not going to re-enter guest mode until, + * woken up. So we should wake it, but this is impossible from + * NMI context. Do it from irq work instead. + */ + if (!kvm_is_in_guest()) + irq_work_queue(&pmc->vcpu->arch.pmu.irq_work); + else + kvm_make_request(KVM_REQ_PMI, pmc->vcpu); + } +} + +static u64 read_pmc(struct kvm_pmc *pmc) +{ + u64 counter, enabled, running; + + counter = pmc->counter; + + if (pmc->perf_event) + counter += perf_event_read_value(pmc->perf_event, + &enabled, &running); + + /* FIXME: Scaling needed? */ + + return counter & pmc_bitmask(pmc); +} + +static void stop_counter(struct kvm_pmc *pmc) +{ + if (pmc->perf_event) { + pmc->counter = read_pmc(pmc); + perf_event_release_kernel(pmc->perf_event); + pmc->perf_event = NULL; + } +} + +static void reprogram_counter(struct kvm_pmc *pmc, u32 type, + unsigned config, bool exclude_user, bool exclude_kernel, + bool intr, bool in_tx, bool in_tx_cp) +{ + struct perf_event *event; + struct perf_event_attr attr = { + .type = type, + .size = sizeof(attr), + .pinned = true, + .exclude_idle = true, + .exclude_host = 1, + .exclude_user = exclude_user, + .exclude_kernel = exclude_kernel, + .config = config, + }; + if (in_tx) + attr.config |= HSW_IN_TX; + if (in_tx_cp) + attr.config |= HSW_IN_TX_CHECKPOINTED; + + attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc); + + event = perf_event_create_kernel_counter(&attr, -1, current, + intr ? kvm_perf_overflow_intr : + kvm_perf_overflow, pmc); + if (IS_ERR(event)) { + printk_once("kvm: pmu event creation failed %ld\n", + PTR_ERR(event)); + return; + } + + pmc->perf_event = event; + clear_bit(pmc->idx, (unsigned long*)&pmc->vcpu->arch.pmu.reprogram_pmi); +} + +static unsigned find_arch_event(struct kvm_pmu *pmu, u8 event_select, + u8 unit_mask) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(arch_events); i++) + if (arch_events[i].eventsel == event_select + && arch_events[i].unit_mask == unit_mask + && (pmu->available_event_types & (1 << i))) + break; + + if (i == ARRAY_SIZE(arch_events)) + return PERF_COUNT_HW_MAX; + + return arch_events[i].event_type; +} + +static void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel) +{ + unsigned config, type = PERF_TYPE_RAW; + u8 event_select, unit_mask; + + if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) + printk_once("kvm pmu: pin control bit is ignored\n"); + + pmc->eventsel = eventsel; + + stop_counter(pmc); + + if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_enabled(pmc)) + return; + + event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT; + unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; + + if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE | + ARCH_PERFMON_EVENTSEL_INV | + ARCH_PERFMON_EVENTSEL_CMASK | + HSW_IN_TX | + HSW_IN_TX_CHECKPOINTED))) { + config = find_arch_event(&pmc->vcpu->arch.pmu, event_select, + unit_mask); + if (config != PERF_COUNT_HW_MAX) + type = PERF_TYPE_HARDWARE; + } + + if (type == PERF_TYPE_RAW) + config = eventsel & X86_RAW_EVENT_MASK; + + reprogram_counter(pmc, type, config, + !(eventsel & ARCH_PERFMON_EVENTSEL_USR), + !(eventsel & ARCH_PERFMON_EVENTSEL_OS), + eventsel & ARCH_PERFMON_EVENTSEL_INT, + (eventsel & HSW_IN_TX), + (eventsel & HSW_IN_TX_CHECKPOINTED)); +} + +static void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 en_pmi, int idx) +{ + unsigned en = en_pmi & 0x3; + bool pmi = en_pmi & 0x8; + + stop_counter(pmc); + + if (!en || !pmc_enabled(pmc)) + return; + + reprogram_counter(pmc, PERF_TYPE_HARDWARE, + arch_events[fixed_pmc_events[idx]].event_type, + !(en & 0x2), /* exclude user */ + !(en & 0x1), /* exclude kernel */ + pmi, false, false); +} + +static inline u8 fixed_en_pmi(u64 ctrl, int idx) +{ + return (ctrl >> (idx * 4)) & 0xf; +} + +static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data) +{ + int i; + + for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { + u8 en_pmi = fixed_en_pmi(data, i); + struct kvm_pmc *pmc = get_fixed_pmc_idx(pmu, i); + + if (fixed_en_pmi(pmu->fixed_ctr_ctrl, i) == en_pmi) + continue; + + reprogram_fixed_counter(pmc, en_pmi, i); + } + + pmu->fixed_ctr_ctrl = data; +} + +static void reprogram_idx(struct kvm_pmu *pmu, int idx) +{ + struct kvm_pmc *pmc = global_idx_to_pmc(pmu, idx); + + if (!pmc) + return; + + if (pmc_is_gp(pmc)) + reprogram_gp_counter(pmc, pmc->eventsel); + else { + int fidx = idx - INTEL_PMC_IDX_FIXED; + reprogram_fixed_counter(pmc, + fixed_en_pmi(pmu->fixed_ctr_ctrl, fidx), fidx); + } +} + +static void global_ctrl_changed(struct kvm_pmu *pmu, u64 data) +{ + int bit; + u64 diff = pmu->global_ctrl ^ data; + + pmu->global_ctrl = data; + + for_each_set_bit(bit, (unsigned long *)&diff, X86_PMC_IDX_MAX) + reprogram_idx(pmu, bit); +} + +bool kvm_pmu_msr(struct kvm_vcpu *vcpu, u32 msr) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + int ret; + + switch (msr) { + case MSR_CORE_PERF_FIXED_CTR_CTRL: + case MSR_CORE_PERF_GLOBAL_STATUS: + case MSR_CORE_PERF_GLOBAL_CTRL: + case MSR_CORE_PERF_GLOBAL_OVF_CTRL: + ret = pmu->version > 1; + break; + default: + ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) + || get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) + || get_fixed_pmc(pmu, msr); + break; + } + return ret; +} + +int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + struct kvm_pmc *pmc; + + switch (index) { + case MSR_CORE_PERF_FIXED_CTR_CTRL: + *data = pmu->fixed_ctr_ctrl; + return 0; + case MSR_CORE_PERF_GLOBAL_STATUS: + *data = pmu->global_status; + return 0; + case MSR_CORE_PERF_GLOBAL_CTRL: + *data = pmu->global_ctrl; + return 0; + case MSR_CORE_PERF_GLOBAL_OVF_CTRL: + *data = pmu->global_ovf_ctrl; + return 0; + default: + if ((pmc = get_gp_pmc(pmu, index, MSR_IA32_PERFCTR0)) || + (pmc = get_fixed_pmc(pmu, index))) { + *data = read_pmc(pmc); + return 0; + } else if ((pmc = get_gp_pmc(pmu, index, MSR_P6_EVNTSEL0))) { + *data = pmc->eventsel; + return 0; + } + } + return 1; +} + +int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + struct kvm_pmc *pmc; + u32 index = msr_info->index; + u64 data = msr_info->data; + + switch (index) { + case MSR_CORE_PERF_FIXED_CTR_CTRL: + if (pmu->fixed_ctr_ctrl == data) + return 0; + if (!(data & 0xfffffffffffff444ull)) { + reprogram_fixed_counters(pmu, data); + return 0; + } + break; + case MSR_CORE_PERF_GLOBAL_STATUS: + if (msr_info->host_initiated) { + pmu->global_status = data; + return 0; + } + break; /* RO MSR */ + case MSR_CORE_PERF_GLOBAL_CTRL: + if (pmu->global_ctrl == data) + return 0; + if (!(data & pmu->global_ctrl_mask)) { + global_ctrl_changed(pmu, data); + return 0; + } + break; + case MSR_CORE_PERF_GLOBAL_OVF_CTRL: + if (!(data & (pmu->global_ctrl_mask & ~(3ull<<62)))) { + if (!msr_info->host_initiated) + pmu->global_status &= ~data; + pmu->global_ovf_ctrl = data; + return 0; + } + break; + default: + if ((pmc = get_gp_pmc(pmu, index, MSR_IA32_PERFCTR0)) || + (pmc = get_fixed_pmc(pmu, index))) { + if (!msr_info->host_initiated) + data = (s64)(s32)data; + pmc->counter += data - read_pmc(pmc); + return 0; + } else if ((pmc = get_gp_pmc(pmu, index, MSR_P6_EVNTSEL0))) { + if (data == pmc->eventsel) + return 0; + if (!(data & pmu->reserved_bits)) { + reprogram_gp_counter(pmc, data); + return 0; + } + } + } + return 1; +} + +int kvm_pmu_check_pmc(struct kvm_vcpu *vcpu, unsigned pmc) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + bool fixed = pmc & (1u << 30); + pmc &= ~(3u << 30); + return (!fixed && pmc >= pmu->nr_arch_gp_counters) || + (fixed && pmc >= pmu->nr_arch_fixed_counters); +} + +int kvm_pmu_read_pmc(struct kvm_vcpu *vcpu, unsigned pmc, u64 *data) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + bool fast_mode = pmc & (1u << 31); + bool fixed = pmc & (1u << 30); + struct kvm_pmc *counters; + u64 ctr; + + pmc &= ~(3u << 30); + if (!fixed && pmc >= pmu->nr_arch_gp_counters) + return 1; + if (fixed && pmc >= pmu->nr_arch_fixed_counters) + return 1; + counters = fixed ? pmu->fixed_counters : pmu->gp_counters; + ctr = read_pmc(&counters[pmc]); + if (fast_mode) + ctr = (u32)ctr; + *data = ctr; + + return 0; +} + +void kvm_pmu_cpuid_update(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + struct kvm_cpuid_entry2 *entry; + union cpuid10_eax eax; + union cpuid10_edx edx; + + pmu->nr_arch_gp_counters = 0; + pmu->nr_arch_fixed_counters = 0; + pmu->counter_bitmask[KVM_PMC_GP] = 0; + pmu->counter_bitmask[KVM_PMC_FIXED] = 0; + pmu->version = 0; + pmu->reserved_bits = 0xffffffff00200000ull; + + entry = kvm_find_cpuid_entry(vcpu, 0xa, 0); + if (!entry) + return; + eax.full = entry->eax; + edx.full = entry->edx; + + pmu->version = eax.split.version_id; + if (!pmu->version) + return; + + pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters, + INTEL_PMC_MAX_GENERIC); + pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1; + pmu->available_event_types = ~entry->ebx & + ((1ull << eax.split.mask_length) - 1); + + if (pmu->version == 1) { + pmu->nr_arch_fixed_counters = 0; + } else { + pmu->nr_arch_fixed_counters = + min_t(int, edx.split.num_counters_fixed, + INTEL_PMC_MAX_FIXED); + pmu->counter_bitmask[KVM_PMC_FIXED] = + ((u64)1 << edx.split.bit_width_fixed) - 1; + } + + pmu->global_ctrl = ((1 << pmu->nr_arch_gp_counters) - 1) | + (((1ull << pmu->nr_arch_fixed_counters) - 1) << INTEL_PMC_IDX_FIXED); + pmu->global_ctrl_mask = ~pmu->global_ctrl; + + entry = kvm_find_cpuid_entry(vcpu, 7, 0); + if (entry && + (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) && + (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM))) + pmu->reserved_bits ^= HSW_IN_TX|HSW_IN_TX_CHECKPOINTED; +} + +void kvm_pmu_init(struct kvm_vcpu *vcpu) +{ + int i; + struct kvm_pmu *pmu = &vcpu->arch.pmu; + + memset(pmu, 0, sizeof(*pmu)); + for (i = 0; i < INTEL_PMC_MAX_GENERIC; i++) { + pmu->gp_counters[i].type = KVM_PMC_GP; + pmu->gp_counters[i].vcpu = vcpu; + pmu->gp_counters[i].idx = i; + } + for (i = 0; i < INTEL_PMC_MAX_FIXED; i++) { + pmu->fixed_counters[i].type = KVM_PMC_FIXED; + pmu->fixed_counters[i].vcpu = vcpu; + pmu->fixed_counters[i].idx = i + INTEL_PMC_IDX_FIXED; + } + init_irq_work(&pmu->irq_work, trigger_pmi); + kvm_pmu_cpuid_update(vcpu); +} + +void kvm_pmu_reset(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + int i; + + irq_work_sync(&pmu->irq_work); + for (i = 0; i < INTEL_PMC_MAX_GENERIC; i++) { + struct kvm_pmc *pmc = &pmu->gp_counters[i]; + stop_counter(pmc); + pmc->counter = pmc->eventsel = 0; + } + + for (i = 0; i < INTEL_PMC_MAX_FIXED; i++) + stop_counter(&pmu->fixed_counters[i]); + + pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = + pmu->global_ovf_ctrl = 0; +} + +void kvm_pmu_destroy(struct kvm_vcpu *vcpu) +{ + kvm_pmu_reset(vcpu); +} + +void kvm_handle_pmu_event(struct kvm_vcpu *vcpu) +{ + struct kvm_pmu *pmu = &vcpu->arch.pmu; + u64 bitmask; + int bit; + + bitmask = pmu->reprogram_pmi; + + for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) { + struct kvm_pmc *pmc = global_idx_to_pmc(pmu, bit); + + if (unlikely(!pmc || !pmc->perf_event)) { + clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi); + continue; + } + + reprogram_idx(pmu, bit); + } +} diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c new file mode 100644 index 000000000..4911bf191 --- /dev/null +++ b/arch/x86/kvm/svm.c @@ -0,0 +1,4461 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * AMD SVM support + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Yaniv Kamay <yaniv@qumranet.com> + * Avi Kivity <avi@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ +#include <linux/kvm_host.h> + +#include "irq.h" +#include "mmu.h" +#include "kvm_cache_regs.h" +#include "x86.h" +#include "cpuid.h" + +#include <linux/module.h> +#include <linux/mod_devicetable.h> +#include <linux/kernel.h> +#include <linux/vmalloc.h> +#include <linux/highmem.h> +#include <linux/sched.h> +#include <linux/ftrace_event.h> +#include <linux/slab.h> + +#include <asm/perf_event.h> +#include <asm/tlbflush.h> +#include <asm/desc.h> +#include <asm/debugreg.h> +#include <asm/kvm_para.h> + +#include <asm/virtext.h> +#include "trace.h" + +#define __ex(x) __kvm_handle_fault_on_reboot(x) + +MODULE_AUTHOR("Qumranet"); +MODULE_LICENSE("GPL"); + +static const struct x86_cpu_id svm_cpu_id[] = { + X86_FEATURE_MATCH(X86_FEATURE_SVM), + {} +}; +MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); + +#define IOPM_ALLOC_ORDER 2 +#define MSRPM_ALLOC_ORDER 1 + +#define SEG_TYPE_LDT 2 +#define SEG_TYPE_BUSY_TSS16 3 + +#define SVM_FEATURE_NPT (1 << 0) +#define SVM_FEATURE_LBRV (1 << 1) +#define SVM_FEATURE_SVML (1 << 2) +#define SVM_FEATURE_NRIP (1 << 3) +#define SVM_FEATURE_TSC_RATE (1 << 4) +#define SVM_FEATURE_VMCB_CLEAN (1 << 5) +#define SVM_FEATURE_FLUSH_ASID (1 << 6) +#define SVM_FEATURE_DECODE_ASSIST (1 << 7) +#define SVM_FEATURE_PAUSE_FILTER (1 << 10) + +#define NESTED_EXIT_HOST 0 /* Exit handled on host level */ +#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */ +#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */ + +#define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) + +#define TSC_RATIO_RSVD 0xffffff0000000000ULL +#define TSC_RATIO_MIN 0x0000000000000001ULL +#define TSC_RATIO_MAX 0x000000ffffffffffULL + +static bool erratum_383_found __read_mostly; + +static const u32 host_save_user_msrs[] = { +#ifdef CONFIG_X86_64 + MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, + MSR_FS_BASE, +#endif + MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, +}; + +#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) + +struct kvm_vcpu; + +struct nested_state { + struct vmcb *hsave; + u64 hsave_msr; + u64 vm_cr_msr; + u64 vmcb; + + /* These are the merged vectors */ + u32 *msrpm; + + /* gpa pointers to the real vectors */ + u64 vmcb_msrpm; + u64 vmcb_iopm; + + /* A VMEXIT is required but not yet emulated */ + bool exit_required; + + /* cache for intercepts of the guest */ + u32 intercept_cr; + u32 intercept_dr; + u32 intercept_exceptions; + u64 intercept; + + /* Nested Paging related state */ + u64 nested_cr3; +}; + +#define MSRPM_OFFSETS 16 +static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; + +/* + * Set osvw_len to higher value when updated Revision Guides + * are published and we know what the new status bits are + */ +static uint64_t osvw_len = 4, osvw_status; + +struct vcpu_svm { + struct kvm_vcpu vcpu; + struct vmcb *vmcb; + unsigned long vmcb_pa; + struct svm_cpu_data *svm_data; + uint64_t asid_generation; + uint64_t sysenter_esp; + uint64_t sysenter_eip; + + u64 next_rip; + + u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; + struct { + u16 fs; + u16 gs; + u16 ldt; + u64 gs_base; + } host; + + u32 *msrpm; + + ulong nmi_iret_rip; + + struct nested_state nested; + + bool nmi_singlestep; + + unsigned int3_injected; + unsigned long int3_rip; + u32 apf_reason; + + u64 tsc_ratio; +}; + +static DEFINE_PER_CPU(u64, current_tsc_ratio); +#define TSC_RATIO_DEFAULT 0x0100000000ULL + +#define MSR_INVALID 0xffffffffU + +static const struct svm_direct_access_msrs { + u32 index; /* Index of the MSR */ + bool always; /* True if intercept is always on */ +} direct_access_msrs[] = { + { .index = MSR_STAR, .always = true }, + { .index = MSR_IA32_SYSENTER_CS, .always = true }, +#ifdef CONFIG_X86_64 + { .index = MSR_GS_BASE, .always = true }, + { .index = MSR_FS_BASE, .always = true }, + { .index = MSR_KERNEL_GS_BASE, .always = true }, + { .index = MSR_LSTAR, .always = true }, + { .index = MSR_CSTAR, .always = true }, + { .index = MSR_SYSCALL_MASK, .always = true }, +#endif + { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, + { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, + { .index = MSR_IA32_LASTINTFROMIP, .always = false }, + { .index = MSR_IA32_LASTINTTOIP, .always = false }, + { .index = MSR_INVALID, .always = false }, +}; + +/* enable NPT for AMD64 and X86 with PAE */ +#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) +static bool npt_enabled = true; +#else +static bool npt_enabled; +#endif + +/* allow nested paging (virtualized MMU) for all guests */ +static int npt = true; +module_param(npt, int, S_IRUGO); + +/* allow nested virtualization in KVM/SVM */ +static int nested = true; +module_param(nested, int, S_IRUGO); + +static void svm_flush_tlb(struct kvm_vcpu *vcpu); +static void svm_complete_interrupts(struct vcpu_svm *svm); + +static int nested_svm_exit_handled(struct vcpu_svm *svm); +static int nested_svm_intercept(struct vcpu_svm *svm); +static int nested_svm_vmexit(struct vcpu_svm *svm); +static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, + bool has_error_code, u32 error_code); +static u64 __scale_tsc(u64 ratio, u64 tsc); + +enum { + VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, + pause filter count */ + VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */ + VMCB_ASID, /* ASID */ + VMCB_INTR, /* int_ctl, int_vector */ + VMCB_NPT, /* npt_en, nCR3, gPAT */ + VMCB_CR, /* CR0, CR3, CR4, EFER */ + VMCB_DR, /* DR6, DR7 */ + VMCB_DT, /* GDT, IDT */ + VMCB_SEG, /* CS, DS, SS, ES, CPL */ + VMCB_CR2, /* CR2 only */ + VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ + VMCB_DIRTY_MAX, +}; + +/* TPR and CR2 are always written before VMRUN */ +#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2)) + +static inline void mark_all_dirty(struct vmcb *vmcb) +{ + vmcb->control.clean = 0; +} + +static inline void mark_all_clean(struct vmcb *vmcb) +{ + vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1) + & ~VMCB_ALWAYS_DIRTY_MASK; +} + +static inline void mark_dirty(struct vmcb *vmcb, int bit) +{ + vmcb->control.clean &= ~(1 << bit); +} + +static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) +{ + return container_of(vcpu, struct vcpu_svm, vcpu); +} + +static void recalc_intercepts(struct vcpu_svm *svm) +{ + struct vmcb_control_area *c, *h; + struct nested_state *g; + + mark_dirty(svm->vmcb, VMCB_INTERCEPTS); + + if (!is_guest_mode(&svm->vcpu)) + return; + + c = &svm->vmcb->control; + h = &svm->nested.hsave->control; + g = &svm->nested; + + c->intercept_cr = h->intercept_cr | g->intercept_cr; + c->intercept_dr = h->intercept_dr | g->intercept_dr; + c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions; + c->intercept = h->intercept | g->intercept; +} + +static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm) +{ + if (is_guest_mode(&svm->vcpu)) + return svm->nested.hsave; + else + return svm->vmcb; +} + +static inline void set_cr_intercept(struct vcpu_svm *svm, int bit) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + vmcb->control.intercept_cr |= (1U << bit); + + recalc_intercepts(svm); +} + +static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + vmcb->control.intercept_cr &= ~(1U << bit); + + recalc_intercepts(svm); +} + +static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + return vmcb->control.intercept_cr & (1U << bit); +} + +static inline void set_dr_intercepts(struct vcpu_svm *svm) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ) + | (1 << INTERCEPT_DR1_READ) + | (1 << INTERCEPT_DR2_READ) + | (1 << INTERCEPT_DR3_READ) + | (1 << INTERCEPT_DR4_READ) + | (1 << INTERCEPT_DR5_READ) + | (1 << INTERCEPT_DR6_READ) + | (1 << INTERCEPT_DR7_READ) + | (1 << INTERCEPT_DR0_WRITE) + | (1 << INTERCEPT_DR1_WRITE) + | (1 << INTERCEPT_DR2_WRITE) + | (1 << INTERCEPT_DR3_WRITE) + | (1 << INTERCEPT_DR4_WRITE) + | (1 << INTERCEPT_DR5_WRITE) + | (1 << INTERCEPT_DR6_WRITE) + | (1 << INTERCEPT_DR7_WRITE); + + recalc_intercepts(svm); +} + +static inline void clr_dr_intercepts(struct vcpu_svm *svm) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + vmcb->control.intercept_dr = 0; + + recalc_intercepts(svm); +} + +static inline void set_exception_intercept(struct vcpu_svm *svm, int bit) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + vmcb->control.intercept_exceptions |= (1U << bit); + + recalc_intercepts(svm); +} + +static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + vmcb->control.intercept_exceptions &= ~(1U << bit); + + recalc_intercepts(svm); +} + +static inline void set_intercept(struct vcpu_svm *svm, int bit) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + vmcb->control.intercept |= (1ULL << bit); + + recalc_intercepts(svm); +} + +static inline void clr_intercept(struct vcpu_svm *svm, int bit) +{ + struct vmcb *vmcb = get_host_vmcb(svm); + + vmcb->control.intercept &= ~(1ULL << bit); + + recalc_intercepts(svm); +} + +static inline void enable_gif(struct vcpu_svm *svm) +{ + svm->vcpu.arch.hflags |= HF_GIF_MASK; +} + +static inline void disable_gif(struct vcpu_svm *svm) +{ + svm->vcpu.arch.hflags &= ~HF_GIF_MASK; +} + +static inline bool gif_set(struct vcpu_svm *svm) +{ + return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); +} + +static unsigned long iopm_base; + +struct kvm_ldttss_desc { + u16 limit0; + u16 base0; + unsigned base1:8, type:5, dpl:2, p:1; + unsigned limit1:4, zero0:3, g:1, base2:8; + u32 base3; + u32 zero1; +} __attribute__((packed)); + +struct svm_cpu_data { + int cpu; + + u64 asid_generation; + u32 max_asid; + u32 next_asid; + struct kvm_ldttss_desc *tss_desc; + + struct page *save_area; +}; + +static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); + +struct svm_init_data { + int cpu; + int r; +}; + +static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; + +#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) +#define MSRS_RANGE_SIZE 2048 +#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) + +static u32 svm_msrpm_offset(u32 msr) +{ + u32 offset; + int i; + + for (i = 0; i < NUM_MSR_MAPS; i++) { + if (msr < msrpm_ranges[i] || + msr >= msrpm_ranges[i] + MSRS_IN_RANGE) + continue; + + offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ + offset += (i * MSRS_RANGE_SIZE); /* add range offset */ + + /* Now we have the u8 offset - but need the u32 offset */ + return offset / 4; + } + + /* MSR not in any range */ + return MSR_INVALID; +} + +#define MAX_INST_SIZE 15 + +static inline void clgi(void) +{ + asm volatile (__ex(SVM_CLGI)); +} + +static inline void stgi(void) +{ + asm volatile (__ex(SVM_STGI)); +} + +static inline void invlpga(unsigned long addr, u32 asid) +{ + asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid)); +} + +static int get_npt_level(void) +{ +#ifdef CONFIG_X86_64 + return PT64_ROOT_LEVEL; +#else + return PT32E_ROOT_LEVEL; +#endif +} + +static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + vcpu->arch.efer = efer; + if (!npt_enabled && !(efer & EFER_LMA)) + efer &= ~EFER_LME; + + to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; + mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); +} + +static int is_external_interrupt(u32 info) +{ + info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; + return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); +} + +static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + u32 ret = 0; + + if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) + ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; + return ret; +} + +static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (mask == 0) + svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; + else + svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; + +} + +static void skip_emulated_instruction(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (svm->vmcb->control.next_rip != 0) { + WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS)); + svm->next_rip = svm->vmcb->control.next_rip; + } + + if (!svm->next_rip) { + if (emulate_instruction(vcpu, EMULTYPE_SKIP) != + EMULATE_DONE) + printk(KERN_DEBUG "%s: NOP\n", __func__); + return; + } + if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) + printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", + __func__, kvm_rip_read(vcpu), svm->next_rip); + + kvm_rip_write(vcpu, svm->next_rip); + svm_set_interrupt_shadow(vcpu, 0); +} + +static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, + bool has_error_code, u32 error_code, + bool reinject) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + /* + * If we are within a nested VM we'd better #VMEXIT and let the guest + * handle the exception + */ + if (!reinject && + nested_svm_check_exception(svm, nr, has_error_code, error_code)) + return; + + if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) { + unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); + + /* + * For guest debugging where we have to reinject #BP if some + * INT3 is guest-owned: + * Emulate nRIP by moving RIP forward. Will fail if injection + * raises a fault that is not intercepted. Still better than + * failing in all cases. + */ + skip_emulated_instruction(&svm->vcpu); + rip = kvm_rip_read(&svm->vcpu); + svm->int3_rip = rip + svm->vmcb->save.cs.base; + svm->int3_injected = rip - old_rip; + } + + svm->vmcb->control.event_inj = nr + | SVM_EVTINJ_VALID + | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) + | SVM_EVTINJ_TYPE_EXEPT; + svm->vmcb->control.event_inj_err = error_code; +} + +static void svm_init_erratum_383(void) +{ + u32 low, high; + int err; + u64 val; + + if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) + return; + + /* Use _safe variants to not break nested virtualization */ + val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); + if (err) + return; + + val |= (1ULL << 47); + + low = lower_32_bits(val); + high = upper_32_bits(val); + + native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); + + erratum_383_found = true; +} + +static void svm_init_osvw(struct kvm_vcpu *vcpu) +{ + /* + * Guests should see errata 400 and 415 as fixed (assuming that + * HLT and IO instructions are intercepted). + */ + vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; + vcpu->arch.osvw.status = osvw_status & ~(6ULL); + + /* + * By increasing VCPU's osvw.length to 3 we are telling the guest that + * all osvw.status bits inside that length, including bit 0 (which is + * reserved for erratum 298), are valid. However, if host processor's + * osvw_len is 0 then osvw_status[0] carries no information. We need to + * be conservative here and therefore we tell the guest that erratum 298 + * is present (because we really don't know). + */ + if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) + vcpu->arch.osvw.status |= 1; +} + +static int has_svm(void) +{ + const char *msg; + + if (!cpu_has_svm(&msg)) { + printk(KERN_INFO "has_svm: %s\n", msg); + return 0; + } + + return 1; +} + +static void svm_hardware_disable(void) +{ + /* Make sure we clean up behind us */ + if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) + wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); + + cpu_svm_disable(); + + amd_pmu_disable_virt(); +} + +static int svm_hardware_enable(void) +{ + + struct svm_cpu_data *sd; + uint64_t efer; + struct desc_ptr gdt_descr; + struct desc_struct *gdt; + int me = raw_smp_processor_id(); + + rdmsrl(MSR_EFER, efer); + if (efer & EFER_SVME) + return -EBUSY; + + if (!has_svm()) { + pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); + return -EINVAL; + } + sd = per_cpu(svm_data, me); + if (!sd) { + pr_err("%s: svm_data is NULL on %d\n", __func__, me); + return -EINVAL; + } + + sd->asid_generation = 1; + sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; + sd->next_asid = sd->max_asid + 1; + + native_store_gdt(&gdt_descr); + gdt = (struct desc_struct *)gdt_descr.address; + sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); + + wrmsrl(MSR_EFER, efer | EFER_SVME); + + wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); + + if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { + wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); + __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); + } + + + /* + * Get OSVW bits. + * + * Note that it is possible to have a system with mixed processor + * revisions and therefore different OSVW bits. If bits are not the same + * on different processors then choose the worst case (i.e. if erratum + * is present on one processor and not on another then assume that the + * erratum is present everywhere). + */ + if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { + uint64_t len, status = 0; + int err; + + len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); + if (!err) + status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, + &err); + + if (err) + osvw_status = osvw_len = 0; + else { + if (len < osvw_len) + osvw_len = len; + osvw_status |= status; + osvw_status &= (1ULL << osvw_len) - 1; + } + } else + osvw_status = osvw_len = 0; + + svm_init_erratum_383(); + + amd_pmu_enable_virt(); + + return 0; +} + +static void svm_cpu_uninit(int cpu) +{ + struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); + + if (!sd) + return; + + per_cpu(svm_data, raw_smp_processor_id()) = NULL; + __free_page(sd->save_area); + kfree(sd); +} + +static int svm_cpu_init(int cpu) +{ + struct svm_cpu_data *sd; + int r; + + sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); + if (!sd) + return -ENOMEM; + sd->cpu = cpu; + sd->save_area = alloc_page(GFP_KERNEL); + r = -ENOMEM; + if (!sd->save_area) + goto err_1; + + per_cpu(svm_data, cpu) = sd; + + return 0; + +err_1: + kfree(sd); + return r; + +} + +static bool valid_msr_intercept(u32 index) +{ + int i; + + for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) + if (direct_access_msrs[i].index == index) + return true; + + return false; +} + +static void set_msr_interception(u32 *msrpm, unsigned msr, + int read, int write) +{ + u8 bit_read, bit_write; + unsigned long tmp; + u32 offset; + + /* + * If this warning triggers extend the direct_access_msrs list at the + * beginning of the file + */ + WARN_ON(!valid_msr_intercept(msr)); + + offset = svm_msrpm_offset(msr); + bit_read = 2 * (msr & 0x0f); + bit_write = 2 * (msr & 0x0f) + 1; + tmp = msrpm[offset]; + + BUG_ON(offset == MSR_INVALID); + + read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); + write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); + + msrpm[offset] = tmp; +} + +static void svm_vcpu_init_msrpm(u32 *msrpm) +{ + int i; + + memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); + + for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { + if (!direct_access_msrs[i].always) + continue; + + set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); + } +} + +static void add_msr_offset(u32 offset) +{ + int i; + + for (i = 0; i < MSRPM_OFFSETS; ++i) { + + /* Offset already in list? */ + if (msrpm_offsets[i] == offset) + return; + + /* Slot used by another offset? */ + if (msrpm_offsets[i] != MSR_INVALID) + continue; + + /* Add offset to list */ + msrpm_offsets[i] = offset; + + return; + } + + /* + * If this BUG triggers the msrpm_offsets table has an overflow. Just + * increase MSRPM_OFFSETS in this case. + */ + BUG(); +} + +static void init_msrpm_offsets(void) +{ + int i; + + memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); + + for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { + u32 offset; + + offset = svm_msrpm_offset(direct_access_msrs[i].index); + BUG_ON(offset == MSR_INVALID); + + add_msr_offset(offset); + } +} + +static void svm_enable_lbrv(struct vcpu_svm *svm) +{ + u32 *msrpm = svm->msrpm; + + svm->vmcb->control.lbr_ctl = 1; + set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); + set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); + set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); + set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); +} + +static void svm_disable_lbrv(struct vcpu_svm *svm) +{ + u32 *msrpm = svm->msrpm; + + svm->vmcb->control.lbr_ctl = 0; + set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); + set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); + set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); + set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); +} + +static __init int svm_hardware_setup(void) +{ + int cpu; + struct page *iopm_pages; + void *iopm_va; + int r; + + iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); + + if (!iopm_pages) + return -ENOMEM; + + iopm_va = page_address(iopm_pages); + memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); + iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; + + init_msrpm_offsets(); + + if (boot_cpu_has(X86_FEATURE_NX)) + kvm_enable_efer_bits(EFER_NX); + + if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) + kvm_enable_efer_bits(EFER_FFXSR); + + if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { + u64 max; + + kvm_has_tsc_control = true; + + /* + * Make sure the user can only configure tsc_khz values that + * fit into a signed integer. + * A min value is not calculated needed because it will always + * be 1 on all machines and a value of 0 is used to disable + * tsc-scaling for the vcpu. + */ + max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX)); + + kvm_max_guest_tsc_khz = max; + } + + if (nested) { + printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); + kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); + } + + for_each_possible_cpu(cpu) { + r = svm_cpu_init(cpu); + if (r) + goto err; + } + + if (!boot_cpu_has(X86_FEATURE_NPT)) + npt_enabled = false; + + if (npt_enabled && !npt) { + printk(KERN_INFO "kvm: Nested Paging disabled\n"); + npt_enabled = false; + } + + if (npt_enabled) { + printk(KERN_INFO "kvm: Nested Paging enabled\n"); + kvm_enable_tdp(); + } else + kvm_disable_tdp(); + + return 0; + +err: + __free_pages(iopm_pages, IOPM_ALLOC_ORDER); + iopm_base = 0; + return r; +} + +static __exit void svm_hardware_unsetup(void) +{ + int cpu; + + for_each_possible_cpu(cpu) + svm_cpu_uninit(cpu); + + __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); + iopm_base = 0; +} + +static void init_seg(struct vmcb_seg *seg) +{ + seg->selector = 0; + seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | + SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ + seg->limit = 0xffff; + seg->base = 0; +} + +static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) +{ + seg->selector = 0; + seg->attrib = SVM_SELECTOR_P_MASK | type; + seg->limit = 0xffff; + seg->base = 0; +} + +static u64 __scale_tsc(u64 ratio, u64 tsc) +{ + u64 mult, frac, _tsc; + + mult = ratio >> 32; + frac = ratio & ((1ULL << 32) - 1); + + _tsc = tsc; + _tsc *= mult; + _tsc += (tsc >> 32) * frac; + _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32; + + return _tsc; +} + +static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) +{ + struct vcpu_svm *svm = to_svm(vcpu); + u64 _tsc = tsc; + + if (svm->tsc_ratio != TSC_RATIO_DEFAULT) + _tsc = __scale_tsc(svm->tsc_ratio, tsc); + + return _tsc; +} + +static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) +{ + struct vcpu_svm *svm = to_svm(vcpu); + u64 ratio; + u64 khz; + + /* Guest TSC same frequency as host TSC? */ + if (!scale) { + svm->tsc_ratio = TSC_RATIO_DEFAULT; + return; + } + + /* TSC scaling supported? */ + if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { + if (user_tsc_khz > tsc_khz) { + vcpu->arch.tsc_catchup = 1; + vcpu->arch.tsc_always_catchup = 1; + } else + WARN(1, "user requested TSC rate below hardware speed\n"); + return; + } + + khz = user_tsc_khz; + + /* TSC scaling required - calculate ratio */ + ratio = khz << 32; + do_div(ratio, tsc_khz); + + if (ratio == 0 || ratio & TSC_RATIO_RSVD) { + WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n", + user_tsc_khz); + return; + } + svm->tsc_ratio = ratio; +} + +static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + return svm->vmcb->control.tsc_offset; +} + +static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) +{ + struct vcpu_svm *svm = to_svm(vcpu); + u64 g_tsc_offset = 0; + + if (is_guest_mode(vcpu)) { + g_tsc_offset = svm->vmcb->control.tsc_offset - + svm->nested.hsave->control.tsc_offset; + svm->nested.hsave->control.tsc_offset = offset; + } else + trace_kvm_write_tsc_offset(vcpu->vcpu_id, + svm->vmcb->control.tsc_offset, + offset); + + svm->vmcb->control.tsc_offset = offset + g_tsc_offset; + + mark_dirty(svm->vmcb, VMCB_INTERCEPTS); +} + +static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (host) { + if (svm->tsc_ratio != TSC_RATIO_DEFAULT) + WARN_ON(adjustment < 0); + adjustment = svm_scale_tsc(vcpu, (u64)adjustment); + } + + svm->vmcb->control.tsc_offset += adjustment; + if (is_guest_mode(vcpu)) + svm->nested.hsave->control.tsc_offset += adjustment; + else + trace_kvm_write_tsc_offset(vcpu->vcpu_id, + svm->vmcb->control.tsc_offset - adjustment, + svm->vmcb->control.tsc_offset); + + mark_dirty(svm->vmcb, VMCB_INTERCEPTS); +} + +static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) +{ + u64 tsc; + + tsc = svm_scale_tsc(vcpu, native_read_tsc()); + + return target_tsc - tsc; +} + +static void init_vmcb(struct vcpu_svm *svm) +{ + struct vmcb_control_area *control = &svm->vmcb->control; + struct vmcb_save_area *save = &svm->vmcb->save; + + svm->vcpu.fpu_active = 1; + svm->vcpu.arch.hflags = 0; + + set_cr_intercept(svm, INTERCEPT_CR0_READ); + set_cr_intercept(svm, INTERCEPT_CR3_READ); + set_cr_intercept(svm, INTERCEPT_CR4_READ); + set_cr_intercept(svm, INTERCEPT_CR0_WRITE); + set_cr_intercept(svm, INTERCEPT_CR3_WRITE); + set_cr_intercept(svm, INTERCEPT_CR4_WRITE); + set_cr_intercept(svm, INTERCEPT_CR8_WRITE); + + set_dr_intercepts(svm); + + set_exception_intercept(svm, PF_VECTOR); + set_exception_intercept(svm, UD_VECTOR); + set_exception_intercept(svm, MC_VECTOR); + + set_intercept(svm, INTERCEPT_INTR); + set_intercept(svm, INTERCEPT_NMI); + set_intercept(svm, INTERCEPT_SMI); + set_intercept(svm, INTERCEPT_SELECTIVE_CR0); + set_intercept(svm, INTERCEPT_RDPMC); + set_intercept(svm, INTERCEPT_CPUID); + set_intercept(svm, INTERCEPT_INVD); + set_intercept(svm, INTERCEPT_HLT); + set_intercept(svm, INTERCEPT_INVLPG); + set_intercept(svm, INTERCEPT_INVLPGA); + set_intercept(svm, INTERCEPT_IOIO_PROT); + set_intercept(svm, INTERCEPT_MSR_PROT); + set_intercept(svm, INTERCEPT_TASK_SWITCH); + set_intercept(svm, INTERCEPT_SHUTDOWN); + set_intercept(svm, INTERCEPT_VMRUN); + set_intercept(svm, INTERCEPT_VMMCALL); + set_intercept(svm, INTERCEPT_VMLOAD); + set_intercept(svm, INTERCEPT_VMSAVE); + set_intercept(svm, INTERCEPT_STGI); + set_intercept(svm, INTERCEPT_CLGI); + set_intercept(svm, INTERCEPT_SKINIT); + set_intercept(svm, INTERCEPT_WBINVD); + set_intercept(svm, INTERCEPT_MONITOR); + set_intercept(svm, INTERCEPT_MWAIT); + set_intercept(svm, INTERCEPT_XSETBV); + + control->iopm_base_pa = iopm_base; + control->msrpm_base_pa = __pa(svm->msrpm); + control->int_ctl = V_INTR_MASKING_MASK; + + init_seg(&save->es); + init_seg(&save->ss); + init_seg(&save->ds); + init_seg(&save->fs); + init_seg(&save->gs); + + save->cs.selector = 0xf000; + save->cs.base = 0xffff0000; + /* Executable/Readable Code Segment */ + save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | + SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; + save->cs.limit = 0xffff; + + save->gdtr.limit = 0xffff; + save->idtr.limit = 0xffff; + + init_sys_seg(&save->ldtr, SEG_TYPE_LDT); + init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); + + svm_set_efer(&svm->vcpu, 0); + save->dr6 = 0xffff0ff0; + kvm_set_rflags(&svm->vcpu, 2); + save->rip = 0x0000fff0; + svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; + + /* + * This is the guest-visible cr0 value. + * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. + */ + svm->vcpu.arch.cr0 = 0; + (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); + + save->cr4 = X86_CR4_PAE; + /* rdx = ?? */ + + if (npt_enabled) { + /* Setup VMCB for Nested Paging */ + control->nested_ctl = 1; + clr_intercept(svm, INTERCEPT_INVLPG); + clr_exception_intercept(svm, PF_VECTOR); + clr_cr_intercept(svm, INTERCEPT_CR3_READ); + clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); + save->g_pat = 0x0007040600070406ULL; + save->cr3 = 0; + save->cr4 = 0; + } + svm->asid_generation = 0; + + svm->nested.vmcb = 0; + svm->vcpu.arch.hflags = 0; + + if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { + control->pause_filter_count = 3000; + set_intercept(svm, INTERCEPT_PAUSE); + } + + mark_all_dirty(svm->vmcb); + + enable_gif(svm); +} + +static void svm_vcpu_reset(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + u32 dummy; + u32 eax = 1; + + init_vmcb(svm); + + kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy); + kvm_register_write(vcpu, VCPU_REGS_RDX, eax); +} + +static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) +{ + struct vcpu_svm *svm; + struct page *page; + struct page *msrpm_pages; + struct page *hsave_page; + struct page *nested_msrpm_pages; + int err; + + svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); + if (!svm) { + err = -ENOMEM; + goto out; + } + + svm->tsc_ratio = TSC_RATIO_DEFAULT; + + err = kvm_vcpu_init(&svm->vcpu, kvm, id); + if (err) + goto free_svm; + + err = -ENOMEM; + page = alloc_page(GFP_KERNEL); + if (!page) + goto uninit; + + msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); + if (!msrpm_pages) + goto free_page1; + + nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); + if (!nested_msrpm_pages) + goto free_page2; + + hsave_page = alloc_page(GFP_KERNEL); + if (!hsave_page) + goto free_page3; + + svm->nested.hsave = page_address(hsave_page); + + svm->msrpm = page_address(msrpm_pages); + svm_vcpu_init_msrpm(svm->msrpm); + + svm->nested.msrpm = page_address(nested_msrpm_pages); + svm_vcpu_init_msrpm(svm->nested.msrpm); + + svm->vmcb = page_address(page); + clear_page(svm->vmcb); + svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; + svm->asid_generation = 0; + init_vmcb(svm); + + svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | + MSR_IA32_APICBASE_ENABLE; + if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) + svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; + + svm_init_osvw(&svm->vcpu); + + return &svm->vcpu; + +free_page3: + __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); +free_page2: + __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); +free_page1: + __free_page(page); +uninit: + kvm_vcpu_uninit(&svm->vcpu); +free_svm: + kmem_cache_free(kvm_vcpu_cache, svm); +out: + return ERR_PTR(err); +} + +static void svm_free_vcpu(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT)); + __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); + __free_page(virt_to_page(svm->nested.hsave)); + __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); + kvm_vcpu_uninit(vcpu); + kmem_cache_free(kvm_vcpu_cache, svm); +} + +static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + int i; + + if (unlikely(cpu != vcpu->cpu)) { + svm->asid_generation = 0; + mark_all_dirty(svm->vmcb); + } + +#ifdef CONFIG_X86_64 + rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); +#endif + savesegment(fs, svm->host.fs); + savesegment(gs, svm->host.gs); + svm->host.ldt = kvm_read_ldt(); + + for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) + rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); + + if (static_cpu_has(X86_FEATURE_TSCRATEMSR) && + svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) { + __this_cpu_write(current_tsc_ratio, svm->tsc_ratio); + wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio); + } +} + +static void svm_vcpu_put(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + int i; + + ++vcpu->stat.host_state_reload; + kvm_load_ldt(svm->host.ldt); +#ifdef CONFIG_X86_64 + loadsegment(fs, svm->host.fs); + wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs); + load_gs_index(svm->host.gs); +#else +#ifdef CONFIG_X86_32_LAZY_GS + loadsegment(gs, svm->host.gs); +#endif +#endif + for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) + wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); +} + +static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) +{ + return to_svm(vcpu)->vmcb->save.rflags; +} + +static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) +{ + /* + * Any change of EFLAGS.VM is accompained by a reload of SS + * (caused by either a task switch or an inter-privilege IRET), + * so we do not need to update the CPL here. + */ + to_svm(vcpu)->vmcb->save.rflags = rflags; +} + +static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) +{ + switch (reg) { + case VCPU_EXREG_PDPTR: + BUG_ON(!npt_enabled); + load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); + break; + default: + BUG(); + } +} + +static void svm_set_vintr(struct vcpu_svm *svm) +{ + set_intercept(svm, INTERCEPT_VINTR); +} + +static void svm_clear_vintr(struct vcpu_svm *svm) +{ + clr_intercept(svm, INTERCEPT_VINTR); +} + +static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) +{ + struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; + + switch (seg) { + case VCPU_SREG_CS: return &save->cs; + case VCPU_SREG_DS: return &save->ds; + case VCPU_SREG_ES: return &save->es; + case VCPU_SREG_FS: return &save->fs; + case VCPU_SREG_GS: return &save->gs; + case VCPU_SREG_SS: return &save->ss; + case VCPU_SREG_TR: return &save->tr; + case VCPU_SREG_LDTR: return &save->ldtr; + } + BUG(); + return NULL; +} + +static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) +{ + struct vmcb_seg *s = svm_seg(vcpu, seg); + + return s->base; +} + +static void svm_get_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + struct vmcb_seg *s = svm_seg(vcpu, seg); + + var->base = s->base; + var->limit = s->limit; + var->selector = s->selector; + var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; + var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; + var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; + var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; + var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; + var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; + var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; + + /* + * AMD CPUs circa 2014 track the G bit for all segments except CS. + * However, the SVM spec states that the G bit is not observed by the + * CPU, and some VMware virtual CPUs drop the G bit for all segments. + * So let's synthesize a legal G bit for all segments, this helps + * running KVM nested. It also helps cross-vendor migration, because + * Intel's vmentry has a check on the 'G' bit. + */ + var->g = s->limit > 0xfffff; + + /* + * AMD's VMCB does not have an explicit unusable field, so emulate it + * for cross vendor migration purposes by "not present" + */ + var->unusable = !var->present || (var->type == 0); + + switch (seg) { + case VCPU_SREG_TR: + /* + * Work around a bug where the busy flag in the tr selector + * isn't exposed + */ + var->type |= 0x2; + break; + case VCPU_SREG_DS: + case VCPU_SREG_ES: + case VCPU_SREG_FS: + case VCPU_SREG_GS: + /* + * The accessed bit must always be set in the segment + * descriptor cache, although it can be cleared in the + * descriptor, the cached bit always remains at 1. Since + * Intel has a check on this, set it here to support + * cross-vendor migration. + */ + if (!var->unusable) + var->type |= 0x1; + break; + case VCPU_SREG_SS: + /* + * On AMD CPUs sometimes the DB bit in the segment + * descriptor is left as 1, although the whole segment has + * been made unusable. Clear it here to pass an Intel VMX + * entry check when cross vendor migrating. + */ + if (var->unusable) + var->db = 0; + var->dpl = to_svm(vcpu)->vmcb->save.cpl; + break; + } +} + +static int svm_get_cpl(struct kvm_vcpu *vcpu) +{ + struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; + + return save->cpl; +} + +static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + dt->size = svm->vmcb->save.idtr.limit; + dt->address = svm->vmcb->save.idtr.base; +} + +static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->save.idtr.limit = dt->size; + svm->vmcb->save.idtr.base = dt->address ; + mark_dirty(svm->vmcb, VMCB_DT); +} + +static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + dt->size = svm->vmcb->save.gdtr.limit; + dt->address = svm->vmcb->save.gdtr.base; +} + +static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->save.gdtr.limit = dt->size; + svm->vmcb->save.gdtr.base = dt->address ; + mark_dirty(svm->vmcb, VMCB_DT); +} + +static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) +{ +} + +static void svm_decache_cr3(struct kvm_vcpu *vcpu) +{ +} + +static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) +{ +} + +static void update_cr0_intercept(struct vcpu_svm *svm) +{ + ulong gcr0 = svm->vcpu.arch.cr0; + u64 *hcr0 = &svm->vmcb->save.cr0; + + if (!svm->vcpu.fpu_active) + *hcr0 |= SVM_CR0_SELECTIVE_MASK; + else + *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) + | (gcr0 & SVM_CR0_SELECTIVE_MASK); + + mark_dirty(svm->vmcb, VMCB_CR); + + if (gcr0 == *hcr0 && svm->vcpu.fpu_active) { + clr_cr_intercept(svm, INTERCEPT_CR0_READ); + clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); + } else { + set_cr_intercept(svm, INTERCEPT_CR0_READ); + set_cr_intercept(svm, INTERCEPT_CR0_WRITE); + } +} + +static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +{ + struct vcpu_svm *svm = to_svm(vcpu); + +#ifdef CONFIG_X86_64 + if (vcpu->arch.efer & EFER_LME) { + if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { + vcpu->arch.efer |= EFER_LMA; + svm->vmcb->save.efer |= EFER_LMA | EFER_LME; + } + + if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { + vcpu->arch.efer &= ~EFER_LMA; + svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); + } + } +#endif + vcpu->arch.cr0 = cr0; + + if (!npt_enabled) + cr0 |= X86_CR0_PG | X86_CR0_WP; + + if (!vcpu->fpu_active) + cr0 |= X86_CR0_TS; + /* + * re-enable caching here because the QEMU bios + * does not do it - this results in some delay at + * reboot + */ + cr0 &= ~(X86_CR0_CD | X86_CR0_NW); + svm->vmcb->save.cr0 = cr0; + mark_dirty(svm->vmcb, VMCB_CR); + update_cr0_intercept(svm); +} + +static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; + unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; + + if (cr4 & X86_CR4_VMXE) + return 1; + + if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) + svm_flush_tlb(vcpu); + + vcpu->arch.cr4 = cr4; + if (!npt_enabled) + cr4 |= X86_CR4_PAE; + cr4 |= host_cr4_mce; + to_svm(vcpu)->vmcb->save.cr4 = cr4; + mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); + return 0; +} + +static void svm_set_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + struct vcpu_svm *svm = to_svm(vcpu); + struct vmcb_seg *s = svm_seg(vcpu, seg); + + s->base = var->base; + s->limit = var->limit; + s->selector = var->selector; + if (var->unusable) + s->attrib = 0; + else { + s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); + s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; + s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; + s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT; + s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; + s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; + s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; + s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; + } + + /* + * This is always accurate, except if SYSRET returned to a segment + * with SS.DPL != 3. Intel does not have this quirk, and always + * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it + * would entail passing the CPL to userspace and back. + */ + if (seg == VCPU_SREG_SS) + svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; + + mark_dirty(svm->vmcb, VMCB_SEG); +} + +static void update_db_bp_intercept(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + clr_exception_intercept(svm, DB_VECTOR); + clr_exception_intercept(svm, BP_VECTOR); + + if (svm->nmi_singlestep) + set_exception_intercept(svm, DB_VECTOR); + + if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { + if (vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) + set_exception_intercept(svm, DB_VECTOR); + if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) + set_exception_intercept(svm, BP_VECTOR); + } else + vcpu->guest_debug = 0; +} + +static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) +{ + if (sd->next_asid > sd->max_asid) { + ++sd->asid_generation; + sd->next_asid = 1; + svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; + } + + svm->asid_generation = sd->asid_generation; + svm->vmcb->control.asid = sd->next_asid++; + + mark_dirty(svm->vmcb, VMCB_ASID); +} + +static u64 svm_get_dr6(struct kvm_vcpu *vcpu) +{ + return to_svm(vcpu)->vmcb->save.dr6; +} + +static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->save.dr6 = value; + mark_dirty(svm->vmcb, VMCB_DR); +} + +static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + get_debugreg(vcpu->arch.db[0], 0); + get_debugreg(vcpu->arch.db[1], 1); + get_debugreg(vcpu->arch.db[2], 2); + get_debugreg(vcpu->arch.db[3], 3); + vcpu->arch.dr6 = svm_get_dr6(vcpu); + vcpu->arch.dr7 = svm->vmcb->save.dr7; + + vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; + set_dr_intercepts(svm); +} + +static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->save.dr7 = value; + mark_dirty(svm->vmcb, VMCB_DR); +} + +static int pf_interception(struct vcpu_svm *svm) +{ + u64 fault_address = svm->vmcb->control.exit_info_2; + u32 error_code; + int r = 1; + + switch (svm->apf_reason) { + default: + error_code = svm->vmcb->control.exit_info_1; + + trace_kvm_page_fault(fault_address, error_code); + if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu)) + kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address); + r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, + svm->vmcb->control.insn_bytes, + svm->vmcb->control.insn_len); + break; + case KVM_PV_REASON_PAGE_NOT_PRESENT: + svm->apf_reason = 0; + local_irq_disable(); + kvm_async_pf_task_wait(fault_address); + local_irq_enable(); + break; + case KVM_PV_REASON_PAGE_READY: + svm->apf_reason = 0; + local_irq_disable(); + kvm_async_pf_task_wake(fault_address); + local_irq_enable(); + break; + } + return r; +} + +static int db_interception(struct vcpu_svm *svm) +{ + struct kvm_run *kvm_run = svm->vcpu.run; + + if (!(svm->vcpu.guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && + !svm->nmi_singlestep) { + kvm_queue_exception(&svm->vcpu, DB_VECTOR); + return 1; + } + + if (svm->nmi_singlestep) { + svm->nmi_singlestep = false; + if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) + svm->vmcb->save.rflags &= + ~(X86_EFLAGS_TF | X86_EFLAGS_RF); + update_db_bp_intercept(&svm->vcpu); + } + + if (svm->vcpu.guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { + kvm_run->exit_reason = KVM_EXIT_DEBUG; + kvm_run->debug.arch.pc = + svm->vmcb->save.cs.base + svm->vmcb->save.rip; + kvm_run->debug.arch.exception = DB_VECTOR; + return 0; + } + + return 1; +} + +static int bp_interception(struct vcpu_svm *svm) +{ + struct kvm_run *kvm_run = svm->vcpu.run; + + kvm_run->exit_reason = KVM_EXIT_DEBUG; + kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; + kvm_run->debug.arch.exception = BP_VECTOR; + return 0; +} + +static int ud_interception(struct vcpu_svm *svm) +{ + int er; + + er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD); + if (er != EMULATE_DONE) + kvm_queue_exception(&svm->vcpu, UD_VECTOR); + return 1; +} + +static void svm_fpu_activate(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + clr_exception_intercept(svm, NM_VECTOR); + + svm->vcpu.fpu_active = 1; + update_cr0_intercept(svm); +} + +static int nm_interception(struct vcpu_svm *svm) +{ + svm_fpu_activate(&svm->vcpu); + return 1; +} + +static bool is_erratum_383(void) +{ + int err, i; + u64 value; + + if (!erratum_383_found) + return false; + + value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); + if (err) + return false; + + /* Bit 62 may or may not be set for this mce */ + value &= ~(1ULL << 62); + + if (value != 0xb600000000010015ULL) + return false; + + /* Clear MCi_STATUS registers */ + for (i = 0; i < 6; ++i) + native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); + + value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); + if (!err) { + u32 low, high; + + value &= ~(1ULL << 2); + low = lower_32_bits(value); + high = upper_32_bits(value); + + native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); + } + + /* Flush tlb to evict multi-match entries */ + __flush_tlb_all(); + + return true; +} + +static void svm_handle_mce(struct vcpu_svm *svm) +{ + if (is_erratum_383()) { + /* + * Erratum 383 triggered. Guest state is corrupt so kill the + * guest. + */ + pr_err("KVM: Guest triggered AMD Erratum 383\n"); + + kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); + + return; + } + + /* + * On an #MC intercept the MCE handler is not called automatically in + * the host. So do it by hand here. + */ + asm volatile ( + "int $0x12\n"); + /* not sure if we ever come back to this point */ + + return; +} + +static int mc_interception(struct vcpu_svm *svm) +{ + return 1; +} + +static int shutdown_interception(struct vcpu_svm *svm) +{ + struct kvm_run *kvm_run = svm->vcpu.run; + + /* + * VMCB is undefined after a SHUTDOWN intercept + * so reinitialize it. + */ + clear_page(svm->vmcb); + init_vmcb(svm); + + kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; + return 0; +} + +static int io_interception(struct vcpu_svm *svm) +{ + struct kvm_vcpu *vcpu = &svm->vcpu; + u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ + int size, in, string; + unsigned port; + + ++svm->vcpu.stat.io_exits; + string = (io_info & SVM_IOIO_STR_MASK) != 0; + in = (io_info & SVM_IOIO_TYPE_MASK) != 0; + if (string || in) + return emulate_instruction(vcpu, 0) == EMULATE_DONE; + + port = io_info >> 16; + size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; + svm->next_rip = svm->vmcb->control.exit_info_2; + skip_emulated_instruction(&svm->vcpu); + + return kvm_fast_pio_out(vcpu, size, port); +} + +static int nmi_interception(struct vcpu_svm *svm) +{ + return 1; +} + +static int intr_interception(struct vcpu_svm *svm) +{ + ++svm->vcpu.stat.irq_exits; + return 1; +} + +static int nop_on_interception(struct vcpu_svm *svm) +{ + return 1; +} + +static int halt_interception(struct vcpu_svm *svm) +{ + svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; + return kvm_emulate_halt(&svm->vcpu); +} + +static int vmmcall_interception(struct vcpu_svm *svm) +{ + svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; + kvm_emulate_hypercall(&svm->vcpu); + return 1; +} + +static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + return svm->nested.nested_cr3; +} + +static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) +{ + struct vcpu_svm *svm = to_svm(vcpu); + u64 cr3 = svm->nested.nested_cr3; + u64 pdpte; + int ret; + + ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte, + offset_in_page(cr3) + index * 8, 8); + if (ret) + return 0; + return pdpte; +} + +static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu, + unsigned long root) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->control.nested_cr3 = root; + mark_dirty(svm->vmcb, VMCB_NPT); + svm_flush_tlb(vcpu); +} + +static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) { + /* + * TODO: track the cause of the nested page fault, and + * correctly fill in the high bits of exit_info_1. + */ + svm->vmcb->control.exit_code = SVM_EXIT_NPF; + svm->vmcb->control.exit_code_hi = 0; + svm->vmcb->control.exit_info_1 = (1ULL << 32); + svm->vmcb->control.exit_info_2 = fault->address; + } + + svm->vmcb->control.exit_info_1 &= ~0xffffffffULL; + svm->vmcb->control.exit_info_1 |= fault->error_code; + + /* + * The present bit is always zero for page structure faults on real + * hardware. + */ + if (svm->vmcb->control.exit_info_1 & (2ULL << 32)) + svm->vmcb->control.exit_info_1 &= ~1; + + nested_svm_vmexit(svm); +} + +static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) +{ + WARN_ON(mmu_is_nested(vcpu)); + kvm_init_shadow_mmu(vcpu); + vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3; + vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3; + vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr; + vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit; + vcpu->arch.mmu.shadow_root_level = get_npt_level(); + vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; +} + +static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) +{ + vcpu->arch.walk_mmu = &vcpu->arch.mmu; +} + +static int nested_svm_check_permissions(struct vcpu_svm *svm) +{ + if (!(svm->vcpu.arch.efer & EFER_SVME) + || !is_paging(&svm->vcpu)) { + kvm_queue_exception(&svm->vcpu, UD_VECTOR); + return 1; + } + + if (svm->vmcb->save.cpl) { + kvm_inject_gp(&svm->vcpu, 0); + return 1; + } + + return 0; +} + +static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, + bool has_error_code, u32 error_code) +{ + int vmexit; + + if (!is_guest_mode(&svm->vcpu)) + return 0; + + svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; + svm->vmcb->control.exit_code_hi = 0; + svm->vmcb->control.exit_info_1 = error_code; + svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; + + vmexit = nested_svm_intercept(svm); + if (vmexit == NESTED_EXIT_DONE) + svm->nested.exit_required = true; + + return vmexit; +} + +/* This function returns true if it is save to enable the irq window */ +static inline bool nested_svm_intr(struct vcpu_svm *svm) +{ + if (!is_guest_mode(&svm->vcpu)) + return true; + + if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) + return true; + + if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) + return false; + + /* + * if vmexit was already requested (by intercepted exception + * for instance) do not overwrite it with "external interrupt" + * vmexit. + */ + if (svm->nested.exit_required) + return false; + + svm->vmcb->control.exit_code = SVM_EXIT_INTR; + svm->vmcb->control.exit_info_1 = 0; + svm->vmcb->control.exit_info_2 = 0; + + if (svm->nested.intercept & 1ULL) { + /* + * The #vmexit can't be emulated here directly because this + * code path runs with irqs and preemption disabled. A + * #vmexit emulation might sleep. Only signal request for + * the #vmexit here. + */ + svm->nested.exit_required = true; + trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); + return false; + } + + return true; +} + +/* This function returns true if it is save to enable the nmi window */ +static inline bool nested_svm_nmi(struct vcpu_svm *svm) +{ + if (!is_guest_mode(&svm->vcpu)) + return true; + + if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) + return true; + + svm->vmcb->control.exit_code = SVM_EXIT_NMI; + svm->nested.exit_required = true; + + return false; +} + +static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page) +{ + struct page *page; + + might_sleep(); + + page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT); + if (is_error_page(page)) + goto error; + + *_page = page; + + return kmap(page); + +error: + kvm_inject_gp(&svm->vcpu, 0); + + return NULL; +} + +static void nested_svm_unmap(struct page *page) +{ + kunmap(page); + kvm_release_page_dirty(page); +} + +static int nested_svm_intercept_ioio(struct vcpu_svm *svm) +{ + unsigned port, size, iopm_len; + u16 val, mask; + u8 start_bit; + u64 gpa; + + if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT))) + return NESTED_EXIT_HOST; + + port = svm->vmcb->control.exit_info_1 >> 16; + size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> + SVM_IOIO_SIZE_SHIFT; + gpa = svm->nested.vmcb_iopm + (port / 8); + start_bit = port % 8; + iopm_len = (start_bit + size > 8) ? 2 : 1; + mask = (0xf >> (4 - size)) << start_bit; + val = 0; + + if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len)) + return NESTED_EXIT_DONE; + + return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; +} + +static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) +{ + u32 offset, msr, value; + int write, mask; + + if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) + return NESTED_EXIT_HOST; + + msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; + offset = svm_msrpm_offset(msr); + write = svm->vmcb->control.exit_info_1 & 1; + mask = 1 << ((2 * (msr & 0xf)) + write); + + if (offset == MSR_INVALID) + return NESTED_EXIT_DONE; + + /* Offset is in 32 bit units but need in 8 bit units */ + offset *= 4; + + if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4)) + return NESTED_EXIT_DONE; + + return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; +} + +static int nested_svm_exit_special(struct vcpu_svm *svm) +{ + u32 exit_code = svm->vmcb->control.exit_code; + + switch (exit_code) { + case SVM_EXIT_INTR: + case SVM_EXIT_NMI: + case SVM_EXIT_EXCP_BASE + MC_VECTOR: + return NESTED_EXIT_HOST; + case SVM_EXIT_NPF: + /* For now we are always handling NPFs when using them */ + if (npt_enabled) + return NESTED_EXIT_HOST; + break; + case SVM_EXIT_EXCP_BASE + PF_VECTOR: + /* When we're shadowing, trap PFs, but not async PF */ + if (!npt_enabled && svm->apf_reason == 0) + return NESTED_EXIT_HOST; + break; + case SVM_EXIT_EXCP_BASE + NM_VECTOR: + nm_interception(svm); + break; + default: + break; + } + + return NESTED_EXIT_CONTINUE; +} + +/* + * If this function returns true, this #vmexit was already handled + */ +static int nested_svm_intercept(struct vcpu_svm *svm) +{ + u32 exit_code = svm->vmcb->control.exit_code; + int vmexit = NESTED_EXIT_HOST; + + switch (exit_code) { + case SVM_EXIT_MSR: + vmexit = nested_svm_exit_handled_msr(svm); + break; + case SVM_EXIT_IOIO: + vmexit = nested_svm_intercept_ioio(svm); + break; + case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { + u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0); + if (svm->nested.intercept_cr & bit) + vmexit = NESTED_EXIT_DONE; + break; + } + case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { + u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0); + if (svm->nested.intercept_dr & bit) + vmexit = NESTED_EXIT_DONE; + break; + } + case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { + u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); + if (svm->nested.intercept_exceptions & excp_bits) + vmexit = NESTED_EXIT_DONE; + /* async page fault always cause vmexit */ + else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) && + svm->apf_reason != 0) + vmexit = NESTED_EXIT_DONE; + break; + } + case SVM_EXIT_ERR: { + vmexit = NESTED_EXIT_DONE; + break; + } + default: { + u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); + if (svm->nested.intercept & exit_bits) + vmexit = NESTED_EXIT_DONE; + } + } + + return vmexit; +} + +static int nested_svm_exit_handled(struct vcpu_svm *svm) +{ + int vmexit; + + vmexit = nested_svm_intercept(svm); + + if (vmexit == NESTED_EXIT_DONE) + nested_svm_vmexit(svm); + + return vmexit; +} + +static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) +{ + struct vmcb_control_area *dst = &dst_vmcb->control; + struct vmcb_control_area *from = &from_vmcb->control; + + dst->intercept_cr = from->intercept_cr; + dst->intercept_dr = from->intercept_dr; + dst->intercept_exceptions = from->intercept_exceptions; + dst->intercept = from->intercept; + dst->iopm_base_pa = from->iopm_base_pa; + dst->msrpm_base_pa = from->msrpm_base_pa; + dst->tsc_offset = from->tsc_offset; + dst->asid = from->asid; + dst->tlb_ctl = from->tlb_ctl; + dst->int_ctl = from->int_ctl; + dst->int_vector = from->int_vector; + dst->int_state = from->int_state; + dst->exit_code = from->exit_code; + dst->exit_code_hi = from->exit_code_hi; + dst->exit_info_1 = from->exit_info_1; + dst->exit_info_2 = from->exit_info_2; + dst->exit_int_info = from->exit_int_info; + dst->exit_int_info_err = from->exit_int_info_err; + dst->nested_ctl = from->nested_ctl; + dst->event_inj = from->event_inj; + dst->event_inj_err = from->event_inj_err; + dst->nested_cr3 = from->nested_cr3; + dst->lbr_ctl = from->lbr_ctl; +} + +static int nested_svm_vmexit(struct vcpu_svm *svm) +{ + struct vmcb *nested_vmcb; + struct vmcb *hsave = svm->nested.hsave; + struct vmcb *vmcb = svm->vmcb; + struct page *page; + + trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, + vmcb->control.exit_info_1, + vmcb->control.exit_info_2, + vmcb->control.exit_int_info, + vmcb->control.exit_int_info_err, + KVM_ISA_SVM); + + nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page); + if (!nested_vmcb) + return 1; + + /* Exit Guest-Mode */ + leave_guest_mode(&svm->vcpu); + svm->nested.vmcb = 0; + + /* Give the current vmcb to the guest */ + disable_gif(svm); + + nested_vmcb->save.es = vmcb->save.es; + nested_vmcb->save.cs = vmcb->save.cs; + nested_vmcb->save.ss = vmcb->save.ss; + nested_vmcb->save.ds = vmcb->save.ds; + nested_vmcb->save.gdtr = vmcb->save.gdtr; + nested_vmcb->save.idtr = vmcb->save.idtr; + nested_vmcb->save.efer = svm->vcpu.arch.efer; + nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu); + nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu); + nested_vmcb->save.cr2 = vmcb->save.cr2; + nested_vmcb->save.cr4 = svm->vcpu.arch.cr4; + nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu); + nested_vmcb->save.rip = vmcb->save.rip; + nested_vmcb->save.rsp = vmcb->save.rsp; + nested_vmcb->save.rax = vmcb->save.rax; + nested_vmcb->save.dr7 = vmcb->save.dr7; + nested_vmcb->save.dr6 = vmcb->save.dr6; + nested_vmcb->save.cpl = vmcb->save.cpl; + + nested_vmcb->control.int_ctl = vmcb->control.int_ctl; + nested_vmcb->control.int_vector = vmcb->control.int_vector; + nested_vmcb->control.int_state = vmcb->control.int_state; + nested_vmcb->control.exit_code = vmcb->control.exit_code; + nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi; + nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1; + nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2; + nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info; + nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; + nested_vmcb->control.next_rip = vmcb->control.next_rip; + + /* + * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have + * to make sure that we do not lose injected events. So check event_inj + * here and copy it to exit_int_info if it is valid. + * Exit_int_info and event_inj can't be both valid because the case + * below only happens on a VMRUN instruction intercept which has + * no valid exit_int_info set. + */ + if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { + struct vmcb_control_area *nc = &nested_vmcb->control; + + nc->exit_int_info = vmcb->control.event_inj; + nc->exit_int_info_err = vmcb->control.event_inj_err; + } + + nested_vmcb->control.tlb_ctl = 0; + nested_vmcb->control.event_inj = 0; + nested_vmcb->control.event_inj_err = 0; + + /* We always set V_INTR_MASKING and remember the old value in hflags */ + if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) + nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; + + /* Restore the original control entries */ + copy_vmcb_control_area(vmcb, hsave); + + kvm_clear_exception_queue(&svm->vcpu); + kvm_clear_interrupt_queue(&svm->vcpu); + + svm->nested.nested_cr3 = 0; + + /* Restore selected save entries */ + svm->vmcb->save.es = hsave->save.es; + svm->vmcb->save.cs = hsave->save.cs; + svm->vmcb->save.ss = hsave->save.ss; + svm->vmcb->save.ds = hsave->save.ds; + svm->vmcb->save.gdtr = hsave->save.gdtr; + svm->vmcb->save.idtr = hsave->save.idtr; + kvm_set_rflags(&svm->vcpu, hsave->save.rflags); + svm_set_efer(&svm->vcpu, hsave->save.efer); + svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); + svm_set_cr4(&svm->vcpu, hsave->save.cr4); + if (npt_enabled) { + svm->vmcb->save.cr3 = hsave->save.cr3; + svm->vcpu.arch.cr3 = hsave->save.cr3; + } else { + (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3); + } + kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); + kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); + kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); + svm->vmcb->save.dr7 = 0; + svm->vmcb->save.cpl = 0; + svm->vmcb->control.exit_int_info = 0; + + mark_all_dirty(svm->vmcb); + + nested_svm_unmap(page); + + nested_svm_uninit_mmu_context(&svm->vcpu); + kvm_mmu_reset_context(&svm->vcpu); + kvm_mmu_load(&svm->vcpu); + + return 0; +} + +static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) +{ + /* + * This function merges the msr permission bitmaps of kvm and the + * nested vmcb. It is optimized in that it only merges the parts where + * the kvm msr permission bitmap may contain zero bits + */ + int i; + + if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) + return true; + + for (i = 0; i < MSRPM_OFFSETS; i++) { + u32 value, p; + u64 offset; + + if (msrpm_offsets[i] == 0xffffffff) + break; + + p = msrpm_offsets[i]; + offset = svm->nested.vmcb_msrpm + (p * 4); + + if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4)) + return false; + + svm->nested.msrpm[p] = svm->msrpm[p] | value; + } + + svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm); + + return true; +} + +static bool nested_vmcb_checks(struct vmcb *vmcb) +{ + if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0) + return false; + + if (vmcb->control.asid == 0) + return false; + + if (vmcb->control.nested_ctl && !npt_enabled) + return false; + + return true; +} + +static bool nested_svm_vmrun(struct vcpu_svm *svm) +{ + struct vmcb *nested_vmcb; + struct vmcb *hsave = svm->nested.hsave; + struct vmcb *vmcb = svm->vmcb; + struct page *page; + u64 vmcb_gpa; + + vmcb_gpa = svm->vmcb->save.rax; + + nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); + if (!nested_vmcb) + return false; + + if (!nested_vmcb_checks(nested_vmcb)) { + nested_vmcb->control.exit_code = SVM_EXIT_ERR; + nested_vmcb->control.exit_code_hi = 0; + nested_vmcb->control.exit_info_1 = 0; + nested_vmcb->control.exit_info_2 = 0; + + nested_svm_unmap(page); + + return false; + } + + trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa, + nested_vmcb->save.rip, + nested_vmcb->control.int_ctl, + nested_vmcb->control.event_inj, + nested_vmcb->control.nested_ctl); + + trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff, + nested_vmcb->control.intercept_cr >> 16, + nested_vmcb->control.intercept_exceptions, + nested_vmcb->control.intercept); + + /* Clear internal status */ + kvm_clear_exception_queue(&svm->vcpu); + kvm_clear_interrupt_queue(&svm->vcpu); + + /* + * Save the old vmcb, so we don't need to pick what we save, but can + * restore everything when a VMEXIT occurs + */ + hsave->save.es = vmcb->save.es; + hsave->save.cs = vmcb->save.cs; + hsave->save.ss = vmcb->save.ss; + hsave->save.ds = vmcb->save.ds; + hsave->save.gdtr = vmcb->save.gdtr; + hsave->save.idtr = vmcb->save.idtr; + hsave->save.efer = svm->vcpu.arch.efer; + hsave->save.cr0 = kvm_read_cr0(&svm->vcpu); + hsave->save.cr4 = svm->vcpu.arch.cr4; + hsave->save.rflags = kvm_get_rflags(&svm->vcpu); + hsave->save.rip = kvm_rip_read(&svm->vcpu); + hsave->save.rsp = vmcb->save.rsp; + hsave->save.rax = vmcb->save.rax; + if (npt_enabled) + hsave->save.cr3 = vmcb->save.cr3; + else + hsave->save.cr3 = kvm_read_cr3(&svm->vcpu); + + copy_vmcb_control_area(hsave, vmcb); + + if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF) + svm->vcpu.arch.hflags |= HF_HIF_MASK; + else + svm->vcpu.arch.hflags &= ~HF_HIF_MASK; + + if (nested_vmcb->control.nested_ctl) { + kvm_mmu_unload(&svm->vcpu); + svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; + nested_svm_init_mmu_context(&svm->vcpu); + } + + /* Load the nested guest state */ + svm->vmcb->save.es = nested_vmcb->save.es; + svm->vmcb->save.cs = nested_vmcb->save.cs; + svm->vmcb->save.ss = nested_vmcb->save.ss; + svm->vmcb->save.ds = nested_vmcb->save.ds; + svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; + svm->vmcb->save.idtr = nested_vmcb->save.idtr; + kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags); + svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); + svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); + svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); + if (npt_enabled) { + svm->vmcb->save.cr3 = nested_vmcb->save.cr3; + svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; + } else + (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); + + /* Guest paging mode is active - reset mmu */ + kvm_mmu_reset_context(&svm->vcpu); + + svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; + kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); + kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); + kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); + + /* In case we don't even reach vcpu_run, the fields are not updated */ + svm->vmcb->save.rax = nested_vmcb->save.rax; + svm->vmcb->save.rsp = nested_vmcb->save.rsp; + svm->vmcb->save.rip = nested_vmcb->save.rip; + svm->vmcb->save.dr7 = nested_vmcb->save.dr7; + svm->vmcb->save.dr6 = nested_vmcb->save.dr6; + svm->vmcb->save.cpl = nested_vmcb->save.cpl; + + svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL; + svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL; + + /* cache intercepts */ + svm->nested.intercept_cr = nested_vmcb->control.intercept_cr; + svm->nested.intercept_dr = nested_vmcb->control.intercept_dr; + svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; + svm->nested.intercept = nested_vmcb->control.intercept; + + svm_flush_tlb(&svm->vcpu); + svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; + if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) + svm->vcpu.arch.hflags |= HF_VINTR_MASK; + else + svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; + + if (svm->vcpu.arch.hflags & HF_VINTR_MASK) { + /* We only want the cr8 intercept bits of the guest */ + clr_cr_intercept(svm, INTERCEPT_CR8_READ); + clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); + } + + /* We don't want to see VMMCALLs from a nested guest */ + clr_intercept(svm, INTERCEPT_VMMCALL); + + svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl; + svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; + svm->vmcb->control.int_state = nested_vmcb->control.int_state; + svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset; + svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; + svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; + + nested_svm_unmap(page); + + /* Enter Guest-Mode */ + enter_guest_mode(&svm->vcpu); + + /* + * Merge guest and host intercepts - must be called with vcpu in + * guest-mode to take affect here + */ + recalc_intercepts(svm); + + svm->nested.vmcb = vmcb_gpa; + + enable_gif(svm); + + mark_all_dirty(svm->vmcb); + + return true; +} + +static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) +{ + to_vmcb->save.fs = from_vmcb->save.fs; + to_vmcb->save.gs = from_vmcb->save.gs; + to_vmcb->save.tr = from_vmcb->save.tr; + to_vmcb->save.ldtr = from_vmcb->save.ldtr; + to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; + to_vmcb->save.star = from_vmcb->save.star; + to_vmcb->save.lstar = from_vmcb->save.lstar; + to_vmcb->save.cstar = from_vmcb->save.cstar; + to_vmcb->save.sfmask = from_vmcb->save.sfmask; + to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; + to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; + to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; +} + +static int vmload_interception(struct vcpu_svm *svm) +{ + struct vmcb *nested_vmcb; + struct page *page; + + if (nested_svm_check_permissions(svm)) + return 1; + + nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); + if (!nested_vmcb) + return 1; + + svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; + skip_emulated_instruction(&svm->vcpu); + + nested_svm_vmloadsave(nested_vmcb, svm->vmcb); + nested_svm_unmap(page); + + return 1; +} + +static int vmsave_interception(struct vcpu_svm *svm) +{ + struct vmcb *nested_vmcb; + struct page *page; + + if (nested_svm_check_permissions(svm)) + return 1; + + nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); + if (!nested_vmcb) + return 1; + + svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; + skip_emulated_instruction(&svm->vcpu); + + nested_svm_vmloadsave(svm->vmcb, nested_vmcb); + nested_svm_unmap(page); + + return 1; +} + +static int vmrun_interception(struct vcpu_svm *svm) +{ + if (nested_svm_check_permissions(svm)) + return 1; + + /* Save rip after vmrun instruction */ + kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3); + + if (!nested_svm_vmrun(svm)) + return 1; + + if (!nested_svm_vmrun_msrpm(svm)) + goto failed; + + return 1; + +failed: + + svm->vmcb->control.exit_code = SVM_EXIT_ERR; + svm->vmcb->control.exit_code_hi = 0; + svm->vmcb->control.exit_info_1 = 0; + svm->vmcb->control.exit_info_2 = 0; + + nested_svm_vmexit(svm); + + return 1; +} + +static int stgi_interception(struct vcpu_svm *svm) +{ + if (nested_svm_check_permissions(svm)) + return 1; + + svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; + skip_emulated_instruction(&svm->vcpu); + kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); + + enable_gif(svm); + + return 1; +} + +static int clgi_interception(struct vcpu_svm *svm) +{ + if (nested_svm_check_permissions(svm)) + return 1; + + svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; + skip_emulated_instruction(&svm->vcpu); + + disable_gif(svm); + + /* After a CLGI no interrupts should come */ + svm_clear_vintr(svm); + svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; + + mark_dirty(svm->vmcb, VMCB_INTR); + + return 1; +} + +static int invlpga_interception(struct vcpu_svm *svm) +{ + struct kvm_vcpu *vcpu = &svm->vcpu; + + trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX), + kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); + + /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ + kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); + + svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; + skip_emulated_instruction(&svm->vcpu); + return 1; +} + +static int skinit_interception(struct vcpu_svm *svm) +{ + trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); + + kvm_queue_exception(&svm->vcpu, UD_VECTOR); + return 1; +} + +static int wbinvd_interception(struct vcpu_svm *svm) +{ + kvm_emulate_wbinvd(&svm->vcpu); + return 1; +} + +static int xsetbv_interception(struct vcpu_svm *svm) +{ + u64 new_bv = kvm_read_edx_eax(&svm->vcpu); + u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); + + if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { + svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; + skip_emulated_instruction(&svm->vcpu); + } + + return 1; +} + +static int task_switch_interception(struct vcpu_svm *svm) +{ + u16 tss_selector; + int reason; + int int_type = svm->vmcb->control.exit_int_info & + SVM_EXITINTINFO_TYPE_MASK; + int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; + uint32_t type = + svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; + uint32_t idt_v = + svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; + bool has_error_code = false; + u32 error_code = 0; + + tss_selector = (u16)svm->vmcb->control.exit_info_1; + + if (svm->vmcb->control.exit_info_2 & + (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) + reason = TASK_SWITCH_IRET; + else if (svm->vmcb->control.exit_info_2 & + (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) + reason = TASK_SWITCH_JMP; + else if (idt_v) + reason = TASK_SWITCH_GATE; + else + reason = TASK_SWITCH_CALL; + + if (reason == TASK_SWITCH_GATE) { + switch (type) { + case SVM_EXITINTINFO_TYPE_NMI: + svm->vcpu.arch.nmi_injected = false; + break; + case SVM_EXITINTINFO_TYPE_EXEPT: + if (svm->vmcb->control.exit_info_2 & + (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { + has_error_code = true; + error_code = + (u32)svm->vmcb->control.exit_info_2; + } + kvm_clear_exception_queue(&svm->vcpu); + break; + case SVM_EXITINTINFO_TYPE_INTR: + kvm_clear_interrupt_queue(&svm->vcpu); + break; + default: + break; + } + } + + if (reason != TASK_SWITCH_GATE || + int_type == SVM_EXITINTINFO_TYPE_SOFT || + (int_type == SVM_EXITINTINFO_TYPE_EXEPT && + (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) + skip_emulated_instruction(&svm->vcpu); + + if (int_type != SVM_EXITINTINFO_TYPE_SOFT) + int_vec = -1; + + if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, + has_error_code, error_code) == EMULATE_FAIL) { + svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + svm->vcpu.run->internal.ndata = 0; + return 0; + } + return 1; +} + +static int cpuid_interception(struct vcpu_svm *svm) +{ + svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; + kvm_emulate_cpuid(&svm->vcpu); + return 1; +} + +static int iret_interception(struct vcpu_svm *svm) +{ + ++svm->vcpu.stat.nmi_window_exits; + clr_intercept(svm, INTERCEPT_IRET); + svm->vcpu.arch.hflags |= HF_IRET_MASK; + svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); + kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); + return 1; +} + +static int invlpg_interception(struct vcpu_svm *svm) +{ + if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) + return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; + + kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); + skip_emulated_instruction(&svm->vcpu); + return 1; +} + +static int emulate_on_interception(struct vcpu_svm *svm) +{ + return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; +} + +static int rdpmc_interception(struct vcpu_svm *svm) +{ + int err; + + if (!static_cpu_has(X86_FEATURE_NRIPS)) + return emulate_on_interception(svm); + + err = kvm_rdpmc(&svm->vcpu); + kvm_complete_insn_gp(&svm->vcpu, err); + + return 1; +} + +static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, + unsigned long val) +{ + unsigned long cr0 = svm->vcpu.arch.cr0; + bool ret = false; + u64 intercept; + + intercept = svm->nested.intercept; + + if (!is_guest_mode(&svm->vcpu) || + (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))) + return false; + + cr0 &= ~SVM_CR0_SELECTIVE_MASK; + val &= ~SVM_CR0_SELECTIVE_MASK; + + if (cr0 ^ val) { + svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; + ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); + } + + return ret; +} + +#define CR_VALID (1ULL << 63) + +static int cr_interception(struct vcpu_svm *svm) +{ + int reg, cr; + unsigned long val; + int err; + + if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) + return emulate_on_interception(svm); + + if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) + return emulate_on_interception(svm); + + reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; + if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) + cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; + else + cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; + + err = 0; + if (cr >= 16) { /* mov to cr */ + cr -= 16; + val = kvm_register_read(&svm->vcpu, reg); + switch (cr) { + case 0: + if (!check_selective_cr0_intercepted(svm, val)) + err = kvm_set_cr0(&svm->vcpu, val); + else + return 1; + + break; + case 3: + err = kvm_set_cr3(&svm->vcpu, val); + break; + case 4: + err = kvm_set_cr4(&svm->vcpu, val); + break; + case 8: + err = kvm_set_cr8(&svm->vcpu, val); + break; + default: + WARN(1, "unhandled write to CR%d", cr); + kvm_queue_exception(&svm->vcpu, UD_VECTOR); + return 1; + } + } else { /* mov from cr */ + switch (cr) { + case 0: + val = kvm_read_cr0(&svm->vcpu); + break; + case 2: + val = svm->vcpu.arch.cr2; + break; + case 3: + val = kvm_read_cr3(&svm->vcpu); + break; + case 4: + val = kvm_read_cr4(&svm->vcpu); + break; + case 8: + val = kvm_get_cr8(&svm->vcpu); + break; + default: + WARN(1, "unhandled read from CR%d", cr); + kvm_queue_exception(&svm->vcpu, UD_VECTOR); + return 1; + } + kvm_register_write(&svm->vcpu, reg, val); + } + kvm_complete_insn_gp(&svm->vcpu, err); + + return 1; +} + +static int dr_interception(struct vcpu_svm *svm) +{ + int reg, dr; + unsigned long val; + + if (svm->vcpu.guest_debug == 0) { + /* + * No more DR vmexits; force a reload of the debug registers + * and reenter on this instruction. The next vmexit will + * retrieve the full state of the debug registers. + */ + clr_dr_intercepts(svm); + svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; + return 1; + } + + if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) + return emulate_on_interception(svm); + + reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; + dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; + + if (dr >= 16) { /* mov to DRn */ + if (!kvm_require_dr(&svm->vcpu, dr - 16)) + return 1; + val = kvm_register_read(&svm->vcpu, reg); + kvm_set_dr(&svm->vcpu, dr - 16, val); + } else { + if (!kvm_require_dr(&svm->vcpu, dr)) + return 1; + kvm_get_dr(&svm->vcpu, dr, &val); + kvm_register_write(&svm->vcpu, reg, val); + } + + skip_emulated_instruction(&svm->vcpu); + + return 1; +} + +static int cr8_write_interception(struct vcpu_svm *svm) +{ + struct kvm_run *kvm_run = svm->vcpu.run; + int r; + + u8 cr8_prev = kvm_get_cr8(&svm->vcpu); + /* instruction emulation calls kvm_set_cr8() */ + r = cr_interception(svm); + if (irqchip_in_kernel(svm->vcpu.kvm)) + return r; + if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) + return r; + kvm_run->exit_reason = KVM_EXIT_SET_TPR; + return 0; +} + +static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) +{ + struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu)); + return vmcb->control.tsc_offset + + svm_scale_tsc(vcpu, host_tsc); +} + +static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + switch (ecx) { + case MSR_IA32_TSC: { + *data = svm->vmcb->control.tsc_offset + + svm_scale_tsc(vcpu, native_read_tsc()); + + break; + } + case MSR_STAR: + *data = svm->vmcb->save.star; + break; +#ifdef CONFIG_X86_64 + case MSR_LSTAR: + *data = svm->vmcb->save.lstar; + break; + case MSR_CSTAR: + *data = svm->vmcb->save.cstar; + break; + case MSR_KERNEL_GS_BASE: + *data = svm->vmcb->save.kernel_gs_base; + break; + case MSR_SYSCALL_MASK: + *data = svm->vmcb->save.sfmask; + break; +#endif + case MSR_IA32_SYSENTER_CS: + *data = svm->vmcb->save.sysenter_cs; + break; + case MSR_IA32_SYSENTER_EIP: + *data = svm->sysenter_eip; + break; + case MSR_IA32_SYSENTER_ESP: + *data = svm->sysenter_esp; + break; + /* + * Nobody will change the following 5 values in the VMCB so we can + * safely return them on rdmsr. They will always be 0 until LBRV is + * implemented. + */ + case MSR_IA32_DEBUGCTLMSR: + *data = svm->vmcb->save.dbgctl; + break; + case MSR_IA32_LASTBRANCHFROMIP: + *data = svm->vmcb->save.br_from; + break; + case MSR_IA32_LASTBRANCHTOIP: + *data = svm->vmcb->save.br_to; + break; + case MSR_IA32_LASTINTFROMIP: + *data = svm->vmcb->save.last_excp_from; + break; + case MSR_IA32_LASTINTTOIP: + *data = svm->vmcb->save.last_excp_to; + break; + case MSR_VM_HSAVE_PA: + *data = svm->nested.hsave_msr; + break; + case MSR_VM_CR: + *data = svm->nested.vm_cr_msr; + break; + case MSR_IA32_UCODE_REV: + *data = 0x01000065; + break; + default: + return kvm_get_msr_common(vcpu, ecx, data); + } + return 0; +} + +static int rdmsr_interception(struct vcpu_svm *svm) +{ + u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); + u64 data; + + if (svm_get_msr(&svm->vcpu, ecx, &data)) { + trace_kvm_msr_read_ex(ecx); + kvm_inject_gp(&svm->vcpu, 0); + } else { + trace_kvm_msr_read(ecx, data); + + kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, data & 0xffffffff); + kvm_register_write(&svm->vcpu, VCPU_REGS_RDX, data >> 32); + svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; + skip_emulated_instruction(&svm->vcpu); + } + return 1; +} + +static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) +{ + struct vcpu_svm *svm = to_svm(vcpu); + int svm_dis, chg_mask; + + if (data & ~SVM_VM_CR_VALID_MASK) + return 1; + + chg_mask = SVM_VM_CR_VALID_MASK; + + if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) + chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); + + svm->nested.vm_cr_msr &= ~chg_mask; + svm->nested.vm_cr_msr |= (data & chg_mask); + + svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; + + /* check for svm_disable while efer.svme is set */ + if (svm_dis && (vcpu->arch.efer & EFER_SVME)) + return 1; + + return 0; +} + +static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + u32 ecx = msr->index; + u64 data = msr->data; + switch (ecx) { + case MSR_IA32_TSC: + kvm_write_tsc(vcpu, msr); + break; + case MSR_STAR: + svm->vmcb->save.star = data; + break; +#ifdef CONFIG_X86_64 + case MSR_LSTAR: + svm->vmcb->save.lstar = data; + break; + case MSR_CSTAR: + svm->vmcb->save.cstar = data; + break; + case MSR_KERNEL_GS_BASE: + svm->vmcb->save.kernel_gs_base = data; + break; + case MSR_SYSCALL_MASK: + svm->vmcb->save.sfmask = data; + break; +#endif + case MSR_IA32_SYSENTER_CS: + svm->vmcb->save.sysenter_cs = data; + break; + case MSR_IA32_SYSENTER_EIP: + svm->sysenter_eip = data; + svm->vmcb->save.sysenter_eip = data; + break; + case MSR_IA32_SYSENTER_ESP: + svm->sysenter_esp = data; + svm->vmcb->save.sysenter_esp = data; + break; + case MSR_IA32_DEBUGCTLMSR: + if (!boot_cpu_has(X86_FEATURE_LBRV)) { + vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", + __func__, data); + break; + } + if (data & DEBUGCTL_RESERVED_BITS) + return 1; + + svm->vmcb->save.dbgctl = data; + mark_dirty(svm->vmcb, VMCB_LBR); + if (data & (1ULL<<0)) + svm_enable_lbrv(svm); + else + svm_disable_lbrv(svm); + break; + case MSR_VM_HSAVE_PA: + svm->nested.hsave_msr = data; + break; + case MSR_VM_CR: + return svm_set_vm_cr(vcpu, data); + case MSR_VM_IGNNE: + vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); + break; + default: + return kvm_set_msr_common(vcpu, msr); + } + return 0; +} + +static int wrmsr_interception(struct vcpu_svm *svm) +{ + struct msr_data msr; + u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); + u64 data = kvm_read_edx_eax(&svm->vcpu); + + msr.data = data; + msr.index = ecx; + msr.host_initiated = false; + + svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; + if (kvm_set_msr(&svm->vcpu, &msr)) { + trace_kvm_msr_write_ex(ecx, data); + kvm_inject_gp(&svm->vcpu, 0); + } else { + trace_kvm_msr_write(ecx, data); + skip_emulated_instruction(&svm->vcpu); + } + return 1; +} + +static int msr_interception(struct vcpu_svm *svm) +{ + if (svm->vmcb->control.exit_info_1) + return wrmsr_interception(svm); + else + return rdmsr_interception(svm); +} + +static int interrupt_window_interception(struct vcpu_svm *svm) +{ + struct kvm_run *kvm_run = svm->vcpu.run; + + kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); + svm_clear_vintr(svm); + svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; + mark_dirty(svm->vmcb, VMCB_INTR); + ++svm->vcpu.stat.irq_window_exits; + /* + * If the user space waits to inject interrupts, exit as soon as + * possible + */ + if (!irqchip_in_kernel(svm->vcpu.kvm) && + kvm_run->request_interrupt_window && + !kvm_cpu_has_interrupt(&svm->vcpu)) { + kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; + return 0; + } + + return 1; +} + +static int pause_interception(struct vcpu_svm *svm) +{ + kvm_vcpu_on_spin(&(svm->vcpu)); + return 1; +} + +static int nop_interception(struct vcpu_svm *svm) +{ + skip_emulated_instruction(&(svm->vcpu)); + return 1; +} + +static int monitor_interception(struct vcpu_svm *svm) +{ + printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); + return nop_interception(svm); +} + +static int mwait_interception(struct vcpu_svm *svm) +{ + printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); + return nop_interception(svm); +} + +static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { + [SVM_EXIT_READ_CR0] = cr_interception, + [SVM_EXIT_READ_CR3] = cr_interception, + [SVM_EXIT_READ_CR4] = cr_interception, + [SVM_EXIT_READ_CR8] = cr_interception, + [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, + [SVM_EXIT_WRITE_CR0] = cr_interception, + [SVM_EXIT_WRITE_CR3] = cr_interception, + [SVM_EXIT_WRITE_CR4] = cr_interception, + [SVM_EXIT_WRITE_CR8] = cr8_write_interception, + [SVM_EXIT_READ_DR0] = dr_interception, + [SVM_EXIT_READ_DR1] = dr_interception, + [SVM_EXIT_READ_DR2] = dr_interception, + [SVM_EXIT_READ_DR3] = dr_interception, + [SVM_EXIT_READ_DR4] = dr_interception, + [SVM_EXIT_READ_DR5] = dr_interception, + [SVM_EXIT_READ_DR6] = dr_interception, + [SVM_EXIT_READ_DR7] = dr_interception, + [SVM_EXIT_WRITE_DR0] = dr_interception, + [SVM_EXIT_WRITE_DR1] = dr_interception, + [SVM_EXIT_WRITE_DR2] = dr_interception, + [SVM_EXIT_WRITE_DR3] = dr_interception, + [SVM_EXIT_WRITE_DR4] = dr_interception, + [SVM_EXIT_WRITE_DR5] = dr_interception, + [SVM_EXIT_WRITE_DR6] = dr_interception, + [SVM_EXIT_WRITE_DR7] = dr_interception, + [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, + [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, + [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, + [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, + [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception, + [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, + [SVM_EXIT_INTR] = intr_interception, + [SVM_EXIT_NMI] = nmi_interception, + [SVM_EXIT_SMI] = nop_on_interception, + [SVM_EXIT_INIT] = nop_on_interception, + [SVM_EXIT_VINTR] = interrupt_window_interception, + [SVM_EXIT_RDPMC] = rdpmc_interception, + [SVM_EXIT_CPUID] = cpuid_interception, + [SVM_EXIT_IRET] = iret_interception, + [SVM_EXIT_INVD] = emulate_on_interception, + [SVM_EXIT_PAUSE] = pause_interception, + [SVM_EXIT_HLT] = halt_interception, + [SVM_EXIT_INVLPG] = invlpg_interception, + [SVM_EXIT_INVLPGA] = invlpga_interception, + [SVM_EXIT_IOIO] = io_interception, + [SVM_EXIT_MSR] = msr_interception, + [SVM_EXIT_TASK_SWITCH] = task_switch_interception, + [SVM_EXIT_SHUTDOWN] = shutdown_interception, + [SVM_EXIT_VMRUN] = vmrun_interception, + [SVM_EXIT_VMMCALL] = vmmcall_interception, + [SVM_EXIT_VMLOAD] = vmload_interception, + [SVM_EXIT_VMSAVE] = vmsave_interception, + [SVM_EXIT_STGI] = stgi_interception, + [SVM_EXIT_CLGI] = clgi_interception, + [SVM_EXIT_SKINIT] = skinit_interception, + [SVM_EXIT_WBINVD] = wbinvd_interception, + [SVM_EXIT_MONITOR] = monitor_interception, + [SVM_EXIT_MWAIT] = mwait_interception, + [SVM_EXIT_XSETBV] = xsetbv_interception, + [SVM_EXIT_NPF] = pf_interception, +}; + +static void dump_vmcb(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + struct vmcb_control_area *control = &svm->vmcb->control; + struct vmcb_save_area *save = &svm->vmcb->save; + + pr_err("VMCB Control Area:\n"); + pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff); + pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16); + pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff); + pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16); + pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions); + pr_err("%-20s%016llx\n", "intercepts:", control->intercept); + pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); + pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); + pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); + pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); + pr_err("%-20s%d\n", "asid:", control->asid); + pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); + pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); + pr_err("%-20s%08x\n", "int_vector:", control->int_vector); + pr_err("%-20s%08x\n", "int_state:", control->int_state); + pr_err("%-20s%08x\n", "exit_code:", control->exit_code); + pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); + pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); + pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); + pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); + pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); + pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); + pr_err("%-20s%08x\n", "event_inj:", control->event_inj); + pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); + pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl); + pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); + pr_err("VMCB State Save Area:\n"); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "es:", + save->es.selector, save->es.attrib, + save->es.limit, save->es.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "cs:", + save->cs.selector, save->cs.attrib, + save->cs.limit, save->cs.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "ss:", + save->ss.selector, save->ss.attrib, + save->ss.limit, save->ss.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "ds:", + save->ds.selector, save->ds.attrib, + save->ds.limit, save->ds.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "fs:", + save->fs.selector, save->fs.attrib, + save->fs.limit, save->fs.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "gs:", + save->gs.selector, save->gs.attrib, + save->gs.limit, save->gs.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "gdtr:", + save->gdtr.selector, save->gdtr.attrib, + save->gdtr.limit, save->gdtr.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "ldtr:", + save->ldtr.selector, save->ldtr.attrib, + save->ldtr.limit, save->ldtr.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "idtr:", + save->idtr.selector, save->idtr.attrib, + save->idtr.limit, save->idtr.base); + pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", + "tr:", + save->tr.selector, save->tr.attrib, + save->tr.limit, save->tr.base); + pr_err("cpl: %d efer: %016llx\n", + save->cpl, save->efer); + pr_err("%-15s %016llx %-13s %016llx\n", + "cr0:", save->cr0, "cr2:", save->cr2); + pr_err("%-15s %016llx %-13s %016llx\n", + "cr3:", save->cr3, "cr4:", save->cr4); + pr_err("%-15s %016llx %-13s %016llx\n", + "dr6:", save->dr6, "dr7:", save->dr7); + pr_err("%-15s %016llx %-13s %016llx\n", + "rip:", save->rip, "rflags:", save->rflags); + pr_err("%-15s %016llx %-13s %016llx\n", + "rsp:", save->rsp, "rax:", save->rax); + pr_err("%-15s %016llx %-13s %016llx\n", + "star:", save->star, "lstar:", save->lstar); + pr_err("%-15s %016llx %-13s %016llx\n", + "cstar:", save->cstar, "sfmask:", save->sfmask); + pr_err("%-15s %016llx %-13s %016llx\n", + "kernel_gs_base:", save->kernel_gs_base, + "sysenter_cs:", save->sysenter_cs); + pr_err("%-15s %016llx %-13s %016llx\n", + "sysenter_esp:", save->sysenter_esp, + "sysenter_eip:", save->sysenter_eip); + pr_err("%-15s %016llx %-13s %016llx\n", + "gpat:", save->g_pat, "dbgctl:", save->dbgctl); + pr_err("%-15s %016llx %-13s %016llx\n", + "br_from:", save->br_from, "br_to:", save->br_to); + pr_err("%-15s %016llx %-13s %016llx\n", + "excp_from:", save->last_excp_from, + "excp_to:", save->last_excp_to); +} + +static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) +{ + struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; + + *info1 = control->exit_info_1; + *info2 = control->exit_info_2; +} + +static int handle_exit(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + struct kvm_run *kvm_run = vcpu->run; + u32 exit_code = svm->vmcb->control.exit_code; + + if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) + vcpu->arch.cr0 = svm->vmcb->save.cr0; + if (npt_enabled) + vcpu->arch.cr3 = svm->vmcb->save.cr3; + + if (unlikely(svm->nested.exit_required)) { + nested_svm_vmexit(svm); + svm->nested.exit_required = false; + + return 1; + } + + if (is_guest_mode(vcpu)) { + int vmexit; + + trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, + svm->vmcb->control.exit_info_1, + svm->vmcb->control.exit_info_2, + svm->vmcb->control.exit_int_info, + svm->vmcb->control.exit_int_info_err, + KVM_ISA_SVM); + + vmexit = nested_svm_exit_special(svm); + + if (vmexit == NESTED_EXIT_CONTINUE) + vmexit = nested_svm_exit_handled(svm); + + if (vmexit == NESTED_EXIT_DONE) + return 1; + } + + svm_complete_interrupts(svm); + + if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { + kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; + kvm_run->fail_entry.hardware_entry_failure_reason + = svm->vmcb->control.exit_code; + pr_err("KVM: FAILED VMRUN WITH VMCB:\n"); + dump_vmcb(vcpu); + return 0; + } + + if (is_external_interrupt(svm->vmcb->control.exit_int_info) && + exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && + exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && + exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) + printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " + "exit_code 0x%x\n", + __func__, svm->vmcb->control.exit_int_info, + exit_code); + + if (exit_code >= ARRAY_SIZE(svm_exit_handlers) + || !svm_exit_handlers[exit_code]) { + WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code); + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + return svm_exit_handlers[exit_code](svm); +} + +static void reload_tss(struct kvm_vcpu *vcpu) +{ + int cpu = raw_smp_processor_id(); + + struct svm_cpu_data *sd = per_cpu(svm_data, cpu); + sd->tss_desc->type = 9; /* available 32/64-bit TSS */ + load_TR_desc(); +} + +static void pre_svm_run(struct vcpu_svm *svm) +{ + int cpu = raw_smp_processor_id(); + + struct svm_cpu_data *sd = per_cpu(svm_data, cpu); + + /* FIXME: handle wraparound of asid_generation */ + if (svm->asid_generation != sd->asid_generation) + new_asid(svm, sd); +} + +static void svm_inject_nmi(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; + vcpu->arch.hflags |= HF_NMI_MASK; + set_intercept(svm, INTERCEPT_IRET); + ++vcpu->stat.nmi_injections; +} + +static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) +{ + struct vmcb_control_area *control; + + control = &svm->vmcb->control; + control->int_vector = irq; + control->int_ctl &= ~V_INTR_PRIO_MASK; + control->int_ctl |= V_IRQ_MASK | + ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); + mark_dirty(svm->vmcb, VMCB_INTR); +} + +static void svm_set_irq(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + BUG_ON(!(gif_set(svm))); + + trace_kvm_inj_virq(vcpu->arch.interrupt.nr); + ++vcpu->stat.irq_injections; + + svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | + SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; +} + +static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK)) + return; + + clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); + + if (irr == -1) + return; + + if (tpr >= irr) + set_cr_intercept(svm, INTERCEPT_CR8_WRITE); +} + +static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set) +{ + return; +} + +static int svm_vm_has_apicv(struct kvm *kvm) +{ + return 0; +} + +static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) +{ + return; +} + +static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu) +{ + return; +} + +static int svm_nmi_allowed(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + struct vmcb *vmcb = svm->vmcb; + int ret; + ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && + !(svm->vcpu.arch.hflags & HF_NMI_MASK); + ret = ret && gif_set(svm) && nested_svm_nmi(svm); + + return ret; +} + +static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); +} + +static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (masked) { + svm->vcpu.arch.hflags |= HF_NMI_MASK; + set_intercept(svm, INTERCEPT_IRET); + } else { + svm->vcpu.arch.hflags &= ~HF_NMI_MASK; + clr_intercept(svm, INTERCEPT_IRET); + } +} + +static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + struct vmcb *vmcb = svm->vmcb; + int ret; + + if (!gif_set(svm) || + (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) + return 0; + + ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF); + + if (is_guest_mode(vcpu)) + return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); + + return ret; +} + +static void enable_irq_window(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + /* + * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes + * 1, because that's a separate STGI/VMRUN intercept. The next time we + * get that intercept, this function will be called again though and + * we'll get the vintr intercept. + */ + if (gif_set(svm) && nested_svm_intr(svm)) { + svm_set_vintr(svm); + svm_inject_irq(svm, 0x0); + } +} + +static void enable_nmi_window(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) + == HF_NMI_MASK) + return; /* IRET will cause a vm exit */ + + /* + * Something prevents NMI from been injected. Single step over possible + * problem (IRET or exception injection or interrupt shadow) + */ + svm->nmi_singlestep = true; + svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); + update_db_bp_intercept(vcpu); +} + +static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) +{ + return 0; +} + +static void svm_flush_tlb(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) + svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; + else + svm->asid_generation--; +} + +static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) +{ +} + +static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK)) + return; + + if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { + int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; + kvm_set_cr8(vcpu, cr8); + } +} + +static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + u64 cr8; + + if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK)) + return; + + cr8 = kvm_get_cr8(vcpu); + svm->vmcb->control.int_ctl &= ~V_TPR_MASK; + svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; +} + +static void svm_complete_interrupts(struct vcpu_svm *svm) +{ + u8 vector; + int type; + u32 exitintinfo = svm->vmcb->control.exit_int_info; + unsigned int3_injected = svm->int3_injected; + + svm->int3_injected = 0; + + /* + * If we've made progress since setting HF_IRET_MASK, we've + * executed an IRET and can allow NMI injection. + */ + if ((svm->vcpu.arch.hflags & HF_IRET_MASK) + && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { + svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); + kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); + } + + svm->vcpu.arch.nmi_injected = false; + kvm_clear_exception_queue(&svm->vcpu); + kvm_clear_interrupt_queue(&svm->vcpu); + + if (!(exitintinfo & SVM_EXITINTINFO_VALID)) + return; + + kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); + + vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; + type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; + + switch (type) { + case SVM_EXITINTINFO_TYPE_NMI: + svm->vcpu.arch.nmi_injected = true; + break; + case SVM_EXITINTINFO_TYPE_EXEPT: + /* + * In case of software exceptions, do not reinject the vector, + * but re-execute the instruction instead. Rewind RIP first + * if we emulated INT3 before. + */ + if (kvm_exception_is_soft(vector)) { + if (vector == BP_VECTOR && int3_injected && + kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) + kvm_rip_write(&svm->vcpu, + kvm_rip_read(&svm->vcpu) - + int3_injected); + break; + } + if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { + u32 err = svm->vmcb->control.exit_int_info_err; + kvm_requeue_exception_e(&svm->vcpu, vector, err); + + } else + kvm_requeue_exception(&svm->vcpu, vector); + break; + case SVM_EXITINTINFO_TYPE_INTR: + kvm_queue_interrupt(&svm->vcpu, vector, false); + break; + default: + break; + } +} + +static void svm_cancel_injection(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + struct vmcb_control_area *control = &svm->vmcb->control; + + control->exit_int_info = control->event_inj; + control->exit_int_info_err = control->event_inj_err; + control->event_inj = 0; + svm_complete_interrupts(svm); +} + +static void svm_vcpu_run(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; + svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; + svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; + + /* + * A vmexit emulation is required before the vcpu can be executed + * again. + */ + if (unlikely(svm->nested.exit_required)) + return; + + pre_svm_run(svm); + + sync_lapic_to_cr8(vcpu); + + svm->vmcb->save.cr2 = vcpu->arch.cr2; + + clgi(); + + local_irq_enable(); + + asm volatile ( + "push %%" _ASM_BP "; \n\t" + "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t" + "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t" + "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t" + "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t" + "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t" + "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t" +#ifdef CONFIG_X86_64 + "mov %c[r8](%[svm]), %%r8 \n\t" + "mov %c[r9](%[svm]), %%r9 \n\t" + "mov %c[r10](%[svm]), %%r10 \n\t" + "mov %c[r11](%[svm]), %%r11 \n\t" + "mov %c[r12](%[svm]), %%r12 \n\t" + "mov %c[r13](%[svm]), %%r13 \n\t" + "mov %c[r14](%[svm]), %%r14 \n\t" + "mov %c[r15](%[svm]), %%r15 \n\t" +#endif + + /* Enter guest mode */ + "push %%" _ASM_AX " \n\t" + "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t" + __ex(SVM_VMLOAD) "\n\t" + __ex(SVM_VMRUN) "\n\t" + __ex(SVM_VMSAVE) "\n\t" + "pop %%" _ASM_AX " \n\t" + + /* Save guest registers, load host registers */ + "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t" + "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t" + "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t" + "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t" + "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t" + "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t" +#ifdef CONFIG_X86_64 + "mov %%r8, %c[r8](%[svm]) \n\t" + "mov %%r9, %c[r9](%[svm]) \n\t" + "mov %%r10, %c[r10](%[svm]) \n\t" + "mov %%r11, %c[r11](%[svm]) \n\t" + "mov %%r12, %c[r12](%[svm]) \n\t" + "mov %%r13, %c[r13](%[svm]) \n\t" + "mov %%r14, %c[r14](%[svm]) \n\t" + "mov %%r15, %c[r15](%[svm]) \n\t" +#endif + "pop %%" _ASM_BP + : + : [svm]"a"(svm), + [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), + [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), + [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), + [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), + [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), + [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), + [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) +#ifdef CONFIG_X86_64 + , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), + [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), + [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), + [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), + [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), + [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), + [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), + [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) +#endif + : "cc", "memory" +#ifdef CONFIG_X86_64 + , "rbx", "rcx", "rdx", "rsi", "rdi" + , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" +#else + , "ebx", "ecx", "edx", "esi", "edi" +#endif + ); + +#ifdef CONFIG_X86_64 + wrmsrl(MSR_GS_BASE, svm->host.gs_base); +#else + loadsegment(fs, svm->host.fs); +#ifndef CONFIG_X86_32_LAZY_GS + loadsegment(gs, svm->host.gs); +#endif +#endif + + reload_tss(vcpu); + + local_irq_disable(); + + vcpu->arch.cr2 = svm->vmcb->save.cr2; + vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; + vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; + vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; + + trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM); + + if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) + kvm_before_handle_nmi(&svm->vcpu); + + stgi(); + + /* Any pending NMI will happen here */ + + if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) + kvm_after_handle_nmi(&svm->vcpu); + + sync_cr8_to_lapic(vcpu); + + svm->next_rip = 0; + + svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; + + /* if exit due to PF check for async PF */ + if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) + svm->apf_reason = kvm_read_and_reset_pf_reason(); + + if (npt_enabled) { + vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); + vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); + } + + /* + * We need to handle MC intercepts here before the vcpu has a chance to + * change the physical cpu + */ + if (unlikely(svm->vmcb->control.exit_code == + SVM_EXIT_EXCP_BASE + MC_VECTOR)) + svm_handle_mce(svm); + + mark_all_clean(svm->vmcb); +} + +static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->save.cr3 = root; + mark_dirty(svm->vmcb, VMCB_CR); + svm_flush_tlb(vcpu); +} + +static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm->vmcb->control.nested_cr3 = root; + mark_dirty(svm->vmcb, VMCB_NPT); + + /* Also sync guest cr3 here in case we live migrate */ + svm->vmcb->save.cr3 = kvm_read_cr3(vcpu); + mark_dirty(svm->vmcb, VMCB_CR); + + svm_flush_tlb(vcpu); +} + +static int is_disabled(void) +{ + u64 vm_cr; + + rdmsrl(MSR_VM_CR, vm_cr); + if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) + return 1; + + return 0; +} + +static void +svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) +{ + /* + * Patch in the VMMCALL instruction: + */ + hypercall[0] = 0x0f; + hypercall[1] = 0x01; + hypercall[2] = 0xd9; +} + +static void svm_check_processor_compat(void *rtn) +{ + *(int *)rtn = 0; +} + +static bool svm_cpu_has_accelerated_tpr(void) +{ + return false; +} + +static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) +{ + return 0; +} + +static void svm_cpuid_update(struct kvm_vcpu *vcpu) +{ +} + +static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) +{ + switch (func) { + case 0x80000001: + if (nested) + entry->ecx |= (1 << 2); /* Set SVM bit */ + break; + case 0x8000000A: + entry->eax = 1; /* SVM revision 1 */ + entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper + ASID emulation to nested SVM */ + entry->ecx = 0; /* Reserved */ + entry->edx = 0; /* Per default do not support any + additional features */ + + /* Support next_rip if host supports it */ + if (boot_cpu_has(X86_FEATURE_NRIPS)) + entry->edx |= SVM_FEATURE_NRIP; + + /* Support NPT for the guest if enabled */ + if (npt_enabled) + entry->edx |= SVM_FEATURE_NPT; + + break; + } +} + +static int svm_get_lpage_level(void) +{ + return PT_PDPE_LEVEL; +} + +static bool svm_rdtscp_supported(void) +{ + return false; +} + +static bool svm_invpcid_supported(void) +{ + return false; +} + +static bool svm_mpx_supported(void) +{ + return false; +} + +static bool svm_xsaves_supported(void) +{ + return false; +} + +static bool svm_has_wbinvd_exit(void) +{ + return true; +} + +static void svm_fpu_deactivate(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + set_exception_intercept(svm, NM_VECTOR); + update_cr0_intercept(svm); +} + +#define PRE_EX(exit) { .exit_code = (exit), \ + .stage = X86_ICPT_PRE_EXCEPT, } +#define POST_EX(exit) { .exit_code = (exit), \ + .stage = X86_ICPT_POST_EXCEPT, } +#define POST_MEM(exit) { .exit_code = (exit), \ + .stage = X86_ICPT_POST_MEMACCESS, } + +static const struct __x86_intercept { + u32 exit_code; + enum x86_intercept_stage stage; +} x86_intercept_map[] = { + [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), + [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), + [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), + [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), + [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), + [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), + [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), + [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), + [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), + [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), + [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), + [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), + [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), + [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), + [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), + [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), + [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), + [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), + [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), + [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), + [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), + [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), + [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), + [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), + [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), + [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), + [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), + [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), + [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), + [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), + [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), + [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), + [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), + [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), + [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), + [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), + [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), + [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), + [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), + [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), + [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), + [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), + [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), + [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), + [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), + [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), +}; + +#undef PRE_EX +#undef POST_EX +#undef POST_MEM + +static int svm_check_intercept(struct kvm_vcpu *vcpu, + struct x86_instruction_info *info, + enum x86_intercept_stage stage) +{ + struct vcpu_svm *svm = to_svm(vcpu); + int vmexit, ret = X86EMUL_CONTINUE; + struct __x86_intercept icpt_info; + struct vmcb *vmcb = svm->vmcb; + + if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) + goto out; + + icpt_info = x86_intercept_map[info->intercept]; + + if (stage != icpt_info.stage) + goto out; + + switch (icpt_info.exit_code) { + case SVM_EXIT_READ_CR0: + if (info->intercept == x86_intercept_cr_read) + icpt_info.exit_code += info->modrm_reg; + break; + case SVM_EXIT_WRITE_CR0: { + unsigned long cr0, val; + u64 intercept; + + if (info->intercept == x86_intercept_cr_write) + icpt_info.exit_code += info->modrm_reg; + + if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || + info->intercept == x86_intercept_clts) + break; + + intercept = svm->nested.intercept; + + if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))) + break; + + cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; + val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; + + if (info->intercept == x86_intercept_lmsw) { + cr0 &= 0xfUL; + val &= 0xfUL; + /* lmsw can't clear PE - catch this here */ + if (cr0 & X86_CR0_PE) + val |= X86_CR0_PE; + } + + if (cr0 ^ val) + icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; + + break; + } + case SVM_EXIT_READ_DR0: + case SVM_EXIT_WRITE_DR0: + icpt_info.exit_code += info->modrm_reg; + break; + case SVM_EXIT_MSR: + if (info->intercept == x86_intercept_wrmsr) + vmcb->control.exit_info_1 = 1; + else + vmcb->control.exit_info_1 = 0; + break; + case SVM_EXIT_PAUSE: + /* + * We get this for NOP only, but pause + * is rep not, check this here + */ + if (info->rep_prefix != REPE_PREFIX) + goto out; + case SVM_EXIT_IOIO: { + u64 exit_info; + u32 bytes; + + if (info->intercept == x86_intercept_in || + info->intercept == x86_intercept_ins) { + exit_info = ((info->src_val & 0xffff) << 16) | + SVM_IOIO_TYPE_MASK; + bytes = info->dst_bytes; + } else { + exit_info = (info->dst_val & 0xffff) << 16; + bytes = info->src_bytes; + } + + if (info->intercept == x86_intercept_outs || + info->intercept == x86_intercept_ins) + exit_info |= SVM_IOIO_STR_MASK; + + if (info->rep_prefix) + exit_info |= SVM_IOIO_REP_MASK; + + bytes = min(bytes, 4u); + + exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; + + exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); + + vmcb->control.exit_info_1 = exit_info; + vmcb->control.exit_info_2 = info->next_rip; + + break; + } + default: + break; + } + + /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ + if (static_cpu_has(X86_FEATURE_NRIPS)) + vmcb->control.next_rip = info->next_rip; + vmcb->control.exit_code = icpt_info.exit_code; + vmexit = nested_svm_exit_handled(svm); + + ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED + : X86EMUL_CONTINUE; + +out: + return ret; +} + +static void svm_handle_external_intr(struct kvm_vcpu *vcpu) +{ + local_irq_enable(); +} + +static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) +{ +} + +static struct kvm_x86_ops svm_x86_ops = { + .cpu_has_kvm_support = has_svm, + .disabled_by_bios = is_disabled, + .hardware_setup = svm_hardware_setup, + .hardware_unsetup = svm_hardware_unsetup, + .check_processor_compatibility = svm_check_processor_compat, + .hardware_enable = svm_hardware_enable, + .hardware_disable = svm_hardware_disable, + .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, + + .vcpu_create = svm_create_vcpu, + .vcpu_free = svm_free_vcpu, + .vcpu_reset = svm_vcpu_reset, + + .prepare_guest_switch = svm_prepare_guest_switch, + .vcpu_load = svm_vcpu_load, + .vcpu_put = svm_vcpu_put, + + .update_db_bp_intercept = update_db_bp_intercept, + .get_msr = svm_get_msr, + .set_msr = svm_set_msr, + .get_segment_base = svm_get_segment_base, + .get_segment = svm_get_segment, + .set_segment = svm_set_segment, + .get_cpl = svm_get_cpl, + .get_cs_db_l_bits = kvm_get_cs_db_l_bits, + .decache_cr0_guest_bits = svm_decache_cr0_guest_bits, + .decache_cr3 = svm_decache_cr3, + .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, + .set_cr0 = svm_set_cr0, + .set_cr3 = svm_set_cr3, + .set_cr4 = svm_set_cr4, + .set_efer = svm_set_efer, + .get_idt = svm_get_idt, + .set_idt = svm_set_idt, + .get_gdt = svm_get_gdt, + .set_gdt = svm_set_gdt, + .get_dr6 = svm_get_dr6, + .set_dr6 = svm_set_dr6, + .set_dr7 = svm_set_dr7, + .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, + .cache_reg = svm_cache_reg, + .get_rflags = svm_get_rflags, + .set_rflags = svm_set_rflags, + .fpu_activate = svm_fpu_activate, + .fpu_deactivate = svm_fpu_deactivate, + + .tlb_flush = svm_flush_tlb, + + .run = svm_vcpu_run, + .handle_exit = handle_exit, + .skip_emulated_instruction = skip_emulated_instruction, + .set_interrupt_shadow = svm_set_interrupt_shadow, + .get_interrupt_shadow = svm_get_interrupt_shadow, + .patch_hypercall = svm_patch_hypercall, + .set_irq = svm_set_irq, + .set_nmi = svm_inject_nmi, + .queue_exception = svm_queue_exception, + .cancel_injection = svm_cancel_injection, + .interrupt_allowed = svm_interrupt_allowed, + .nmi_allowed = svm_nmi_allowed, + .get_nmi_mask = svm_get_nmi_mask, + .set_nmi_mask = svm_set_nmi_mask, + .enable_nmi_window = enable_nmi_window, + .enable_irq_window = enable_irq_window, + .update_cr8_intercept = update_cr8_intercept, + .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode, + .vm_has_apicv = svm_vm_has_apicv, + .load_eoi_exitmap = svm_load_eoi_exitmap, + .sync_pir_to_irr = svm_sync_pir_to_irr, + + .set_tss_addr = svm_set_tss_addr, + .get_tdp_level = get_npt_level, + .get_mt_mask = svm_get_mt_mask, + + .get_exit_info = svm_get_exit_info, + + .get_lpage_level = svm_get_lpage_level, + + .cpuid_update = svm_cpuid_update, + + .rdtscp_supported = svm_rdtscp_supported, + .invpcid_supported = svm_invpcid_supported, + .mpx_supported = svm_mpx_supported, + .xsaves_supported = svm_xsaves_supported, + + .set_supported_cpuid = svm_set_supported_cpuid, + + .has_wbinvd_exit = svm_has_wbinvd_exit, + + .set_tsc_khz = svm_set_tsc_khz, + .read_tsc_offset = svm_read_tsc_offset, + .write_tsc_offset = svm_write_tsc_offset, + .adjust_tsc_offset = svm_adjust_tsc_offset, + .compute_tsc_offset = svm_compute_tsc_offset, + .read_l1_tsc = svm_read_l1_tsc, + + .set_tdp_cr3 = set_tdp_cr3, + + .check_intercept = svm_check_intercept, + .handle_external_intr = svm_handle_external_intr, + + .sched_in = svm_sched_in, +}; + +static int __init svm_init(void) +{ + return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), + __alignof__(struct vcpu_svm), THIS_MODULE); +} + +static void __exit svm_exit(void) +{ + kvm_exit(); +} + +module_init(svm_init) +module_exit(svm_exit) diff --git a/arch/x86/kvm/trace.h b/arch/x86/kvm/trace.h new file mode 100644 index 000000000..7c7bc8bef --- /dev/null +++ b/arch/x86/kvm/trace.h @@ -0,0 +1,963 @@ +#if !defined(_TRACE_KVM_H) || defined(TRACE_HEADER_MULTI_READ) +#define _TRACE_KVM_H + +#include <linux/tracepoint.h> +#include <asm/vmx.h> +#include <asm/svm.h> +#include <asm/clocksource.h> +#include <asm/pvclock-abi.h> + +#undef TRACE_SYSTEM +#define TRACE_SYSTEM kvm + +/* + * Tracepoint for guest mode entry. + */ +TRACE_EVENT(kvm_entry, + TP_PROTO(unsigned int vcpu_id), + TP_ARGS(vcpu_id), + + TP_STRUCT__entry( + __field( unsigned int, vcpu_id ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + ), + + TP_printk("vcpu %u", __entry->vcpu_id) +); + +/* + * Tracepoint for hypercall. + */ +TRACE_EVENT(kvm_hypercall, + TP_PROTO(unsigned long nr, unsigned long a0, unsigned long a1, + unsigned long a2, unsigned long a3), + TP_ARGS(nr, a0, a1, a2, a3), + + TP_STRUCT__entry( + __field( unsigned long, nr ) + __field( unsigned long, a0 ) + __field( unsigned long, a1 ) + __field( unsigned long, a2 ) + __field( unsigned long, a3 ) + ), + + TP_fast_assign( + __entry->nr = nr; + __entry->a0 = a0; + __entry->a1 = a1; + __entry->a2 = a2; + __entry->a3 = a3; + ), + + TP_printk("nr 0x%lx a0 0x%lx a1 0x%lx a2 0x%lx a3 0x%lx", + __entry->nr, __entry->a0, __entry->a1, __entry->a2, + __entry->a3) +); + +/* + * Tracepoint for hypercall. + */ +TRACE_EVENT(kvm_hv_hypercall, + TP_PROTO(__u16 code, bool fast, __u16 rep_cnt, __u16 rep_idx, + __u64 ingpa, __u64 outgpa), + TP_ARGS(code, fast, rep_cnt, rep_idx, ingpa, outgpa), + + TP_STRUCT__entry( + __field( __u16, rep_cnt ) + __field( __u16, rep_idx ) + __field( __u64, ingpa ) + __field( __u64, outgpa ) + __field( __u16, code ) + __field( bool, fast ) + ), + + TP_fast_assign( + __entry->rep_cnt = rep_cnt; + __entry->rep_idx = rep_idx; + __entry->ingpa = ingpa; + __entry->outgpa = outgpa; + __entry->code = code; + __entry->fast = fast; + ), + + TP_printk("code 0x%x %s cnt 0x%x idx 0x%x in 0x%llx out 0x%llx", + __entry->code, __entry->fast ? "fast" : "slow", + __entry->rep_cnt, __entry->rep_idx, __entry->ingpa, + __entry->outgpa) +); + +/* + * Tracepoint for PIO. + */ + +#define KVM_PIO_IN 0 +#define KVM_PIO_OUT 1 + +TRACE_EVENT(kvm_pio, + TP_PROTO(unsigned int rw, unsigned int port, unsigned int size, + unsigned int count, void *data), + TP_ARGS(rw, port, size, count, data), + + TP_STRUCT__entry( + __field( unsigned int, rw ) + __field( unsigned int, port ) + __field( unsigned int, size ) + __field( unsigned int, count ) + __field( unsigned int, val ) + ), + + TP_fast_assign( + __entry->rw = rw; + __entry->port = port; + __entry->size = size; + __entry->count = count; + if (size == 1) + __entry->val = *(unsigned char *)data; + else if (size == 2) + __entry->val = *(unsigned short *)data; + else + __entry->val = *(unsigned int *)data; + ), + + TP_printk("pio_%s at 0x%x size %d count %d val 0x%x %s", + __entry->rw ? "write" : "read", + __entry->port, __entry->size, __entry->count, __entry->val, + __entry->count > 1 ? "(...)" : "") +); + +/* + * Tracepoint for cpuid. + */ +TRACE_EVENT(kvm_cpuid, + TP_PROTO(unsigned int function, unsigned long rax, unsigned long rbx, + unsigned long rcx, unsigned long rdx), + TP_ARGS(function, rax, rbx, rcx, rdx), + + TP_STRUCT__entry( + __field( unsigned int, function ) + __field( unsigned long, rax ) + __field( unsigned long, rbx ) + __field( unsigned long, rcx ) + __field( unsigned long, rdx ) + ), + + TP_fast_assign( + __entry->function = function; + __entry->rax = rax; + __entry->rbx = rbx; + __entry->rcx = rcx; + __entry->rdx = rdx; + ), + + TP_printk("func %x rax %lx rbx %lx rcx %lx rdx %lx", + __entry->function, __entry->rax, + __entry->rbx, __entry->rcx, __entry->rdx) +); + +#define AREG(x) { APIC_##x, "APIC_" #x } + +#define kvm_trace_symbol_apic \ + AREG(ID), AREG(LVR), AREG(TASKPRI), AREG(ARBPRI), AREG(PROCPRI), \ + AREG(EOI), AREG(RRR), AREG(LDR), AREG(DFR), AREG(SPIV), AREG(ISR), \ + AREG(TMR), AREG(IRR), AREG(ESR), AREG(ICR), AREG(ICR2), AREG(LVTT), \ + AREG(LVTTHMR), AREG(LVTPC), AREG(LVT0), AREG(LVT1), AREG(LVTERR), \ + AREG(TMICT), AREG(TMCCT), AREG(TDCR), AREG(SELF_IPI), AREG(EFEAT), \ + AREG(ECTRL) +/* + * Tracepoint for apic access. + */ +TRACE_EVENT(kvm_apic, + TP_PROTO(unsigned int rw, unsigned int reg, unsigned int val), + TP_ARGS(rw, reg, val), + + TP_STRUCT__entry( + __field( unsigned int, rw ) + __field( unsigned int, reg ) + __field( unsigned int, val ) + ), + + TP_fast_assign( + __entry->rw = rw; + __entry->reg = reg; + __entry->val = val; + ), + + TP_printk("apic_%s %s = 0x%x", + __entry->rw ? "write" : "read", + __print_symbolic(__entry->reg, kvm_trace_symbol_apic), + __entry->val) +); + +#define trace_kvm_apic_read(reg, val) trace_kvm_apic(0, reg, val) +#define trace_kvm_apic_write(reg, val) trace_kvm_apic(1, reg, val) + +#define KVM_ISA_VMX 1 +#define KVM_ISA_SVM 2 + +/* + * Tracepoint for kvm guest exit: + */ +TRACE_EVENT(kvm_exit, + TP_PROTO(unsigned int exit_reason, struct kvm_vcpu *vcpu, u32 isa), + TP_ARGS(exit_reason, vcpu, isa), + + TP_STRUCT__entry( + __field( unsigned int, exit_reason ) + __field( unsigned long, guest_rip ) + __field( u32, isa ) + __field( u64, info1 ) + __field( u64, info2 ) + ), + + TP_fast_assign( + __entry->exit_reason = exit_reason; + __entry->guest_rip = kvm_rip_read(vcpu); + __entry->isa = isa; + kvm_x86_ops->get_exit_info(vcpu, &__entry->info1, + &__entry->info2); + ), + + TP_printk("reason %s rip 0x%lx info %llx %llx", + (__entry->isa == KVM_ISA_VMX) ? + __print_symbolic(__entry->exit_reason, VMX_EXIT_REASONS) : + __print_symbolic(__entry->exit_reason, SVM_EXIT_REASONS), + __entry->guest_rip, __entry->info1, __entry->info2) +); + +/* + * Tracepoint for kvm interrupt injection: + */ +TRACE_EVENT(kvm_inj_virq, + TP_PROTO(unsigned int irq), + TP_ARGS(irq), + + TP_STRUCT__entry( + __field( unsigned int, irq ) + ), + + TP_fast_assign( + __entry->irq = irq; + ), + + TP_printk("irq %u", __entry->irq) +); + +#define EXS(x) { x##_VECTOR, "#" #x } + +#define kvm_trace_sym_exc \ + EXS(DE), EXS(DB), EXS(BP), EXS(OF), EXS(BR), EXS(UD), EXS(NM), \ + EXS(DF), EXS(TS), EXS(NP), EXS(SS), EXS(GP), EXS(PF), \ + EXS(MF), EXS(MC) + +/* + * Tracepoint for kvm interrupt injection: + */ +TRACE_EVENT(kvm_inj_exception, + TP_PROTO(unsigned exception, bool has_error, unsigned error_code), + TP_ARGS(exception, has_error, error_code), + + TP_STRUCT__entry( + __field( u8, exception ) + __field( u8, has_error ) + __field( u32, error_code ) + ), + + TP_fast_assign( + __entry->exception = exception; + __entry->has_error = has_error; + __entry->error_code = error_code; + ), + + TP_printk("%s (0x%x)", + __print_symbolic(__entry->exception, kvm_trace_sym_exc), + /* FIXME: don't print error_code if not present */ + __entry->has_error ? __entry->error_code : 0) +); + +/* + * Tracepoint for page fault. + */ +TRACE_EVENT(kvm_page_fault, + TP_PROTO(unsigned long fault_address, unsigned int error_code), + TP_ARGS(fault_address, error_code), + + TP_STRUCT__entry( + __field( unsigned long, fault_address ) + __field( unsigned int, error_code ) + ), + + TP_fast_assign( + __entry->fault_address = fault_address; + __entry->error_code = error_code; + ), + + TP_printk("address %lx error_code %x", + __entry->fault_address, __entry->error_code) +); + +/* + * Tracepoint for guest MSR access. + */ +TRACE_EVENT(kvm_msr, + TP_PROTO(unsigned write, u32 ecx, u64 data, bool exception), + TP_ARGS(write, ecx, data, exception), + + TP_STRUCT__entry( + __field( unsigned, write ) + __field( u32, ecx ) + __field( u64, data ) + __field( u8, exception ) + ), + + TP_fast_assign( + __entry->write = write; + __entry->ecx = ecx; + __entry->data = data; + __entry->exception = exception; + ), + + TP_printk("msr_%s %x = 0x%llx%s", + __entry->write ? "write" : "read", + __entry->ecx, __entry->data, + __entry->exception ? " (#GP)" : "") +); + +#define trace_kvm_msr_read(ecx, data) trace_kvm_msr(0, ecx, data, false) +#define trace_kvm_msr_write(ecx, data) trace_kvm_msr(1, ecx, data, false) +#define trace_kvm_msr_read_ex(ecx) trace_kvm_msr(0, ecx, 0, true) +#define trace_kvm_msr_write_ex(ecx, data) trace_kvm_msr(1, ecx, data, true) + +/* + * Tracepoint for guest CR access. + */ +TRACE_EVENT(kvm_cr, + TP_PROTO(unsigned int rw, unsigned int cr, unsigned long val), + TP_ARGS(rw, cr, val), + + TP_STRUCT__entry( + __field( unsigned int, rw ) + __field( unsigned int, cr ) + __field( unsigned long, val ) + ), + + TP_fast_assign( + __entry->rw = rw; + __entry->cr = cr; + __entry->val = val; + ), + + TP_printk("cr_%s %x = 0x%lx", + __entry->rw ? "write" : "read", + __entry->cr, __entry->val) +); + +#define trace_kvm_cr_read(cr, val) trace_kvm_cr(0, cr, val) +#define trace_kvm_cr_write(cr, val) trace_kvm_cr(1, cr, val) + +TRACE_EVENT(kvm_pic_set_irq, + TP_PROTO(__u8 chip, __u8 pin, __u8 elcr, __u8 imr, bool coalesced), + TP_ARGS(chip, pin, elcr, imr, coalesced), + + TP_STRUCT__entry( + __field( __u8, chip ) + __field( __u8, pin ) + __field( __u8, elcr ) + __field( __u8, imr ) + __field( bool, coalesced ) + ), + + TP_fast_assign( + __entry->chip = chip; + __entry->pin = pin; + __entry->elcr = elcr; + __entry->imr = imr; + __entry->coalesced = coalesced; + ), + + TP_printk("chip %u pin %u (%s%s)%s", + __entry->chip, __entry->pin, + (__entry->elcr & (1 << __entry->pin)) ? "level":"edge", + (__entry->imr & (1 << __entry->pin)) ? "|masked":"", + __entry->coalesced ? " (coalesced)" : "") +); + +#define kvm_apic_dst_shorthand \ + {0x0, "dst"}, \ + {0x1, "self"}, \ + {0x2, "all"}, \ + {0x3, "all-but-self"} + +TRACE_EVENT(kvm_apic_ipi, + TP_PROTO(__u32 icr_low, __u32 dest_id), + TP_ARGS(icr_low, dest_id), + + TP_STRUCT__entry( + __field( __u32, icr_low ) + __field( __u32, dest_id ) + ), + + TP_fast_assign( + __entry->icr_low = icr_low; + __entry->dest_id = dest_id; + ), + + TP_printk("dst %x vec %u (%s|%s|%s|%s|%s)", + __entry->dest_id, (u8)__entry->icr_low, + __print_symbolic((__entry->icr_low >> 8 & 0x7), + kvm_deliver_mode), + (__entry->icr_low & (1<<11)) ? "logical" : "physical", + (__entry->icr_low & (1<<14)) ? "assert" : "de-assert", + (__entry->icr_low & (1<<15)) ? "level" : "edge", + __print_symbolic((__entry->icr_low >> 18 & 0x3), + kvm_apic_dst_shorthand)) +); + +TRACE_EVENT(kvm_apic_accept_irq, + TP_PROTO(__u32 apicid, __u16 dm, __u8 tm, __u8 vec), + TP_ARGS(apicid, dm, tm, vec), + + TP_STRUCT__entry( + __field( __u32, apicid ) + __field( __u16, dm ) + __field( __u8, tm ) + __field( __u8, vec ) + ), + + TP_fast_assign( + __entry->apicid = apicid; + __entry->dm = dm; + __entry->tm = tm; + __entry->vec = vec; + ), + + TP_printk("apicid %x vec %u (%s|%s)", + __entry->apicid, __entry->vec, + __print_symbolic((__entry->dm >> 8 & 0x7), kvm_deliver_mode), + __entry->tm ? "level" : "edge") +); + +TRACE_EVENT(kvm_eoi, + TP_PROTO(struct kvm_lapic *apic, int vector), + TP_ARGS(apic, vector), + + TP_STRUCT__entry( + __field( __u32, apicid ) + __field( int, vector ) + ), + + TP_fast_assign( + __entry->apicid = apic->vcpu->vcpu_id; + __entry->vector = vector; + ), + + TP_printk("apicid %x vector %d", __entry->apicid, __entry->vector) +); + +TRACE_EVENT(kvm_pv_eoi, + TP_PROTO(struct kvm_lapic *apic, int vector), + TP_ARGS(apic, vector), + + TP_STRUCT__entry( + __field( __u32, apicid ) + __field( int, vector ) + ), + + TP_fast_assign( + __entry->apicid = apic->vcpu->vcpu_id; + __entry->vector = vector; + ), + + TP_printk("apicid %x vector %d", __entry->apicid, __entry->vector) +); + +/* + * Tracepoint for nested VMRUN + */ +TRACE_EVENT(kvm_nested_vmrun, + TP_PROTO(__u64 rip, __u64 vmcb, __u64 nested_rip, __u32 int_ctl, + __u32 event_inj, bool npt), + TP_ARGS(rip, vmcb, nested_rip, int_ctl, event_inj, npt), + + TP_STRUCT__entry( + __field( __u64, rip ) + __field( __u64, vmcb ) + __field( __u64, nested_rip ) + __field( __u32, int_ctl ) + __field( __u32, event_inj ) + __field( bool, npt ) + ), + + TP_fast_assign( + __entry->rip = rip; + __entry->vmcb = vmcb; + __entry->nested_rip = nested_rip; + __entry->int_ctl = int_ctl; + __entry->event_inj = event_inj; + __entry->npt = npt; + ), + + TP_printk("rip: 0x%016llx vmcb: 0x%016llx nrip: 0x%016llx int_ctl: 0x%08x " + "event_inj: 0x%08x npt: %s", + __entry->rip, __entry->vmcb, __entry->nested_rip, + __entry->int_ctl, __entry->event_inj, + __entry->npt ? "on" : "off") +); + +TRACE_EVENT(kvm_nested_intercepts, + TP_PROTO(__u16 cr_read, __u16 cr_write, __u32 exceptions, __u64 intercept), + TP_ARGS(cr_read, cr_write, exceptions, intercept), + + TP_STRUCT__entry( + __field( __u16, cr_read ) + __field( __u16, cr_write ) + __field( __u32, exceptions ) + __field( __u64, intercept ) + ), + + TP_fast_assign( + __entry->cr_read = cr_read; + __entry->cr_write = cr_write; + __entry->exceptions = exceptions; + __entry->intercept = intercept; + ), + + TP_printk("cr_read: %04x cr_write: %04x excp: %08x intercept: %016llx", + __entry->cr_read, __entry->cr_write, __entry->exceptions, + __entry->intercept) +); +/* + * Tracepoint for #VMEXIT while nested + */ +TRACE_EVENT(kvm_nested_vmexit, + TP_PROTO(__u64 rip, __u32 exit_code, + __u64 exit_info1, __u64 exit_info2, + __u32 exit_int_info, __u32 exit_int_info_err, __u32 isa), + TP_ARGS(rip, exit_code, exit_info1, exit_info2, + exit_int_info, exit_int_info_err, isa), + + TP_STRUCT__entry( + __field( __u64, rip ) + __field( __u32, exit_code ) + __field( __u64, exit_info1 ) + __field( __u64, exit_info2 ) + __field( __u32, exit_int_info ) + __field( __u32, exit_int_info_err ) + __field( __u32, isa ) + ), + + TP_fast_assign( + __entry->rip = rip; + __entry->exit_code = exit_code; + __entry->exit_info1 = exit_info1; + __entry->exit_info2 = exit_info2; + __entry->exit_int_info = exit_int_info; + __entry->exit_int_info_err = exit_int_info_err; + __entry->isa = isa; + ), + TP_printk("rip: 0x%016llx reason: %s ext_inf1: 0x%016llx " + "ext_inf2: 0x%016llx ext_int: 0x%08x ext_int_err: 0x%08x", + __entry->rip, + (__entry->isa == KVM_ISA_VMX) ? + __print_symbolic(__entry->exit_code, VMX_EXIT_REASONS) : + __print_symbolic(__entry->exit_code, SVM_EXIT_REASONS), + __entry->exit_info1, __entry->exit_info2, + __entry->exit_int_info, __entry->exit_int_info_err) +); + +/* + * Tracepoint for #VMEXIT reinjected to the guest + */ +TRACE_EVENT(kvm_nested_vmexit_inject, + TP_PROTO(__u32 exit_code, + __u64 exit_info1, __u64 exit_info2, + __u32 exit_int_info, __u32 exit_int_info_err, __u32 isa), + TP_ARGS(exit_code, exit_info1, exit_info2, + exit_int_info, exit_int_info_err, isa), + + TP_STRUCT__entry( + __field( __u32, exit_code ) + __field( __u64, exit_info1 ) + __field( __u64, exit_info2 ) + __field( __u32, exit_int_info ) + __field( __u32, exit_int_info_err ) + __field( __u32, isa ) + ), + + TP_fast_assign( + __entry->exit_code = exit_code; + __entry->exit_info1 = exit_info1; + __entry->exit_info2 = exit_info2; + __entry->exit_int_info = exit_int_info; + __entry->exit_int_info_err = exit_int_info_err; + __entry->isa = isa; + ), + + TP_printk("reason: %s ext_inf1: 0x%016llx " + "ext_inf2: 0x%016llx ext_int: 0x%08x ext_int_err: 0x%08x", + (__entry->isa == KVM_ISA_VMX) ? + __print_symbolic(__entry->exit_code, VMX_EXIT_REASONS) : + __print_symbolic(__entry->exit_code, SVM_EXIT_REASONS), + __entry->exit_info1, __entry->exit_info2, + __entry->exit_int_info, __entry->exit_int_info_err) +); + +/* + * Tracepoint for nested #vmexit because of interrupt pending + */ +TRACE_EVENT(kvm_nested_intr_vmexit, + TP_PROTO(__u64 rip), + TP_ARGS(rip), + + TP_STRUCT__entry( + __field( __u64, rip ) + ), + + TP_fast_assign( + __entry->rip = rip + ), + + TP_printk("rip: 0x%016llx", __entry->rip) +); + +/* + * Tracepoint for nested #vmexit because of interrupt pending + */ +TRACE_EVENT(kvm_invlpga, + TP_PROTO(__u64 rip, int asid, u64 address), + TP_ARGS(rip, asid, address), + + TP_STRUCT__entry( + __field( __u64, rip ) + __field( int, asid ) + __field( __u64, address ) + ), + + TP_fast_assign( + __entry->rip = rip; + __entry->asid = asid; + __entry->address = address; + ), + + TP_printk("rip: 0x%016llx asid: %d address: 0x%016llx", + __entry->rip, __entry->asid, __entry->address) +); + +/* + * Tracepoint for nested #vmexit because of interrupt pending + */ +TRACE_EVENT(kvm_skinit, + TP_PROTO(__u64 rip, __u32 slb), + TP_ARGS(rip, slb), + + TP_STRUCT__entry( + __field( __u64, rip ) + __field( __u32, slb ) + ), + + TP_fast_assign( + __entry->rip = rip; + __entry->slb = slb; + ), + + TP_printk("rip: 0x%016llx slb: 0x%08x", + __entry->rip, __entry->slb) +); + +#define KVM_EMUL_INSN_F_CR0_PE (1 << 0) +#define KVM_EMUL_INSN_F_EFL_VM (1 << 1) +#define KVM_EMUL_INSN_F_CS_D (1 << 2) +#define KVM_EMUL_INSN_F_CS_L (1 << 3) + +#define kvm_trace_symbol_emul_flags \ + { 0, "real" }, \ + { KVM_EMUL_INSN_F_CR0_PE \ + | KVM_EMUL_INSN_F_EFL_VM, "vm16" }, \ + { KVM_EMUL_INSN_F_CR0_PE, "prot16" }, \ + { KVM_EMUL_INSN_F_CR0_PE \ + | KVM_EMUL_INSN_F_CS_D, "prot32" }, \ + { KVM_EMUL_INSN_F_CR0_PE \ + | KVM_EMUL_INSN_F_CS_L, "prot64" } + +#define kei_decode_mode(mode) ({ \ + u8 flags = 0xff; \ + switch (mode) { \ + case X86EMUL_MODE_REAL: \ + flags = 0; \ + break; \ + case X86EMUL_MODE_VM86: \ + flags = KVM_EMUL_INSN_F_EFL_VM; \ + break; \ + case X86EMUL_MODE_PROT16: \ + flags = KVM_EMUL_INSN_F_CR0_PE; \ + break; \ + case X86EMUL_MODE_PROT32: \ + flags = KVM_EMUL_INSN_F_CR0_PE \ + | KVM_EMUL_INSN_F_CS_D; \ + break; \ + case X86EMUL_MODE_PROT64: \ + flags = KVM_EMUL_INSN_F_CR0_PE \ + | KVM_EMUL_INSN_F_CS_L; \ + break; \ + } \ + flags; \ + }) + +TRACE_EVENT(kvm_emulate_insn, + TP_PROTO(struct kvm_vcpu *vcpu, __u8 failed), + TP_ARGS(vcpu, failed), + + TP_STRUCT__entry( + __field( __u64, rip ) + __field( __u32, csbase ) + __field( __u8, len ) + __array( __u8, insn, 15 ) + __field( __u8, flags ) + __field( __u8, failed ) + ), + + TP_fast_assign( + __entry->csbase = kvm_x86_ops->get_segment_base(vcpu, VCPU_SREG_CS); + __entry->len = vcpu->arch.emulate_ctxt.fetch.ptr + - vcpu->arch.emulate_ctxt.fetch.data; + __entry->rip = vcpu->arch.emulate_ctxt._eip - __entry->len; + memcpy(__entry->insn, + vcpu->arch.emulate_ctxt.fetch.data, + 15); + __entry->flags = kei_decode_mode(vcpu->arch.emulate_ctxt.mode); + __entry->failed = failed; + ), + + TP_printk("%x:%llx:%s (%s)%s", + __entry->csbase, __entry->rip, + __print_hex(__entry->insn, __entry->len), + __print_symbolic(__entry->flags, + kvm_trace_symbol_emul_flags), + __entry->failed ? " failed" : "" + ) + ); + +#define trace_kvm_emulate_insn_start(vcpu) trace_kvm_emulate_insn(vcpu, 0) +#define trace_kvm_emulate_insn_failed(vcpu) trace_kvm_emulate_insn(vcpu, 1) + +TRACE_EVENT( + vcpu_match_mmio, + TP_PROTO(gva_t gva, gpa_t gpa, bool write, bool gpa_match), + TP_ARGS(gva, gpa, write, gpa_match), + + TP_STRUCT__entry( + __field(gva_t, gva) + __field(gpa_t, gpa) + __field(bool, write) + __field(bool, gpa_match) + ), + + TP_fast_assign( + __entry->gva = gva; + __entry->gpa = gpa; + __entry->write = write; + __entry->gpa_match = gpa_match + ), + + TP_printk("gva %#lx gpa %#llx %s %s", __entry->gva, __entry->gpa, + __entry->write ? "Write" : "Read", + __entry->gpa_match ? "GPA" : "GVA") +); + +TRACE_EVENT(kvm_write_tsc_offset, + TP_PROTO(unsigned int vcpu_id, __u64 previous_tsc_offset, + __u64 next_tsc_offset), + TP_ARGS(vcpu_id, previous_tsc_offset, next_tsc_offset), + + TP_STRUCT__entry( + __field( unsigned int, vcpu_id ) + __field( __u64, previous_tsc_offset ) + __field( __u64, next_tsc_offset ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + __entry->previous_tsc_offset = previous_tsc_offset; + __entry->next_tsc_offset = next_tsc_offset; + ), + + TP_printk("vcpu=%u prev=%llu next=%llu", __entry->vcpu_id, + __entry->previous_tsc_offset, __entry->next_tsc_offset) +); + +#ifdef CONFIG_X86_64 + +#define host_clocks \ + {VCLOCK_NONE, "none"}, \ + {VCLOCK_TSC, "tsc"}, \ + {VCLOCK_HPET, "hpet"} \ + +TRACE_EVENT(kvm_update_master_clock, + TP_PROTO(bool use_master_clock, unsigned int host_clock, bool offset_matched), + TP_ARGS(use_master_clock, host_clock, offset_matched), + + TP_STRUCT__entry( + __field( bool, use_master_clock ) + __field( unsigned int, host_clock ) + __field( bool, offset_matched ) + ), + + TP_fast_assign( + __entry->use_master_clock = use_master_clock; + __entry->host_clock = host_clock; + __entry->offset_matched = offset_matched; + ), + + TP_printk("masterclock %d hostclock %s offsetmatched %u", + __entry->use_master_clock, + __print_symbolic(__entry->host_clock, host_clocks), + __entry->offset_matched) +); + +TRACE_EVENT(kvm_track_tsc, + TP_PROTO(unsigned int vcpu_id, unsigned int nr_matched, + unsigned int online_vcpus, bool use_master_clock, + unsigned int host_clock), + TP_ARGS(vcpu_id, nr_matched, online_vcpus, use_master_clock, + host_clock), + + TP_STRUCT__entry( + __field( unsigned int, vcpu_id ) + __field( unsigned int, nr_vcpus_matched_tsc ) + __field( unsigned int, online_vcpus ) + __field( bool, use_master_clock ) + __field( unsigned int, host_clock ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + __entry->nr_vcpus_matched_tsc = nr_matched; + __entry->online_vcpus = online_vcpus; + __entry->use_master_clock = use_master_clock; + __entry->host_clock = host_clock; + ), + + TP_printk("vcpu_id %u masterclock %u offsetmatched %u nr_online %u" + " hostclock %s", + __entry->vcpu_id, __entry->use_master_clock, + __entry->nr_vcpus_matched_tsc, __entry->online_vcpus, + __print_symbolic(__entry->host_clock, host_clocks)) +); + +#endif /* CONFIG_X86_64 */ + +/* + * Tracepoint for PML full VMEXIT. + */ +TRACE_EVENT(kvm_pml_full, + TP_PROTO(unsigned int vcpu_id), + TP_ARGS(vcpu_id), + + TP_STRUCT__entry( + __field( unsigned int, vcpu_id ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + ), + + TP_printk("vcpu %d: PML full", __entry->vcpu_id) +); + +TRACE_EVENT(kvm_ple_window, + TP_PROTO(bool grow, unsigned int vcpu_id, int new, int old), + TP_ARGS(grow, vcpu_id, new, old), + + TP_STRUCT__entry( + __field( bool, grow ) + __field( unsigned int, vcpu_id ) + __field( int, new ) + __field( int, old ) + ), + + TP_fast_assign( + __entry->grow = grow; + __entry->vcpu_id = vcpu_id; + __entry->new = new; + __entry->old = old; + ), + + TP_printk("vcpu %u: ple_window %d (%s %d)", + __entry->vcpu_id, + __entry->new, + __entry->grow ? "grow" : "shrink", + __entry->old) +); + +#define trace_kvm_ple_window_grow(vcpu_id, new, old) \ + trace_kvm_ple_window(true, vcpu_id, new, old) +#define trace_kvm_ple_window_shrink(vcpu_id, new, old) \ + trace_kvm_ple_window(false, vcpu_id, new, old) + +TRACE_EVENT(kvm_pvclock_update, + TP_PROTO(unsigned int vcpu_id, struct pvclock_vcpu_time_info *pvclock), + TP_ARGS(vcpu_id, pvclock), + + TP_STRUCT__entry( + __field( unsigned int, vcpu_id ) + __field( __u32, version ) + __field( __u64, tsc_timestamp ) + __field( __u64, system_time ) + __field( __u32, tsc_to_system_mul ) + __field( __s8, tsc_shift ) + __field( __u8, flags ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + __entry->version = pvclock->version; + __entry->tsc_timestamp = pvclock->tsc_timestamp; + __entry->system_time = pvclock->system_time; + __entry->tsc_to_system_mul = pvclock->tsc_to_system_mul; + __entry->tsc_shift = pvclock->tsc_shift; + __entry->flags = pvclock->flags; + ), + + TP_printk("vcpu_id %u, pvclock { version %u, tsc_timestamp 0x%llx, " + "system_time 0x%llx, tsc_to_system_mul 0x%x, tsc_shift %d, " + "flags 0x%x }", + __entry->vcpu_id, + __entry->version, + __entry->tsc_timestamp, + __entry->system_time, + __entry->tsc_to_system_mul, + __entry->tsc_shift, + __entry->flags) +); + +TRACE_EVENT(kvm_wait_lapic_expire, + TP_PROTO(unsigned int vcpu_id, s64 delta), + TP_ARGS(vcpu_id, delta), + + TP_STRUCT__entry( + __field( unsigned int, vcpu_id ) + __field( s64, delta ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + __entry->delta = delta; + ), + + TP_printk("vcpu %u: delta %lld (%s)", + __entry->vcpu_id, + __entry->delta, + __entry->delta < 0 ? "early" : "late") +); + +#endif /* _TRACE_KVM_H */ + +#undef TRACE_INCLUDE_PATH +#define TRACE_INCLUDE_PATH arch/x86/kvm +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_FILE trace + +/* This part must be outside protection */ +#include <trace/define_trace.h> diff --git a/arch/x86/kvm/tss.h b/arch/x86/kvm/tss.h new file mode 100644 index 000000000..622aa10f6 --- /dev/null +++ b/arch/x86/kvm/tss.h @@ -0,0 +1,59 @@ +#ifndef __TSS_SEGMENT_H +#define __TSS_SEGMENT_H + +struct tss_segment_32 { + u32 prev_task_link; + u32 esp0; + u32 ss0; + u32 esp1; + u32 ss1; + u32 esp2; + u32 ss2; + u32 cr3; + u32 eip; + u32 eflags; + u32 eax; + u32 ecx; + u32 edx; + u32 ebx; + u32 esp; + u32 ebp; + u32 esi; + u32 edi; + u32 es; + u32 cs; + u32 ss; + u32 ds; + u32 fs; + u32 gs; + u32 ldt_selector; + u16 t; + u16 io_map; +}; + +struct tss_segment_16 { + u16 prev_task_link; + u16 sp0; + u16 ss0; + u16 sp1; + u16 ss1; + u16 sp2; + u16 ss2; + u16 ip; + u16 flag; + u16 ax; + u16 cx; + u16 dx; + u16 bx; + u16 sp; + u16 bp; + u16 si; + u16 di; + u16 es; + u16 cs; + u16 ss; + u16 ds; + u16 ldt; +}; + +#endif diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c new file mode 100644 index 000000000..2d73807f0 --- /dev/null +++ b/arch/x86/kvm/vmx.c @@ -0,0 +1,10286 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * This module enables machines with Intel VT-x extensions to run virtual + * machines without emulation or binary translation. + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Avi Kivity <avi@qumranet.com> + * Yaniv Kamay <yaniv@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include "irq.h" +#include "mmu.h" +#include "cpuid.h" + +#include <linux/kvm_host.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/highmem.h> +#include <linux/sched.h> +#include <linux/moduleparam.h> +#include <linux/mod_devicetable.h> +#include <linux/ftrace_event.h> +#include <linux/slab.h> +#include <linux/tboot.h> +#include <linux/hrtimer.h> +#include "kvm_cache_regs.h" +#include "x86.h" + +#include <asm/io.h> +#include <asm/desc.h> +#include <asm/vmx.h> +#include <asm/virtext.h> +#include <asm/mce.h> +#include <asm/i387.h> +#include <asm/xcr.h> +#include <asm/perf_event.h> +#include <asm/debugreg.h> +#include <asm/kexec.h> +#include <asm/apic.h> + +#include "trace.h" + +#define __ex(x) __kvm_handle_fault_on_reboot(x) +#define __ex_clear(x, reg) \ + ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg) + +MODULE_AUTHOR("Qumranet"); +MODULE_LICENSE("GPL"); + +static const struct x86_cpu_id vmx_cpu_id[] = { + X86_FEATURE_MATCH(X86_FEATURE_VMX), + {} +}; +MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); + +static bool __read_mostly enable_vpid = 1; +module_param_named(vpid, enable_vpid, bool, 0444); + +static bool __read_mostly flexpriority_enabled = 1; +module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); + +static bool __read_mostly enable_ept = 1; +module_param_named(ept, enable_ept, bool, S_IRUGO); + +static bool __read_mostly enable_unrestricted_guest = 1; +module_param_named(unrestricted_guest, + enable_unrestricted_guest, bool, S_IRUGO); + +static bool __read_mostly enable_ept_ad_bits = 1; +module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); + +static bool __read_mostly emulate_invalid_guest_state = true; +module_param(emulate_invalid_guest_state, bool, S_IRUGO); + +static bool __read_mostly vmm_exclusive = 1; +module_param(vmm_exclusive, bool, S_IRUGO); + +static bool __read_mostly fasteoi = 1; +module_param(fasteoi, bool, S_IRUGO); + +static bool __read_mostly enable_apicv = 1; +module_param(enable_apicv, bool, S_IRUGO); + +static bool __read_mostly enable_shadow_vmcs = 1; +module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); +/* + * If nested=1, nested virtualization is supported, i.e., guests may use + * VMX and be a hypervisor for its own guests. If nested=0, guests may not + * use VMX instructions. + */ +static bool __read_mostly nested = 0; +module_param(nested, bool, S_IRUGO); + +static u64 __read_mostly host_xss; + +static bool __read_mostly enable_pml = 1; +module_param_named(pml, enable_pml, bool, S_IRUGO); + +#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD) +#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE) +#define KVM_VM_CR0_ALWAYS_ON \ + (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) +#define KVM_CR4_GUEST_OWNED_BITS \ + (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ + | X86_CR4_OSXMMEXCPT | X86_CR4_TSD) + +#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) +#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) + +#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) + +#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 + +/* + * These 2 parameters are used to config the controls for Pause-Loop Exiting: + * ple_gap: upper bound on the amount of time between two successive + * executions of PAUSE in a loop. Also indicate if ple enabled. + * According to test, this time is usually smaller than 128 cycles. + * ple_window: upper bound on the amount of time a guest is allowed to execute + * in a PAUSE loop. Tests indicate that most spinlocks are held for + * less than 2^12 cycles + * Time is measured based on a counter that runs at the same rate as the TSC, + * refer SDM volume 3b section 21.6.13 & 22.1.3. + */ +#define KVM_VMX_DEFAULT_PLE_GAP 128 +#define KVM_VMX_DEFAULT_PLE_WINDOW 4096 +#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2 +#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0 +#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \ + INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW + +static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP; +module_param(ple_gap, int, S_IRUGO); + +static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; +module_param(ple_window, int, S_IRUGO); + +/* Default doubles per-vcpu window every exit. */ +static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW; +module_param(ple_window_grow, int, S_IRUGO); + +/* Default resets per-vcpu window every exit to ple_window. */ +static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK; +module_param(ple_window_shrink, int, S_IRUGO); + +/* Default is to compute the maximum so we can never overflow. */ +static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; +static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; +module_param(ple_window_max, int, S_IRUGO); + +extern const ulong vmx_return; + +#define NR_AUTOLOAD_MSRS 8 +#define VMCS02_POOL_SIZE 1 + +struct vmcs { + u32 revision_id; + u32 abort; + char data[0]; +}; + +/* + * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also + * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs + * loaded on this CPU (so we can clear them if the CPU goes down). + */ +struct loaded_vmcs { + struct vmcs *vmcs; + int cpu; + int launched; + struct list_head loaded_vmcss_on_cpu_link; +}; + +struct shared_msr_entry { + unsigned index; + u64 data; + u64 mask; +}; + +/* + * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a + * single nested guest (L2), hence the name vmcs12. Any VMX implementation has + * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is + * stored in guest memory specified by VMPTRLD, but is opaque to the guest, + * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. + * More than one of these structures may exist, if L1 runs multiple L2 guests. + * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the + * underlying hardware which will be used to run L2. + * This structure is packed to ensure that its layout is identical across + * machines (necessary for live migration). + * If there are changes in this struct, VMCS12_REVISION must be changed. + */ +typedef u64 natural_width; +struct __packed vmcs12 { + /* According to the Intel spec, a VMCS region must start with the + * following two fields. Then follow implementation-specific data. + */ + u32 revision_id; + u32 abort; + + u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ + u32 padding[7]; /* room for future expansion */ + + u64 io_bitmap_a; + u64 io_bitmap_b; + u64 msr_bitmap; + u64 vm_exit_msr_store_addr; + u64 vm_exit_msr_load_addr; + u64 vm_entry_msr_load_addr; + u64 tsc_offset; + u64 virtual_apic_page_addr; + u64 apic_access_addr; + u64 posted_intr_desc_addr; + u64 ept_pointer; + u64 eoi_exit_bitmap0; + u64 eoi_exit_bitmap1; + u64 eoi_exit_bitmap2; + u64 eoi_exit_bitmap3; + u64 xss_exit_bitmap; + u64 guest_physical_address; + u64 vmcs_link_pointer; + u64 guest_ia32_debugctl; + u64 guest_ia32_pat; + u64 guest_ia32_efer; + u64 guest_ia32_perf_global_ctrl; + u64 guest_pdptr0; + u64 guest_pdptr1; + u64 guest_pdptr2; + u64 guest_pdptr3; + u64 guest_bndcfgs; + u64 host_ia32_pat; + u64 host_ia32_efer; + u64 host_ia32_perf_global_ctrl; + u64 padding64[8]; /* room for future expansion */ + /* + * To allow migration of L1 (complete with its L2 guests) between + * machines of different natural widths (32 or 64 bit), we cannot have + * unsigned long fields with no explict size. We use u64 (aliased + * natural_width) instead. Luckily, x86 is little-endian. + */ + natural_width cr0_guest_host_mask; + natural_width cr4_guest_host_mask; + natural_width cr0_read_shadow; + natural_width cr4_read_shadow; + natural_width cr3_target_value0; + natural_width cr3_target_value1; + natural_width cr3_target_value2; + natural_width cr3_target_value3; + natural_width exit_qualification; + natural_width guest_linear_address; + natural_width guest_cr0; + natural_width guest_cr3; + natural_width guest_cr4; + natural_width guest_es_base; + natural_width guest_cs_base; + natural_width guest_ss_base; + natural_width guest_ds_base; + natural_width guest_fs_base; + natural_width guest_gs_base; + natural_width guest_ldtr_base; + natural_width guest_tr_base; + natural_width guest_gdtr_base; + natural_width guest_idtr_base; + natural_width guest_dr7; + natural_width guest_rsp; + natural_width guest_rip; + natural_width guest_rflags; + natural_width guest_pending_dbg_exceptions; + natural_width guest_sysenter_esp; + natural_width guest_sysenter_eip; + natural_width host_cr0; + natural_width host_cr3; + natural_width host_cr4; + natural_width host_fs_base; + natural_width host_gs_base; + natural_width host_tr_base; + natural_width host_gdtr_base; + natural_width host_idtr_base; + natural_width host_ia32_sysenter_esp; + natural_width host_ia32_sysenter_eip; + natural_width host_rsp; + natural_width host_rip; + natural_width paddingl[8]; /* room for future expansion */ + u32 pin_based_vm_exec_control; + u32 cpu_based_vm_exec_control; + u32 exception_bitmap; + u32 page_fault_error_code_mask; + u32 page_fault_error_code_match; + u32 cr3_target_count; + u32 vm_exit_controls; + u32 vm_exit_msr_store_count; + u32 vm_exit_msr_load_count; + u32 vm_entry_controls; + u32 vm_entry_msr_load_count; + u32 vm_entry_intr_info_field; + u32 vm_entry_exception_error_code; + u32 vm_entry_instruction_len; + u32 tpr_threshold; + u32 secondary_vm_exec_control; + u32 vm_instruction_error; + u32 vm_exit_reason; + u32 vm_exit_intr_info; + u32 vm_exit_intr_error_code; + u32 idt_vectoring_info_field; + u32 idt_vectoring_error_code; + u32 vm_exit_instruction_len; + u32 vmx_instruction_info; + u32 guest_es_limit; + u32 guest_cs_limit; + u32 guest_ss_limit; + u32 guest_ds_limit; + u32 guest_fs_limit; + u32 guest_gs_limit; + u32 guest_ldtr_limit; + u32 guest_tr_limit; + u32 guest_gdtr_limit; + u32 guest_idtr_limit; + u32 guest_es_ar_bytes; + u32 guest_cs_ar_bytes; + u32 guest_ss_ar_bytes; + u32 guest_ds_ar_bytes; + u32 guest_fs_ar_bytes; + u32 guest_gs_ar_bytes; + u32 guest_ldtr_ar_bytes; + u32 guest_tr_ar_bytes; + u32 guest_interruptibility_info; + u32 guest_activity_state; + u32 guest_sysenter_cs; + u32 host_ia32_sysenter_cs; + u32 vmx_preemption_timer_value; + u32 padding32[7]; /* room for future expansion */ + u16 virtual_processor_id; + u16 posted_intr_nv; + u16 guest_es_selector; + u16 guest_cs_selector; + u16 guest_ss_selector; + u16 guest_ds_selector; + u16 guest_fs_selector; + u16 guest_gs_selector; + u16 guest_ldtr_selector; + u16 guest_tr_selector; + u16 guest_intr_status; + u16 host_es_selector; + u16 host_cs_selector; + u16 host_ss_selector; + u16 host_ds_selector; + u16 host_fs_selector; + u16 host_gs_selector; + u16 host_tr_selector; +}; + +/* + * VMCS12_REVISION is an arbitrary id that should be changed if the content or + * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and + * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. + */ +#define VMCS12_REVISION 0x11e57ed0 + +/* + * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region + * and any VMCS region. Although only sizeof(struct vmcs12) are used by the + * current implementation, 4K are reserved to avoid future complications. + */ +#define VMCS12_SIZE 0x1000 + +/* Used to remember the last vmcs02 used for some recently used vmcs12s */ +struct vmcs02_list { + struct list_head list; + gpa_t vmptr; + struct loaded_vmcs vmcs02; +}; + +/* + * The nested_vmx structure is part of vcpu_vmx, and holds information we need + * for correct emulation of VMX (i.e., nested VMX) on this vcpu. + */ +struct nested_vmx { + /* Has the level1 guest done vmxon? */ + bool vmxon; + gpa_t vmxon_ptr; + + /* The guest-physical address of the current VMCS L1 keeps for L2 */ + gpa_t current_vmptr; + /* The host-usable pointer to the above */ + struct page *current_vmcs12_page; + struct vmcs12 *current_vmcs12; + struct vmcs *current_shadow_vmcs; + /* + * Indicates if the shadow vmcs must be updated with the + * data hold by vmcs12 + */ + bool sync_shadow_vmcs; + + /* vmcs02_list cache of VMCSs recently used to run L2 guests */ + struct list_head vmcs02_pool; + int vmcs02_num; + u64 vmcs01_tsc_offset; + /* L2 must run next, and mustn't decide to exit to L1. */ + bool nested_run_pending; + /* + * Guest pages referred to in vmcs02 with host-physical pointers, so + * we must keep them pinned while L2 runs. + */ + struct page *apic_access_page; + struct page *virtual_apic_page; + struct page *pi_desc_page; + struct pi_desc *pi_desc; + bool pi_pending; + u16 posted_intr_nv; + u64 msr_ia32_feature_control; + + struct hrtimer preemption_timer; + bool preemption_timer_expired; + + /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ + u64 vmcs01_debugctl; + + u32 nested_vmx_procbased_ctls_low; + u32 nested_vmx_procbased_ctls_high; + u32 nested_vmx_true_procbased_ctls_low; + u32 nested_vmx_secondary_ctls_low; + u32 nested_vmx_secondary_ctls_high; + u32 nested_vmx_pinbased_ctls_low; + u32 nested_vmx_pinbased_ctls_high; + u32 nested_vmx_exit_ctls_low; + u32 nested_vmx_exit_ctls_high; + u32 nested_vmx_true_exit_ctls_low; + u32 nested_vmx_entry_ctls_low; + u32 nested_vmx_entry_ctls_high; + u32 nested_vmx_true_entry_ctls_low; + u32 nested_vmx_misc_low; + u32 nested_vmx_misc_high; + u32 nested_vmx_ept_caps; +}; + +#define POSTED_INTR_ON 0 +/* Posted-Interrupt Descriptor */ +struct pi_desc { + u32 pir[8]; /* Posted interrupt requested */ + u32 control; /* bit 0 of control is outstanding notification bit */ + u32 rsvd[7]; +} __aligned(64); + +static bool pi_test_and_set_on(struct pi_desc *pi_desc) +{ + return test_and_set_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static bool pi_test_and_clear_on(struct pi_desc *pi_desc) +{ + return test_and_clear_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) +{ + return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); +} + +struct vcpu_vmx { + struct kvm_vcpu vcpu; + unsigned long host_rsp; + u8 fail; + bool nmi_known_unmasked; + u32 exit_intr_info; + u32 idt_vectoring_info; + ulong rflags; + struct shared_msr_entry *guest_msrs; + int nmsrs; + int save_nmsrs; + unsigned long host_idt_base; +#ifdef CONFIG_X86_64 + u64 msr_host_kernel_gs_base; + u64 msr_guest_kernel_gs_base; +#endif + u32 vm_entry_controls_shadow; + u32 vm_exit_controls_shadow; + /* + * loaded_vmcs points to the VMCS currently used in this vcpu. For a + * non-nested (L1) guest, it always points to vmcs01. For a nested + * guest (L2), it points to a different VMCS. + */ + struct loaded_vmcs vmcs01; + struct loaded_vmcs *loaded_vmcs; + bool __launched; /* temporary, used in vmx_vcpu_run */ + struct msr_autoload { + unsigned nr; + struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS]; + struct vmx_msr_entry host[NR_AUTOLOAD_MSRS]; + } msr_autoload; + struct { + int loaded; + u16 fs_sel, gs_sel, ldt_sel; +#ifdef CONFIG_X86_64 + u16 ds_sel, es_sel; +#endif + int gs_ldt_reload_needed; + int fs_reload_needed; + u64 msr_host_bndcfgs; + unsigned long vmcs_host_cr4; /* May not match real cr4 */ + } host_state; + struct { + int vm86_active; + ulong save_rflags; + struct kvm_segment segs[8]; + } rmode; + struct { + u32 bitmask; /* 4 bits per segment (1 bit per field) */ + struct kvm_save_segment { + u16 selector; + unsigned long base; + u32 limit; + u32 ar; + } seg[8]; + } segment_cache; + int vpid; + bool emulation_required; + + /* Support for vnmi-less CPUs */ + int soft_vnmi_blocked; + ktime_t entry_time; + s64 vnmi_blocked_time; + u32 exit_reason; + + bool rdtscp_enabled; + + /* Posted interrupt descriptor */ + struct pi_desc pi_desc; + + /* Support for a guest hypervisor (nested VMX) */ + struct nested_vmx nested; + + /* Dynamic PLE window. */ + int ple_window; + bool ple_window_dirty; + + /* Support for PML */ +#define PML_ENTITY_NUM 512 + struct page *pml_pg; +}; + +enum segment_cache_field { + SEG_FIELD_SEL = 0, + SEG_FIELD_BASE = 1, + SEG_FIELD_LIMIT = 2, + SEG_FIELD_AR = 3, + + SEG_FIELD_NR = 4 +}; + +static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) +{ + return container_of(vcpu, struct vcpu_vmx, vcpu); +} + +#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) +#define FIELD(number, name) [number] = VMCS12_OFFSET(name) +#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \ + [number##_HIGH] = VMCS12_OFFSET(name)+4 + + +static unsigned long shadow_read_only_fields[] = { + /* + * We do NOT shadow fields that are modified when L0 + * traps and emulates any vmx instruction (e.g. VMPTRLD, + * VMXON...) executed by L1. + * For example, VM_INSTRUCTION_ERROR is read + * by L1 if a vmx instruction fails (part of the error path). + * Note the code assumes this logic. If for some reason + * we start shadowing these fields then we need to + * force a shadow sync when L0 emulates vmx instructions + * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified + * by nested_vmx_failValid) + */ + VM_EXIT_REASON, + VM_EXIT_INTR_INFO, + VM_EXIT_INSTRUCTION_LEN, + IDT_VECTORING_INFO_FIELD, + IDT_VECTORING_ERROR_CODE, + VM_EXIT_INTR_ERROR_CODE, + EXIT_QUALIFICATION, + GUEST_LINEAR_ADDRESS, + GUEST_PHYSICAL_ADDRESS +}; +static int max_shadow_read_only_fields = + ARRAY_SIZE(shadow_read_only_fields); + +static unsigned long shadow_read_write_fields[] = { + TPR_THRESHOLD, + GUEST_RIP, + GUEST_RSP, + GUEST_CR0, + GUEST_CR3, + GUEST_CR4, + GUEST_INTERRUPTIBILITY_INFO, + GUEST_RFLAGS, + GUEST_CS_SELECTOR, + GUEST_CS_AR_BYTES, + GUEST_CS_LIMIT, + GUEST_CS_BASE, + GUEST_ES_BASE, + GUEST_BNDCFGS, + CR0_GUEST_HOST_MASK, + CR0_READ_SHADOW, + CR4_READ_SHADOW, + TSC_OFFSET, + EXCEPTION_BITMAP, + CPU_BASED_VM_EXEC_CONTROL, + VM_ENTRY_EXCEPTION_ERROR_CODE, + VM_ENTRY_INTR_INFO_FIELD, + VM_ENTRY_INSTRUCTION_LEN, + VM_ENTRY_EXCEPTION_ERROR_CODE, + HOST_FS_BASE, + HOST_GS_BASE, + HOST_FS_SELECTOR, + HOST_GS_SELECTOR +}; +static int max_shadow_read_write_fields = + ARRAY_SIZE(shadow_read_write_fields); + +static const unsigned short vmcs_field_to_offset_table[] = { + FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), + FIELD(POSTED_INTR_NV, posted_intr_nv), + FIELD(GUEST_ES_SELECTOR, guest_es_selector), + FIELD(GUEST_CS_SELECTOR, guest_cs_selector), + FIELD(GUEST_SS_SELECTOR, guest_ss_selector), + FIELD(GUEST_DS_SELECTOR, guest_ds_selector), + FIELD(GUEST_FS_SELECTOR, guest_fs_selector), + FIELD(GUEST_GS_SELECTOR, guest_gs_selector), + FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), + FIELD(GUEST_TR_SELECTOR, guest_tr_selector), + FIELD(GUEST_INTR_STATUS, guest_intr_status), + FIELD(HOST_ES_SELECTOR, host_es_selector), + FIELD(HOST_CS_SELECTOR, host_cs_selector), + FIELD(HOST_SS_SELECTOR, host_ss_selector), + FIELD(HOST_DS_SELECTOR, host_ds_selector), + FIELD(HOST_FS_SELECTOR, host_fs_selector), + FIELD(HOST_GS_SELECTOR, host_gs_selector), + FIELD(HOST_TR_SELECTOR, host_tr_selector), + FIELD64(IO_BITMAP_A, io_bitmap_a), + FIELD64(IO_BITMAP_B, io_bitmap_b), + FIELD64(MSR_BITMAP, msr_bitmap), + FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), + FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), + FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), + FIELD64(TSC_OFFSET, tsc_offset), + FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), + FIELD64(APIC_ACCESS_ADDR, apic_access_addr), + FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr), + FIELD64(EPT_POINTER, ept_pointer), + FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0), + FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1), + FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2), + FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3), + FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), + FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), + FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), + FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), + FIELD64(GUEST_IA32_PAT, guest_ia32_pat), + FIELD64(GUEST_IA32_EFER, guest_ia32_efer), + FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), + FIELD64(GUEST_PDPTR0, guest_pdptr0), + FIELD64(GUEST_PDPTR1, guest_pdptr1), + FIELD64(GUEST_PDPTR2, guest_pdptr2), + FIELD64(GUEST_PDPTR3, guest_pdptr3), + FIELD64(GUEST_BNDCFGS, guest_bndcfgs), + FIELD64(HOST_IA32_PAT, host_ia32_pat), + FIELD64(HOST_IA32_EFER, host_ia32_efer), + FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), + FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), + FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), + FIELD(EXCEPTION_BITMAP, exception_bitmap), + FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), + FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), + FIELD(CR3_TARGET_COUNT, cr3_target_count), + FIELD(VM_EXIT_CONTROLS, vm_exit_controls), + FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), + FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), + FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), + FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), + FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), + FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), + FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), + FIELD(TPR_THRESHOLD, tpr_threshold), + FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), + FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), + FIELD(VM_EXIT_REASON, vm_exit_reason), + FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), + FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), + FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), + FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), + FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), + FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), + FIELD(GUEST_ES_LIMIT, guest_es_limit), + FIELD(GUEST_CS_LIMIT, guest_cs_limit), + FIELD(GUEST_SS_LIMIT, guest_ss_limit), + FIELD(GUEST_DS_LIMIT, guest_ds_limit), + FIELD(GUEST_FS_LIMIT, guest_fs_limit), + FIELD(GUEST_GS_LIMIT, guest_gs_limit), + FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), + FIELD(GUEST_TR_LIMIT, guest_tr_limit), + FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), + FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), + FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), + FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), + FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), + FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), + FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), + FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), + FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), + FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), + FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), + FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), + FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), + FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), + FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), + FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), + FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), + FIELD(CR0_READ_SHADOW, cr0_read_shadow), + FIELD(CR4_READ_SHADOW, cr4_read_shadow), + FIELD(CR3_TARGET_VALUE0, cr3_target_value0), + FIELD(CR3_TARGET_VALUE1, cr3_target_value1), + FIELD(CR3_TARGET_VALUE2, cr3_target_value2), + FIELD(CR3_TARGET_VALUE3, cr3_target_value3), + FIELD(EXIT_QUALIFICATION, exit_qualification), + FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), + FIELD(GUEST_CR0, guest_cr0), + FIELD(GUEST_CR3, guest_cr3), + FIELD(GUEST_CR4, guest_cr4), + FIELD(GUEST_ES_BASE, guest_es_base), + FIELD(GUEST_CS_BASE, guest_cs_base), + FIELD(GUEST_SS_BASE, guest_ss_base), + FIELD(GUEST_DS_BASE, guest_ds_base), + FIELD(GUEST_FS_BASE, guest_fs_base), + FIELD(GUEST_GS_BASE, guest_gs_base), + FIELD(GUEST_LDTR_BASE, guest_ldtr_base), + FIELD(GUEST_TR_BASE, guest_tr_base), + FIELD(GUEST_GDTR_BASE, guest_gdtr_base), + FIELD(GUEST_IDTR_BASE, guest_idtr_base), + FIELD(GUEST_DR7, guest_dr7), + FIELD(GUEST_RSP, guest_rsp), + FIELD(GUEST_RIP, guest_rip), + FIELD(GUEST_RFLAGS, guest_rflags), + FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), + FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), + FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), + FIELD(HOST_CR0, host_cr0), + FIELD(HOST_CR3, host_cr3), + FIELD(HOST_CR4, host_cr4), + FIELD(HOST_FS_BASE, host_fs_base), + FIELD(HOST_GS_BASE, host_gs_base), + FIELD(HOST_TR_BASE, host_tr_base), + FIELD(HOST_GDTR_BASE, host_gdtr_base), + FIELD(HOST_IDTR_BASE, host_idtr_base), + FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), + FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), + FIELD(HOST_RSP, host_rsp), + FIELD(HOST_RIP, host_rip), +}; + +static inline short vmcs_field_to_offset(unsigned long field) +{ + BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX); + + if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) || + vmcs_field_to_offset_table[field] == 0) + return -ENOENT; + + return vmcs_field_to_offset_table[field]; +} + +static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.current_vmcs12; +} + +static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr) +{ + struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT); + if (is_error_page(page)) + return NULL; + + return page; +} + +static void nested_release_page(struct page *page) +{ + kvm_release_page_dirty(page); +} + +static void nested_release_page_clean(struct page *page) +{ + kvm_release_page_clean(page); +} + +static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu); +static u64 construct_eptp(unsigned long root_hpa); +static void kvm_cpu_vmxon(u64 addr); +static void kvm_cpu_vmxoff(void); +static bool vmx_mpx_supported(void); +static bool vmx_xsaves_supported(void); +static int vmx_vm_has_apicv(struct kvm *kvm); +static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr); +static void vmx_set_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg); +static void vmx_get_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg); +static bool guest_state_valid(struct kvm_vcpu *vcpu); +static u32 vmx_segment_access_rights(struct kvm_segment *var); +static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu); +static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx); +static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx); +static int alloc_identity_pagetable(struct kvm *kvm); + +static DEFINE_PER_CPU(struct vmcs *, vmxarea); +static DEFINE_PER_CPU(struct vmcs *, current_vmcs); +/* + * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed + * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. + */ +static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); +static DEFINE_PER_CPU(struct desc_ptr, host_gdt); + +static unsigned long *vmx_io_bitmap_a; +static unsigned long *vmx_io_bitmap_b; +static unsigned long *vmx_msr_bitmap_legacy; +static unsigned long *vmx_msr_bitmap_longmode; +static unsigned long *vmx_msr_bitmap_legacy_x2apic; +static unsigned long *vmx_msr_bitmap_longmode_x2apic; +static unsigned long *vmx_msr_bitmap_nested; +static unsigned long *vmx_vmread_bitmap; +static unsigned long *vmx_vmwrite_bitmap; + +static bool cpu_has_load_ia32_efer; +static bool cpu_has_load_perf_global_ctrl; + +static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); +static DEFINE_SPINLOCK(vmx_vpid_lock); + +static struct vmcs_config { + int size; + int order; + u32 revision_id; + u32 pin_based_exec_ctrl; + u32 cpu_based_exec_ctrl; + u32 cpu_based_2nd_exec_ctrl; + u32 vmexit_ctrl; + u32 vmentry_ctrl; +} vmcs_config; + +static struct vmx_capability { + u32 ept; + u32 vpid; +} vmx_capability; + +#define VMX_SEGMENT_FIELD(seg) \ + [VCPU_SREG_##seg] = { \ + .selector = GUEST_##seg##_SELECTOR, \ + .base = GUEST_##seg##_BASE, \ + .limit = GUEST_##seg##_LIMIT, \ + .ar_bytes = GUEST_##seg##_AR_BYTES, \ + } + +static const struct kvm_vmx_segment_field { + unsigned selector; + unsigned base; + unsigned limit; + unsigned ar_bytes; +} kvm_vmx_segment_fields[] = { + VMX_SEGMENT_FIELD(CS), + VMX_SEGMENT_FIELD(DS), + VMX_SEGMENT_FIELD(ES), + VMX_SEGMENT_FIELD(FS), + VMX_SEGMENT_FIELD(GS), + VMX_SEGMENT_FIELD(SS), + VMX_SEGMENT_FIELD(TR), + VMX_SEGMENT_FIELD(LDTR), +}; + +static u64 host_efer; + +static void ept_save_pdptrs(struct kvm_vcpu *vcpu); + +/* + * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it + * away by decrementing the array size. + */ +static const u32 vmx_msr_index[] = { +#ifdef CONFIG_X86_64 + MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, +#endif + MSR_EFER, MSR_TSC_AUX, MSR_STAR, +}; + +static inline bool is_page_fault(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | + INTR_INFO_VALID_MASK)) == + (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); +} + +static inline bool is_no_device(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | + INTR_INFO_VALID_MASK)) == + (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK); +} + +static inline bool is_invalid_opcode(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | + INTR_INFO_VALID_MASK)) == + (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK); +} + +static inline bool is_external_interrupt(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) + == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); +} + +static inline bool is_machine_check(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | + INTR_INFO_VALID_MASK)) == + (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); +} + +static inline bool cpu_has_vmx_msr_bitmap(void) +{ + return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; +} + +static inline bool cpu_has_vmx_tpr_shadow(void) +{ + return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; +} + +static inline bool vm_need_tpr_shadow(struct kvm *kvm) +{ + return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)); +} + +static inline bool cpu_has_secondary_exec_ctrls(void) +{ + return vmcs_config.cpu_based_exec_ctrl & + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; +} + +static inline bool cpu_has_vmx_virtualize_apic_accesses(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; +} + +static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; +} + +static inline bool cpu_has_vmx_apic_register_virt(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_APIC_REGISTER_VIRT; +} + +static inline bool cpu_has_vmx_virtual_intr_delivery(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; +} + +static inline bool cpu_has_vmx_posted_intr(void) +{ + return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; +} + +static inline bool cpu_has_vmx_apicv(void) +{ + return cpu_has_vmx_apic_register_virt() && + cpu_has_vmx_virtual_intr_delivery() && + cpu_has_vmx_posted_intr(); +} + +static inline bool cpu_has_vmx_flexpriority(void) +{ + return cpu_has_vmx_tpr_shadow() && + cpu_has_vmx_virtualize_apic_accesses(); +} + +static inline bool cpu_has_vmx_ept_execute_only(void) +{ + return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; +} + +static inline bool cpu_has_vmx_ept_2m_page(void) +{ + return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; +} + +static inline bool cpu_has_vmx_ept_1g_page(void) +{ + return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; +} + +static inline bool cpu_has_vmx_ept_4levels(void) +{ + return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; +} + +static inline bool cpu_has_vmx_ept_ad_bits(void) +{ + return vmx_capability.ept & VMX_EPT_AD_BIT; +} + +static inline bool cpu_has_vmx_invept_context(void) +{ + return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_invept_global(void) +{ + return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; +} + +static inline bool cpu_has_vmx_invvpid_single(void) +{ + return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_invvpid_global(void) +{ + return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_ept(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_EPT; +} + +static inline bool cpu_has_vmx_unrestricted_guest(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_UNRESTRICTED_GUEST; +} + +static inline bool cpu_has_vmx_ple(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_PAUSE_LOOP_EXITING; +} + +static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm) +{ + return flexpriority_enabled && irqchip_in_kernel(kvm); +} + +static inline bool cpu_has_vmx_vpid(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_VPID; +} + +static inline bool cpu_has_vmx_rdtscp(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_RDTSCP; +} + +static inline bool cpu_has_vmx_invpcid(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_INVPCID; +} + +static inline bool cpu_has_virtual_nmis(void) +{ + return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; +} + +static inline bool cpu_has_vmx_wbinvd_exit(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_WBINVD_EXITING; +} + +static inline bool cpu_has_vmx_shadow_vmcs(void) +{ + u64 vmx_msr; + rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); + /* check if the cpu supports writing r/o exit information fields */ + if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) + return false; + + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_SHADOW_VMCS; +} + +static inline bool cpu_has_vmx_pml(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML; +} + +static inline bool report_flexpriority(void) +{ + return flexpriority_enabled; +} + +static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) +{ + return vmcs12->cpu_based_vm_exec_control & bit; +} + +static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) +{ + return (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && + (vmcs12->secondary_vm_exec_control & bit); +} + +static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; +} + +static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & + PIN_BASED_VMX_PREEMPTION_TIMER; +} + +static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT); +} + +static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) && + vmx_xsaves_supported(); +} + +static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); +} + +static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT); +} + +static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); +} + +static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR; +} + +static inline bool is_exception(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) + == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK); +} + +static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, + u32 exit_intr_info, + unsigned long exit_qualification); +static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, + u32 reason, unsigned long qualification); + +static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) +{ + int i; + + for (i = 0; i < vmx->nmsrs; ++i) + if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) + return i; + return -1; +} + +static inline void __invvpid(int ext, u16 vpid, gva_t gva) +{ + struct { + u64 vpid : 16; + u64 rsvd : 48; + u64 gva; + } operand = { vpid, 0, gva }; + + asm volatile (__ex(ASM_VMX_INVVPID) + /* CF==1 or ZF==1 --> rc = -1 */ + "; ja 1f ; ud2 ; 1:" + : : "a"(&operand), "c"(ext) : "cc", "memory"); +} + +static inline void __invept(int ext, u64 eptp, gpa_t gpa) +{ + struct { + u64 eptp, gpa; + } operand = {eptp, gpa}; + + asm volatile (__ex(ASM_VMX_INVEPT) + /* CF==1 or ZF==1 --> rc = -1 */ + "; ja 1f ; ud2 ; 1:\n" + : : "a" (&operand), "c" (ext) : "cc", "memory"); +} + +static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) +{ + int i; + + i = __find_msr_index(vmx, msr); + if (i >= 0) + return &vmx->guest_msrs[i]; + return NULL; +} + +static void vmcs_clear(struct vmcs *vmcs) +{ + u64 phys_addr = __pa(vmcs); + u8 error; + + asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0" + : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) + : "cc", "memory"); + if (error) + printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", + vmcs, phys_addr); +} + +static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) +{ + vmcs_clear(loaded_vmcs->vmcs); + loaded_vmcs->cpu = -1; + loaded_vmcs->launched = 0; +} + +static void vmcs_load(struct vmcs *vmcs) +{ + u64 phys_addr = __pa(vmcs); + u8 error; + + asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0" + : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) + : "cc", "memory"); + if (error) + printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", + vmcs, phys_addr); +} + +#ifdef CONFIG_KEXEC +/* + * This bitmap is used to indicate whether the vmclear + * operation is enabled on all cpus. All disabled by + * default. + */ +static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; + +static inline void crash_enable_local_vmclear(int cpu) +{ + cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static inline void crash_disable_local_vmclear(int cpu) +{ + cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static inline int crash_local_vmclear_enabled(int cpu) +{ + return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static void crash_vmclear_local_loaded_vmcss(void) +{ + int cpu = raw_smp_processor_id(); + struct loaded_vmcs *v; + + if (!crash_local_vmclear_enabled(cpu)) + return; + + list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), + loaded_vmcss_on_cpu_link) + vmcs_clear(v->vmcs); +} +#else +static inline void crash_enable_local_vmclear(int cpu) { } +static inline void crash_disable_local_vmclear(int cpu) { } +#endif /* CONFIG_KEXEC */ + +static void __loaded_vmcs_clear(void *arg) +{ + struct loaded_vmcs *loaded_vmcs = arg; + int cpu = raw_smp_processor_id(); + + if (loaded_vmcs->cpu != cpu) + return; /* vcpu migration can race with cpu offline */ + if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) + per_cpu(current_vmcs, cpu) = NULL; + crash_disable_local_vmclear(cpu); + list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); + + /* + * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link + * is before setting loaded_vmcs->vcpu to -1 which is done in + * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist + * then adds the vmcs into percpu list before it is deleted. + */ + smp_wmb(); + + loaded_vmcs_init(loaded_vmcs); + crash_enable_local_vmclear(cpu); +} + +static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) +{ + int cpu = loaded_vmcs->cpu; + + if (cpu != -1) + smp_call_function_single(cpu, + __loaded_vmcs_clear, loaded_vmcs, 1); +} + +static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx) +{ + if (vmx->vpid == 0) + return; + + if (cpu_has_vmx_invvpid_single()) + __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0); +} + +static inline void vpid_sync_vcpu_global(void) +{ + if (cpu_has_vmx_invvpid_global()) + __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); +} + +static inline void vpid_sync_context(struct vcpu_vmx *vmx) +{ + if (cpu_has_vmx_invvpid_single()) + vpid_sync_vcpu_single(vmx); + else + vpid_sync_vcpu_global(); +} + +static inline void ept_sync_global(void) +{ + if (cpu_has_vmx_invept_global()) + __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); +} + +static inline void ept_sync_context(u64 eptp) +{ + if (enable_ept) { + if (cpu_has_vmx_invept_context()) + __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); + else + ept_sync_global(); + } +} + +static __always_inline unsigned long vmcs_readl(unsigned long field) +{ + unsigned long value; + + asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0") + : "=a"(value) : "d"(field) : "cc"); + return value; +} + +static __always_inline u16 vmcs_read16(unsigned long field) +{ + return vmcs_readl(field); +} + +static __always_inline u32 vmcs_read32(unsigned long field) +{ + return vmcs_readl(field); +} + +static __always_inline u64 vmcs_read64(unsigned long field) +{ +#ifdef CONFIG_X86_64 + return vmcs_readl(field); +#else + return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); +#endif +} + +static noinline void vmwrite_error(unsigned long field, unsigned long value) +{ + printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", + field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); + dump_stack(); +} + +static void vmcs_writel(unsigned long field, unsigned long value) +{ + u8 error; + + asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0" + : "=q"(error) : "a"(value), "d"(field) : "cc"); + if (unlikely(error)) + vmwrite_error(field, value); +} + +static void vmcs_write16(unsigned long field, u16 value) +{ + vmcs_writel(field, value); +} + +static void vmcs_write32(unsigned long field, u32 value) +{ + vmcs_writel(field, value); +} + +static void vmcs_write64(unsigned long field, u64 value) +{ + vmcs_writel(field, value); +#ifndef CONFIG_X86_64 + asm volatile (""); + vmcs_writel(field+1, value >> 32); +#endif +} + +static void vmcs_clear_bits(unsigned long field, u32 mask) +{ + vmcs_writel(field, vmcs_readl(field) & ~mask); +} + +static void vmcs_set_bits(unsigned long field, u32 mask) +{ + vmcs_writel(field, vmcs_readl(field) | mask); +} + +static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val) +{ + vmcs_write32(VM_ENTRY_CONTROLS, val); + vmx->vm_entry_controls_shadow = val; +} + +static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val) +{ + if (vmx->vm_entry_controls_shadow != val) + vm_entry_controls_init(vmx, val); +} + +static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx) +{ + return vmx->vm_entry_controls_shadow; +} + + +static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val); +} + +static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val); +} + +static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val) +{ + vmcs_write32(VM_EXIT_CONTROLS, val); + vmx->vm_exit_controls_shadow = val; +} + +static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val) +{ + if (vmx->vm_exit_controls_shadow != val) + vm_exit_controls_init(vmx, val); +} + +static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx) +{ + return vmx->vm_exit_controls_shadow; +} + + +static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val); +} + +static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val); +} + +static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) +{ + vmx->segment_cache.bitmask = 0; +} + +static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, + unsigned field) +{ + bool ret; + u32 mask = 1 << (seg * SEG_FIELD_NR + field); + + if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { + vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); + vmx->segment_cache.bitmask = 0; + } + ret = vmx->segment_cache.bitmask & mask; + vmx->segment_cache.bitmask |= mask; + return ret; +} + +static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) +{ + u16 *p = &vmx->segment_cache.seg[seg].selector; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) + *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); + return *p; +} + +static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) +{ + ulong *p = &vmx->segment_cache.seg[seg].base; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) + *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); + return *p; +} + +static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) +{ + u32 *p = &vmx->segment_cache.seg[seg].limit; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) + *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); + return *p; +} + +static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) +{ + u32 *p = &vmx->segment_cache.seg[seg].ar; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) + *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); + return *p; +} + +static void update_exception_bitmap(struct kvm_vcpu *vcpu) +{ + u32 eb; + + eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | + (1u << NM_VECTOR) | (1u << DB_VECTOR); + if ((vcpu->guest_debug & + (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == + (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) + eb |= 1u << BP_VECTOR; + if (to_vmx(vcpu)->rmode.vm86_active) + eb = ~0; + if (enable_ept) + eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ + if (vcpu->fpu_active) + eb &= ~(1u << NM_VECTOR); + + /* When we are running a nested L2 guest and L1 specified for it a + * certain exception bitmap, we must trap the same exceptions and pass + * them to L1. When running L2, we will only handle the exceptions + * specified above if L1 did not want them. + */ + if (is_guest_mode(vcpu)) + eb |= get_vmcs12(vcpu)->exception_bitmap; + + vmcs_write32(EXCEPTION_BITMAP, eb); +} + +static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, + unsigned long entry, unsigned long exit) +{ + vm_entry_controls_clearbit(vmx, entry); + vm_exit_controls_clearbit(vmx, exit); +} + +static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) +{ + unsigned i; + struct msr_autoload *m = &vmx->msr_autoload; + + switch (msr) { + case MSR_EFER: + if (cpu_has_load_ia32_efer) { + clear_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_EFER, + VM_EXIT_LOAD_IA32_EFER); + return; + } + break; + case MSR_CORE_PERF_GLOBAL_CTRL: + if (cpu_has_load_perf_global_ctrl) { + clear_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, + VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); + return; + } + break; + } + + for (i = 0; i < m->nr; ++i) + if (m->guest[i].index == msr) + break; + + if (i == m->nr) + return; + --m->nr; + m->guest[i] = m->guest[m->nr]; + m->host[i] = m->host[m->nr]; + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); +} + +static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, + unsigned long entry, unsigned long exit, + unsigned long guest_val_vmcs, unsigned long host_val_vmcs, + u64 guest_val, u64 host_val) +{ + vmcs_write64(guest_val_vmcs, guest_val); + vmcs_write64(host_val_vmcs, host_val); + vm_entry_controls_setbit(vmx, entry); + vm_exit_controls_setbit(vmx, exit); +} + +static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, + u64 guest_val, u64 host_val) +{ + unsigned i; + struct msr_autoload *m = &vmx->msr_autoload; + + switch (msr) { + case MSR_EFER: + if (cpu_has_load_ia32_efer) { + add_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_EFER, + VM_EXIT_LOAD_IA32_EFER, + GUEST_IA32_EFER, + HOST_IA32_EFER, + guest_val, host_val); + return; + } + break; + case MSR_CORE_PERF_GLOBAL_CTRL: + if (cpu_has_load_perf_global_ctrl) { + add_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, + VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, + GUEST_IA32_PERF_GLOBAL_CTRL, + HOST_IA32_PERF_GLOBAL_CTRL, + guest_val, host_val); + return; + } + break; + } + + for (i = 0; i < m->nr; ++i) + if (m->guest[i].index == msr) + break; + + if (i == NR_AUTOLOAD_MSRS) { + printk_once(KERN_WARNING "Not enough msr switch entries. " + "Can't add msr %x\n", msr); + return; + } else if (i == m->nr) { + ++m->nr; + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); + } + + m->guest[i].index = msr; + m->guest[i].value = guest_val; + m->host[i].index = msr; + m->host[i].value = host_val; +} + +static void reload_tss(void) +{ + /* + * VT restores TR but not its size. Useless. + */ + struct desc_ptr *gdt = this_cpu_ptr(&host_gdt); + struct desc_struct *descs; + + descs = (void *)gdt->address; + descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ + load_TR_desc(); +} + +static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) +{ + u64 guest_efer; + u64 ignore_bits; + + guest_efer = vmx->vcpu.arch.efer; + + /* + * NX is emulated; LMA and LME handled by hardware; SCE meaningless + * outside long mode + */ + ignore_bits = EFER_NX | EFER_SCE; +#ifdef CONFIG_X86_64 + ignore_bits |= EFER_LMA | EFER_LME; + /* SCE is meaningful only in long mode on Intel */ + if (guest_efer & EFER_LMA) + ignore_bits &= ~(u64)EFER_SCE; +#endif + guest_efer &= ~ignore_bits; + guest_efer |= host_efer & ignore_bits; + vmx->guest_msrs[efer_offset].data = guest_efer; + vmx->guest_msrs[efer_offset].mask = ~ignore_bits; + + clear_atomic_switch_msr(vmx, MSR_EFER); + + /* + * On EPT, we can't emulate NX, so we must switch EFER atomically. + * On CPUs that support "load IA32_EFER", always switch EFER + * atomically, since it's faster than switching it manually. + */ + if (cpu_has_load_ia32_efer || + (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { + guest_efer = vmx->vcpu.arch.efer; + if (!(guest_efer & EFER_LMA)) + guest_efer &= ~EFER_LME; + if (guest_efer != host_efer) + add_atomic_switch_msr(vmx, MSR_EFER, + guest_efer, host_efer); + return false; + } + + return true; +} + +static unsigned long segment_base(u16 selector) +{ + struct desc_ptr *gdt = this_cpu_ptr(&host_gdt); + struct desc_struct *d; + unsigned long table_base; + unsigned long v; + + if (!(selector & ~3)) + return 0; + + table_base = gdt->address; + + if (selector & 4) { /* from ldt */ + u16 ldt_selector = kvm_read_ldt(); + + if (!(ldt_selector & ~3)) + return 0; + + table_base = segment_base(ldt_selector); + } + d = (struct desc_struct *)(table_base + (selector & ~7)); + v = get_desc_base(d); +#ifdef CONFIG_X86_64 + if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) + v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; +#endif + return v; +} + +static inline unsigned long kvm_read_tr_base(void) +{ + u16 tr; + asm("str %0" : "=g"(tr)); + return segment_base(tr); +} + +static void vmx_save_host_state(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int i; + + if (vmx->host_state.loaded) + return; + + vmx->host_state.loaded = 1; + /* + * Set host fs and gs selectors. Unfortunately, 22.2.3 does not + * allow segment selectors with cpl > 0 or ti == 1. + */ + vmx->host_state.ldt_sel = kvm_read_ldt(); + vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; + savesegment(fs, vmx->host_state.fs_sel); + if (!(vmx->host_state.fs_sel & 7)) { + vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); + vmx->host_state.fs_reload_needed = 0; + } else { + vmcs_write16(HOST_FS_SELECTOR, 0); + vmx->host_state.fs_reload_needed = 1; + } + savesegment(gs, vmx->host_state.gs_sel); + if (!(vmx->host_state.gs_sel & 7)) + vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); + else { + vmcs_write16(HOST_GS_SELECTOR, 0); + vmx->host_state.gs_ldt_reload_needed = 1; + } + +#ifdef CONFIG_X86_64 + savesegment(ds, vmx->host_state.ds_sel); + savesegment(es, vmx->host_state.es_sel); +#endif + +#ifdef CONFIG_X86_64 + vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); + vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); +#else + vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); + vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); +#endif + +#ifdef CONFIG_X86_64 + rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); + if (is_long_mode(&vmx->vcpu)) + wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); +#endif + if (boot_cpu_has(X86_FEATURE_MPX)) + rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs); + for (i = 0; i < vmx->save_nmsrs; ++i) + kvm_set_shared_msr(vmx->guest_msrs[i].index, + vmx->guest_msrs[i].data, + vmx->guest_msrs[i].mask); +} + +static void __vmx_load_host_state(struct vcpu_vmx *vmx) +{ + if (!vmx->host_state.loaded) + return; + + ++vmx->vcpu.stat.host_state_reload; + vmx->host_state.loaded = 0; +#ifdef CONFIG_X86_64 + if (is_long_mode(&vmx->vcpu)) + rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); +#endif + if (vmx->host_state.gs_ldt_reload_needed) { + kvm_load_ldt(vmx->host_state.ldt_sel); +#ifdef CONFIG_X86_64 + load_gs_index(vmx->host_state.gs_sel); +#else + loadsegment(gs, vmx->host_state.gs_sel); +#endif + } + if (vmx->host_state.fs_reload_needed) + loadsegment(fs, vmx->host_state.fs_sel); +#ifdef CONFIG_X86_64 + if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) { + loadsegment(ds, vmx->host_state.ds_sel); + loadsegment(es, vmx->host_state.es_sel); + } +#endif + reload_tss(); +#ifdef CONFIG_X86_64 + wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); +#endif + if (vmx->host_state.msr_host_bndcfgs) + wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs); + /* + * If the FPU is not active (through the host task or + * the guest vcpu), then restore the cr0.TS bit. + */ + if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded) + stts(); + load_gdt(this_cpu_ptr(&host_gdt)); +} + +static void vmx_load_host_state(struct vcpu_vmx *vmx) +{ + preempt_disable(); + __vmx_load_host_state(vmx); + preempt_enable(); +} + +/* + * Switches to specified vcpu, until a matching vcpu_put(), but assumes + * vcpu mutex is already taken. + */ +static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); + + if (!vmm_exclusive) + kvm_cpu_vmxon(phys_addr); + else if (vmx->loaded_vmcs->cpu != cpu) + loaded_vmcs_clear(vmx->loaded_vmcs); + + if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { + per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; + vmcs_load(vmx->loaded_vmcs->vmcs); + } + + if (vmx->loaded_vmcs->cpu != cpu) { + struct desc_ptr *gdt = this_cpu_ptr(&host_gdt); + unsigned long sysenter_esp; + + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + local_irq_disable(); + crash_disable_local_vmclear(cpu); + + /* + * Read loaded_vmcs->cpu should be before fetching + * loaded_vmcs->loaded_vmcss_on_cpu_link. + * See the comments in __loaded_vmcs_clear(). + */ + smp_rmb(); + + list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, + &per_cpu(loaded_vmcss_on_cpu, cpu)); + crash_enable_local_vmclear(cpu); + local_irq_enable(); + + /* + * Linux uses per-cpu TSS and GDT, so set these when switching + * processors. + */ + vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ + vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */ + + rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); + vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ + vmx->loaded_vmcs->cpu = cpu; + } +} + +static void vmx_vcpu_put(struct kvm_vcpu *vcpu) +{ + __vmx_load_host_state(to_vmx(vcpu)); + if (!vmm_exclusive) { + __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs); + vcpu->cpu = -1; + kvm_cpu_vmxoff(); + } +} + +static void vmx_fpu_activate(struct kvm_vcpu *vcpu) +{ + ulong cr0; + + if (vcpu->fpu_active) + return; + vcpu->fpu_active = 1; + cr0 = vmcs_readl(GUEST_CR0); + cr0 &= ~(X86_CR0_TS | X86_CR0_MP); + cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP); + vmcs_writel(GUEST_CR0, cr0); + update_exception_bitmap(vcpu); + vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; + if (is_guest_mode(vcpu)) + vcpu->arch.cr0_guest_owned_bits &= + ~get_vmcs12(vcpu)->cr0_guest_host_mask; + vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); +} + +static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); + +/* + * Return the cr0 value that a nested guest would read. This is a combination + * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by + * its hypervisor (cr0_read_shadow). + */ +static inline unsigned long nested_read_cr0(struct vmcs12 *fields) +{ + return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | + (fields->cr0_read_shadow & fields->cr0_guest_host_mask); +} +static inline unsigned long nested_read_cr4(struct vmcs12 *fields) +{ + return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | + (fields->cr4_read_shadow & fields->cr4_guest_host_mask); +} + +static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) +{ + /* Note that there is no vcpu->fpu_active = 0 here. The caller must + * set this *before* calling this function. + */ + vmx_decache_cr0_guest_bits(vcpu); + vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP); + update_exception_bitmap(vcpu); + vcpu->arch.cr0_guest_owned_bits = 0; + vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); + if (is_guest_mode(vcpu)) { + /* + * L1's specified read shadow might not contain the TS bit, + * so now that we turned on shadowing of this bit, we need to + * set this bit of the shadow. Like in nested_vmx_run we need + * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet + * up-to-date here because we just decached cr0.TS (and we'll + * only update vmcs12->guest_cr0 on nested exit). + */ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) | + (vcpu->arch.cr0 & X86_CR0_TS); + vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); + } else + vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0); +} + +static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) +{ + unsigned long rflags, save_rflags; + + if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { + __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); + rflags = vmcs_readl(GUEST_RFLAGS); + if (to_vmx(vcpu)->rmode.vm86_active) { + rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; + save_rflags = to_vmx(vcpu)->rmode.save_rflags; + rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; + } + to_vmx(vcpu)->rflags = rflags; + } + return to_vmx(vcpu)->rflags; +} + +static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) +{ + __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); + to_vmx(vcpu)->rflags = rflags; + if (to_vmx(vcpu)->rmode.vm86_active) { + to_vmx(vcpu)->rmode.save_rflags = rflags; + rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; + } + vmcs_writel(GUEST_RFLAGS, rflags); +} + +static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) +{ + u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + int ret = 0; + + if (interruptibility & GUEST_INTR_STATE_STI) + ret |= KVM_X86_SHADOW_INT_STI; + if (interruptibility & GUEST_INTR_STATE_MOV_SS) + ret |= KVM_X86_SHADOW_INT_MOV_SS; + + return ret; +} + +static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) +{ + u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + u32 interruptibility = interruptibility_old; + + interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); + + if (mask & KVM_X86_SHADOW_INT_MOV_SS) + interruptibility |= GUEST_INTR_STATE_MOV_SS; + else if (mask & KVM_X86_SHADOW_INT_STI) + interruptibility |= GUEST_INTR_STATE_STI; + + if ((interruptibility != interruptibility_old)) + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); +} + +static void skip_emulated_instruction(struct kvm_vcpu *vcpu) +{ + unsigned long rip; + + rip = kvm_rip_read(vcpu); + rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + kvm_rip_write(vcpu, rip); + + /* skipping an emulated instruction also counts */ + vmx_set_interrupt_shadow(vcpu, 0); +} + +/* + * KVM wants to inject page-faults which it got to the guest. This function + * checks whether in a nested guest, we need to inject them to L1 or L2. + */ +static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (!(vmcs12->exception_bitmap & (1u << nr))) + return 0; + + nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason, + vmcs_read32(VM_EXIT_INTR_INFO), + vmcs_readl(EXIT_QUALIFICATION)); + return 1; +} + +static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, + bool has_error_code, u32 error_code, + bool reinject) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 intr_info = nr | INTR_INFO_VALID_MASK; + + if (!reinject && is_guest_mode(vcpu) && + nested_vmx_check_exception(vcpu, nr)) + return; + + if (has_error_code) { + vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); + intr_info |= INTR_INFO_DELIVER_CODE_MASK; + } + + if (vmx->rmode.vm86_active) { + int inc_eip = 0; + if (kvm_exception_is_soft(nr)) + inc_eip = vcpu->arch.event_exit_inst_len; + if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + + if (kvm_exception_is_soft(nr)) { + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmx->vcpu.arch.event_exit_inst_len); + intr_info |= INTR_TYPE_SOFT_EXCEPTION; + } else + intr_info |= INTR_TYPE_HARD_EXCEPTION; + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); +} + +static bool vmx_rdtscp_supported(void) +{ + return cpu_has_vmx_rdtscp(); +} + +static bool vmx_invpcid_supported(void) +{ + return cpu_has_vmx_invpcid() && enable_ept; +} + +/* + * Swap MSR entry in host/guest MSR entry array. + */ +static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) +{ + struct shared_msr_entry tmp; + + tmp = vmx->guest_msrs[to]; + vmx->guest_msrs[to] = vmx->guest_msrs[from]; + vmx->guest_msrs[from] = tmp; +} + +static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu) +{ + unsigned long *msr_bitmap; + + if (is_guest_mode(vcpu)) + msr_bitmap = vmx_msr_bitmap_nested; + else if (irqchip_in_kernel(vcpu->kvm) && + apic_x2apic_mode(vcpu->arch.apic)) { + if (is_long_mode(vcpu)) + msr_bitmap = vmx_msr_bitmap_longmode_x2apic; + else + msr_bitmap = vmx_msr_bitmap_legacy_x2apic; + } else { + if (is_long_mode(vcpu)) + msr_bitmap = vmx_msr_bitmap_longmode; + else + msr_bitmap = vmx_msr_bitmap_legacy; + } + + vmcs_write64(MSR_BITMAP, __pa(msr_bitmap)); +} + +/* + * Set up the vmcs to automatically save and restore system + * msrs. Don't touch the 64-bit msrs if the guest is in legacy + * mode, as fiddling with msrs is very expensive. + */ +static void setup_msrs(struct vcpu_vmx *vmx) +{ + int save_nmsrs, index; + + save_nmsrs = 0; +#ifdef CONFIG_X86_64 + if (is_long_mode(&vmx->vcpu)) { + index = __find_msr_index(vmx, MSR_SYSCALL_MASK); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_LSTAR); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_CSTAR); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_TSC_AUX); + if (index >= 0 && vmx->rdtscp_enabled) + move_msr_up(vmx, index, save_nmsrs++); + /* + * MSR_STAR is only needed on long mode guests, and only + * if efer.sce is enabled. + */ + index = __find_msr_index(vmx, MSR_STAR); + if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) + move_msr_up(vmx, index, save_nmsrs++); + } +#endif + index = __find_msr_index(vmx, MSR_EFER); + if (index >= 0 && update_transition_efer(vmx, index)) + move_msr_up(vmx, index, save_nmsrs++); + + vmx->save_nmsrs = save_nmsrs; + + if (cpu_has_vmx_msr_bitmap()) + vmx_set_msr_bitmap(&vmx->vcpu); +} + +/* + * reads and returns guest's timestamp counter "register" + * guest_tsc = host_tsc + tsc_offset -- 21.3 + */ +static u64 guest_read_tsc(void) +{ + u64 host_tsc, tsc_offset; + + rdtscll(host_tsc); + tsc_offset = vmcs_read64(TSC_OFFSET); + return host_tsc + tsc_offset; +} + +/* + * Like guest_read_tsc, but always returns L1's notion of the timestamp + * counter, even if a nested guest (L2) is currently running. + */ +static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) +{ + u64 tsc_offset; + + tsc_offset = is_guest_mode(vcpu) ? + to_vmx(vcpu)->nested.vmcs01_tsc_offset : + vmcs_read64(TSC_OFFSET); + return host_tsc + tsc_offset; +} + +/* + * Engage any workarounds for mis-matched TSC rates. Currently limited to + * software catchup for faster rates on slower CPUs. + */ +static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) +{ + if (!scale) + return; + + if (user_tsc_khz > tsc_khz) { + vcpu->arch.tsc_catchup = 1; + vcpu->arch.tsc_always_catchup = 1; + } else + WARN(1, "user requested TSC rate below hardware speed\n"); +} + +static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu) +{ + return vmcs_read64(TSC_OFFSET); +} + +/* + * writes 'offset' into guest's timestamp counter offset register + */ +static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) +{ + if (is_guest_mode(vcpu)) { + /* + * We're here if L1 chose not to trap WRMSR to TSC. According + * to the spec, this should set L1's TSC; The offset that L1 + * set for L2 remains unchanged, and still needs to be added + * to the newly set TSC to get L2's TSC. + */ + struct vmcs12 *vmcs12; + to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset; + /* recalculate vmcs02.TSC_OFFSET: */ + vmcs12 = get_vmcs12(vcpu); + vmcs_write64(TSC_OFFSET, offset + + (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ? + vmcs12->tsc_offset : 0)); + } else { + trace_kvm_write_tsc_offset(vcpu->vcpu_id, + vmcs_read64(TSC_OFFSET), offset); + vmcs_write64(TSC_OFFSET, offset); + } +} + +static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host) +{ + u64 offset = vmcs_read64(TSC_OFFSET); + + vmcs_write64(TSC_OFFSET, offset + adjustment); + if (is_guest_mode(vcpu)) { + /* Even when running L2, the adjustment needs to apply to L1 */ + to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment; + } else + trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset, + offset + adjustment); +} + +static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) +{ + return target_tsc - native_read_tsc(); +} + +static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0); + return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31))); +} + +/* + * nested_vmx_allowed() checks whether a guest should be allowed to use VMX + * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for + * all guests if the "nested" module option is off, and can also be disabled + * for a single guest by disabling its VMX cpuid bit. + */ +static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) +{ + return nested && guest_cpuid_has_vmx(vcpu); +} + +/* + * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be + * returned for the various VMX controls MSRs when nested VMX is enabled. + * The same values should also be used to verify that vmcs12 control fields are + * valid during nested entry from L1 to L2. + * Each of these control msrs has a low and high 32-bit half: A low bit is on + * if the corresponding bit in the (32-bit) control field *must* be on, and a + * bit in the high half is on if the corresponding bit in the control field + * may be on. See also vmx_control_verify(). + */ +static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx) +{ + /* + * Note that as a general rule, the high half of the MSRs (bits in + * the control fields which may be 1) should be initialized by the + * intersection of the underlying hardware's MSR (i.e., features which + * can be supported) and the list of features we want to expose - + * because they are known to be properly supported in our code. + * Also, usually, the low half of the MSRs (bits which must be 1) can + * be set to 0, meaning that L1 may turn off any of these bits. The + * reason is that if one of these bits is necessary, it will appear + * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control + * fields of vmcs01 and vmcs02, will turn these bits off - and + * nested_vmx_exit_handled() will not pass related exits to L1. + * These rules have exceptions below. + */ + + /* pin-based controls */ + rdmsr(MSR_IA32_VMX_PINBASED_CTLS, + vmx->nested.nested_vmx_pinbased_ctls_low, + vmx->nested.nested_vmx_pinbased_ctls_high); + vmx->nested.nested_vmx_pinbased_ctls_low |= + PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + vmx->nested.nested_vmx_pinbased_ctls_high &= + PIN_BASED_EXT_INTR_MASK | + PIN_BASED_NMI_EXITING | + PIN_BASED_VIRTUAL_NMIS; + vmx->nested.nested_vmx_pinbased_ctls_high |= + PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | + PIN_BASED_VMX_PREEMPTION_TIMER; + if (vmx_vm_has_apicv(vmx->vcpu.kvm)) + vmx->nested.nested_vmx_pinbased_ctls_high |= + PIN_BASED_POSTED_INTR; + + /* exit controls */ + rdmsr(MSR_IA32_VMX_EXIT_CTLS, + vmx->nested.nested_vmx_exit_ctls_low, + vmx->nested.nested_vmx_exit_ctls_high); + vmx->nested.nested_vmx_exit_ctls_low = + VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; + + vmx->nested.nested_vmx_exit_ctls_high &= +#ifdef CONFIG_X86_64 + VM_EXIT_HOST_ADDR_SPACE_SIZE | +#endif + VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; + vmx->nested.nested_vmx_exit_ctls_high |= + VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | + VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; + + if (vmx_mpx_supported()) + vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; + + /* We support free control of debug control saving. */ + vmx->nested.nested_vmx_true_exit_ctls_low = + vmx->nested.nested_vmx_exit_ctls_low & + ~VM_EXIT_SAVE_DEBUG_CONTROLS; + + /* entry controls */ + rdmsr(MSR_IA32_VMX_ENTRY_CTLS, + vmx->nested.nested_vmx_entry_ctls_low, + vmx->nested.nested_vmx_entry_ctls_high); + vmx->nested.nested_vmx_entry_ctls_low = + VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; + vmx->nested.nested_vmx_entry_ctls_high &= +#ifdef CONFIG_X86_64 + VM_ENTRY_IA32E_MODE | +#endif + VM_ENTRY_LOAD_IA32_PAT; + vmx->nested.nested_vmx_entry_ctls_high |= + (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); + if (vmx_mpx_supported()) + vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; + + /* We support free control of debug control loading. */ + vmx->nested.nested_vmx_true_entry_ctls_low = + vmx->nested.nested_vmx_entry_ctls_low & + ~VM_ENTRY_LOAD_DEBUG_CONTROLS; + + /* cpu-based controls */ + rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, + vmx->nested.nested_vmx_procbased_ctls_low, + vmx->nested.nested_vmx_procbased_ctls_high); + vmx->nested.nested_vmx_procbased_ctls_low = + CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + vmx->nested.nested_vmx_procbased_ctls_high &= + CPU_BASED_VIRTUAL_INTR_PENDING | + CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | + CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | + CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | +#ifdef CONFIG_X86_64 + CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | +#endif + CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | + CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING | + CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING | + CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW | + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; + /* + * We can allow some features even when not supported by the + * hardware. For example, L1 can specify an MSR bitmap - and we + * can use it to avoid exits to L1 - even when L0 runs L2 + * without MSR bitmaps. + */ + vmx->nested.nested_vmx_procbased_ctls_high |= + CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | + CPU_BASED_USE_MSR_BITMAPS; + + /* We support free control of CR3 access interception. */ + vmx->nested.nested_vmx_true_procbased_ctls_low = + vmx->nested.nested_vmx_procbased_ctls_low & + ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); + + /* secondary cpu-based controls */ + rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, + vmx->nested.nested_vmx_secondary_ctls_low, + vmx->nested.nested_vmx_secondary_ctls_high); + vmx->nested.nested_vmx_secondary_ctls_low = 0; + vmx->nested.nested_vmx_secondary_ctls_high &= + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_RDTSCP | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_WBINVD_EXITING | + SECONDARY_EXEC_XSAVES; + + if (enable_ept) { + /* nested EPT: emulate EPT also to L1 */ + vmx->nested.nested_vmx_secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_EPT; + vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT | + VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT | + VMX_EPT_INVEPT_BIT; + vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept; + /* + * For nested guests, we don't do anything specific + * for single context invalidation. Hence, only advertise + * support for global context invalidation. + */ + vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT; + } else + vmx->nested.nested_vmx_ept_caps = 0; + + if (enable_unrestricted_guest) + vmx->nested.nested_vmx_secondary_ctls_high |= + SECONDARY_EXEC_UNRESTRICTED_GUEST; + + /* miscellaneous data */ + rdmsr(MSR_IA32_VMX_MISC, + vmx->nested.nested_vmx_misc_low, + vmx->nested.nested_vmx_misc_high); + vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA; + vmx->nested.nested_vmx_misc_low |= + VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | + VMX_MISC_ACTIVITY_HLT; + vmx->nested.nested_vmx_misc_high = 0; +} + +static inline bool vmx_control_verify(u32 control, u32 low, u32 high) +{ + /* + * Bits 0 in high must be 0, and bits 1 in low must be 1. + */ + return ((control & high) | low) == control; +} + +static inline u64 vmx_control_msr(u32 low, u32 high) +{ + return low | ((u64)high << 32); +} + +/* Returns 0 on success, non-0 otherwise. */ +static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + switch (msr_index) { + case MSR_IA32_VMX_BASIC: + /* + * This MSR reports some information about VMX support. We + * should return information about the VMX we emulate for the + * guest, and the VMCS structure we give it - not about the + * VMX support of the underlying hardware. + */ + *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS | + ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | + (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); + break; + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + case MSR_IA32_VMX_PINBASED_CTLS: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_pinbased_ctls_low, + vmx->nested.nested_vmx_pinbased_ctls_high); + break; + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_true_procbased_ctls_low, + vmx->nested.nested_vmx_procbased_ctls_high); + break; + case MSR_IA32_VMX_PROCBASED_CTLS: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_procbased_ctls_low, + vmx->nested.nested_vmx_procbased_ctls_high); + break; + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_true_exit_ctls_low, + vmx->nested.nested_vmx_exit_ctls_high); + break; + case MSR_IA32_VMX_EXIT_CTLS: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_exit_ctls_low, + vmx->nested.nested_vmx_exit_ctls_high); + break; + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_true_entry_ctls_low, + vmx->nested.nested_vmx_entry_ctls_high); + break; + case MSR_IA32_VMX_ENTRY_CTLS: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_entry_ctls_low, + vmx->nested.nested_vmx_entry_ctls_high); + break; + case MSR_IA32_VMX_MISC: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_misc_low, + vmx->nested.nested_vmx_misc_high); + break; + /* + * These MSRs specify bits which the guest must keep fixed (on or off) + * while L1 is in VMXON mode (in L1's root mode, or running an L2). + * We picked the standard core2 setting. + */ +#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) +#define VMXON_CR4_ALWAYSON X86_CR4_VMXE + case MSR_IA32_VMX_CR0_FIXED0: + *pdata = VMXON_CR0_ALWAYSON; + break; + case MSR_IA32_VMX_CR0_FIXED1: + *pdata = -1ULL; + break; + case MSR_IA32_VMX_CR4_FIXED0: + *pdata = VMXON_CR4_ALWAYSON; + break; + case MSR_IA32_VMX_CR4_FIXED1: + *pdata = -1ULL; + break; + case MSR_IA32_VMX_VMCS_ENUM: + *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */ + break; + case MSR_IA32_VMX_PROCBASED_CTLS2: + *pdata = vmx_control_msr( + vmx->nested.nested_vmx_secondary_ctls_low, + vmx->nested.nested_vmx_secondary_ctls_high); + break; + case MSR_IA32_VMX_EPT_VPID_CAP: + /* Currently, no nested vpid support */ + *pdata = vmx->nested.nested_vmx_ept_caps; + break; + default: + return 1; + } + + return 0; +} + +/* + * Reads an msr value (of 'msr_index') into 'pdata'. + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) +{ + u64 data; + struct shared_msr_entry *msr; + + if (!pdata) { + printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); + return -EINVAL; + } + + switch (msr_index) { +#ifdef CONFIG_X86_64 + case MSR_FS_BASE: + data = vmcs_readl(GUEST_FS_BASE); + break; + case MSR_GS_BASE: + data = vmcs_readl(GUEST_GS_BASE); + break; + case MSR_KERNEL_GS_BASE: + vmx_load_host_state(to_vmx(vcpu)); + data = to_vmx(vcpu)->msr_guest_kernel_gs_base; + break; +#endif + case MSR_EFER: + return kvm_get_msr_common(vcpu, msr_index, pdata); + case MSR_IA32_TSC: + data = guest_read_tsc(); + break; + case MSR_IA32_SYSENTER_CS: + data = vmcs_read32(GUEST_SYSENTER_CS); + break; + case MSR_IA32_SYSENTER_EIP: + data = vmcs_readl(GUEST_SYSENTER_EIP); + break; + case MSR_IA32_SYSENTER_ESP: + data = vmcs_readl(GUEST_SYSENTER_ESP); + break; + case MSR_IA32_BNDCFGS: + if (!vmx_mpx_supported()) + return 1; + data = vmcs_read64(GUEST_BNDCFGS); + break; + case MSR_IA32_FEATURE_CONTROL: + if (!nested_vmx_allowed(vcpu)) + return 1; + data = to_vmx(vcpu)->nested.msr_ia32_feature_control; + break; + case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + if (!nested_vmx_allowed(vcpu)) + return 1; + return vmx_get_vmx_msr(vcpu, msr_index, pdata); + case MSR_IA32_XSS: + if (!vmx_xsaves_supported()) + return 1; + data = vcpu->arch.ia32_xss; + break; + case MSR_TSC_AUX: + if (!to_vmx(vcpu)->rdtscp_enabled) + return 1; + /* Otherwise falls through */ + default: + msr = find_msr_entry(to_vmx(vcpu), msr_index); + if (msr) { + data = msr->data; + break; + } + return kvm_get_msr_common(vcpu, msr_index, pdata); + } + + *pdata = data; + return 0; +} + +static void vmx_leave_nested(struct kvm_vcpu *vcpu); + +/* + * Writes msr value into into the appropriate "register". + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct shared_msr_entry *msr; + int ret = 0; + u32 msr_index = msr_info->index; + u64 data = msr_info->data; + + switch (msr_index) { + case MSR_EFER: + ret = kvm_set_msr_common(vcpu, msr_info); + break; +#ifdef CONFIG_X86_64 + case MSR_FS_BASE: + vmx_segment_cache_clear(vmx); + vmcs_writel(GUEST_FS_BASE, data); + break; + case MSR_GS_BASE: + vmx_segment_cache_clear(vmx); + vmcs_writel(GUEST_GS_BASE, data); + break; + case MSR_KERNEL_GS_BASE: + vmx_load_host_state(vmx); + vmx->msr_guest_kernel_gs_base = data; + break; +#endif + case MSR_IA32_SYSENTER_CS: + vmcs_write32(GUEST_SYSENTER_CS, data); + break; + case MSR_IA32_SYSENTER_EIP: + vmcs_writel(GUEST_SYSENTER_EIP, data); + break; + case MSR_IA32_SYSENTER_ESP: + vmcs_writel(GUEST_SYSENTER_ESP, data); + break; + case MSR_IA32_BNDCFGS: + if (!vmx_mpx_supported()) + return 1; + vmcs_write64(GUEST_BNDCFGS, data); + break; + case MSR_IA32_TSC: + kvm_write_tsc(vcpu, msr_info); + break; + case MSR_IA32_CR_PAT: + if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { + if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) + return 1; + vmcs_write64(GUEST_IA32_PAT, data); + vcpu->arch.pat = data; + break; + } + ret = kvm_set_msr_common(vcpu, msr_info); + break; + case MSR_IA32_TSC_ADJUST: + ret = kvm_set_msr_common(vcpu, msr_info); + break; + case MSR_IA32_FEATURE_CONTROL: + if (!nested_vmx_allowed(vcpu) || + (to_vmx(vcpu)->nested.msr_ia32_feature_control & + FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) + return 1; + vmx->nested.msr_ia32_feature_control = data; + if (msr_info->host_initiated && data == 0) + vmx_leave_nested(vcpu); + break; + case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + return 1; /* they are read-only */ + case MSR_IA32_XSS: + if (!vmx_xsaves_supported()) + return 1; + /* + * The only supported bit as of Skylake is bit 8, but + * it is not supported on KVM. + */ + if (data != 0) + return 1; + vcpu->arch.ia32_xss = data; + if (vcpu->arch.ia32_xss != host_xss) + add_atomic_switch_msr(vmx, MSR_IA32_XSS, + vcpu->arch.ia32_xss, host_xss); + else + clear_atomic_switch_msr(vmx, MSR_IA32_XSS); + break; + case MSR_TSC_AUX: + if (!vmx->rdtscp_enabled) + return 1; + /* Check reserved bit, higher 32 bits should be zero */ + if ((data >> 32) != 0) + return 1; + /* Otherwise falls through */ + default: + msr = find_msr_entry(vmx, msr_index); + if (msr) { + u64 old_msr_data = msr->data; + msr->data = data; + if (msr - vmx->guest_msrs < vmx->save_nmsrs) { + preempt_disable(); + ret = kvm_set_shared_msr(msr->index, msr->data, + msr->mask); + preempt_enable(); + if (ret) + msr->data = old_msr_data; + } + break; + } + ret = kvm_set_msr_common(vcpu, msr_info); + } + + return ret; +} + +static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) +{ + __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); + switch (reg) { + case VCPU_REGS_RSP: + vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); + break; + case VCPU_REGS_RIP: + vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); + break; + case VCPU_EXREG_PDPTR: + if (enable_ept) + ept_save_pdptrs(vcpu); + break; + default: + break; + } +} + +static __init int cpu_has_kvm_support(void) +{ + return cpu_has_vmx(); +} + +static __init int vmx_disabled_by_bios(void) +{ + u64 msr; + + rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); + if (msr & FEATURE_CONTROL_LOCKED) { + /* launched w/ TXT and VMX disabled */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) + && tboot_enabled()) + return 1; + /* launched w/o TXT and VMX only enabled w/ TXT */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) + && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) + && !tboot_enabled()) { + printk(KERN_WARNING "kvm: disable TXT in the BIOS or " + "activate TXT before enabling KVM\n"); + return 1; + } + /* launched w/o TXT and VMX disabled */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) + && !tboot_enabled()) + return 1; + } + + return 0; +} + +static void kvm_cpu_vmxon(u64 addr) +{ + asm volatile (ASM_VMX_VMXON_RAX + : : "a"(&addr), "m"(addr) + : "memory", "cc"); +} + +static int hardware_enable(void) +{ + int cpu = raw_smp_processor_id(); + u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); + u64 old, test_bits; + + if (cr4_read_shadow() & X86_CR4_VMXE) + return -EBUSY; + + INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); + + /* + * Now we can enable the vmclear operation in kdump + * since the loaded_vmcss_on_cpu list on this cpu + * has been initialized. + * + * Though the cpu is not in VMX operation now, there + * is no problem to enable the vmclear operation + * for the loaded_vmcss_on_cpu list is empty! + */ + crash_enable_local_vmclear(cpu); + + rdmsrl(MSR_IA32_FEATURE_CONTROL, old); + + test_bits = FEATURE_CONTROL_LOCKED; + test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + if (tboot_enabled()) + test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; + + if ((old & test_bits) != test_bits) { + /* enable and lock */ + wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); + } + cr4_set_bits(X86_CR4_VMXE); + + if (vmm_exclusive) { + kvm_cpu_vmxon(phys_addr); + ept_sync_global(); + } + + native_store_gdt(this_cpu_ptr(&host_gdt)); + + return 0; +} + +static void vmclear_local_loaded_vmcss(void) +{ + int cpu = raw_smp_processor_id(); + struct loaded_vmcs *v, *n; + + list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), + loaded_vmcss_on_cpu_link) + __loaded_vmcs_clear(v); +} + + +/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() + * tricks. + */ +static void kvm_cpu_vmxoff(void) +{ + asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc"); +} + +static void hardware_disable(void) +{ + if (vmm_exclusive) { + vmclear_local_loaded_vmcss(); + kvm_cpu_vmxoff(); + } + cr4_clear_bits(X86_CR4_VMXE); +} + +static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, + u32 msr, u32 *result) +{ + u32 vmx_msr_low, vmx_msr_high; + u32 ctl = ctl_min | ctl_opt; + + rdmsr(msr, vmx_msr_low, vmx_msr_high); + + ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ + ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ + + /* Ensure minimum (required) set of control bits are supported. */ + if (ctl_min & ~ctl) + return -EIO; + + *result = ctl; + return 0; +} + +static __init bool allow_1_setting(u32 msr, u32 ctl) +{ + u32 vmx_msr_low, vmx_msr_high; + + rdmsr(msr, vmx_msr_low, vmx_msr_high); + return vmx_msr_high & ctl; +} + +static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) +{ + u32 vmx_msr_low, vmx_msr_high; + u32 min, opt, min2, opt2; + u32 _pin_based_exec_control = 0; + u32 _cpu_based_exec_control = 0; + u32 _cpu_based_2nd_exec_control = 0; + u32 _vmexit_control = 0; + u32 _vmentry_control = 0; + + min = CPU_BASED_HLT_EXITING | +#ifdef CONFIG_X86_64 + CPU_BASED_CR8_LOAD_EXITING | + CPU_BASED_CR8_STORE_EXITING | +#endif + CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_USE_IO_BITMAPS | + CPU_BASED_MOV_DR_EXITING | + CPU_BASED_USE_TSC_OFFSETING | + CPU_BASED_MWAIT_EXITING | + CPU_BASED_MONITOR_EXITING | + CPU_BASED_INVLPG_EXITING | + CPU_BASED_RDPMC_EXITING; + + opt = CPU_BASED_TPR_SHADOW | + CPU_BASED_USE_MSR_BITMAPS | + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, + &_cpu_based_exec_control) < 0) + return -EIO; +#ifdef CONFIG_X86_64 + if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) + _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & + ~CPU_BASED_CR8_STORE_EXITING; +#endif + if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { + min2 = 0; + opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_WBINVD_EXITING | + SECONDARY_EXEC_ENABLE_VPID | + SECONDARY_EXEC_ENABLE_EPT | + SECONDARY_EXEC_UNRESTRICTED_GUEST | + SECONDARY_EXEC_PAUSE_LOOP_EXITING | + SECONDARY_EXEC_RDTSCP | + SECONDARY_EXEC_ENABLE_INVPCID | + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_SHADOW_VMCS | + SECONDARY_EXEC_XSAVES | + SECONDARY_EXEC_ENABLE_PML; + if (adjust_vmx_controls(min2, opt2, + MSR_IA32_VMX_PROCBASED_CTLS2, + &_cpu_based_2nd_exec_control) < 0) + return -EIO; + } +#ifndef CONFIG_X86_64 + if (!(_cpu_based_2nd_exec_control & + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; +#endif + + if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) + _cpu_based_2nd_exec_control &= ~( + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + + if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { + /* CR3 accesses and invlpg don't need to cause VM Exits when EPT + enabled */ + _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_INVLPG_EXITING); + rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, + vmx_capability.ept, vmx_capability.vpid); + } + + min = VM_EXIT_SAVE_DEBUG_CONTROLS; +#ifdef CONFIG_X86_64 + min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; +#endif + opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT | + VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, + &_vmexit_control) < 0) + return -EIO; + + min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; + opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, + &_pin_based_exec_control) < 0) + return -EIO; + + if (!(_cpu_based_2nd_exec_control & + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) || + !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT)) + _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; + + min = VM_ENTRY_LOAD_DEBUG_CONTROLS; + opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, + &_vmentry_control) < 0) + return -EIO; + + rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); + + /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ + if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) + return -EIO; + +#ifdef CONFIG_X86_64 + /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ + if (vmx_msr_high & (1u<<16)) + return -EIO; +#endif + + /* Require Write-Back (WB) memory type for VMCS accesses. */ + if (((vmx_msr_high >> 18) & 15) != 6) + return -EIO; + + vmcs_conf->size = vmx_msr_high & 0x1fff; + vmcs_conf->order = get_order(vmcs_config.size); + vmcs_conf->revision_id = vmx_msr_low; + + vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; + vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; + vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; + vmcs_conf->vmexit_ctrl = _vmexit_control; + vmcs_conf->vmentry_ctrl = _vmentry_control; + + cpu_has_load_ia32_efer = + allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, + VM_ENTRY_LOAD_IA32_EFER) + && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, + VM_EXIT_LOAD_IA32_EFER); + + cpu_has_load_perf_global_ctrl = + allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, + VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) + && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, + VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); + + /* + * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL + * but due to arrata below it can't be used. Workaround is to use + * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. + * + * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] + * + * AAK155 (model 26) + * AAP115 (model 30) + * AAT100 (model 37) + * BC86,AAY89,BD102 (model 44) + * BA97 (model 46) + * + */ + if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { + switch (boot_cpu_data.x86_model) { + case 26: + case 30: + case 37: + case 44: + case 46: + cpu_has_load_perf_global_ctrl = false; + printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " + "does not work properly. Using workaround\n"); + break; + default: + break; + } + } + + if (cpu_has_xsaves) + rdmsrl(MSR_IA32_XSS, host_xss); + + return 0; +} + +static struct vmcs *alloc_vmcs_cpu(int cpu) +{ + int node = cpu_to_node(cpu); + struct page *pages; + struct vmcs *vmcs; + + pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order); + if (!pages) + return NULL; + vmcs = page_address(pages); + memset(vmcs, 0, vmcs_config.size); + vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ + return vmcs; +} + +static struct vmcs *alloc_vmcs(void) +{ + return alloc_vmcs_cpu(raw_smp_processor_id()); +} + +static void free_vmcs(struct vmcs *vmcs) +{ + free_pages((unsigned long)vmcs, vmcs_config.order); +} + +/* + * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded + */ +static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) +{ + if (!loaded_vmcs->vmcs) + return; + loaded_vmcs_clear(loaded_vmcs); + free_vmcs(loaded_vmcs->vmcs); + loaded_vmcs->vmcs = NULL; +} + +static void free_kvm_area(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + free_vmcs(per_cpu(vmxarea, cpu)); + per_cpu(vmxarea, cpu) = NULL; + } +} + +static void init_vmcs_shadow_fields(void) +{ + int i, j; + + /* No checks for read only fields yet */ + + for (i = j = 0; i < max_shadow_read_write_fields; i++) { + switch (shadow_read_write_fields[i]) { + case GUEST_BNDCFGS: + if (!vmx_mpx_supported()) + continue; + break; + default: + break; + } + + if (j < i) + shadow_read_write_fields[j] = + shadow_read_write_fields[i]; + j++; + } + max_shadow_read_write_fields = j; + + /* shadowed fields guest access without vmexit */ + for (i = 0; i < max_shadow_read_write_fields; i++) { + clear_bit(shadow_read_write_fields[i], + vmx_vmwrite_bitmap); + clear_bit(shadow_read_write_fields[i], + vmx_vmread_bitmap); + } + for (i = 0; i < max_shadow_read_only_fields; i++) + clear_bit(shadow_read_only_fields[i], + vmx_vmread_bitmap); +} + +static __init int alloc_kvm_area(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + struct vmcs *vmcs; + + vmcs = alloc_vmcs_cpu(cpu); + if (!vmcs) { + free_kvm_area(); + return -ENOMEM; + } + + per_cpu(vmxarea, cpu) = vmcs; + } + return 0; +} + +static bool emulation_required(struct kvm_vcpu *vcpu) +{ + return emulate_invalid_guest_state && !guest_state_valid(vcpu); +} + +static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, + struct kvm_segment *save) +{ + if (!emulate_invalid_guest_state) { + /* + * CS and SS RPL should be equal during guest entry according + * to VMX spec, but in reality it is not always so. Since vcpu + * is in the middle of the transition from real mode to + * protected mode it is safe to assume that RPL 0 is a good + * default value. + */ + if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) + save->selector &= ~SEGMENT_RPL_MASK; + save->dpl = save->selector & SEGMENT_RPL_MASK; + save->s = 1; + } + vmx_set_segment(vcpu, save, seg); +} + +static void enter_pmode(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * Update real mode segment cache. It may be not up-to-date if sement + * register was written while vcpu was in a guest mode. + */ + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); + + vmx->rmode.vm86_active = 0; + + vmx_segment_cache_clear(vmx); + + vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); + + flags = vmcs_readl(GUEST_RFLAGS); + flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; + flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; + vmcs_writel(GUEST_RFLAGS, flags); + + vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | + (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); + + update_exception_bitmap(vcpu); + + fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); + fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); + fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); + fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); + fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); + fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); +} + +static void fix_rmode_seg(int seg, struct kvm_segment *save) +{ + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + struct kvm_segment var = *save; + + var.dpl = 0x3; + if (seg == VCPU_SREG_CS) + var.type = 0x3; + + if (!emulate_invalid_guest_state) { + var.selector = var.base >> 4; + var.base = var.base & 0xffff0; + var.limit = 0xffff; + var.g = 0; + var.db = 0; + var.present = 1; + var.s = 1; + var.l = 0; + var.unusable = 0; + var.type = 0x3; + var.avl = 0; + if (save->base & 0xf) + printk_once(KERN_WARNING "kvm: segment base is not " + "paragraph aligned when entering " + "protected mode (seg=%d)", seg); + } + + vmcs_write16(sf->selector, var.selector); + vmcs_write32(sf->base, var.base); + vmcs_write32(sf->limit, var.limit); + vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); +} + +static void enter_rmode(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + struct vcpu_vmx *vmx = to_vmx(vcpu); + + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); + + vmx->rmode.vm86_active = 1; + + /* + * Very old userspace does not call KVM_SET_TSS_ADDR before entering + * vcpu. Warn the user that an update is overdue. + */ + if (!vcpu->kvm->arch.tss_addr) + printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " + "called before entering vcpu\n"); + + vmx_segment_cache_clear(vmx); + + vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr); + vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); + vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); + + flags = vmcs_readl(GUEST_RFLAGS); + vmx->rmode.save_rflags = flags; + + flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; + + vmcs_writel(GUEST_RFLAGS, flags); + vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); + update_exception_bitmap(vcpu); + + fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); + fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); + fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); + fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); + fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); + fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); + + kvm_mmu_reset_context(vcpu); +} + +static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); + + if (!msr) + return; + + /* + * Force kernel_gs_base reloading before EFER changes, as control + * of this msr depends on is_long_mode(). + */ + vmx_load_host_state(to_vmx(vcpu)); + vcpu->arch.efer = efer; + if (efer & EFER_LMA) { + vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + msr->data = efer; + } else { + vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + + msr->data = efer & ~EFER_LME; + } + setup_msrs(vmx); +} + +#ifdef CONFIG_X86_64 + +static void enter_lmode(struct kvm_vcpu *vcpu) +{ + u32 guest_tr_ar; + + vmx_segment_cache_clear(to_vmx(vcpu)); + + guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); + if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { + pr_debug_ratelimited("%s: tss fixup for long mode. \n", + __func__); + vmcs_write32(GUEST_TR_AR_BYTES, + (guest_tr_ar & ~AR_TYPE_MASK) + | AR_TYPE_BUSY_64_TSS); + } + vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); +} + +static void exit_lmode(struct kvm_vcpu *vcpu) +{ + vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); +} + +#endif + +static void vmx_flush_tlb(struct kvm_vcpu *vcpu) +{ + vpid_sync_context(to_vmx(vcpu)); + if (enable_ept) { + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + return; + ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa)); + } +} + +static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) +{ + ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; + + vcpu->arch.cr0 &= ~cr0_guest_owned_bits; + vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; +} + +static void vmx_decache_cr3(struct kvm_vcpu *vcpu) +{ + if (enable_ept && is_paging(vcpu)) + vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); +} + +static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) +{ + ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; + + vcpu->arch.cr4 &= ~cr4_guest_owned_bits; + vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; +} + +static void ept_load_pdptrs(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + if (!test_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_dirty)) + return; + + if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { + vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); + vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); + vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); + vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); + } +} + +static void ept_save_pdptrs(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { + mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); + mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); + mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); + mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); + } + + __set_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_avail); + __set_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_dirty); +} + +static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); + +static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, + unsigned long cr0, + struct kvm_vcpu *vcpu) +{ + if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) + vmx_decache_cr3(vcpu); + if (!(cr0 & X86_CR0_PG)) { + /* From paging/starting to nonpaging */ + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, + vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | + (CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING)); + vcpu->arch.cr0 = cr0; + vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); + } else if (!is_paging(vcpu)) { + /* From nonpaging to paging */ + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, + vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & + ~(CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING)); + vcpu->arch.cr0 = cr0; + vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); + } + + if (!(cr0 & X86_CR0_WP)) + *hw_cr0 &= ~X86_CR0_WP; +} + +static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long hw_cr0; + + hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK); + if (enable_unrestricted_guest) + hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; + else { + hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; + + if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) + enter_pmode(vcpu); + + if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) + enter_rmode(vcpu); + } + +#ifdef CONFIG_X86_64 + if (vcpu->arch.efer & EFER_LME) { + if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) + enter_lmode(vcpu); + if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) + exit_lmode(vcpu); + } +#endif + + if (enable_ept) + ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); + + if (!vcpu->fpu_active) + hw_cr0 |= X86_CR0_TS | X86_CR0_MP; + + vmcs_writel(CR0_READ_SHADOW, cr0); + vmcs_writel(GUEST_CR0, hw_cr0); + vcpu->arch.cr0 = cr0; + + /* depends on vcpu->arch.cr0 to be set to a new value */ + vmx->emulation_required = emulation_required(vcpu); +} + +static u64 construct_eptp(unsigned long root_hpa) +{ + u64 eptp; + + /* TODO write the value reading from MSR */ + eptp = VMX_EPT_DEFAULT_MT | + VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT; + if (enable_ept_ad_bits) + eptp |= VMX_EPT_AD_ENABLE_BIT; + eptp |= (root_hpa & PAGE_MASK); + + return eptp; +} + +static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) +{ + unsigned long guest_cr3; + u64 eptp; + + guest_cr3 = cr3; + if (enable_ept) { + eptp = construct_eptp(cr3); + vmcs_write64(EPT_POINTER, eptp); + if (is_paging(vcpu) || is_guest_mode(vcpu)) + guest_cr3 = kvm_read_cr3(vcpu); + else + guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr; + ept_load_pdptrs(vcpu); + } + + vmx_flush_tlb(vcpu); + vmcs_writel(GUEST_CR3, guest_cr3); +} + +static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + /* + * Pass through host's Machine Check Enable value to hw_cr4, which + * is in force while we are in guest mode. Do not let guests control + * this bit, even if host CR4.MCE == 0. + */ + unsigned long hw_cr4 = + (cr4_read_shadow() & X86_CR4_MCE) | + (cr4 & ~X86_CR4_MCE) | + (to_vmx(vcpu)->rmode.vm86_active ? + KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON); + + if (cr4 & X86_CR4_VMXE) { + /* + * To use VMXON (and later other VMX instructions), a guest + * must first be able to turn on cr4.VMXE (see handle_vmon()). + * So basically the check on whether to allow nested VMX + * is here. + */ + if (!nested_vmx_allowed(vcpu)) + return 1; + } + if (to_vmx(vcpu)->nested.vmxon && + ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) + return 1; + + vcpu->arch.cr4 = cr4; + if (enable_ept) { + if (!is_paging(vcpu)) { + hw_cr4 &= ~X86_CR4_PAE; + hw_cr4 |= X86_CR4_PSE; + /* + * SMEP/SMAP is disabled if CPU is in non-paging mode + * in hardware. However KVM always uses paging mode to + * emulate guest non-paging mode with TDP. + * To emulate this behavior, SMEP/SMAP needs to be + * manually disabled when guest switches to non-paging + * mode. + */ + hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP); + } else if (!(cr4 & X86_CR4_PAE)) { + hw_cr4 &= ~X86_CR4_PAE; + } + } + + vmcs_writel(CR4_READ_SHADOW, cr4); + vmcs_writel(GUEST_CR4, hw_cr4); + return 0; +} + +static void vmx_get_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 ar; + + if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { + *var = vmx->rmode.segs[seg]; + if (seg == VCPU_SREG_TR + || var->selector == vmx_read_guest_seg_selector(vmx, seg)) + return; + var->base = vmx_read_guest_seg_base(vmx, seg); + var->selector = vmx_read_guest_seg_selector(vmx, seg); + return; + } + var->base = vmx_read_guest_seg_base(vmx, seg); + var->limit = vmx_read_guest_seg_limit(vmx, seg); + var->selector = vmx_read_guest_seg_selector(vmx, seg); + ar = vmx_read_guest_seg_ar(vmx, seg); + var->unusable = (ar >> 16) & 1; + var->type = ar & 15; + var->s = (ar >> 4) & 1; + var->dpl = (ar >> 5) & 3; + /* + * Some userspaces do not preserve unusable property. Since usable + * segment has to be present according to VMX spec we can use present + * property to amend userspace bug by making unusable segment always + * nonpresent. vmx_segment_access_rights() already marks nonpresent + * segment as unusable. + */ + var->present = !var->unusable; + var->avl = (ar >> 12) & 1; + var->l = (ar >> 13) & 1; + var->db = (ar >> 14) & 1; + var->g = (ar >> 15) & 1; +} + +static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment s; + + if (to_vmx(vcpu)->rmode.vm86_active) { + vmx_get_segment(vcpu, &s, seg); + return s.base; + } + return vmx_read_guest_seg_base(to_vmx(vcpu), seg); +} + +static int vmx_get_cpl(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (unlikely(vmx->rmode.vm86_active)) + return 0; + else { + int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); + return AR_DPL(ar); + } +} + +static u32 vmx_segment_access_rights(struct kvm_segment *var) +{ + u32 ar; + + if (var->unusable || !var->present) + ar = 1 << 16; + else { + ar = var->type & 15; + ar |= (var->s & 1) << 4; + ar |= (var->dpl & 3) << 5; + ar |= (var->present & 1) << 7; + ar |= (var->avl & 1) << 12; + ar |= (var->l & 1) << 13; + ar |= (var->db & 1) << 14; + ar |= (var->g & 1) << 15; + } + + return ar; +} + +static void vmx_set_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + + vmx_segment_cache_clear(vmx); + + if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { + vmx->rmode.segs[seg] = *var; + if (seg == VCPU_SREG_TR) + vmcs_write16(sf->selector, var->selector); + else if (var->s) + fix_rmode_seg(seg, &vmx->rmode.segs[seg]); + goto out; + } + + vmcs_writel(sf->base, var->base); + vmcs_write32(sf->limit, var->limit); + vmcs_write16(sf->selector, var->selector); + + /* + * Fix the "Accessed" bit in AR field of segment registers for older + * qemu binaries. + * IA32 arch specifies that at the time of processor reset the + * "Accessed" bit in the AR field of segment registers is 1. And qemu + * is setting it to 0 in the userland code. This causes invalid guest + * state vmexit when "unrestricted guest" mode is turned on. + * Fix for this setup issue in cpu_reset is being pushed in the qemu + * tree. Newer qemu binaries with that qemu fix would not need this + * kvm hack. + */ + if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) + var->type |= 0x1; /* Accessed */ + + vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); + +out: + vmx->emulation_required = emulation_required(vcpu); +} + +static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) +{ + u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); + + *db = (ar >> 14) & 1; + *l = (ar >> 13) & 1; +} + +static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + dt->size = vmcs_read32(GUEST_IDTR_LIMIT); + dt->address = vmcs_readl(GUEST_IDTR_BASE); +} + +static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + vmcs_write32(GUEST_IDTR_LIMIT, dt->size); + vmcs_writel(GUEST_IDTR_BASE, dt->address); +} + +static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + dt->size = vmcs_read32(GUEST_GDTR_LIMIT); + dt->address = vmcs_readl(GUEST_GDTR_BASE); +} + +static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + vmcs_write32(GUEST_GDTR_LIMIT, dt->size); + vmcs_writel(GUEST_GDTR_BASE, dt->address); +} + +static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment var; + u32 ar; + + vmx_get_segment(vcpu, &var, seg); + var.dpl = 0x3; + if (seg == VCPU_SREG_CS) + var.type = 0x3; + ar = vmx_segment_access_rights(&var); + + if (var.base != (var.selector << 4)) + return false; + if (var.limit != 0xffff) + return false; + if (ar != 0xf3) + return false; + + return true; +} + +static bool code_segment_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment cs; + unsigned int cs_rpl; + + vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); + cs_rpl = cs.selector & SEGMENT_RPL_MASK; + + if (cs.unusable) + return false; + if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK)) + return false; + if (!cs.s) + return false; + if (cs.type & AR_TYPE_WRITEABLE_MASK) { + if (cs.dpl > cs_rpl) + return false; + } else { + if (cs.dpl != cs_rpl) + return false; + } + if (!cs.present) + return false; + + /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ + return true; +} + +static bool stack_segment_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment ss; + unsigned int ss_rpl; + + vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); + ss_rpl = ss.selector & SEGMENT_RPL_MASK; + + if (ss.unusable) + return true; + if (ss.type != 3 && ss.type != 7) + return false; + if (!ss.s) + return false; + if (ss.dpl != ss_rpl) /* DPL != RPL */ + return false; + if (!ss.present) + return false; + + return true; +} + +static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment var; + unsigned int rpl; + + vmx_get_segment(vcpu, &var, seg); + rpl = var.selector & SEGMENT_RPL_MASK; + + if (var.unusable) + return true; + if (!var.s) + return false; + if (!var.present) + return false; + if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) { + if (var.dpl < rpl) /* DPL < RPL */ + return false; + } + + /* TODO: Add other members to kvm_segment_field to allow checking for other access + * rights flags + */ + return true; +} + +static bool tr_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment tr; + + vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); + + if (tr.unusable) + return false; + if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ + return false; + if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ + return false; + if (!tr.present) + return false; + + return true; +} + +static bool ldtr_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment ldtr; + + vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); + + if (ldtr.unusable) + return true; + if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ + return false; + if (ldtr.type != 2) + return false; + if (!ldtr.present) + return false; + + return true; +} + +static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) +{ + struct kvm_segment cs, ss; + + vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); + vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); + + return ((cs.selector & SEGMENT_RPL_MASK) == + (ss.selector & SEGMENT_RPL_MASK)); +} + +/* + * Check if guest state is valid. Returns true if valid, false if + * not. + * We assume that registers are always usable + */ +static bool guest_state_valid(struct kvm_vcpu *vcpu) +{ + if (enable_unrestricted_guest) + return true; + + /* real mode guest state checks */ + if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { + if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) + return false; + } else { + /* protected mode guest state checks */ + if (!cs_ss_rpl_check(vcpu)) + return false; + if (!code_segment_valid(vcpu)) + return false; + if (!stack_segment_valid(vcpu)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_DS)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_ES)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_FS)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_GS)) + return false; + if (!tr_valid(vcpu)) + return false; + if (!ldtr_valid(vcpu)) + return false; + } + /* TODO: + * - Add checks on RIP + * - Add checks on RFLAGS + */ + + return true; +} + +static int init_rmode_tss(struct kvm *kvm) +{ + gfn_t fn; + u16 data = 0; + int idx, r; + + idx = srcu_read_lock(&kvm->srcu); + fn = kvm->arch.tss_addr >> PAGE_SHIFT; + r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); + if (r < 0) + goto out; + data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; + r = kvm_write_guest_page(kvm, fn++, &data, + TSS_IOPB_BASE_OFFSET, sizeof(u16)); + if (r < 0) + goto out; + r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); + if (r < 0) + goto out; + r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); + if (r < 0) + goto out; + data = ~0; + r = kvm_write_guest_page(kvm, fn, &data, + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, + sizeof(u8)); +out: + srcu_read_unlock(&kvm->srcu, idx); + return r; +} + +static int init_rmode_identity_map(struct kvm *kvm) +{ + int i, idx, r = 0; + pfn_t identity_map_pfn; + u32 tmp; + + if (!enable_ept) + return 0; + + /* Protect kvm->arch.ept_identity_pagetable_done. */ + mutex_lock(&kvm->slots_lock); + + if (likely(kvm->arch.ept_identity_pagetable_done)) + goto out2; + + identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT; + + r = alloc_identity_pagetable(kvm); + if (r < 0) + goto out2; + + idx = srcu_read_lock(&kvm->srcu); + r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); + if (r < 0) + goto out; + /* Set up identity-mapping pagetable for EPT in real mode */ + for (i = 0; i < PT32_ENT_PER_PAGE; i++) { + tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | + _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); + r = kvm_write_guest_page(kvm, identity_map_pfn, + &tmp, i * sizeof(tmp), sizeof(tmp)); + if (r < 0) + goto out; + } + kvm->arch.ept_identity_pagetable_done = true; + +out: + srcu_read_unlock(&kvm->srcu, idx); + +out2: + mutex_unlock(&kvm->slots_lock); + return r; +} + +static void seg_setup(int seg) +{ + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + unsigned int ar; + + vmcs_write16(sf->selector, 0); + vmcs_writel(sf->base, 0); + vmcs_write32(sf->limit, 0xffff); + ar = 0x93; + if (seg == VCPU_SREG_CS) + ar |= 0x08; /* code segment */ + + vmcs_write32(sf->ar_bytes, ar); +} + +static int alloc_apic_access_page(struct kvm *kvm) +{ + struct page *page; + struct kvm_userspace_memory_region kvm_userspace_mem; + int r = 0; + + mutex_lock(&kvm->slots_lock); + if (kvm->arch.apic_access_page_done) + goto out; + kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; + kvm_userspace_mem.flags = 0; + kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE; + kvm_userspace_mem.memory_size = PAGE_SIZE; + r = __kvm_set_memory_region(kvm, &kvm_userspace_mem); + if (r) + goto out; + + page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); + if (is_error_page(page)) { + r = -EFAULT; + goto out; + } + + /* + * Do not pin the page in memory, so that memory hot-unplug + * is able to migrate it. + */ + put_page(page); + kvm->arch.apic_access_page_done = true; +out: + mutex_unlock(&kvm->slots_lock); + return r; +} + +static int alloc_identity_pagetable(struct kvm *kvm) +{ + /* Called with kvm->slots_lock held. */ + + struct kvm_userspace_memory_region kvm_userspace_mem; + int r = 0; + + BUG_ON(kvm->arch.ept_identity_pagetable_done); + + kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; + kvm_userspace_mem.flags = 0; + kvm_userspace_mem.guest_phys_addr = + kvm->arch.ept_identity_map_addr; + kvm_userspace_mem.memory_size = PAGE_SIZE; + r = __kvm_set_memory_region(kvm, &kvm_userspace_mem); + + return r; +} + +static void allocate_vpid(struct vcpu_vmx *vmx) +{ + int vpid; + + vmx->vpid = 0; + if (!enable_vpid) + return; + spin_lock(&vmx_vpid_lock); + vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); + if (vpid < VMX_NR_VPIDS) { + vmx->vpid = vpid; + __set_bit(vpid, vmx_vpid_bitmap); + } + spin_unlock(&vmx_vpid_lock); +} + +static void free_vpid(struct vcpu_vmx *vmx) +{ + if (!enable_vpid) + return; + spin_lock(&vmx_vpid_lock); + if (vmx->vpid != 0) + __clear_bit(vmx->vpid, vmx_vpid_bitmap); + spin_unlock(&vmx_vpid_lock); +} + +#define MSR_TYPE_R 1 +#define MSR_TYPE_W 2 +static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return; + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R) + /* read-low */ + __clear_bit(msr, msr_bitmap + 0x000 / f); + + if (type & MSR_TYPE_W) + /* write-low */ + __clear_bit(msr, msr_bitmap + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R) + /* read-high */ + __clear_bit(msr, msr_bitmap + 0x400 / f); + + if (type & MSR_TYPE_W) + /* write-high */ + __clear_bit(msr, msr_bitmap + 0xc00 / f); + + } +} + +static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return; + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R) + /* read-low */ + __set_bit(msr, msr_bitmap + 0x000 / f); + + if (type & MSR_TYPE_W) + /* write-low */ + __set_bit(msr, msr_bitmap + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R) + /* read-high */ + __set_bit(msr, msr_bitmap + 0x400 / f); + + if (type & MSR_TYPE_W) + /* write-high */ + __set_bit(msr, msr_bitmap + 0xc00 / f); + + } +} + +/* + * If a msr is allowed by L0, we should check whether it is allowed by L1. + * The corresponding bit will be cleared unless both of L0 and L1 allow it. + */ +static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, + unsigned long *msr_bitmap_nested, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) { + WARN_ON(1); + return; + } + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R && + !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) + /* read-low */ + __clear_bit(msr, msr_bitmap_nested + 0x000 / f); + + if (type & MSR_TYPE_W && + !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) + /* write-low */ + __clear_bit(msr, msr_bitmap_nested + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R && + !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) + /* read-high */ + __clear_bit(msr, msr_bitmap_nested + 0x400 / f); + + if (type & MSR_TYPE_W && + !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) + /* write-high */ + __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); + + } +} + +static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only) +{ + if (!longmode_only) + __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, + msr, MSR_TYPE_R | MSR_TYPE_W); + __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, + msr, MSR_TYPE_R | MSR_TYPE_W); +} + +static void vmx_enable_intercept_msr_read_x2apic(u32 msr) +{ + __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, + msr, MSR_TYPE_R); + __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, + msr, MSR_TYPE_R); +} + +static void vmx_disable_intercept_msr_read_x2apic(u32 msr) +{ + __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, + msr, MSR_TYPE_R); + __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, + msr, MSR_TYPE_R); +} + +static void vmx_disable_intercept_msr_write_x2apic(u32 msr) +{ + __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, + msr, MSR_TYPE_W); + __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, + msr, MSR_TYPE_W); +} + +static int vmx_vm_has_apicv(struct kvm *kvm) +{ + return enable_apicv && irqchip_in_kernel(kvm); +} + +static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int max_irr; + void *vapic_page; + u16 status; + + if (vmx->nested.pi_desc && + vmx->nested.pi_pending) { + vmx->nested.pi_pending = false; + if (!pi_test_and_clear_on(vmx->nested.pi_desc)) + return 0; + + max_irr = find_last_bit( + (unsigned long *)vmx->nested.pi_desc->pir, 256); + + if (max_irr == 256) + return 0; + + vapic_page = kmap(vmx->nested.virtual_apic_page); + if (!vapic_page) { + WARN_ON(1); + return -ENOMEM; + } + __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page); + kunmap(vmx->nested.virtual_apic_page); + + status = vmcs_read16(GUEST_INTR_STATUS); + if ((u8)max_irr > ((u8)status & 0xff)) { + status &= ~0xff; + status |= (u8)max_irr; + vmcs_write16(GUEST_INTR_STATUS, status); + } + } + return 0; +} + +static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu) +{ +#ifdef CONFIG_SMP + if (vcpu->mode == IN_GUEST_MODE) { + apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), + POSTED_INTR_VECTOR); + return true; + } +#endif + return false; +} + +static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, + int vector) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (is_guest_mode(vcpu) && + vector == vmx->nested.posted_intr_nv) { + /* the PIR and ON have been set by L1. */ + kvm_vcpu_trigger_posted_interrupt(vcpu); + /* + * If a posted intr is not recognized by hardware, + * we will accomplish it in the next vmentry. + */ + vmx->nested.pi_pending = true; + kvm_make_request(KVM_REQ_EVENT, vcpu); + return 0; + } + return -1; +} +/* + * Send interrupt to vcpu via posted interrupt way. + * 1. If target vcpu is running(non-root mode), send posted interrupt + * notification to vcpu and hardware will sync PIR to vIRR atomically. + * 2. If target vcpu isn't running(root mode), kick it to pick up the + * interrupt from PIR in next vmentry. + */ +static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int r; + + r = vmx_deliver_nested_posted_interrupt(vcpu, vector); + if (!r) + return; + + if (pi_test_and_set_pir(vector, &vmx->pi_desc)) + return; + + r = pi_test_and_set_on(&vmx->pi_desc); + kvm_make_request(KVM_REQ_EVENT, vcpu); + if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu)) + kvm_vcpu_kick(vcpu); +} + +static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!pi_test_and_clear_on(&vmx->pi_desc)) + return; + + kvm_apic_update_irr(vcpu, vmx->pi_desc.pir); +} + +static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu) +{ + return; +} + +/* + * Set up the vmcs's constant host-state fields, i.e., host-state fields that + * will not change in the lifetime of the guest. + * Note that host-state that does change is set elsewhere. E.g., host-state + * that is set differently for each CPU is set in vmx_vcpu_load(), not here. + */ +static void vmx_set_constant_host_state(struct vcpu_vmx *vmx) +{ + u32 low32, high32; + unsigned long tmpl; + struct desc_ptr dt; + unsigned long cr4; + + vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */ + vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */ + + /* Save the most likely value for this task's CR4 in the VMCS. */ + cr4 = cr4_read_shadow(); + vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ + vmx->host_state.vmcs_host_cr4 = cr4; + + vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ +#ifdef CONFIG_X86_64 + /* + * Load null selectors, so we can avoid reloading them in + * __vmx_load_host_state(), in case userspace uses the null selectors + * too (the expected case). + */ + vmcs_write16(HOST_DS_SELECTOR, 0); + vmcs_write16(HOST_ES_SELECTOR, 0); +#else + vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ + vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ +#endif + vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ + vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ + + native_store_idt(&dt); + vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ + vmx->host_idt_base = dt.address; + + vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */ + + rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); + vmcs_write32(HOST_IA32_SYSENTER_CS, low32); + rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); + vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ + + if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { + rdmsr(MSR_IA32_CR_PAT, low32, high32); + vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); + } +} + +static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) +{ + vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; + if (enable_ept) + vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; + if (is_guest_mode(&vmx->vcpu)) + vmx->vcpu.arch.cr4_guest_owned_bits &= + ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; + vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); +} + +static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) +{ + u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; + + if (!vmx_vm_has_apicv(vmx->vcpu.kvm)) + pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; + return pin_based_exec_ctrl; +} + +static u32 vmx_exec_control(struct vcpu_vmx *vmx) +{ + u32 exec_control = vmcs_config.cpu_based_exec_ctrl; + + if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) + exec_control &= ~CPU_BASED_MOV_DR_EXITING; + + if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) { + exec_control &= ~CPU_BASED_TPR_SHADOW; +#ifdef CONFIG_X86_64 + exec_control |= CPU_BASED_CR8_STORE_EXITING | + CPU_BASED_CR8_LOAD_EXITING; +#endif + } + if (!enable_ept) + exec_control |= CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_INVLPG_EXITING; + return exec_control; +} + +static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) +{ + u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; + if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) + exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + if (vmx->vpid == 0) + exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; + if (!enable_ept) { + exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; + enable_unrestricted_guest = 0; + /* Enable INVPCID for non-ept guests may cause performance regression. */ + exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; + } + if (!enable_unrestricted_guest) + exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; + if (!ple_gap) + exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; + if (!vmx_vm_has_apicv(vmx->vcpu.kvm)) + exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; + /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD + (handle_vmptrld). + We can NOT enable shadow_vmcs here because we don't have yet + a current VMCS12 + */ + exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; + /* PML is enabled/disabled in creating/destorying vcpu */ + exec_control &= ~SECONDARY_EXEC_ENABLE_PML; + + return exec_control; +} + +static void ept_set_mmio_spte_mask(void) +{ + /* + * EPT Misconfigurations can be generated if the value of bits 2:0 + * of an EPT paging-structure entry is 110b (write/execute). + * Also, magic bits (0x3ull << 62) is set to quickly identify mmio + * spte. + */ + kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull); +} + +#define VMX_XSS_EXIT_BITMAP 0 +/* + * Sets up the vmcs for emulated real mode. + */ +static int vmx_vcpu_setup(struct vcpu_vmx *vmx) +{ +#ifdef CONFIG_X86_64 + unsigned long a; +#endif + int i; + + /* I/O */ + vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a)); + vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b)); + + if (enable_shadow_vmcs) { + vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); + vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); + } + if (cpu_has_vmx_msr_bitmap()) + vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy)); + + vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ + + /* Control */ + vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); + + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); + + if (cpu_has_secondary_exec_ctrls()) { + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, + vmx_secondary_exec_control(vmx)); + } + + if (vmx_vm_has_apicv(vmx->vcpu.kvm)) { + vmcs_write64(EOI_EXIT_BITMAP0, 0); + vmcs_write64(EOI_EXIT_BITMAP1, 0); + vmcs_write64(EOI_EXIT_BITMAP2, 0); + vmcs_write64(EOI_EXIT_BITMAP3, 0); + + vmcs_write16(GUEST_INTR_STATUS, 0); + + vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR); + vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); + } + + if (ple_gap) { + vmcs_write32(PLE_GAP, ple_gap); + vmx->ple_window = ple_window; + vmx->ple_window_dirty = true; + } + + vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); + vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); + vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ + + vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ + vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ + vmx_set_constant_host_state(vmx); +#ifdef CONFIG_X86_64 + rdmsrl(MSR_FS_BASE, a); + vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ + rdmsrl(MSR_GS_BASE, a); + vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ +#else + vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ + vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ +#endif + + vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); + vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host)); + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); + vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest)); + + if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { + u32 msr_low, msr_high; + u64 host_pat; + rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high); + host_pat = msr_low | ((u64) msr_high << 32); + /* Write the default value follow host pat */ + vmcs_write64(GUEST_IA32_PAT, host_pat); + /* Keep arch.pat sync with GUEST_IA32_PAT */ + vmx->vcpu.arch.pat = host_pat; + } + + for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { + u32 index = vmx_msr_index[i]; + u32 data_low, data_high; + int j = vmx->nmsrs; + + if (rdmsr_safe(index, &data_low, &data_high) < 0) + continue; + if (wrmsr_safe(index, data_low, data_high) < 0) + continue; + vmx->guest_msrs[j].index = i; + vmx->guest_msrs[j].data = 0; + vmx->guest_msrs[j].mask = -1ull; + ++vmx->nmsrs; + } + + + vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl); + + /* 22.2.1, 20.8.1 */ + vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl); + + vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); + set_cr4_guest_host_mask(vmx); + + if (vmx_xsaves_supported()) + vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); + + return 0; +} + +static void vmx_vcpu_reset(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct msr_data apic_base_msr; + + vmx->rmode.vm86_active = 0; + + vmx->soft_vnmi_blocked = 0; + + vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); + kvm_set_cr8(&vmx->vcpu, 0); + apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; + if (kvm_vcpu_is_reset_bsp(&vmx->vcpu)) + apic_base_msr.data |= MSR_IA32_APICBASE_BSP; + apic_base_msr.host_initiated = true; + kvm_set_apic_base(&vmx->vcpu, &apic_base_msr); + + vmx_segment_cache_clear(vmx); + + seg_setup(VCPU_SREG_CS); + vmcs_write16(GUEST_CS_SELECTOR, 0xf000); + vmcs_write32(GUEST_CS_BASE, 0xffff0000); + + seg_setup(VCPU_SREG_DS); + seg_setup(VCPU_SREG_ES); + seg_setup(VCPU_SREG_FS); + seg_setup(VCPU_SREG_GS); + seg_setup(VCPU_SREG_SS); + + vmcs_write16(GUEST_TR_SELECTOR, 0); + vmcs_writel(GUEST_TR_BASE, 0); + vmcs_write32(GUEST_TR_LIMIT, 0xffff); + vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); + + vmcs_write16(GUEST_LDTR_SELECTOR, 0); + vmcs_writel(GUEST_LDTR_BASE, 0); + vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); + vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); + + vmcs_write32(GUEST_SYSENTER_CS, 0); + vmcs_writel(GUEST_SYSENTER_ESP, 0); + vmcs_writel(GUEST_SYSENTER_EIP, 0); + + vmcs_writel(GUEST_RFLAGS, 0x02); + kvm_rip_write(vcpu, 0xfff0); + + vmcs_writel(GUEST_GDTR_BASE, 0); + vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); + + vmcs_writel(GUEST_IDTR_BASE, 0); + vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); + + vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); + vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); + + /* Special registers */ + vmcs_write64(GUEST_IA32_DEBUGCTL, 0); + + setup_msrs(vmx); + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ + + if (cpu_has_vmx_tpr_shadow()) { + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); + if (vm_need_tpr_shadow(vmx->vcpu.kvm)) + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, + __pa(vmx->vcpu.arch.apic->regs)); + vmcs_write32(TPR_THRESHOLD, 0); + } + + kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); + + if (vmx_vm_has_apicv(vcpu->kvm)) + memset(&vmx->pi_desc, 0, sizeof(struct pi_desc)); + + if (vmx->vpid != 0) + vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); + + vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; + vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */ + vmx_set_cr4(&vmx->vcpu, 0); + vmx_set_efer(&vmx->vcpu, 0); + vmx_fpu_activate(&vmx->vcpu); + update_exception_bitmap(&vmx->vcpu); + + vpid_sync_context(vmx); +} + +/* + * In nested virtualization, check if L1 asked to exit on external interrupts. + * For most existing hypervisors, this will always return true. + */ +static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) +{ + return get_vmcs12(vcpu)->pin_based_vm_exec_control & + PIN_BASED_EXT_INTR_MASK; +} + +/* + * In nested virtualization, check if L1 has set + * VM_EXIT_ACK_INTR_ON_EXIT + */ +static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) +{ + return get_vmcs12(vcpu)->vm_exit_controls & + VM_EXIT_ACK_INTR_ON_EXIT; +} + +static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) +{ + return get_vmcs12(vcpu)->pin_based_vm_exec_control & + PIN_BASED_NMI_EXITING; +} + +static void enable_irq_window(struct kvm_vcpu *vcpu) +{ + u32 cpu_based_vm_exec_control; + + cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); +} + +static void enable_nmi_window(struct kvm_vcpu *vcpu) +{ + u32 cpu_based_vm_exec_control; + + if (!cpu_has_virtual_nmis() || + vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { + enable_irq_window(vcpu); + return; + } + + cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING; + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); +} + +static void vmx_inject_irq(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + uint32_t intr; + int irq = vcpu->arch.interrupt.nr; + + trace_kvm_inj_virq(irq); + + ++vcpu->stat.irq_injections; + if (vmx->rmode.vm86_active) { + int inc_eip = 0; + if (vcpu->arch.interrupt.soft) + inc_eip = vcpu->arch.event_exit_inst_len; + if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + intr = irq | INTR_INFO_VALID_MASK; + if (vcpu->arch.interrupt.soft) { + intr |= INTR_TYPE_SOFT_INTR; + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmx->vcpu.arch.event_exit_inst_len); + } else + intr |= INTR_TYPE_EXT_INTR; + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); +} + +static void vmx_inject_nmi(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (is_guest_mode(vcpu)) + return; + + if (!cpu_has_virtual_nmis()) { + /* + * Tracking the NMI-blocked state in software is built upon + * finding the next open IRQ window. This, in turn, depends on + * well-behaving guests: They have to keep IRQs disabled at + * least as long as the NMI handler runs. Otherwise we may + * cause NMI nesting, maybe breaking the guest. But as this is + * highly unlikely, we can live with the residual risk. + */ + vmx->soft_vnmi_blocked = 1; + vmx->vnmi_blocked_time = 0; + } + + ++vcpu->stat.nmi_injections; + vmx->nmi_known_unmasked = false; + if (vmx->rmode.vm86_active) { + if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, + INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); +} + +static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) +{ + if (!cpu_has_virtual_nmis()) + return to_vmx(vcpu)->soft_vnmi_blocked; + if (to_vmx(vcpu)->nmi_known_unmasked) + return false; + return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; +} + +static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!cpu_has_virtual_nmis()) { + if (vmx->soft_vnmi_blocked != masked) { + vmx->soft_vnmi_blocked = masked; + vmx->vnmi_blocked_time = 0; + } + } else { + vmx->nmi_known_unmasked = !masked; + if (masked) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + else + vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + } +} + +static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) +{ + if (to_vmx(vcpu)->nested.nested_run_pending) + return 0; + + if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked) + return 0; + + return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & + (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI + | GUEST_INTR_STATE_NMI)); +} + +static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) +{ + return (!to_vmx(vcpu)->nested.nested_run_pending && + vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && + !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & + (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); +} + +static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) +{ + int ret; + struct kvm_userspace_memory_region tss_mem = { + .slot = TSS_PRIVATE_MEMSLOT, + .guest_phys_addr = addr, + .memory_size = PAGE_SIZE * 3, + .flags = 0, + }; + + ret = kvm_set_memory_region(kvm, &tss_mem); + if (ret) + return ret; + kvm->arch.tss_addr = addr; + return init_rmode_tss(kvm); +} + +static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) +{ + switch (vec) { + case BP_VECTOR: + /* + * Update instruction length as we may reinject the exception + * from user space while in guest debugging mode. + */ + to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = + vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) + return false; + /* fall through */ + case DB_VECTOR: + if (vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) + return false; + /* fall through */ + case DE_VECTOR: + case OF_VECTOR: + case BR_VECTOR: + case UD_VECTOR: + case DF_VECTOR: + case SS_VECTOR: + case GP_VECTOR: + case MF_VECTOR: + return true; + break; + } + return false; +} + +static int handle_rmode_exception(struct kvm_vcpu *vcpu, + int vec, u32 err_code) +{ + /* + * Instruction with address size override prefix opcode 0x67 + * Cause the #SS fault with 0 error code in VM86 mode. + */ + if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { + if (emulate_instruction(vcpu, 0) == EMULATE_DONE) { + if (vcpu->arch.halt_request) { + vcpu->arch.halt_request = 0; + return kvm_vcpu_halt(vcpu); + } + return 1; + } + return 0; + } + + /* + * Forward all other exceptions that are valid in real mode. + * FIXME: Breaks guest debugging in real mode, needs to be fixed with + * the required debugging infrastructure rework. + */ + kvm_queue_exception(vcpu, vec); + return 1; +} + +/* + * Trigger machine check on the host. We assume all the MSRs are already set up + * by the CPU and that we still run on the same CPU as the MCE occurred on. + * We pass a fake environment to the machine check handler because we want + * the guest to be always treated like user space, no matter what context + * it used internally. + */ +static void kvm_machine_check(void) +{ +#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) + struct pt_regs regs = { + .cs = 3, /* Fake ring 3 no matter what the guest ran on */ + .flags = X86_EFLAGS_IF, + }; + + do_machine_check(®s, 0); +#endif +} + +static int handle_machine_check(struct kvm_vcpu *vcpu) +{ + /* already handled by vcpu_run */ + return 1; +} + +static int handle_exception(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_run *kvm_run = vcpu->run; + u32 intr_info, ex_no, error_code; + unsigned long cr2, rip, dr6; + u32 vect_info; + enum emulation_result er; + + vect_info = vmx->idt_vectoring_info; + intr_info = vmx->exit_intr_info; + + if (is_machine_check(intr_info)) + return handle_machine_check(vcpu); + + if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR) + return 1; /* already handled by vmx_vcpu_run() */ + + if (is_no_device(intr_info)) { + vmx_fpu_activate(vcpu); + return 1; + } + + if (is_invalid_opcode(intr_info)) { + if (is_guest_mode(vcpu)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD); + if (er != EMULATE_DONE) + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + error_code = 0; + if (intr_info & INTR_INFO_DELIVER_CODE_MASK) + error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); + + /* + * The #PF with PFEC.RSVD = 1 indicates the guest is accessing + * MMIO, it is better to report an internal error. + * See the comments in vmx_handle_exit. + */ + if ((vect_info & VECTORING_INFO_VALID_MASK) && + !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; + vcpu->run->internal.ndata = 3; + vcpu->run->internal.data[0] = vect_info; + vcpu->run->internal.data[1] = intr_info; + vcpu->run->internal.data[2] = error_code; + return 0; + } + + if (is_page_fault(intr_info)) { + /* EPT won't cause page fault directly */ + BUG_ON(enable_ept); + cr2 = vmcs_readl(EXIT_QUALIFICATION); + trace_kvm_page_fault(cr2, error_code); + + if (kvm_event_needs_reinjection(vcpu)) + kvm_mmu_unprotect_page_virt(vcpu, cr2); + return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0); + } + + ex_no = intr_info & INTR_INFO_VECTOR_MASK; + + if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) + return handle_rmode_exception(vcpu, ex_no, error_code); + + switch (ex_no) { + case DB_VECTOR: + dr6 = vmcs_readl(EXIT_QUALIFICATION); + if (!(vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= dr6 | DR6_RTM; + if (!(dr6 & ~DR6_RESERVED)) /* icebp */ + skip_emulated_instruction(vcpu); + + kvm_queue_exception(vcpu, DB_VECTOR); + return 1; + } + kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; + kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); + /* fall through */ + case BP_VECTOR: + /* + * Update instruction length as we may reinject #BP from + * user space while in guest debugging mode. Reading it for + * #DB as well causes no harm, it is not used in that case. + */ + vmx->vcpu.arch.event_exit_inst_len = + vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + kvm_run->exit_reason = KVM_EXIT_DEBUG; + rip = kvm_rip_read(vcpu); + kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; + kvm_run->debug.arch.exception = ex_no; + break; + default: + kvm_run->exit_reason = KVM_EXIT_EXCEPTION; + kvm_run->ex.exception = ex_no; + kvm_run->ex.error_code = error_code; + break; + } + return 0; +} + +static int handle_external_interrupt(struct kvm_vcpu *vcpu) +{ + ++vcpu->stat.irq_exits; + return 1; +} + +static int handle_triple_fault(struct kvm_vcpu *vcpu) +{ + vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; + return 0; +} + +static int handle_io(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + int size, in, string; + unsigned port; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + string = (exit_qualification & 16) != 0; + in = (exit_qualification & 8) != 0; + + ++vcpu->stat.io_exits; + + if (string || in) + return emulate_instruction(vcpu, 0) == EMULATE_DONE; + + port = exit_qualification >> 16; + size = (exit_qualification & 7) + 1; + skip_emulated_instruction(vcpu); + + return kvm_fast_pio_out(vcpu, size, port); +} + +static void +vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) +{ + /* + * Patch in the VMCALL instruction: + */ + hypercall[0] = 0x0f; + hypercall[1] = 0x01; + hypercall[2] = 0xc1; +} + +static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + unsigned long always_on = VMXON_CR0_ALWAYSON; + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high & + SECONDARY_EXEC_UNRESTRICTED_GUEST && + nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) + always_on &= ~(X86_CR0_PE | X86_CR0_PG); + return (val & always_on) == always_on; +} + +/* called to set cr0 as appropriate for a mov-to-cr0 exit. */ +static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) +{ + if (is_guest_mode(vcpu)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned long orig_val = val; + + /* + * We get here when L2 changed cr0 in a way that did not change + * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), + * but did change L0 shadowed bits. So we first calculate the + * effective cr0 value that L1 would like to write into the + * hardware. It consists of the L2-owned bits from the new + * value combined with the L1-owned bits from L1's guest_cr0. + */ + val = (val & ~vmcs12->cr0_guest_host_mask) | + (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); + + if (!nested_cr0_valid(vcpu, val)) + return 1; + + if (kvm_set_cr0(vcpu, val)) + return 1; + vmcs_writel(CR0_READ_SHADOW, orig_val); + return 0; + } else { + if (to_vmx(vcpu)->nested.vmxon && + ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)) + return 1; + return kvm_set_cr0(vcpu, val); + } +} + +static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) +{ + if (is_guest_mode(vcpu)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned long orig_val = val; + + /* analogously to handle_set_cr0 */ + val = (val & ~vmcs12->cr4_guest_host_mask) | + (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); + if (kvm_set_cr4(vcpu, val)) + return 1; + vmcs_writel(CR4_READ_SHADOW, orig_val); + return 0; + } else + return kvm_set_cr4(vcpu, val); +} + +/* called to set cr0 as approriate for clts instruction exit. */ +static void handle_clts(struct kvm_vcpu *vcpu) +{ + if (is_guest_mode(vcpu)) { + /* + * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS + * but we did (!fpu_active). We need to keep GUEST_CR0.TS on, + * just pretend it's off (also in arch.cr0 for fpu_activate). + */ + vmcs_writel(CR0_READ_SHADOW, + vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS); + vcpu->arch.cr0 &= ~X86_CR0_TS; + } else + vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); +} + +static int handle_cr(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification, val; + int cr; + int reg; + int err; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + cr = exit_qualification & 15; + reg = (exit_qualification >> 8) & 15; + switch ((exit_qualification >> 4) & 3) { + case 0: /* mov to cr */ + val = kvm_register_readl(vcpu, reg); + trace_kvm_cr_write(cr, val); + switch (cr) { + case 0: + err = handle_set_cr0(vcpu, val); + kvm_complete_insn_gp(vcpu, err); + return 1; + case 3: + err = kvm_set_cr3(vcpu, val); + kvm_complete_insn_gp(vcpu, err); + return 1; + case 4: + err = handle_set_cr4(vcpu, val); + kvm_complete_insn_gp(vcpu, err); + return 1; + case 8: { + u8 cr8_prev = kvm_get_cr8(vcpu); + u8 cr8 = (u8)val; + err = kvm_set_cr8(vcpu, cr8); + kvm_complete_insn_gp(vcpu, err); + if (irqchip_in_kernel(vcpu->kvm)) + return 1; + if (cr8_prev <= cr8) + return 1; + vcpu->run->exit_reason = KVM_EXIT_SET_TPR; + return 0; + } + } + break; + case 2: /* clts */ + handle_clts(vcpu); + trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); + skip_emulated_instruction(vcpu); + vmx_fpu_activate(vcpu); + return 1; + case 1: /*mov from cr*/ + switch (cr) { + case 3: + val = kvm_read_cr3(vcpu); + kvm_register_write(vcpu, reg, val); + trace_kvm_cr_read(cr, val); + skip_emulated_instruction(vcpu); + return 1; + case 8: + val = kvm_get_cr8(vcpu); + kvm_register_write(vcpu, reg, val); + trace_kvm_cr_read(cr, val); + skip_emulated_instruction(vcpu); + return 1; + } + break; + case 3: /* lmsw */ + val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; + trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); + kvm_lmsw(vcpu, val); + + skip_emulated_instruction(vcpu); + return 1; + default: + break; + } + vcpu->run->exit_reason = 0; + vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", + (int)(exit_qualification >> 4) & 3, cr); + return 0; +} + +static int handle_dr(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + int dr, dr7, reg; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + dr = exit_qualification & DEBUG_REG_ACCESS_NUM; + + /* First, if DR does not exist, trigger UD */ + if (!kvm_require_dr(vcpu, dr)) + return 1; + + /* Do not handle if the CPL > 0, will trigger GP on re-entry */ + if (!kvm_require_cpl(vcpu, 0)) + return 1; + dr7 = vmcs_readl(GUEST_DR7); + if (dr7 & DR7_GD) { + /* + * As the vm-exit takes precedence over the debug trap, we + * need to emulate the latter, either for the host or the + * guest debugging itself. + */ + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { + vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; + vcpu->run->debug.arch.dr7 = dr7; + vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); + vcpu->run->debug.arch.exception = DB_VECTOR; + vcpu->run->exit_reason = KVM_EXIT_DEBUG; + return 0; + } else { + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= DR6_BD | DR6_RTM; + kvm_queue_exception(vcpu, DB_VECTOR); + return 1; + } + } + + if (vcpu->guest_debug == 0) { + u32 cpu_based_vm_exec_control; + + cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING; + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); + + /* + * No more DR vmexits; force a reload of the debug registers + * and reenter on this instruction. The next vmexit will + * retrieve the full state of the debug registers. + */ + vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; + return 1; + } + + reg = DEBUG_REG_ACCESS_REG(exit_qualification); + if (exit_qualification & TYPE_MOV_FROM_DR) { + unsigned long val; + + if (kvm_get_dr(vcpu, dr, &val)) + return 1; + kvm_register_write(vcpu, reg, val); + } else + if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) + return 1; + + skip_emulated_instruction(vcpu); + return 1; +} + +static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.dr6; +} + +static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) +{ +} + +static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) +{ + u32 cpu_based_vm_exec_control; + + get_debugreg(vcpu->arch.db[0], 0); + get_debugreg(vcpu->arch.db[1], 1); + get_debugreg(vcpu->arch.db[2], 2); + get_debugreg(vcpu->arch.db[3], 3); + get_debugreg(vcpu->arch.dr6, 6); + vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); + + vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; + + cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING; + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); +} + +static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) +{ + vmcs_writel(GUEST_DR7, val); +} + +static int handle_cpuid(struct kvm_vcpu *vcpu) +{ + kvm_emulate_cpuid(vcpu); + return 1; +} + +static int handle_rdmsr(struct kvm_vcpu *vcpu) +{ + u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; + u64 data; + + if (vmx_get_msr(vcpu, ecx, &data)) { + trace_kvm_msr_read_ex(ecx); + kvm_inject_gp(vcpu, 0); + return 1; + } + + trace_kvm_msr_read(ecx, data); + + /* FIXME: handling of bits 32:63 of rax, rdx */ + vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u; + vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u; + skip_emulated_instruction(vcpu); + return 1; +} + +static int handle_wrmsr(struct kvm_vcpu *vcpu) +{ + struct msr_data msr; + u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; + u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) + | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); + + msr.data = data; + msr.index = ecx; + msr.host_initiated = false; + if (kvm_set_msr(vcpu, &msr) != 0) { + trace_kvm_msr_write_ex(ecx, data); + kvm_inject_gp(vcpu, 0); + return 1; + } + + trace_kvm_msr_write(ecx, data); + skip_emulated_instruction(vcpu); + return 1; +} + +static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) +{ + kvm_make_request(KVM_REQ_EVENT, vcpu); + return 1; +} + +static int handle_interrupt_window(struct kvm_vcpu *vcpu) +{ + u32 cpu_based_vm_exec_control; + + /* clear pending irq */ + cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + ++vcpu->stat.irq_window_exits; + + /* + * If the user space waits to inject interrupts, exit as soon as + * possible + */ + if (!irqchip_in_kernel(vcpu->kvm) && + vcpu->run->request_interrupt_window && + !kvm_cpu_has_interrupt(vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; + return 0; + } + return 1; +} + +static int handle_halt(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_halt(vcpu); +} + +static int handle_vmcall(struct kvm_vcpu *vcpu) +{ + kvm_emulate_hypercall(vcpu); + return 1; +} + +static int handle_invd(struct kvm_vcpu *vcpu) +{ + return emulate_instruction(vcpu, 0) == EMULATE_DONE; +} + +static int handle_invlpg(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + kvm_mmu_invlpg(vcpu, exit_qualification); + skip_emulated_instruction(vcpu); + return 1; +} + +static int handle_rdpmc(struct kvm_vcpu *vcpu) +{ + int err; + + err = kvm_rdpmc(vcpu); + kvm_complete_insn_gp(vcpu, err); + + return 1; +} + +static int handle_wbinvd(struct kvm_vcpu *vcpu) +{ + kvm_emulate_wbinvd(vcpu); + return 1; +} + +static int handle_xsetbv(struct kvm_vcpu *vcpu) +{ + u64 new_bv = kvm_read_edx_eax(vcpu); + u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); + + if (kvm_set_xcr(vcpu, index, new_bv) == 0) + skip_emulated_instruction(vcpu); + return 1; +} + +static int handle_xsaves(struct kvm_vcpu *vcpu) +{ + skip_emulated_instruction(vcpu); + WARN(1, "this should never happen\n"); + return 1; +} + +static int handle_xrstors(struct kvm_vcpu *vcpu) +{ + skip_emulated_instruction(vcpu); + WARN(1, "this should never happen\n"); + return 1; +} + +static int handle_apic_access(struct kvm_vcpu *vcpu) +{ + if (likely(fasteoi)) { + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int access_type, offset; + + access_type = exit_qualification & APIC_ACCESS_TYPE; + offset = exit_qualification & APIC_ACCESS_OFFSET; + /* + * Sane guest uses MOV to write EOI, with written value + * not cared. So make a short-circuit here by avoiding + * heavy instruction emulation. + */ + if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && + (offset == APIC_EOI)) { + kvm_lapic_set_eoi(vcpu); + skip_emulated_instruction(vcpu); + return 1; + } + } + return emulate_instruction(vcpu, 0) == EMULATE_DONE; +} + +static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int vector = exit_qualification & 0xff; + + /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ + kvm_apic_set_eoi_accelerated(vcpu, vector); + return 1; +} + +static int handle_apic_write(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 offset = exit_qualification & 0xfff; + + /* APIC-write VM exit is trap-like and thus no need to adjust IP */ + kvm_apic_write_nodecode(vcpu, offset); + return 1; +} + +static int handle_task_switch(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long exit_qualification; + bool has_error_code = false; + u32 error_code = 0; + u16 tss_selector; + int reason, type, idt_v, idt_index; + + idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); + idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); + type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + reason = (u32)exit_qualification >> 30; + if (reason == TASK_SWITCH_GATE && idt_v) { + switch (type) { + case INTR_TYPE_NMI_INTR: + vcpu->arch.nmi_injected = false; + vmx_set_nmi_mask(vcpu, true); + break; + case INTR_TYPE_EXT_INTR: + case INTR_TYPE_SOFT_INTR: + kvm_clear_interrupt_queue(vcpu); + break; + case INTR_TYPE_HARD_EXCEPTION: + if (vmx->idt_vectoring_info & + VECTORING_INFO_DELIVER_CODE_MASK) { + has_error_code = true; + error_code = + vmcs_read32(IDT_VECTORING_ERROR_CODE); + } + /* fall through */ + case INTR_TYPE_SOFT_EXCEPTION: + kvm_clear_exception_queue(vcpu); + break; + default: + break; + } + } + tss_selector = exit_qualification; + + if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && + type != INTR_TYPE_EXT_INTR && + type != INTR_TYPE_NMI_INTR)) + skip_emulated_instruction(vcpu); + + if (kvm_task_switch(vcpu, tss_selector, + type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, + has_error_code, error_code) == EMULATE_FAIL) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + return 0; + } + + /* clear all local breakpoint enable flags */ + vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155); + + /* + * TODO: What about debug traps on tss switch? + * Are we supposed to inject them and update dr6? + */ + + return 1; +} + +static int handle_ept_violation(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + gpa_t gpa; + u32 error_code; + int gla_validity; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + gla_validity = (exit_qualification >> 7) & 0x3; + if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) { + printk(KERN_ERR "EPT: Handling EPT violation failed!\n"); + printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n", + (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS), + vmcs_readl(GUEST_LINEAR_ADDRESS)); + printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n", + (long unsigned int)exit_qualification); + vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; + vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION; + return 0; + } + + /* + * EPT violation happened while executing iret from NMI, + * "blocked by NMI" bit has to be set before next VM entry. + * There are errata that may cause this bit to not be set: + * AAK134, BY25. + */ + if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && + cpu_has_virtual_nmis() && + (exit_qualification & INTR_INFO_UNBLOCK_NMI)) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); + + gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); + trace_kvm_page_fault(gpa, exit_qualification); + + /* It is a write fault? */ + error_code = exit_qualification & PFERR_WRITE_MASK; + /* It is a fetch fault? */ + error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK; + /* ept page table is present? */ + error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK; + + vcpu->arch.exit_qualification = exit_qualification; + + return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); +} + +static u64 ept_rsvd_mask(u64 spte, int level) +{ + int i; + u64 mask = 0; + + for (i = 51; i > boot_cpu_data.x86_phys_bits; i--) + mask |= (1ULL << i); + + if (level == 4) + /* bits 7:3 reserved */ + mask |= 0xf8; + else if (spte & (1ULL << 7)) + /* + * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively, + * level == 1 if the hypervisor is using the ignored bit 7. + */ + mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE; + else if (level > 1) + /* bits 6:3 reserved */ + mask |= 0x78; + + return mask; +} + +static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte, + int level) +{ + printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level); + + /* 010b (write-only) */ + WARN_ON((spte & 0x7) == 0x2); + + /* 110b (write/execute) */ + WARN_ON((spte & 0x7) == 0x6); + + /* 100b (execute-only) and value not supported by logical processor */ + if (!cpu_has_vmx_ept_execute_only()) + WARN_ON((spte & 0x7) == 0x4); + + /* not 000b */ + if ((spte & 0x7)) { + u64 rsvd_bits = spte & ept_rsvd_mask(spte, level); + + if (rsvd_bits != 0) { + printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n", + __func__, rsvd_bits); + WARN_ON(1); + } + + /* bits 5:3 are _not_ reserved for large page or leaf page */ + if ((rsvd_bits & 0x38) == 0) { + u64 ept_mem_type = (spte & 0x38) >> 3; + + if (ept_mem_type == 2 || ept_mem_type == 3 || + ept_mem_type == 7) { + printk(KERN_ERR "%s: ept_mem_type=0x%llx\n", + __func__, ept_mem_type); + WARN_ON(1); + } + } + } +} + +static int handle_ept_misconfig(struct kvm_vcpu *vcpu) +{ + u64 sptes[4]; + int nr_sptes, i, ret; + gpa_t gpa; + + gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); + if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { + skip_emulated_instruction(vcpu); + return 1; + } + + ret = handle_mmio_page_fault_common(vcpu, gpa, true); + if (likely(ret == RET_MMIO_PF_EMULATE)) + return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) == + EMULATE_DONE; + + if (unlikely(ret == RET_MMIO_PF_INVALID)) + return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0); + + if (unlikely(ret == RET_MMIO_PF_RETRY)) + return 1; + + /* It is the real ept misconfig */ + printk(KERN_ERR "EPT: Misconfiguration.\n"); + printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa); + + nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes); + + for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i) + ept_misconfig_inspect_spte(vcpu, sptes[i-1], i); + + vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; + vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG; + + return 0; +} + +static int handle_nmi_window(struct kvm_vcpu *vcpu) +{ + u32 cpu_based_vm_exec_control; + + /* clear pending NMI */ + cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); + ++vcpu->stat.nmi_window_exits; + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 1; +} + +static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + enum emulation_result err = EMULATE_DONE; + int ret = 1; + u32 cpu_exec_ctrl; + bool intr_window_requested; + unsigned count = 130; + + cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; + + while (vmx->emulation_required && count-- != 0) { + if (intr_window_requested && vmx_interrupt_allowed(vcpu)) + return handle_interrupt_window(&vmx->vcpu); + + if (test_bit(KVM_REQ_EVENT, &vcpu->requests)) + return 1; + + err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE); + + if (err == EMULATE_USER_EXIT) { + ++vcpu->stat.mmio_exits; + ret = 0; + goto out; + } + + if (err != EMULATE_DONE) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + return 0; + } + + if (vcpu->arch.halt_request) { + vcpu->arch.halt_request = 0; + ret = kvm_vcpu_halt(vcpu); + goto out; + } + + if (signal_pending(current)) + goto out; + if (need_resched()) + schedule(); + } + +out: + return ret; +} + +static int __grow_ple_window(int val) +{ + if (ple_window_grow < 1) + return ple_window; + + val = min(val, ple_window_actual_max); + + if (ple_window_grow < ple_window) + val *= ple_window_grow; + else + val += ple_window_grow; + + return val; +} + +static int __shrink_ple_window(int val, int modifier, int minimum) +{ + if (modifier < 1) + return ple_window; + + if (modifier < ple_window) + val /= modifier; + else + val -= modifier; + + return max(val, minimum); +} + +static void grow_ple_window(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int old = vmx->ple_window; + + vmx->ple_window = __grow_ple_window(old); + + if (vmx->ple_window != old) + vmx->ple_window_dirty = true; + + trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); +} + +static void shrink_ple_window(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int old = vmx->ple_window; + + vmx->ple_window = __shrink_ple_window(old, + ple_window_shrink, ple_window); + + if (vmx->ple_window != old) + vmx->ple_window_dirty = true; + + trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); +} + +/* + * ple_window_actual_max is computed to be one grow_ple_window() below + * ple_window_max. (See __grow_ple_window for the reason.) + * This prevents overflows, because ple_window_max is int. + * ple_window_max effectively rounded down to a multiple of ple_window_grow in + * this process. + * ple_window_max is also prevented from setting vmx->ple_window < ple_window. + */ +static void update_ple_window_actual_max(void) +{ + ple_window_actual_max = + __shrink_ple_window(max(ple_window_max, ple_window), + ple_window_grow, INT_MIN); +} + +static __init int hardware_setup(void) +{ + int r = -ENOMEM, i, msr; + + rdmsrl_safe(MSR_EFER, &host_efer); + + for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) + kvm_define_shared_msr(i, vmx_msr_index[i]); + + vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_io_bitmap_a) + return r; + + vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_io_bitmap_b) + goto out; + + vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_msr_bitmap_legacy) + goto out1; + + vmx_msr_bitmap_legacy_x2apic = + (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_msr_bitmap_legacy_x2apic) + goto out2; + + vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_msr_bitmap_longmode) + goto out3; + + vmx_msr_bitmap_longmode_x2apic = + (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_msr_bitmap_longmode_x2apic) + goto out4; + + if (nested) { + vmx_msr_bitmap_nested = + (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_msr_bitmap_nested) + goto out5; + } + + vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_vmread_bitmap) + goto out6; + + vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx_vmwrite_bitmap) + goto out7; + + memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); + memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); + + /* + * Allow direct access to the PC debug port (it is often used for I/O + * delays, but the vmexits simply slow things down). + */ + memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE); + clear_bit(0x80, vmx_io_bitmap_a); + + memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE); + + memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE); + memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE); + if (nested) + memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE); + + if (setup_vmcs_config(&vmcs_config) < 0) { + r = -EIO; + goto out8; + } + + if (boot_cpu_has(X86_FEATURE_NX)) + kvm_enable_efer_bits(EFER_NX); + + if (!cpu_has_vmx_vpid()) + enable_vpid = 0; + if (!cpu_has_vmx_shadow_vmcs()) + enable_shadow_vmcs = 0; + if (enable_shadow_vmcs) + init_vmcs_shadow_fields(); + + if (!cpu_has_vmx_ept() || + !cpu_has_vmx_ept_4levels()) { + enable_ept = 0; + enable_unrestricted_guest = 0; + enable_ept_ad_bits = 0; + } + + if (!cpu_has_vmx_ept_ad_bits()) + enable_ept_ad_bits = 0; + + if (!cpu_has_vmx_unrestricted_guest()) + enable_unrestricted_guest = 0; + + if (!cpu_has_vmx_flexpriority()) + flexpriority_enabled = 0; + + /* + * set_apic_access_page_addr() is used to reload apic access + * page upon invalidation. No need to do anything if not + * using the APIC_ACCESS_ADDR VMCS field. + */ + if (!flexpriority_enabled) + kvm_x86_ops->set_apic_access_page_addr = NULL; + + if (!cpu_has_vmx_tpr_shadow()) + kvm_x86_ops->update_cr8_intercept = NULL; + + if (enable_ept && !cpu_has_vmx_ept_2m_page()) + kvm_disable_largepages(); + + if (!cpu_has_vmx_ple()) + ple_gap = 0; + + if (!cpu_has_vmx_apicv()) + enable_apicv = 0; + + if (enable_apicv) + kvm_x86_ops->update_cr8_intercept = NULL; + else { + kvm_x86_ops->hwapic_irr_update = NULL; + kvm_x86_ops->hwapic_isr_update = NULL; + kvm_x86_ops->deliver_posted_interrupt = NULL; + kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy; + } + + vmx_disable_intercept_for_msr(MSR_FS_BASE, false); + vmx_disable_intercept_for_msr(MSR_GS_BASE, false); + vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true); + vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false); + vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false); + vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false); + vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true); + + memcpy(vmx_msr_bitmap_legacy_x2apic, + vmx_msr_bitmap_legacy, PAGE_SIZE); + memcpy(vmx_msr_bitmap_longmode_x2apic, + vmx_msr_bitmap_longmode, PAGE_SIZE); + + if (enable_apicv) { + for (msr = 0x800; msr <= 0x8ff; msr++) + vmx_disable_intercept_msr_read_x2apic(msr); + + /* According SDM, in x2apic mode, the whole id reg is used. + * But in KVM, it only use the highest eight bits. Need to + * intercept it */ + vmx_enable_intercept_msr_read_x2apic(0x802); + /* TMCCT */ + vmx_enable_intercept_msr_read_x2apic(0x839); + /* TPR */ + vmx_disable_intercept_msr_write_x2apic(0x808); + /* EOI */ + vmx_disable_intercept_msr_write_x2apic(0x80b); + /* SELF-IPI */ + vmx_disable_intercept_msr_write_x2apic(0x83f); + } + + if (enable_ept) { + kvm_mmu_set_mask_ptes(0ull, + (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull, + (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull, + 0ull, VMX_EPT_EXECUTABLE_MASK); + ept_set_mmio_spte_mask(); + kvm_enable_tdp(); + } else + kvm_disable_tdp(); + + update_ple_window_actual_max(); + + /* + * Only enable PML when hardware supports PML feature, and both EPT + * and EPT A/D bit features are enabled -- PML depends on them to work. + */ + if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) + enable_pml = 0; + + if (!enable_pml) { + kvm_x86_ops->slot_enable_log_dirty = NULL; + kvm_x86_ops->slot_disable_log_dirty = NULL; + kvm_x86_ops->flush_log_dirty = NULL; + kvm_x86_ops->enable_log_dirty_pt_masked = NULL; + } + + return alloc_kvm_area(); + +out8: + free_page((unsigned long)vmx_vmwrite_bitmap); +out7: + free_page((unsigned long)vmx_vmread_bitmap); +out6: + if (nested) + free_page((unsigned long)vmx_msr_bitmap_nested); +out5: + free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic); +out4: + free_page((unsigned long)vmx_msr_bitmap_longmode); +out3: + free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic); +out2: + free_page((unsigned long)vmx_msr_bitmap_legacy); +out1: + free_page((unsigned long)vmx_io_bitmap_b); +out: + free_page((unsigned long)vmx_io_bitmap_a); + + return r; +} + +static __exit void hardware_unsetup(void) +{ + free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic); + free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic); + free_page((unsigned long)vmx_msr_bitmap_legacy); + free_page((unsigned long)vmx_msr_bitmap_longmode); + free_page((unsigned long)vmx_io_bitmap_b); + free_page((unsigned long)vmx_io_bitmap_a); + free_page((unsigned long)vmx_vmwrite_bitmap); + free_page((unsigned long)vmx_vmread_bitmap); + if (nested) + free_page((unsigned long)vmx_msr_bitmap_nested); + + free_kvm_area(); +} + +/* + * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE + * exiting, so only get here on cpu with PAUSE-Loop-Exiting. + */ +static int handle_pause(struct kvm_vcpu *vcpu) +{ + if (ple_gap) + grow_ple_window(vcpu); + + skip_emulated_instruction(vcpu); + kvm_vcpu_on_spin(vcpu); + + return 1; +} + +static int handle_nop(struct kvm_vcpu *vcpu) +{ + skip_emulated_instruction(vcpu); + return 1; +} + +static int handle_mwait(struct kvm_vcpu *vcpu) +{ + printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); + return handle_nop(vcpu); +} + +static int handle_monitor(struct kvm_vcpu *vcpu) +{ + printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); + return handle_nop(vcpu); +} + +/* + * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12. + * We could reuse a single VMCS for all the L2 guests, but we also want the + * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this + * allows keeping them loaded on the processor, and in the future will allow + * optimizations where prepare_vmcs02 doesn't need to set all the fields on + * every entry if they never change. + * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE + * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first. + * + * The following functions allocate and free a vmcs02 in this pool. + */ + +/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */ +static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx) +{ + struct vmcs02_list *item; + list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) + if (item->vmptr == vmx->nested.current_vmptr) { + list_move(&item->list, &vmx->nested.vmcs02_pool); + return &item->vmcs02; + } + + if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) { + /* Recycle the least recently used VMCS. */ + item = list_entry(vmx->nested.vmcs02_pool.prev, + struct vmcs02_list, list); + item->vmptr = vmx->nested.current_vmptr; + list_move(&item->list, &vmx->nested.vmcs02_pool); + return &item->vmcs02; + } + + /* Create a new VMCS */ + item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL); + if (!item) + return NULL; + item->vmcs02.vmcs = alloc_vmcs(); + if (!item->vmcs02.vmcs) { + kfree(item); + return NULL; + } + loaded_vmcs_init(&item->vmcs02); + item->vmptr = vmx->nested.current_vmptr; + list_add(&(item->list), &(vmx->nested.vmcs02_pool)); + vmx->nested.vmcs02_num++; + return &item->vmcs02; +} + +/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */ +static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr) +{ + struct vmcs02_list *item; + list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) + if (item->vmptr == vmptr) { + free_loaded_vmcs(&item->vmcs02); + list_del(&item->list); + kfree(item); + vmx->nested.vmcs02_num--; + return; + } +} + +/* + * Free all VMCSs saved for this vcpu, except the one pointed by + * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs + * must be &vmx->vmcs01. + */ +static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx) +{ + struct vmcs02_list *item, *n; + + WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01); + list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) { + /* + * Something will leak if the above WARN triggers. Better than + * a use-after-free. + */ + if (vmx->loaded_vmcs == &item->vmcs02) + continue; + + free_loaded_vmcs(&item->vmcs02); + list_del(&item->list); + kfree(item); + vmx->nested.vmcs02_num--; + } +} + +/* + * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), + * set the success or error code of an emulated VMX instruction, as specified + * by Vol 2B, VMX Instruction Reference, "Conventions". + */ +static void nested_vmx_succeed(struct kvm_vcpu *vcpu) +{ + vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | + X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); +} + +static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu) +{ + vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | + X86_EFLAGS_SF | X86_EFLAGS_OF)) + | X86_EFLAGS_CF); +} + +static void nested_vmx_failValid(struct kvm_vcpu *vcpu, + u32 vm_instruction_error) +{ + if (to_vmx(vcpu)->nested.current_vmptr == -1ull) { + /* + * failValid writes the error number to the current VMCS, which + * can't be done there isn't a current VMCS. + */ + nested_vmx_failInvalid(vcpu); + return; + } + vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | + X86_EFLAGS_SF | X86_EFLAGS_OF)) + | X86_EFLAGS_ZF); + get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; + /* + * We don't need to force a shadow sync because + * VM_INSTRUCTION_ERROR is not shadowed + */ +} + +static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) +{ + /* TODO: not to reset guest simply here. */ + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + pr_warn("kvm: nested vmx abort, indicator %d\n", indicator); +} + +static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) +{ + struct vcpu_vmx *vmx = + container_of(timer, struct vcpu_vmx, nested.preemption_timer); + + vmx->nested.preemption_timer_expired = true; + kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); + kvm_vcpu_kick(&vmx->vcpu); + + return HRTIMER_NORESTART; +} + +/* + * Decode the memory-address operand of a vmx instruction, as recorded on an + * exit caused by such an instruction (run by a guest hypervisor). + * On success, returns 0. When the operand is invalid, returns 1 and throws + * #UD or #GP. + */ +static int get_vmx_mem_address(struct kvm_vcpu *vcpu, + unsigned long exit_qualification, + u32 vmx_instruction_info, gva_t *ret) +{ + /* + * According to Vol. 3B, "Information for VM Exits Due to Instruction + * Execution", on an exit, vmx_instruction_info holds most of the + * addressing components of the operand. Only the displacement part + * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). + * For how an actual address is calculated from all these components, + * refer to Vol. 1, "Operand Addressing". + */ + int scaling = vmx_instruction_info & 3; + int addr_size = (vmx_instruction_info >> 7) & 7; + bool is_reg = vmx_instruction_info & (1u << 10); + int seg_reg = (vmx_instruction_info >> 15) & 7; + int index_reg = (vmx_instruction_info >> 18) & 0xf; + bool index_is_valid = !(vmx_instruction_info & (1u << 22)); + int base_reg = (vmx_instruction_info >> 23) & 0xf; + bool base_is_valid = !(vmx_instruction_info & (1u << 27)); + + if (is_reg) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + /* Addr = segment_base + offset */ + /* offset = base + [index * scale] + displacement */ + *ret = vmx_get_segment_base(vcpu, seg_reg); + if (base_is_valid) + *ret += kvm_register_read(vcpu, base_reg); + if (index_is_valid) + *ret += kvm_register_read(vcpu, index_reg)<<scaling; + *ret += exit_qualification; /* holds the displacement */ + + if (addr_size == 1) /* 32 bit */ + *ret &= 0xffffffff; + + /* + * TODO: throw #GP (and return 1) in various cases that the VM* + * instructions require it - e.g., offset beyond segment limit, + * unusable or unreadable/unwritable segment, non-canonical 64-bit + * address, and so on. Currently these are not checked. + */ + return 0; +} + +/* + * This function performs the various checks including + * - if it's 4KB aligned + * - No bits beyond the physical address width are set + * - Returns 0 on success or else 1 + * (Intel SDM Section 30.3) + */ +static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason, + gpa_t *vmpointer) +{ + gva_t gva; + gpa_t vmptr; + struct x86_exception e; + struct page *page; + struct vcpu_vmx *vmx = to_vmx(vcpu); + int maxphyaddr = cpuid_maxphyaddr(vcpu); + + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmcs_read32(VMX_INSTRUCTION_INFO), &gva)) + return 1; + + if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr, + sizeof(vmptr), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + + switch (exit_reason) { + case EXIT_REASON_VMON: + /* + * SDM 3: 24.11.5 + * The first 4 bytes of VMXON region contain the supported + * VMCS revision identifier + * + * Note - IA32_VMX_BASIC[48] will never be 1 + * for the nested case; + * which replaces physical address width with 32 + * + */ + if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) { + nested_vmx_failInvalid(vcpu); + skip_emulated_instruction(vcpu); + return 1; + } + + page = nested_get_page(vcpu, vmptr); + if (page == NULL || + *(u32 *)kmap(page) != VMCS12_REVISION) { + nested_vmx_failInvalid(vcpu); + kunmap(page); + skip_emulated_instruction(vcpu); + return 1; + } + kunmap(page); + vmx->nested.vmxon_ptr = vmptr; + break; + case EXIT_REASON_VMCLEAR: + if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) { + nested_vmx_failValid(vcpu, + VMXERR_VMCLEAR_INVALID_ADDRESS); + skip_emulated_instruction(vcpu); + return 1; + } + + if (vmptr == vmx->nested.vmxon_ptr) { + nested_vmx_failValid(vcpu, + VMXERR_VMCLEAR_VMXON_POINTER); + skip_emulated_instruction(vcpu); + return 1; + } + break; + case EXIT_REASON_VMPTRLD: + if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) { + nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_INVALID_ADDRESS); + skip_emulated_instruction(vcpu); + return 1; + } + + if (vmptr == vmx->nested.vmxon_ptr) { + nested_vmx_failValid(vcpu, + VMXERR_VMCLEAR_VMXON_POINTER); + skip_emulated_instruction(vcpu); + return 1; + } + break; + default: + return 1; /* shouldn't happen */ + } + + if (vmpointer) + *vmpointer = vmptr; + return 0; +} + +/* + * Emulate the VMXON instruction. + * Currently, we just remember that VMX is active, and do not save or even + * inspect the argument to VMXON (the so-called "VMXON pointer") because we + * do not currently need to store anything in that guest-allocated memory + * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their + * argument is different from the VMXON pointer (which the spec says they do). + */ +static int handle_vmon(struct kvm_vcpu *vcpu) +{ + struct kvm_segment cs; + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs *shadow_vmcs; + const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED + | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + + /* The Intel VMX Instruction Reference lists a bunch of bits that + * are prerequisite to running VMXON, most notably cr4.VMXE must be + * set to 1 (see vmx_set_cr4() for when we allow the guest to set this). + * Otherwise, we should fail with #UD. We test these now: + */ + if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) || + !kvm_read_cr0_bits(vcpu, X86_CR0_PE) || + (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); + if (is_long_mode(vcpu) && !cs.l) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + if (vmx_get_cpl(vcpu)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL)) + return 1; + + if (vmx->nested.vmxon) { + nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); + skip_emulated_instruction(vcpu); + return 1; + } + + if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES) + != VMXON_NEEDED_FEATURES) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + if (enable_shadow_vmcs) { + shadow_vmcs = alloc_vmcs(); + if (!shadow_vmcs) + return -ENOMEM; + /* mark vmcs as shadow */ + shadow_vmcs->revision_id |= (1u << 31); + /* init shadow vmcs */ + vmcs_clear(shadow_vmcs); + vmx->nested.current_shadow_vmcs = shadow_vmcs; + } + + INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool)); + vmx->nested.vmcs02_num = 0; + + hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, + HRTIMER_MODE_REL); + vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; + + vmx->nested.vmxon = true; + + skip_emulated_instruction(vcpu); + nested_vmx_succeed(vcpu); + return 1; +} + +/* + * Intel's VMX Instruction Reference specifies a common set of prerequisites + * for running VMX instructions (except VMXON, whose prerequisites are + * slightly different). It also specifies what exception to inject otherwise. + */ +static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) +{ + struct kvm_segment cs; + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx->nested.vmxon) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 0; + } + + vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); + if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) || + (is_long_mode(vcpu) && !cs.l)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 0; + } + + if (vmx_get_cpl(vcpu)) { + kvm_inject_gp(vcpu, 0); + return 0; + } + + return 1; +} + +static inline void nested_release_vmcs12(struct vcpu_vmx *vmx) +{ + u32 exec_control; + if (vmx->nested.current_vmptr == -1ull) + return; + + /* current_vmptr and current_vmcs12 are always set/reset together */ + if (WARN_ON(vmx->nested.current_vmcs12 == NULL)) + return; + + if (enable_shadow_vmcs) { + /* copy to memory all shadowed fields in case + they were modified */ + copy_shadow_to_vmcs12(vmx); + vmx->nested.sync_shadow_vmcs = false; + exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); + vmcs_write64(VMCS_LINK_POINTER, -1ull); + } + vmx->nested.posted_intr_nv = -1; + kunmap(vmx->nested.current_vmcs12_page); + nested_release_page(vmx->nested.current_vmcs12_page); + vmx->nested.current_vmptr = -1ull; + vmx->nested.current_vmcs12 = NULL; +} + +/* + * Free whatever needs to be freed from vmx->nested when L1 goes down, or + * just stops using VMX. + */ +static void free_nested(struct vcpu_vmx *vmx) +{ + if (!vmx->nested.vmxon) + return; + + vmx->nested.vmxon = false; + nested_release_vmcs12(vmx); + if (enable_shadow_vmcs) + free_vmcs(vmx->nested.current_shadow_vmcs); + /* Unpin physical memory we referred to in current vmcs02 */ + if (vmx->nested.apic_access_page) { + nested_release_page(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = NULL; + } + if (vmx->nested.virtual_apic_page) { + nested_release_page(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = NULL; + } + if (vmx->nested.pi_desc_page) { + kunmap(vmx->nested.pi_desc_page); + nested_release_page(vmx->nested.pi_desc_page); + vmx->nested.pi_desc_page = NULL; + vmx->nested.pi_desc = NULL; + } + + nested_free_all_saved_vmcss(vmx); +} + +/* Emulate the VMXOFF instruction */ +static int handle_vmoff(struct kvm_vcpu *vcpu) +{ + if (!nested_vmx_check_permission(vcpu)) + return 1; + free_nested(to_vmx(vcpu)); + skip_emulated_instruction(vcpu); + nested_vmx_succeed(vcpu); + return 1; +} + +/* Emulate the VMCLEAR instruction */ +static int handle_vmclear(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + gpa_t vmptr; + struct vmcs12 *vmcs12; + struct page *page; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr)) + return 1; + + if (vmptr == vmx->nested.current_vmptr) + nested_release_vmcs12(vmx); + + page = nested_get_page(vcpu, vmptr); + if (page == NULL) { + /* + * For accurate processor emulation, VMCLEAR beyond available + * physical memory should do nothing at all. However, it is + * possible that a nested vmx bug, not a guest hypervisor bug, + * resulted in this case, so let's shut down before doing any + * more damage: + */ + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return 1; + } + vmcs12 = kmap(page); + vmcs12->launch_state = 0; + kunmap(page); + nested_release_page(page); + + nested_free_vmcs02(vmx, vmptr); + + skip_emulated_instruction(vcpu); + nested_vmx_succeed(vcpu); + return 1; +} + +static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); + +/* Emulate the VMLAUNCH instruction */ +static int handle_vmlaunch(struct kvm_vcpu *vcpu) +{ + return nested_vmx_run(vcpu, true); +} + +/* Emulate the VMRESUME instruction */ +static int handle_vmresume(struct kvm_vcpu *vcpu) +{ + + return nested_vmx_run(vcpu, false); +} + +enum vmcs_field_type { + VMCS_FIELD_TYPE_U16 = 0, + VMCS_FIELD_TYPE_U64 = 1, + VMCS_FIELD_TYPE_U32 = 2, + VMCS_FIELD_TYPE_NATURAL_WIDTH = 3 +}; + +static inline int vmcs_field_type(unsigned long field) +{ + if (0x1 & field) /* the *_HIGH fields are all 32 bit */ + return VMCS_FIELD_TYPE_U32; + return (field >> 13) & 0x3 ; +} + +static inline int vmcs_field_readonly(unsigned long field) +{ + return (((field >> 10) & 0x3) == 1); +} + +/* + * Read a vmcs12 field. Since these can have varying lengths and we return + * one type, we chose the biggest type (u64) and zero-extend the return value + * to that size. Note that the caller, handle_vmread, might need to use only + * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of + * 64-bit fields are to be returned). + */ +static inline int vmcs12_read_any(struct kvm_vcpu *vcpu, + unsigned long field, u64 *ret) +{ + short offset = vmcs_field_to_offset(field); + char *p; + + if (offset < 0) + return offset; + + p = ((char *)(get_vmcs12(vcpu))) + offset; + + switch (vmcs_field_type(field)) { + case VMCS_FIELD_TYPE_NATURAL_WIDTH: + *ret = *((natural_width *)p); + return 0; + case VMCS_FIELD_TYPE_U16: + *ret = *((u16 *)p); + return 0; + case VMCS_FIELD_TYPE_U32: + *ret = *((u32 *)p); + return 0; + case VMCS_FIELD_TYPE_U64: + *ret = *((u64 *)p); + return 0; + default: + WARN_ON(1); + return -ENOENT; + } +} + + +static inline int vmcs12_write_any(struct kvm_vcpu *vcpu, + unsigned long field, u64 field_value){ + short offset = vmcs_field_to_offset(field); + char *p = ((char *) get_vmcs12(vcpu)) + offset; + if (offset < 0) + return offset; + + switch (vmcs_field_type(field)) { + case VMCS_FIELD_TYPE_U16: + *(u16 *)p = field_value; + return 0; + case VMCS_FIELD_TYPE_U32: + *(u32 *)p = field_value; + return 0; + case VMCS_FIELD_TYPE_U64: + *(u64 *)p = field_value; + return 0; + case VMCS_FIELD_TYPE_NATURAL_WIDTH: + *(natural_width *)p = field_value; + return 0; + default: + WARN_ON(1); + return -ENOENT; + } + +} + +static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) +{ + int i; + unsigned long field; + u64 field_value; + struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs; + const unsigned long *fields = shadow_read_write_fields; + const int num_fields = max_shadow_read_write_fields; + + preempt_disable(); + + vmcs_load(shadow_vmcs); + + for (i = 0; i < num_fields; i++) { + field = fields[i]; + switch (vmcs_field_type(field)) { + case VMCS_FIELD_TYPE_U16: + field_value = vmcs_read16(field); + break; + case VMCS_FIELD_TYPE_U32: + field_value = vmcs_read32(field); + break; + case VMCS_FIELD_TYPE_U64: + field_value = vmcs_read64(field); + break; + case VMCS_FIELD_TYPE_NATURAL_WIDTH: + field_value = vmcs_readl(field); + break; + default: + WARN_ON(1); + continue; + } + vmcs12_write_any(&vmx->vcpu, field, field_value); + } + + vmcs_clear(shadow_vmcs); + vmcs_load(vmx->loaded_vmcs->vmcs); + + preempt_enable(); +} + +static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) +{ + const unsigned long *fields[] = { + shadow_read_write_fields, + shadow_read_only_fields + }; + const int max_fields[] = { + max_shadow_read_write_fields, + max_shadow_read_only_fields + }; + int i, q; + unsigned long field; + u64 field_value = 0; + struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs; + + vmcs_load(shadow_vmcs); + + for (q = 0; q < ARRAY_SIZE(fields); q++) { + for (i = 0; i < max_fields[q]; i++) { + field = fields[q][i]; + vmcs12_read_any(&vmx->vcpu, field, &field_value); + + switch (vmcs_field_type(field)) { + case VMCS_FIELD_TYPE_U16: + vmcs_write16(field, (u16)field_value); + break; + case VMCS_FIELD_TYPE_U32: + vmcs_write32(field, (u32)field_value); + break; + case VMCS_FIELD_TYPE_U64: + vmcs_write64(field, (u64)field_value); + break; + case VMCS_FIELD_TYPE_NATURAL_WIDTH: + vmcs_writel(field, (long)field_value); + break; + default: + WARN_ON(1); + break; + } + } + } + + vmcs_clear(shadow_vmcs); + vmcs_load(vmx->loaded_vmcs->vmcs); +} + +/* + * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was + * used before) all generate the same failure when it is missing. + */ +static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + if (vmx->nested.current_vmptr == -1ull) { + nested_vmx_failInvalid(vcpu); + skip_emulated_instruction(vcpu); + return 0; + } + return 1; +} + +static int handle_vmread(struct kvm_vcpu *vcpu) +{ + unsigned long field; + u64 field_value; + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + gva_t gva = 0; + + if (!nested_vmx_check_permission(vcpu) || + !nested_vmx_check_vmcs12(vcpu)) + return 1; + + /* Decode instruction info and find the field to read */ + field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); + /* Read the field, zero-extended to a u64 field_value */ + if (vmcs12_read_any(vcpu, field, &field_value) < 0) { + nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); + skip_emulated_instruction(vcpu); + return 1; + } + /* + * Now copy part of this value to register or memory, as requested. + * Note that the number of bits actually copied is 32 or 64 depending + * on the guest's mode (32 or 64 bit), not on the given field's length. + */ + if (vmx_instruction_info & (1u << 10)) { + kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), + field_value); + } else { + if (get_vmx_mem_address(vcpu, exit_qualification, + vmx_instruction_info, &gva)) + return 1; + /* _system ok, as nested_vmx_check_permission verified cpl=0 */ + kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva, + &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL); + } + + nested_vmx_succeed(vcpu); + skip_emulated_instruction(vcpu); + return 1; +} + + +static int handle_vmwrite(struct kvm_vcpu *vcpu) +{ + unsigned long field; + gva_t gva; + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + /* The value to write might be 32 or 64 bits, depending on L1's long + * mode, and eventually we need to write that into a field of several + * possible lengths. The code below first zero-extends the value to 64 + * bit (field_value), and then copies only the approriate number of + * bits into the vmcs12 field. + */ + u64 field_value = 0; + struct x86_exception e; + + if (!nested_vmx_check_permission(vcpu) || + !nested_vmx_check_vmcs12(vcpu)) + return 1; + + if (vmx_instruction_info & (1u << 10)) + field_value = kvm_register_readl(vcpu, + (((vmx_instruction_info) >> 3) & 0xf)); + else { + if (get_vmx_mem_address(vcpu, exit_qualification, + vmx_instruction_info, &gva)) + return 1; + if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, + &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + } + + + field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); + if (vmcs_field_readonly(field)) { + nested_vmx_failValid(vcpu, + VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); + skip_emulated_instruction(vcpu); + return 1; + } + + if (vmcs12_write_any(vcpu, field, field_value) < 0) { + nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); + skip_emulated_instruction(vcpu); + return 1; + } + + nested_vmx_succeed(vcpu); + skip_emulated_instruction(vcpu); + return 1; +} + +/* Emulate the VMPTRLD instruction */ +static int handle_vmptrld(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + gpa_t vmptr; + u32 exec_control; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr)) + return 1; + + if (vmx->nested.current_vmptr != vmptr) { + struct vmcs12 *new_vmcs12; + struct page *page; + page = nested_get_page(vcpu, vmptr); + if (page == NULL) { + nested_vmx_failInvalid(vcpu); + skip_emulated_instruction(vcpu); + return 1; + } + new_vmcs12 = kmap(page); + if (new_vmcs12->revision_id != VMCS12_REVISION) { + kunmap(page); + nested_release_page_clean(page); + nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); + skip_emulated_instruction(vcpu); + return 1; + } + + nested_release_vmcs12(vmx); + vmx->nested.current_vmptr = vmptr; + vmx->nested.current_vmcs12 = new_vmcs12; + vmx->nested.current_vmcs12_page = page; + if (enable_shadow_vmcs) { + exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + exec_control |= SECONDARY_EXEC_SHADOW_VMCS; + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); + vmcs_write64(VMCS_LINK_POINTER, + __pa(vmx->nested.current_shadow_vmcs)); + vmx->nested.sync_shadow_vmcs = true; + } + } + + nested_vmx_succeed(vcpu); + skip_emulated_instruction(vcpu); + return 1; +} + +/* Emulate the VMPTRST instruction */ +static int handle_vmptrst(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + gva_t vmcs_gva; + struct x86_exception e; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (get_vmx_mem_address(vcpu, exit_qualification, + vmx_instruction_info, &vmcs_gva)) + return 1; + /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */ + if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva, + (void *)&to_vmx(vcpu)->nested.current_vmptr, + sizeof(u64), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + nested_vmx_succeed(vcpu); + skip_emulated_instruction(vcpu); + return 1; +} + +/* Emulate the INVEPT instruction */ +static int handle_invept(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 vmx_instruction_info, types; + unsigned long type; + gva_t gva; + struct x86_exception e; + struct { + u64 eptp, gpa; + } operand; + + if (!(vmx->nested.nested_vmx_secondary_ctls_high & + SECONDARY_EXEC_ENABLE_EPT) || + !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + + types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; + + if (!(types & (1UL << type))) { + nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + return 1; + } + + /* According to the Intel VMX instruction reference, the memory + * operand is read even if it isn't needed (e.g., for type==global) + */ + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmx_instruction_info, &gva)) + return 1; + if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand, + sizeof(operand), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + + switch (type) { + case VMX_EPT_EXTENT_GLOBAL: + kvm_mmu_sync_roots(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + nested_vmx_succeed(vcpu); + break; + default: + /* Trap single context invalidation invept calls */ + BUG_ON(1); + break; + } + + skip_emulated_instruction(vcpu); + return 1; +} + +static int handle_invvpid(struct kvm_vcpu *vcpu) +{ + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; +} + +static int handle_pml_full(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + + trace_kvm_pml_full(vcpu->vcpu_id); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + /* + * PML buffer FULL happened while executing iret from NMI, + * "blocked by NMI" bit has to be set before next VM entry. + */ + if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && + cpu_has_virtual_nmis() && + (exit_qualification & INTR_INFO_UNBLOCK_NMI)) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + + /* + * PML buffer already flushed at beginning of VMEXIT. Nothing to do + * here.., and there's no userspace involvement needed for PML. + */ + return 1; +} + +/* + * The exit handlers return 1 if the exit was handled fully and guest execution + * may resume. Otherwise they set the kvm_run parameter to indicate what needs + * to be done to userspace and return 0. + */ +static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { + [EXIT_REASON_EXCEPTION_NMI] = handle_exception, + [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, + [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, + [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, + [EXIT_REASON_IO_INSTRUCTION] = handle_io, + [EXIT_REASON_CR_ACCESS] = handle_cr, + [EXIT_REASON_DR_ACCESS] = handle_dr, + [EXIT_REASON_CPUID] = handle_cpuid, + [EXIT_REASON_MSR_READ] = handle_rdmsr, + [EXIT_REASON_MSR_WRITE] = handle_wrmsr, + [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, + [EXIT_REASON_HLT] = handle_halt, + [EXIT_REASON_INVD] = handle_invd, + [EXIT_REASON_INVLPG] = handle_invlpg, + [EXIT_REASON_RDPMC] = handle_rdpmc, + [EXIT_REASON_VMCALL] = handle_vmcall, + [EXIT_REASON_VMCLEAR] = handle_vmclear, + [EXIT_REASON_VMLAUNCH] = handle_vmlaunch, + [EXIT_REASON_VMPTRLD] = handle_vmptrld, + [EXIT_REASON_VMPTRST] = handle_vmptrst, + [EXIT_REASON_VMREAD] = handle_vmread, + [EXIT_REASON_VMRESUME] = handle_vmresume, + [EXIT_REASON_VMWRITE] = handle_vmwrite, + [EXIT_REASON_VMOFF] = handle_vmoff, + [EXIT_REASON_VMON] = handle_vmon, + [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, + [EXIT_REASON_APIC_ACCESS] = handle_apic_access, + [EXIT_REASON_APIC_WRITE] = handle_apic_write, + [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, + [EXIT_REASON_WBINVD] = handle_wbinvd, + [EXIT_REASON_XSETBV] = handle_xsetbv, + [EXIT_REASON_TASK_SWITCH] = handle_task_switch, + [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, + [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, + [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, + [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, + [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, + [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, + [EXIT_REASON_INVEPT] = handle_invept, + [EXIT_REASON_INVVPID] = handle_invvpid, + [EXIT_REASON_XSAVES] = handle_xsaves, + [EXIT_REASON_XRSTORS] = handle_xrstors, + [EXIT_REASON_PML_FULL] = handle_pml_full, +}; + +static const int kvm_vmx_max_exit_handlers = + ARRAY_SIZE(kvm_vmx_exit_handlers); + +static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + unsigned long exit_qualification; + gpa_t bitmap, last_bitmap; + unsigned int port; + int size; + u8 b; + + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) + return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + port = exit_qualification >> 16; + size = (exit_qualification & 7) + 1; + + last_bitmap = (gpa_t)-1; + b = -1; + + while (size > 0) { + if (port < 0x8000) + bitmap = vmcs12->io_bitmap_a; + else if (port < 0x10000) + bitmap = vmcs12->io_bitmap_b; + else + return true; + bitmap += (port & 0x7fff) / 8; + + if (last_bitmap != bitmap) + if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1)) + return true; + if (b & (1 << (port & 7))) + return true; + + port++; + size--; + last_bitmap = bitmap; + } + + return false; +} + +/* + * Return 1 if we should exit from L2 to L1 to handle an MSR access access, + * rather than handle it ourselves in L0. I.e., check whether L1 expressed + * disinterest in the current event (read or write a specific MSR) by using an + * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. + */ +static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, u32 exit_reason) +{ + u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; + gpa_t bitmap; + + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) + return true; + + /* + * The MSR_BITMAP page is divided into four 1024-byte bitmaps, + * for the four combinations of read/write and low/high MSR numbers. + * First we need to figure out which of the four to use: + */ + bitmap = vmcs12->msr_bitmap; + if (exit_reason == EXIT_REASON_MSR_WRITE) + bitmap += 2048; + if (msr_index >= 0xc0000000) { + msr_index -= 0xc0000000; + bitmap += 1024; + } + + /* Then read the msr_index'th bit from this bitmap: */ + if (msr_index < 1024*8) { + unsigned char b; + if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1)) + return true; + return 1 & (b >> (msr_index & 7)); + } else + return true; /* let L1 handle the wrong parameter */ +} + +/* + * Return 1 if we should exit from L2 to L1 to handle a CR access exit, + * rather than handle it ourselves in L0. I.e., check if L1 wanted to + * intercept (via guest_host_mask etc.) the current event. + */ +static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int cr = exit_qualification & 15; + int reg = (exit_qualification >> 8) & 15; + unsigned long val = kvm_register_readl(vcpu, reg); + + switch ((exit_qualification >> 4) & 3) { + case 0: /* mov to cr */ + switch (cr) { + case 0: + if (vmcs12->cr0_guest_host_mask & + (val ^ vmcs12->cr0_read_shadow)) + return true; + break; + case 3: + if ((vmcs12->cr3_target_count >= 1 && + vmcs12->cr3_target_value0 == val) || + (vmcs12->cr3_target_count >= 2 && + vmcs12->cr3_target_value1 == val) || + (vmcs12->cr3_target_count >= 3 && + vmcs12->cr3_target_value2 == val) || + (vmcs12->cr3_target_count >= 4 && + vmcs12->cr3_target_value3 == val)) + return false; + if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) + return true; + break; + case 4: + if (vmcs12->cr4_guest_host_mask & + (vmcs12->cr4_read_shadow ^ val)) + return true; + break; + case 8: + if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) + return true; + break; + } + break; + case 2: /* clts */ + if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && + (vmcs12->cr0_read_shadow & X86_CR0_TS)) + return true; + break; + case 1: /* mov from cr */ + switch (cr) { + case 3: + if (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_CR3_STORE_EXITING) + return true; + break; + case 8: + if (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_CR8_STORE_EXITING) + return true; + break; + } + break; + case 3: /* lmsw */ + /* + * lmsw can change bits 1..3 of cr0, and only set bit 0 of + * cr0. Other attempted changes are ignored, with no exit. + */ + if (vmcs12->cr0_guest_host_mask & 0xe & + (val ^ vmcs12->cr0_read_shadow)) + return true; + if ((vmcs12->cr0_guest_host_mask & 0x1) && + !(vmcs12->cr0_read_shadow & 0x1) && + (val & 0x1)) + return true; + break; + } + return false; +} + +/* + * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we + * should handle it ourselves in L0 (and then continue L2). Only call this + * when in is_guest_mode (L2). + */ +static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu) +{ + u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + u32 exit_reason = vmx->exit_reason; + + trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, + vmcs_readl(EXIT_QUALIFICATION), + vmx->idt_vectoring_info, + intr_info, + vmcs_read32(VM_EXIT_INTR_ERROR_CODE), + KVM_ISA_VMX); + + if (vmx->nested.nested_run_pending) + return false; + + if (unlikely(vmx->fail)) { + pr_info_ratelimited("%s failed vm entry %x\n", __func__, + vmcs_read32(VM_INSTRUCTION_ERROR)); + return true; + } + + switch (exit_reason) { + case EXIT_REASON_EXCEPTION_NMI: + if (!is_exception(intr_info)) + return false; + else if (is_page_fault(intr_info)) + return enable_ept; + else if (is_no_device(intr_info) && + !(vmcs12->guest_cr0 & X86_CR0_TS)) + return false; + return vmcs12->exception_bitmap & + (1u << (intr_info & INTR_INFO_VECTOR_MASK)); + case EXIT_REASON_EXTERNAL_INTERRUPT: + return false; + case EXIT_REASON_TRIPLE_FAULT: + return true; + case EXIT_REASON_PENDING_INTERRUPT: + return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); + case EXIT_REASON_NMI_WINDOW: + return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); + case EXIT_REASON_TASK_SWITCH: + return true; + case EXIT_REASON_CPUID: + if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa) + return false; + return true; + case EXIT_REASON_HLT: + return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); + case EXIT_REASON_INVD: + return true; + case EXIT_REASON_INVLPG: + return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); + case EXIT_REASON_RDPMC: + return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); + case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: + return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); + case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: + case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: + case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD: + case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE: + case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: + case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: + /* + * VMX instructions trap unconditionally. This allows L1 to + * emulate them for its L2 guest, i.e., allows 3-level nesting! + */ + return true; + case EXIT_REASON_CR_ACCESS: + return nested_vmx_exit_handled_cr(vcpu, vmcs12); + case EXIT_REASON_DR_ACCESS: + return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); + case EXIT_REASON_IO_INSTRUCTION: + return nested_vmx_exit_handled_io(vcpu, vmcs12); + case EXIT_REASON_MSR_READ: + case EXIT_REASON_MSR_WRITE: + return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); + case EXIT_REASON_INVALID_STATE: + return true; + case EXIT_REASON_MWAIT_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); + case EXIT_REASON_MONITOR_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); + case EXIT_REASON_PAUSE_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || + nested_cpu_has2(vmcs12, + SECONDARY_EXEC_PAUSE_LOOP_EXITING); + case EXIT_REASON_MCE_DURING_VMENTRY: + return false; + case EXIT_REASON_TPR_BELOW_THRESHOLD: + return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); + case EXIT_REASON_APIC_ACCESS: + return nested_cpu_has2(vmcs12, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); + case EXIT_REASON_APIC_WRITE: + case EXIT_REASON_EOI_INDUCED: + /* apic_write and eoi_induced should exit unconditionally. */ + return true; + case EXIT_REASON_EPT_VIOLATION: + /* + * L0 always deals with the EPT violation. If nested EPT is + * used, and the nested mmu code discovers that the address is + * missing in the guest EPT table (EPT12), the EPT violation + * will be injected with nested_ept_inject_page_fault() + */ + return false; + case EXIT_REASON_EPT_MISCONFIG: + /* + * L2 never uses directly L1's EPT, but rather L0's own EPT + * table (shadow on EPT) or a merged EPT table that L0 built + * (EPT on EPT). So any problems with the structure of the + * table is L0's fault. + */ + return false; + case EXIT_REASON_WBINVD: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); + case EXIT_REASON_XSETBV: + return true; + case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: + /* + * This should never happen, since it is not possible to + * set XSS to a non-zero value---neither in L1 nor in L2. + * If if it were, XSS would have to be checked against + * the XSS exit bitmap in vmcs12. + */ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); + default: + return true; + } +} + +static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) +{ + *info1 = vmcs_readl(EXIT_QUALIFICATION); + *info2 = vmcs_read32(VM_EXIT_INTR_INFO); +} + +static int vmx_enable_pml(struct vcpu_vmx *vmx) +{ + struct page *pml_pg; + u32 exec_control; + + pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); + if (!pml_pg) + return -ENOMEM; + + vmx->pml_pg = pml_pg; + + vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); + vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); + + exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + exec_control |= SECONDARY_EXEC_ENABLE_PML; + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); + + return 0; +} + +static void vmx_disable_pml(struct vcpu_vmx *vmx) +{ + u32 exec_control; + + ASSERT(vmx->pml_pg); + __free_page(vmx->pml_pg); + vmx->pml_pg = NULL; + + exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + exec_control &= ~SECONDARY_EXEC_ENABLE_PML; + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); +} + +static void vmx_flush_pml_buffer(struct vcpu_vmx *vmx) +{ + struct kvm *kvm = vmx->vcpu.kvm; + u64 *pml_buf; + u16 pml_idx; + + pml_idx = vmcs_read16(GUEST_PML_INDEX); + + /* Do nothing if PML buffer is empty */ + if (pml_idx == (PML_ENTITY_NUM - 1)) + return; + + /* PML index always points to next available PML buffer entity */ + if (pml_idx >= PML_ENTITY_NUM) + pml_idx = 0; + else + pml_idx++; + + pml_buf = page_address(vmx->pml_pg); + for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { + u64 gpa; + + gpa = pml_buf[pml_idx]; + WARN_ON(gpa & (PAGE_SIZE - 1)); + mark_page_dirty(kvm, gpa >> PAGE_SHIFT); + } + + /* reset PML index */ + vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); +} + +/* + * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. + * Called before reporting dirty_bitmap to userspace. + */ +static void kvm_flush_pml_buffers(struct kvm *kvm) +{ + int i; + struct kvm_vcpu *vcpu; + /* + * We only need to kick vcpu out of guest mode here, as PML buffer + * is flushed at beginning of all VMEXITs, and it's obvious that only + * vcpus running in guest are possible to have unflushed GPAs in PML + * buffer. + */ + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_vcpu_kick(vcpu); +} + +/* + * The guest has exited. See if we can fix it or if we need userspace + * assistance. + */ +static int vmx_handle_exit(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 exit_reason = vmx->exit_reason; + u32 vectoring_info = vmx->idt_vectoring_info; + + /* + * Flush logged GPAs PML buffer, this will make dirty_bitmap more + * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before + * querying dirty_bitmap, we only need to kick all vcpus out of guest + * mode as if vcpus is in root mode, the PML buffer must has been + * flushed already. + */ + if (enable_pml) + vmx_flush_pml_buffer(vmx); + + /* If guest state is invalid, start emulating */ + if (vmx->emulation_required) + return handle_invalid_guest_state(vcpu); + + if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) { + nested_vmx_vmexit(vcpu, exit_reason, + vmcs_read32(VM_EXIT_INTR_INFO), + vmcs_readl(EXIT_QUALIFICATION)); + return 1; + } + + if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { + vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; + vcpu->run->fail_entry.hardware_entry_failure_reason + = exit_reason; + return 0; + } + + if (unlikely(vmx->fail)) { + vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; + vcpu->run->fail_entry.hardware_entry_failure_reason + = vmcs_read32(VM_INSTRUCTION_ERROR); + return 0; + } + + /* + * Note: + * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by + * delivery event since it indicates guest is accessing MMIO. + * The vm-exit can be triggered again after return to guest that + * will cause infinite loop. + */ + if ((vectoring_info & VECTORING_INFO_VALID_MASK) && + (exit_reason != EXIT_REASON_EXCEPTION_NMI && + exit_reason != EXIT_REASON_EPT_VIOLATION && + exit_reason != EXIT_REASON_TASK_SWITCH)) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; + vcpu->run->internal.ndata = 2; + vcpu->run->internal.data[0] = vectoring_info; + vcpu->run->internal.data[1] = exit_reason; + return 0; + } + + if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked && + !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis( + get_vmcs12(vcpu))))) { + if (vmx_interrupt_allowed(vcpu)) { + vmx->soft_vnmi_blocked = 0; + } else if (vmx->vnmi_blocked_time > 1000000000LL && + vcpu->arch.nmi_pending) { + /* + * This CPU don't support us in finding the end of an + * NMI-blocked window if the guest runs with IRQs + * disabled. So we pull the trigger after 1 s of + * futile waiting, but inform the user about this. + */ + printk(KERN_WARNING "%s: Breaking out of NMI-blocked " + "state on VCPU %d after 1 s timeout\n", + __func__, vcpu->vcpu_id); + vmx->soft_vnmi_blocked = 0; + } + } + + if (exit_reason < kvm_vmx_max_exit_handlers + && kvm_vmx_exit_handlers[exit_reason]) + return kvm_vmx_exit_handlers[exit_reason](vcpu); + else { + WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason); + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } +} + +static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (is_guest_mode(vcpu) && + nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + return; + + if (irr == -1 || tpr < irr) { + vmcs_write32(TPR_THRESHOLD, 0); + return; + } + + vmcs_write32(TPR_THRESHOLD, irr); +} + +static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set) +{ + u32 sec_exec_control; + + /* + * There is not point to enable virtualize x2apic without enable + * apicv + */ + if (!cpu_has_vmx_virtualize_x2apic_mode() || + !vmx_vm_has_apicv(vcpu->kvm)) + return; + + if (!vm_need_tpr_shadow(vcpu->kvm)) + return; + + sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + + if (set) { + sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; + } else { + sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; + sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + } + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); + + vmx_set_msr_bitmap(vcpu); +} + +static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * Currently we do not handle the nested case where L2 has an + * APIC access page of its own; that page is still pinned. + * Hence, we skip the case where the VCPU is in guest mode _and_ + * L1 prepared an APIC access page for L2. + * + * For the case where L1 and L2 share the same APIC access page + * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear + * in the vmcs12), this function will only update either the vmcs01 + * or the vmcs02. If the former, the vmcs02 will be updated by + * prepare_vmcs02. If the latter, the vmcs01 will be updated in + * the next L2->L1 exit. + */ + if (!is_guest_mode(vcpu) || + !nested_cpu_has2(vmx->nested.current_vmcs12, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + vmcs_write64(APIC_ACCESS_ADDR, hpa); +} + +static void vmx_hwapic_isr_update(struct kvm *kvm, int isr) +{ + u16 status; + u8 old; + + if (isr == -1) + isr = 0; + + status = vmcs_read16(GUEST_INTR_STATUS); + old = status >> 8; + if (isr != old) { + status &= 0xff; + status |= isr << 8; + vmcs_write16(GUEST_INTR_STATUS, status); + } +} + +static void vmx_set_rvi(int vector) +{ + u16 status; + u8 old; + + if (vector == -1) + vector = 0; + + status = vmcs_read16(GUEST_INTR_STATUS); + old = (u8)status & 0xff; + if ((u8)vector != old) { + status &= ~0xff; + status |= (u8)vector; + vmcs_write16(GUEST_INTR_STATUS, status); + } +} + +static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) +{ + if (!is_guest_mode(vcpu)) { + vmx_set_rvi(max_irr); + return; + } + + if (max_irr == -1) + return; + + /* + * In guest mode. If a vmexit is needed, vmx_check_nested_events + * handles it. + */ + if (nested_exit_on_intr(vcpu)) + return; + + /* + * Else, fall back to pre-APICv interrupt injection since L2 + * is run without virtual interrupt delivery. + */ + if (!kvm_event_needs_reinjection(vcpu) && + vmx_interrupt_allowed(vcpu)) { + kvm_queue_interrupt(vcpu, max_irr, false); + vmx_inject_irq(vcpu); + } +} + +static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) +{ + if (!vmx_vm_has_apicv(vcpu->kvm)) + return; + + vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); + vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); + vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); + vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); +} + +static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) +{ + u32 exit_intr_info; + + if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY + || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)) + return; + + vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + exit_intr_info = vmx->exit_intr_info; + + /* Handle machine checks before interrupts are enabled */ + if (is_machine_check(exit_intr_info)) + kvm_machine_check(); + + /* We need to handle NMIs before interrupts are enabled */ + if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR && + (exit_intr_info & INTR_INFO_VALID_MASK)) { + kvm_before_handle_nmi(&vmx->vcpu); + asm("int $2"); + kvm_after_handle_nmi(&vmx->vcpu); + } +} + +static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) +{ + u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + + /* + * If external interrupt exists, IF bit is set in rflags/eflags on the + * interrupt stack frame, and interrupt will be enabled on a return + * from interrupt handler. + */ + if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) + == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { + unsigned int vector; + unsigned long entry; + gate_desc *desc; + struct vcpu_vmx *vmx = to_vmx(vcpu); +#ifdef CONFIG_X86_64 + unsigned long tmp; +#endif + + vector = exit_intr_info & INTR_INFO_VECTOR_MASK; + desc = (gate_desc *)vmx->host_idt_base + vector; + entry = gate_offset(*desc); + asm volatile( +#ifdef CONFIG_X86_64 + "mov %%" _ASM_SP ", %[sp]\n\t" + "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" + "push $%c[ss]\n\t" + "push %[sp]\n\t" +#endif + "pushf\n\t" + "orl $0x200, (%%" _ASM_SP ")\n\t" + __ASM_SIZE(push) " $%c[cs]\n\t" + "call *%[entry]\n\t" + : +#ifdef CONFIG_X86_64 + [sp]"=&r"(tmp) +#endif + : + [entry]"r"(entry), + [ss]"i"(__KERNEL_DS), + [cs]"i"(__KERNEL_CS) + ); + } else + local_irq_enable(); +} + +static bool vmx_mpx_supported(void) +{ + return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) && + (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS); +} + +static bool vmx_xsaves_supported(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_XSAVES; +} + +static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) +{ + u32 exit_intr_info; + bool unblock_nmi; + u8 vector; + bool idtv_info_valid; + + idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; + + if (cpu_has_virtual_nmis()) { + if (vmx->nmi_known_unmasked) + return; + /* + * Can't use vmx->exit_intr_info since we're not sure what + * the exit reason is. + */ + exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; + vector = exit_intr_info & INTR_INFO_VECTOR_MASK; + /* + * SDM 3: 27.7.1.2 (September 2008) + * Re-set bit "block by NMI" before VM entry if vmexit caused by + * a guest IRET fault. + * SDM 3: 23.2.2 (September 2008) + * Bit 12 is undefined in any of the following cases: + * If the VM exit sets the valid bit in the IDT-vectoring + * information field. + * If the VM exit is due to a double fault. + */ + if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && + vector != DF_VECTOR && !idtv_info_valid) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + else + vmx->nmi_known_unmasked = + !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) + & GUEST_INTR_STATE_NMI); + } else if (unlikely(vmx->soft_vnmi_blocked)) + vmx->vnmi_blocked_time += + ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time)); +} + +static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, + u32 idt_vectoring_info, + int instr_len_field, + int error_code_field) +{ + u8 vector; + int type; + bool idtv_info_valid; + + idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; + + vcpu->arch.nmi_injected = false; + kvm_clear_exception_queue(vcpu); + kvm_clear_interrupt_queue(vcpu); + + if (!idtv_info_valid) + return; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; + type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; + + switch (type) { + case INTR_TYPE_NMI_INTR: + vcpu->arch.nmi_injected = true; + /* + * SDM 3: 27.7.1.2 (September 2008) + * Clear bit "block by NMI" before VM entry if a NMI + * delivery faulted. + */ + vmx_set_nmi_mask(vcpu, false); + break; + case INTR_TYPE_SOFT_EXCEPTION: + vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); + /* fall through */ + case INTR_TYPE_HARD_EXCEPTION: + if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { + u32 err = vmcs_read32(error_code_field); + kvm_requeue_exception_e(vcpu, vector, err); + } else + kvm_requeue_exception(vcpu, vector); + break; + case INTR_TYPE_SOFT_INTR: + vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); + /* fall through */ + case INTR_TYPE_EXT_INTR: + kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); + break; + default: + break; + } +} + +static void vmx_complete_interrupts(struct vcpu_vmx *vmx) +{ + __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, + VM_EXIT_INSTRUCTION_LEN, + IDT_VECTORING_ERROR_CODE); +} + +static void vmx_cancel_injection(struct kvm_vcpu *vcpu) +{ + __vmx_complete_interrupts(vcpu, + vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), + VM_ENTRY_INSTRUCTION_LEN, + VM_ENTRY_EXCEPTION_ERROR_CODE); + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); +} + +static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) +{ + int i, nr_msrs; + struct perf_guest_switch_msr *msrs; + + msrs = perf_guest_get_msrs(&nr_msrs); + + if (!msrs) + return; + + for (i = 0; i < nr_msrs; i++) + if (msrs[i].host == msrs[i].guest) + clear_atomic_switch_msr(vmx, msrs[i].msr); + else + add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, + msrs[i].host); +} + +static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long debugctlmsr, cr4; + + /* Record the guest's net vcpu time for enforced NMI injections. */ + if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) + vmx->entry_time = ktime_get(); + + /* Don't enter VMX if guest state is invalid, let the exit handler + start emulation until we arrive back to a valid state */ + if (vmx->emulation_required) + return; + + if (vmx->ple_window_dirty) { + vmx->ple_window_dirty = false; + vmcs_write32(PLE_WINDOW, vmx->ple_window); + } + + if (vmx->nested.sync_shadow_vmcs) { + copy_vmcs12_to_shadow(vmx); + vmx->nested.sync_shadow_vmcs = false; + } + + if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) + vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); + if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) + vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); + + cr4 = cr4_read_shadow(); + if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) { + vmcs_writel(HOST_CR4, cr4); + vmx->host_state.vmcs_host_cr4 = cr4; + } + + /* When single-stepping over STI and MOV SS, we must clear the + * corresponding interruptibility bits in the guest state. Otherwise + * vmentry fails as it then expects bit 14 (BS) in pending debug + * exceptions being set, but that's not correct for the guest debugging + * case. */ + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) + vmx_set_interrupt_shadow(vcpu, 0); + + atomic_switch_perf_msrs(vmx); + debugctlmsr = get_debugctlmsr(); + + vmx->__launched = vmx->loaded_vmcs->launched; + asm( + /* Store host registers */ + "push %%" _ASM_DX "; push %%" _ASM_BP ";" + "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ + "push %%" _ASM_CX " \n\t" + "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t" + "je 1f \n\t" + "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t" + __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t" + "1: \n\t" + /* Reload cr2 if changed */ + "mov %c[cr2](%0), %%" _ASM_AX " \n\t" + "mov %%cr2, %%" _ASM_DX " \n\t" + "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" + "je 2f \n\t" + "mov %%" _ASM_AX", %%cr2 \n\t" + "2: \n\t" + /* Check if vmlaunch of vmresume is needed */ + "cmpl $0, %c[launched](%0) \n\t" + /* Load guest registers. Don't clobber flags. */ + "mov %c[rax](%0), %%" _ASM_AX " \n\t" + "mov %c[rbx](%0), %%" _ASM_BX " \n\t" + "mov %c[rdx](%0), %%" _ASM_DX " \n\t" + "mov %c[rsi](%0), %%" _ASM_SI " \n\t" + "mov %c[rdi](%0), %%" _ASM_DI " \n\t" + "mov %c[rbp](%0), %%" _ASM_BP " \n\t" +#ifdef CONFIG_X86_64 + "mov %c[r8](%0), %%r8 \n\t" + "mov %c[r9](%0), %%r9 \n\t" + "mov %c[r10](%0), %%r10 \n\t" + "mov %c[r11](%0), %%r11 \n\t" + "mov %c[r12](%0), %%r12 \n\t" + "mov %c[r13](%0), %%r13 \n\t" + "mov %c[r14](%0), %%r14 \n\t" + "mov %c[r15](%0), %%r15 \n\t" +#endif + "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */ + + /* Enter guest mode */ + "jne 1f \n\t" + __ex(ASM_VMX_VMLAUNCH) "\n\t" + "jmp 2f \n\t" + "1: " __ex(ASM_VMX_VMRESUME) "\n\t" + "2: " + /* Save guest registers, load host registers, keep flags */ + "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t" + "pop %0 \n\t" + "mov %%" _ASM_AX ", %c[rax](%0) \n\t" + "mov %%" _ASM_BX ", %c[rbx](%0) \n\t" + __ASM_SIZE(pop) " %c[rcx](%0) \n\t" + "mov %%" _ASM_DX ", %c[rdx](%0) \n\t" + "mov %%" _ASM_SI ", %c[rsi](%0) \n\t" + "mov %%" _ASM_DI ", %c[rdi](%0) \n\t" + "mov %%" _ASM_BP ", %c[rbp](%0) \n\t" +#ifdef CONFIG_X86_64 + "mov %%r8, %c[r8](%0) \n\t" + "mov %%r9, %c[r9](%0) \n\t" + "mov %%r10, %c[r10](%0) \n\t" + "mov %%r11, %c[r11](%0) \n\t" + "mov %%r12, %c[r12](%0) \n\t" + "mov %%r13, %c[r13](%0) \n\t" + "mov %%r14, %c[r14](%0) \n\t" + "mov %%r15, %c[r15](%0) \n\t" +#endif + "mov %%cr2, %%" _ASM_AX " \n\t" + "mov %%" _ASM_AX ", %c[cr2](%0) \n\t" + + "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" + "setbe %c[fail](%0) \n\t" + ".pushsection .rodata \n\t" + ".global vmx_return \n\t" + "vmx_return: " _ASM_PTR " 2b \n\t" + ".popsection" + : : "c"(vmx), "d"((unsigned long)HOST_RSP), + [launched]"i"(offsetof(struct vcpu_vmx, __launched)), + [fail]"i"(offsetof(struct vcpu_vmx, fail)), + [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), + [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), + [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), + [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), + [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), + [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), + [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), + [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), +#ifdef CONFIG_X86_64 + [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), + [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), + [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), + [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), + [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), + [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), + [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), + [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), +#endif + [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), + [wordsize]"i"(sizeof(ulong)) + : "cc", "memory" +#ifdef CONFIG_X86_64 + , "rax", "rbx", "rdi", "rsi" + , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" +#else + , "eax", "ebx", "edi", "esi" +#endif + ); + + /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ + if (debugctlmsr) + update_debugctlmsr(debugctlmsr); + +#ifndef CONFIG_X86_64 + /* + * The sysexit path does not restore ds/es, so we must set them to + * a reasonable value ourselves. + * + * We can't defer this to vmx_load_host_state() since that function + * may be executed in interrupt context, which saves and restore segments + * around it, nullifying its effect. + */ + loadsegment(ds, __USER_DS); + loadsegment(es, __USER_DS); +#endif + + vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) + | (1 << VCPU_EXREG_RFLAGS) + | (1 << VCPU_EXREG_PDPTR) + | (1 << VCPU_EXREG_SEGMENTS) + | (1 << VCPU_EXREG_CR3)); + vcpu->arch.regs_dirty = 0; + + vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); + + vmx->loaded_vmcs->launched = 1; + + vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); + trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX); + + /* + * the KVM_REQ_EVENT optimization bit is only on for one entry, and if + * we did not inject a still-pending event to L1 now because of + * nested_run_pending, we need to re-enable this bit. + */ + if (vmx->nested.nested_run_pending) + kvm_make_request(KVM_REQ_EVENT, vcpu); + + vmx->nested.nested_run_pending = 0; + + vmx_complete_atomic_exit(vmx); + vmx_recover_nmi_blocking(vmx); + vmx_complete_interrupts(vmx); +} + +static void vmx_load_vmcs01(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int cpu; + + if (vmx->loaded_vmcs == &vmx->vmcs01) + return; + + cpu = get_cpu(); + vmx->loaded_vmcs = &vmx->vmcs01; + vmx_vcpu_put(vcpu); + vmx_vcpu_load(vcpu, cpu); + vcpu->cpu = cpu; + put_cpu(); +} + +static void vmx_free_vcpu(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (enable_pml) + vmx_disable_pml(vmx); + free_vpid(vmx); + leave_guest_mode(vcpu); + vmx_load_vmcs01(vcpu); + free_nested(vmx); + free_loaded_vmcs(vmx->loaded_vmcs); + kfree(vmx->guest_msrs); + kvm_vcpu_uninit(vcpu); + kmem_cache_free(kvm_vcpu_cache, vmx); +} + +static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) +{ + int err; + struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); + int cpu; + + if (!vmx) + return ERR_PTR(-ENOMEM); + + allocate_vpid(vmx); + + err = kvm_vcpu_init(&vmx->vcpu, kvm, id); + if (err) + goto free_vcpu; + + vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); + BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) + > PAGE_SIZE); + + err = -ENOMEM; + if (!vmx->guest_msrs) { + goto uninit_vcpu; + } + + vmx->loaded_vmcs = &vmx->vmcs01; + vmx->loaded_vmcs->vmcs = alloc_vmcs(); + if (!vmx->loaded_vmcs->vmcs) + goto free_msrs; + if (!vmm_exclusive) + kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id()))); + loaded_vmcs_init(vmx->loaded_vmcs); + if (!vmm_exclusive) + kvm_cpu_vmxoff(); + + cpu = get_cpu(); + vmx_vcpu_load(&vmx->vcpu, cpu); + vmx->vcpu.cpu = cpu; + err = vmx_vcpu_setup(vmx); + vmx_vcpu_put(&vmx->vcpu); + put_cpu(); + if (err) + goto free_vmcs; + if (vm_need_virtualize_apic_accesses(kvm)) { + err = alloc_apic_access_page(kvm); + if (err) + goto free_vmcs; + } + + if (enable_ept) { + if (!kvm->arch.ept_identity_map_addr) + kvm->arch.ept_identity_map_addr = + VMX_EPT_IDENTITY_PAGETABLE_ADDR; + err = init_rmode_identity_map(kvm); + if (err) + goto free_vmcs; + } + + if (nested) + nested_vmx_setup_ctls_msrs(vmx); + + vmx->nested.posted_intr_nv = -1; + vmx->nested.current_vmptr = -1ull; + vmx->nested.current_vmcs12 = NULL; + + /* + * If PML is turned on, failure on enabling PML just results in failure + * of creating the vcpu, therefore we can simplify PML logic (by + * avoiding dealing with cases, such as enabling PML partially on vcpus + * for the guest, etc. + */ + if (enable_pml) { + err = vmx_enable_pml(vmx); + if (err) + goto free_vmcs; + } + + return &vmx->vcpu; + +free_vmcs: + free_loaded_vmcs(vmx->loaded_vmcs); +free_msrs: + kfree(vmx->guest_msrs); +uninit_vcpu: + kvm_vcpu_uninit(&vmx->vcpu); +free_vcpu: + free_vpid(vmx); + kmem_cache_free(kvm_vcpu_cache, vmx); + return ERR_PTR(err); +} + +static void __init vmx_check_processor_compat(void *rtn) +{ + struct vmcs_config vmcs_conf; + + *(int *)rtn = 0; + if (setup_vmcs_config(&vmcs_conf) < 0) + *(int *)rtn = -EIO; + if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { + printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", + smp_processor_id()); + *(int *)rtn = -EIO; + } +} + +static int get_ept_level(void) +{ + return VMX_EPT_DEFAULT_GAW + 1; +} + +static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) +{ + u64 ret; + + /* For VT-d and EPT combination + * 1. MMIO: always map as UC + * 2. EPT with VT-d: + * a. VT-d without snooping control feature: can't guarantee the + * result, try to trust guest. + * b. VT-d with snooping control feature: snooping control feature of + * VT-d engine can guarantee the cache correctness. Just set it + * to WB to keep consistent with host. So the same as item 3. + * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep + * consistent with host MTRR + */ + if (is_mmio) + ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; + else if (kvm_arch_has_noncoherent_dma(vcpu->kvm)) + ret = kvm_get_guest_memory_type(vcpu, gfn) << + VMX_EPT_MT_EPTE_SHIFT; + else + ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) + | VMX_EPT_IPAT_BIT; + + return ret; +} + +static int vmx_get_lpage_level(void) +{ + if (enable_ept && !cpu_has_vmx_ept_1g_page()) + return PT_DIRECTORY_LEVEL; + else + /* For shadow and EPT supported 1GB page */ + return PT_PDPE_LEVEL; +} + +static void vmx_cpuid_update(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *best; + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 exec_control; + + vmx->rdtscp_enabled = false; + if (vmx_rdtscp_supported()) { + exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + if (exec_control & SECONDARY_EXEC_RDTSCP) { + best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); + if (best && (best->edx & bit(X86_FEATURE_RDTSCP))) + vmx->rdtscp_enabled = true; + else { + exec_control &= ~SECONDARY_EXEC_RDTSCP; + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, + exec_control); + } + } + if (nested && !vmx->rdtscp_enabled) + vmx->nested.nested_vmx_secondary_ctls_high &= + ~SECONDARY_EXEC_RDTSCP; + } + + /* Exposing INVPCID only when PCID is exposed */ + best = kvm_find_cpuid_entry(vcpu, 0x7, 0); + if (vmx_invpcid_supported() && + best && (best->ebx & bit(X86_FEATURE_INVPCID)) && + guest_cpuid_has_pcid(vcpu)) { + exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + exec_control |= SECONDARY_EXEC_ENABLE_INVPCID; + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, + exec_control); + } else { + if (cpu_has_secondary_exec_ctrls()) { + exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, + exec_control); + } + if (best) + best->ebx &= ~bit(X86_FEATURE_INVPCID); + } +} + +static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) +{ + if (func == 1 && nested) + entry->ecx |= bit(X86_FEATURE_VMX); +} + +static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + u32 exit_reason; + + if (fault->error_code & PFERR_RSVD_MASK) + exit_reason = EXIT_REASON_EPT_MISCONFIG; + else + exit_reason = EXIT_REASON_EPT_VIOLATION; + nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification); + vmcs12->guest_physical_address = fault->address; +} + +/* Callbacks for nested_ept_init_mmu_context: */ + +static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu) +{ + /* return the page table to be shadowed - in our case, EPT12 */ + return get_vmcs12(vcpu)->ept_pointer; +} + +static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) +{ + WARN_ON(mmu_is_nested(vcpu)); + kvm_init_shadow_ept_mmu(vcpu, + to_vmx(vcpu)->nested.nested_vmx_ept_caps & + VMX_EPT_EXECUTE_ONLY_BIT); + vcpu->arch.mmu.set_cr3 = vmx_set_cr3; + vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3; + vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault; + + vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; +} + +static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) +{ + vcpu->arch.walk_mmu = &vcpu->arch.mmu; +} + +static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, + u16 error_code) +{ + bool inequality, bit; + + bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; + inequality = + (error_code & vmcs12->page_fault_error_code_mask) != + vmcs12->page_fault_error_code_match; + return inequality ^ bit; +} + +static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + WARN_ON(!is_guest_mode(vcpu)); + + if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) + nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason, + vmcs_read32(VM_EXIT_INTR_INFO), + vmcs_readl(EXIT_QUALIFICATION)); + else + kvm_inject_page_fault(vcpu, fault); +} + +static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int maxphyaddr = cpuid_maxphyaddr(vcpu); + + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { + if (!PAGE_ALIGNED(vmcs12->apic_access_addr) || + vmcs12->apic_access_addr >> maxphyaddr) + return false; + + /* + * Translate L1 physical address to host physical + * address for vmcs02. Keep the page pinned, so this + * physical address remains valid. We keep a reference + * to it so we can release it later. + */ + if (vmx->nested.apic_access_page) /* shouldn't happen */ + nested_release_page(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = + nested_get_page(vcpu, vmcs12->apic_access_addr); + } + + if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { + if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) || + vmcs12->virtual_apic_page_addr >> maxphyaddr) + return false; + + if (vmx->nested.virtual_apic_page) /* shouldn't happen */ + nested_release_page(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = + nested_get_page(vcpu, vmcs12->virtual_apic_page_addr); + + /* + * Failing the vm entry is _not_ what the processor does + * but it's basically the only possibility we have. + * We could still enter the guest if CR8 load exits are + * enabled, CR8 store exits are enabled, and virtualize APIC + * access is disabled; in this case the processor would never + * use the TPR shadow and we could simply clear the bit from + * the execution control. But such a configuration is useless, + * so let's keep the code simple. + */ + if (!vmx->nested.virtual_apic_page) + return false; + } + + if (nested_cpu_has_posted_intr(vmcs12)) { + if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) || + vmcs12->posted_intr_desc_addr >> maxphyaddr) + return false; + + if (vmx->nested.pi_desc_page) { /* shouldn't happen */ + kunmap(vmx->nested.pi_desc_page); + nested_release_page(vmx->nested.pi_desc_page); + } + vmx->nested.pi_desc_page = + nested_get_page(vcpu, vmcs12->posted_intr_desc_addr); + if (!vmx->nested.pi_desc_page) + return false; + + vmx->nested.pi_desc = + (struct pi_desc *)kmap(vmx->nested.pi_desc_page); + if (!vmx->nested.pi_desc) { + nested_release_page_clean(vmx->nested.pi_desc_page); + return false; + } + vmx->nested.pi_desc = + (struct pi_desc *)((void *)vmx->nested.pi_desc + + (unsigned long)(vmcs12->posted_intr_desc_addr & + (PAGE_SIZE - 1))); + } + + return true; +} + +static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) +{ + u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (vcpu->arch.virtual_tsc_khz == 0) + return; + + /* Make sure short timeouts reliably trigger an immediate vmexit. + * hrtimer_start does not guarantee this. */ + if (preemption_timeout <= 1) { + vmx_preemption_timer_fn(&vmx->nested.preemption_timer); + return; + } + + preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; + preemption_timeout *= 1000000; + do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); + hrtimer_start(&vmx->nested.preemption_timer, + ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); +} + +static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + int maxphyaddr; + u64 addr; + + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) + return 0; + + if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) { + WARN_ON(1); + return -EINVAL; + } + maxphyaddr = cpuid_maxphyaddr(vcpu); + + if (!PAGE_ALIGNED(vmcs12->msr_bitmap) || + ((addr + PAGE_SIZE) >> maxphyaddr)) + return -EINVAL; + + return 0; +} + +/* + * Merge L0's and L1's MSR bitmap, return false to indicate that + * we do not use the hardware. + */ +static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + int msr; + struct page *page; + unsigned long *msr_bitmap; + + if (!nested_cpu_has_virt_x2apic_mode(vmcs12)) + return false; + + page = nested_get_page(vcpu, vmcs12->msr_bitmap); + if (!page) { + WARN_ON(1); + return false; + } + msr_bitmap = (unsigned long *)kmap(page); + if (!msr_bitmap) { + nested_release_page_clean(page); + WARN_ON(1); + return false; + } + + if (nested_cpu_has_virt_x2apic_mode(vmcs12)) { + if (nested_cpu_has_apic_reg_virt(vmcs12)) + for (msr = 0x800; msr <= 0x8ff; msr++) + nested_vmx_disable_intercept_for_msr( + msr_bitmap, + vmx_msr_bitmap_nested, + msr, MSR_TYPE_R); + /* TPR is allowed */ + nested_vmx_disable_intercept_for_msr(msr_bitmap, + vmx_msr_bitmap_nested, + APIC_BASE_MSR + (APIC_TASKPRI >> 4), + MSR_TYPE_R | MSR_TYPE_W); + if (nested_cpu_has_vid(vmcs12)) { + /* EOI and self-IPI are allowed */ + nested_vmx_disable_intercept_for_msr( + msr_bitmap, + vmx_msr_bitmap_nested, + APIC_BASE_MSR + (APIC_EOI >> 4), + MSR_TYPE_W); + nested_vmx_disable_intercept_for_msr( + msr_bitmap, + vmx_msr_bitmap_nested, + APIC_BASE_MSR + (APIC_SELF_IPI >> 4), + MSR_TYPE_W); + } + } else { + /* + * Enable reading intercept of all the x2apic + * MSRs. We should not rely on vmcs12 to do any + * optimizations here, it may have been modified + * by L1. + */ + for (msr = 0x800; msr <= 0x8ff; msr++) + __vmx_enable_intercept_for_msr( + vmx_msr_bitmap_nested, + msr, + MSR_TYPE_R); + + __vmx_enable_intercept_for_msr( + vmx_msr_bitmap_nested, + APIC_BASE_MSR + (APIC_TASKPRI >> 4), + MSR_TYPE_W); + __vmx_enable_intercept_for_msr( + vmx_msr_bitmap_nested, + APIC_BASE_MSR + (APIC_EOI >> 4), + MSR_TYPE_W); + __vmx_enable_intercept_for_msr( + vmx_msr_bitmap_nested, + APIC_BASE_MSR + (APIC_SELF_IPI >> 4), + MSR_TYPE_W); + } + kunmap(page); + nested_release_page_clean(page); + + return true; +} + +static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && + !nested_cpu_has_apic_reg_virt(vmcs12) && + !nested_cpu_has_vid(vmcs12) && + !nested_cpu_has_posted_intr(vmcs12)) + return 0; + + /* + * If virtualize x2apic mode is enabled, + * virtualize apic access must be disabled. + */ + if (nested_cpu_has_virt_x2apic_mode(vmcs12) && + nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + return -EINVAL; + + /* + * If virtual interrupt delivery is enabled, + * we must exit on external interrupts. + */ + if (nested_cpu_has_vid(vmcs12) && + !nested_exit_on_intr(vcpu)) + return -EINVAL; + + /* + * bits 15:8 should be zero in posted_intr_nv, + * the descriptor address has been already checked + * in nested_get_vmcs12_pages. + */ + if (nested_cpu_has_posted_intr(vmcs12) && + (!nested_cpu_has_vid(vmcs12) || + !nested_exit_intr_ack_set(vcpu) || + vmcs12->posted_intr_nv & 0xff00)) + return -EINVAL; + + /* tpr shadow is needed by all apicv features. */ + if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, + unsigned long count_field, + unsigned long addr_field) +{ + int maxphyaddr; + u64 count, addr; + + if (vmcs12_read_any(vcpu, count_field, &count) || + vmcs12_read_any(vcpu, addr_field, &addr)) { + WARN_ON(1); + return -EINVAL; + } + if (count == 0) + return 0; + maxphyaddr = cpuid_maxphyaddr(vcpu); + if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || + (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) { + pr_warn_ratelimited( + "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)", + addr_field, maxphyaddr, count, addr); + return -EINVAL; + } + return 0; +} + +static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (vmcs12->vm_exit_msr_load_count == 0 && + vmcs12->vm_exit_msr_store_count == 0 && + vmcs12->vm_entry_msr_load_count == 0) + return 0; /* Fast path */ + if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT, + VM_EXIT_MSR_LOAD_ADDR) || + nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT, + VM_EXIT_MSR_STORE_ADDR) || + nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT, + VM_ENTRY_MSR_LOAD_ADDR)) + return -EINVAL; + return 0; +} + +static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + /* x2APIC MSR accesses are not allowed */ + if (apic_x2apic_mode(vcpu->arch.apic) && e->index >> 8 == 0x8) + return -EINVAL; + if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ + e->index == MSR_IA32_UCODE_REV) + return -EINVAL; + if (e->reserved != 0) + return -EINVAL; + return 0; +} + +static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + if (e->index == MSR_FS_BASE || + e->index == MSR_GS_BASE || + e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ + nested_vmx_msr_check_common(vcpu, e)) + return -EINVAL; + return 0; +} + +static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ + nested_vmx_msr_check_common(vcpu, e)) + return -EINVAL; + return 0; +} + +/* + * Load guest's/host's msr at nested entry/exit. + * return 0 for success, entry index for failure. + */ +static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) +{ + u32 i; + struct vmx_msr_entry e; + struct msr_data msr; + + msr.host_initiated = false; + for (i = 0; i < count; i++) { + if (kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e), + &e, sizeof(e))) { + pr_warn_ratelimited( + "%s cannot read MSR entry (%u, 0x%08llx)\n", + __func__, i, gpa + i * sizeof(e)); + goto fail; + } + if (nested_vmx_load_msr_check(vcpu, &e)) { + pr_warn_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, i, e.index, e.reserved); + goto fail; + } + msr.index = e.index; + msr.data = e.value; + if (kvm_set_msr(vcpu, &msr)) { + pr_warn_ratelimited( + "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", + __func__, i, e.index, e.value); + goto fail; + } + } + return 0; +fail: + return i + 1; +} + +static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) +{ + u32 i; + struct vmx_msr_entry e; + + for (i = 0; i < count; i++) { + if (kvm_read_guest(vcpu->kvm, + gpa + i * sizeof(e), + &e, 2 * sizeof(u32))) { + pr_warn_ratelimited( + "%s cannot read MSR entry (%u, 0x%08llx)\n", + __func__, i, gpa + i * sizeof(e)); + return -EINVAL; + } + if (nested_vmx_store_msr_check(vcpu, &e)) { + pr_warn_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, i, e.index, e.reserved); + return -EINVAL; + } + if (kvm_get_msr(vcpu, e.index, &e.value)) { + pr_warn_ratelimited( + "%s cannot read MSR (%u, 0x%x)\n", + __func__, i, e.index); + return -EINVAL; + } + if (kvm_write_guest(vcpu->kvm, + gpa + i * sizeof(e) + + offsetof(struct vmx_msr_entry, value), + &e.value, sizeof(e.value))) { + pr_warn_ratelimited( + "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", + __func__, i, e.index, e.value); + return -EINVAL; + } + } + return 0; +} + +/* + * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested + * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it + * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 + * guest in a way that will both be appropriate to L1's requests, and our + * needs. In addition to modifying the active vmcs (which is vmcs02), this + * function also has additional necessary side-effects, like setting various + * vcpu->arch fields. + */ +static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 exec_control; + + vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); + vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); + vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); + vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); + vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); + vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); + vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); + vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); + vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); + vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); + vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); + vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); + vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); + vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); + vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); + vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); + vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); + vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); + vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); + vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); + vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); + vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); + vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); + vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); + vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); + vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); + vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); + vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); + vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); + vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); + vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); + vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); + vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); + vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); + vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); + vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); + + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { + kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); + vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); + } else { + kvm_set_dr(vcpu, 7, vcpu->arch.dr7); + vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); + } + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, + vmcs12->vm_entry_intr_info_field); + vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, + vmcs12->vm_entry_exception_error_code); + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmcs12->vm_entry_instruction_len); + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, + vmcs12->guest_interruptibility_info); + vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); + vmx_set_rflags(vcpu, vmcs12->guest_rflags); + vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, + vmcs12->guest_pending_dbg_exceptions); + vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); + vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); + + if (nested_cpu_has_xsaves(vmcs12)) + vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); + vmcs_write64(VMCS_LINK_POINTER, -1ull); + + exec_control = vmcs12->pin_based_vm_exec_control; + exec_control |= vmcs_config.pin_based_exec_ctrl; + exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; + + if (nested_cpu_has_posted_intr(vmcs12)) { + /* + * Note that we use L0's vector here and in + * vmx_deliver_nested_posted_interrupt. + */ + vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; + vmx->nested.pi_pending = false; + vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR); + vmcs_write64(POSTED_INTR_DESC_ADDR, + page_to_phys(vmx->nested.pi_desc_page) + + (unsigned long)(vmcs12->posted_intr_desc_addr & + (PAGE_SIZE - 1))); + } else + exec_control &= ~PIN_BASED_POSTED_INTR; + + vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); + + vmx->nested.preemption_timer_expired = false; + if (nested_cpu_has_preemption_timer(vmcs12)) + vmx_start_preemption_timer(vcpu); + + /* + * Whether page-faults are trapped is determined by a combination of + * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. + * If enable_ept, L0 doesn't care about page faults and we should + * set all of these to L1's desires. However, if !enable_ept, L0 does + * care about (at least some) page faults, and because it is not easy + * (if at all possible?) to merge L0 and L1's desires, we simply ask + * to exit on each and every L2 page fault. This is done by setting + * MASK=MATCH=0 and (see below) EB.PF=1. + * Note that below we don't need special code to set EB.PF beyond the + * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, + * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when + * !enable_ept, EB.PF is 1, so the "or" will always be 1. + * + * A problem with this approach (when !enable_ept) is that L1 may be + * injected with more page faults than it asked for. This could have + * caused problems, but in practice existing hypervisors don't care. + * To fix this, we will need to emulate the PFEC checking (on the L1 + * page tables), using walk_addr(), when injecting PFs to L1. + */ + vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, + enable_ept ? vmcs12->page_fault_error_code_mask : 0); + vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, + enable_ept ? vmcs12->page_fault_error_code_match : 0); + + if (cpu_has_secondary_exec_ctrls()) { + exec_control = vmx_secondary_exec_control(vmx); + if (!vmx->rdtscp_enabled) + exec_control &= ~SECONDARY_EXEC_RDTSCP; + /* Take the following fields only from vmcs12 */ + exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_RDTSCP | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_APIC_REGISTER_VIRT); + if (nested_cpu_has(vmcs12, + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) + exec_control |= vmcs12->secondary_vm_exec_control; + + if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) { + /* + * If translation failed, no matter: This feature asks + * to exit when accessing the given address, and if it + * can never be accessed, this feature won't do + * anything anyway. + */ + if (!vmx->nested.apic_access_page) + exec_control &= + ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + else + vmcs_write64(APIC_ACCESS_ADDR, + page_to_phys(vmx->nested.apic_access_page)); + } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) && + (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) { + exec_control |= + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + kvm_vcpu_reload_apic_access_page(vcpu); + } + + if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { + vmcs_write64(EOI_EXIT_BITMAP0, + vmcs12->eoi_exit_bitmap0); + vmcs_write64(EOI_EXIT_BITMAP1, + vmcs12->eoi_exit_bitmap1); + vmcs_write64(EOI_EXIT_BITMAP2, + vmcs12->eoi_exit_bitmap2); + vmcs_write64(EOI_EXIT_BITMAP3, + vmcs12->eoi_exit_bitmap3); + vmcs_write16(GUEST_INTR_STATUS, + vmcs12->guest_intr_status); + } + + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); + } + + + /* + * Set host-state according to L0's settings (vmcs12 is irrelevant here) + * Some constant fields are set here by vmx_set_constant_host_state(). + * Other fields are different per CPU, and will be set later when + * vmx_vcpu_load() is called, and when vmx_save_host_state() is called. + */ + vmx_set_constant_host_state(vmx); + + /* + * HOST_RSP is normally set correctly in vmx_vcpu_run() just before + * entry, but only if the current (host) sp changed from the value + * we wrote last (vmx->host_rsp). This cache is no longer relevant + * if we switch vmcs, and rather than hold a separate cache per vmcs, + * here we just force the write to happen on entry. + */ + vmx->host_rsp = 0; + + exec_control = vmx_exec_control(vmx); /* L0's desires */ + exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; + exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; + exec_control &= ~CPU_BASED_TPR_SHADOW; + exec_control |= vmcs12->cpu_based_vm_exec_control; + + if (exec_control & CPU_BASED_TPR_SHADOW) { + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, + page_to_phys(vmx->nested.virtual_apic_page)); + vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); + } + + if (cpu_has_vmx_msr_bitmap() && + exec_control & CPU_BASED_USE_MSR_BITMAPS) { + nested_vmx_merge_msr_bitmap(vcpu, vmcs12); + /* MSR_BITMAP will be set by following vmx_set_efer. */ + } else + exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; + + /* + * Merging of IO bitmap not currently supported. + * Rather, exit every time. + */ + exec_control &= ~CPU_BASED_USE_IO_BITMAPS; + exec_control |= CPU_BASED_UNCOND_IO_EXITING; + + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); + + /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the + * bitwise-or of what L1 wants to trap for L2, and what we want to + * trap. Note that CR0.TS also needs updating - we do this later. + */ + update_exception_bitmap(vcpu); + vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; + vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); + + /* L2->L1 exit controls are emulated - the hardware exit is to L0 so + * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER + * bits are further modified by vmx_set_efer() below. + */ + vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); + + /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are + * emulated by vmx_set_efer(), below. + */ + vm_entry_controls_init(vmx, + (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER & + ~VM_ENTRY_IA32E_MODE) | + (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE)); + + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) { + vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); + vcpu->arch.pat = vmcs12->guest_ia32_pat; + } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) + vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); + + + set_cr4_guest_host_mask(vmx); + + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) + vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); + + if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) + vmcs_write64(TSC_OFFSET, + vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset); + else + vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); + + if (enable_vpid) { + /* + * Trivially support vpid by letting L2s share their parent + * L1's vpid. TODO: move to a more elaborate solution, giving + * each L2 its own vpid and exposing the vpid feature to L1. + */ + vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); + vmx_flush_tlb(vcpu); + } + + if (nested_cpu_has_ept(vmcs12)) { + kvm_mmu_unload(vcpu); + nested_ept_init_mmu_context(vcpu); + } + + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) + vcpu->arch.efer = vmcs12->guest_ia32_efer; + else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) + vcpu->arch.efer |= (EFER_LMA | EFER_LME); + else + vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); + /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ + vmx_set_efer(vcpu, vcpu->arch.efer); + + /* + * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified + * TS bit (for lazy fpu) and bits which we consider mandatory enabled. + * The CR0_READ_SHADOW is what L2 should have expected to read given + * the specifications by L1; It's not enough to take + * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we + * have more bits than L1 expected. + */ + vmx_set_cr0(vcpu, vmcs12->guest_cr0); + vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); + + vmx_set_cr4(vcpu, vmcs12->guest_cr4); + vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); + + /* shadow page tables on either EPT or shadow page tables */ + kvm_set_cr3(vcpu, vmcs12->guest_cr3); + kvm_mmu_reset_context(vcpu); + + if (!enable_ept) + vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; + + /* + * L1 may access the L2's PDPTR, so save them to construct vmcs12 + */ + if (enable_ept) { + vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); + vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); + vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); + vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); + } + + kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); + kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); +} + +/* + * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 + * for running an L2 nested guest. + */ +static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) +{ + struct vmcs12 *vmcs12; + struct vcpu_vmx *vmx = to_vmx(vcpu); + int cpu; + struct loaded_vmcs *vmcs02; + bool ia32e; + u32 msr_entry_idx; + + if (!nested_vmx_check_permission(vcpu) || + !nested_vmx_check_vmcs12(vcpu)) + return 1; + + skip_emulated_instruction(vcpu); + vmcs12 = get_vmcs12(vcpu); + + if (enable_shadow_vmcs) + copy_shadow_to_vmcs12(vmx); + + /* + * The nested entry process starts with enforcing various prerequisites + * on vmcs12 as required by the Intel SDM, and act appropriately when + * they fail: As the SDM explains, some conditions should cause the + * instruction to fail, while others will cause the instruction to seem + * to succeed, but return an EXIT_REASON_INVALID_STATE. + * To speed up the normal (success) code path, we should avoid checking + * for misconfigurations which will anyway be caught by the processor + * when using the merged vmcs02. + */ + if (vmcs12->launch_state == launch) { + nested_vmx_failValid(vcpu, + launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS + : VMXERR_VMRESUME_NONLAUNCHED_VMCS); + return 1; + } + + if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && + vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) { + nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + return 1; + } + + if (!nested_get_vmcs12_pages(vcpu, vmcs12)) { + nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + return 1; + } + + if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) { + nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + return 1; + } + + if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) { + nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + return 1; + } + + if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) { + nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + return 1; + } + + if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, + vmx->nested.nested_vmx_true_procbased_ctls_low, + vmx->nested.nested_vmx_procbased_ctls_high) || + !vmx_control_verify(vmcs12->secondary_vm_exec_control, + vmx->nested.nested_vmx_secondary_ctls_low, + vmx->nested.nested_vmx_secondary_ctls_high) || + !vmx_control_verify(vmcs12->pin_based_vm_exec_control, + vmx->nested.nested_vmx_pinbased_ctls_low, + vmx->nested.nested_vmx_pinbased_ctls_high) || + !vmx_control_verify(vmcs12->vm_exit_controls, + vmx->nested.nested_vmx_true_exit_ctls_low, + vmx->nested.nested_vmx_exit_ctls_high) || + !vmx_control_verify(vmcs12->vm_entry_controls, + vmx->nested.nested_vmx_true_entry_ctls_low, + vmx->nested.nested_vmx_entry_ctls_high)) + { + nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + return 1; + } + + if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) || + ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { + nested_vmx_failValid(vcpu, + VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); + return 1; + } + + if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) || + ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { + nested_vmx_entry_failure(vcpu, vmcs12, + EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); + return 1; + } + if (vmcs12->vmcs_link_pointer != -1ull) { + nested_vmx_entry_failure(vcpu, vmcs12, + EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR); + return 1; + } + + /* + * If the load IA32_EFER VM-entry control is 1, the following checks + * are performed on the field for the IA32_EFER MSR: + * - Bits reserved in the IA32_EFER MSR must be 0. + * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of + * the IA-32e mode guest VM-exit control. It must also be identical + * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to + * CR0.PG) is 1. + */ + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) { + ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; + if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || + ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || + ((vmcs12->guest_cr0 & X86_CR0_PG) && + ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) { + nested_vmx_entry_failure(vcpu, vmcs12, + EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); + return 1; + } + } + + /* + * If the load IA32_EFER VM-exit control is 1, bits reserved in the + * IA32_EFER MSR must be 0 in the field for that register. In addition, + * the values of the LMA and LME bits in the field must each be that of + * the host address-space size VM-exit control. + */ + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { + ia32e = (vmcs12->vm_exit_controls & + VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; + if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || + ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || + ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) { + nested_vmx_entry_failure(vcpu, vmcs12, + EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); + return 1; + } + } + + /* + * We're finally done with prerequisite checking, and can start with + * the nested entry. + */ + + vmcs02 = nested_get_current_vmcs02(vmx); + if (!vmcs02) + return -ENOMEM; + + enter_guest_mode(vcpu); + + vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET); + + if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) + vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); + + cpu = get_cpu(); + vmx->loaded_vmcs = vmcs02; + vmx_vcpu_put(vcpu); + vmx_vcpu_load(vcpu, cpu); + vcpu->cpu = cpu; + put_cpu(); + + vmx_segment_cache_clear(vmx); + + prepare_vmcs02(vcpu, vmcs12); + + msr_entry_idx = nested_vmx_load_msr(vcpu, + vmcs12->vm_entry_msr_load_addr, + vmcs12->vm_entry_msr_load_count); + if (msr_entry_idx) { + leave_guest_mode(vcpu); + vmx_load_vmcs01(vcpu); + nested_vmx_entry_failure(vcpu, vmcs12, + EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx); + return 1; + } + + vmcs12->launch_state = 1; + + if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) + return kvm_vcpu_halt(vcpu); + + vmx->nested.nested_run_pending = 1; + + /* + * Note no nested_vmx_succeed or nested_vmx_fail here. At this point + * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet + * returned as far as L1 is concerned. It will only return (and set + * the success flag) when L2 exits (see nested_vmx_vmexit()). + */ + return 1; +} + +/* + * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date + * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). + * This function returns the new value we should put in vmcs12.guest_cr0. + * It's not enough to just return the vmcs02 GUEST_CR0. Rather, + * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now + * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 + * didn't trap the bit, because if L1 did, so would L0). + * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have + * been modified by L2, and L1 knows it. So just leave the old value of + * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 + * isn't relevant, because if L0 traps this bit it can set it to anything. + * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have + * changed these bits, and therefore they need to be updated, but L0 + * didn't necessarily allow them to be changed in GUEST_CR0 - and rather + * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. + */ +static inline unsigned long +vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + return + /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | + /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | + /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | + vcpu->arch.cr0_guest_owned_bits)); +} + +static inline unsigned long +vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + return + /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | + /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | + /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | + vcpu->arch.cr4_guest_owned_bits)); +} + +static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + u32 idt_vectoring; + unsigned int nr; + + if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) { + nr = vcpu->arch.exception.nr; + idt_vectoring = nr | VECTORING_INFO_VALID_MASK; + + if (kvm_exception_is_soft(nr)) { + vmcs12->vm_exit_instruction_len = + vcpu->arch.event_exit_inst_len; + idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; + } else + idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; + + if (vcpu->arch.exception.has_error_code) { + idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; + vmcs12->idt_vectoring_error_code = + vcpu->arch.exception.error_code; + } + + vmcs12->idt_vectoring_info_field = idt_vectoring; + } else if (vcpu->arch.nmi_injected) { + vmcs12->idt_vectoring_info_field = + INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; + } else if (vcpu->arch.interrupt.pending) { + nr = vcpu->arch.interrupt.nr; + idt_vectoring = nr | VECTORING_INFO_VALID_MASK; + + if (vcpu->arch.interrupt.soft) { + idt_vectoring |= INTR_TYPE_SOFT_INTR; + vmcs12->vm_entry_instruction_len = + vcpu->arch.event_exit_inst_len; + } else + idt_vectoring |= INTR_TYPE_EXT_INTR; + + vmcs12->idt_vectoring_info_field = idt_vectoring; + } +} + +static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && + vmx->nested.preemption_timer_expired) { + if (vmx->nested.nested_run_pending) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); + return 0; + } + + if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { + if (vmx->nested.nested_run_pending || + vcpu->arch.interrupt.pending) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, + NMI_VECTOR | INTR_TYPE_NMI_INTR | + INTR_INFO_VALID_MASK, 0); + /* + * The NMI-triggered VM exit counts as injection: + * clear this one and block further NMIs. + */ + vcpu->arch.nmi_pending = 0; + vmx_set_nmi_mask(vcpu, true); + return 0; + } + + if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && + nested_exit_on_intr(vcpu)) { + if (vmx->nested.nested_run_pending) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); + return 0; + } + + return vmx_complete_nested_posted_interrupt(vcpu); +} + +static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) +{ + ktime_t remaining = + hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); + u64 value; + + if (ktime_to_ns(remaining) <= 0) + return 0; + + value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; + do_div(value, 1000000); + return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; +} + +/* + * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits + * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), + * and this function updates it to reflect the changes to the guest state while + * L2 was running (and perhaps made some exits which were handled directly by L0 + * without going back to L1), and to reflect the exit reason. + * Note that we do not have to copy here all VMCS fields, just those that + * could have changed by the L2 guest or the exit - i.e., the guest-state and + * exit-information fields only. Other fields are modified by L1 with VMWRITE, + * which already writes to vmcs12 directly. + */ +static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, + u32 exit_reason, u32 exit_intr_info, + unsigned long exit_qualification) +{ + /* update guest state fields: */ + vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); + vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); + + vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); + vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); + vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); + + vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); + vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); + vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); + vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); + vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); + vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); + vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); + vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); + vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); + vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); + vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); + vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); + vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); + vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); + vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); + vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); + vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); + vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); + vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); + vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); + vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); + vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); + vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); + vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); + vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); + vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); + vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); + vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); + vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); + vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); + vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); + vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); + vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); + vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); + vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); + vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); + + vmcs12->guest_interruptibility_info = + vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + vmcs12->guest_pending_dbg_exceptions = + vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); + if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) + vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; + else + vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; + + if (nested_cpu_has_preemption_timer(vmcs12)) { + if (vmcs12->vm_exit_controls & + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) + vmcs12->vmx_preemption_timer_value = + vmx_get_preemption_timer_value(vcpu); + hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); + } + + /* + * In some cases (usually, nested EPT), L2 is allowed to change its + * own CR3 without exiting. If it has changed it, we must keep it. + * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined + * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. + * + * Additionally, restore L2's PDPTR to vmcs12. + */ + if (enable_ept) { + vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3); + vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); + vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); + vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); + vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); + } + + if (nested_cpu_has_vid(vmcs12)) + vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); + + vmcs12->vm_entry_controls = + (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | + (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); + + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { + kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); + vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); + } + + /* TODO: These cannot have changed unless we have MSR bitmaps and + * the relevant bit asks not to trap the change */ + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) + vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) + vmcs12->guest_ia32_efer = vcpu->arch.efer; + vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); + vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); + vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); + if (vmx_mpx_supported()) + vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); + if (nested_cpu_has_xsaves(vmcs12)) + vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP); + + /* update exit information fields: */ + + vmcs12->vm_exit_reason = exit_reason; + vmcs12->exit_qualification = exit_qualification; + + vmcs12->vm_exit_intr_info = exit_intr_info; + if ((vmcs12->vm_exit_intr_info & + (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == + (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) + vmcs12->vm_exit_intr_error_code = + vmcs_read32(VM_EXIT_INTR_ERROR_CODE); + vmcs12->idt_vectoring_info_field = 0; + vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + + if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { + /* vm_entry_intr_info_field is cleared on exit. Emulate this + * instead of reading the real value. */ + vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; + + /* + * Transfer the event that L0 or L1 may wanted to inject into + * L2 to IDT_VECTORING_INFO_FIELD. + */ + vmcs12_save_pending_event(vcpu, vmcs12); + } + + /* + * Drop what we picked up for L2 via vmx_complete_interrupts. It is + * preserved above and would only end up incorrectly in L1. + */ + vcpu->arch.nmi_injected = false; + kvm_clear_exception_queue(vcpu); + kvm_clear_interrupt_queue(vcpu); +} + +/* + * A part of what we need to when the nested L2 guest exits and we want to + * run its L1 parent, is to reset L1's guest state to the host state specified + * in vmcs12. + * This function is to be called not only on normal nested exit, but also on + * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry + * Failures During or After Loading Guest State"). + * This function should be called when the active VMCS is L1's (vmcs01). + */ +static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct kvm_segment seg; + + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) + vcpu->arch.efer = vmcs12->host_ia32_efer; + else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) + vcpu->arch.efer |= (EFER_LMA | EFER_LME); + else + vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); + vmx_set_efer(vcpu, vcpu->arch.efer); + + kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); + kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); + vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); + /* + * Note that calling vmx_set_cr0 is important, even if cr0 hasn't + * actually changed, because it depends on the current state of + * fpu_active (which may have changed). + * Note that vmx_set_cr0 refers to efer set above. + */ + vmx_set_cr0(vcpu, vmcs12->host_cr0); + /* + * If we did fpu_activate()/fpu_deactivate() during L2's run, we need + * to apply the same changes to L1's vmcs. We just set cr0 correctly, + * but we also need to update cr0_guest_host_mask and exception_bitmap. + */ + update_exception_bitmap(vcpu); + vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0); + vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); + + /* + * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01 + * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask(); + */ + vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); + kvm_set_cr4(vcpu, vmcs12->host_cr4); + + nested_ept_uninit_mmu_context(vcpu); + + kvm_set_cr3(vcpu, vmcs12->host_cr3); + kvm_mmu_reset_context(vcpu); + + if (!enable_ept) + vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; + + if (enable_vpid) { + /* + * Trivially support vpid by letting L2s share their parent + * L1's vpid. TODO: move to a more elaborate solution, giving + * each L2 its own vpid and exposing the vpid feature to L1. + */ + vmx_flush_tlb(vcpu); + } + + + vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); + vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); + vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); + vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); + vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); + + /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ + if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) + vmcs_write64(GUEST_BNDCFGS, 0); + + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { + vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); + vcpu->arch.pat = vmcs12->host_ia32_pat; + } + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) + vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, + vmcs12->host_ia32_perf_global_ctrl); + + /* Set L1 segment info according to Intel SDM + 27.5.2 Loading Host Segment and Descriptor-Table Registers */ + seg = (struct kvm_segment) { + .base = 0, + .limit = 0xFFFFFFFF, + .selector = vmcs12->host_cs_selector, + .type = 11, + .present = 1, + .s = 1, + .g = 1 + }; + if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) + seg.l = 1; + else + seg.db = 1; + vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); + seg = (struct kvm_segment) { + .base = 0, + .limit = 0xFFFFFFFF, + .type = 3, + .present = 1, + .s = 1, + .db = 1, + .g = 1 + }; + seg.selector = vmcs12->host_ds_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); + seg.selector = vmcs12->host_es_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); + seg.selector = vmcs12->host_ss_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); + seg.selector = vmcs12->host_fs_selector; + seg.base = vmcs12->host_fs_base; + vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); + seg.selector = vmcs12->host_gs_selector; + seg.base = vmcs12->host_gs_base; + vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); + seg = (struct kvm_segment) { + .base = vmcs12->host_tr_base, + .limit = 0x67, + .selector = vmcs12->host_tr_selector, + .type = 11, + .present = 1 + }; + vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); + + kvm_set_dr(vcpu, 7, 0x400); + vmcs_write64(GUEST_IA32_DEBUGCTL, 0); + + if (cpu_has_vmx_msr_bitmap()) + vmx_set_msr_bitmap(vcpu); + + if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, + vmcs12->vm_exit_msr_load_count)) + nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); +} + +/* + * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 + * and modify vmcs12 to make it see what it would expect to see there if + * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) + */ +static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, + u32 exit_intr_info, + unsigned long exit_qualification) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + /* trying to cancel vmlaunch/vmresume is a bug */ + WARN_ON_ONCE(vmx->nested.nested_run_pending); + + leave_guest_mode(vcpu); + prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, + exit_qualification); + + if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr, + vmcs12->vm_exit_msr_store_count)) + nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL); + + vmx_load_vmcs01(vcpu); + + if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT) + && nested_exit_intr_ack_set(vcpu)) { + int irq = kvm_cpu_get_interrupt(vcpu); + WARN_ON(irq < 0); + vmcs12->vm_exit_intr_info = irq | + INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; + } + + trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, + vmcs12->exit_qualification, + vmcs12->idt_vectoring_info_field, + vmcs12->vm_exit_intr_info, + vmcs12->vm_exit_intr_error_code, + KVM_ISA_VMX); + + vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS)); + vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS)); + vmx_segment_cache_clear(vmx); + + /* if no vmcs02 cache requested, remove the one we used */ + if (VMCS02_POOL_SIZE == 0) + nested_free_vmcs02(vmx, vmx->nested.current_vmptr); + + load_vmcs12_host_state(vcpu, vmcs12); + + /* Update TSC_OFFSET if TSC was changed while L2 ran */ + vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); + + /* This is needed for same reason as it was needed in prepare_vmcs02 */ + vmx->host_rsp = 0; + + /* Unpin physical memory we referred to in vmcs02 */ + if (vmx->nested.apic_access_page) { + nested_release_page(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = NULL; + } + if (vmx->nested.virtual_apic_page) { + nested_release_page(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = NULL; + } + if (vmx->nested.pi_desc_page) { + kunmap(vmx->nested.pi_desc_page); + nested_release_page(vmx->nested.pi_desc_page); + vmx->nested.pi_desc_page = NULL; + vmx->nested.pi_desc = NULL; + } + + /* + * We are now running in L2, mmu_notifier will force to reload the + * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. + */ + kvm_vcpu_reload_apic_access_page(vcpu); + + /* + * Exiting from L2 to L1, we're now back to L1 which thinks it just + * finished a VMLAUNCH or VMRESUME instruction, so we need to set the + * success or failure flag accordingly. + */ + if (unlikely(vmx->fail)) { + vmx->fail = 0; + nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR)); + } else + nested_vmx_succeed(vcpu); + if (enable_shadow_vmcs) + vmx->nested.sync_shadow_vmcs = true; + + /* in case we halted in L2 */ + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; +} + +/* + * Forcibly leave nested mode in order to be able to reset the VCPU later on. + */ +static void vmx_leave_nested(struct kvm_vcpu *vcpu) +{ + if (is_guest_mode(vcpu)) + nested_vmx_vmexit(vcpu, -1, 0, 0); + free_nested(to_vmx(vcpu)); +} + +/* + * L1's failure to enter L2 is a subset of a normal exit, as explained in + * 23.7 "VM-entry failures during or after loading guest state" (this also + * lists the acceptable exit-reason and exit-qualification parameters). + * It should only be called before L2 actually succeeded to run, and when + * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss). + */ +static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, + u32 reason, unsigned long qualification) +{ + load_vmcs12_host_state(vcpu, vmcs12); + vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY; + vmcs12->exit_qualification = qualification; + nested_vmx_succeed(vcpu); + if (enable_shadow_vmcs) + to_vmx(vcpu)->nested.sync_shadow_vmcs = true; +} + +static int vmx_check_intercept(struct kvm_vcpu *vcpu, + struct x86_instruction_info *info, + enum x86_intercept_stage stage) +{ + return X86EMUL_CONTINUE; +} + +static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) +{ + if (ple_gap) + shrink_ple_window(vcpu); +} + +static void vmx_slot_enable_log_dirty(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + kvm_mmu_slot_leaf_clear_dirty(kvm, slot); + kvm_mmu_slot_largepage_remove_write_access(kvm, slot); +} + +static void vmx_slot_disable_log_dirty(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + kvm_mmu_slot_set_dirty(kvm, slot); +} + +static void vmx_flush_log_dirty(struct kvm *kvm) +{ + kvm_flush_pml_buffers(kvm); +} + +static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *memslot, + gfn_t offset, unsigned long mask) +{ + kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); +} + +static struct kvm_x86_ops vmx_x86_ops = { + .cpu_has_kvm_support = cpu_has_kvm_support, + .disabled_by_bios = vmx_disabled_by_bios, + .hardware_setup = hardware_setup, + .hardware_unsetup = hardware_unsetup, + .check_processor_compatibility = vmx_check_processor_compat, + .hardware_enable = hardware_enable, + .hardware_disable = hardware_disable, + .cpu_has_accelerated_tpr = report_flexpriority, + + .vcpu_create = vmx_create_vcpu, + .vcpu_free = vmx_free_vcpu, + .vcpu_reset = vmx_vcpu_reset, + + .prepare_guest_switch = vmx_save_host_state, + .vcpu_load = vmx_vcpu_load, + .vcpu_put = vmx_vcpu_put, + + .update_db_bp_intercept = update_exception_bitmap, + .get_msr = vmx_get_msr, + .set_msr = vmx_set_msr, + .get_segment_base = vmx_get_segment_base, + .get_segment = vmx_get_segment, + .set_segment = vmx_set_segment, + .get_cpl = vmx_get_cpl, + .get_cs_db_l_bits = vmx_get_cs_db_l_bits, + .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, + .decache_cr3 = vmx_decache_cr3, + .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, + .set_cr0 = vmx_set_cr0, + .set_cr3 = vmx_set_cr3, + .set_cr4 = vmx_set_cr4, + .set_efer = vmx_set_efer, + .get_idt = vmx_get_idt, + .set_idt = vmx_set_idt, + .get_gdt = vmx_get_gdt, + .set_gdt = vmx_set_gdt, + .get_dr6 = vmx_get_dr6, + .set_dr6 = vmx_set_dr6, + .set_dr7 = vmx_set_dr7, + .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, + .cache_reg = vmx_cache_reg, + .get_rflags = vmx_get_rflags, + .set_rflags = vmx_set_rflags, + .fpu_activate = vmx_fpu_activate, + .fpu_deactivate = vmx_fpu_deactivate, + + .tlb_flush = vmx_flush_tlb, + + .run = vmx_vcpu_run, + .handle_exit = vmx_handle_exit, + .skip_emulated_instruction = skip_emulated_instruction, + .set_interrupt_shadow = vmx_set_interrupt_shadow, + .get_interrupt_shadow = vmx_get_interrupt_shadow, + .patch_hypercall = vmx_patch_hypercall, + .set_irq = vmx_inject_irq, + .set_nmi = vmx_inject_nmi, + .queue_exception = vmx_queue_exception, + .cancel_injection = vmx_cancel_injection, + .interrupt_allowed = vmx_interrupt_allowed, + .nmi_allowed = vmx_nmi_allowed, + .get_nmi_mask = vmx_get_nmi_mask, + .set_nmi_mask = vmx_set_nmi_mask, + .enable_nmi_window = enable_nmi_window, + .enable_irq_window = enable_irq_window, + .update_cr8_intercept = update_cr8_intercept, + .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode, + .set_apic_access_page_addr = vmx_set_apic_access_page_addr, + .vm_has_apicv = vmx_vm_has_apicv, + .load_eoi_exitmap = vmx_load_eoi_exitmap, + .hwapic_irr_update = vmx_hwapic_irr_update, + .hwapic_isr_update = vmx_hwapic_isr_update, + .sync_pir_to_irr = vmx_sync_pir_to_irr, + .deliver_posted_interrupt = vmx_deliver_posted_interrupt, + + .set_tss_addr = vmx_set_tss_addr, + .get_tdp_level = get_ept_level, + .get_mt_mask = vmx_get_mt_mask, + + .get_exit_info = vmx_get_exit_info, + + .get_lpage_level = vmx_get_lpage_level, + + .cpuid_update = vmx_cpuid_update, + + .rdtscp_supported = vmx_rdtscp_supported, + .invpcid_supported = vmx_invpcid_supported, + + .set_supported_cpuid = vmx_set_supported_cpuid, + + .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, + + .set_tsc_khz = vmx_set_tsc_khz, + .read_tsc_offset = vmx_read_tsc_offset, + .write_tsc_offset = vmx_write_tsc_offset, + .adjust_tsc_offset = vmx_adjust_tsc_offset, + .compute_tsc_offset = vmx_compute_tsc_offset, + .read_l1_tsc = vmx_read_l1_tsc, + + .set_tdp_cr3 = vmx_set_cr3, + + .check_intercept = vmx_check_intercept, + .handle_external_intr = vmx_handle_external_intr, + .mpx_supported = vmx_mpx_supported, + .xsaves_supported = vmx_xsaves_supported, + + .check_nested_events = vmx_check_nested_events, + + .sched_in = vmx_sched_in, + + .slot_enable_log_dirty = vmx_slot_enable_log_dirty, + .slot_disable_log_dirty = vmx_slot_disable_log_dirty, + .flush_log_dirty = vmx_flush_log_dirty, + .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, +}; + +static int __init vmx_init(void) +{ + int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), + __alignof__(struct vcpu_vmx), THIS_MODULE); + if (r) + return r; + +#ifdef CONFIG_KEXEC + rcu_assign_pointer(crash_vmclear_loaded_vmcss, + crash_vmclear_local_loaded_vmcss); +#endif + + return 0; +} + +static void __exit vmx_exit(void) +{ +#ifdef CONFIG_KEXEC + RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); + synchronize_rcu(); +#endif + + kvm_exit(); +} + +module_init(vmx_init) +module_exit(vmx_exit) diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c new file mode 100644 index 000000000..ea306adbb --- /dev/null +++ b/arch/x86/kvm/x86.c @@ -0,0 +1,7987 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * derived from drivers/kvm/kvm_main.c + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright (C) 2008 Qumranet, Inc. + * Copyright IBM Corporation, 2008 + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Avi Kivity <avi@qumranet.com> + * Yaniv Kamay <yaniv@qumranet.com> + * Amit Shah <amit.shah@qumranet.com> + * Ben-Ami Yassour <benami@il.ibm.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include <linux/kvm_host.h> +#include "irq.h" +#include "mmu.h" +#include "i8254.h" +#include "tss.h" +#include "kvm_cache_regs.h" +#include "x86.h" +#include "cpuid.h" +#include "assigned-dev.h" + +#include <linux/clocksource.h> +#include <linux/interrupt.h> +#include <linux/kvm.h> +#include <linux/fs.h> +#include <linux/vmalloc.h> +#include <linux/module.h> +#include <linux/mman.h> +#include <linux/highmem.h> +#include <linux/iommu.h> +#include <linux/intel-iommu.h> +#include <linux/cpufreq.h> +#include <linux/user-return-notifier.h> +#include <linux/srcu.h> +#include <linux/slab.h> +#include <linux/perf_event.h> +#include <linux/uaccess.h> +#include <linux/hash.h> +#include <linux/pci.h> +#include <linux/timekeeper_internal.h> +#include <linux/pvclock_gtod.h> +#include <trace/events/kvm.h> + +#define CREATE_TRACE_POINTS +#include "trace.h" + +#include <asm/debugreg.h> +#include <asm/msr.h> +#include <asm/desc.h> +#include <asm/mtrr.h> +#include <asm/mce.h> +#include <asm/i387.h> +#include <asm/fpu-internal.h> /* Ugh! */ +#include <asm/xcr.h> +#include <asm/pvclock.h> +#include <asm/div64.h> + +#define MAX_IO_MSRS 256 +#define KVM_MAX_MCE_BANKS 32 +#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) + +#define emul_to_vcpu(ctxt) \ + container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) + +/* EFER defaults: + * - enable syscall per default because its emulated by KVM + * - enable LME and LMA per default on 64 bit KVM + */ +#ifdef CONFIG_X86_64 +static +u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); +#else +static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); +#endif + +#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM +#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU + +static void update_cr8_intercept(struct kvm_vcpu *vcpu); +static void process_nmi(struct kvm_vcpu *vcpu); +static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); + +struct kvm_x86_ops *kvm_x86_ops; +EXPORT_SYMBOL_GPL(kvm_x86_ops); + +static bool ignore_msrs = 0; +module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); + +unsigned int min_timer_period_us = 500; +module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); + +bool kvm_has_tsc_control; +EXPORT_SYMBOL_GPL(kvm_has_tsc_control); +u32 kvm_max_guest_tsc_khz; +EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); + +/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ +static u32 tsc_tolerance_ppm = 250; +module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); + +/* lapic timer advance (tscdeadline mode only) in nanoseconds */ +unsigned int lapic_timer_advance_ns = 0; +module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); + +static bool backwards_tsc_observed = false; + +#define KVM_NR_SHARED_MSRS 16 + +struct kvm_shared_msrs_global { + int nr; + u32 msrs[KVM_NR_SHARED_MSRS]; +}; + +struct kvm_shared_msrs { + struct user_return_notifier urn; + bool registered; + struct kvm_shared_msr_values { + u64 host; + u64 curr; + } values[KVM_NR_SHARED_MSRS]; +}; + +static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; +static struct kvm_shared_msrs __percpu *shared_msrs; + +struct kvm_stats_debugfs_item debugfs_entries[] = { + { "pf_fixed", VCPU_STAT(pf_fixed) }, + { "pf_guest", VCPU_STAT(pf_guest) }, + { "tlb_flush", VCPU_STAT(tlb_flush) }, + { "invlpg", VCPU_STAT(invlpg) }, + { "exits", VCPU_STAT(exits) }, + { "io_exits", VCPU_STAT(io_exits) }, + { "mmio_exits", VCPU_STAT(mmio_exits) }, + { "signal_exits", VCPU_STAT(signal_exits) }, + { "irq_window", VCPU_STAT(irq_window_exits) }, + { "nmi_window", VCPU_STAT(nmi_window_exits) }, + { "halt_exits", VCPU_STAT(halt_exits) }, + { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, + { "halt_wakeup", VCPU_STAT(halt_wakeup) }, + { "hypercalls", VCPU_STAT(hypercalls) }, + { "request_irq", VCPU_STAT(request_irq_exits) }, + { "irq_exits", VCPU_STAT(irq_exits) }, + { "host_state_reload", VCPU_STAT(host_state_reload) }, + { "efer_reload", VCPU_STAT(efer_reload) }, + { "fpu_reload", VCPU_STAT(fpu_reload) }, + { "insn_emulation", VCPU_STAT(insn_emulation) }, + { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, + { "irq_injections", VCPU_STAT(irq_injections) }, + { "nmi_injections", VCPU_STAT(nmi_injections) }, + { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, + { "mmu_pte_write", VM_STAT(mmu_pte_write) }, + { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, + { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, + { "mmu_flooded", VM_STAT(mmu_flooded) }, + { "mmu_recycled", VM_STAT(mmu_recycled) }, + { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, + { "mmu_unsync", VM_STAT(mmu_unsync) }, + { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, + { "largepages", VM_STAT(lpages) }, + { NULL } +}; + +u64 __read_mostly host_xcr0; + +static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); + +static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) +{ + int i; + for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) + vcpu->arch.apf.gfns[i] = ~0; +} + +static void kvm_on_user_return(struct user_return_notifier *urn) +{ + unsigned slot; + struct kvm_shared_msrs *locals + = container_of(urn, struct kvm_shared_msrs, urn); + struct kvm_shared_msr_values *values; + + for (slot = 0; slot < shared_msrs_global.nr; ++slot) { + values = &locals->values[slot]; + if (values->host != values->curr) { + wrmsrl(shared_msrs_global.msrs[slot], values->host); + values->curr = values->host; + } + } + locals->registered = false; + user_return_notifier_unregister(urn); +} + +static void shared_msr_update(unsigned slot, u32 msr) +{ + u64 value; + unsigned int cpu = smp_processor_id(); + struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); + + /* only read, and nobody should modify it at this time, + * so don't need lock */ + if (slot >= shared_msrs_global.nr) { + printk(KERN_ERR "kvm: invalid MSR slot!"); + return; + } + rdmsrl_safe(msr, &value); + smsr->values[slot].host = value; + smsr->values[slot].curr = value; +} + +void kvm_define_shared_msr(unsigned slot, u32 msr) +{ + BUG_ON(slot >= KVM_NR_SHARED_MSRS); + if (slot >= shared_msrs_global.nr) + shared_msrs_global.nr = slot + 1; + shared_msrs_global.msrs[slot] = msr; + /* we need ensured the shared_msr_global have been updated */ + smp_wmb(); +} +EXPORT_SYMBOL_GPL(kvm_define_shared_msr); + +static void kvm_shared_msr_cpu_online(void) +{ + unsigned i; + + for (i = 0; i < shared_msrs_global.nr; ++i) + shared_msr_update(i, shared_msrs_global.msrs[i]); +} + +int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) +{ + unsigned int cpu = smp_processor_id(); + struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); + int err; + + if (((value ^ smsr->values[slot].curr) & mask) == 0) + return 0; + smsr->values[slot].curr = value; + err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); + if (err) + return 1; + + if (!smsr->registered) { + smsr->urn.on_user_return = kvm_on_user_return; + user_return_notifier_register(&smsr->urn); + smsr->registered = true; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_shared_msr); + +static void drop_user_return_notifiers(void) +{ + unsigned int cpu = smp_processor_id(); + struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); + + if (smsr->registered) + kvm_on_user_return(&smsr->urn); +} + +u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.apic_base; +} +EXPORT_SYMBOL_GPL(kvm_get_apic_base); + +int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + u64 old_state = vcpu->arch.apic_base & + (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); + u64 new_state = msr_info->data & + (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); + u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | + 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); + + if (!msr_info->host_initiated && + ((msr_info->data & reserved_bits) != 0 || + new_state == X2APIC_ENABLE || + (new_state == MSR_IA32_APICBASE_ENABLE && + old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || + (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && + old_state == 0))) + return 1; + + kvm_lapic_set_base(vcpu, msr_info->data); + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_apic_base); + +asmlinkage __visible void kvm_spurious_fault(void) +{ + /* Fault while not rebooting. We want the trace. */ + BUG(); +} +EXPORT_SYMBOL_GPL(kvm_spurious_fault); + +#define EXCPT_BENIGN 0 +#define EXCPT_CONTRIBUTORY 1 +#define EXCPT_PF 2 + +static int exception_class(int vector) +{ + switch (vector) { + case PF_VECTOR: + return EXCPT_PF; + case DE_VECTOR: + case TS_VECTOR: + case NP_VECTOR: + case SS_VECTOR: + case GP_VECTOR: + return EXCPT_CONTRIBUTORY; + default: + break; + } + return EXCPT_BENIGN; +} + +#define EXCPT_FAULT 0 +#define EXCPT_TRAP 1 +#define EXCPT_ABORT 2 +#define EXCPT_INTERRUPT 3 + +static int exception_type(int vector) +{ + unsigned int mask; + + if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) + return EXCPT_INTERRUPT; + + mask = 1 << vector; + + /* #DB is trap, as instruction watchpoints are handled elsewhere */ + if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) + return EXCPT_TRAP; + + if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) + return EXCPT_ABORT; + + /* Reserved exceptions will result in fault */ + return EXCPT_FAULT; +} + +static void kvm_multiple_exception(struct kvm_vcpu *vcpu, + unsigned nr, bool has_error, u32 error_code, + bool reinject) +{ + u32 prev_nr; + int class1, class2; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + if (!vcpu->arch.exception.pending) { + queue: + if (has_error && !is_protmode(vcpu)) + has_error = false; + vcpu->arch.exception.pending = true; + vcpu->arch.exception.has_error_code = has_error; + vcpu->arch.exception.nr = nr; + vcpu->arch.exception.error_code = error_code; + vcpu->arch.exception.reinject = reinject; + return; + } + + /* to check exception */ + prev_nr = vcpu->arch.exception.nr; + if (prev_nr == DF_VECTOR) { + /* triple fault -> shutdown */ + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + class1 = exception_class(prev_nr); + class2 = exception_class(nr); + if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) + || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { + /* generate double fault per SDM Table 5-5 */ + vcpu->arch.exception.pending = true; + vcpu->arch.exception.has_error_code = true; + vcpu->arch.exception.nr = DF_VECTOR; + vcpu->arch.exception.error_code = 0; + } else + /* replace previous exception with a new one in a hope + that instruction re-execution will regenerate lost + exception */ + goto queue; +} + +void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) +{ + kvm_multiple_exception(vcpu, nr, false, 0, false); +} +EXPORT_SYMBOL_GPL(kvm_queue_exception); + +void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) +{ + kvm_multiple_exception(vcpu, nr, false, 0, true); +} +EXPORT_SYMBOL_GPL(kvm_requeue_exception); + +void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) +{ + if (err) + kvm_inject_gp(vcpu, 0); + else + kvm_x86_ops->skip_emulated_instruction(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); + +void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) +{ + ++vcpu->stat.pf_guest; + vcpu->arch.cr2 = fault->address; + kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); +} +EXPORT_SYMBOL_GPL(kvm_inject_page_fault); + +static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) +{ + if (mmu_is_nested(vcpu) && !fault->nested_page_fault) + vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); + else + vcpu->arch.mmu.inject_page_fault(vcpu, fault); + + return fault->nested_page_fault; +} + +void kvm_inject_nmi(struct kvm_vcpu *vcpu) +{ + atomic_inc(&vcpu->arch.nmi_queued); + kvm_make_request(KVM_REQ_NMI, vcpu); +} +EXPORT_SYMBOL_GPL(kvm_inject_nmi); + +void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) +{ + kvm_multiple_exception(vcpu, nr, true, error_code, false); +} +EXPORT_SYMBOL_GPL(kvm_queue_exception_e); + +void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) +{ + kvm_multiple_exception(vcpu, nr, true, error_code, true); +} +EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); + +/* + * Checks if cpl <= required_cpl; if true, return true. Otherwise queue + * a #GP and return false. + */ +bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) +{ + if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) + return true; + kvm_queue_exception_e(vcpu, GP_VECTOR, 0); + return false; +} +EXPORT_SYMBOL_GPL(kvm_require_cpl); + +bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) +{ + if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) + return true; + + kvm_queue_exception(vcpu, UD_VECTOR); + return false; +} +EXPORT_SYMBOL_GPL(kvm_require_dr); + +/* + * This function will be used to read from the physical memory of the currently + * running guest. The difference to kvm_read_guest_page is that this function + * can read from guest physical or from the guest's guest physical memory. + */ +int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + gfn_t ngfn, void *data, int offset, int len, + u32 access) +{ + struct x86_exception exception; + gfn_t real_gfn; + gpa_t ngpa; + + ngpa = gfn_to_gpa(ngfn); + real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); + if (real_gfn == UNMAPPED_GVA) + return -EFAULT; + + real_gfn = gpa_to_gfn(real_gfn); + + return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); +} +EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); + +static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, + void *data, int offset, int len, u32 access) +{ + return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, + data, offset, len, access); +} + +/* + * Load the pae pdptrs. Return true is they are all valid. + */ +int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) +{ + gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; + unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; + int i; + int ret; + u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; + + ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, + offset * sizeof(u64), sizeof(pdpte), + PFERR_USER_MASK|PFERR_WRITE_MASK); + if (ret < 0) { + ret = 0; + goto out; + } + for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { + if (is_present_gpte(pdpte[i]) && + (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { + ret = 0; + goto out; + } + } + ret = 1; + + memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); + __set_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_avail); + __set_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_dirty); +out: + + return ret; +} +EXPORT_SYMBOL_GPL(load_pdptrs); + +static bool pdptrs_changed(struct kvm_vcpu *vcpu) +{ + u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; + bool changed = true; + int offset; + gfn_t gfn; + int r; + + if (is_long_mode(vcpu) || !is_pae(vcpu)) + return false; + + if (!test_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_avail)) + return true; + + gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; + offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); + r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), + PFERR_USER_MASK | PFERR_WRITE_MASK); + if (r < 0) + goto out; + changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; +out: + + return changed; +} + +int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +{ + unsigned long old_cr0 = kvm_read_cr0(vcpu); + unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | + X86_CR0_CD | X86_CR0_NW; + + cr0 |= X86_CR0_ET; + +#ifdef CONFIG_X86_64 + if (cr0 & 0xffffffff00000000UL) + return 1; +#endif + + cr0 &= ~CR0_RESERVED_BITS; + + if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) + return 1; + + if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) + return 1; + + if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { +#ifdef CONFIG_X86_64 + if ((vcpu->arch.efer & EFER_LME)) { + int cs_db, cs_l; + + if (!is_pae(vcpu)) + return 1; + kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); + if (cs_l) + return 1; + } else +#endif + if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, + kvm_read_cr3(vcpu))) + return 1; + } + + if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) + return 1; + + kvm_x86_ops->set_cr0(vcpu, cr0); + + if ((cr0 ^ old_cr0) & X86_CR0_PG) { + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + } + + if ((cr0 ^ old_cr0) & update_bits) + kvm_mmu_reset_context(vcpu); + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_cr0); + +void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) +{ + (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); +} +EXPORT_SYMBOL_GPL(kvm_lmsw); + +static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) +{ + if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && + !vcpu->guest_xcr0_loaded) { + /* kvm_set_xcr() also depends on this */ + xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); + vcpu->guest_xcr0_loaded = 1; + } +} + +static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) +{ + if (vcpu->guest_xcr0_loaded) { + if (vcpu->arch.xcr0 != host_xcr0) + xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); + vcpu->guest_xcr0_loaded = 0; + } +} + +static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) +{ + u64 xcr0 = xcr; + u64 old_xcr0 = vcpu->arch.xcr0; + u64 valid_bits; + + /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ + if (index != XCR_XFEATURE_ENABLED_MASK) + return 1; + if (!(xcr0 & XSTATE_FP)) + return 1; + if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) + return 1; + + /* + * Do not allow the guest to set bits that we do not support + * saving. However, xcr0 bit 0 is always set, even if the + * emulated CPU does not support XSAVE (see fx_init). + */ + valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP; + if (xcr0 & ~valid_bits) + return 1; + + if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR))) + return 1; + + if (xcr0 & XSTATE_AVX512) { + if (!(xcr0 & XSTATE_YMM)) + return 1; + if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512) + return 1; + } + kvm_put_guest_xcr0(vcpu); + vcpu->arch.xcr0 = xcr0; + + if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK) + kvm_update_cpuid(vcpu); + return 0; +} + +int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) +{ + if (kvm_x86_ops->get_cpl(vcpu) != 0 || + __kvm_set_xcr(vcpu, index, xcr)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_xcr); + +int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + unsigned long old_cr4 = kvm_read_cr4(vcpu); + unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | + X86_CR4_SMEP | X86_CR4_SMAP; + + if (cr4 & CR4_RESERVED_BITS) + return 1; + + if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) + return 1; + + if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) + return 1; + + if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) + return 1; + + if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) + return 1; + + if (is_long_mode(vcpu)) { + if (!(cr4 & X86_CR4_PAE)) + return 1; + } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) + && ((cr4 ^ old_cr4) & pdptr_bits) + && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, + kvm_read_cr3(vcpu))) + return 1; + + if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { + if (!guest_cpuid_has_pcid(vcpu)) + return 1; + + /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ + if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) + return 1; + } + + if (kvm_x86_ops->set_cr4(vcpu, cr4)) + return 1; + + if (((cr4 ^ old_cr4) & pdptr_bits) || + (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) + kvm_mmu_reset_context(vcpu); + + if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) + kvm_update_cpuid(vcpu); + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_cr4); + +int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) +{ +#ifdef CONFIG_X86_64 + cr3 &= ~CR3_PCID_INVD; +#endif + + if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { + kvm_mmu_sync_roots(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + return 0; + } + + if (is_long_mode(vcpu)) { + if (cr3 & CR3_L_MODE_RESERVED_BITS) + return 1; + } else if (is_pae(vcpu) && is_paging(vcpu) && + !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) + return 1; + + vcpu->arch.cr3 = cr3; + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + kvm_mmu_new_cr3(vcpu); + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_cr3); + +int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) +{ + if (cr8 & CR8_RESERVED_BITS) + return 1; + if (irqchip_in_kernel(vcpu->kvm)) + kvm_lapic_set_tpr(vcpu, cr8); + else + vcpu->arch.cr8 = cr8; + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_cr8); + +unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) +{ + if (irqchip_in_kernel(vcpu->kvm)) + return kvm_lapic_get_cr8(vcpu); + else + return vcpu->arch.cr8; +} +EXPORT_SYMBOL_GPL(kvm_get_cr8); + +static void kvm_update_dr0123(struct kvm_vcpu *vcpu) +{ + int i; + + if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { + for (i = 0; i < KVM_NR_DB_REGS; i++) + vcpu->arch.eff_db[i] = vcpu->arch.db[i]; + vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; + } +} + +static void kvm_update_dr6(struct kvm_vcpu *vcpu) +{ + if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) + kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); +} + +static void kvm_update_dr7(struct kvm_vcpu *vcpu) +{ + unsigned long dr7; + + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) + dr7 = vcpu->arch.guest_debug_dr7; + else + dr7 = vcpu->arch.dr7; + kvm_x86_ops->set_dr7(vcpu, dr7); + vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; + if (dr7 & DR7_BP_EN_MASK) + vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; +} + +static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) +{ + u64 fixed = DR6_FIXED_1; + + if (!guest_cpuid_has_rtm(vcpu)) + fixed |= DR6_RTM; + return fixed; +} + +static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) +{ + switch (dr) { + case 0 ... 3: + vcpu->arch.db[dr] = val; + if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) + vcpu->arch.eff_db[dr] = val; + break; + case 4: + /* fall through */ + case 6: + if (val & 0xffffffff00000000ULL) + return -1; /* #GP */ + vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); + kvm_update_dr6(vcpu); + break; + case 5: + /* fall through */ + default: /* 7 */ + if (val & 0xffffffff00000000ULL) + return -1; /* #GP */ + vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; + kvm_update_dr7(vcpu); + break; + } + + return 0; +} + +int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) +{ + if (__kvm_set_dr(vcpu, dr, val)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_dr); + +int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) +{ + switch (dr) { + case 0 ... 3: + *val = vcpu->arch.db[dr]; + break; + case 4: + /* fall through */ + case 6: + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) + *val = vcpu->arch.dr6; + else + *val = kvm_x86_ops->get_dr6(vcpu); + break; + case 5: + /* fall through */ + default: /* 7 */ + *val = vcpu->arch.dr7; + break; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_get_dr); + +bool kvm_rdpmc(struct kvm_vcpu *vcpu) +{ + u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); + u64 data; + int err; + + err = kvm_pmu_read_pmc(vcpu, ecx, &data); + if (err) + return err; + kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); + kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); + return err; +} +EXPORT_SYMBOL_GPL(kvm_rdpmc); + +/* + * List of msr numbers which we expose to userspace through KVM_GET_MSRS + * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. + * + * This list is modified at module load time to reflect the + * capabilities of the host cpu. This capabilities test skips MSRs that are + * kvm-specific. Those are put in the beginning of the list. + */ + +#define KVM_SAVE_MSRS_BEGIN 12 +static u32 msrs_to_save[] = { + MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, + MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, + HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, + HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, + HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, + MSR_KVM_PV_EOI_EN, + MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, + MSR_STAR, +#ifdef CONFIG_X86_64 + MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, +#endif + MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, + MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS +}; + +static unsigned num_msrs_to_save; + +static const u32 emulated_msrs[] = { + MSR_IA32_TSC_ADJUST, + MSR_IA32_TSCDEADLINE, + MSR_IA32_MISC_ENABLE, + MSR_IA32_MCG_STATUS, + MSR_IA32_MCG_CTL, +}; + +bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + if (efer & efer_reserved_bits) + return false; + + if (efer & EFER_FFXSR) { + struct kvm_cpuid_entry2 *feat; + + feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); + if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) + return false; + } + + if (efer & EFER_SVME) { + struct kvm_cpuid_entry2 *feat; + + feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); + if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) + return false; + } + + return true; +} +EXPORT_SYMBOL_GPL(kvm_valid_efer); + +static int set_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + u64 old_efer = vcpu->arch.efer; + + if (!kvm_valid_efer(vcpu, efer)) + return 1; + + if (is_paging(vcpu) + && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) + return 1; + + efer &= ~EFER_LMA; + efer |= vcpu->arch.efer & EFER_LMA; + + kvm_x86_ops->set_efer(vcpu, efer); + + /* Update reserved bits */ + if ((efer ^ old_efer) & EFER_NX) + kvm_mmu_reset_context(vcpu); + + return 0; +} + +void kvm_enable_efer_bits(u64 mask) +{ + efer_reserved_bits &= ~mask; +} +EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); + +/* + * Writes msr value into into the appropriate "register". + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) +{ + switch (msr->index) { + case MSR_FS_BASE: + case MSR_GS_BASE: + case MSR_KERNEL_GS_BASE: + case MSR_CSTAR: + case MSR_LSTAR: + if (is_noncanonical_address(msr->data)) + return 1; + break; + case MSR_IA32_SYSENTER_EIP: + case MSR_IA32_SYSENTER_ESP: + /* + * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if + * non-canonical address is written on Intel but not on + * AMD (which ignores the top 32-bits, because it does + * not implement 64-bit SYSENTER). + * + * 64-bit code should hence be able to write a non-canonical + * value on AMD. Making the address canonical ensures that + * vmentry does not fail on Intel after writing a non-canonical + * value, and that something deterministic happens if the guest + * invokes 64-bit SYSENTER. + */ + msr->data = get_canonical(msr->data); + } + return kvm_x86_ops->set_msr(vcpu, msr); +} +EXPORT_SYMBOL_GPL(kvm_set_msr); + +/* + * Adapt set_msr() to msr_io()'s calling convention + */ +static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) +{ + struct msr_data msr; + + msr.data = *data; + msr.index = index; + msr.host_initiated = true; + return kvm_set_msr(vcpu, &msr); +} + +#ifdef CONFIG_X86_64 +struct pvclock_gtod_data { + seqcount_t seq; + + struct { /* extract of a clocksource struct */ + int vclock_mode; + cycle_t cycle_last; + cycle_t mask; + u32 mult; + u32 shift; + } clock; + + u64 boot_ns; + u64 nsec_base; +}; + +static struct pvclock_gtod_data pvclock_gtod_data; + +static void update_pvclock_gtod(struct timekeeper *tk) +{ + struct pvclock_gtod_data *vdata = &pvclock_gtod_data; + u64 boot_ns; + + boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); + + write_seqcount_begin(&vdata->seq); + + /* copy pvclock gtod data */ + vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; + vdata->clock.cycle_last = tk->tkr_mono.cycle_last; + vdata->clock.mask = tk->tkr_mono.mask; + vdata->clock.mult = tk->tkr_mono.mult; + vdata->clock.shift = tk->tkr_mono.shift; + + vdata->boot_ns = boot_ns; + vdata->nsec_base = tk->tkr_mono.xtime_nsec; + + write_seqcount_end(&vdata->seq); +} +#endif + +void kvm_set_pending_timer(struct kvm_vcpu *vcpu) +{ + /* + * Note: KVM_REQ_PENDING_TIMER is implicitly checked in + * vcpu_enter_guest. This function is only called from + * the physical CPU that is running vcpu. + */ + kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); +} + +static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) +{ + int version; + int r; + struct pvclock_wall_clock wc; + struct timespec boot; + + if (!wall_clock) + return; + + r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); + if (r) + return; + + if (version & 1) + ++version; /* first time write, random junk */ + + ++version; + + kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); + + /* + * The guest calculates current wall clock time by adding + * system time (updated by kvm_guest_time_update below) to the + * wall clock specified here. guest system time equals host + * system time for us, thus we must fill in host boot time here. + */ + getboottime(&boot); + + if (kvm->arch.kvmclock_offset) { + struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); + boot = timespec_sub(boot, ts); + } + wc.sec = boot.tv_sec; + wc.nsec = boot.tv_nsec; + wc.version = version; + + kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); + + version++; + kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); +} + +static uint32_t div_frac(uint32_t dividend, uint32_t divisor) +{ + uint32_t quotient, remainder; + + /* Don't try to replace with do_div(), this one calculates + * "(dividend << 32) / divisor" */ + __asm__ ( "divl %4" + : "=a" (quotient), "=d" (remainder) + : "0" (0), "1" (dividend), "r" (divisor) ); + return quotient; +} + +static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, + s8 *pshift, u32 *pmultiplier) +{ + uint64_t scaled64; + int32_t shift = 0; + uint64_t tps64; + uint32_t tps32; + + tps64 = base_khz * 1000LL; + scaled64 = scaled_khz * 1000LL; + while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { + tps64 >>= 1; + shift--; + } + + tps32 = (uint32_t)tps64; + while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { + if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) + scaled64 >>= 1; + else + tps32 <<= 1; + shift++; + } + + *pshift = shift; + *pmultiplier = div_frac(scaled64, tps32); + + pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", + __func__, base_khz, scaled_khz, shift, *pmultiplier); +} + +static inline u64 get_kernel_ns(void) +{ + return ktime_get_boot_ns(); +} + +#ifdef CONFIG_X86_64 +static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); +#endif + +static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); +static unsigned long max_tsc_khz; + +static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) +{ + return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, + vcpu->arch.virtual_tsc_shift); +} + +static u32 adjust_tsc_khz(u32 khz, s32 ppm) +{ + u64 v = (u64)khz * (1000000 + ppm); + do_div(v, 1000000); + return v; +} + +static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) +{ + u32 thresh_lo, thresh_hi; + int use_scaling = 0; + + /* tsc_khz can be zero if TSC calibration fails */ + if (this_tsc_khz == 0) + return; + + /* Compute a scale to convert nanoseconds in TSC cycles */ + kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, + &vcpu->arch.virtual_tsc_shift, + &vcpu->arch.virtual_tsc_mult); + vcpu->arch.virtual_tsc_khz = this_tsc_khz; + + /* + * Compute the variation in TSC rate which is acceptable + * within the range of tolerance and decide if the + * rate being applied is within that bounds of the hardware + * rate. If so, no scaling or compensation need be done. + */ + thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); + thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); + if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { + pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); + use_scaling = 1; + } + kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); +} + +static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) +{ + u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, + vcpu->arch.virtual_tsc_mult, + vcpu->arch.virtual_tsc_shift); + tsc += vcpu->arch.this_tsc_write; + return tsc; +} + +static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) +{ +#ifdef CONFIG_X86_64 + bool vcpus_matched; + struct kvm_arch *ka = &vcpu->kvm->arch; + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + + vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == + atomic_read(&vcpu->kvm->online_vcpus)); + + /* + * Once the masterclock is enabled, always perform request in + * order to update it. + * + * In order to enable masterclock, the host clocksource must be TSC + * and the vcpus need to have matched TSCs. When that happens, + * perform request to enable masterclock. + */ + if (ka->use_master_clock || + (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) + kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); + + trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, + atomic_read(&vcpu->kvm->online_vcpus), + ka->use_master_clock, gtod->clock.vclock_mode); +#endif +} + +static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) +{ + u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); + vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; +} + +void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) +{ + struct kvm *kvm = vcpu->kvm; + u64 offset, ns, elapsed; + unsigned long flags; + s64 usdiff; + bool matched; + bool already_matched; + u64 data = msr->data; + + raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); + offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); + ns = get_kernel_ns(); + elapsed = ns - kvm->arch.last_tsc_nsec; + + if (vcpu->arch.virtual_tsc_khz) { + int faulted = 0; + + /* n.b - signed multiplication and division required */ + usdiff = data - kvm->arch.last_tsc_write; +#ifdef CONFIG_X86_64 + usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; +#else + /* do_div() only does unsigned */ + asm("1: idivl %[divisor]\n" + "2: xor %%edx, %%edx\n" + " movl $0, %[faulted]\n" + "3:\n" + ".section .fixup,\"ax\"\n" + "4: movl $1, %[faulted]\n" + " jmp 3b\n" + ".previous\n" + + _ASM_EXTABLE(1b, 4b) + + : "=A"(usdiff), [faulted] "=r" (faulted) + : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); + +#endif + do_div(elapsed, 1000); + usdiff -= elapsed; + if (usdiff < 0) + usdiff = -usdiff; + + /* idivl overflow => difference is larger than USEC_PER_SEC */ + if (faulted) + usdiff = USEC_PER_SEC; + } else + usdiff = USEC_PER_SEC; /* disable TSC match window below */ + + /* + * Special case: TSC write with a small delta (1 second) of virtual + * cycle time against real time is interpreted as an attempt to + * synchronize the CPU. + * + * For a reliable TSC, we can match TSC offsets, and for an unstable + * TSC, we add elapsed time in this computation. We could let the + * compensation code attempt to catch up if we fall behind, but + * it's better to try to match offsets from the beginning. + */ + if (usdiff < USEC_PER_SEC && + vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { + if (!check_tsc_unstable()) { + offset = kvm->arch.cur_tsc_offset; + pr_debug("kvm: matched tsc offset for %llu\n", data); + } else { + u64 delta = nsec_to_cycles(vcpu, elapsed); + data += delta; + offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); + pr_debug("kvm: adjusted tsc offset by %llu\n", delta); + } + matched = true; + already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); + } else { + /* + * We split periods of matched TSC writes into generations. + * For each generation, we track the original measured + * nanosecond time, offset, and write, so if TSCs are in + * sync, we can match exact offset, and if not, we can match + * exact software computation in compute_guest_tsc() + * + * These values are tracked in kvm->arch.cur_xxx variables. + */ + kvm->arch.cur_tsc_generation++; + kvm->arch.cur_tsc_nsec = ns; + kvm->arch.cur_tsc_write = data; + kvm->arch.cur_tsc_offset = offset; + matched = false; + pr_debug("kvm: new tsc generation %llu, clock %llu\n", + kvm->arch.cur_tsc_generation, data); + } + + /* + * We also track th most recent recorded KHZ, write and time to + * allow the matching interval to be extended at each write. + */ + kvm->arch.last_tsc_nsec = ns; + kvm->arch.last_tsc_write = data; + kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; + + vcpu->arch.last_guest_tsc = data; + + /* Keep track of which generation this VCPU has synchronized to */ + vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; + vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; + vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; + + if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) + update_ia32_tsc_adjust_msr(vcpu, offset); + kvm_x86_ops->write_tsc_offset(vcpu, offset); + raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); + + spin_lock(&kvm->arch.pvclock_gtod_sync_lock); + if (!matched) { + kvm->arch.nr_vcpus_matched_tsc = 0; + } else if (!already_matched) { + kvm->arch.nr_vcpus_matched_tsc++; + } + + kvm_track_tsc_matching(vcpu); + spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); +} + +EXPORT_SYMBOL_GPL(kvm_write_tsc); + +#ifdef CONFIG_X86_64 + +static cycle_t read_tsc(void) +{ + cycle_t ret; + u64 last; + + /* + * Empirically, a fence (of type that depends on the CPU) + * before rdtsc is enough to ensure that rdtsc is ordered + * with respect to loads. The various CPU manuals are unclear + * as to whether rdtsc can be reordered with later loads, + * but no one has ever seen it happen. + */ + rdtsc_barrier(); + ret = (cycle_t)vget_cycles(); + + last = pvclock_gtod_data.clock.cycle_last; + + if (likely(ret >= last)) + return ret; + + /* + * GCC likes to generate cmov here, but this branch is extremely + * predictable (it's just a funciton of time and the likely is + * very likely) and there's a data dependence, so force GCC + * to generate a branch instead. I don't barrier() because + * we don't actually need a barrier, and if this function + * ever gets inlined it will generate worse code. + */ + asm volatile (""); + return last; +} + +static inline u64 vgettsc(cycle_t *cycle_now) +{ + long v; + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + + *cycle_now = read_tsc(); + + v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; + return v * gtod->clock.mult; +} + +static int do_monotonic_boot(s64 *t, cycle_t *cycle_now) +{ + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + unsigned long seq; + int mode; + u64 ns; + + do { + seq = read_seqcount_begin(>od->seq); + mode = gtod->clock.vclock_mode; + ns = gtod->nsec_base; + ns += vgettsc(cycle_now); + ns >>= gtod->clock.shift; + ns += gtod->boot_ns; + } while (unlikely(read_seqcount_retry(>od->seq, seq))); + *t = ns; + + return mode; +} + +/* returns true if host is using tsc clocksource */ +static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) +{ + /* checked again under seqlock below */ + if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) + return false; + + return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; +} +#endif + +/* + * + * Assuming a stable TSC across physical CPUS, and a stable TSC + * across virtual CPUs, the following condition is possible. + * Each numbered line represents an event visible to both + * CPUs at the next numbered event. + * + * "timespecX" represents host monotonic time. "tscX" represents + * RDTSC value. + * + * VCPU0 on CPU0 | VCPU1 on CPU1 + * + * 1. read timespec0,tsc0 + * 2. | timespec1 = timespec0 + N + * | tsc1 = tsc0 + M + * 3. transition to guest | transition to guest + * 4. ret0 = timespec0 + (rdtsc - tsc0) | + * 5. | ret1 = timespec1 + (rdtsc - tsc1) + * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) + * + * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: + * + * - ret0 < ret1 + * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) + * ... + * - 0 < N - M => M < N + * + * That is, when timespec0 != timespec1, M < N. Unfortunately that is not + * always the case (the difference between two distinct xtime instances + * might be smaller then the difference between corresponding TSC reads, + * when updating guest vcpus pvclock areas). + * + * To avoid that problem, do not allow visibility of distinct + * system_timestamp/tsc_timestamp values simultaneously: use a master + * copy of host monotonic time values. Update that master copy + * in lockstep. + * + * Rely on synchronization of host TSCs and guest TSCs for monotonicity. + * + */ + +static void pvclock_update_vm_gtod_copy(struct kvm *kvm) +{ +#ifdef CONFIG_X86_64 + struct kvm_arch *ka = &kvm->arch; + int vclock_mode; + bool host_tsc_clocksource, vcpus_matched; + + vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == + atomic_read(&kvm->online_vcpus)); + + /* + * If the host uses TSC clock, then passthrough TSC as stable + * to the guest. + */ + host_tsc_clocksource = kvm_get_time_and_clockread( + &ka->master_kernel_ns, + &ka->master_cycle_now); + + ka->use_master_clock = host_tsc_clocksource && vcpus_matched + && !backwards_tsc_observed + && !ka->boot_vcpu_runs_old_kvmclock; + + if (ka->use_master_clock) + atomic_set(&kvm_guest_has_master_clock, 1); + + vclock_mode = pvclock_gtod_data.clock.vclock_mode; + trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, + vcpus_matched); +#endif +} + +static void kvm_gen_update_masterclock(struct kvm *kvm) +{ +#ifdef CONFIG_X86_64 + int i; + struct kvm_vcpu *vcpu; + struct kvm_arch *ka = &kvm->arch; + + spin_lock(&ka->pvclock_gtod_sync_lock); + kvm_make_mclock_inprogress_request(kvm); + /* no guest entries from this point */ + pvclock_update_vm_gtod_copy(kvm); + + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + + /* guest entries allowed */ + kvm_for_each_vcpu(i, vcpu, kvm) + clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); + + spin_unlock(&ka->pvclock_gtod_sync_lock); +#endif +} + +static int kvm_guest_time_update(struct kvm_vcpu *v) +{ + unsigned long flags, this_tsc_khz; + struct kvm_vcpu_arch *vcpu = &v->arch; + struct kvm_arch *ka = &v->kvm->arch; + s64 kernel_ns; + u64 tsc_timestamp, host_tsc; + struct pvclock_vcpu_time_info guest_hv_clock; + u8 pvclock_flags; + bool use_master_clock; + + kernel_ns = 0; + host_tsc = 0; + + /* + * If the host uses TSC clock, then passthrough TSC as stable + * to the guest. + */ + spin_lock(&ka->pvclock_gtod_sync_lock); + use_master_clock = ka->use_master_clock; + if (use_master_clock) { + host_tsc = ka->master_cycle_now; + kernel_ns = ka->master_kernel_ns; + } + spin_unlock(&ka->pvclock_gtod_sync_lock); + + /* Keep irq disabled to prevent changes to the clock */ + local_irq_save(flags); + this_tsc_khz = __this_cpu_read(cpu_tsc_khz); + if (unlikely(this_tsc_khz == 0)) { + local_irq_restore(flags); + kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); + return 1; + } + if (!use_master_clock) { + host_tsc = native_read_tsc(); + kernel_ns = get_kernel_ns(); + } + + tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); + + /* + * We may have to catch up the TSC to match elapsed wall clock + * time for two reasons, even if kvmclock is used. + * 1) CPU could have been running below the maximum TSC rate + * 2) Broken TSC compensation resets the base at each VCPU + * entry to avoid unknown leaps of TSC even when running + * again on the same CPU. This may cause apparent elapsed + * time to disappear, and the guest to stand still or run + * very slowly. + */ + if (vcpu->tsc_catchup) { + u64 tsc = compute_guest_tsc(v, kernel_ns); + if (tsc > tsc_timestamp) { + adjust_tsc_offset_guest(v, tsc - tsc_timestamp); + tsc_timestamp = tsc; + } + } + + local_irq_restore(flags); + + if (!vcpu->pv_time_enabled) + return 0; + + if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { + kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, + &vcpu->hv_clock.tsc_shift, + &vcpu->hv_clock.tsc_to_system_mul); + vcpu->hw_tsc_khz = this_tsc_khz; + } + + /* With all the info we got, fill in the values */ + vcpu->hv_clock.tsc_timestamp = tsc_timestamp; + vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; + vcpu->last_guest_tsc = tsc_timestamp; + + if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, + &guest_hv_clock, sizeof(guest_hv_clock)))) + return 0; + + /* This VCPU is paused, but it's legal for a guest to read another + * VCPU's kvmclock, so we really have to follow the specification where + * it says that version is odd if data is being modified, and even after + * it is consistent. + * + * Version field updates must be kept separate. This is because + * kvm_write_guest_cached might use a "rep movs" instruction, and + * writes within a string instruction are weakly ordered. So there + * are three writes overall. + * + * As a small optimization, only write the version field in the first + * and third write. The vcpu->pv_time cache is still valid, because the + * version field is the first in the struct. + */ + BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); + + vcpu->hv_clock.version = guest_hv_clock.version + 1; + kvm_write_guest_cached(v->kvm, &vcpu->pv_time, + &vcpu->hv_clock, + sizeof(vcpu->hv_clock.version)); + + smp_wmb(); + + /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ + pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); + + if (vcpu->pvclock_set_guest_stopped_request) { + pvclock_flags |= PVCLOCK_GUEST_STOPPED; + vcpu->pvclock_set_guest_stopped_request = false; + } + + /* If the host uses TSC clocksource, then it is stable */ + if (use_master_clock) + pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; + + vcpu->hv_clock.flags = pvclock_flags; + + trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); + + kvm_write_guest_cached(v->kvm, &vcpu->pv_time, + &vcpu->hv_clock, + sizeof(vcpu->hv_clock)); + + smp_wmb(); + + vcpu->hv_clock.version++; + kvm_write_guest_cached(v->kvm, &vcpu->pv_time, + &vcpu->hv_clock, + sizeof(vcpu->hv_clock.version)); + return 0; +} + +/* + * kvmclock updates which are isolated to a given vcpu, such as + * vcpu->cpu migration, should not allow system_timestamp from + * the rest of the vcpus to remain static. Otherwise ntp frequency + * correction applies to one vcpu's system_timestamp but not + * the others. + * + * So in those cases, request a kvmclock update for all vcpus. + * We need to rate-limit these requests though, as they can + * considerably slow guests that have a large number of vcpus. + * The time for a remote vcpu to update its kvmclock is bound + * by the delay we use to rate-limit the updates. + */ + +#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) + +static void kvmclock_update_fn(struct work_struct *work) +{ + int i; + struct delayed_work *dwork = to_delayed_work(work); + struct kvm_arch *ka = container_of(dwork, struct kvm_arch, + kvmclock_update_work); + struct kvm *kvm = container_of(ka, struct kvm, arch); + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) { + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + kvm_vcpu_kick(vcpu); + } +} + +static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) +{ + struct kvm *kvm = v->kvm; + + kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); + schedule_delayed_work(&kvm->arch.kvmclock_update_work, + KVMCLOCK_UPDATE_DELAY); +} + +#define KVMCLOCK_SYNC_PERIOD (300 * HZ) + +static void kvmclock_sync_fn(struct work_struct *work) +{ + struct delayed_work *dwork = to_delayed_work(work); + struct kvm_arch *ka = container_of(dwork, struct kvm_arch, + kvmclock_sync_work); + struct kvm *kvm = container_of(ka, struct kvm, arch); + + schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); + schedule_delayed_work(&kvm->arch.kvmclock_sync_work, + KVMCLOCK_SYNC_PERIOD); +} + +static bool msr_mtrr_valid(unsigned msr) +{ + switch (msr) { + case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: + case MSR_MTRRfix64K_00000: + case MSR_MTRRfix16K_80000: + case MSR_MTRRfix16K_A0000: + case MSR_MTRRfix4K_C0000: + case MSR_MTRRfix4K_C8000: + case MSR_MTRRfix4K_D0000: + case MSR_MTRRfix4K_D8000: + case MSR_MTRRfix4K_E0000: + case MSR_MTRRfix4K_E8000: + case MSR_MTRRfix4K_F0000: + case MSR_MTRRfix4K_F8000: + case MSR_MTRRdefType: + case MSR_IA32_CR_PAT: + return true; + case 0x2f8: + return true; + } + return false; +} + +static bool valid_pat_type(unsigned t) +{ + return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ +} + +static bool valid_mtrr_type(unsigned t) +{ + return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ +} + +bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + int i; + u64 mask; + + if (!msr_mtrr_valid(msr)) + return false; + + if (msr == MSR_IA32_CR_PAT) { + for (i = 0; i < 8; i++) + if (!valid_pat_type((data >> (i * 8)) & 0xff)) + return false; + return true; + } else if (msr == MSR_MTRRdefType) { + if (data & ~0xcff) + return false; + return valid_mtrr_type(data & 0xff); + } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { + for (i = 0; i < 8 ; i++) + if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) + return false; + return true; + } + + /* variable MTRRs */ + WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR)); + + mask = (~0ULL) << cpuid_maxphyaddr(vcpu); + if ((msr & 1) == 0) { + /* MTRR base */ + if (!valid_mtrr_type(data & 0xff)) + return false; + mask |= 0xf00; + } else + /* MTRR mask */ + mask |= 0x7ff; + if (data & mask) { + kvm_inject_gp(vcpu, 0); + return false; + } + + return true; +} +EXPORT_SYMBOL_GPL(kvm_mtrr_valid); + +static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; + + if (!kvm_mtrr_valid(vcpu, msr, data)) + return 1; + + if (msr == MSR_MTRRdefType) { + vcpu->arch.mtrr_state.def_type = data; + vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; + } else if (msr == MSR_MTRRfix64K_00000) + p[0] = data; + else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) + p[1 + msr - MSR_MTRRfix16K_80000] = data; + else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) + p[3 + msr - MSR_MTRRfix4K_C0000] = data; + else if (msr == MSR_IA32_CR_PAT) + vcpu->arch.pat = data; + else { /* Variable MTRRs */ + int idx, is_mtrr_mask; + u64 *pt; + + idx = (msr - 0x200) / 2; + is_mtrr_mask = msr - 0x200 - 2 * idx; + if (!is_mtrr_mask) + pt = + (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; + else + pt = + (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; + *pt = data; + } + + kvm_mmu_reset_context(vcpu); + return 0; +} + +static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + u64 mcg_cap = vcpu->arch.mcg_cap; + unsigned bank_num = mcg_cap & 0xff; + + switch (msr) { + case MSR_IA32_MCG_STATUS: + vcpu->arch.mcg_status = data; + break; + case MSR_IA32_MCG_CTL: + if (!(mcg_cap & MCG_CTL_P)) + return 1; + if (data != 0 && data != ~(u64)0) + return -1; + vcpu->arch.mcg_ctl = data; + break; + default: + if (msr >= MSR_IA32_MC0_CTL && + msr < MSR_IA32_MCx_CTL(bank_num)) { + u32 offset = msr - MSR_IA32_MC0_CTL; + /* only 0 or all 1s can be written to IA32_MCi_CTL + * some Linux kernels though clear bit 10 in bank 4 to + * workaround a BIOS/GART TBL issue on AMD K8s, ignore + * this to avoid an uncatched #GP in the guest + */ + if ((offset & 0x3) == 0 && + data != 0 && (data | (1 << 10)) != ~(u64)0) + return -1; + vcpu->arch.mce_banks[offset] = data; + break; + } + return 1; + } + return 0; +} + +static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) +{ + struct kvm *kvm = vcpu->kvm; + int lm = is_long_mode(vcpu); + u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 + : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; + u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 + : kvm->arch.xen_hvm_config.blob_size_32; + u32 page_num = data & ~PAGE_MASK; + u64 page_addr = data & PAGE_MASK; + u8 *page; + int r; + + r = -E2BIG; + if (page_num >= blob_size) + goto out; + r = -ENOMEM; + page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); + if (IS_ERR(page)) { + r = PTR_ERR(page); + goto out; + } + if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) + goto out_free; + r = 0; +out_free: + kfree(page); +out: + return r; +} + +static bool kvm_hv_hypercall_enabled(struct kvm *kvm) +{ + return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; +} + +static bool kvm_hv_msr_partition_wide(u32 msr) +{ + bool r = false; + switch (msr) { + case HV_X64_MSR_GUEST_OS_ID: + case HV_X64_MSR_HYPERCALL: + case HV_X64_MSR_REFERENCE_TSC: + case HV_X64_MSR_TIME_REF_COUNT: + r = true; + break; + } + + return r; +} + +static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + struct kvm *kvm = vcpu->kvm; + + switch (msr) { + case HV_X64_MSR_GUEST_OS_ID: + kvm->arch.hv_guest_os_id = data; + /* setting guest os id to zero disables hypercall page */ + if (!kvm->arch.hv_guest_os_id) + kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; + break; + case HV_X64_MSR_HYPERCALL: { + u64 gfn; + unsigned long addr; + u8 instructions[4]; + + /* if guest os id is not set hypercall should remain disabled */ + if (!kvm->arch.hv_guest_os_id) + break; + if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { + kvm->arch.hv_hypercall = data; + break; + } + gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; + addr = gfn_to_hva(kvm, gfn); + if (kvm_is_error_hva(addr)) + return 1; + kvm_x86_ops->patch_hypercall(vcpu, instructions); + ((unsigned char *)instructions)[3] = 0xc3; /* ret */ + if (__copy_to_user((void __user *)addr, instructions, 4)) + return 1; + kvm->arch.hv_hypercall = data; + mark_page_dirty(kvm, gfn); + break; + } + case HV_X64_MSR_REFERENCE_TSC: { + u64 gfn; + HV_REFERENCE_TSC_PAGE tsc_ref; + memset(&tsc_ref, 0, sizeof(tsc_ref)); + kvm->arch.hv_tsc_page = data; + if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE)) + break; + gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; + if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT, + &tsc_ref, sizeof(tsc_ref))) + return 1; + mark_page_dirty(kvm, gfn); + break; + } + default: + vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " + "data 0x%llx\n", msr, data); + return 1; + } + return 0; +} + +static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + switch (msr) { + case HV_X64_MSR_APIC_ASSIST_PAGE: { + u64 gfn; + unsigned long addr; + + if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { + vcpu->arch.hv_vapic = data; + if (kvm_lapic_enable_pv_eoi(vcpu, 0)) + return 1; + break; + } + gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT; + addr = gfn_to_hva(vcpu->kvm, gfn); + if (kvm_is_error_hva(addr)) + return 1; + if (__clear_user((void __user *)addr, PAGE_SIZE)) + return 1; + vcpu->arch.hv_vapic = data; + mark_page_dirty(vcpu->kvm, gfn); + if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED)) + return 1; + break; + } + case HV_X64_MSR_EOI: + return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); + case HV_X64_MSR_ICR: + return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); + case HV_X64_MSR_TPR: + return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); + default: + vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " + "data 0x%llx\n", msr, data); + return 1; + } + + return 0; +} + +static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) +{ + gpa_t gpa = data & ~0x3f; + + /* Bits 2:5 are reserved, Should be zero */ + if (data & 0x3c) + return 1; + + vcpu->arch.apf.msr_val = data; + + if (!(data & KVM_ASYNC_PF_ENABLED)) { + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + return 0; + } + + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, + sizeof(u32))) + return 1; + + vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); + kvm_async_pf_wakeup_all(vcpu); + return 0; +} + +static void kvmclock_reset(struct kvm_vcpu *vcpu) +{ + vcpu->arch.pv_time_enabled = false; +} + +static void accumulate_steal_time(struct kvm_vcpu *vcpu) +{ + u64 delta; + + if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) + return; + + delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; + vcpu->arch.st.last_steal = current->sched_info.run_delay; + vcpu->arch.st.accum_steal = delta; +} + +static void record_steal_time(struct kvm_vcpu *vcpu) +{ + if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) + return; + + if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, + &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) + return; + + vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; + vcpu->arch.st.steal.version += 2; + vcpu->arch.st.accum_steal = 0; + + kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, + &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); +} + +int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + bool pr = false; + u32 msr = msr_info->index; + u64 data = msr_info->data; + + switch (msr) { + case MSR_AMD64_NB_CFG: + case MSR_IA32_UCODE_REV: + case MSR_IA32_UCODE_WRITE: + case MSR_VM_HSAVE_PA: + case MSR_AMD64_PATCH_LOADER: + case MSR_AMD64_BU_CFG2: + break; + + case MSR_EFER: + return set_efer(vcpu, data); + case MSR_K7_HWCR: + data &= ~(u64)0x40; /* ignore flush filter disable */ + data &= ~(u64)0x100; /* ignore ignne emulation enable */ + data &= ~(u64)0x8; /* ignore TLB cache disable */ + data &= ~(u64)0x40000; /* ignore Mc status write enable */ + if (data != 0) { + vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", + data); + return 1; + } + break; + case MSR_FAM10H_MMIO_CONF_BASE: + if (data != 0) { + vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " + "0x%llx\n", data); + return 1; + } + break; + case MSR_IA32_DEBUGCTLMSR: + if (!data) { + /* We support the non-activated case already */ + break; + } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { + /* Values other than LBR and BTF are vendor-specific, + thus reserved and should throw a #GP */ + return 1; + } + vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", + __func__, data); + break; + case 0x200 ... 0x2ff: + return set_msr_mtrr(vcpu, msr, data); + case MSR_IA32_APICBASE: + return kvm_set_apic_base(vcpu, msr_info); + case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: + return kvm_x2apic_msr_write(vcpu, msr, data); + case MSR_IA32_TSCDEADLINE: + kvm_set_lapic_tscdeadline_msr(vcpu, data); + break; + case MSR_IA32_TSC_ADJUST: + if (guest_cpuid_has_tsc_adjust(vcpu)) { + if (!msr_info->host_initiated) { + s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; + kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); + } + vcpu->arch.ia32_tsc_adjust_msr = data; + } + break; + case MSR_IA32_MISC_ENABLE: + vcpu->arch.ia32_misc_enable_msr = data; + break; + case MSR_KVM_WALL_CLOCK_NEW: + case MSR_KVM_WALL_CLOCK: + vcpu->kvm->arch.wall_clock = data; + kvm_write_wall_clock(vcpu->kvm, data); + break; + case MSR_KVM_SYSTEM_TIME_NEW: + case MSR_KVM_SYSTEM_TIME: { + u64 gpa_offset; + struct kvm_arch *ka = &vcpu->kvm->arch; + + kvmclock_reset(vcpu); + + if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { + bool tmp = (msr == MSR_KVM_SYSTEM_TIME); + + if (ka->boot_vcpu_runs_old_kvmclock != tmp) + set_bit(KVM_REQ_MASTERCLOCK_UPDATE, + &vcpu->requests); + + ka->boot_vcpu_runs_old_kvmclock = tmp; + } + + vcpu->arch.time = data; + kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); + + /* we verify if the enable bit is set... */ + if (!(data & 1)) + break; + + gpa_offset = data & ~(PAGE_MASK | 1); + + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, + &vcpu->arch.pv_time, data & ~1ULL, + sizeof(struct pvclock_vcpu_time_info))) + vcpu->arch.pv_time_enabled = false; + else + vcpu->arch.pv_time_enabled = true; + + break; + } + case MSR_KVM_ASYNC_PF_EN: + if (kvm_pv_enable_async_pf(vcpu, data)) + return 1; + break; + case MSR_KVM_STEAL_TIME: + + if (unlikely(!sched_info_on())) + return 1; + + if (data & KVM_STEAL_RESERVED_MASK) + return 1; + + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, + data & KVM_STEAL_VALID_BITS, + sizeof(struct kvm_steal_time))) + return 1; + + vcpu->arch.st.msr_val = data; + + if (!(data & KVM_MSR_ENABLED)) + break; + + vcpu->arch.st.last_steal = current->sched_info.run_delay; + + preempt_disable(); + accumulate_steal_time(vcpu); + preempt_enable(); + + kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); + + break; + case MSR_KVM_PV_EOI_EN: + if (kvm_lapic_enable_pv_eoi(vcpu, data)) + return 1; + break; + + case MSR_IA32_MCG_CTL: + case MSR_IA32_MCG_STATUS: + case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: + return set_msr_mce(vcpu, msr, data); + + /* Performance counters are not protected by a CPUID bit, + * so we should check all of them in the generic path for the sake of + * cross vendor migration. + * Writing a zero into the event select MSRs disables them, + * which we perfectly emulate ;-). Any other value should be at least + * reported, some guests depend on them. + */ + case MSR_K7_EVNTSEL0: + case MSR_K7_EVNTSEL1: + case MSR_K7_EVNTSEL2: + case MSR_K7_EVNTSEL3: + if (data != 0) + vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " + "0x%x data 0x%llx\n", msr, data); + break; + /* at least RHEL 4 unconditionally writes to the perfctr registers, + * so we ignore writes to make it happy. + */ + case MSR_K7_PERFCTR0: + case MSR_K7_PERFCTR1: + case MSR_K7_PERFCTR2: + case MSR_K7_PERFCTR3: + vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " + "0x%x data 0x%llx\n", msr, data); + break; + case MSR_P6_PERFCTR0: + case MSR_P6_PERFCTR1: + pr = true; + case MSR_P6_EVNTSEL0: + case MSR_P6_EVNTSEL1: + if (kvm_pmu_msr(vcpu, msr)) + return kvm_pmu_set_msr(vcpu, msr_info); + + if (pr || data != 0) + vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " + "0x%x data 0x%llx\n", msr, data); + break; + case MSR_K7_CLK_CTL: + /* + * Ignore all writes to this no longer documented MSR. + * Writes are only relevant for old K7 processors, + * all pre-dating SVM, but a recommended workaround from + * AMD for these chips. It is possible to specify the + * affected processor models on the command line, hence + * the need to ignore the workaround. + */ + break; + case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: + if (kvm_hv_msr_partition_wide(msr)) { + int r; + mutex_lock(&vcpu->kvm->lock); + r = set_msr_hyperv_pw(vcpu, msr, data); + mutex_unlock(&vcpu->kvm->lock); + return r; + } else + return set_msr_hyperv(vcpu, msr, data); + break; + case MSR_IA32_BBL_CR_CTL3: + /* Drop writes to this legacy MSR -- see rdmsr + * counterpart for further detail. + */ + vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); + break; + case MSR_AMD64_OSVW_ID_LENGTH: + if (!guest_cpuid_has_osvw(vcpu)) + return 1; + vcpu->arch.osvw.length = data; + break; + case MSR_AMD64_OSVW_STATUS: + if (!guest_cpuid_has_osvw(vcpu)) + return 1; + vcpu->arch.osvw.status = data; + break; + default: + if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) + return xen_hvm_config(vcpu, data); + if (kvm_pmu_msr(vcpu, msr)) + return kvm_pmu_set_msr(vcpu, msr_info); + if (!ignore_msrs) { + vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", + msr, data); + return 1; + } else { + vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", + msr, data); + break; + } + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_msr_common); + + +/* + * Reads an msr value (of 'msr_index') into 'pdata'. + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) +{ + return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); +} +EXPORT_SYMBOL_GPL(kvm_get_msr); + +static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) +{ + u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; + + if (!msr_mtrr_valid(msr)) + return 1; + + if (msr == MSR_MTRRdefType) + *pdata = vcpu->arch.mtrr_state.def_type + + (vcpu->arch.mtrr_state.enabled << 10); + else if (msr == MSR_MTRRfix64K_00000) + *pdata = p[0]; + else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) + *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; + else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) + *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; + else if (msr == MSR_IA32_CR_PAT) + *pdata = vcpu->arch.pat; + else { /* Variable MTRRs */ + int idx, is_mtrr_mask; + u64 *pt; + + idx = (msr - 0x200) / 2; + is_mtrr_mask = msr - 0x200 - 2 * idx; + if (!is_mtrr_mask) + pt = + (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; + else + pt = + (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; + *pdata = *pt; + } + + return 0; +} + +static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) +{ + u64 data; + u64 mcg_cap = vcpu->arch.mcg_cap; + unsigned bank_num = mcg_cap & 0xff; + + switch (msr) { + case MSR_IA32_P5_MC_ADDR: + case MSR_IA32_P5_MC_TYPE: + data = 0; + break; + case MSR_IA32_MCG_CAP: + data = vcpu->arch.mcg_cap; + break; + case MSR_IA32_MCG_CTL: + if (!(mcg_cap & MCG_CTL_P)) + return 1; + data = vcpu->arch.mcg_ctl; + break; + case MSR_IA32_MCG_STATUS: + data = vcpu->arch.mcg_status; + break; + default: + if (msr >= MSR_IA32_MC0_CTL && + msr < MSR_IA32_MCx_CTL(bank_num)) { + u32 offset = msr - MSR_IA32_MC0_CTL; + data = vcpu->arch.mce_banks[offset]; + break; + } + return 1; + } + *pdata = data; + return 0; +} + +static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) +{ + u64 data = 0; + struct kvm *kvm = vcpu->kvm; + + switch (msr) { + case HV_X64_MSR_GUEST_OS_ID: + data = kvm->arch.hv_guest_os_id; + break; + case HV_X64_MSR_HYPERCALL: + data = kvm->arch.hv_hypercall; + break; + case HV_X64_MSR_TIME_REF_COUNT: { + data = + div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100); + break; + } + case HV_X64_MSR_REFERENCE_TSC: + data = kvm->arch.hv_tsc_page; + break; + default: + vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); + return 1; + } + + *pdata = data; + return 0; +} + +static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) +{ + u64 data = 0; + + switch (msr) { + case HV_X64_MSR_VP_INDEX: { + int r; + struct kvm_vcpu *v; + kvm_for_each_vcpu(r, v, vcpu->kvm) { + if (v == vcpu) { + data = r; + break; + } + } + break; + } + case HV_X64_MSR_EOI: + return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); + case HV_X64_MSR_ICR: + return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); + case HV_X64_MSR_TPR: + return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); + case HV_X64_MSR_APIC_ASSIST_PAGE: + data = vcpu->arch.hv_vapic; + break; + default: + vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); + return 1; + } + *pdata = data; + return 0; +} + +int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) +{ + u64 data; + + switch (msr) { + case MSR_IA32_PLATFORM_ID: + case MSR_IA32_EBL_CR_POWERON: + case MSR_IA32_DEBUGCTLMSR: + case MSR_IA32_LASTBRANCHFROMIP: + case MSR_IA32_LASTBRANCHTOIP: + case MSR_IA32_LASTINTFROMIP: + case MSR_IA32_LASTINTTOIP: + case MSR_K8_SYSCFG: + case MSR_K7_HWCR: + case MSR_VM_HSAVE_PA: + case MSR_K7_EVNTSEL0: + case MSR_K7_EVNTSEL1: + case MSR_K7_EVNTSEL2: + case MSR_K7_EVNTSEL3: + case MSR_K7_PERFCTR0: + case MSR_K7_PERFCTR1: + case MSR_K7_PERFCTR2: + case MSR_K7_PERFCTR3: + case MSR_K8_INT_PENDING_MSG: + case MSR_AMD64_NB_CFG: + case MSR_FAM10H_MMIO_CONF_BASE: + case MSR_AMD64_BU_CFG2: + data = 0; + break; + case MSR_P6_PERFCTR0: + case MSR_P6_PERFCTR1: + case MSR_P6_EVNTSEL0: + case MSR_P6_EVNTSEL1: + if (kvm_pmu_msr(vcpu, msr)) + return kvm_pmu_get_msr(vcpu, msr, pdata); + data = 0; + break; + case MSR_IA32_UCODE_REV: + data = 0x100000000ULL; + break; + case MSR_MTRRcap: + data = 0x500 | KVM_NR_VAR_MTRR; + break; + case 0x200 ... 0x2ff: + return get_msr_mtrr(vcpu, msr, pdata); + case 0xcd: /* fsb frequency */ + data = 3; + break; + /* + * MSR_EBC_FREQUENCY_ID + * Conservative value valid for even the basic CPU models. + * Models 0,1: 000 in bits 23:21 indicating a bus speed of + * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, + * and 266MHz for model 3, or 4. Set Core Clock + * Frequency to System Bus Frequency Ratio to 1 (bits + * 31:24) even though these are only valid for CPU + * models > 2, however guests may end up dividing or + * multiplying by zero otherwise. + */ + case MSR_EBC_FREQUENCY_ID: + data = 1 << 24; + break; + case MSR_IA32_APICBASE: + data = kvm_get_apic_base(vcpu); + break; + case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: + return kvm_x2apic_msr_read(vcpu, msr, pdata); + break; + case MSR_IA32_TSCDEADLINE: + data = kvm_get_lapic_tscdeadline_msr(vcpu); + break; + case MSR_IA32_TSC_ADJUST: + data = (u64)vcpu->arch.ia32_tsc_adjust_msr; + break; + case MSR_IA32_MISC_ENABLE: + data = vcpu->arch.ia32_misc_enable_msr; + break; + case MSR_IA32_PERF_STATUS: + /* TSC increment by tick */ + data = 1000ULL; + /* CPU multiplier */ + data |= (((uint64_t)4ULL) << 40); + break; + case MSR_EFER: + data = vcpu->arch.efer; + break; + case MSR_KVM_WALL_CLOCK: + case MSR_KVM_WALL_CLOCK_NEW: + data = vcpu->kvm->arch.wall_clock; + break; + case MSR_KVM_SYSTEM_TIME: + case MSR_KVM_SYSTEM_TIME_NEW: + data = vcpu->arch.time; + break; + case MSR_KVM_ASYNC_PF_EN: + data = vcpu->arch.apf.msr_val; + break; + case MSR_KVM_STEAL_TIME: + data = vcpu->arch.st.msr_val; + break; + case MSR_KVM_PV_EOI_EN: + data = vcpu->arch.pv_eoi.msr_val; + break; + case MSR_IA32_P5_MC_ADDR: + case MSR_IA32_P5_MC_TYPE: + case MSR_IA32_MCG_CAP: + case MSR_IA32_MCG_CTL: + case MSR_IA32_MCG_STATUS: + case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: + return get_msr_mce(vcpu, msr, pdata); + case MSR_K7_CLK_CTL: + /* + * Provide expected ramp-up count for K7. All other + * are set to zero, indicating minimum divisors for + * every field. + * + * This prevents guest kernels on AMD host with CPU + * type 6, model 8 and higher from exploding due to + * the rdmsr failing. + */ + data = 0x20000000; + break; + case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: + if (kvm_hv_msr_partition_wide(msr)) { + int r; + mutex_lock(&vcpu->kvm->lock); + r = get_msr_hyperv_pw(vcpu, msr, pdata); + mutex_unlock(&vcpu->kvm->lock); + return r; + } else + return get_msr_hyperv(vcpu, msr, pdata); + break; + case MSR_IA32_BBL_CR_CTL3: + /* This legacy MSR exists but isn't fully documented in current + * silicon. It is however accessed by winxp in very narrow + * scenarios where it sets bit #19, itself documented as + * a "reserved" bit. Best effort attempt to source coherent + * read data here should the balance of the register be + * interpreted by the guest: + * + * L2 cache control register 3: 64GB range, 256KB size, + * enabled, latency 0x1, configured + */ + data = 0xbe702111; + break; + case MSR_AMD64_OSVW_ID_LENGTH: + if (!guest_cpuid_has_osvw(vcpu)) + return 1; + data = vcpu->arch.osvw.length; + break; + case MSR_AMD64_OSVW_STATUS: + if (!guest_cpuid_has_osvw(vcpu)) + return 1; + data = vcpu->arch.osvw.status; + break; + default: + if (kvm_pmu_msr(vcpu, msr)) + return kvm_pmu_get_msr(vcpu, msr, pdata); + if (!ignore_msrs) { + vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); + return 1; + } else { + vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); + data = 0; + } + break; + } + *pdata = data; + return 0; +} +EXPORT_SYMBOL_GPL(kvm_get_msr_common); + +/* + * Read or write a bunch of msrs. All parameters are kernel addresses. + * + * @return number of msrs set successfully. + */ +static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, + struct kvm_msr_entry *entries, + int (*do_msr)(struct kvm_vcpu *vcpu, + unsigned index, u64 *data)) +{ + int i, idx; + + idx = srcu_read_lock(&vcpu->kvm->srcu); + for (i = 0; i < msrs->nmsrs; ++i) + if (do_msr(vcpu, entries[i].index, &entries[i].data)) + break; + srcu_read_unlock(&vcpu->kvm->srcu, idx); + + return i; +} + +/* + * Read or write a bunch of msrs. Parameters are user addresses. + * + * @return number of msrs set successfully. + */ +static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, + int (*do_msr)(struct kvm_vcpu *vcpu, + unsigned index, u64 *data), + int writeback) +{ + struct kvm_msrs msrs; + struct kvm_msr_entry *entries; + int r, n; + unsigned size; + + r = -EFAULT; + if (copy_from_user(&msrs, user_msrs, sizeof msrs)) + goto out; + + r = -E2BIG; + if (msrs.nmsrs >= MAX_IO_MSRS) + goto out; + + size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; + entries = memdup_user(user_msrs->entries, size); + if (IS_ERR(entries)) { + r = PTR_ERR(entries); + goto out; + } + + r = n = __msr_io(vcpu, &msrs, entries, do_msr); + if (r < 0) + goto out_free; + + r = -EFAULT; + if (writeback && copy_to_user(user_msrs->entries, entries, size)) + goto out_free; + + r = n; + +out_free: + kfree(entries); +out: + return r; +} + +int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) +{ + int r; + + switch (ext) { + case KVM_CAP_IRQCHIP: + case KVM_CAP_HLT: + case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: + case KVM_CAP_SET_TSS_ADDR: + case KVM_CAP_EXT_CPUID: + case KVM_CAP_EXT_EMUL_CPUID: + case KVM_CAP_CLOCKSOURCE: + case KVM_CAP_PIT: + case KVM_CAP_NOP_IO_DELAY: + case KVM_CAP_MP_STATE: + case KVM_CAP_SYNC_MMU: + case KVM_CAP_USER_NMI: + case KVM_CAP_REINJECT_CONTROL: + case KVM_CAP_IRQ_INJECT_STATUS: + case KVM_CAP_IOEVENTFD: + case KVM_CAP_IOEVENTFD_NO_LENGTH: + case KVM_CAP_PIT2: + case KVM_CAP_PIT_STATE2: + case KVM_CAP_SET_IDENTITY_MAP_ADDR: + case KVM_CAP_XEN_HVM: + case KVM_CAP_ADJUST_CLOCK: + case KVM_CAP_VCPU_EVENTS: + case KVM_CAP_HYPERV: + case KVM_CAP_HYPERV_VAPIC: + case KVM_CAP_HYPERV_SPIN: + case KVM_CAP_PCI_SEGMENT: + case KVM_CAP_DEBUGREGS: + case KVM_CAP_X86_ROBUST_SINGLESTEP: + case KVM_CAP_XSAVE: + case KVM_CAP_ASYNC_PF: + case KVM_CAP_GET_TSC_KHZ: + case KVM_CAP_KVMCLOCK_CTRL: + case KVM_CAP_READONLY_MEM: + case KVM_CAP_HYPERV_TIME: + case KVM_CAP_IOAPIC_POLARITY_IGNORED: + case KVM_CAP_TSC_DEADLINE_TIMER: +#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT + case KVM_CAP_ASSIGN_DEV_IRQ: + case KVM_CAP_PCI_2_3: +#endif + r = 1; + break; + case KVM_CAP_COALESCED_MMIO: + r = KVM_COALESCED_MMIO_PAGE_OFFSET; + break; + case KVM_CAP_VAPIC: + r = !kvm_x86_ops->cpu_has_accelerated_tpr(); + break; + case KVM_CAP_NR_VCPUS: + r = KVM_SOFT_MAX_VCPUS; + break; + case KVM_CAP_MAX_VCPUS: + r = KVM_MAX_VCPUS; + break; + case KVM_CAP_NR_MEMSLOTS: + r = KVM_USER_MEM_SLOTS; + break; + case KVM_CAP_PV_MMU: /* obsolete */ + r = 0; + break; +#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT + case KVM_CAP_IOMMU: + r = iommu_present(&pci_bus_type); + break; +#endif + case KVM_CAP_MCE: + r = KVM_MAX_MCE_BANKS; + break; + case KVM_CAP_XCRS: + r = cpu_has_xsave; + break; + case KVM_CAP_TSC_CONTROL: + r = kvm_has_tsc_control; + break; + default: + r = 0; + break; + } + return r; + +} + +long kvm_arch_dev_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + void __user *argp = (void __user *)arg; + long r; + + switch (ioctl) { + case KVM_GET_MSR_INDEX_LIST: { + struct kvm_msr_list __user *user_msr_list = argp; + struct kvm_msr_list msr_list; + unsigned n; + + r = -EFAULT; + if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) + goto out; + n = msr_list.nmsrs; + msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); + if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) + goto out; + r = -E2BIG; + if (n < msr_list.nmsrs) + goto out; + r = -EFAULT; + if (copy_to_user(user_msr_list->indices, &msrs_to_save, + num_msrs_to_save * sizeof(u32))) + goto out; + if (copy_to_user(user_msr_list->indices + num_msrs_to_save, + &emulated_msrs, + ARRAY_SIZE(emulated_msrs) * sizeof(u32))) + goto out; + r = 0; + break; + } + case KVM_GET_SUPPORTED_CPUID: + case KVM_GET_EMULATED_CPUID: { + struct kvm_cpuid2 __user *cpuid_arg = argp; + struct kvm_cpuid2 cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) + goto out; + + r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, + ioctl); + if (r) + goto out; + + r = -EFAULT; + if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) + goto out; + r = 0; + break; + } + case KVM_X86_GET_MCE_CAP_SUPPORTED: { + u64 mce_cap; + + mce_cap = KVM_MCE_CAP_SUPPORTED; + r = -EFAULT; + if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) + goto out; + r = 0; + break; + } + default: + r = -EINVAL; + } +out: + return r; +} + +static void wbinvd_ipi(void *garbage) +{ + wbinvd(); +} + +static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) +{ + return kvm_arch_has_noncoherent_dma(vcpu->kvm); +} + +void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +{ + /* Address WBINVD may be executed by guest */ + if (need_emulate_wbinvd(vcpu)) { + if (kvm_x86_ops->has_wbinvd_exit()) + cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); + else if (vcpu->cpu != -1 && vcpu->cpu != cpu) + smp_call_function_single(vcpu->cpu, + wbinvd_ipi, NULL, 1); + } + + kvm_x86_ops->vcpu_load(vcpu, cpu); + + /* Apply any externally detected TSC adjustments (due to suspend) */ + if (unlikely(vcpu->arch.tsc_offset_adjustment)) { + adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); + vcpu->arch.tsc_offset_adjustment = 0; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + } + + if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { + s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : + native_read_tsc() - vcpu->arch.last_host_tsc; + if (tsc_delta < 0) + mark_tsc_unstable("KVM discovered backwards TSC"); + if (check_tsc_unstable()) { + u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, + vcpu->arch.last_guest_tsc); + kvm_x86_ops->write_tsc_offset(vcpu, offset); + vcpu->arch.tsc_catchup = 1; + } + /* + * On a host with synchronized TSC, there is no need to update + * kvmclock on vcpu->cpu migration + */ + if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) + kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); + if (vcpu->cpu != cpu) + kvm_migrate_timers(vcpu); + vcpu->cpu = cpu; + } + + accumulate_steal_time(vcpu); + kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); +} + +void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) +{ + kvm_x86_ops->vcpu_put(vcpu); + kvm_put_guest_fpu(vcpu); + vcpu->arch.last_host_tsc = native_read_tsc(); +} + +static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, + struct kvm_lapic_state *s) +{ + kvm_x86_ops->sync_pir_to_irr(vcpu); + memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); + + return 0; +} + +static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, + struct kvm_lapic_state *s) +{ + kvm_apic_post_state_restore(vcpu, s); + update_cr8_intercept(vcpu); + + return 0; +} + +static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, + struct kvm_interrupt *irq) +{ + if (irq->irq >= KVM_NR_INTERRUPTS) + return -EINVAL; + if (irqchip_in_kernel(vcpu->kvm)) + return -ENXIO; + + kvm_queue_interrupt(vcpu, irq->irq, false); + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 0; +} + +static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) +{ + kvm_inject_nmi(vcpu); + + return 0; +} + +static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, + struct kvm_tpr_access_ctl *tac) +{ + if (tac->flags) + return -EINVAL; + vcpu->arch.tpr_access_reporting = !!tac->enabled; + return 0; +} + +static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, + u64 mcg_cap) +{ + int r; + unsigned bank_num = mcg_cap & 0xff, bank; + + r = -EINVAL; + if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) + goto out; + if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) + goto out; + r = 0; + vcpu->arch.mcg_cap = mcg_cap; + /* Init IA32_MCG_CTL to all 1s */ + if (mcg_cap & MCG_CTL_P) + vcpu->arch.mcg_ctl = ~(u64)0; + /* Init IA32_MCi_CTL to all 1s */ + for (bank = 0; bank < bank_num; bank++) + vcpu->arch.mce_banks[bank*4] = ~(u64)0; +out: + return r; +} + +static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, + struct kvm_x86_mce *mce) +{ + u64 mcg_cap = vcpu->arch.mcg_cap; + unsigned bank_num = mcg_cap & 0xff; + u64 *banks = vcpu->arch.mce_banks; + + if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) + return -EINVAL; + /* + * if IA32_MCG_CTL is not all 1s, the uncorrected error + * reporting is disabled + */ + if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && + vcpu->arch.mcg_ctl != ~(u64)0) + return 0; + banks += 4 * mce->bank; + /* + * if IA32_MCi_CTL is not all 1s, the uncorrected error + * reporting is disabled for the bank + */ + if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) + return 0; + if (mce->status & MCI_STATUS_UC) { + if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || + !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return 0; + } + if (banks[1] & MCI_STATUS_VAL) + mce->status |= MCI_STATUS_OVER; + banks[2] = mce->addr; + banks[3] = mce->misc; + vcpu->arch.mcg_status = mce->mcg_status; + banks[1] = mce->status; + kvm_queue_exception(vcpu, MC_VECTOR); + } else if (!(banks[1] & MCI_STATUS_VAL) + || !(banks[1] & MCI_STATUS_UC)) { + if (banks[1] & MCI_STATUS_VAL) + mce->status |= MCI_STATUS_OVER; + banks[2] = mce->addr; + banks[3] = mce->misc; + banks[1] = mce->status; + } else + banks[1] |= MCI_STATUS_OVER; + return 0; +} + +static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, + struct kvm_vcpu_events *events) +{ + process_nmi(vcpu); + events->exception.injected = + vcpu->arch.exception.pending && + !kvm_exception_is_soft(vcpu->arch.exception.nr); + events->exception.nr = vcpu->arch.exception.nr; + events->exception.has_error_code = vcpu->arch.exception.has_error_code; + events->exception.pad = 0; + events->exception.error_code = vcpu->arch.exception.error_code; + + events->interrupt.injected = + vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; + events->interrupt.nr = vcpu->arch.interrupt.nr; + events->interrupt.soft = 0; + events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); + + events->nmi.injected = vcpu->arch.nmi_injected; + events->nmi.pending = vcpu->arch.nmi_pending != 0; + events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); + events->nmi.pad = 0; + + events->sipi_vector = 0; /* never valid when reporting to user space */ + + events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING + | KVM_VCPUEVENT_VALID_SHADOW); + memset(&events->reserved, 0, sizeof(events->reserved)); +} + +static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, + struct kvm_vcpu_events *events) +{ + if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING + | KVM_VCPUEVENT_VALID_SIPI_VECTOR + | KVM_VCPUEVENT_VALID_SHADOW)) + return -EINVAL; + + process_nmi(vcpu); + vcpu->arch.exception.pending = events->exception.injected; + vcpu->arch.exception.nr = events->exception.nr; + vcpu->arch.exception.has_error_code = events->exception.has_error_code; + vcpu->arch.exception.error_code = events->exception.error_code; + + vcpu->arch.interrupt.pending = events->interrupt.injected; + vcpu->arch.interrupt.nr = events->interrupt.nr; + vcpu->arch.interrupt.soft = events->interrupt.soft; + if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) + kvm_x86_ops->set_interrupt_shadow(vcpu, + events->interrupt.shadow); + + vcpu->arch.nmi_injected = events->nmi.injected; + if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) + vcpu->arch.nmi_pending = events->nmi.pending; + kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); + + if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && + kvm_vcpu_has_lapic(vcpu)) + vcpu->arch.apic->sipi_vector = events->sipi_vector; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 0; +} + +static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, + struct kvm_debugregs *dbgregs) +{ + unsigned long val; + + memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); + kvm_get_dr(vcpu, 6, &val); + dbgregs->dr6 = val; + dbgregs->dr7 = vcpu->arch.dr7; + dbgregs->flags = 0; + memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); +} + +static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, + struct kvm_debugregs *dbgregs) +{ + if (dbgregs->flags) + return -EINVAL; + + memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); + kvm_update_dr0123(vcpu); + vcpu->arch.dr6 = dbgregs->dr6; + kvm_update_dr6(vcpu); + vcpu->arch.dr7 = dbgregs->dr7; + kvm_update_dr7(vcpu); + + return 0; +} + +#define XSTATE_COMPACTION_ENABLED (1ULL << 63) + +static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) +{ + struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave; + u64 xstate_bv = xsave->xsave_hdr.xstate_bv; + u64 valid; + + /* + * Copy legacy XSAVE area, to avoid complications with CPUID + * leaves 0 and 1 in the loop below. + */ + memcpy(dest, xsave, XSAVE_HDR_OFFSET); + + /* Set XSTATE_BV */ + *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; + + /* + * Copy each region from the possibly compacted offset to the + * non-compacted offset. + */ + valid = xstate_bv & ~XSTATE_FPSSE; + while (valid) { + u64 feature = valid & -valid; + int index = fls64(feature) - 1; + void *src = get_xsave_addr(xsave, feature); + + if (src) { + u32 size, offset, ecx, edx; + cpuid_count(XSTATE_CPUID, index, + &size, &offset, &ecx, &edx); + memcpy(dest + offset, src, size); + } + + valid -= feature; + } +} + +static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) +{ + struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave; + u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); + u64 valid; + + /* + * Copy legacy XSAVE area, to avoid complications with CPUID + * leaves 0 and 1 in the loop below. + */ + memcpy(xsave, src, XSAVE_HDR_OFFSET); + + /* Set XSTATE_BV and possibly XCOMP_BV. */ + xsave->xsave_hdr.xstate_bv = xstate_bv; + if (cpu_has_xsaves) + xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; + + /* + * Copy each region from the non-compacted offset to the + * possibly compacted offset. + */ + valid = xstate_bv & ~XSTATE_FPSSE; + while (valid) { + u64 feature = valid & -valid; + int index = fls64(feature) - 1; + void *dest = get_xsave_addr(xsave, feature); + + if (dest) { + u32 size, offset, ecx, edx; + cpuid_count(XSTATE_CPUID, index, + &size, &offset, &ecx, &edx); + memcpy(dest, src + offset, size); + } else + WARN_ON_ONCE(1); + + valid -= feature; + } +} + +static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, + struct kvm_xsave *guest_xsave) +{ + if (cpu_has_xsave) { + memset(guest_xsave, 0, sizeof(struct kvm_xsave)); + fill_xsave((u8 *) guest_xsave->region, vcpu); + } else { + memcpy(guest_xsave->region, + &vcpu->arch.guest_fpu.state->fxsave, + sizeof(struct i387_fxsave_struct)); + *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = + XSTATE_FPSSE; + } +} + +static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, + struct kvm_xsave *guest_xsave) +{ + u64 xstate_bv = + *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; + + if (cpu_has_xsave) { + /* + * Here we allow setting states that are not present in + * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility + * with old userspace. + */ + if (xstate_bv & ~kvm_supported_xcr0()) + return -EINVAL; + load_xsave(vcpu, (u8 *)guest_xsave->region); + } else { + if (xstate_bv & ~XSTATE_FPSSE) + return -EINVAL; + memcpy(&vcpu->arch.guest_fpu.state->fxsave, + guest_xsave->region, sizeof(struct i387_fxsave_struct)); + } + return 0; +} + +static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, + struct kvm_xcrs *guest_xcrs) +{ + if (!cpu_has_xsave) { + guest_xcrs->nr_xcrs = 0; + return; + } + + guest_xcrs->nr_xcrs = 1; + guest_xcrs->flags = 0; + guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; + guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; +} + +static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, + struct kvm_xcrs *guest_xcrs) +{ + int i, r = 0; + + if (!cpu_has_xsave) + return -EINVAL; + + if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) + return -EINVAL; + + for (i = 0; i < guest_xcrs->nr_xcrs; i++) + /* Only support XCR0 currently */ + if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { + r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, + guest_xcrs->xcrs[i].value); + break; + } + if (r) + r = -EINVAL; + return r; +} + +/* + * kvm_set_guest_paused() indicates to the guest kernel that it has been + * stopped by the hypervisor. This function will be called from the host only. + * EINVAL is returned when the host attempts to set the flag for a guest that + * does not support pv clocks. + */ +static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) +{ + if (!vcpu->arch.pv_time_enabled) + return -EINVAL; + vcpu->arch.pvclock_set_guest_stopped_request = true; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + return 0; +} + +long kvm_arch_vcpu_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm_vcpu *vcpu = filp->private_data; + void __user *argp = (void __user *)arg; + int r; + union { + struct kvm_lapic_state *lapic; + struct kvm_xsave *xsave; + struct kvm_xcrs *xcrs; + void *buffer; + } u; + + u.buffer = NULL; + switch (ioctl) { + case KVM_GET_LAPIC: { + r = -EINVAL; + if (!vcpu->arch.apic) + goto out; + u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); + + r = -ENOMEM; + if (!u.lapic) + goto out; + r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) + goto out; + r = 0; + break; + } + case KVM_SET_LAPIC: { + r = -EINVAL; + if (!vcpu->arch.apic) + goto out; + u.lapic = memdup_user(argp, sizeof(*u.lapic)); + if (IS_ERR(u.lapic)) + return PTR_ERR(u.lapic); + + r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); + break; + } + case KVM_INTERRUPT: { + struct kvm_interrupt irq; + + r = -EFAULT; + if (copy_from_user(&irq, argp, sizeof irq)) + goto out; + r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); + break; + } + case KVM_NMI: { + r = kvm_vcpu_ioctl_nmi(vcpu); + break; + } + case KVM_SET_CPUID: { + struct kvm_cpuid __user *cpuid_arg = argp; + struct kvm_cpuid cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) + goto out; + r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); + break; + } + case KVM_SET_CPUID2: { + struct kvm_cpuid2 __user *cpuid_arg = argp; + struct kvm_cpuid2 cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) + goto out; + r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, + cpuid_arg->entries); + break; + } + case KVM_GET_CPUID2: { + struct kvm_cpuid2 __user *cpuid_arg = argp; + struct kvm_cpuid2 cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) + goto out; + r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, + cpuid_arg->entries); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) + goto out; + r = 0; + break; + } + case KVM_GET_MSRS: + r = msr_io(vcpu, argp, kvm_get_msr, 1); + break; + case KVM_SET_MSRS: + r = msr_io(vcpu, argp, do_set_msr, 0); + break; + case KVM_TPR_ACCESS_REPORTING: { + struct kvm_tpr_access_ctl tac; + + r = -EFAULT; + if (copy_from_user(&tac, argp, sizeof tac)) + goto out; + r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, &tac, sizeof tac)) + goto out; + r = 0; + break; + }; + case KVM_SET_VAPIC_ADDR: { + struct kvm_vapic_addr va; + + r = -EINVAL; + if (!irqchip_in_kernel(vcpu->kvm)) + goto out; + r = -EFAULT; + if (copy_from_user(&va, argp, sizeof va)) + goto out; + r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); + break; + } + case KVM_X86_SETUP_MCE: { + u64 mcg_cap; + + r = -EFAULT; + if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) + goto out; + r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); + break; + } + case KVM_X86_SET_MCE: { + struct kvm_x86_mce mce; + + r = -EFAULT; + if (copy_from_user(&mce, argp, sizeof mce)) + goto out; + r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); + break; + } + case KVM_GET_VCPU_EVENTS: { + struct kvm_vcpu_events events; + + kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); + + r = -EFAULT; + if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) + break; + r = 0; + break; + } + case KVM_SET_VCPU_EVENTS: { + struct kvm_vcpu_events events; + + r = -EFAULT; + if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) + break; + + r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); + break; + } + case KVM_GET_DEBUGREGS: { + struct kvm_debugregs dbgregs; + + kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); + + r = -EFAULT; + if (copy_to_user(argp, &dbgregs, + sizeof(struct kvm_debugregs))) + break; + r = 0; + break; + } + case KVM_SET_DEBUGREGS: { + struct kvm_debugregs dbgregs; + + r = -EFAULT; + if (copy_from_user(&dbgregs, argp, + sizeof(struct kvm_debugregs))) + break; + + r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); + break; + } + case KVM_GET_XSAVE: { + u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); + r = -ENOMEM; + if (!u.xsave) + break; + + kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); + + r = -EFAULT; + if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) + break; + r = 0; + break; + } + case KVM_SET_XSAVE: { + u.xsave = memdup_user(argp, sizeof(*u.xsave)); + if (IS_ERR(u.xsave)) + return PTR_ERR(u.xsave); + + r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); + break; + } + case KVM_GET_XCRS: { + u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); + r = -ENOMEM; + if (!u.xcrs) + break; + + kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); + + r = -EFAULT; + if (copy_to_user(argp, u.xcrs, + sizeof(struct kvm_xcrs))) + break; + r = 0; + break; + } + case KVM_SET_XCRS: { + u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); + if (IS_ERR(u.xcrs)) + return PTR_ERR(u.xcrs); + + r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); + break; + } + case KVM_SET_TSC_KHZ: { + u32 user_tsc_khz; + + r = -EINVAL; + user_tsc_khz = (u32)arg; + + if (user_tsc_khz >= kvm_max_guest_tsc_khz) + goto out; + + if (user_tsc_khz == 0) + user_tsc_khz = tsc_khz; + + kvm_set_tsc_khz(vcpu, user_tsc_khz); + + r = 0; + goto out; + } + case KVM_GET_TSC_KHZ: { + r = vcpu->arch.virtual_tsc_khz; + goto out; + } + case KVM_KVMCLOCK_CTRL: { + r = kvm_set_guest_paused(vcpu); + goto out; + } + default: + r = -EINVAL; + } +out: + kfree(u.buffer); + return r; +} + +int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) +{ + return VM_FAULT_SIGBUS; +} + +static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) +{ + int ret; + + if (addr > (unsigned int)(-3 * PAGE_SIZE)) + return -EINVAL; + ret = kvm_x86_ops->set_tss_addr(kvm, addr); + return ret; +} + +static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, + u64 ident_addr) +{ + kvm->arch.ept_identity_map_addr = ident_addr; + return 0; +} + +static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, + u32 kvm_nr_mmu_pages) +{ + if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) + return -EINVAL; + + mutex_lock(&kvm->slots_lock); + + kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); + kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; + + mutex_unlock(&kvm->slots_lock); + return 0; +} + +static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) +{ + return kvm->arch.n_max_mmu_pages; +} + +static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) +{ + int r; + + r = 0; + switch (chip->chip_id) { + case KVM_IRQCHIP_PIC_MASTER: + memcpy(&chip->chip.pic, + &pic_irqchip(kvm)->pics[0], + sizeof(struct kvm_pic_state)); + break; + case KVM_IRQCHIP_PIC_SLAVE: + memcpy(&chip->chip.pic, + &pic_irqchip(kvm)->pics[1], + sizeof(struct kvm_pic_state)); + break; + case KVM_IRQCHIP_IOAPIC: + r = kvm_get_ioapic(kvm, &chip->chip.ioapic); + break; + default: + r = -EINVAL; + break; + } + return r; +} + +static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) +{ + int r; + + r = 0; + switch (chip->chip_id) { + case KVM_IRQCHIP_PIC_MASTER: + spin_lock(&pic_irqchip(kvm)->lock); + memcpy(&pic_irqchip(kvm)->pics[0], + &chip->chip.pic, + sizeof(struct kvm_pic_state)); + spin_unlock(&pic_irqchip(kvm)->lock); + break; + case KVM_IRQCHIP_PIC_SLAVE: + spin_lock(&pic_irqchip(kvm)->lock); + memcpy(&pic_irqchip(kvm)->pics[1], + &chip->chip.pic, + sizeof(struct kvm_pic_state)); + spin_unlock(&pic_irqchip(kvm)->lock); + break; + case KVM_IRQCHIP_IOAPIC: + r = kvm_set_ioapic(kvm, &chip->chip.ioapic); + break; + default: + r = -EINVAL; + break; + } + kvm_pic_update_irq(pic_irqchip(kvm)); + return r; +} + +static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) +{ + int r = 0; + + mutex_lock(&kvm->arch.vpit->pit_state.lock); + memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); + mutex_unlock(&kvm->arch.vpit->pit_state.lock); + return r; +} + +static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) +{ + int r = 0; + + mutex_lock(&kvm->arch.vpit->pit_state.lock); + memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); + kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); + mutex_unlock(&kvm->arch.vpit->pit_state.lock); + return r; +} + +static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) +{ + int r = 0; + + mutex_lock(&kvm->arch.vpit->pit_state.lock); + memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, + sizeof(ps->channels)); + ps->flags = kvm->arch.vpit->pit_state.flags; + mutex_unlock(&kvm->arch.vpit->pit_state.lock); + memset(&ps->reserved, 0, sizeof(ps->reserved)); + return r; +} + +static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) +{ + int r = 0, start = 0; + u32 prev_legacy, cur_legacy; + mutex_lock(&kvm->arch.vpit->pit_state.lock); + prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; + cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; + if (!prev_legacy && cur_legacy) + start = 1; + memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, + sizeof(kvm->arch.vpit->pit_state.channels)); + kvm->arch.vpit->pit_state.flags = ps->flags; + kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); + mutex_unlock(&kvm->arch.vpit->pit_state.lock); + return r; +} + +static int kvm_vm_ioctl_reinject(struct kvm *kvm, + struct kvm_reinject_control *control) +{ + if (!kvm->arch.vpit) + return -ENXIO; + mutex_lock(&kvm->arch.vpit->pit_state.lock); + kvm->arch.vpit->pit_state.reinject = control->pit_reinject; + mutex_unlock(&kvm->arch.vpit->pit_state.lock); + return 0; +} + +/** + * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot + * @kvm: kvm instance + * @log: slot id and address to which we copy the log + * + * Steps 1-4 below provide general overview of dirty page logging. See + * kvm_get_dirty_log_protect() function description for additional details. + * + * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we + * always flush the TLB (step 4) even if previous step failed and the dirty + * bitmap may be corrupt. Regardless of previous outcome the KVM logging API + * does not preclude user space subsequent dirty log read. Flushing TLB ensures + * writes will be marked dirty for next log read. + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Copy the snapshot to the userspace. + * 4. Flush TLB's if needed. + */ +int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) +{ + bool is_dirty = false; + int r; + + mutex_lock(&kvm->slots_lock); + + /* + * Flush potentially hardware-cached dirty pages to dirty_bitmap. + */ + if (kvm_x86_ops->flush_log_dirty) + kvm_x86_ops->flush_log_dirty(kvm); + + r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); + + /* + * All the TLBs can be flushed out of mmu lock, see the comments in + * kvm_mmu_slot_remove_write_access(). + */ + lockdep_assert_held(&kvm->slots_lock); + if (is_dirty) + kvm_flush_remote_tlbs(kvm); + + mutex_unlock(&kvm->slots_lock); + return r; +} + +int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, + bool line_status) +{ + if (!irqchip_in_kernel(kvm)) + return -ENXIO; + + irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, + irq_event->irq, irq_event->level, + line_status); + return 0; +} + +long kvm_arch_vm_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm *kvm = filp->private_data; + void __user *argp = (void __user *)arg; + int r = -ENOTTY; + /* + * This union makes it completely explicit to gcc-3.x + * that these two variables' stack usage should be + * combined, not added together. + */ + union { + struct kvm_pit_state ps; + struct kvm_pit_state2 ps2; + struct kvm_pit_config pit_config; + } u; + + switch (ioctl) { + case KVM_SET_TSS_ADDR: + r = kvm_vm_ioctl_set_tss_addr(kvm, arg); + break; + case KVM_SET_IDENTITY_MAP_ADDR: { + u64 ident_addr; + + r = -EFAULT; + if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) + goto out; + r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); + break; + } + case KVM_SET_NR_MMU_PAGES: + r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); + break; + case KVM_GET_NR_MMU_PAGES: + r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); + break; + case KVM_CREATE_IRQCHIP: { + struct kvm_pic *vpic; + + mutex_lock(&kvm->lock); + r = -EEXIST; + if (kvm->arch.vpic) + goto create_irqchip_unlock; + r = -EINVAL; + if (atomic_read(&kvm->online_vcpus)) + goto create_irqchip_unlock; + r = -ENOMEM; + vpic = kvm_create_pic(kvm); + if (vpic) { + r = kvm_ioapic_init(kvm); + if (r) { + mutex_lock(&kvm->slots_lock); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, + &vpic->dev_master); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, + &vpic->dev_slave); + kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, + &vpic->dev_eclr); + mutex_unlock(&kvm->slots_lock); + kfree(vpic); + goto create_irqchip_unlock; + } + } else + goto create_irqchip_unlock; + smp_wmb(); + kvm->arch.vpic = vpic; + smp_wmb(); + r = kvm_setup_default_irq_routing(kvm); + if (r) { + mutex_lock(&kvm->slots_lock); + mutex_lock(&kvm->irq_lock); + kvm_ioapic_destroy(kvm); + kvm_destroy_pic(kvm); + mutex_unlock(&kvm->irq_lock); + mutex_unlock(&kvm->slots_lock); + } + create_irqchip_unlock: + mutex_unlock(&kvm->lock); + break; + } + case KVM_CREATE_PIT: + u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; + goto create_pit; + case KVM_CREATE_PIT2: + r = -EFAULT; + if (copy_from_user(&u.pit_config, argp, + sizeof(struct kvm_pit_config))) + goto out; + create_pit: + mutex_lock(&kvm->slots_lock); + r = -EEXIST; + if (kvm->arch.vpit) + goto create_pit_unlock; + r = -ENOMEM; + kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); + if (kvm->arch.vpit) + r = 0; + create_pit_unlock: + mutex_unlock(&kvm->slots_lock); + break; + case KVM_GET_IRQCHIP: { + /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ + struct kvm_irqchip *chip; + + chip = memdup_user(argp, sizeof(*chip)); + if (IS_ERR(chip)) { + r = PTR_ERR(chip); + goto out; + } + + r = -ENXIO; + if (!irqchip_in_kernel(kvm)) + goto get_irqchip_out; + r = kvm_vm_ioctl_get_irqchip(kvm, chip); + if (r) + goto get_irqchip_out; + r = -EFAULT; + if (copy_to_user(argp, chip, sizeof *chip)) + goto get_irqchip_out; + r = 0; + get_irqchip_out: + kfree(chip); + break; + } + case KVM_SET_IRQCHIP: { + /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ + struct kvm_irqchip *chip; + + chip = memdup_user(argp, sizeof(*chip)); + if (IS_ERR(chip)) { + r = PTR_ERR(chip); + goto out; + } + + r = -ENXIO; + if (!irqchip_in_kernel(kvm)) + goto set_irqchip_out; + r = kvm_vm_ioctl_set_irqchip(kvm, chip); + if (r) + goto set_irqchip_out; + r = 0; + set_irqchip_out: + kfree(chip); + break; + } + case KVM_GET_PIT: { + r = -EFAULT; + if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) + goto out; + r = -ENXIO; + if (!kvm->arch.vpit) + goto out; + r = kvm_vm_ioctl_get_pit(kvm, &u.ps); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) + goto out; + r = 0; + break; + } + case KVM_SET_PIT: { + r = -EFAULT; + if (copy_from_user(&u.ps, argp, sizeof u.ps)) + goto out; + r = -ENXIO; + if (!kvm->arch.vpit) + goto out; + r = kvm_vm_ioctl_set_pit(kvm, &u.ps); + break; + } + case KVM_GET_PIT2: { + r = -ENXIO; + if (!kvm->arch.vpit) + goto out; + r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) + goto out; + r = 0; + break; + } + case KVM_SET_PIT2: { + r = -EFAULT; + if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) + goto out; + r = -ENXIO; + if (!kvm->arch.vpit) + goto out; + r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); + break; + } + case KVM_REINJECT_CONTROL: { + struct kvm_reinject_control control; + r = -EFAULT; + if (copy_from_user(&control, argp, sizeof(control))) + goto out; + r = kvm_vm_ioctl_reinject(kvm, &control); + break; + } + case KVM_XEN_HVM_CONFIG: { + r = -EFAULT; + if (copy_from_user(&kvm->arch.xen_hvm_config, argp, + sizeof(struct kvm_xen_hvm_config))) + goto out; + r = -EINVAL; + if (kvm->arch.xen_hvm_config.flags) + goto out; + r = 0; + break; + } + case KVM_SET_CLOCK: { + struct kvm_clock_data user_ns; + u64 now_ns; + s64 delta; + + r = -EFAULT; + if (copy_from_user(&user_ns, argp, sizeof(user_ns))) + goto out; + + r = -EINVAL; + if (user_ns.flags) + goto out; + + r = 0; + local_irq_disable(); + now_ns = get_kernel_ns(); + delta = user_ns.clock - now_ns; + local_irq_enable(); + kvm->arch.kvmclock_offset = delta; + kvm_gen_update_masterclock(kvm); + break; + } + case KVM_GET_CLOCK: { + struct kvm_clock_data user_ns; + u64 now_ns; + + local_irq_disable(); + now_ns = get_kernel_ns(); + user_ns.clock = kvm->arch.kvmclock_offset + now_ns; + local_irq_enable(); + user_ns.flags = 0; + memset(&user_ns.pad, 0, sizeof(user_ns.pad)); + + r = -EFAULT; + if (copy_to_user(argp, &user_ns, sizeof(user_ns))) + goto out; + r = 0; + break; + } + + default: + r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); + } +out: + return r; +} + +static void kvm_init_msr_list(void) +{ + u32 dummy[2]; + unsigned i, j; + + /* skip the first msrs in the list. KVM-specific */ + for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { + if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) + continue; + + /* + * Even MSRs that are valid in the host may not be exposed + * to the guests in some cases. We could work around this + * in VMX with the generic MSR save/load machinery, but it + * is not really worthwhile since it will really only + * happen with nested virtualization. + */ + switch (msrs_to_save[i]) { + case MSR_IA32_BNDCFGS: + if (!kvm_x86_ops->mpx_supported()) + continue; + break; + default: + break; + } + + if (j < i) + msrs_to_save[j] = msrs_to_save[i]; + j++; + } + num_msrs_to_save = j; +} + +static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, + const void *v) +{ + int handled = 0; + int n; + + do { + n = min(len, 8); + if (!(vcpu->arch.apic && + !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) + && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) + break; + handled += n; + addr += n; + len -= n; + v += n; + } while (len); + + return handled; +} + +static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) +{ + int handled = 0; + int n; + + do { + n = min(len, 8); + if (!(vcpu->arch.apic && + !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, + addr, n, v)) + && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) + break; + trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); + handled += n; + addr += n; + len -= n; + v += n; + } while (len); + + return handled; +} + +static void kvm_set_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + kvm_x86_ops->set_segment(vcpu, var, seg); +} + +void kvm_get_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + kvm_x86_ops->get_segment(vcpu, var, seg); +} + +gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, + struct x86_exception *exception) +{ + gpa_t t_gpa; + + BUG_ON(!mmu_is_nested(vcpu)); + + /* NPT walks are always user-walks */ + access |= PFERR_USER_MASK; + t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); + + return t_gpa; +} + +gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); +} + + gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + access |= PFERR_FETCH_MASK; + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); +} + +gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + access |= PFERR_WRITE_MASK; + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); +} + +/* uses this to access any guest's mapped memory without checking CPL */ +gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); +} + +static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, + struct kvm_vcpu *vcpu, u32 access, + struct x86_exception *exception) +{ + void *data = val; + int r = X86EMUL_CONTINUE; + + while (bytes) { + gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, + exception); + unsigned offset = addr & (PAGE_SIZE-1); + unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); + int ret; + + if (gpa == UNMAPPED_GVA) + return X86EMUL_PROPAGATE_FAULT; + ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data, + offset, toread); + if (ret < 0) { + r = X86EMUL_IO_NEEDED; + goto out; + } + + bytes -= toread; + data += toread; + addr += toread; + } +out: + return r; +} + +/* used for instruction fetching */ +static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + unsigned offset; + int ret; + + /* Inline kvm_read_guest_virt_helper for speed. */ + gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, + exception); + if (unlikely(gpa == UNMAPPED_GVA)) + return X86EMUL_PROPAGATE_FAULT; + + offset = addr & (PAGE_SIZE-1); + if (WARN_ON(offset + bytes > PAGE_SIZE)) + bytes = (unsigned)PAGE_SIZE - offset; + ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val, + offset, bytes); + if (unlikely(ret < 0)) + return X86EMUL_IO_NEEDED; + + return X86EMUL_CONTINUE; +} + +int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; + + return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, + exception); +} +EXPORT_SYMBOL_GPL(kvm_read_guest_virt); + +static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); +} + +int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, + unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + void *data = val; + int r = X86EMUL_CONTINUE; + + while (bytes) { + gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, + PFERR_WRITE_MASK, + exception); + unsigned offset = addr & (PAGE_SIZE-1); + unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); + int ret; + + if (gpa == UNMAPPED_GVA) + return X86EMUL_PROPAGATE_FAULT; + ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); + if (ret < 0) { + r = X86EMUL_IO_NEEDED; + goto out; + } + + bytes -= towrite; + data += towrite; + addr += towrite; + } +out: + return r; +} +EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); + +static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, + gpa_t *gpa, struct x86_exception *exception, + bool write) +{ + u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) + | (write ? PFERR_WRITE_MASK : 0); + + if (vcpu_match_mmio_gva(vcpu, gva) + && !permission_fault(vcpu, vcpu->arch.walk_mmu, + vcpu->arch.access, access)) { + *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | + (gva & (PAGE_SIZE - 1)); + trace_vcpu_match_mmio(gva, *gpa, write, false); + return 1; + } + + *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); + + if (*gpa == UNMAPPED_GVA) + return -1; + + /* For APIC access vmexit */ + if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) + return 1; + + if (vcpu_match_mmio_gpa(vcpu, *gpa)) { + trace_vcpu_match_mmio(gva, *gpa, write, true); + return 1; + } + + return 0; +} + +int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, + const void *val, int bytes) +{ + int ret; + + ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); + if (ret < 0) + return 0; + kvm_mmu_pte_write(vcpu, gpa, val, bytes); + return 1; +} + +struct read_write_emulator_ops { + int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, + int bytes); + int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes); + int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, + int bytes, void *val); + int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes); + bool write; +}; + +static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) +{ + if (vcpu->mmio_read_completed) { + trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, + vcpu->mmio_fragments[0].gpa, *(u64 *)val); + vcpu->mmio_read_completed = 0; + return 1; + } + + return 0; +} + +static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); +} + +static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + return emulator_write_phys(vcpu, gpa, val, bytes); +} + +static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) +{ + trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); + return vcpu_mmio_write(vcpu, gpa, bytes, val); +} + +static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); + return X86EMUL_IO_NEEDED; +} + +static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; + + memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); + return X86EMUL_CONTINUE; +} + +static const struct read_write_emulator_ops read_emultor = { + .read_write_prepare = read_prepare, + .read_write_emulate = read_emulate, + .read_write_mmio = vcpu_mmio_read, + .read_write_exit_mmio = read_exit_mmio, +}; + +static const struct read_write_emulator_ops write_emultor = { + .read_write_emulate = write_emulate, + .read_write_mmio = write_mmio, + .read_write_exit_mmio = write_exit_mmio, + .write = true, +}; + +static int emulator_read_write_onepage(unsigned long addr, void *val, + unsigned int bytes, + struct x86_exception *exception, + struct kvm_vcpu *vcpu, + const struct read_write_emulator_ops *ops) +{ + gpa_t gpa; + int handled, ret; + bool write = ops->write; + struct kvm_mmio_fragment *frag; + + ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); + + if (ret < 0) + return X86EMUL_PROPAGATE_FAULT; + + /* For APIC access vmexit */ + if (ret) + goto mmio; + + if (ops->read_write_emulate(vcpu, gpa, val, bytes)) + return X86EMUL_CONTINUE; + +mmio: + /* + * Is this MMIO handled locally? + */ + handled = ops->read_write_mmio(vcpu, gpa, bytes, val); + if (handled == bytes) + return X86EMUL_CONTINUE; + + gpa += handled; + bytes -= handled; + val += handled; + + WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); + frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; + frag->gpa = gpa; + frag->data = val; + frag->len = bytes; + return X86EMUL_CONTINUE; +} + +static int emulator_read_write(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + void *val, unsigned int bytes, + struct x86_exception *exception, + const struct read_write_emulator_ops *ops) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + gpa_t gpa; + int rc; + + if (ops->read_write_prepare && + ops->read_write_prepare(vcpu, val, bytes)) + return X86EMUL_CONTINUE; + + vcpu->mmio_nr_fragments = 0; + + /* Crossing a page boundary? */ + if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { + int now; + + now = -addr & ~PAGE_MASK; + rc = emulator_read_write_onepage(addr, val, now, exception, + vcpu, ops); + + if (rc != X86EMUL_CONTINUE) + return rc; + addr += now; + if (ctxt->mode != X86EMUL_MODE_PROT64) + addr = (u32)addr; + val += now; + bytes -= now; + } + + rc = emulator_read_write_onepage(addr, val, bytes, exception, + vcpu, ops); + if (rc != X86EMUL_CONTINUE) + return rc; + + if (!vcpu->mmio_nr_fragments) + return rc; + + gpa = vcpu->mmio_fragments[0].gpa; + + vcpu->mmio_needed = 1; + vcpu->mmio_cur_fragment = 0; + + vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); + vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; + vcpu->run->exit_reason = KVM_EXIT_MMIO; + vcpu->run->mmio.phys_addr = gpa; + + return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); +} + +static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + void *val, + unsigned int bytes, + struct x86_exception *exception) +{ + return emulator_read_write(ctxt, addr, val, bytes, + exception, &read_emultor); +} + +static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + const void *val, + unsigned int bytes, + struct x86_exception *exception) +{ + return emulator_read_write(ctxt, addr, (void *)val, bytes, + exception, &write_emultor); +} + +#define CMPXCHG_TYPE(t, ptr, old, new) \ + (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) + +#ifdef CONFIG_X86_64 +# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) +#else +# define CMPXCHG64(ptr, old, new) \ + (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) +#endif + +static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + const void *old, + const void *new, + unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + gpa_t gpa; + struct page *page; + char *kaddr; + bool exchanged; + + /* guests cmpxchg8b have to be emulated atomically */ + if (bytes > 8 || (bytes & (bytes - 1))) + goto emul_write; + + gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); + + if (gpa == UNMAPPED_GVA || + (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) + goto emul_write; + + if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) + goto emul_write; + + page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); + if (is_error_page(page)) + goto emul_write; + + kaddr = kmap_atomic(page); + kaddr += offset_in_page(gpa); + switch (bytes) { + case 1: + exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); + break; + case 2: + exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); + break; + case 4: + exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); + break; + case 8: + exchanged = CMPXCHG64(kaddr, old, new); + break; + default: + BUG(); + } + kunmap_atomic(kaddr); + kvm_release_page_dirty(page); + + if (!exchanged) + return X86EMUL_CMPXCHG_FAILED; + + mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT); + kvm_mmu_pte_write(vcpu, gpa, new, bytes); + + return X86EMUL_CONTINUE; + +emul_write: + printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); + + return emulator_write_emulated(ctxt, addr, new, bytes, exception); +} + +static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) +{ + /* TODO: String I/O for in kernel device */ + int r; + + if (vcpu->arch.pio.in) + r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, + vcpu->arch.pio.size, pd); + else + r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, + vcpu->arch.pio.port, vcpu->arch.pio.size, + pd); + return r; +} + +static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, + unsigned short port, void *val, + unsigned int count, bool in) +{ + vcpu->arch.pio.port = port; + vcpu->arch.pio.in = in; + vcpu->arch.pio.count = count; + vcpu->arch.pio.size = size; + + if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { + vcpu->arch.pio.count = 0; + return 1; + } + + vcpu->run->exit_reason = KVM_EXIT_IO; + vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; + vcpu->run->io.size = size; + vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; + vcpu->run->io.count = count; + vcpu->run->io.port = port; + + return 0; +} + +static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, + int size, unsigned short port, void *val, + unsigned int count) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + int ret; + + if (vcpu->arch.pio.count) + goto data_avail; + + ret = emulator_pio_in_out(vcpu, size, port, val, count, true); + if (ret) { +data_avail: + memcpy(val, vcpu->arch.pio_data, size * count); + trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); + vcpu->arch.pio.count = 0; + return 1; + } + + return 0; +} + +static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, + int size, unsigned short port, + const void *val, unsigned int count) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + + memcpy(vcpu->arch.pio_data, val, size * count); + trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); + return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); +} + +static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) +{ + return kvm_x86_ops->get_segment_base(vcpu, seg); +} + +static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) +{ + kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); +} + +int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) +{ + if (!need_emulate_wbinvd(vcpu)) + return X86EMUL_CONTINUE; + + if (kvm_x86_ops->has_wbinvd_exit()) { + int cpu = get_cpu(); + + cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); + smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, + wbinvd_ipi, NULL, 1); + put_cpu(); + cpumask_clear(vcpu->arch.wbinvd_dirty_mask); + } else + wbinvd(); + return X86EMUL_CONTINUE; +} + +int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) +{ + kvm_x86_ops->skip_emulated_instruction(vcpu); + return kvm_emulate_wbinvd_noskip(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); + + + +static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) +{ + kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); +} + +static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, + unsigned long *dest) +{ + return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); +} + +static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, + unsigned long value) +{ + + return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); +} + +static u64 mk_cr_64(u64 curr_cr, u32 new_val) +{ + return (curr_cr & ~((1ULL << 32) - 1)) | new_val; +} + +static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + unsigned long value; + + switch (cr) { + case 0: + value = kvm_read_cr0(vcpu); + break; + case 2: + value = vcpu->arch.cr2; + break; + case 3: + value = kvm_read_cr3(vcpu); + break; + case 4: + value = kvm_read_cr4(vcpu); + break; + case 8: + value = kvm_get_cr8(vcpu); + break; + default: + kvm_err("%s: unexpected cr %u\n", __func__, cr); + return 0; + } + + return value; +} + +static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + int res = 0; + + switch (cr) { + case 0: + res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); + break; + case 2: + vcpu->arch.cr2 = val; + break; + case 3: + res = kvm_set_cr3(vcpu, val); + break; + case 4: + res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); + break; + case 8: + res = kvm_set_cr8(vcpu, val); + break; + default: + kvm_err("%s: unexpected cr %u\n", __func__, cr); + res = -1; + } + + return res; +} + +static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) +{ + return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); +} + +static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); +} + +static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); +} + +static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); +} + +static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); +} + +static unsigned long emulator_get_cached_segment_base( + struct x86_emulate_ctxt *ctxt, int seg) +{ + return get_segment_base(emul_to_vcpu(ctxt), seg); +} + +static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, + struct desc_struct *desc, u32 *base3, + int seg) +{ + struct kvm_segment var; + + kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); + *selector = var.selector; + + if (var.unusable) { + memset(desc, 0, sizeof(*desc)); + return false; + } + + if (var.g) + var.limit >>= 12; + set_desc_limit(desc, var.limit); + set_desc_base(desc, (unsigned long)var.base); +#ifdef CONFIG_X86_64 + if (base3) + *base3 = var.base >> 32; +#endif + desc->type = var.type; + desc->s = var.s; + desc->dpl = var.dpl; + desc->p = var.present; + desc->avl = var.avl; + desc->l = var.l; + desc->d = var.db; + desc->g = var.g; + + return true; +} + +static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, + struct desc_struct *desc, u32 base3, + int seg) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + struct kvm_segment var; + + var.selector = selector; + var.base = get_desc_base(desc); +#ifdef CONFIG_X86_64 + var.base |= ((u64)base3) << 32; +#endif + var.limit = get_desc_limit(desc); + if (desc->g) + var.limit = (var.limit << 12) | 0xfff; + var.type = desc->type; + var.dpl = desc->dpl; + var.db = desc->d; + var.s = desc->s; + var.l = desc->l; + var.g = desc->g; + var.avl = desc->avl; + var.present = desc->p; + var.unusable = !var.present; + var.padding = 0; + + kvm_set_segment(vcpu, &var, seg); + return; +} + +static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, + u32 msr_index, u64 *pdata) +{ + return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); +} + +static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, + u32 msr_index, u64 data) +{ + struct msr_data msr; + + msr.data = data; + msr.index = msr_index; + msr.host_initiated = false; + return kvm_set_msr(emul_to_vcpu(ctxt), &msr); +} + +static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, + u32 pmc) +{ + return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc); +} + +static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, + u32 pmc, u64 *pdata) +{ + return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); +} + +static void emulator_halt(struct x86_emulate_ctxt *ctxt) +{ + emul_to_vcpu(ctxt)->arch.halt_request = 1; +} + +static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) +{ + preempt_disable(); + kvm_load_guest_fpu(emul_to_vcpu(ctxt)); + /* + * CR0.TS may reference the host fpu state, not the guest fpu state, + * so it may be clear at this point. + */ + clts(); +} + +static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) +{ + preempt_enable(); +} + +static int emulator_intercept(struct x86_emulate_ctxt *ctxt, + struct x86_instruction_info *info, + enum x86_intercept_stage stage) +{ + return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); +} + +static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, + u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) +{ + kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); +} + +static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) +{ + return kvm_register_read(emul_to_vcpu(ctxt), reg); +} + +static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) +{ + kvm_register_write(emul_to_vcpu(ctxt), reg, val); +} + +static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) +{ + kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); +} + +static const struct x86_emulate_ops emulate_ops = { + .read_gpr = emulator_read_gpr, + .write_gpr = emulator_write_gpr, + .read_std = kvm_read_guest_virt_system, + .write_std = kvm_write_guest_virt_system, + .fetch = kvm_fetch_guest_virt, + .read_emulated = emulator_read_emulated, + .write_emulated = emulator_write_emulated, + .cmpxchg_emulated = emulator_cmpxchg_emulated, + .invlpg = emulator_invlpg, + .pio_in_emulated = emulator_pio_in_emulated, + .pio_out_emulated = emulator_pio_out_emulated, + .get_segment = emulator_get_segment, + .set_segment = emulator_set_segment, + .get_cached_segment_base = emulator_get_cached_segment_base, + .get_gdt = emulator_get_gdt, + .get_idt = emulator_get_idt, + .set_gdt = emulator_set_gdt, + .set_idt = emulator_set_idt, + .get_cr = emulator_get_cr, + .set_cr = emulator_set_cr, + .cpl = emulator_get_cpl, + .get_dr = emulator_get_dr, + .set_dr = emulator_set_dr, + .set_msr = emulator_set_msr, + .get_msr = emulator_get_msr, + .check_pmc = emulator_check_pmc, + .read_pmc = emulator_read_pmc, + .halt = emulator_halt, + .wbinvd = emulator_wbinvd, + .fix_hypercall = emulator_fix_hypercall, + .get_fpu = emulator_get_fpu, + .put_fpu = emulator_put_fpu, + .intercept = emulator_intercept, + .get_cpuid = emulator_get_cpuid, + .set_nmi_mask = emulator_set_nmi_mask, +}; + +static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) +{ + u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); + /* + * an sti; sti; sequence only disable interrupts for the first + * instruction. So, if the last instruction, be it emulated or + * not, left the system with the INT_STI flag enabled, it + * means that the last instruction is an sti. We should not + * leave the flag on in this case. The same goes for mov ss + */ + if (int_shadow & mask) + mask = 0; + if (unlikely(int_shadow || mask)) { + kvm_x86_ops->set_interrupt_shadow(vcpu, mask); + if (!mask) + kvm_make_request(KVM_REQ_EVENT, vcpu); + } +} + +static bool inject_emulated_exception(struct kvm_vcpu *vcpu) +{ + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + if (ctxt->exception.vector == PF_VECTOR) + return kvm_propagate_fault(vcpu, &ctxt->exception); + + if (ctxt->exception.error_code_valid) + kvm_queue_exception_e(vcpu, ctxt->exception.vector, + ctxt->exception.error_code); + else + kvm_queue_exception(vcpu, ctxt->exception.vector); + return false; +} + +static void init_emulate_ctxt(struct kvm_vcpu *vcpu) +{ + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + int cs_db, cs_l; + + kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); + + ctxt->eflags = kvm_get_rflags(vcpu); + ctxt->eip = kvm_rip_read(vcpu); + ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : + (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : + (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : + cs_db ? X86EMUL_MODE_PROT32 : + X86EMUL_MODE_PROT16; + ctxt->guest_mode = is_guest_mode(vcpu); + + init_decode_cache(ctxt); + vcpu->arch.emulate_regs_need_sync_from_vcpu = false; +} + +int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) +{ + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + int ret; + + init_emulate_ctxt(vcpu); + + ctxt->op_bytes = 2; + ctxt->ad_bytes = 2; + ctxt->_eip = ctxt->eip + inc_eip; + ret = emulate_int_real(ctxt, irq); + + if (ret != X86EMUL_CONTINUE) + return EMULATE_FAIL; + + ctxt->eip = ctxt->_eip; + kvm_rip_write(vcpu, ctxt->eip); + kvm_set_rflags(vcpu, ctxt->eflags); + + if (irq == NMI_VECTOR) + vcpu->arch.nmi_pending = 0; + else + vcpu->arch.interrupt.pending = false; + + return EMULATE_DONE; +} +EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); + +static int handle_emulation_failure(struct kvm_vcpu *vcpu) +{ + int r = EMULATE_DONE; + + ++vcpu->stat.insn_emulation_fail; + trace_kvm_emulate_insn_failed(vcpu); + if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + r = EMULATE_FAIL; + } + kvm_queue_exception(vcpu, UD_VECTOR); + + return r; +} + +static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, + bool write_fault_to_shadow_pgtable, + int emulation_type) +{ + gpa_t gpa = cr2; + pfn_t pfn; + + if (emulation_type & EMULTYPE_NO_REEXECUTE) + return false; + + if (!vcpu->arch.mmu.direct_map) { + /* + * Write permission should be allowed since only + * write access need to be emulated. + */ + gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); + + /* + * If the mapping is invalid in guest, let cpu retry + * it to generate fault. + */ + if (gpa == UNMAPPED_GVA) + return true; + } + + /* + * Do not retry the unhandleable instruction if it faults on the + * readonly host memory, otherwise it will goto a infinite loop: + * retry instruction -> write #PF -> emulation fail -> retry + * instruction -> ... + */ + pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); + + /* + * If the instruction failed on the error pfn, it can not be fixed, + * report the error to userspace. + */ + if (is_error_noslot_pfn(pfn)) + return false; + + kvm_release_pfn_clean(pfn); + + /* The instructions are well-emulated on direct mmu. */ + if (vcpu->arch.mmu.direct_map) { + unsigned int indirect_shadow_pages; + + spin_lock(&vcpu->kvm->mmu_lock); + indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; + spin_unlock(&vcpu->kvm->mmu_lock); + + if (indirect_shadow_pages) + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + return true; + } + + /* + * if emulation was due to access to shadowed page table + * and it failed try to unshadow page and re-enter the + * guest to let CPU execute the instruction. + */ + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + /* + * If the access faults on its page table, it can not + * be fixed by unprotecting shadow page and it should + * be reported to userspace. + */ + return !write_fault_to_shadow_pgtable; +} + +static bool retry_instruction(struct x86_emulate_ctxt *ctxt, + unsigned long cr2, int emulation_type) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + unsigned long last_retry_eip, last_retry_addr, gpa = cr2; + + last_retry_eip = vcpu->arch.last_retry_eip; + last_retry_addr = vcpu->arch.last_retry_addr; + + /* + * If the emulation is caused by #PF and it is non-page_table + * writing instruction, it means the VM-EXIT is caused by shadow + * page protected, we can zap the shadow page and retry this + * instruction directly. + * + * Note: if the guest uses a non-page-table modifying instruction + * on the PDE that points to the instruction, then we will unmap + * the instruction and go to an infinite loop. So, we cache the + * last retried eip and the last fault address, if we meet the eip + * and the address again, we can break out of the potential infinite + * loop. + */ + vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; + + if (!(emulation_type & EMULTYPE_RETRY)) + return false; + + if (x86_page_table_writing_insn(ctxt)) + return false; + + if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) + return false; + + vcpu->arch.last_retry_eip = ctxt->eip; + vcpu->arch.last_retry_addr = cr2; + + if (!vcpu->arch.mmu.direct_map) + gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); + + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + return true; +} + +static int complete_emulated_mmio(struct kvm_vcpu *vcpu); +static int complete_emulated_pio(struct kvm_vcpu *vcpu); + +static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, + unsigned long *db) +{ + u32 dr6 = 0; + int i; + u32 enable, rwlen; + + enable = dr7; + rwlen = dr7 >> 16; + for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) + if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) + dr6 |= (1 << i); + return dr6; +} + +static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r) +{ + struct kvm_run *kvm_run = vcpu->run; + + /* + * rflags is the old, "raw" value of the flags. The new value has + * not been saved yet. + * + * This is correct even for TF set by the guest, because "the + * processor will not generate this exception after the instruction + * that sets the TF flag". + */ + if (unlikely(rflags & X86_EFLAGS_TF)) { + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { + kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | + DR6_RTM; + kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; + kvm_run->debug.arch.exception = DB_VECTOR; + kvm_run->exit_reason = KVM_EXIT_DEBUG; + *r = EMULATE_USER_EXIT; + } else { + vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; + /* + * "Certain debug exceptions may clear bit 0-3. The + * remaining contents of the DR6 register are never + * cleared by the processor". + */ + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= DR6_BS | DR6_RTM; + kvm_queue_exception(vcpu, DB_VECTOR); + } + } +} + +static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) +{ + if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && + (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { + struct kvm_run *kvm_run = vcpu->run; + unsigned long eip = kvm_get_linear_rip(vcpu); + u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, + vcpu->arch.guest_debug_dr7, + vcpu->arch.eff_db); + + if (dr6 != 0) { + kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; + kvm_run->debug.arch.pc = eip; + kvm_run->debug.arch.exception = DB_VECTOR; + kvm_run->exit_reason = KVM_EXIT_DEBUG; + *r = EMULATE_USER_EXIT; + return true; + } + } + + if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && + !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { + unsigned long eip = kvm_get_linear_rip(vcpu); + u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, + vcpu->arch.dr7, + vcpu->arch.db); + + if (dr6 != 0) { + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= dr6 | DR6_RTM; + kvm_queue_exception(vcpu, DB_VECTOR); + *r = EMULATE_DONE; + return true; + } + } + + return false; +} + +int x86_emulate_instruction(struct kvm_vcpu *vcpu, + unsigned long cr2, + int emulation_type, + void *insn, + int insn_len) +{ + int r; + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + bool writeback = true; + bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; + + /* + * Clear write_fault_to_shadow_pgtable here to ensure it is + * never reused. + */ + vcpu->arch.write_fault_to_shadow_pgtable = false; + kvm_clear_exception_queue(vcpu); + + if (!(emulation_type & EMULTYPE_NO_DECODE)) { + init_emulate_ctxt(vcpu); + + /* + * We will reenter on the same instruction since + * we do not set complete_userspace_io. This does not + * handle watchpoints yet, those would be handled in + * the emulate_ops. + */ + if (kvm_vcpu_check_breakpoint(vcpu, &r)) + return r; + + ctxt->interruptibility = 0; + ctxt->have_exception = false; + ctxt->exception.vector = -1; + ctxt->perm_ok = false; + + ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; + + r = x86_decode_insn(ctxt, insn, insn_len); + + trace_kvm_emulate_insn_start(vcpu); + ++vcpu->stat.insn_emulation; + if (r != EMULATION_OK) { + if (emulation_type & EMULTYPE_TRAP_UD) + return EMULATE_FAIL; + if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, + emulation_type)) + return EMULATE_DONE; + if (emulation_type & EMULTYPE_SKIP) + return EMULATE_FAIL; + return handle_emulation_failure(vcpu); + } + } + + if (emulation_type & EMULTYPE_SKIP) { + kvm_rip_write(vcpu, ctxt->_eip); + if (ctxt->eflags & X86_EFLAGS_RF) + kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); + return EMULATE_DONE; + } + + if (retry_instruction(ctxt, cr2, emulation_type)) + return EMULATE_DONE; + + /* this is needed for vmware backdoor interface to work since it + changes registers values during IO operation */ + if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { + vcpu->arch.emulate_regs_need_sync_from_vcpu = false; + emulator_invalidate_register_cache(ctxt); + } + +restart: + r = x86_emulate_insn(ctxt); + + if (r == EMULATION_INTERCEPTED) + return EMULATE_DONE; + + if (r == EMULATION_FAILED) { + if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, + emulation_type)) + return EMULATE_DONE; + + return handle_emulation_failure(vcpu); + } + + if (ctxt->have_exception) { + r = EMULATE_DONE; + if (inject_emulated_exception(vcpu)) + return r; + } else if (vcpu->arch.pio.count) { + if (!vcpu->arch.pio.in) { + /* FIXME: return into emulator if single-stepping. */ + vcpu->arch.pio.count = 0; + } else { + writeback = false; + vcpu->arch.complete_userspace_io = complete_emulated_pio; + } + r = EMULATE_USER_EXIT; + } else if (vcpu->mmio_needed) { + if (!vcpu->mmio_is_write) + writeback = false; + r = EMULATE_USER_EXIT; + vcpu->arch.complete_userspace_io = complete_emulated_mmio; + } else if (r == EMULATION_RESTART) + goto restart; + else + r = EMULATE_DONE; + + if (writeback) { + unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); + toggle_interruptibility(vcpu, ctxt->interruptibility); + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; + kvm_rip_write(vcpu, ctxt->eip); + if (r == EMULATE_DONE) + kvm_vcpu_check_singlestep(vcpu, rflags, &r); + if (!ctxt->have_exception || + exception_type(ctxt->exception.vector) == EXCPT_TRAP) + __kvm_set_rflags(vcpu, ctxt->eflags); + + /* + * For STI, interrupts are shadowed; so KVM_REQ_EVENT will + * do nothing, and it will be requested again as soon as + * the shadow expires. But we still need to check here, + * because POPF has no interrupt shadow. + */ + if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) + kvm_make_request(KVM_REQ_EVENT, vcpu); + } else + vcpu->arch.emulate_regs_need_sync_to_vcpu = true; + + return r; +} +EXPORT_SYMBOL_GPL(x86_emulate_instruction); + +int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) +{ + unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); + int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, + size, port, &val, 1); + /* do not return to emulator after return from userspace */ + vcpu->arch.pio.count = 0; + return ret; +} +EXPORT_SYMBOL_GPL(kvm_fast_pio_out); + +static void tsc_bad(void *info) +{ + __this_cpu_write(cpu_tsc_khz, 0); +} + +static void tsc_khz_changed(void *data) +{ + struct cpufreq_freqs *freq = data; + unsigned long khz = 0; + + if (data) + khz = freq->new; + else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) + khz = cpufreq_quick_get(raw_smp_processor_id()); + if (!khz) + khz = tsc_khz; + __this_cpu_write(cpu_tsc_khz, khz); +} + +static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, + void *data) +{ + struct cpufreq_freqs *freq = data; + struct kvm *kvm; + struct kvm_vcpu *vcpu; + int i, send_ipi = 0; + + /* + * We allow guests to temporarily run on slowing clocks, + * provided we notify them after, or to run on accelerating + * clocks, provided we notify them before. Thus time never + * goes backwards. + * + * However, we have a problem. We can't atomically update + * the frequency of a given CPU from this function; it is + * merely a notifier, which can be called from any CPU. + * Changing the TSC frequency at arbitrary points in time + * requires a recomputation of local variables related to + * the TSC for each VCPU. We must flag these local variables + * to be updated and be sure the update takes place with the + * new frequency before any guests proceed. + * + * Unfortunately, the combination of hotplug CPU and frequency + * change creates an intractable locking scenario; the order + * of when these callouts happen is undefined with respect to + * CPU hotplug, and they can race with each other. As such, + * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is + * undefined; you can actually have a CPU frequency change take + * place in between the computation of X and the setting of the + * variable. To protect against this problem, all updates of + * the per_cpu tsc_khz variable are done in an interrupt + * protected IPI, and all callers wishing to update the value + * must wait for a synchronous IPI to complete (which is trivial + * if the caller is on the CPU already). This establishes the + * necessary total order on variable updates. + * + * Note that because a guest time update may take place + * anytime after the setting of the VCPU's request bit, the + * correct TSC value must be set before the request. However, + * to ensure the update actually makes it to any guest which + * starts running in hardware virtualization between the set + * and the acquisition of the spinlock, we must also ping the + * CPU after setting the request bit. + * + */ + + if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) + return 0; + if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) + return 0; + + smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); + + spin_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_for_each_vcpu(i, vcpu, kvm) { + if (vcpu->cpu != freq->cpu) + continue; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + if (vcpu->cpu != smp_processor_id()) + send_ipi = 1; + } + } + spin_unlock(&kvm_lock); + + if (freq->old < freq->new && send_ipi) { + /* + * We upscale the frequency. Must make the guest + * doesn't see old kvmclock values while running with + * the new frequency, otherwise we risk the guest sees + * time go backwards. + * + * In case we update the frequency for another cpu + * (which might be in guest context) send an interrupt + * to kick the cpu out of guest context. Next time + * guest context is entered kvmclock will be updated, + * so the guest will not see stale values. + */ + smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); + } + return 0; +} + +static struct notifier_block kvmclock_cpufreq_notifier_block = { + .notifier_call = kvmclock_cpufreq_notifier +}; + +static int kvmclock_cpu_notifier(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + unsigned int cpu = (unsigned long)hcpu; + + switch (action) { + case CPU_ONLINE: + case CPU_DOWN_FAILED: + smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); + break; + case CPU_DOWN_PREPARE: + smp_call_function_single(cpu, tsc_bad, NULL, 1); + break; + } + return NOTIFY_OK; +} + +static struct notifier_block kvmclock_cpu_notifier_block = { + .notifier_call = kvmclock_cpu_notifier, + .priority = -INT_MAX +}; + +static void kvm_timer_init(void) +{ + int cpu; + + max_tsc_khz = tsc_khz; + + cpu_notifier_register_begin(); + if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { +#ifdef CONFIG_CPU_FREQ + struct cpufreq_policy policy; + memset(&policy, 0, sizeof(policy)); + cpu = get_cpu(); + cpufreq_get_policy(&policy, cpu); + if (policy.cpuinfo.max_freq) + max_tsc_khz = policy.cpuinfo.max_freq; + put_cpu(); +#endif + cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, + CPUFREQ_TRANSITION_NOTIFIER); + } + pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); + for_each_online_cpu(cpu) + smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); + + __register_hotcpu_notifier(&kvmclock_cpu_notifier_block); + cpu_notifier_register_done(); + +} + +static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); + +int kvm_is_in_guest(void) +{ + return __this_cpu_read(current_vcpu) != NULL; +} + +static int kvm_is_user_mode(void) +{ + int user_mode = 3; + + if (__this_cpu_read(current_vcpu)) + user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); + + return user_mode != 0; +} + +static unsigned long kvm_get_guest_ip(void) +{ + unsigned long ip = 0; + + if (__this_cpu_read(current_vcpu)) + ip = kvm_rip_read(__this_cpu_read(current_vcpu)); + + return ip; +} + +static struct perf_guest_info_callbacks kvm_guest_cbs = { + .is_in_guest = kvm_is_in_guest, + .is_user_mode = kvm_is_user_mode, + .get_guest_ip = kvm_get_guest_ip, +}; + +void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) +{ + __this_cpu_write(current_vcpu, vcpu); +} +EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); + +void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) +{ + __this_cpu_write(current_vcpu, NULL); +} +EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); + +static void kvm_set_mmio_spte_mask(void) +{ + u64 mask; + int maxphyaddr = boot_cpu_data.x86_phys_bits; + + /* + * Set the reserved bits and the present bit of an paging-structure + * entry to generate page fault with PFER.RSV = 1. + */ + /* Mask the reserved physical address bits. */ + mask = rsvd_bits(maxphyaddr, 51); + + /* Bit 62 is always reserved for 32bit host. */ + mask |= 0x3ull << 62; + + /* Set the present bit. */ + mask |= 1ull; + +#ifdef CONFIG_X86_64 + /* + * If reserved bit is not supported, clear the present bit to disable + * mmio page fault. + */ + if (maxphyaddr == 52) + mask &= ~1ull; +#endif + + kvm_mmu_set_mmio_spte_mask(mask); +} + +#ifdef CONFIG_X86_64 +static void pvclock_gtod_update_fn(struct work_struct *work) +{ + struct kvm *kvm; + + struct kvm_vcpu *vcpu; + int i; + + spin_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); + atomic_set(&kvm_guest_has_master_clock, 0); + spin_unlock(&kvm_lock); +} + +static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); + +/* + * Notification about pvclock gtod data update. + */ +static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, + void *priv) +{ + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + struct timekeeper *tk = priv; + + update_pvclock_gtod(tk); + + /* disable master clock if host does not trust, or does not + * use, TSC clocksource + */ + if (gtod->clock.vclock_mode != VCLOCK_TSC && + atomic_read(&kvm_guest_has_master_clock) != 0) + queue_work(system_long_wq, &pvclock_gtod_work); + + return 0; +} + +static struct notifier_block pvclock_gtod_notifier = { + .notifier_call = pvclock_gtod_notify, +}; +#endif + +int kvm_arch_init(void *opaque) +{ + int r; + struct kvm_x86_ops *ops = opaque; + + if (kvm_x86_ops) { + printk(KERN_ERR "kvm: already loaded the other module\n"); + r = -EEXIST; + goto out; + } + + if (!ops->cpu_has_kvm_support()) { + printk(KERN_ERR "kvm: no hardware support\n"); + r = -EOPNOTSUPP; + goto out; + } + if (ops->disabled_by_bios()) { + printk(KERN_ERR "kvm: disabled by bios\n"); + r = -EOPNOTSUPP; + goto out; + } + + r = -ENOMEM; + shared_msrs = alloc_percpu(struct kvm_shared_msrs); + if (!shared_msrs) { + printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); + goto out; + } + + r = kvm_mmu_module_init(); + if (r) + goto out_free_percpu; + + kvm_set_mmio_spte_mask(); + + kvm_x86_ops = ops; + + kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, + PT_DIRTY_MASK, PT64_NX_MASK, 0); + + kvm_timer_init(); + + perf_register_guest_info_callbacks(&kvm_guest_cbs); + + if (cpu_has_xsave) + host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); + + kvm_lapic_init(); +#ifdef CONFIG_X86_64 + pvclock_gtod_register_notifier(&pvclock_gtod_notifier); +#endif + + return 0; + +out_free_percpu: + free_percpu(shared_msrs); +out: + return r; +} + +void kvm_arch_exit(void) +{ + perf_unregister_guest_info_callbacks(&kvm_guest_cbs); + + if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) + cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, + CPUFREQ_TRANSITION_NOTIFIER); + unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); +#ifdef CONFIG_X86_64 + pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); +#endif + kvm_x86_ops = NULL; + kvm_mmu_module_exit(); + free_percpu(shared_msrs); +} + +int kvm_vcpu_halt(struct kvm_vcpu *vcpu) +{ + ++vcpu->stat.halt_exits; + if (irqchip_in_kernel(vcpu->kvm)) { + vcpu->arch.mp_state = KVM_MP_STATE_HALTED; + return 1; + } else { + vcpu->run->exit_reason = KVM_EXIT_HLT; + return 0; + } +} +EXPORT_SYMBOL_GPL(kvm_vcpu_halt); + +int kvm_emulate_halt(struct kvm_vcpu *vcpu) +{ + kvm_x86_ops->skip_emulated_instruction(vcpu); + return kvm_vcpu_halt(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_emulate_halt); + +int kvm_hv_hypercall(struct kvm_vcpu *vcpu) +{ + u64 param, ingpa, outgpa, ret; + uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; + bool fast, longmode; + + /* + * hypercall generates UD from non zero cpl and real mode + * per HYPER-V spec + */ + if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 0; + } + + longmode = is_64_bit_mode(vcpu); + + if (!longmode) { + param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | + (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); + ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | + (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); + outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | + (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); + } +#ifdef CONFIG_X86_64 + else { + param = kvm_register_read(vcpu, VCPU_REGS_RCX); + ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); + outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); + } +#endif + + code = param & 0xffff; + fast = (param >> 16) & 0x1; + rep_cnt = (param >> 32) & 0xfff; + rep_idx = (param >> 48) & 0xfff; + + trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); + + switch (code) { + case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: + kvm_vcpu_on_spin(vcpu); + break; + default: + res = HV_STATUS_INVALID_HYPERCALL_CODE; + break; + } + + ret = res | (((u64)rep_done & 0xfff) << 32); + if (longmode) { + kvm_register_write(vcpu, VCPU_REGS_RAX, ret); + } else { + kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); + kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); + } + + return 1; +} + +/* + * kvm_pv_kick_cpu_op: Kick a vcpu. + * + * @apicid - apicid of vcpu to be kicked. + */ +static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) +{ + struct kvm_lapic_irq lapic_irq; + + lapic_irq.shorthand = 0; + lapic_irq.dest_mode = 0; + lapic_irq.dest_id = apicid; + + lapic_irq.delivery_mode = APIC_DM_REMRD; + kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); +} + +int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) +{ + unsigned long nr, a0, a1, a2, a3, ret; + int op_64_bit, r = 1; + + kvm_x86_ops->skip_emulated_instruction(vcpu); + + if (kvm_hv_hypercall_enabled(vcpu->kvm)) + return kvm_hv_hypercall(vcpu); + + nr = kvm_register_read(vcpu, VCPU_REGS_RAX); + a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); + a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); + a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); + a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); + + trace_kvm_hypercall(nr, a0, a1, a2, a3); + + op_64_bit = is_64_bit_mode(vcpu); + if (!op_64_bit) { + nr &= 0xFFFFFFFF; + a0 &= 0xFFFFFFFF; + a1 &= 0xFFFFFFFF; + a2 &= 0xFFFFFFFF; + a3 &= 0xFFFFFFFF; + } + + if (kvm_x86_ops->get_cpl(vcpu) != 0) { + ret = -KVM_EPERM; + goto out; + } + + switch (nr) { + case KVM_HC_VAPIC_POLL_IRQ: + ret = 0; + break; + case KVM_HC_KICK_CPU: + kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); + ret = 0; + break; + default: + ret = -KVM_ENOSYS; + break; + } +out: + if (!op_64_bit) + ret = (u32)ret; + kvm_register_write(vcpu, VCPU_REGS_RAX, ret); + ++vcpu->stat.hypercalls; + return r; +} +EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); + +static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + char instruction[3]; + unsigned long rip = kvm_rip_read(vcpu); + + kvm_x86_ops->patch_hypercall(vcpu, instruction); + + return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); +} + +/* + * Check if userspace requested an interrupt window, and that the + * interrupt window is open. + * + * No need to exit to userspace if we already have an interrupt queued. + */ +static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) +{ + return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && + vcpu->run->request_interrupt_window && + kvm_arch_interrupt_allowed(vcpu)); +} + +static void post_kvm_run_save(struct kvm_vcpu *vcpu) +{ + struct kvm_run *kvm_run = vcpu->run; + + kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; + kvm_run->cr8 = kvm_get_cr8(vcpu); + kvm_run->apic_base = kvm_get_apic_base(vcpu); + if (irqchip_in_kernel(vcpu->kvm)) + kvm_run->ready_for_interrupt_injection = 1; + else + kvm_run->ready_for_interrupt_injection = + kvm_arch_interrupt_allowed(vcpu) && + !kvm_cpu_has_interrupt(vcpu) && + !kvm_event_needs_reinjection(vcpu); +} + +static void update_cr8_intercept(struct kvm_vcpu *vcpu) +{ + int max_irr, tpr; + + if (!kvm_x86_ops->update_cr8_intercept) + return; + + if (!vcpu->arch.apic) + return; + + if (!vcpu->arch.apic->vapic_addr) + max_irr = kvm_lapic_find_highest_irr(vcpu); + else + max_irr = -1; + + if (max_irr != -1) + max_irr >>= 4; + + tpr = kvm_lapic_get_cr8(vcpu); + + kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); +} + +static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) +{ + int r; + + /* try to reinject previous events if any */ + if (vcpu->arch.exception.pending) { + trace_kvm_inj_exception(vcpu->arch.exception.nr, + vcpu->arch.exception.has_error_code, + vcpu->arch.exception.error_code); + + if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) + __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | + X86_EFLAGS_RF); + + if (vcpu->arch.exception.nr == DB_VECTOR && + (vcpu->arch.dr7 & DR7_GD)) { + vcpu->arch.dr7 &= ~DR7_GD; + kvm_update_dr7(vcpu); + } + + kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, + vcpu->arch.exception.has_error_code, + vcpu->arch.exception.error_code, + vcpu->arch.exception.reinject); + return 0; + } + + if (vcpu->arch.nmi_injected) { + kvm_x86_ops->set_nmi(vcpu); + return 0; + } + + if (vcpu->arch.interrupt.pending) { + kvm_x86_ops->set_irq(vcpu); + return 0; + } + + if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { + r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); + if (r != 0) + return r; + } + + /* try to inject new event if pending */ + if (vcpu->arch.nmi_pending) { + if (kvm_x86_ops->nmi_allowed(vcpu)) { + --vcpu->arch.nmi_pending; + vcpu->arch.nmi_injected = true; + kvm_x86_ops->set_nmi(vcpu); + } + } else if (kvm_cpu_has_injectable_intr(vcpu)) { + /* + * Because interrupts can be injected asynchronously, we are + * calling check_nested_events again here to avoid a race condition. + * See https://lkml.org/lkml/2014/7/2/60 for discussion about this + * proposal and current concerns. Perhaps we should be setting + * KVM_REQ_EVENT only on certain events and not unconditionally? + */ + if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { + r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); + if (r != 0) + return r; + } + if (kvm_x86_ops->interrupt_allowed(vcpu)) { + kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), + false); + kvm_x86_ops->set_irq(vcpu); + } + } + return 0; +} + +static void process_nmi(struct kvm_vcpu *vcpu) +{ + unsigned limit = 2; + + /* + * x86 is limited to one NMI running, and one NMI pending after it. + * If an NMI is already in progress, limit further NMIs to just one. + * Otherwise, allow two (and we'll inject the first one immediately). + */ + if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) + limit = 1; + + vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); + vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); + kvm_make_request(KVM_REQ_EVENT, vcpu); +} + +static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) +{ + u64 eoi_exit_bitmap[4]; + u32 tmr[8]; + + if (!kvm_apic_hw_enabled(vcpu->arch.apic)) + return; + + memset(eoi_exit_bitmap, 0, 32); + memset(tmr, 0, 32); + + kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); + kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); + kvm_apic_update_tmr(vcpu, tmr); +} + +static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) +{ + ++vcpu->stat.tlb_flush; + kvm_x86_ops->tlb_flush(vcpu); +} + +void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) +{ + struct page *page = NULL; + + if (!irqchip_in_kernel(vcpu->kvm)) + return; + + if (!kvm_x86_ops->set_apic_access_page_addr) + return; + + page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); + if (is_error_page(page)) + return; + kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); + + /* + * Do not pin apic access page in memory, the MMU notifier + * will call us again if it is migrated or swapped out. + */ + put_page(page); +} +EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); + +void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, + unsigned long address) +{ + /* + * The physical address of apic access page is stored in the VMCS. + * Update it when it becomes invalid. + */ + if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT)) + kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); +} + +/* + * Returns 1 to let vcpu_run() continue the guest execution loop without + * exiting to the userspace. Otherwise, the value will be returned to the + * userspace. + */ +static int vcpu_enter_guest(struct kvm_vcpu *vcpu) +{ + int r; + bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && + vcpu->run->request_interrupt_window; + bool req_immediate_exit = false; + + if (vcpu->requests) { + if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) + kvm_mmu_unload(vcpu); + if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) + __kvm_migrate_timers(vcpu); + if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) + kvm_gen_update_masterclock(vcpu->kvm); + if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) + kvm_gen_kvmclock_update(vcpu); + if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { + r = kvm_guest_time_update(vcpu); + if (unlikely(r)) + goto out; + } + if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) + kvm_mmu_sync_roots(vcpu); + if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) + kvm_vcpu_flush_tlb(vcpu); + if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; + r = 0; + goto out; + } + if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; + r = 0; + goto out; + } + if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { + vcpu->fpu_active = 0; + kvm_x86_ops->fpu_deactivate(vcpu); + } + if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { + /* Page is swapped out. Do synthetic halt */ + vcpu->arch.apf.halted = true; + r = 1; + goto out; + } + if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) + record_steal_time(vcpu); + if (kvm_check_request(KVM_REQ_NMI, vcpu)) + process_nmi(vcpu); + if (kvm_check_request(KVM_REQ_PMU, vcpu)) + kvm_handle_pmu_event(vcpu); + if (kvm_check_request(KVM_REQ_PMI, vcpu)) + kvm_deliver_pmi(vcpu); + if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) + vcpu_scan_ioapic(vcpu); + if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) + kvm_vcpu_reload_apic_access_page(vcpu); + } + + if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { + kvm_apic_accept_events(vcpu); + if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { + r = 1; + goto out; + } + + if (inject_pending_event(vcpu, req_int_win) != 0) + req_immediate_exit = true; + /* enable NMI/IRQ window open exits if needed */ + else if (vcpu->arch.nmi_pending) + kvm_x86_ops->enable_nmi_window(vcpu); + else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) + kvm_x86_ops->enable_irq_window(vcpu); + + if (kvm_lapic_enabled(vcpu)) { + /* + * Update architecture specific hints for APIC + * virtual interrupt delivery. + */ + if (kvm_x86_ops->hwapic_irr_update) + kvm_x86_ops->hwapic_irr_update(vcpu, + kvm_lapic_find_highest_irr(vcpu)); + update_cr8_intercept(vcpu); + kvm_lapic_sync_to_vapic(vcpu); + } + } + + r = kvm_mmu_reload(vcpu); + if (unlikely(r)) { + goto cancel_injection; + } + + preempt_disable(); + + kvm_x86_ops->prepare_guest_switch(vcpu); + if (vcpu->fpu_active) + kvm_load_guest_fpu(vcpu); + kvm_load_guest_xcr0(vcpu); + + vcpu->mode = IN_GUEST_MODE; + + srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); + + /* We should set ->mode before check ->requests, + * see the comment in make_all_cpus_request. + */ + smp_mb__after_srcu_read_unlock(); + + local_irq_disable(); + + if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests + || need_resched() || signal_pending(current)) { + vcpu->mode = OUTSIDE_GUEST_MODE; + smp_wmb(); + local_irq_enable(); + preempt_enable(); + vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); + r = 1; + goto cancel_injection; + } + + if (req_immediate_exit) + smp_send_reschedule(vcpu->cpu); + + kvm_guest_enter(); + + if (unlikely(vcpu->arch.switch_db_regs)) { + set_debugreg(0, 7); + set_debugreg(vcpu->arch.eff_db[0], 0); + set_debugreg(vcpu->arch.eff_db[1], 1); + set_debugreg(vcpu->arch.eff_db[2], 2); + set_debugreg(vcpu->arch.eff_db[3], 3); + set_debugreg(vcpu->arch.dr6, 6); + vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; + } + + trace_kvm_entry(vcpu->vcpu_id); + wait_lapic_expire(vcpu); + kvm_x86_ops->run(vcpu); + + /* + * Do this here before restoring debug registers on the host. And + * since we do this before handling the vmexit, a DR access vmexit + * can (a) read the correct value of the debug registers, (b) set + * KVM_DEBUGREG_WONT_EXIT again. + */ + if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { + int i; + + WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); + kvm_x86_ops->sync_dirty_debug_regs(vcpu); + for (i = 0; i < KVM_NR_DB_REGS; i++) + vcpu->arch.eff_db[i] = vcpu->arch.db[i]; + } + + /* + * If the guest has used debug registers, at least dr7 + * will be disabled while returning to the host. + * If we don't have active breakpoints in the host, we don't + * care about the messed up debug address registers. But if + * we have some of them active, restore the old state. + */ + if (hw_breakpoint_active()) + hw_breakpoint_restore(); + + vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, + native_read_tsc()); + + vcpu->mode = OUTSIDE_GUEST_MODE; + smp_wmb(); + + /* Interrupt is enabled by handle_external_intr() */ + kvm_x86_ops->handle_external_intr(vcpu); + + ++vcpu->stat.exits; + + /* + * We must have an instruction between local_irq_enable() and + * kvm_guest_exit(), so the timer interrupt isn't delayed by + * the interrupt shadow. The stat.exits increment will do nicely. + * But we need to prevent reordering, hence this barrier(): + */ + barrier(); + + kvm_guest_exit(); + + preempt_enable(); + + vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); + + /* + * Profile KVM exit RIPs: + */ + if (unlikely(prof_on == KVM_PROFILING)) { + unsigned long rip = kvm_rip_read(vcpu); + profile_hit(KVM_PROFILING, (void *)rip); + } + + if (unlikely(vcpu->arch.tsc_always_catchup)) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + + if (vcpu->arch.apic_attention) + kvm_lapic_sync_from_vapic(vcpu); + + r = kvm_x86_ops->handle_exit(vcpu); + return r; + +cancel_injection: + kvm_x86_ops->cancel_injection(vcpu); + if (unlikely(vcpu->arch.apic_attention)) + kvm_lapic_sync_from_vapic(vcpu); +out: + return r; +} + +static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) +{ + if (!kvm_arch_vcpu_runnable(vcpu)) { + srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); + kvm_vcpu_block(vcpu); + vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); + if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) + return 1; + } + + kvm_apic_accept_events(vcpu); + switch(vcpu->arch.mp_state) { + case KVM_MP_STATE_HALTED: + vcpu->arch.pv.pv_unhalted = false; + vcpu->arch.mp_state = + KVM_MP_STATE_RUNNABLE; + case KVM_MP_STATE_RUNNABLE: + vcpu->arch.apf.halted = false; + break; + case KVM_MP_STATE_INIT_RECEIVED: + break; + default: + return -EINTR; + break; + } + return 1; +} + +static int vcpu_run(struct kvm_vcpu *vcpu) +{ + int r; + struct kvm *kvm = vcpu->kvm; + + vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); + + for (;;) { + if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && + !vcpu->arch.apf.halted) + r = vcpu_enter_guest(vcpu); + else + r = vcpu_block(kvm, vcpu); + if (r <= 0) + break; + + clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); + if (kvm_cpu_has_pending_timer(vcpu)) + kvm_inject_pending_timer_irqs(vcpu); + + if (dm_request_for_irq_injection(vcpu)) { + r = -EINTR; + vcpu->run->exit_reason = KVM_EXIT_INTR; + ++vcpu->stat.request_irq_exits; + break; + } + + kvm_check_async_pf_completion(vcpu); + + if (signal_pending(current)) { + r = -EINTR; + vcpu->run->exit_reason = KVM_EXIT_INTR; + ++vcpu->stat.signal_exits; + break; + } + if (need_resched()) { + srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); + cond_resched(); + vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); + } + } + + srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); + + return r; +} + +static inline int complete_emulated_io(struct kvm_vcpu *vcpu) +{ + int r; + vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); + r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); + srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); + if (r != EMULATE_DONE) + return 0; + return 1; +} + +static int complete_emulated_pio(struct kvm_vcpu *vcpu) +{ + BUG_ON(!vcpu->arch.pio.count); + + return complete_emulated_io(vcpu); +} + +/* + * Implements the following, as a state machine: + * + * read: + * for each fragment + * for each mmio piece in the fragment + * write gpa, len + * exit + * copy data + * execute insn + * + * write: + * for each fragment + * for each mmio piece in the fragment + * write gpa, len + * copy data + * exit + */ +static int complete_emulated_mmio(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + struct kvm_mmio_fragment *frag; + unsigned len; + + BUG_ON(!vcpu->mmio_needed); + + /* Complete previous fragment */ + frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; + len = min(8u, frag->len); + if (!vcpu->mmio_is_write) + memcpy(frag->data, run->mmio.data, len); + + if (frag->len <= 8) { + /* Switch to the next fragment. */ + frag++; + vcpu->mmio_cur_fragment++; + } else { + /* Go forward to the next mmio piece. */ + frag->data += len; + frag->gpa += len; + frag->len -= len; + } + + if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { + vcpu->mmio_needed = 0; + + /* FIXME: return into emulator if single-stepping. */ + if (vcpu->mmio_is_write) + return 1; + vcpu->mmio_read_completed = 1; + return complete_emulated_io(vcpu); + } + + run->exit_reason = KVM_EXIT_MMIO; + run->mmio.phys_addr = frag->gpa; + if (vcpu->mmio_is_write) + memcpy(run->mmio.data, frag->data, min(8u, frag->len)); + run->mmio.len = min(8u, frag->len); + run->mmio.is_write = vcpu->mmio_is_write; + vcpu->arch.complete_userspace_io = complete_emulated_mmio; + return 0; +} + + +int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) +{ + int r; + sigset_t sigsaved; + + if (!tsk_used_math(current) && init_fpu(current)) + return -ENOMEM; + + if (vcpu->sigset_active) + sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); + + if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { + kvm_vcpu_block(vcpu); + kvm_apic_accept_events(vcpu); + clear_bit(KVM_REQ_UNHALT, &vcpu->requests); + r = -EAGAIN; + goto out; + } + + /* re-sync apic's tpr */ + if (!irqchip_in_kernel(vcpu->kvm)) { + if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { + r = -EINVAL; + goto out; + } + } + + if (unlikely(vcpu->arch.complete_userspace_io)) { + int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; + vcpu->arch.complete_userspace_io = NULL; + r = cui(vcpu); + if (r <= 0) + goto out; + } else + WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); + + r = vcpu_run(vcpu); + +out: + post_kvm_run_save(vcpu); + if (vcpu->sigset_active) + sigprocmask(SIG_SETMASK, &sigsaved, NULL); + + return r; +} + +int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) +{ + if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { + /* + * We are here if userspace calls get_regs() in the middle of + * instruction emulation. Registers state needs to be copied + * back from emulation context to vcpu. Userspace shouldn't do + * that usually, but some bad designed PV devices (vmware + * backdoor interface) need this to work + */ + emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; + } + regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); + regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); + regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); + regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); + regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); + regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); + regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); + regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); +#ifdef CONFIG_X86_64 + regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); + regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); + regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); + regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); + regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); + regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); + regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); + regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); +#endif + + regs->rip = kvm_rip_read(vcpu); + regs->rflags = kvm_get_rflags(vcpu); + + return 0; +} + +int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) +{ + vcpu->arch.emulate_regs_need_sync_from_vcpu = true; + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; + + kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); + kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); + kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); + kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); + kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); + kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); + kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); + kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); +#ifdef CONFIG_X86_64 + kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); + kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); + kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); + kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); + kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); + kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); + kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); + kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); +#endif + + kvm_rip_write(vcpu, regs->rip); + kvm_set_rflags(vcpu, regs->rflags); + + vcpu->arch.exception.pending = false; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 0; +} + +void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) +{ + struct kvm_segment cs; + + kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); + *db = cs.db; + *l = cs.l; +} +EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); + +int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, + struct kvm_sregs *sregs) +{ + struct desc_ptr dt; + + kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); + kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); + kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); + kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); + kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); + kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); + + kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); + kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); + + kvm_x86_ops->get_idt(vcpu, &dt); + sregs->idt.limit = dt.size; + sregs->idt.base = dt.address; + kvm_x86_ops->get_gdt(vcpu, &dt); + sregs->gdt.limit = dt.size; + sregs->gdt.base = dt.address; + + sregs->cr0 = kvm_read_cr0(vcpu); + sregs->cr2 = vcpu->arch.cr2; + sregs->cr3 = kvm_read_cr3(vcpu); + sregs->cr4 = kvm_read_cr4(vcpu); + sregs->cr8 = kvm_get_cr8(vcpu); + sregs->efer = vcpu->arch.efer; + sregs->apic_base = kvm_get_apic_base(vcpu); + + memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); + + if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) + set_bit(vcpu->arch.interrupt.nr, + (unsigned long *)sregs->interrupt_bitmap); + + return 0; +} + +int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) +{ + kvm_apic_accept_events(vcpu); + if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && + vcpu->arch.pv.pv_unhalted) + mp_state->mp_state = KVM_MP_STATE_RUNNABLE; + else + mp_state->mp_state = vcpu->arch.mp_state; + + return 0; +} + +int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) +{ + if (!kvm_vcpu_has_lapic(vcpu) && + mp_state->mp_state != KVM_MP_STATE_RUNNABLE) + return -EINVAL; + + if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { + vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; + set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); + } else + vcpu->arch.mp_state = mp_state->mp_state; + kvm_make_request(KVM_REQ_EVENT, vcpu); + return 0; +} + +int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, + int reason, bool has_error_code, u32 error_code) +{ + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + int ret; + + init_emulate_ctxt(vcpu); + + ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, + has_error_code, error_code); + + if (ret) + return EMULATE_FAIL; + + kvm_rip_write(vcpu, ctxt->eip); + kvm_set_rflags(vcpu, ctxt->eflags); + kvm_make_request(KVM_REQ_EVENT, vcpu); + return EMULATE_DONE; +} +EXPORT_SYMBOL_GPL(kvm_task_switch); + +int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, + struct kvm_sregs *sregs) +{ + struct msr_data apic_base_msr; + int mmu_reset_needed = 0; + int pending_vec, max_bits, idx; + struct desc_ptr dt; + + if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) + return -EINVAL; + + dt.size = sregs->idt.limit; + dt.address = sregs->idt.base; + kvm_x86_ops->set_idt(vcpu, &dt); + dt.size = sregs->gdt.limit; + dt.address = sregs->gdt.base; + kvm_x86_ops->set_gdt(vcpu, &dt); + + vcpu->arch.cr2 = sregs->cr2; + mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; + vcpu->arch.cr3 = sregs->cr3; + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + + kvm_set_cr8(vcpu, sregs->cr8); + + mmu_reset_needed |= vcpu->arch.efer != sregs->efer; + kvm_x86_ops->set_efer(vcpu, sregs->efer); + apic_base_msr.data = sregs->apic_base; + apic_base_msr.host_initiated = true; + kvm_set_apic_base(vcpu, &apic_base_msr); + + mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; + kvm_x86_ops->set_cr0(vcpu, sregs->cr0); + vcpu->arch.cr0 = sregs->cr0; + + mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; + kvm_x86_ops->set_cr4(vcpu, sregs->cr4); + if (sregs->cr4 & X86_CR4_OSXSAVE) + kvm_update_cpuid(vcpu); + + idx = srcu_read_lock(&vcpu->kvm->srcu); + if (!is_long_mode(vcpu) && is_pae(vcpu)) { + load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); + mmu_reset_needed = 1; + } + srcu_read_unlock(&vcpu->kvm->srcu, idx); + + if (mmu_reset_needed) + kvm_mmu_reset_context(vcpu); + + max_bits = KVM_NR_INTERRUPTS; + pending_vec = find_first_bit( + (const unsigned long *)sregs->interrupt_bitmap, max_bits); + if (pending_vec < max_bits) { + kvm_queue_interrupt(vcpu, pending_vec, false); + pr_debug("Set back pending irq %d\n", pending_vec); + } + + kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); + kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); + kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); + kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); + kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); + kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); + + kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); + kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); + + update_cr8_intercept(vcpu); + + /* Older userspace won't unhalt the vcpu on reset. */ + if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && + sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && + !is_protmode(vcpu)) + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 0; +} + +int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, + struct kvm_guest_debug *dbg) +{ + unsigned long rflags; + int i, r; + + if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { + r = -EBUSY; + if (vcpu->arch.exception.pending) + goto out; + if (dbg->control & KVM_GUESTDBG_INJECT_DB) + kvm_queue_exception(vcpu, DB_VECTOR); + else + kvm_queue_exception(vcpu, BP_VECTOR); + } + + /* + * Read rflags as long as potentially injected trace flags are still + * filtered out. + */ + rflags = kvm_get_rflags(vcpu); + + vcpu->guest_debug = dbg->control; + if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) + vcpu->guest_debug = 0; + + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { + for (i = 0; i < KVM_NR_DB_REGS; ++i) + vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; + vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; + } else { + for (i = 0; i < KVM_NR_DB_REGS; i++) + vcpu->arch.eff_db[i] = vcpu->arch.db[i]; + } + kvm_update_dr7(vcpu); + + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) + vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + + get_segment_base(vcpu, VCPU_SREG_CS); + + /* + * Trigger an rflags update that will inject or remove the trace + * flags. + */ + kvm_set_rflags(vcpu, rflags); + + kvm_x86_ops->update_db_bp_intercept(vcpu); + + r = 0; + +out: + + return r; +} + +/* + * Translate a guest virtual address to a guest physical address. + */ +int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, + struct kvm_translation *tr) +{ + unsigned long vaddr = tr->linear_address; + gpa_t gpa; + int idx; + + idx = srcu_read_lock(&vcpu->kvm->srcu); + gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + tr->physical_address = gpa; + tr->valid = gpa != UNMAPPED_GVA; + tr->writeable = 1; + tr->usermode = 0; + + return 0; +} + +int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) +{ + struct i387_fxsave_struct *fxsave = + &vcpu->arch.guest_fpu.state->fxsave; + + memcpy(fpu->fpr, fxsave->st_space, 128); + fpu->fcw = fxsave->cwd; + fpu->fsw = fxsave->swd; + fpu->ftwx = fxsave->twd; + fpu->last_opcode = fxsave->fop; + fpu->last_ip = fxsave->rip; + fpu->last_dp = fxsave->rdp; + memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); + + return 0; +} + +int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) +{ + struct i387_fxsave_struct *fxsave = + &vcpu->arch.guest_fpu.state->fxsave; + + memcpy(fxsave->st_space, fpu->fpr, 128); + fxsave->cwd = fpu->fcw; + fxsave->swd = fpu->fsw; + fxsave->twd = fpu->ftwx; + fxsave->fop = fpu->last_opcode; + fxsave->rip = fpu->last_ip; + fxsave->rdp = fpu->last_dp; + memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); + + return 0; +} + +int fx_init(struct kvm_vcpu *vcpu) +{ + int err; + + err = fpu_alloc(&vcpu->arch.guest_fpu); + if (err) + return err; + + fpu_finit(&vcpu->arch.guest_fpu); + if (cpu_has_xsaves) + vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv = + host_xcr0 | XSTATE_COMPACTION_ENABLED; + + /* + * Ensure guest xcr0 is valid for loading + */ + vcpu->arch.xcr0 = XSTATE_FP; + + vcpu->arch.cr0 |= X86_CR0_ET; + + return 0; +} +EXPORT_SYMBOL_GPL(fx_init); + +static void fx_free(struct kvm_vcpu *vcpu) +{ + fpu_free(&vcpu->arch.guest_fpu); +} + +void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) +{ + if (vcpu->guest_fpu_loaded) + return; + + /* + * Restore all possible states in the guest, + * and assume host would use all available bits. + * Guest xcr0 would be loaded later. + */ + kvm_put_guest_xcr0(vcpu); + vcpu->guest_fpu_loaded = 1; + __kernel_fpu_begin(); + fpu_restore_checking(&vcpu->arch.guest_fpu); + trace_kvm_fpu(1); +} + +void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) +{ + kvm_put_guest_xcr0(vcpu); + + if (!vcpu->guest_fpu_loaded) + return; + + vcpu->guest_fpu_loaded = 0; + fpu_save_init(&vcpu->arch.guest_fpu); + __kernel_fpu_end(); + ++vcpu->stat.fpu_reload; + if (!vcpu->arch.eager_fpu) + kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); + + trace_kvm_fpu(0); +} + +void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) +{ + kvmclock_reset(vcpu); + + free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); + fx_free(vcpu); + kvm_x86_ops->vcpu_free(vcpu); +} + +struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, + unsigned int id) +{ + struct kvm_vcpu *vcpu; + + if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) + printk_once(KERN_WARNING + "kvm: SMP vm created on host with unstable TSC; " + "guest TSC will not be reliable\n"); + + vcpu = kvm_x86_ops->vcpu_create(kvm, id); + + /* + * Activate fpu unconditionally in case the guest needs eager FPU. It will be + * deactivated soon if it doesn't. + */ + kvm_x86_ops->fpu_activate(vcpu); + return vcpu; +} + +int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) +{ + int r; + + vcpu->arch.mtrr_state.have_fixed = 1; + r = vcpu_load(vcpu); + if (r) + return r; + kvm_vcpu_reset(vcpu); + kvm_mmu_setup(vcpu); + vcpu_put(vcpu); + + return r; +} + +void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) +{ + struct msr_data msr; + struct kvm *kvm = vcpu->kvm; + + if (vcpu_load(vcpu)) + return; + msr.data = 0x0; + msr.index = MSR_IA32_TSC; + msr.host_initiated = true; + kvm_write_tsc(vcpu, &msr); + vcpu_put(vcpu); + + schedule_delayed_work(&kvm->arch.kvmclock_sync_work, + KVMCLOCK_SYNC_PERIOD); +} + +void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) +{ + int r; + vcpu->arch.apf.msr_val = 0; + + r = vcpu_load(vcpu); + BUG_ON(r); + kvm_mmu_unload(vcpu); + vcpu_put(vcpu); + + fx_free(vcpu); + kvm_x86_ops->vcpu_free(vcpu); +} + +void kvm_vcpu_reset(struct kvm_vcpu *vcpu) +{ + atomic_set(&vcpu->arch.nmi_queued, 0); + vcpu->arch.nmi_pending = 0; + vcpu->arch.nmi_injected = false; + kvm_clear_interrupt_queue(vcpu); + kvm_clear_exception_queue(vcpu); + + memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); + kvm_update_dr0123(vcpu); + vcpu->arch.dr6 = DR6_INIT; + kvm_update_dr6(vcpu); + vcpu->arch.dr7 = DR7_FIXED_1; + kvm_update_dr7(vcpu); + + vcpu->arch.cr2 = 0; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + vcpu->arch.apf.msr_val = 0; + vcpu->arch.st.msr_val = 0; + + kvmclock_reset(vcpu); + + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + vcpu->arch.apf.halted = false; + + kvm_pmu_reset(vcpu); + + memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); + vcpu->arch.regs_avail = ~0; + vcpu->arch.regs_dirty = ~0; + + kvm_x86_ops->vcpu_reset(vcpu); +} + +void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) +{ + struct kvm_segment cs; + + kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); + cs.selector = vector << 8; + cs.base = vector << 12; + kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); + kvm_rip_write(vcpu, 0); +} + +int kvm_arch_hardware_enable(void) +{ + struct kvm *kvm; + struct kvm_vcpu *vcpu; + int i; + int ret; + u64 local_tsc; + u64 max_tsc = 0; + bool stable, backwards_tsc = false; + + kvm_shared_msr_cpu_online(); + ret = kvm_x86_ops->hardware_enable(); + if (ret != 0) + return ret; + + local_tsc = native_read_tsc(); + stable = !check_tsc_unstable(); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!stable && vcpu->cpu == smp_processor_id()) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + if (stable && vcpu->arch.last_host_tsc > local_tsc) { + backwards_tsc = true; + if (vcpu->arch.last_host_tsc > max_tsc) + max_tsc = vcpu->arch.last_host_tsc; + } + } + } + + /* + * Sometimes, even reliable TSCs go backwards. This happens on + * platforms that reset TSC during suspend or hibernate actions, but + * maintain synchronization. We must compensate. Fortunately, we can + * detect that condition here, which happens early in CPU bringup, + * before any KVM threads can be running. Unfortunately, we can't + * bring the TSCs fully up to date with real time, as we aren't yet far + * enough into CPU bringup that we know how much real time has actually + * elapsed; our helper function, get_kernel_ns() will be using boot + * variables that haven't been updated yet. + * + * So we simply find the maximum observed TSC above, then record the + * adjustment to TSC in each VCPU. When the VCPU later gets loaded, + * the adjustment will be applied. Note that we accumulate + * adjustments, in case multiple suspend cycles happen before some VCPU + * gets a chance to run again. In the event that no KVM threads get a + * chance to run, we will miss the entire elapsed period, as we'll have + * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may + * loose cycle time. This isn't too big a deal, since the loss will be + * uniform across all VCPUs (not to mention the scenario is extremely + * unlikely). It is possible that a second hibernate recovery happens + * much faster than a first, causing the observed TSC here to be + * smaller; this would require additional padding adjustment, which is + * why we set last_host_tsc to the local tsc observed here. + * + * N.B. - this code below runs only on platforms with reliable TSC, + * as that is the only way backwards_tsc is set above. Also note + * that this runs for ALL vcpus, which is not a bug; all VCPUs should + * have the same delta_cyc adjustment applied if backwards_tsc + * is detected. Note further, this adjustment is only done once, + * as we reset last_host_tsc on all VCPUs to stop this from being + * called multiple times (one for each physical CPU bringup). + * + * Platforms with unreliable TSCs don't have to deal with this, they + * will be compensated by the logic in vcpu_load, which sets the TSC to + * catchup mode. This will catchup all VCPUs to real time, but cannot + * guarantee that they stay in perfect synchronization. + */ + if (backwards_tsc) { + u64 delta_cyc = max_tsc - local_tsc; + backwards_tsc_observed = true; + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_for_each_vcpu(i, vcpu, kvm) { + vcpu->arch.tsc_offset_adjustment += delta_cyc; + vcpu->arch.last_host_tsc = local_tsc; + kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); + } + + /* + * We have to disable TSC offset matching.. if you were + * booting a VM while issuing an S4 host suspend.... + * you may have some problem. Solving this issue is + * left as an exercise to the reader. + */ + kvm->arch.last_tsc_nsec = 0; + kvm->arch.last_tsc_write = 0; + } + + } + return 0; +} + +void kvm_arch_hardware_disable(void) +{ + kvm_x86_ops->hardware_disable(); + drop_user_return_notifiers(); +} + +int kvm_arch_hardware_setup(void) +{ + int r; + + r = kvm_x86_ops->hardware_setup(); + if (r != 0) + return r; + + kvm_init_msr_list(); + return 0; +} + +void kvm_arch_hardware_unsetup(void) +{ + kvm_x86_ops->hardware_unsetup(); +} + +void kvm_arch_check_processor_compat(void *rtn) +{ + kvm_x86_ops->check_processor_compatibility(rtn); +} + +bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) +{ + return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); +} + +struct static_key kvm_no_apic_vcpu __read_mostly; + +int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) +{ + struct page *page; + struct kvm *kvm; + int r; + + BUG_ON(vcpu->kvm == NULL); + kvm = vcpu->kvm; + + vcpu->arch.pv.pv_unhalted = false; + vcpu->arch.emulate_ctxt.ops = &emulate_ops; + if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu)) + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + else + vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; + + page = alloc_page(GFP_KERNEL | __GFP_ZERO); + if (!page) { + r = -ENOMEM; + goto fail; + } + vcpu->arch.pio_data = page_address(page); + + kvm_set_tsc_khz(vcpu, max_tsc_khz); + + r = kvm_mmu_create(vcpu); + if (r < 0) + goto fail_free_pio_data; + + if (irqchip_in_kernel(kvm)) { + r = kvm_create_lapic(vcpu); + if (r < 0) + goto fail_mmu_destroy; + } else + static_key_slow_inc(&kvm_no_apic_vcpu); + + vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, + GFP_KERNEL); + if (!vcpu->arch.mce_banks) { + r = -ENOMEM; + goto fail_free_lapic; + } + vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; + + if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { + r = -ENOMEM; + goto fail_free_mce_banks; + } + + r = fx_init(vcpu); + if (r) + goto fail_free_wbinvd_dirty_mask; + + vcpu->arch.ia32_tsc_adjust_msr = 0x0; + vcpu->arch.pv_time_enabled = false; + + vcpu->arch.guest_supported_xcr0 = 0; + vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; + + vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); + + kvm_async_pf_hash_reset(vcpu); + kvm_pmu_init(vcpu); + + return 0; +fail_free_wbinvd_dirty_mask: + free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); +fail_free_mce_banks: + kfree(vcpu->arch.mce_banks); +fail_free_lapic: + kvm_free_lapic(vcpu); +fail_mmu_destroy: + kvm_mmu_destroy(vcpu); +fail_free_pio_data: + free_page((unsigned long)vcpu->arch.pio_data); +fail: + return r; +} + +void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) +{ + int idx; + + kvm_pmu_destroy(vcpu); + kfree(vcpu->arch.mce_banks); + kvm_free_lapic(vcpu); + idx = srcu_read_lock(&vcpu->kvm->srcu); + kvm_mmu_destroy(vcpu); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + free_page((unsigned long)vcpu->arch.pio_data); + if (!irqchip_in_kernel(vcpu->kvm)) + static_key_slow_dec(&kvm_no_apic_vcpu); +} + +void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) +{ + kvm_x86_ops->sched_in(vcpu, cpu); +} + +int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) +{ + if (type) + return -EINVAL; + + INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); + INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); + INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); + atomic_set(&kvm->arch.noncoherent_dma_count, 0); + + /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ + set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); + /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ + set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, + &kvm->arch.irq_sources_bitmap); + + raw_spin_lock_init(&kvm->arch.tsc_write_lock); + mutex_init(&kvm->arch.apic_map_lock); + spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); + + pvclock_update_vm_gtod_copy(kvm); + + INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); + INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); + + return 0; +} + +static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) +{ + int r; + r = vcpu_load(vcpu); + BUG_ON(r); + kvm_mmu_unload(vcpu); + vcpu_put(vcpu); +} + +static void kvm_free_vcpus(struct kvm *kvm) +{ + unsigned int i; + struct kvm_vcpu *vcpu; + + /* + * Unpin any mmu pages first. + */ + kvm_for_each_vcpu(i, vcpu, kvm) { + kvm_clear_async_pf_completion_queue(vcpu); + kvm_unload_vcpu_mmu(vcpu); + } + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_arch_vcpu_free(vcpu); + + mutex_lock(&kvm->lock); + for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) + kvm->vcpus[i] = NULL; + + atomic_set(&kvm->online_vcpus, 0); + mutex_unlock(&kvm->lock); +} + +void kvm_arch_sync_events(struct kvm *kvm) +{ + cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); + cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); + kvm_free_all_assigned_devices(kvm); + kvm_free_pit(kvm); +} + +void kvm_arch_destroy_vm(struct kvm *kvm) +{ + if (current->mm == kvm->mm) { + /* + * Free memory regions allocated on behalf of userspace, + * unless the the memory map has changed due to process exit + * or fd copying. + */ + struct kvm_userspace_memory_region mem; + memset(&mem, 0, sizeof(mem)); + mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; + kvm_set_memory_region(kvm, &mem); + + mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; + kvm_set_memory_region(kvm, &mem); + + mem.slot = TSS_PRIVATE_MEMSLOT; + kvm_set_memory_region(kvm, &mem); + } + kvm_iommu_unmap_guest(kvm); + kfree(kvm->arch.vpic); + kfree(kvm->arch.vioapic); + kvm_free_vcpus(kvm); + kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); +} + +void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, + struct kvm_memory_slot *dont) +{ + int i; + + for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { + if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { + kvfree(free->arch.rmap[i]); + free->arch.rmap[i] = NULL; + } + if (i == 0) + continue; + + if (!dont || free->arch.lpage_info[i - 1] != + dont->arch.lpage_info[i - 1]) { + kvfree(free->arch.lpage_info[i - 1]); + free->arch.lpage_info[i - 1] = NULL; + } + } +} + +int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, + unsigned long npages) +{ + int i; + + for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { + unsigned long ugfn; + int lpages; + int level = i + 1; + + lpages = gfn_to_index(slot->base_gfn + npages - 1, + slot->base_gfn, level) + 1; + + slot->arch.rmap[i] = + kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); + if (!slot->arch.rmap[i]) + goto out_free; + if (i == 0) + continue; + + slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * + sizeof(*slot->arch.lpage_info[i - 1])); + if (!slot->arch.lpage_info[i - 1]) + goto out_free; + + if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) + slot->arch.lpage_info[i - 1][0].write_count = 1; + if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) + slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; + ugfn = slot->userspace_addr >> PAGE_SHIFT; + /* + * If the gfn and userspace address are not aligned wrt each + * other, or if explicitly asked to, disable large page + * support for this slot + */ + if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || + !kvm_largepages_enabled()) { + unsigned long j; + + for (j = 0; j < lpages; ++j) + slot->arch.lpage_info[i - 1][j].write_count = 1; + } + } + + return 0; + +out_free: + for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { + kvfree(slot->arch.rmap[i]); + slot->arch.rmap[i] = NULL; + if (i == 0) + continue; + + kvfree(slot->arch.lpage_info[i - 1]); + slot->arch.lpage_info[i - 1] = NULL; + } + return -ENOMEM; +} + +void kvm_arch_memslots_updated(struct kvm *kvm) +{ + /* + * memslots->generation has been incremented. + * mmio generation may have reached its maximum value. + */ + kvm_mmu_invalidate_mmio_sptes(kvm); +} + +int kvm_arch_prepare_memory_region(struct kvm *kvm, + struct kvm_memory_slot *memslot, + struct kvm_userspace_memory_region *mem, + enum kvm_mr_change change) +{ + /* + * Only private memory slots need to be mapped here since + * KVM_SET_MEMORY_REGION ioctl is no longer supported. + */ + if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { + unsigned long userspace_addr; + + /* + * MAP_SHARED to prevent internal slot pages from being moved + * by fork()/COW. + */ + userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, + PROT_READ | PROT_WRITE, + MAP_SHARED | MAP_ANONYMOUS, 0); + + if (IS_ERR((void *)userspace_addr)) + return PTR_ERR((void *)userspace_addr); + + memslot->userspace_addr = userspace_addr; + } + + return 0; +} + +static void kvm_mmu_slot_apply_flags(struct kvm *kvm, + struct kvm_memory_slot *new) +{ + /* Still write protect RO slot */ + if (new->flags & KVM_MEM_READONLY) { + kvm_mmu_slot_remove_write_access(kvm, new); + return; + } + + /* + * Call kvm_x86_ops dirty logging hooks when they are valid. + * + * kvm_x86_ops->slot_disable_log_dirty is called when: + * + * - KVM_MR_CREATE with dirty logging is disabled + * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag + * + * The reason is, in case of PML, we need to set D-bit for any slots + * with dirty logging disabled in order to eliminate unnecessary GPA + * logging in PML buffer (and potential PML buffer full VMEXT). This + * guarantees leaving PML enabled during guest's lifetime won't have + * any additonal overhead from PML when guest is running with dirty + * logging disabled for memory slots. + * + * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot + * to dirty logging mode. + * + * If kvm_x86_ops dirty logging hooks are invalid, use write protect. + * + * In case of write protect: + * + * Write protect all pages for dirty logging. + * + * All the sptes including the large sptes which point to this + * slot are set to readonly. We can not create any new large + * spte on this slot until the end of the logging. + * + * See the comments in fast_page_fault(). + */ + if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { + if (kvm_x86_ops->slot_enable_log_dirty) + kvm_x86_ops->slot_enable_log_dirty(kvm, new); + else + kvm_mmu_slot_remove_write_access(kvm, new); + } else { + if (kvm_x86_ops->slot_disable_log_dirty) + kvm_x86_ops->slot_disable_log_dirty(kvm, new); + } +} + +void kvm_arch_commit_memory_region(struct kvm *kvm, + struct kvm_userspace_memory_region *mem, + const struct kvm_memory_slot *old, + enum kvm_mr_change change) +{ + struct kvm_memory_slot *new; + int nr_mmu_pages = 0; + + if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { + int ret; + + ret = vm_munmap(old->userspace_addr, + old->npages * PAGE_SIZE); + if (ret < 0) + printk(KERN_WARNING + "kvm_vm_ioctl_set_memory_region: " + "failed to munmap memory\n"); + } + + if (!kvm->arch.n_requested_mmu_pages) + nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); + + if (nr_mmu_pages) + kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); + + /* It's OK to get 'new' slot here as it has already been installed */ + new = id_to_memslot(kvm->memslots, mem->slot); + + /* + * Dirty logging tracks sptes in 4k granularity, meaning that large + * sptes have to be split. If live migration is successful, the guest + * in the source machine will be destroyed and large sptes will be + * created in the destination. However, if the guest continues to run + * in the source machine (for example if live migration fails), small + * sptes will remain around and cause bad performance. + * + * Scan sptes if dirty logging has been stopped, dropping those + * which can be collapsed into a single large-page spte. Later + * page faults will create the large-page sptes. + */ + if ((change != KVM_MR_DELETE) && + (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && + !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) + kvm_mmu_zap_collapsible_sptes(kvm, new); + + /* + * Set up write protection and/or dirty logging for the new slot. + * + * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have + * been zapped so no dirty logging staff is needed for old slot. For + * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the + * new and it's also covered when dealing with the new slot. + */ + if (change != KVM_MR_DELETE) + kvm_mmu_slot_apply_flags(kvm, new); +} + +void kvm_arch_flush_shadow_all(struct kvm *kvm) +{ + kvm_mmu_invalidate_zap_all_pages(kvm); +} + +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + kvm_mmu_invalidate_zap_all_pages(kvm); +} + +int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) +{ + if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) + kvm_x86_ops->check_nested_events(vcpu, false); + + return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && + !vcpu->arch.apf.halted) + || !list_empty_careful(&vcpu->async_pf.done) + || kvm_apic_has_events(vcpu) + || vcpu->arch.pv.pv_unhalted + || atomic_read(&vcpu->arch.nmi_queued) || + (kvm_arch_interrupt_allowed(vcpu) && + kvm_cpu_has_interrupt(vcpu)); +} + +int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) +{ + return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; +} + +int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) +{ + return kvm_x86_ops->interrupt_allowed(vcpu); +} + +unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) +{ + if (is_64_bit_mode(vcpu)) + return kvm_rip_read(vcpu); + return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + + kvm_rip_read(vcpu)); +} +EXPORT_SYMBOL_GPL(kvm_get_linear_rip); + +bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) +{ + return kvm_get_linear_rip(vcpu) == linear_rip; +} +EXPORT_SYMBOL_GPL(kvm_is_linear_rip); + +unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) +{ + unsigned long rflags; + + rflags = kvm_x86_ops->get_rflags(vcpu); + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) + rflags &= ~X86_EFLAGS_TF; + return rflags; +} +EXPORT_SYMBOL_GPL(kvm_get_rflags); + +static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) +{ + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && + kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) + rflags |= X86_EFLAGS_TF; + kvm_x86_ops->set_rflags(vcpu, rflags); +} + +void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) +{ + __kvm_set_rflags(vcpu, rflags); + kvm_make_request(KVM_REQ_EVENT, vcpu); +} +EXPORT_SYMBOL_GPL(kvm_set_rflags); + +void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) +{ + int r; + + if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || + work->wakeup_all) + return; + + r = kvm_mmu_reload(vcpu); + if (unlikely(r)) + return; + + if (!vcpu->arch.mmu.direct_map && + work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) + return; + + vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); +} + +static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) +{ + return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); +} + +static inline u32 kvm_async_pf_next_probe(u32 key) +{ + return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); +} + +static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + u32 key = kvm_async_pf_hash_fn(gfn); + + while (vcpu->arch.apf.gfns[key] != ~0) + key = kvm_async_pf_next_probe(key); + + vcpu->arch.apf.gfns[key] = gfn; +} + +static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + int i; + u32 key = kvm_async_pf_hash_fn(gfn); + + for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && + (vcpu->arch.apf.gfns[key] != gfn && + vcpu->arch.apf.gfns[key] != ~0); i++) + key = kvm_async_pf_next_probe(key); + + return key; +} + +bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; +} + +static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + u32 i, j, k; + + i = j = kvm_async_pf_gfn_slot(vcpu, gfn); + while (true) { + vcpu->arch.apf.gfns[i] = ~0; + do { + j = kvm_async_pf_next_probe(j); + if (vcpu->arch.apf.gfns[j] == ~0) + return; + k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); + /* + * k lies cyclically in ]i,j] + * | i.k.j | + * |....j i.k.| or |.k..j i...| + */ + } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); + vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; + i = j; + } +} + +static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) +{ + + return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, + sizeof(val)); +} + +void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, + struct kvm_async_pf *work) +{ + struct x86_exception fault; + + trace_kvm_async_pf_not_present(work->arch.token, work->gva); + kvm_add_async_pf_gfn(vcpu, work->arch.gfn); + + if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || + (vcpu->arch.apf.send_user_only && + kvm_x86_ops->get_cpl(vcpu) == 0)) + kvm_make_request(KVM_REQ_APF_HALT, vcpu); + else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { + fault.vector = PF_VECTOR; + fault.error_code_valid = true; + fault.error_code = 0; + fault.nested_page_fault = false; + fault.address = work->arch.token; + kvm_inject_page_fault(vcpu, &fault); + } +} + +void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, + struct kvm_async_pf *work) +{ + struct x86_exception fault; + + trace_kvm_async_pf_ready(work->arch.token, work->gva); + if (work->wakeup_all) + work->arch.token = ~0; /* broadcast wakeup */ + else + kvm_del_async_pf_gfn(vcpu, work->arch.gfn); + + if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && + !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { + fault.vector = PF_VECTOR; + fault.error_code_valid = true; + fault.error_code = 0; + fault.nested_page_fault = false; + fault.address = work->arch.token; + kvm_inject_page_fault(vcpu, &fault); + } + vcpu->arch.apf.halted = false; + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; +} + +bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) +{ + if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) + return true; + else + return !kvm_event_needs_reinjection(vcpu) && + kvm_x86_ops->interrupt_allowed(vcpu); +} + +void kvm_arch_register_noncoherent_dma(struct kvm *kvm) +{ + atomic_inc(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); + +void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) +{ + atomic_dec(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); + +bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) +{ + return atomic_read(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); + +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); diff --git a/arch/x86/kvm/x86.h b/arch/x86/kvm/x86.h new file mode 100644 index 000000000..f5fef1868 --- /dev/null +++ b/arch/x86/kvm/x86.h @@ -0,0 +1,177 @@ +#ifndef ARCH_X86_KVM_X86_H +#define ARCH_X86_KVM_X86_H + +#include <linux/kvm_host.h> +#include "kvm_cache_regs.h" + +static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu) +{ + vcpu->arch.exception.pending = false; +} + +static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, + bool soft) +{ + vcpu->arch.interrupt.pending = true; + vcpu->arch.interrupt.soft = soft; + vcpu->arch.interrupt.nr = vector; +} + +static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu) +{ + vcpu->arch.interrupt.pending = false; +} + +static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.exception.pending || vcpu->arch.interrupt.pending || + vcpu->arch.nmi_injected; +} + +static inline bool kvm_exception_is_soft(unsigned int nr) +{ + return (nr == BP_VECTOR) || (nr == OF_VECTOR); +} + +static inline bool is_protmode(struct kvm_vcpu *vcpu) +{ + return kvm_read_cr0_bits(vcpu, X86_CR0_PE); +} + +static inline int is_long_mode(struct kvm_vcpu *vcpu) +{ +#ifdef CONFIG_X86_64 + return vcpu->arch.efer & EFER_LMA; +#else + return 0; +#endif +} + +static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu) +{ + int cs_db, cs_l; + + if (!is_long_mode(vcpu)) + return false; + kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); + return cs_l; +} + +static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; +} + +static inline int is_pae(struct kvm_vcpu *vcpu) +{ + return kvm_read_cr4_bits(vcpu, X86_CR4_PAE); +} + +static inline int is_pse(struct kvm_vcpu *vcpu) +{ + return kvm_read_cr4_bits(vcpu, X86_CR4_PSE); +} + +static inline int is_paging(struct kvm_vcpu *vcpu) +{ + return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG)); +} + +static inline u32 bit(int bitno) +{ + return 1 << (bitno & 31); +} + +static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu, + gva_t gva, gfn_t gfn, unsigned access) +{ + vcpu->arch.mmio_gva = gva & PAGE_MASK; + vcpu->arch.access = access; + vcpu->arch.mmio_gfn = gfn; + vcpu->arch.mmio_gen = kvm_memslots(vcpu->kvm)->generation; +} + +static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation; +} + +/* + * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we + * clear all mmio cache info. + */ +#define MMIO_GVA_ANY (~(gva_t)0) + +static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva) +{ + if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK)) + return; + + vcpu->arch.mmio_gva = 0; +} + +static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva) +{ + if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva && + vcpu->arch.mmio_gva == (gva & PAGE_MASK)) + return true; + + return false; +} + +static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) +{ + if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn && + vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT) + return true; + + return false; +} + +static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu, + enum kvm_reg reg) +{ + unsigned long val = kvm_register_read(vcpu, reg); + + return is_64_bit_mode(vcpu) ? val : (u32)val; +} + +static inline void kvm_register_writel(struct kvm_vcpu *vcpu, + enum kvm_reg reg, + unsigned long val) +{ + if (!is_64_bit_mode(vcpu)) + val = (u32)val; + return kvm_register_write(vcpu, reg, val); +} + +void kvm_before_handle_nmi(struct kvm_vcpu *vcpu); +void kvm_after_handle_nmi(struct kvm_vcpu *vcpu); +void kvm_set_pending_timer(struct kvm_vcpu *vcpu); +int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); + +void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr); + +int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception); + +int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception); + +bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data); + +#define KVM_SUPPORTED_XCR0 (XSTATE_FP | XSTATE_SSE | XSTATE_YMM \ + | XSTATE_BNDREGS | XSTATE_BNDCSR \ + | XSTATE_AVX512) +extern u64 host_xcr0; + +extern u64 kvm_supported_xcr0(void); + +extern unsigned int min_timer_period_us; + +extern unsigned int lapic_timer_advance_ns; + +extern struct static_key kvm_no_apic_vcpu; +#endif |