summaryrefslogtreecommitdiff
path: root/drivers/edac/sb_edac.c
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /drivers/edac/sb_edac.c
Initial import
Diffstat (limited to 'drivers/edac/sb_edac.c')
-rw-r--r--drivers/edac/sb_edac.c2592
1 files changed, 2592 insertions, 0 deletions
diff --git a/drivers/edac/sb_edac.c b/drivers/edac/sb_edac.c
new file mode 100644
index 000000000..1acf57ba4
--- /dev/null
+++ b/drivers/edac/sb_edac.c
@@ -0,0 +1,2592 @@
+/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
+ *
+ * This driver supports the memory controllers found on the Intel
+ * processor family Sandy Bridge.
+ *
+ * This file may be distributed under the terms of the
+ * GNU General Public License version 2 only.
+ *
+ * Copyright (c) 2011 by:
+ * Mauro Carvalho Chehab
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/edac.h>
+#include <linux/mmzone.h>
+#include <linux/smp.h>
+#include <linux/bitmap.h>
+#include <linux/math64.h>
+#include <asm/processor.h>
+#include <asm/mce.h>
+
+#include "edac_core.h"
+
+/* Static vars */
+static LIST_HEAD(sbridge_edac_list);
+static DEFINE_MUTEX(sbridge_edac_lock);
+static int probed;
+
+/*
+ * Alter this version for the module when modifications are made
+ */
+#define SBRIDGE_REVISION " Ver: 1.1.0 "
+#define EDAC_MOD_STR "sbridge_edac"
+
+/*
+ * Debug macros
+ */
+#define sbridge_printk(level, fmt, arg...) \
+ edac_printk(level, "sbridge", fmt, ##arg)
+
+#define sbridge_mc_printk(mci, level, fmt, arg...) \
+ edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
+
+/*
+ * Get a bit field at register value <v>, from bit <lo> to bit <hi>
+ */
+#define GET_BITFIELD(v, lo, hi) \
+ (((v) & GENMASK_ULL(hi, lo)) >> (lo))
+
+/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
+static const u32 sbridge_dram_rule[] = {
+ 0x80, 0x88, 0x90, 0x98, 0xa0,
+ 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
+};
+
+static const u32 ibridge_dram_rule[] = {
+ 0x60, 0x68, 0x70, 0x78, 0x80,
+ 0x88, 0x90, 0x98, 0xa0, 0xa8,
+ 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
+ 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
+};
+
+#define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
+#define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
+#define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
+#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
+#define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
+
+static char *get_dram_attr(u32 reg)
+{
+ switch(DRAM_ATTR(reg)) {
+ case 0:
+ return "DRAM";
+ case 1:
+ return "MMCFG";
+ case 2:
+ return "NXM";
+ default:
+ return "unknown";
+ }
+}
+
+static const u32 sbridge_interleave_list[] = {
+ 0x84, 0x8c, 0x94, 0x9c, 0xa4,
+ 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
+};
+
+static const u32 ibridge_interleave_list[] = {
+ 0x64, 0x6c, 0x74, 0x7c, 0x84,
+ 0x8c, 0x94, 0x9c, 0xa4, 0xac,
+ 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
+ 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
+};
+
+struct interleave_pkg {
+ unsigned char start;
+ unsigned char end;
+};
+
+static const struct interleave_pkg sbridge_interleave_pkg[] = {
+ { 0, 2 },
+ { 3, 5 },
+ { 8, 10 },
+ { 11, 13 },
+ { 16, 18 },
+ { 19, 21 },
+ { 24, 26 },
+ { 27, 29 },
+};
+
+static const struct interleave_pkg ibridge_interleave_pkg[] = {
+ { 0, 3 },
+ { 4, 7 },
+ { 8, 11 },
+ { 12, 15 },
+ { 16, 19 },
+ { 20, 23 },
+ { 24, 27 },
+ { 28, 31 },
+};
+
+static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
+ int interleave)
+{
+ return GET_BITFIELD(reg, table[interleave].start,
+ table[interleave].end);
+}
+
+/* Devices 12 Function 7 */
+
+#define TOLM 0x80
+#define TOHM 0x84
+#define HASWELL_TOLM 0xd0
+#define HASWELL_TOHM_0 0xd4
+#define HASWELL_TOHM_1 0xd8
+
+#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
+#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
+
+/* Device 13 Function 6 */
+
+#define SAD_TARGET 0xf0
+
+#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
+
+#define SAD_CONTROL 0xf4
+
+/* Device 14 function 0 */
+
+static const u32 tad_dram_rule[] = {
+ 0x40, 0x44, 0x48, 0x4c,
+ 0x50, 0x54, 0x58, 0x5c,
+ 0x60, 0x64, 0x68, 0x6c,
+};
+#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
+
+#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
+#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
+#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
+#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
+#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
+#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
+#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
+
+/* Device 15, function 0 */
+
+#define MCMTR 0x7c
+
+#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
+#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
+#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
+
+/* Device 15, function 1 */
+
+#define RASENABLES 0xac
+#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
+
+/* Device 15, functions 2-5 */
+
+static const int mtr_regs[] = {
+ 0x80, 0x84, 0x88,
+};
+
+#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
+#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
+#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
+#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
+#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
+
+static const u32 tad_ch_nilv_offset[] = {
+ 0x90, 0x94, 0x98, 0x9c,
+ 0xa0, 0xa4, 0xa8, 0xac,
+ 0xb0, 0xb4, 0xb8, 0xbc,
+};
+#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
+#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
+
+static const u32 rir_way_limit[] = {
+ 0x108, 0x10c, 0x110, 0x114, 0x118,
+};
+#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
+
+#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
+#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
+
+#define MAX_RIR_WAY 8
+
+static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
+ { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
+ { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
+ { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
+ { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
+ { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
+};
+
+#define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
+#define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
+
+/* Device 16, functions 2-7 */
+
+/*
+ * FIXME: Implement the error count reads directly
+ */
+
+static const u32 correrrcnt[] = {
+ 0x104, 0x108, 0x10c, 0x110,
+};
+
+#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
+#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
+#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
+#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
+
+static const u32 correrrthrsld[] = {
+ 0x11c, 0x120, 0x124, 0x128,
+};
+
+#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
+#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
+
+
+/* Device 17, function 0 */
+
+#define SB_RANK_CFG_A 0x0328
+
+#define IB_RANK_CFG_A 0x0320
+
+/*
+ * sbridge structs
+ */
+
+#define NUM_CHANNELS 4
+#define MAX_DIMMS 3 /* Max DIMMS per channel */
+#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
+
+enum type {
+ SANDY_BRIDGE,
+ IVY_BRIDGE,
+ HASWELL,
+ BROADWELL,
+};
+
+struct sbridge_pvt;
+struct sbridge_info {
+ enum type type;
+ u32 mcmtr;
+ u32 rankcfgr;
+ u64 (*get_tolm)(struct sbridge_pvt *pvt);
+ u64 (*get_tohm)(struct sbridge_pvt *pvt);
+ u64 (*rir_limit)(u32 reg);
+ const u32 *dram_rule;
+ const u32 *interleave_list;
+ const struct interleave_pkg *interleave_pkg;
+ u8 max_sad;
+ u8 max_interleave;
+ u8 (*get_node_id)(struct sbridge_pvt *pvt);
+ enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
+ struct pci_dev *pci_vtd;
+};
+
+struct sbridge_channel {
+ u32 ranks;
+ u32 dimms;
+};
+
+struct pci_id_descr {
+ int dev_id;
+ int optional;
+};
+
+struct pci_id_table {
+ const struct pci_id_descr *descr;
+ int n_devs;
+};
+
+struct sbridge_dev {
+ struct list_head list;
+ u8 bus, mc;
+ u8 node_id, source_id;
+ struct pci_dev **pdev;
+ int n_devs;
+ struct mem_ctl_info *mci;
+};
+
+struct sbridge_pvt {
+ struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
+ struct pci_dev *pci_sad0, *pci_sad1;
+ struct pci_dev *pci_ha0, *pci_ha1;
+ struct pci_dev *pci_br0, *pci_br1;
+ struct pci_dev *pci_ha1_ta;
+ struct pci_dev *pci_tad[NUM_CHANNELS];
+
+ struct sbridge_dev *sbridge_dev;
+
+ struct sbridge_info info;
+ struct sbridge_channel channel[NUM_CHANNELS];
+
+ /* Memory type detection */
+ bool is_mirrored, is_lockstep, is_close_pg;
+
+ /* Fifo double buffers */
+ struct mce mce_entry[MCE_LOG_LEN];
+ struct mce mce_outentry[MCE_LOG_LEN];
+
+ /* Fifo in/out counters */
+ unsigned mce_in, mce_out;
+
+ /* Count indicator to show errors not got */
+ unsigned mce_overrun;
+
+ /* Memory description */
+ u64 tolm, tohm;
+};
+
+#define PCI_DESCR(device_id, opt) \
+ .dev_id = (device_id), \
+ .optional = opt
+
+static const struct pci_id_descr pci_dev_descr_sbridge[] = {
+ /* Processor Home Agent */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) },
+
+ /* Memory controller */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) },
+
+ /* System Address Decoder */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) },
+
+ /* Broadcast Registers */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) },
+};
+
+#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
+static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
+ PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
+ {0,} /* 0 terminated list. */
+};
+
+/* This changes depending if 1HA or 2HA:
+ * 1HA:
+ * 0x0eb8 (17.0) is DDRIO0
+ * 2HA:
+ * 0x0ebc (17.4) is DDRIO0
+ */
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
+
+/* pci ids */
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
+#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
+
+static const struct pci_id_descr pci_dev_descr_ibridge[] = {
+ /* Processor Home Agent */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0) },
+
+ /* Memory controller */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0) },
+
+ /* System Address Decoder */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0) },
+
+ /* Broadcast Registers */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0) },
+
+ /* Optional, mode 2HA */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1) },
+#if 0
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
+#endif
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1) },
+
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1) },
+};
+
+static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
+ PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
+ {0,} /* 0 terminated list. */
+};
+
+/* Haswell support */
+/* EN processor:
+ * - 1 IMC
+ * - 3 DDR3 channels, 2 DPC per channel
+ * EP processor:
+ * - 1 or 2 IMC
+ * - 4 DDR4 channels, 3 DPC per channel
+ * EP 4S processor:
+ * - 2 IMC
+ * - 4 DDR4 channels, 3 DPC per channel
+ * EX processor:
+ * - 2 IMC
+ * - each IMC interfaces with a SMI 2 channel
+ * - each SMI channel interfaces with a scalable memory buffer
+ * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
+ */
+#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
+#define HASWELL_HASYSDEFEATURE2 0x84
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
+#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
+static const struct pci_id_descr pci_dev_descr_haswell[] = {
+ /* first item must be the HA */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0) },
+
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0) },
+
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1) },
+
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1) },
+
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1) },
+
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1) },
+};
+
+static const struct pci_id_table pci_dev_descr_haswell_table[] = {
+ PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
+ {0,} /* 0 terminated list. */
+};
+
+/*
+ * Broadwell support
+ *
+ * DE processor:
+ * - 1 IMC
+ * - 2 DDR3 channels, 2 DPC per channel
+ */
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
+#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
+
+static const struct pci_id_descr pci_dev_descr_broadwell[] = {
+ /* first item must be the HA */
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0) },
+
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0) },
+
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 0) },
+ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1) },
+};
+
+static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
+ PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
+ {0,} /* 0 terminated list. */
+};
+
+/*
+ * pci_device_id table for which devices we are looking for
+ */
+static const struct pci_device_id sbridge_pci_tbl[] = {
+ {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
+ {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
+ {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
+ {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
+ {0,} /* 0 terminated list. */
+};
+
+
+/****************************************************************************
+ Ancillary status routines
+ ****************************************************************************/
+
+static inline int numrank(enum type type, u32 mtr)
+{
+ int ranks = (1 << RANK_CNT_BITS(mtr));
+ int max = 4;
+
+ if (type == HASWELL)
+ max = 8;
+
+ if (ranks > max) {
+ edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
+ ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
+ return -EINVAL;
+ }
+
+ return ranks;
+}
+
+static inline int numrow(u32 mtr)
+{
+ int rows = (RANK_WIDTH_BITS(mtr) + 12);
+
+ if (rows < 13 || rows > 18) {
+ edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
+ rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
+ return -EINVAL;
+ }
+
+ return 1 << rows;
+}
+
+static inline int numcol(u32 mtr)
+{
+ int cols = (COL_WIDTH_BITS(mtr) + 10);
+
+ if (cols > 12) {
+ edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
+ cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
+ return -EINVAL;
+ }
+
+ return 1 << cols;
+}
+
+static struct sbridge_dev *get_sbridge_dev(u8 bus)
+{
+ struct sbridge_dev *sbridge_dev;
+
+ list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
+ if (sbridge_dev->bus == bus)
+ return sbridge_dev;
+ }
+
+ return NULL;
+}
+
+static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
+ const struct pci_id_table *table)
+{
+ struct sbridge_dev *sbridge_dev;
+
+ sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
+ if (!sbridge_dev)
+ return NULL;
+
+ sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
+ GFP_KERNEL);
+ if (!sbridge_dev->pdev) {
+ kfree(sbridge_dev);
+ return NULL;
+ }
+
+ sbridge_dev->bus = bus;
+ sbridge_dev->n_devs = table->n_devs;
+ list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
+
+ return sbridge_dev;
+}
+
+static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
+{
+ list_del(&sbridge_dev->list);
+ kfree(sbridge_dev->pdev);
+ kfree(sbridge_dev);
+}
+
+static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+
+ /* Address range is 32:28 */
+ pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
+ return GET_TOLM(reg);
+}
+
+static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
+ return GET_TOHM(reg);
+}
+
+static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
+
+ return GET_TOLM(reg);
+}
+
+static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
+
+ return GET_TOHM(reg);
+}
+
+static u64 rir_limit(u32 reg)
+{
+ return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
+}
+
+static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+ enum mem_type mtype;
+
+ if (pvt->pci_ddrio) {
+ pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
+ &reg);
+ if (GET_BITFIELD(reg, 11, 11))
+ /* FIXME: Can also be LRDIMM */
+ mtype = MEM_RDDR3;
+ else
+ mtype = MEM_DDR3;
+ } else
+ mtype = MEM_UNKNOWN;
+
+ return mtype;
+}
+
+static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+ bool registered = false;
+ enum mem_type mtype = MEM_UNKNOWN;
+
+ if (!pvt->pci_ddrio)
+ goto out;
+
+ pci_read_config_dword(pvt->pci_ddrio,
+ HASWELL_DDRCRCLKCONTROLS, &reg);
+ /* Is_Rdimm */
+ if (GET_BITFIELD(reg, 16, 16))
+ registered = true;
+
+ pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
+ if (GET_BITFIELD(reg, 14, 14)) {
+ if (registered)
+ mtype = MEM_RDDR4;
+ else
+ mtype = MEM_DDR4;
+ } else {
+ if (registered)
+ mtype = MEM_RDDR3;
+ else
+ mtype = MEM_DDR3;
+ }
+
+out:
+ return mtype;
+}
+
+static u8 get_node_id(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+ pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
+ return GET_BITFIELD(reg, 0, 2);
+}
+
+static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
+ return GET_BITFIELD(reg, 0, 3);
+}
+
+static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
+ return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
+}
+
+static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
+{
+ u64 rc;
+ u32 reg;
+
+ pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
+ rc = GET_BITFIELD(reg, 26, 31);
+ pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
+ rc = ((reg << 6) | rc) << 26;
+
+ return rc | 0x1ffffff;
+}
+
+static u64 haswell_rir_limit(u32 reg)
+{
+ return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
+}
+
+static inline u8 sad_pkg_socket(u8 pkg)
+{
+ /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
+ return ((pkg >> 3) << 2) | (pkg & 0x3);
+}
+
+static inline u8 sad_pkg_ha(u8 pkg)
+{
+ return (pkg >> 2) & 0x1;
+}
+
+/****************************************************************************
+ Memory check routines
+ ****************************************************************************/
+static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
+{
+ struct pci_dev *pdev = NULL;
+
+ do {
+ pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
+ if (pdev && pdev->bus->number == bus)
+ break;
+ } while (pdev);
+
+ return pdev;
+}
+
+/**
+ * check_if_ecc_is_active() - Checks if ECC is active
+ * @bus: Device bus
+ * @type: Memory controller type
+ * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
+ * disabled
+ */
+static int check_if_ecc_is_active(const u8 bus, enum type type)
+{
+ struct pci_dev *pdev = NULL;
+ u32 mcmtr, id;
+
+ switch (type) {
+ case IVY_BRIDGE:
+ id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
+ break;
+ case HASWELL:
+ id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
+ break;
+ case SANDY_BRIDGE:
+ id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
+ break;
+ case BROADWELL:
+ id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
+ break;
+ default:
+ return -ENODEV;
+ }
+
+ pdev = get_pdev_same_bus(bus, id);
+ if (!pdev) {
+ sbridge_printk(KERN_ERR, "Couldn't find PCI device "
+ "%04x:%04x! on bus %02d\n",
+ PCI_VENDOR_ID_INTEL, id, bus);
+ return -ENODEV;
+ }
+
+ pci_read_config_dword(pdev, MCMTR, &mcmtr);
+ if (!IS_ECC_ENABLED(mcmtr)) {
+ sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
+ return -ENODEV;
+ }
+ return 0;
+}
+
+static int get_dimm_config(struct mem_ctl_info *mci)
+{
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ struct dimm_info *dimm;
+ unsigned i, j, banks, ranks, rows, cols, npages;
+ u64 size;
+ u32 reg;
+ enum edac_type mode;
+ enum mem_type mtype;
+
+ if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
+ pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
+ else
+ pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
+
+ pvt->sbridge_dev->source_id = SOURCE_ID(reg);
+
+ pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
+ edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
+ pvt->sbridge_dev->mc,
+ pvt->sbridge_dev->node_id,
+ pvt->sbridge_dev->source_id);
+
+ pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
+ if (IS_MIRROR_ENABLED(reg)) {
+ edac_dbg(0, "Memory mirror is enabled\n");
+ pvt->is_mirrored = true;
+ } else {
+ edac_dbg(0, "Memory mirror is disabled\n");
+ pvt->is_mirrored = false;
+ }
+
+ pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
+ if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
+ edac_dbg(0, "Lockstep is enabled\n");
+ mode = EDAC_S8ECD8ED;
+ pvt->is_lockstep = true;
+ } else {
+ edac_dbg(0, "Lockstep is disabled\n");
+ mode = EDAC_S4ECD4ED;
+ pvt->is_lockstep = false;
+ }
+ if (IS_CLOSE_PG(pvt->info.mcmtr)) {
+ edac_dbg(0, "address map is on closed page mode\n");
+ pvt->is_close_pg = true;
+ } else {
+ edac_dbg(0, "address map is on open page mode\n");
+ pvt->is_close_pg = false;
+ }
+
+ mtype = pvt->info.get_memory_type(pvt);
+ if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
+ edac_dbg(0, "Memory is registered\n");
+ else if (mtype == MEM_UNKNOWN)
+ edac_dbg(0, "Cannot determine memory type\n");
+ else
+ edac_dbg(0, "Memory is unregistered\n");
+
+ if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
+ banks = 16;
+ else
+ banks = 8;
+
+ for (i = 0; i < NUM_CHANNELS; i++) {
+ u32 mtr;
+
+ for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
+ dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
+ i, j, 0);
+ pci_read_config_dword(pvt->pci_tad[i],
+ mtr_regs[j], &mtr);
+ edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
+ if (IS_DIMM_PRESENT(mtr)) {
+ pvt->channel[i].dimms++;
+
+ ranks = numrank(pvt->info.type, mtr);
+ rows = numrow(mtr);
+ cols = numcol(mtr);
+
+ size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
+ npages = MiB_TO_PAGES(size);
+
+ edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
+ pvt->sbridge_dev->mc, i, j,
+ size, npages,
+ banks, ranks, rows, cols);
+
+ dimm->nr_pages = npages;
+ dimm->grain = 32;
+ switch (banks) {
+ case 16:
+ dimm->dtype = DEV_X16;
+ break;
+ case 8:
+ dimm->dtype = DEV_X8;
+ break;
+ case 4:
+ dimm->dtype = DEV_X4;
+ break;
+ }
+ dimm->mtype = mtype;
+ dimm->edac_mode = mode;
+ snprintf(dimm->label, sizeof(dimm->label),
+ "CPU_SrcID#%u_Channel#%u_DIMM#%u",
+ pvt->sbridge_dev->source_id, i, j);
+ }
+ }
+ }
+
+ return 0;
+}
+
+static void get_memory_layout(const struct mem_ctl_info *mci)
+{
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ int i, j, k, n_sads, n_tads, sad_interl;
+ u32 reg;
+ u64 limit, prv = 0;
+ u64 tmp_mb;
+ u32 gb, mb;
+ u32 rir_way;
+
+ /*
+ * Step 1) Get TOLM/TOHM ranges
+ */
+
+ pvt->tolm = pvt->info.get_tolm(pvt);
+ tmp_mb = (1 + pvt->tolm) >> 20;
+
+ gb = div_u64_rem(tmp_mb, 1024, &mb);
+ edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
+ gb, (mb*1000)/1024, (u64)pvt->tolm);
+
+ /* Address range is already 45:25 */
+ pvt->tohm = pvt->info.get_tohm(pvt);
+ tmp_mb = (1 + pvt->tohm) >> 20;
+
+ gb = div_u64_rem(tmp_mb, 1024, &mb);
+ edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
+ gb, (mb*1000)/1024, (u64)pvt->tohm);
+
+ /*
+ * Step 2) Get SAD range and SAD Interleave list
+ * TAD registers contain the interleave wayness. However, it
+ * seems simpler to just discover it indirectly, with the
+ * algorithm bellow.
+ */
+ prv = 0;
+ for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
+ /* SAD_LIMIT Address range is 45:26 */
+ pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
+ &reg);
+ limit = SAD_LIMIT(reg);
+
+ if (!DRAM_RULE_ENABLE(reg))
+ continue;
+
+ if (limit <= prv)
+ break;
+
+ tmp_mb = (limit + 1) >> 20;
+ gb = div_u64_rem(tmp_mb, 1024, &mb);
+ edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
+ n_sads,
+ get_dram_attr(reg),
+ gb, (mb*1000)/1024,
+ ((u64)tmp_mb) << 20L,
+ INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
+ reg);
+ prv = limit;
+
+ pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
+ &reg);
+ sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
+ for (j = 0; j < 8; j++) {
+ u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
+ if (j > 0 && sad_interl == pkg)
+ break;
+
+ edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
+ n_sads, j, pkg);
+ }
+ }
+
+ /*
+ * Step 3) Get TAD range
+ */
+ prv = 0;
+ for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
+ pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
+ &reg);
+ limit = TAD_LIMIT(reg);
+ if (limit <= prv)
+ break;
+ tmp_mb = (limit + 1) >> 20;
+
+ gb = div_u64_rem(tmp_mb, 1024, &mb);
+ edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
+ n_tads, gb, (mb*1000)/1024,
+ ((u64)tmp_mb) << 20L,
+ (u32)TAD_SOCK(reg),
+ (u32)TAD_CH(reg),
+ (u32)TAD_TGT0(reg),
+ (u32)TAD_TGT1(reg),
+ (u32)TAD_TGT2(reg),
+ (u32)TAD_TGT3(reg),
+ reg);
+ prv = limit;
+ }
+
+ /*
+ * Step 4) Get TAD offsets, per each channel
+ */
+ for (i = 0; i < NUM_CHANNELS; i++) {
+ if (!pvt->channel[i].dimms)
+ continue;
+ for (j = 0; j < n_tads; j++) {
+ pci_read_config_dword(pvt->pci_tad[i],
+ tad_ch_nilv_offset[j],
+ &reg);
+ tmp_mb = TAD_OFFSET(reg) >> 20;
+ gb = div_u64_rem(tmp_mb, 1024, &mb);
+ edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
+ i, j,
+ gb, (mb*1000)/1024,
+ ((u64)tmp_mb) << 20L,
+ reg);
+ }
+ }
+
+ /*
+ * Step 6) Get RIR Wayness/Limit, per each channel
+ */
+ for (i = 0; i < NUM_CHANNELS; i++) {
+ if (!pvt->channel[i].dimms)
+ continue;
+ for (j = 0; j < MAX_RIR_RANGES; j++) {
+ pci_read_config_dword(pvt->pci_tad[i],
+ rir_way_limit[j],
+ &reg);
+
+ if (!IS_RIR_VALID(reg))
+ continue;
+
+ tmp_mb = pvt->info.rir_limit(reg) >> 20;
+ rir_way = 1 << RIR_WAY(reg);
+ gb = div_u64_rem(tmp_mb, 1024, &mb);
+ edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
+ i, j,
+ gb, (mb*1000)/1024,
+ ((u64)tmp_mb) << 20L,
+ rir_way,
+ reg);
+
+ for (k = 0; k < rir_way; k++) {
+ pci_read_config_dword(pvt->pci_tad[i],
+ rir_offset[j][k],
+ &reg);
+ tmp_mb = RIR_OFFSET(reg) << 6;
+
+ gb = div_u64_rem(tmp_mb, 1024, &mb);
+ edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
+ i, j, k,
+ gb, (mb*1000)/1024,
+ ((u64)tmp_mb) << 20L,
+ (u32)RIR_RNK_TGT(reg),
+ reg);
+ }
+ }
+ }
+}
+
+static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
+{
+ struct sbridge_dev *sbridge_dev;
+
+ list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
+ if (sbridge_dev->node_id == node_id)
+ return sbridge_dev->mci;
+ }
+ return NULL;
+}
+
+static int get_memory_error_data(struct mem_ctl_info *mci,
+ u64 addr,
+ u8 *socket,
+ long *channel_mask,
+ u8 *rank,
+ char **area_type, char *msg)
+{
+ struct mem_ctl_info *new_mci;
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ struct pci_dev *pci_ha;
+ int n_rir, n_sads, n_tads, sad_way, sck_xch;
+ int sad_interl, idx, base_ch;
+ int interleave_mode, shiftup = 0;
+ unsigned sad_interleave[pvt->info.max_interleave];
+ u32 reg, dram_rule;
+ u8 ch_way, sck_way, pkg, sad_ha = 0;
+ u32 tad_offset;
+ u32 rir_way;
+ u32 mb, gb;
+ u64 ch_addr, offset, limit = 0, prv = 0;
+
+
+ /*
+ * Step 0) Check if the address is at special memory ranges
+ * The check bellow is probably enough to fill all cases where
+ * the error is not inside a memory, except for the legacy
+ * range (e. g. VGA addresses). It is unlikely, however, that the
+ * memory controller would generate an error on that range.
+ */
+ if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
+ sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
+ return -EINVAL;
+ }
+ if (addr >= (u64)pvt->tohm) {
+ sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
+ return -EINVAL;
+ }
+
+ /*
+ * Step 1) Get socket
+ */
+ for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
+ pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
+ &reg);
+
+ if (!DRAM_RULE_ENABLE(reg))
+ continue;
+
+ limit = SAD_LIMIT(reg);
+ if (limit <= prv) {
+ sprintf(msg, "Can't discover the memory socket");
+ return -EINVAL;
+ }
+ if (addr <= limit)
+ break;
+ prv = limit;
+ }
+ if (n_sads == pvt->info.max_sad) {
+ sprintf(msg, "Can't discover the memory socket");
+ return -EINVAL;
+ }
+ dram_rule = reg;
+ *area_type = get_dram_attr(dram_rule);
+ interleave_mode = INTERLEAVE_MODE(dram_rule);
+
+ pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
+ &reg);
+
+ if (pvt->info.type == SANDY_BRIDGE) {
+ sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
+ for (sad_way = 0; sad_way < 8; sad_way++) {
+ u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
+ if (sad_way > 0 && sad_interl == pkg)
+ break;
+ sad_interleave[sad_way] = pkg;
+ edac_dbg(0, "SAD interleave #%d: %d\n",
+ sad_way, sad_interleave[sad_way]);
+ }
+ edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
+ pvt->sbridge_dev->mc,
+ n_sads,
+ addr,
+ limit,
+ sad_way + 7,
+ !interleave_mode ? "" : "XOR[18:16]");
+ if (interleave_mode)
+ idx = ((addr >> 6) ^ (addr >> 16)) & 7;
+ else
+ idx = (addr >> 6) & 7;
+ switch (sad_way) {
+ case 1:
+ idx = 0;
+ break;
+ case 2:
+ idx = idx & 1;
+ break;
+ case 4:
+ idx = idx & 3;
+ break;
+ case 8:
+ break;
+ default:
+ sprintf(msg, "Can't discover socket interleave");
+ return -EINVAL;
+ }
+ *socket = sad_interleave[idx];
+ edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
+ idx, sad_way, *socket);
+ } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
+ int bits, a7mode = A7MODE(dram_rule);
+
+ if (a7mode) {
+ /* A7 mode swaps P9 with P6 */
+ bits = GET_BITFIELD(addr, 7, 8) << 1;
+ bits |= GET_BITFIELD(addr, 9, 9);
+ } else
+ bits = GET_BITFIELD(addr, 7, 9);
+
+ if (interleave_mode) {
+ /* interleave mode will XOR {8,7,6} with {18,17,16} */
+ idx = GET_BITFIELD(addr, 16, 18);
+ idx ^= bits;
+ } else
+ idx = bits;
+
+ pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
+ *socket = sad_pkg_socket(pkg);
+ sad_ha = sad_pkg_ha(pkg);
+
+ if (a7mode) {
+ /* MCChanShiftUpEnable */
+ pci_read_config_dword(pvt->pci_ha0,
+ HASWELL_HASYSDEFEATURE2, &reg);
+ shiftup = GET_BITFIELD(reg, 22, 22);
+ }
+
+ edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
+ idx, *socket, sad_ha, shiftup);
+ } else {
+ /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
+ idx = (addr >> 6) & 7;
+ pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
+ *socket = sad_pkg_socket(pkg);
+ sad_ha = sad_pkg_ha(pkg);
+ edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
+ idx, *socket, sad_ha);
+ }
+
+ /*
+ * Move to the proper node structure, in order to access the
+ * right PCI registers
+ */
+ new_mci = get_mci_for_node_id(*socket);
+ if (!new_mci) {
+ sprintf(msg, "Struct for socket #%u wasn't initialized",
+ *socket);
+ return -EINVAL;
+ }
+ mci = new_mci;
+ pvt = mci->pvt_info;
+
+ /*
+ * Step 2) Get memory channel
+ */
+ prv = 0;
+ if (pvt->info.type == SANDY_BRIDGE)
+ pci_ha = pvt->pci_ha0;
+ else {
+ if (sad_ha)
+ pci_ha = pvt->pci_ha1;
+ else
+ pci_ha = pvt->pci_ha0;
+ }
+ for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
+ pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
+ limit = TAD_LIMIT(reg);
+ if (limit <= prv) {
+ sprintf(msg, "Can't discover the memory channel");
+ return -EINVAL;
+ }
+ if (addr <= limit)
+ break;
+ prv = limit;
+ }
+ if (n_tads == MAX_TAD) {
+ sprintf(msg, "Can't discover the memory channel");
+ return -EINVAL;
+ }
+
+ ch_way = TAD_CH(reg) + 1;
+ sck_way = TAD_SOCK(reg) + 1;
+
+ if (ch_way == 3)
+ idx = addr >> 6;
+ else
+ idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
+ idx = idx % ch_way;
+
+ /*
+ * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
+ */
+ switch (idx) {
+ case 0:
+ base_ch = TAD_TGT0(reg);
+ break;
+ case 1:
+ base_ch = TAD_TGT1(reg);
+ break;
+ case 2:
+ base_ch = TAD_TGT2(reg);
+ break;
+ case 3:
+ base_ch = TAD_TGT3(reg);
+ break;
+ default:
+ sprintf(msg, "Can't discover the TAD target");
+ return -EINVAL;
+ }
+ *channel_mask = 1 << base_ch;
+
+ pci_read_config_dword(pvt->pci_tad[base_ch],
+ tad_ch_nilv_offset[n_tads],
+ &tad_offset);
+
+ if (pvt->is_mirrored) {
+ *channel_mask |= 1 << ((base_ch + 2) % 4);
+ switch(ch_way) {
+ case 2:
+ case 4:
+ sck_xch = 1 << sck_way * (ch_way >> 1);
+ break;
+ default:
+ sprintf(msg, "Invalid mirror set. Can't decode addr");
+ return -EINVAL;
+ }
+ } else
+ sck_xch = (1 << sck_way) * ch_way;
+
+ if (pvt->is_lockstep)
+ *channel_mask |= 1 << ((base_ch + 1) % 4);
+
+ offset = TAD_OFFSET(tad_offset);
+
+ edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
+ n_tads,
+ addr,
+ limit,
+ (u32)TAD_SOCK(reg),
+ ch_way,
+ offset,
+ idx,
+ base_ch,
+ *channel_mask);
+
+ /* Calculate channel address */
+ /* Remove the TAD offset */
+
+ if (offset > addr) {
+ sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
+ offset, addr);
+ return -EINVAL;
+ }
+ addr -= offset;
+ /* Store the low bits [0:6] of the addr */
+ ch_addr = addr & 0x7f;
+ /* Remove socket wayness and remove 6 bits */
+ addr >>= 6;
+ addr = div_u64(addr, sck_xch);
+#if 0
+ /* Divide by channel way */
+ addr = addr / ch_way;
+#endif
+ /* Recover the last 6 bits */
+ ch_addr |= addr << 6;
+
+ /*
+ * Step 3) Decode rank
+ */
+ for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
+ pci_read_config_dword(pvt->pci_tad[base_ch],
+ rir_way_limit[n_rir],
+ &reg);
+
+ if (!IS_RIR_VALID(reg))
+ continue;
+
+ limit = pvt->info.rir_limit(reg);
+ gb = div_u64_rem(limit >> 20, 1024, &mb);
+ edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
+ n_rir,
+ gb, (mb*1000)/1024,
+ limit,
+ 1 << RIR_WAY(reg));
+ if (ch_addr <= limit)
+ break;
+ }
+ if (n_rir == MAX_RIR_RANGES) {
+ sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
+ ch_addr);
+ return -EINVAL;
+ }
+ rir_way = RIR_WAY(reg);
+
+ if (pvt->is_close_pg)
+ idx = (ch_addr >> 6);
+ else
+ idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
+ idx %= 1 << rir_way;
+
+ pci_read_config_dword(pvt->pci_tad[base_ch],
+ rir_offset[n_rir][idx],
+ &reg);
+ *rank = RIR_RNK_TGT(reg);
+
+ edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
+ n_rir,
+ ch_addr,
+ limit,
+ rir_way,
+ idx);
+
+ return 0;
+}
+
+/****************************************************************************
+ Device initialization routines: put/get, init/exit
+ ****************************************************************************/
+
+/*
+ * sbridge_put_all_devices 'put' all the devices that we have
+ * reserved via 'get'
+ */
+static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
+{
+ int i;
+
+ edac_dbg(0, "\n");
+ for (i = 0; i < sbridge_dev->n_devs; i++) {
+ struct pci_dev *pdev = sbridge_dev->pdev[i];
+ if (!pdev)
+ continue;
+ edac_dbg(0, "Removing dev %02x:%02x.%d\n",
+ pdev->bus->number,
+ PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
+ pci_dev_put(pdev);
+ }
+}
+
+static void sbridge_put_all_devices(void)
+{
+ struct sbridge_dev *sbridge_dev, *tmp;
+
+ list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
+ sbridge_put_devices(sbridge_dev);
+ free_sbridge_dev(sbridge_dev);
+ }
+}
+
+static int sbridge_get_onedevice(struct pci_dev **prev,
+ u8 *num_mc,
+ const struct pci_id_table *table,
+ const unsigned devno)
+{
+ struct sbridge_dev *sbridge_dev;
+ const struct pci_id_descr *dev_descr = &table->descr[devno];
+ struct pci_dev *pdev = NULL;
+ u8 bus = 0;
+
+ sbridge_printk(KERN_DEBUG,
+ "Seeking for: PCI ID %04x:%04x\n",
+ PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+ pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+ dev_descr->dev_id, *prev);
+
+ if (!pdev) {
+ if (*prev) {
+ *prev = pdev;
+ return 0;
+ }
+
+ if (dev_descr->optional)
+ return 0;
+
+ /* if the HA wasn't found */
+ if (devno == 0)
+ return -ENODEV;
+
+ sbridge_printk(KERN_INFO,
+ "Device not found: %04x:%04x\n",
+ PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+ /* End of list, leave */
+ return -ENODEV;
+ }
+ bus = pdev->bus->number;
+
+ sbridge_dev = get_sbridge_dev(bus);
+ if (!sbridge_dev) {
+ sbridge_dev = alloc_sbridge_dev(bus, table);
+ if (!sbridge_dev) {
+ pci_dev_put(pdev);
+ return -ENOMEM;
+ }
+ (*num_mc)++;
+ }
+
+ if (sbridge_dev->pdev[devno]) {
+ sbridge_printk(KERN_ERR,
+ "Duplicated device for %04x:%04x\n",
+ PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+ pci_dev_put(pdev);
+ return -ENODEV;
+ }
+
+ sbridge_dev->pdev[devno] = pdev;
+
+ /* Be sure that the device is enabled */
+ if (unlikely(pci_enable_device(pdev) < 0)) {
+ sbridge_printk(KERN_ERR,
+ "Couldn't enable %04x:%04x\n",
+ PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+ return -ENODEV;
+ }
+
+ edac_dbg(0, "Detected %04x:%04x\n",
+ PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
+
+ /*
+ * As stated on drivers/pci/search.c, the reference count for
+ * @from is always decremented if it is not %NULL. So, as we need
+ * to get all devices up to null, we need to do a get for the device
+ */
+ pci_dev_get(pdev);
+
+ *prev = pdev;
+
+ return 0;
+}
+
+/*
+ * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
+ * devices we want to reference for this driver.
+ * @num_mc: pointer to the memory controllers count, to be incremented in case
+ * of success.
+ * @table: model specific table
+ *
+ * returns 0 in case of success or error code
+ */
+static int sbridge_get_all_devices(u8 *num_mc,
+ const struct pci_id_table *table)
+{
+ int i, rc;
+ struct pci_dev *pdev = NULL;
+
+ while (table && table->descr) {
+ for (i = 0; i < table->n_devs; i++) {
+ pdev = NULL;
+ do {
+ rc = sbridge_get_onedevice(&pdev, num_mc,
+ table, i);
+ if (rc < 0) {
+ if (i == 0) {
+ i = table->n_devs;
+ break;
+ }
+ sbridge_put_all_devices();
+ return -ENODEV;
+ }
+ } while (pdev);
+ }
+ table++;
+ }
+
+ return 0;
+}
+
+static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
+ struct sbridge_dev *sbridge_dev)
+{
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ struct pci_dev *pdev;
+ int i;
+
+ for (i = 0; i < sbridge_dev->n_devs; i++) {
+ pdev = sbridge_dev->pdev[i];
+ if (!pdev)
+ continue;
+
+ switch (pdev->device) {
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
+ pvt->pci_sad0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
+ pvt->pci_sad1 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
+ pvt->pci_br0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
+ pvt->pci_ha0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
+ pvt->pci_ta = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
+ pvt->pci_ras = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
+ {
+ int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
+ pvt->pci_tad[id] = pdev;
+ }
+ break;
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
+ pvt->pci_ddrio = pdev;
+ break;
+ default:
+ goto error;
+ }
+
+ edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
+ pdev->vendor, pdev->device,
+ sbridge_dev->bus,
+ pdev);
+ }
+
+ /* Check if everything were registered */
+ if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
+ !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta)
+ goto enodev;
+
+ for (i = 0; i < NUM_CHANNELS; i++) {
+ if (!pvt->pci_tad[i])
+ goto enodev;
+ }
+ return 0;
+
+enodev:
+ sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+ return -ENODEV;
+
+error:
+ sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
+ PCI_VENDOR_ID_INTEL, pdev->device);
+ return -EINVAL;
+}
+
+static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
+ struct sbridge_dev *sbridge_dev)
+{
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ struct pci_dev *pdev, *tmp;
+ int i;
+ bool mode_2ha = false;
+
+ tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
+ PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
+ if (tmp) {
+ mode_2ha = true;
+ pci_dev_put(tmp);
+ }
+
+ for (i = 0; i < sbridge_dev->n_devs; i++) {
+ pdev = sbridge_dev->pdev[i];
+ if (!pdev)
+ continue;
+
+ switch (pdev->device) {
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
+ pvt->pci_ha0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
+ pvt->pci_ta = pdev;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
+ pvt->pci_ras = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
+ /* if we have 2 HAs active, channels 2 and 3
+ * are in other device */
+ if (mode_2ha)
+ break;
+ /* fall through */
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
+ {
+ int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
+ pvt->pci_tad[id] = pdev;
+ }
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
+ pvt->pci_ddrio = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
+ if (!mode_2ha)
+ pvt->pci_ddrio = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
+ pvt->pci_sad0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
+ pvt->pci_br0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
+ pvt->pci_br1 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
+ pvt->pci_ha1 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
+ {
+ int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
+
+ /* we shouldn't have this device if we have just one
+ * HA present */
+ WARN_ON(!mode_2ha);
+ pvt->pci_tad[id] = pdev;
+ }
+ break;
+ default:
+ goto error;
+ }
+
+ edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+ sbridge_dev->bus,
+ PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+ pdev);
+ }
+
+ /* Check if everything were registered */
+ if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
+ !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras ||
+ !pvt->pci_ta)
+ goto enodev;
+
+ for (i = 0; i < NUM_CHANNELS; i++) {
+ if (!pvt->pci_tad[i])
+ goto enodev;
+ }
+ return 0;
+
+enodev:
+ sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+ return -ENODEV;
+
+error:
+ sbridge_printk(KERN_ERR,
+ "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
+ pdev->device);
+ return -EINVAL;
+}
+
+static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
+ struct sbridge_dev *sbridge_dev)
+{
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ struct pci_dev *pdev, *tmp;
+ int i;
+ bool mode_2ha = false;
+
+ tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
+ PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
+ if (tmp) {
+ mode_2ha = true;
+ pci_dev_put(tmp);
+ }
+
+ /* there's only one device per system; not tied to any bus */
+ if (pvt->info.pci_vtd == NULL)
+ /* result will be checked later */
+ pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
+ PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
+ NULL);
+
+ for (i = 0; i < sbridge_dev->n_devs; i++) {
+ pdev = sbridge_dev->pdev[i];
+ if (!pdev)
+ continue;
+
+ switch (pdev->device) {
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
+ pvt->pci_sad0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
+ pvt->pci_sad1 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
+ pvt->pci_ha0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
+ pvt->pci_ta = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
+ pvt->pci_ras = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
+ pvt->pci_tad[0] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
+ pvt->pci_tad[1] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
+ if (!mode_2ha)
+ pvt->pci_tad[2] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
+ if (!mode_2ha)
+ pvt->pci_tad[3] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
+ pvt->pci_ddrio = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
+ pvt->pci_ha1 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
+ pvt->pci_ha1_ta = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
+ if (mode_2ha)
+ pvt->pci_tad[2] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
+ if (mode_2ha)
+ pvt->pci_tad[3] = pdev;
+ break;
+ default:
+ break;
+ }
+
+ edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+ sbridge_dev->bus,
+ PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+ pdev);
+ }
+
+ /* Check if everything were registered */
+ if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
+ !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
+ goto enodev;
+
+ for (i = 0; i < NUM_CHANNELS; i++) {
+ if (!pvt->pci_tad[i])
+ goto enodev;
+ }
+ return 0;
+
+enodev:
+ sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+ return -ENODEV;
+}
+
+static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
+ struct sbridge_dev *sbridge_dev)
+{
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ struct pci_dev *pdev;
+ int i;
+
+ /* there's only one device per system; not tied to any bus */
+ if (pvt->info.pci_vtd == NULL)
+ /* result will be checked later */
+ pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
+ PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
+ NULL);
+
+ for (i = 0; i < sbridge_dev->n_devs; i++) {
+ pdev = sbridge_dev->pdev[i];
+ if (!pdev)
+ continue;
+
+ switch (pdev->device) {
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
+ pvt->pci_sad0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
+ pvt->pci_sad1 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
+ pvt->pci_ha0 = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
+ pvt->pci_ta = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
+ pvt->pci_ras = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
+ pvt->pci_tad[0] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
+ pvt->pci_tad[1] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
+ pvt->pci_tad[2] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
+ pvt->pci_tad[3] = pdev;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
+ pvt->pci_ddrio = pdev;
+ break;
+ default:
+ break;
+ }
+
+ edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
+ sbridge_dev->bus,
+ PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+ pdev);
+ }
+
+ /* Check if everything were registered */
+ if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
+ !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
+ goto enodev;
+
+ for (i = 0; i < NUM_CHANNELS; i++) {
+ if (!pvt->pci_tad[i])
+ goto enodev;
+ }
+ return 0;
+
+enodev:
+ sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+ return -ENODEV;
+}
+
+/****************************************************************************
+ Error check routines
+ ****************************************************************************/
+
+/*
+ * While Sandy Bridge has error count registers, SMI BIOS read values from
+ * and resets the counters. So, they are not reliable for the OS to read
+ * from them. So, we have no option but to just trust on whatever MCE is
+ * telling us about the errors.
+ */
+static void sbridge_mce_output_error(struct mem_ctl_info *mci,
+ const struct mce *m)
+{
+ struct mem_ctl_info *new_mci;
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ enum hw_event_mc_err_type tp_event;
+ char *type, *optype, msg[256];
+ bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
+ bool overflow = GET_BITFIELD(m->status, 62, 62);
+ bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
+ bool recoverable;
+ u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
+ u32 mscod = GET_BITFIELD(m->status, 16, 31);
+ u32 errcode = GET_BITFIELD(m->status, 0, 15);
+ u32 channel = GET_BITFIELD(m->status, 0, 3);
+ u32 optypenum = GET_BITFIELD(m->status, 4, 6);
+ long channel_mask, first_channel;
+ u8 rank, socket;
+ int rc, dimm;
+ char *area_type = NULL;
+
+ if (pvt->info.type == IVY_BRIDGE)
+ recoverable = true;
+ else
+ recoverable = GET_BITFIELD(m->status, 56, 56);
+
+ if (uncorrected_error) {
+ if (ripv) {
+ type = "FATAL";
+ tp_event = HW_EVENT_ERR_FATAL;
+ } else {
+ type = "NON_FATAL";
+ tp_event = HW_EVENT_ERR_UNCORRECTED;
+ }
+ } else {
+ type = "CORRECTED";
+ tp_event = HW_EVENT_ERR_CORRECTED;
+ }
+
+ /*
+ * According with Table 15-9 of the Intel Architecture spec vol 3A,
+ * memory errors should fit in this mask:
+ * 000f 0000 1mmm cccc (binary)
+ * where:
+ * f = Correction Report Filtering Bit. If 1, subsequent errors
+ * won't be shown
+ * mmm = error type
+ * cccc = channel
+ * If the mask doesn't match, report an error to the parsing logic
+ */
+ if (! ((errcode & 0xef80) == 0x80)) {
+ optype = "Can't parse: it is not a mem";
+ } else {
+ switch (optypenum) {
+ case 0:
+ optype = "generic undef request error";
+ break;
+ case 1:
+ optype = "memory read error";
+ break;
+ case 2:
+ optype = "memory write error";
+ break;
+ case 3:
+ optype = "addr/cmd error";
+ break;
+ case 4:
+ optype = "memory scrubbing error";
+ break;
+ default:
+ optype = "reserved";
+ break;
+ }
+ }
+
+ /* Only decode errors with an valid address (ADDRV) */
+ if (!GET_BITFIELD(m->status, 58, 58))
+ return;
+
+ rc = get_memory_error_data(mci, m->addr, &socket,
+ &channel_mask, &rank, &area_type, msg);
+ if (rc < 0)
+ goto err_parsing;
+ new_mci = get_mci_for_node_id(socket);
+ if (!new_mci) {
+ strcpy(msg, "Error: socket got corrupted!");
+ goto err_parsing;
+ }
+ mci = new_mci;
+ pvt = mci->pvt_info;
+
+ first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
+
+ if (rank < 4)
+ dimm = 0;
+ else if (rank < 8)
+ dimm = 1;
+ else
+ dimm = 2;
+
+
+ /*
+ * FIXME: On some memory configurations (mirror, lockstep), the
+ * Memory Controller can't point the error to a single DIMM. The
+ * EDAC core should be handling the channel mask, in order to point
+ * to the group of dimm's where the error may be happening.
+ */
+ if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
+ channel = first_channel;
+
+ snprintf(msg, sizeof(msg),
+ "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
+ overflow ? " OVERFLOW" : "",
+ (uncorrected_error && recoverable) ? " recoverable" : "",
+ area_type,
+ mscod, errcode,
+ socket,
+ channel_mask,
+ rank);
+
+ edac_dbg(0, "%s\n", msg);
+
+ /* FIXME: need support for channel mask */
+
+ if (channel == CHANNEL_UNSPECIFIED)
+ channel = -1;
+
+ /* Call the helper to output message */
+ edac_mc_handle_error(tp_event, mci, core_err_cnt,
+ m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
+ channel, dimm, -1,
+ optype, msg);
+ return;
+err_parsing:
+ edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
+ -1, -1, -1,
+ msg, "");
+
+}
+
+/*
+ * sbridge_check_error Retrieve and process errors reported by the
+ * hardware. Called by the Core module.
+ */
+static void sbridge_check_error(struct mem_ctl_info *mci)
+{
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ int i;
+ unsigned count = 0;
+ struct mce *m;
+
+ /*
+ * MCE first step: Copy all mce errors into a temporary buffer
+ * We use a double buffering here, to reduce the risk of
+ * loosing an error.
+ */
+ smp_rmb();
+ count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
+ % MCE_LOG_LEN;
+ if (!count)
+ return;
+
+ m = pvt->mce_outentry;
+ if (pvt->mce_in + count > MCE_LOG_LEN) {
+ unsigned l = MCE_LOG_LEN - pvt->mce_in;
+
+ memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
+ smp_wmb();
+ pvt->mce_in = 0;
+ count -= l;
+ m += l;
+ }
+ memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
+ smp_wmb();
+ pvt->mce_in += count;
+
+ smp_rmb();
+ if (pvt->mce_overrun) {
+ sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
+ pvt->mce_overrun);
+ smp_wmb();
+ pvt->mce_overrun = 0;
+ }
+
+ /*
+ * MCE second step: parse errors and display
+ */
+ for (i = 0; i < count; i++)
+ sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
+}
+
+/*
+ * sbridge_mce_check_error Replicates mcelog routine to get errors
+ * This routine simply queues mcelog errors, and
+ * return. The error itself should be handled later
+ * by sbridge_check_error.
+ * WARNING: As this routine should be called at NMI time, extra care should
+ * be taken to avoid deadlocks, and to be as fast as possible.
+ */
+static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
+ void *data)
+{
+ struct mce *mce = (struct mce *)data;
+ struct mem_ctl_info *mci;
+ struct sbridge_pvt *pvt;
+ char *type;
+
+ if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
+ return NOTIFY_DONE;
+
+ mci = get_mci_for_node_id(mce->socketid);
+ if (!mci)
+ return NOTIFY_BAD;
+ pvt = mci->pvt_info;
+
+ /*
+ * Just let mcelog handle it if the error is
+ * outside the memory controller. A memory error
+ * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
+ * bit 12 has an special meaning.
+ */
+ if ((mce->status & 0xefff) >> 7 != 1)
+ return NOTIFY_DONE;
+
+ if (mce->mcgstatus & MCG_STATUS_MCIP)
+ type = "Exception";
+ else
+ type = "Event";
+
+ sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
+
+ sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
+ "Bank %d: %016Lx\n", mce->extcpu, type,
+ mce->mcgstatus, mce->bank, mce->status);
+ sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
+ sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
+ sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
+
+ sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
+ "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
+ mce->time, mce->socketid, mce->apicid);
+
+ smp_rmb();
+ if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
+ smp_wmb();
+ pvt->mce_overrun++;
+ return NOTIFY_DONE;
+ }
+
+ /* Copy memory error at the ringbuffer */
+ memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
+ smp_wmb();
+ pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
+
+ /* Handle fatal errors immediately */
+ if (mce->mcgstatus & 1)
+ sbridge_check_error(mci);
+
+ /* Advice mcelog that the error were handled */
+ return NOTIFY_STOP;
+}
+
+static struct notifier_block sbridge_mce_dec = {
+ .notifier_call = sbridge_mce_check_error,
+};
+
+/****************************************************************************
+ EDAC register/unregister logic
+ ****************************************************************************/
+
+static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
+{
+ struct mem_ctl_info *mci = sbridge_dev->mci;
+ struct sbridge_pvt *pvt;
+
+ if (unlikely(!mci || !mci->pvt_info)) {
+ edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
+
+ sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
+ return;
+ }
+
+ pvt = mci->pvt_info;
+
+ edac_dbg(0, "MC: mci = %p, dev = %p\n",
+ mci, &sbridge_dev->pdev[0]->dev);
+
+ /* Remove MC sysfs nodes */
+ edac_mc_del_mc(mci->pdev);
+
+ edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
+ kfree(mci->ctl_name);
+ edac_mc_free(mci);
+ sbridge_dev->mci = NULL;
+}
+
+static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
+{
+ struct mem_ctl_info *mci;
+ struct edac_mc_layer layers[2];
+ struct sbridge_pvt *pvt;
+ struct pci_dev *pdev = sbridge_dev->pdev[0];
+ int rc;
+
+ /* Check the number of active and not disabled channels */
+ rc = check_if_ecc_is_active(sbridge_dev->bus, type);
+ if (unlikely(rc < 0))
+ return rc;
+
+ /* allocate a new MC control structure */
+ layers[0].type = EDAC_MC_LAYER_CHANNEL;
+ layers[0].size = NUM_CHANNELS;
+ layers[0].is_virt_csrow = false;
+ layers[1].type = EDAC_MC_LAYER_SLOT;
+ layers[1].size = MAX_DIMMS;
+ layers[1].is_virt_csrow = true;
+ mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
+ sizeof(*pvt));
+
+ if (unlikely(!mci))
+ return -ENOMEM;
+
+ edac_dbg(0, "MC: mci = %p, dev = %p\n",
+ mci, &pdev->dev);
+
+ pvt = mci->pvt_info;
+ memset(pvt, 0, sizeof(*pvt));
+
+ /* Associate sbridge_dev and mci for future usage */
+ pvt->sbridge_dev = sbridge_dev;
+ sbridge_dev->mci = mci;
+
+ mci->mtype_cap = MEM_FLAG_DDR3;
+ mci->edac_ctl_cap = EDAC_FLAG_NONE;
+ mci->edac_cap = EDAC_FLAG_NONE;
+ mci->mod_name = "sbridge_edac.c";
+ mci->mod_ver = SBRIDGE_REVISION;
+ mci->dev_name = pci_name(pdev);
+ mci->ctl_page_to_phys = NULL;
+
+ /* Set the function pointer to an actual operation function */
+ mci->edac_check = sbridge_check_error;
+
+ pvt->info.type = type;
+ switch (type) {
+ case IVY_BRIDGE:
+ pvt->info.rankcfgr = IB_RANK_CFG_A;
+ pvt->info.get_tolm = ibridge_get_tolm;
+ pvt->info.get_tohm = ibridge_get_tohm;
+ pvt->info.dram_rule = ibridge_dram_rule;
+ pvt->info.get_memory_type = get_memory_type;
+ pvt->info.get_node_id = get_node_id;
+ pvt->info.rir_limit = rir_limit;
+ pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+ pvt->info.interleave_list = ibridge_interleave_list;
+ pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
+ pvt->info.interleave_pkg = ibridge_interleave_pkg;
+ mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
+
+ /* Store pci devices at mci for faster access */
+ rc = ibridge_mci_bind_devs(mci, sbridge_dev);
+ if (unlikely(rc < 0))
+ goto fail0;
+ break;
+ case SANDY_BRIDGE:
+ pvt->info.rankcfgr = SB_RANK_CFG_A;
+ pvt->info.get_tolm = sbridge_get_tolm;
+ pvt->info.get_tohm = sbridge_get_tohm;
+ pvt->info.dram_rule = sbridge_dram_rule;
+ pvt->info.get_memory_type = get_memory_type;
+ pvt->info.get_node_id = get_node_id;
+ pvt->info.rir_limit = rir_limit;
+ pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
+ pvt->info.interleave_list = sbridge_interleave_list;
+ pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
+ pvt->info.interleave_pkg = sbridge_interleave_pkg;
+ mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
+
+ /* Store pci devices at mci for faster access */
+ rc = sbridge_mci_bind_devs(mci, sbridge_dev);
+ if (unlikely(rc < 0))
+ goto fail0;
+ break;
+ case HASWELL:
+ /* rankcfgr isn't used */
+ pvt->info.get_tolm = haswell_get_tolm;
+ pvt->info.get_tohm = haswell_get_tohm;
+ pvt->info.dram_rule = ibridge_dram_rule;
+ pvt->info.get_memory_type = haswell_get_memory_type;
+ pvt->info.get_node_id = haswell_get_node_id;
+ pvt->info.rir_limit = haswell_rir_limit;
+ pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+ pvt->info.interleave_list = ibridge_interleave_list;
+ pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
+ pvt->info.interleave_pkg = ibridge_interleave_pkg;
+ mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
+
+ /* Store pci devices at mci for faster access */
+ rc = haswell_mci_bind_devs(mci, sbridge_dev);
+ if (unlikely(rc < 0))
+ goto fail0;
+ break;
+ case BROADWELL:
+ /* rankcfgr isn't used */
+ pvt->info.get_tolm = haswell_get_tolm;
+ pvt->info.get_tohm = haswell_get_tohm;
+ pvt->info.dram_rule = ibridge_dram_rule;
+ pvt->info.get_memory_type = haswell_get_memory_type;
+ pvt->info.get_node_id = haswell_get_node_id;
+ pvt->info.rir_limit = haswell_rir_limit;
+ pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
+ pvt->info.interleave_list = ibridge_interleave_list;
+ pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
+ pvt->info.interleave_pkg = ibridge_interleave_pkg;
+ mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
+
+ /* Store pci devices at mci for faster access */
+ rc = broadwell_mci_bind_devs(mci, sbridge_dev);
+ if (unlikely(rc < 0))
+ goto fail0;
+ break;
+ }
+
+ /* Get dimm basic config and the memory layout */
+ get_dimm_config(mci);
+ get_memory_layout(mci);
+
+ /* record ptr to the generic device */
+ mci->pdev = &pdev->dev;
+
+ /* add this new MC control structure to EDAC's list of MCs */
+ if (unlikely(edac_mc_add_mc(mci))) {
+ edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
+ rc = -EINVAL;
+ goto fail0;
+ }
+
+ return 0;
+
+fail0:
+ kfree(mci->ctl_name);
+ edac_mc_free(mci);
+ sbridge_dev->mci = NULL;
+ return rc;
+}
+
+/*
+ * sbridge_probe Probe for ONE instance of device to see if it is
+ * present.
+ * return:
+ * 0 for FOUND a device
+ * < 0 for error code
+ */
+
+static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+ int rc = -ENODEV;
+ u8 mc, num_mc = 0;
+ struct sbridge_dev *sbridge_dev;
+ enum type type = SANDY_BRIDGE;
+
+ /* get the pci devices we want to reserve for our use */
+ mutex_lock(&sbridge_edac_lock);
+
+ /*
+ * All memory controllers are allocated at the first pass.
+ */
+ if (unlikely(probed >= 1)) {
+ mutex_unlock(&sbridge_edac_lock);
+ return -ENODEV;
+ }
+ probed++;
+
+ switch (pdev->device) {
+ case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
+ rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
+ type = IVY_BRIDGE;
+ break;
+ case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
+ rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
+ type = SANDY_BRIDGE;
+ break;
+ case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
+ rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
+ type = HASWELL;
+ break;
+ case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
+ rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
+ type = BROADWELL;
+ break;
+ }
+ if (unlikely(rc < 0)) {
+ edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
+ goto fail0;
+ }
+
+ mc = 0;
+
+ list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
+ edac_dbg(0, "Registering MC#%d (%d of %d)\n",
+ mc, mc + 1, num_mc);
+
+ sbridge_dev->mc = mc++;
+ rc = sbridge_register_mci(sbridge_dev, type);
+ if (unlikely(rc < 0))
+ goto fail1;
+ }
+
+ sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
+
+ mutex_unlock(&sbridge_edac_lock);
+ return 0;
+
+fail1:
+ list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
+ sbridge_unregister_mci(sbridge_dev);
+
+ sbridge_put_all_devices();
+fail0:
+ mutex_unlock(&sbridge_edac_lock);
+ return rc;
+}
+
+/*
+ * sbridge_remove destructor for one instance of device
+ *
+ */
+static void sbridge_remove(struct pci_dev *pdev)
+{
+ struct sbridge_dev *sbridge_dev;
+
+ edac_dbg(0, "\n");
+
+ /*
+ * we have a trouble here: pdev value for removal will be wrong, since
+ * it will point to the X58 register used to detect that the machine
+ * is a Nehalem or upper design. However, due to the way several PCI
+ * devices are grouped together to provide MC functionality, we need
+ * to use a different method for releasing the devices
+ */
+
+ mutex_lock(&sbridge_edac_lock);
+
+ if (unlikely(!probed)) {
+ mutex_unlock(&sbridge_edac_lock);
+ return;
+ }
+
+ list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
+ sbridge_unregister_mci(sbridge_dev);
+
+ /* Release PCI resources */
+ sbridge_put_all_devices();
+
+ probed--;
+
+ mutex_unlock(&sbridge_edac_lock);
+}
+
+MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
+
+/*
+ * sbridge_driver pci_driver structure for this module
+ *
+ */
+static struct pci_driver sbridge_driver = {
+ .name = "sbridge_edac",
+ .probe = sbridge_probe,
+ .remove = sbridge_remove,
+ .id_table = sbridge_pci_tbl,
+};
+
+/*
+ * sbridge_init Module entry function
+ * Try to initialize this module for its devices
+ */
+static int __init sbridge_init(void)
+{
+ int pci_rc;
+
+ edac_dbg(2, "\n");
+
+ /* Ensure that the OPSTATE is set correctly for POLL or NMI */
+ opstate_init();
+
+ pci_rc = pci_register_driver(&sbridge_driver);
+ if (pci_rc >= 0) {
+ mce_register_decode_chain(&sbridge_mce_dec);
+ if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
+ sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
+ return 0;
+ }
+
+ sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
+ pci_rc);
+
+ return pci_rc;
+}
+
+/*
+ * sbridge_exit() Module exit function
+ * Unregister the driver
+ */
+static void __exit sbridge_exit(void)
+{
+ edac_dbg(2, "\n");
+ pci_unregister_driver(&sbridge_driver);
+ mce_unregister_decode_chain(&sbridge_mce_dec);
+}
+
+module_init(sbridge_init);
+module_exit(sbridge_exit);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Mauro Carvalho Chehab");
+MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
+MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
+ SBRIDGE_REVISION);