summaryrefslogtreecommitdiff
path: root/drivers/media/dvb-frontends/mb86a20s.c
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /drivers/media/dvb-frontends/mb86a20s.c
Initial import
Diffstat (limited to 'drivers/media/dvb-frontends/mb86a20s.c')
-rw-r--r--drivers/media/dvb-frontends/mb86a20s.c2147
1 files changed, 2147 insertions, 0 deletions
diff --git a/drivers/media/dvb-frontends/mb86a20s.c b/drivers/media/dvb-frontends/mb86a20s.c
new file mode 100644
index 000000000..8f54c39ca
--- /dev/null
+++ b/drivers/media/dvb-frontends/mb86a20s.c
@@ -0,0 +1,2147 @@
+/*
+ * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
+ *
+ * Copyright (C) 2010-2013 Mauro Carvalho Chehab
+ * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation version 2.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ */
+
+#include <linux/kernel.h>
+#include <asm/div64.h>
+
+#include "dvb_frontend.h"
+#include "mb86a20s.h"
+
+#define NUM_LAYERS 3
+
+enum mb86a20s_bandwidth {
+ MB86A20S_13SEG = 0,
+ MB86A20S_13SEG_PARTIAL = 1,
+ MB86A20S_1SEG = 2,
+ MB86A20S_3SEG = 3,
+};
+
+static u8 mb86a20s_subchannel[] = {
+ 0xb0, 0xc0, 0xd0, 0xe0,
+ 0xf0, 0x00, 0x10, 0x20,
+};
+
+struct mb86a20s_state {
+ struct i2c_adapter *i2c;
+ const struct mb86a20s_config *config;
+ u32 last_frequency;
+
+ struct dvb_frontend frontend;
+
+ u32 if_freq;
+ enum mb86a20s_bandwidth bw;
+ bool inversion;
+ u32 subchannel;
+
+ u32 estimated_rate[NUM_LAYERS];
+ unsigned long get_strength_time;
+
+ bool need_init;
+};
+
+struct regdata {
+ u8 reg;
+ u8 data;
+};
+
+#define BER_SAMPLING_RATE 1 /* Seconds */
+
+/*
+ * Initialization sequence: Use whatevere default values that PV SBTVD
+ * does on its initialisation, obtained via USB snoop
+ */
+static struct regdata mb86a20s_init1[] = {
+ { 0x70, 0x0f },
+ { 0x70, 0xff },
+ { 0x08, 0x01 },
+ { 0x50, 0xd1 }, { 0x51, 0x20 },
+};
+
+static struct regdata mb86a20s_init2[] = {
+ { 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
+ { 0x3b, 0x21 },
+ { 0x3c, 0x38 },
+ { 0x01, 0x0d },
+ { 0x04, 0x08 }, { 0x05, 0x03 },
+ { 0x04, 0x0e }, { 0x05, 0x00 },
+ { 0x04, 0x0f }, { 0x05, 0x37 },
+ { 0x04, 0x0b }, { 0x05, 0x78 },
+ { 0x04, 0x00 }, { 0x05, 0x00 },
+ { 0x04, 0x01 }, { 0x05, 0x1e },
+ { 0x04, 0x02 }, { 0x05, 0x07 },
+ { 0x04, 0x03 }, { 0x05, 0xd0 },
+ { 0x04, 0x09 }, { 0x05, 0x00 },
+ { 0x04, 0x0a }, { 0x05, 0xff },
+ { 0x04, 0x27 }, { 0x05, 0x00 },
+ { 0x04, 0x28 }, { 0x05, 0x00 },
+ { 0x04, 0x1e }, { 0x05, 0x00 },
+ { 0x04, 0x29 }, { 0x05, 0x64 },
+ { 0x04, 0x32 }, { 0x05, 0x02 },
+ { 0x04, 0x14 }, { 0x05, 0x02 },
+ { 0x04, 0x04 }, { 0x05, 0x00 },
+ { 0x04, 0x05 }, { 0x05, 0x22 },
+ { 0x04, 0x06 }, { 0x05, 0x0e },
+ { 0x04, 0x07 }, { 0x05, 0xd8 },
+ { 0x04, 0x12 }, { 0x05, 0x00 },
+ { 0x04, 0x13 }, { 0x05, 0xff },
+ { 0x04, 0x15 }, { 0x05, 0x4e },
+ { 0x04, 0x16 }, { 0x05, 0x20 },
+
+ /*
+ * On this demod, when the bit count reaches the count below,
+ * it collects the bit error count. The bit counters are initialized
+ * to 65535 here. This warrants that all of them will be quickly
+ * calculated when device gets locked. As TMCC is parsed, the values
+ * will be adjusted later in the driver's code.
+ */
+ { 0x52, 0x01 }, /* Turn on BER before Viterbi */
+ { 0x50, 0xa7 }, { 0x51, 0x00 },
+ { 0x50, 0xa8 }, { 0x51, 0xff },
+ { 0x50, 0xa9 }, { 0x51, 0xff },
+ { 0x50, 0xaa }, { 0x51, 0x00 },
+ { 0x50, 0xab }, { 0x51, 0xff },
+ { 0x50, 0xac }, { 0x51, 0xff },
+ { 0x50, 0xad }, { 0x51, 0x00 },
+ { 0x50, 0xae }, { 0x51, 0xff },
+ { 0x50, 0xaf }, { 0x51, 0xff },
+
+ /*
+ * On this demod, post BER counts blocks. When the count reaches the
+ * value below, it collects the block error count. The block counters
+ * are initialized to 127 here. This warrants that all of them will be
+ * quickly calculated when device gets locked. As TMCC is parsed, the
+ * values will be adjusted later in the driver's code.
+ */
+ { 0x5e, 0x07 }, /* Turn on BER after Viterbi */
+ { 0x50, 0xdc }, { 0x51, 0x00 },
+ { 0x50, 0xdd }, { 0x51, 0x7f },
+ { 0x50, 0xde }, { 0x51, 0x00 },
+ { 0x50, 0xdf }, { 0x51, 0x7f },
+ { 0x50, 0xe0 }, { 0x51, 0x00 },
+ { 0x50, 0xe1 }, { 0x51, 0x7f },
+
+ /*
+ * On this demod, when the block count reaches the count below,
+ * it collects the block error count. The block counters are initialized
+ * to 127 here. This warrants that all of them will be quickly
+ * calculated when device gets locked. As TMCC is parsed, the values
+ * will be adjusted later in the driver's code.
+ */
+ { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */
+ { 0x50, 0xb2 }, { 0x51, 0x00 },
+ { 0x50, 0xb3 }, { 0x51, 0x7f },
+ { 0x50, 0xb4 }, { 0x51, 0x00 },
+ { 0x50, 0xb5 }, { 0x51, 0x7f },
+ { 0x50, 0xb6 }, { 0x51, 0x00 },
+ { 0x50, 0xb7 }, { 0x51, 0x7f },
+
+ { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */
+ { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
+ { 0x45, 0x04 }, /* CN symbol 4 */
+ { 0x48, 0x04 }, /* CN manual mode */
+
+ { 0x50, 0xd6 }, { 0x51, 0x1f },
+ { 0x50, 0xd2 }, { 0x51, 0x03 },
+ { 0x50, 0xd7 }, { 0x51, 0xbf },
+ { 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
+ { 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
+
+ { 0x04, 0x40 }, { 0x05, 0x00 },
+ { 0x28, 0x00 }, { 0x2b, 0x08 },
+ { 0x28, 0x05 }, { 0x2b, 0x00 },
+ { 0x1c, 0x01 },
+ { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
+ { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
+ { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
+ { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
+ { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
+ { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
+ { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
+ { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
+ { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
+ { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
+ { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
+ { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
+ { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
+ { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
+ { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
+ { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
+ { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
+ { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
+ { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
+ { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
+ { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
+ { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
+ { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
+ { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
+ { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
+ { 0x50, 0x1e }, { 0x51, 0x5d },
+ { 0x50, 0x22 }, { 0x51, 0x00 },
+ { 0x50, 0x23 }, { 0x51, 0xc8 },
+ { 0x50, 0x24 }, { 0x51, 0x00 },
+ { 0x50, 0x25 }, { 0x51, 0xf0 },
+ { 0x50, 0x26 }, { 0x51, 0x00 },
+ { 0x50, 0x27 }, { 0x51, 0xc3 },
+ { 0x50, 0x39 }, { 0x51, 0x02 },
+ { 0xec, 0x0f },
+ { 0xeb, 0x1f },
+ { 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
+ { 0xd0, 0x00 },
+};
+
+static struct regdata mb86a20s_reset_reception[] = {
+ { 0x70, 0xf0 },
+ { 0x70, 0xff },
+ { 0x08, 0x01 },
+ { 0x08, 0x00 },
+};
+
+static struct regdata mb86a20s_per_ber_reset[] = {
+ { 0x53, 0x00 }, /* pre BER Counter reset */
+ { 0x53, 0x07 },
+
+ { 0x5f, 0x00 }, /* post BER Counter reset */
+ { 0x5f, 0x07 },
+
+ { 0x50, 0xb1 }, /* PER Counter reset */
+ { 0x51, 0x07 },
+ { 0x51, 0x00 },
+};
+
+/*
+ * I2C read/write functions and macros
+ */
+
+static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
+ u8 i2c_addr, u8 reg, u8 data)
+{
+ u8 buf[] = { reg, data };
+ struct i2c_msg msg = {
+ .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
+ };
+ int rc;
+
+ rc = i2c_transfer(state->i2c, &msg, 1);
+ if (rc != 1) {
+ dev_err(&state->i2c->dev,
+ "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
+ __func__, rc, reg, data);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
+ u8 i2c_addr, struct regdata *rd, int size)
+{
+ int i, rc;
+
+ for (i = 0; i < size; i++) {
+ rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
+ rd[i].data);
+ if (rc < 0)
+ return rc;
+ }
+ return 0;
+}
+
+static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
+ u8 i2c_addr, u8 reg)
+{
+ u8 val;
+ int rc;
+ struct i2c_msg msg[] = {
+ { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
+ { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
+ };
+
+ rc = i2c_transfer(state->i2c, msg, 2);
+
+ if (rc != 2) {
+ dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
+ __func__, reg, rc);
+ return (rc < 0) ? rc : -EIO;
+ }
+
+ return val;
+}
+
+#define mb86a20s_readreg(state, reg) \
+ mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
+#define mb86a20s_writereg(state, reg, val) \
+ mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
+#define mb86a20s_writeregdata(state, regdata) \
+ mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
+ regdata, ARRAY_SIZE(regdata))
+
+/*
+ * Ancillary internal routines (likely compiled inlined)
+ *
+ * The functions below assume that gateway lock has already obtained
+ */
+
+static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int val;
+
+ *status = 0;
+
+ val = mb86a20s_readreg(state, 0x0a) & 0xf;
+ if (val < 0)
+ return val;
+
+ if (val >= 2)
+ *status |= FE_HAS_SIGNAL;
+
+ if (val >= 4)
+ *status |= FE_HAS_CARRIER;
+
+ if (val >= 5)
+ *status |= FE_HAS_VITERBI;
+
+ if (val >= 7)
+ *status |= FE_HAS_SYNC;
+
+ if (val >= 8) /* Maybe 9? */
+ *status |= FE_HAS_LOCK;
+
+ dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
+ __func__, *status, val);
+
+ return val;
+}
+
+static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int rc;
+ unsigned rf_max, rf_min, rf;
+
+ if (state->get_strength_time &&
+ (!time_after(jiffies, state->get_strength_time)))
+ return c->strength.stat[0].uvalue;
+
+ /* Reset its value if an error happen */
+ c->strength.stat[0].uvalue = 0;
+
+ /* Does a binary search to get RF strength */
+ rf_max = 0xfff;
+ rf_min = 0;
+ do {
+ rf = (rf_max + rf_min) / 2;
+ rc = mb86a20s_writereg(state, 0x04, 0x1f);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x05, rf >> 8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x04, 0x20);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x05, rf);
+ if (rc < 0)
+ return rc;
+
+ rc = mb86a20s_readreg(state, 0x02);
+ if (rc < 0)
+ return rc;
+ if (rc & 0x08)
+ rf_min = (rf_max + rf_min) / 2;
+ else
+ rf_max = (rf_max + rf_min) / 2;
+ if (rf_max - rf_min < 4) {
+ rf = (rf_max + rf_min) / 2;
+
+ /* Rescale it from 2^12 (4096) to 2^16 */
+ rf = rf << (16 - 12);
+ if (rf)
+ rf |= (1 << 12) - 1;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: signal strength = %d (%d < RF=%d < %d)\n",
+ __func__, rf, rf_min, rf >> 4, rf_max);
+ c->strength.stat[0].uvalue = rf;
+ state->get_strength_time = jiffies +
+ msecs_to_jiffies(1000);
+ return 0;
+ }
+ } while (1);
+}
+
+static int mb86a20s_get_modulation(struct mb86a20s_state *state,
+ unsigned layer)
+{
+ int rc;
+ static unsigned char reg[] = {
+ [0] = 0x86, /* Layer A */
+ [1] = 0x8a, /* Layer B */
+ [2] = 0x8e, /* Layer C */
+ };
+
+ if (layer >= ARRAY_SIZE(reg))
+ return -EINVAL;
+ rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x6e);
+ if (rc < 0)
+ return rc;
+ switch ((rc >> 4) & 0x07) {
+ case 0:
+ return DQPSK;
+ case 1:
+ return QPSK;
+ case 2:
+ return QAM_16;
+ case 3:
+ return QAM_64;
+ default:
+ return QAM_AUTO;
+ }
+}
+
+static int mb86a20s_get_fec(struct mb86a20s_state *state,
+ unsigned layer)
+{
+ int rc;
+
+ static unsigned char reg[] = {
+ [0] = 0x87, /* Layer A */
+ [1] = 0x8b, /* Layer B */
+ [2] = 0x8f, /* Layer C */
+ };
+
+ if (layer >= ARRAY_SIZE(reg))
+ return -EINVAL;
+ rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x6e);
+ if (rc < 0)
+ return rc;
+ switch ((rc >> 4) & 0x07) {
+ case 0:
+ return FEC_1_2;
+ case 1:
+ return FEC_2_3;
+ case 2:
+ return FEC_3_4;
+ case 3:
+ return FEC_5_6;
+ case 4:
+ return FEC_7_8;
+ default:
+ return FEC_AUTO;
+ }
+}
+
+static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
+ unsigned layer)
+{
+ int rc;
+ int interleaving[] = {
+ 0, 1, 2, 4, 8
+ };
+
+ static unsigned char reg[] = {
+ [0] = 0x88, /* Layer A */
+ [1] = 0x8c, /* Layer B */
+ [2] = 0x90, /* Layer C */
+ };
+
+ if (layer >= ARRAY_SIZE(reg))
+ return -EINVAL;
+ rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x6e);
+ if (rc < 0)
+ return rc;
+
+ return interleaving[(rc >> 4) & 0x07];
+}
+
+static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
+ unsigned layer)
+{
+ int rc, count;
+ static unsigned char reg[] = {
+ [0] = 0x89, /* Layer A */
+ [1] = 0x8d, /* Layer B */
+ [2] = 0x91, /* Layer C */
+ };
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (layer >= ARRAY_SIZE(reg))
+ return -EINVAL;
+
+ rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x6e);
+ if (rc < 0)
+ return rc;
+ count = (rc >> 4) & 0x0f;
+
+ dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
+
+ return count;
+}
+
+static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Fixed parameters */
+ c->delivery_system = SYS_ISDBT;
+ c->bandwidth_hz = 6000000;
+
+ /* Initialize values that will be later autodetected */
+ c->isdbt_layer_enabled = 0;
+ c->transmission_mode = TRANSMISSION_MODE_AUTO;
+ c->guard_interval = GUARD_INTERVAL_AUTO;
+ c->isdbt_sb_mode = 0;
+ c->isdbt_sb_segment_count = 0;
+}
+
+/*
+ * Estimates the bit rate using the per-segment bit rate given by
+ * ABNT/NBR 15601 spec (table 4).
+ */
+static u32 isdbt_rate[3][5][4] = {
+ { /* DQPSK/QPSK */
+ { 280850, 312060, 330420, 340430 }, /* 1/2 */
+ { 374470, 416080, 440560, 453910 }, /* 2/3 */
+ { 421280, 468090, 495630, 510650 }, /* 3/4 */
+ { 468090, 520100, 550700, 567390 }, /* 5/6 */
+ { 491500, 546110, 578230, 595760 }, /* 7/8 */
+ }, { /* QAM16 */
+ { 561710, 624130, 660840, 680870 }, /* 1/2 */
+ { 748950, 832170, 881120, 907820 }, /* 2/3 */
+ { 842570, 936190, 991260, 1021300 }, /* 3/4 */
+ { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */
+ { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */
+ }, { /* QAM64 */
+ { 842570, 936190, 991260, 1021300 }, /* 1/2 */
+ { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
+ { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
+ { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
+ { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
+ }
+};
+
+static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
+ u32 modulation, u32 forward_error_correction,
+ u32 guard_interval,
+ u32 segment)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ u32 rate;
+ int mod, fec, guard;
+
+ /*
+ * If modulation/fec/guard is not detected, the default is
+ * to consider the lowest bit rate, to avoid taking too long time
+ * to get BER.
+ */
+ switch (modulation) {
+ case DQPSK:
+ case QPSK:
+ default:
+ mod = 0;
+ break;
+ case QAM_16:
+ mod = 1;
+ break;
+ case QAM_64:
+ mod = 2;
+ break;
+ }
+
+ switch (forward_error_correction) {
+ default:
+ case FEC_1_2:
+ case FEC_AUTO:
+ fec = 0;
+ break;
+ case FEC_2_3:
+ fec = 1;
+ break;
+ case FEC_3_4:
+ fec = 2;
+ break;
+ case FEC_5_6:
+ fec = 3;
+ break;
+ case FEC_7_8:
+ fec = 4;
+ break;
+ }
+
+ switch (guard_interval) {
+ default:
+ case GUARD_INTERVAL_1_4:
+ guard = 0;
+ break;
+ case GUARD_INTERVAL_1_8:
+ guard = 1;
+ break;
+ case GUARD_INTERVAL_1_16:
+ guard = 2;
+ break;
+ case GUARD_INTERVAL_1_32:
+ guard = 3;
+ break;
+ }
+
+ /* Samples BER at BER_SAMPLING_RATE seconds */
+ rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
+
+ /* Avoids sampling too quickly or to overflow the register */
+ if (rate < 256)
+ rate = 256;
+ else if (rate > (1 << 24) - 1)
+ rate = (1 << 24) - 1;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
+ __func__, 'A' + layer,
+ segment * isdbt_rate[mod][fec][guard]/1000,
+ rate, rate);
+
+ state->estimated_rate[layer] = rate;
+}
+
+static int mb86a20s_get_frontend(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int layer, rc;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Reset frontend cache to default values */
+ mb86a20s_reset_frontend_cache(fe);
+
+ /* Check for partial reception */
+ rc = mb86a20s_writereg(state, 0x6d, 0x85);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x6e);
+ if (rc < 0)
+ return rc;
+ c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
+
+ /* Get per-layer data */
+
+ for (layer = 0; layer < NUM_LAYERS; layer++) {
+ dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
+ __func__, 'A' + layer);
+
+ rc = mb86a20s_get_segment_count(state, layer);
+ if (rc < 0)
+ goto noperlayer_error;
+ if (rc >= 0 && rc < 14) {
+ c->layer[layer].segment_count = rc;
+ } else {
+ c->layer[layer].segment_count = 0;
+ state->estimated_rate[layer] = 0;
+ continue;
+ }
+ c->isdbt_layer_enabled |= 1 << layer;
+ rc = mb86a20s_get_modulation(state, layer);
+ if (rc < 0)
+ goto noperlayer_error;
+ dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
+ __func__, rc);
+ c->layer[layer].modulation = rc;
+ rc = mb86a20s_get_fec(state, layer);
+ if (rc < 0)
+ goto noperlayer_error;
+ dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
+ __func__, rc);
+ c->layer[layer].fec = rc;
+ rc = mb86a20s_get_interleaving(state, layer);
+ if (rc < 0)
+ goto noperlayer_error;
+ dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
+ __func__, rc);
+ c->layer[layer].interleaving = rc;
+ mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
+ c->layer[layer].fec,
+ c->guard_interval,
+ c->layer[layer].segment_count);
+ }
+
+ rc = mb86a20s_writereg(state, 0x6d, 0x84);
+ if (rc < 0)
+ return rc;
+ if ((rc & 0x60) == 0x20) {
+ c->isdbt_sb_mode = 1;
+ /* At least, one segment should exist */
+ if (!c->isdbt_sb_segment_count)
+ c->isdbt_sb_segment_count = 1;
+ }
+
+ /* Get transmission mode and guard interval */
+ rc = mb86a20s_readreg(state, 0x07);
+ if (rc < 0)
+ return rc;
+ c->transmission_mode = TRANSMISSION_MODE_AUTO;
+ if ((rc & 0x60) == 0x20) {
+ /* Only modes 2 and 3 are supported */
+ switch ((rc >> 2) & 0x03) {
+ case 1:
+ c->transmission_mode = TRANSMISSION_MODE_4K;
+ break;
+ case 2:
+ c->transmission_mode = TRANSMISSION_MODE_8K;
+ break;
+ }
+ }
+ c->guard_interval = GUARD_INTERVAL_AUTO;
+ if (!(rc & 0x10)) {
+ /* Guard interval 1/32 is not supported */
+ switch (rc & 0x3) {
+ case 0:
+ c->guard_interval = GUARD_INTERVAL_1_4;
+ break;
+ case 1:
+ c->guard_interval = GUARD_INTERVAL_1_8;
+ break;
+ case 2:
+ c->guard_interval = GUARD_INTERVAL_1_16;
+ break;
+ }
+ }
+ return 0;
+
+noperlayer_error:
+
+ /* per-layer info is incomplete; discard all per-layer */
+ c->isdbt_layer_enabled = 0;
+
+ return rc;
+}
+
+static int mb86a20s_reset_counters(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int rc, val;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Reset the counters, if the channel changed */
+ if (state->last_frequency != c->frequency) {
+ memset(&c->cnr, 0, sizeof(c->cnr));
+ memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
+ memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
+ memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
+ memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
+ memset(&c->block_error, 0, sizeof(c->block_error));
+ memset(&c->block_count, 0, sizeof(c->block_count));
+
+ state->last_frequency = c->frequency;
+ }
+
+ /* Clear status for most stats */
+
+ /* BER/PER counter reset */
+ rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
+ if (rc < 0)
+ goto err;
+
+ /* CNR counter reset */
+ rc = mb86a20s_readreg(state, 0x45);
+ if (rc < 0)
+ goto err;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x45, val | 0x10);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
+ if (rc < 0)
+ goto err;
+
+ /* MER counter reset */
+ rc = mb86a20s_writereg(state, 0x50, 0x50);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ goto err;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x51, val | 0x01);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x51, val & 0x06);
+ if (rc < 0)
+ goto err;
+
+ goto ok;
+err:
+ dev_err(&state->i2c->dev,
+ "%s: Can't reset FE statistics (error %d).\n",
+ __func__, rc);
+ok:
+ return rc;
+}
+
+static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
+ unsigned layer,
+ u32 *error, u32 *count)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int rc, val;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (layer >= NUM_LAYERS)
+ return -EINVAL;
+
+ /* Check if the BER measures are already available */
+ rc = mb86a20s_readreg(state, 0x54);
+ if (rc < 0)
+ return rc;
+
+ /* Check if data is available for that layer */
+ if (!(rc & (1 << layer))) {
+ dev_dbg(&state->i2c->dev,
+ "%s: preBER for layer %c is not available yet.\n",
+ __func__, 'A' + layer);
+ return -EBUSY;
+ }
+
+ /* Read Bit Error Count */
+ rc = mb86a20s_readreg(state, 0x55 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error = rc << 16;
+ rc = mb86a20s_readreg(state, 0x56 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error |= rc << 8;
+ rc = mb86a20s_readreg(state, 0x57 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error |= rc;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: bit error before Viterbi for layer %c: %d.\n",
+ __func__, 'A' + layer, *error);
+
+ /* Read Bit Count */
+ rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count = rc << 16;
+ rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count |= rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count |= rc;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: bit count before Viterbi for layer %c: %d.\n",
+ __func__, 'A' + layer, *count);
+
+
+ /*
+ * As we get TMCC data from the frontend, we can better estimate the
+ * BER bit counters, in order to do the BER measure during a longer
+ * time. Use those data, if available, to update the bit count
+ * measure.
+ */
+
+ if (state->estimated_rate[layer]
+ && state->estimated_rate[layer] != *count) {
+ dev_dbg(&state->i2c->dev,
+ "%s: updating layer %c preBER counter to %d.\n",
+ __func__, 'A' + layer, state->estimated_rate[layer]);
+
+ /* Turn off BER before Viterbi */
+ rc = mb86a20s_writereg(state, 0x52, 0x00);
+
+ /* Update counter for this layer */
+ rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51,
+ state->estimated_rate[layer] >> 16);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51,
+ state->estimated_rate[layer] >> 8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51,
+ state->estimated_rate[layer]);
+ if (rc < 0)
+ return rc;
+
+ /* Turn on BER before Viterbi */
+ rc = mb86a20s_writereg(state, 0x52, 0x01);
+
+ /* Reset all preBER counters */
+ rc = mb86a20s_writereg(state, 0x53, 0x00);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x53, 0x07);
+ } else {
+ /* Reset counter to collect new data */
+ rc = mb86a20s_readreg(state, 0x53);
+ if (rc < 0)
+ return rc;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
+ }
+
+ return rc;
+}
+
+static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
+ unsigned layer,
+ u32 *error, u32 *count)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ u32 counter, collect_rate;
+ int rc, val;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (layer >= NUM_LAYERS)
+ return -EINVAL;
+
+ /* Check if the BER measures are already available */
+ rc = mb86a20s_readreg(state, 0x60);
+ if (rc < 0)
+ return rc;
+
+ /* Check if data is available for that layer */
+ if (!(rc & (1 << layer))) {
+ dev_dbg(&state->i2c->dev,
+ "%s: post BER for layer %c is not available yet.\n",
+ __func__, 'A' + layer);
+ return -EBUSY;
+ }
+
+ /* Read Bit Error Count */
+ rc = mb86a20s_readreg(state, 0x64 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error = rc << 16;
+ rc = mb86a20s_readreg(state, 0x65 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error |= rc << 8;
+ rc = mb86a20s_readreg(state, 0x66 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error |= rc;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: post bit error for layer %c: %d.\n",
+ __func__, 'A' + layer, *error);
+
+ /* Read Bit Count */
+ rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ counter = rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ counter |= rc;
+ *count = counter * 204 * 8;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: post bit count for layer %c: %d.\n",
+ __func__, 'A' + layer, *count);
+
+ /*
+ * As we get TMCC data from the frontend, we can better estimate the
+ * BER bit counters, in order to do the BER measure during a longer
+ * time. Use those data, if available, to update the bit count
+ * measure.
+ */
+
+ if (!state->estimated_rate[layer])
+ goto reset_measurement;
+
+ collect_rate = state->estimated_rate[layer] / 204 / 8;
+ if (collect_rate < 32)
+ collect_rate = 32;
+ if (collect_rate > 65535)
+ collect_rate = 65535;
+ if (collect_rate != counter) {
+ dev_dbg(&state->i2c->dev,
+ "%s: updating postBER counter on layer %c to %d.\n",
+ __func__, 'A' + layer, collect_rate);
+
+ /* Turn off BER after Viterbi */
+ rc = mb86a20s_writereg(state, 0x5e, 0x00);
+
+ /* Update counter for this layer */
+ rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
+ if (rc < 0)
+ return rc;
+
+ /* Turn on BER after Viterbi */
+ rc = mb86a20s_writereg(state, 0x5e, 0x07);
+
+ /* Reset all preBER counters */
+ rc = mb86a20s_writereg(state, 0x5f, 0x00);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x5f, 0x07);
+
+ return rc;
+ }
+
+reset_measurement:
+ /* Reset counter to collect new data */
+ rc = mb86a20s_readreg(state, 0x5f);
+ if (rc < 0)
+ return rc;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
+
+ return rc;
+}
+
+static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
+ unsigned layer,
+ u32 *error, u32 *count)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int rc, val;
+ u32 collect_rate;
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (layer >= NUM_LAYERS)
+ return -EINVAL;
+
+ /* Check if the PER measures are already available */
+ rc = mb86a20s_writereg(state, 0x50, 0xb8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+
+ /* Check if data is available for that layer */
+
+ if (!(rc & (1 << layer))) {
+ dev_dbg(&state->i2c->dev,
+ "%s: block counts for layer %c aren't available yet.\n",
+ __func__, 'A' + layer);
+ return -EBUSY;
+ }
+
+ /* Read Packet error Count */
+ rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *error = rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *error |= rc;
+ dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
+ __func__, 'A' + layer, *error);
+
+ /* Read Bit Count */
+ rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count = rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count |= rc;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: block count for layer %c: %d.\n",
+ __func__, 'A' + layer, *count);
+
+ /*
+ * As we get TMCC data from the frontend, we can better estimate the
+ * BER bit counters, in order to do the BER measure during a longer
+ * time. Use those data, if available, to update the bit count
+ * measure.
+ */
+
+ if (!state->estimated_rate[layer])
+ goto reset_measurement;
+
+ collect_rate = state->estimated_rate[layer] / 204 / 8;
+ if (collect_rate < 32)
+ collect_rate = 32;
+ if (collect_rate > 65535)
+ collect_rate = 65535;
+
+ if (collect_rate != *count) {
+ dev_dbg(&state->i2c->dev,
+ "%s: updating PER counter on layer %c to %d.\n",
+ __func__, 'A' + layer, collect_rate);
+
+ /* Stop PER measurement */
+ rc = mb86a20s_writereg(state, 0x50, 0xb0);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, 0x00);
+ if (rc < 0)
+ return rc;
+
+ /* Update this layer's counter */
+ rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
+ if (rc < 0)
+ return rc;
+
+ /* start PER measurement */
+ rc = mb86a20s_writereg(state, 0x50, 0xb0);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, 0x07);
+ if (rc < 0)
+ return rc;
+
+ /* Reset all counters to collect new data */
+ rc = mb86a20s_writereg(state, 0x50, 0xb1);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, 0x07);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, 0x00);
+
+ return rc;
+ }
+
+reset_measurement:
+ /* Reset counter to collect new data */
+ rc = mb86a20s_writereg(state, 0x50, 0xb1);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
+
+ return rc;
+}
+
+struct linear_segments {
+ unsigned x, y;
+};
+
+/*
+ * All tables below return a dB/1000 measurement
+ */
+
+static const struct linear_segments cnr_to_db_table[] = {
+ { 19648, 0},
+ { 18187, 1000},
+ { 16534, 2000},
+ { 14823, 3000},
+ { 13161, 4000},
+ { 11622, 5000},
+ { 10279, 6000},
+ { 9089, 7000},
+ { 8042, 8000},
+ { 7137, 9000},
+ { 6342, 10000},
+ { 5641, 11000},
+ { 5030, 12000},
+ { 4474, 13000},
+ { 3988, 14000},
+ { 3556, 15000},
+ { 3180, 16000},
+ { 2841, 17000},
+ { 2541, 18000},
+ { 2276, 19000},
+ { 2038, 20000},
+ { 1800, 21000},
+ { 1625, 22000},
+ { 1462, 23000},
+ { 1324, 24000},
+ { 1175, 25000},
+ { 1063, 26000},
+ { 980, 27000},
+ { 907, 28000},
+ { 840, 29000},
+ { 788, 30000},
+};
+
+static const struct linear_segments cnr_64qam_table[] = {
+ { 3922688, 0},
+ { 3920384, 1000},
+ { 3902720, 2000},
+ { 3894784, 3000},
+ { 3882496, 4000},
+ { 3872768, 5000},
+ { 3858944, 6000},
+ { 3851520, 7000},
+ { 3838976, 8000},
+ { 3829248, 9000},
+ { 3818240, 10000},
+ { 3806976, 11000},
+ { 3791872, 12000},
+ { 3767040, 13000},
+ { 3720960, 14000},
+ { 3637504, 15000},
+ { 3498496, 16000},
+ { 3296000, 17000},
+ { 3031040, 18000},
+ { 2715392, 19000},
+ { 2362624, 20000},
+ { 1963264, 21000},
+ { 1649664, 22000},
+ { 1366784, 23000},
+ { 1120768, 24000},
+ { 890880, 25000},
+ { 723456, 26000},
+ { 612096, 27000},
+ { 518912, 28000},
+ { 448256, 29000},
+ { 388864, 30000},
+};
+
+static const struct linear_segments cnr_16qam_table[] = {
+ { 5314816, 0},
+ { 5219072, 1000},
+ { 5118720, 2000},
+ { 4998912, 3000},
+ { 4875520, 4000},
+ { 4736000, 5000},
+ { 4604160, 6000},
+ { 4458752, 7000},
+ { 4300288, 8000},
+ { 4092928, 9000},
+ { 3836160, 10000},
+ { 3521024, 11000},
+ { 3155968, 12000},
+ { 2756864, 13000},
+ { 2347008, 14000},
+ { 1955072, 15000},
+ { 1593600, 16000},
+ { 1297920, 17000},
+ { 1043968, 18000},
+ { 839680, 19000},
+ { 672256, 20000},
+ { 523008, 21000},
+ { 424704, 22000},
+ { 345088, 23000},
+ { 280064, 24000},
+ { 221440, 25000},
+ { 179712, 26000},
+ { 151040, 27000},
+ { 128512, 28000},
+ { 110080, 29000},
+ { 95744, 30000},
+};
+
+static const struct linear_segments cnr_qpsk_table[] = {
+ { 2834176, 0},
+ { 2683648, 1000},
+ { 2536960, 2000},
+ { 2391808, 3000},
+ { 2133248, 4000},
+ { 1906176, 5000},
+ { 1666560, 6000},
+ { 1422080, 7000},
+ { 1189632, 8000},
+ { 976384, 9000},
+ { 790272, 10000},
+ { 633344, 11000},
+ { 505600, 12000},
+ { 402944, 13000},
+ { 320768, 14000},
+ { 255488, 15000},
+ { 204032, 16000},
+ { 163072, 17000},
+ { 130304, 18000},
+ { 105216, 19000},
+ { 83456, 20000},
+ { 65024, 21000},
+ { 52480, 22000},
+ { 42752, 23000},
+ { 34560, 24000},
+ { 27136, 25000},
+ { 22016, 26000},
+ { 18432, 27000},
+ { 15616, 28000},
+ { 13312, 29000},
+ { 11520, 30000},
+};
+
+static u32 interpolate_value(u32 value, const struct linear_segments *segments,
+ unsigned len)
+{
+ u64 tmp64;
+ u32 dx, dy;
+ int i, ret;
+
+ if (value >= segments[0].x)
+ return segments[0].y;
+ if (value < segments[len-1].x)
+ return segments[len-1].y;
+
+ for (i = 1; i < len - 1; i++) {
+ /* If value is identical, no need to interpolate */
+ if (value == segments[i].x)
+ return segments[i].y;
+ if (value > segments[i].x)
+ break;
+ }
+
+ /* Linear interpolation between the two (x,y) points */
+ dy = segments[i].y - segments[i - 1].y;
+ dx = segments[i - 1].x - segments[i].x;
+ tmp64 = value - segments[i].x;
+ tmp64 *= dy;
+ do_div(tmp64, dx);
+ ret = segments[i].y - tmp64;
+
+ return ret;
+}
+
+static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ u32 cnr_linear, cnr;
+ int rc, val;
+
+ /* Check if CNR is available */
+ rc = mb86a20s_readreg(state, 0x45);
+ if (rc < 0)
+ return rc;
+
+ if (!(rc & 0x40)) {
+ dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
+ __func__);
+ return -EBUSY;
+ }
+ val = rc;
+
+ rc = mb86a20s_readreg(state, 0x46);
+ if (rc < 0)
+ return rc;
+ cnr_linear = rc << 8;
+
+ rc = mb86a20s_readreg(state, 0x46);
+ if (rc < 0)
+ return rc;
+ cnr_linear |= rc;
+
+ cnr = interpolate_value(cnr_linear,
+ cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
+
+ c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
+ c->cnr.stat[0].svalue = cnr;
+
+ dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
+ __func__, cnr / 1000, cnr % 1000, cnr_linear);
+
+ /* CNR counter reset */
+ rc = mb86a20s_writereg(state, 0x45, val | 0x10);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
+
+ return rc;
+}
+
+static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ u32 mer, cnr;
+ int rc, val, layer;
+ const struct linear_segments *segs;
+ unsigned segs_len;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Check if the measures are already available */
+ rc = mb86a20s_writereg(state, 0x50, 0x5b);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+
+ /* Check if data is available */
+ if (!(rc & 0x01)) {
+ dev_dbg(&state->i2c->dev,
+ "%s: MER measures aren't available yet.\n", __func__);
+ return -EBUSY;
+ }
+
+ /* Read all layers */
+ for (layer = 0; layer < NUM_LAYERS; layer++) {
+ if (!(c->isdbt_layer_enabled & (1 << layer))) {
+ c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+ continue;
+ }
+
+ rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ mer = rc << 16;
+ rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ mer |= rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ mer |= rc;
+
+ switch (c->layer[layer].modulation) {
+ case DQPSK:
+ case QPSK:
+ segs = cnr_qpsk_table;
+ segs_len = ARRAY_SIZE(cnr_qpsk_table);
+ break;
+ case QAM_16:
+ segs = cnr_16qam_table;
+ segs_len = ARRAY_SIZE(cnr_16qam_table);
+ break;
+ default:
+ case QAM_64:
+ segs = cnr_64qam_table;
+ segs_len = ARRAY_SIZE(cnr_64qam_table);
+ break;
+ }
+ cnr = interpolate_value(mer, segs, segs_len);
+
+ c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
+ c->cnr.stat[1 + layer].svalue = cnr;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
+ __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
+
+ }
+
+ /* Start a new MER measurement */
+ /* MER counter reset */
+ rc = mb86a20s_writereg(state, 0x50, 0x50);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ val = rc;
+
+ rc = mb86a20s_writereg(state, 0x51, val | 0x01);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, val & 0x06);
+ if (rc < 0)
+ return rc;
+
+ return 0;
+}
+
+static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int layer;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Fill the length of each status counter */
+
+ /* Only global stats */
+ c->strength.len = 1;
+
+ /* Per-layer stats - 3 layers + global */
+ c->cnr.len = NUM_LAYERS + 1;
+ c->pre_bit_error.len = NUM_LAYERS + 1;
+ c->pre_bit_count.len = NUM_LAYERS + 1;
+ c->post_bit_error.len = NUM_LAYERS + 1;
+ c->post_bit_count.len = NUM_LAYERS + 1;
+ c->block_error.len = NUM_LAYERS + 1;
+ c->block_count.len = NUM_LAYERS + 1;
+
+ /* Signal is always available */
+ c->strength.stat[0].scale = FE_SCALE_RELATIVE;
+ c->strength.stat[0].uvalue = 0;
+
+ /* Put all of them at FE_SCALE_NOT_AVAILABLE */
+ for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
+ c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
+ }
+}
+
+static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int rc = 0, layer;
+ u32 bit_error = 0, bit_count = 0;
+ u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
+ u32 t_post_bit_error = 0, t_post_bit_count = 0;
+ u32 block_error = 0, block_count = 0;
+ u32 t_block_error = 0, t_block_count = 0;
+ int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
+ int per_layers = 0;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ mb86a20s_get_main_CNR(fe);
+
+ /* Get per-layer stats */
+ mb86a20s_get_blk_error_layer_CNR(fe);
+
+ /*
+ * At state 7, only CNR is available
+ * For BER measures, state=9 is required
+ * FIXME: we may get MER measures with state=8
+ */
+ if (status_nr < 9)
+ return 0;
+
+ for (layer = 0; layer < NUM_LAYERS; layer++) {
+ if (c->isdbt_layer_enabled & (1 << layer)) {
+ /* Layer is active and has rc segments */
+ active_layers++;
+
+ /* Handle BER before vterbi */
+ rc = mb86a20s_get_pre_ber(fe, layer,
+ &bit_error, &bit_count);
+ if (rc >= 0) {
+ c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
+ c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
+ c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
+ c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
+ } else if (rc != -EBUSY) {
+ /*
+ * If an I/O error happened,
+ * measures are now unavailable
+ */
+ c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+ dev_err(&state->i2c->dev,
+ "%s: Can't get BER for layer %c (error %d).\n",
+ __func__, 'A' + layer, rc);
+ }
+ if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
+ pre_ber_layers++;
+
+ /* Handle BER post vterbi */
+ rc = mb86a20s_get_post_ber(fe, layer,
+ &bit_error, &bit_count);
+ if (rc >= 0) {
+ c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
+ c->post_bit_error.stat[1 + layer].uvalue += bit_error;
+ c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
+ c->post_bit_count.stat[1 + layer].uvalue += bit_count;
+ } else if (rc != -EBUSY) {
+ /*
+ * If an I/O error happened,
+ * measures are now unavailable
+ */
+ c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+ dev_err(&state->i2c->dev,
+ "%s: Can't get BER for layer %c (error %d).\n",
+ __func__, 'A' + layer, rc);
+ }
+ if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
+ post_ber_layers++;
+
+ /* Handle Block errors for PER/UCB reports */
+ rc = mb86a20s_get_blk_error(fe, layer,
+ &block_error,
+ &block_count);
+ if (rc >= 0) {
+ c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
+ c->block_error.stat[1 + layer].uvalue += block_error;
+ c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
+ c->block_count.stat[1 + layer].uvalue += block_count;
+ } else if (rc != -EBUSY) {
+ /*
+ * If an I/O error happened,
+ * measures are now unavailable
+ */
+ c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+ c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
+ dev_err(&state->i2c->dev,
+ "%s: Can't get PER for layer %c (error %d).\n",
+ __func__, 'A' + layer, rc);
+
+ }
+ if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
+ per_layers++;
+
+ /* Update total preBER */
+ t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
+ t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
+
+ /* Update total postBER */
+ t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
+ t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
+
+ /* Update total PER */
+ t_block_error += c->block_error.stat[1 + layer].uvalue;
+ t_block_count += c->block_count.stat[1 + layer].uvalue;
+ }
+ }
+
+ /*
+ * Start showing global count if at least one error count is
+ * available.
+ */
+ if (pre_ber_layers) {
+ /*
+ * At least one per-layer BER measure was read. We can now
+ * calculate the total BER
+ *
+ * Total Bit Error/Count is calculated as the sum of the
+ * bit errors on all active layers.
+ */
+ c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
+ c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
+ c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+ c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
+ } else {
+ c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+ c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+ }
+
+ /*
+ * Start showing global count if at least one error count is
+ * available.
+ */
+ if (post_ber_layers) {
+ /*
+ * At least one per-layer BER measure was read. We can now
+ * calculate the total BER
+ *
+ * Total Bit Error/Count is calculated as the sum of the
+ * bit errors on all active layers.
+ */
+ c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
+ c->post_bit_error.stat[0].uvalue = t_post_bit_error;
+ c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+ c->post_bit_count.stat[0].uvalue = t_post_bit_count;
+ } else {
+ c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+ c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+ }
+
+ if (per_layers) {
+ /*
+ * At least one per-layer UCB measure was read. We can now
+ * calculate the total UCB
+ *
+ * Total block Error/Count is calculated as the sum of the
+ * block errors on all active layers.
+ */
+ c->block_error.stat[0].scale = FE_SCALE_COUNTER;
+ c->block_error.stat[0].uvalue = t_block_error;
+ c->block_count.stat[0].scale = FE_SCALE_COUNTER;
+ c->block_count.stat[0].uvalue = t_block_count;
+ } else {
+ c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+ c->block_count.stat[0].scale = FE_SCALE_COUNTER;
+ }
+
+ return rc;
+}
+
+/*
+ * The functions below are called via DVB callbacks, so they need to
+ * properly use the I2C gate control
+ */
+
+static int mb86a20s_initfe(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ u64 pll;
+ u32 fclk;
+ int rc;
+ u8 regD5 = 1, reg71, reg09 = 0x3a;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
+
+ /* Initialize the frontend */
+ rc = mb86a20s_writeregdata(state, mb86a20s_init1);
+ if (rc < 0)
+ goto err;
+
+ if (!state->inversion)
+ reg09 |= 0x04;
+ rc = mb86a20s_writereg(state, 0x09, reg09);
+ if (rc < 0)
+ goto err;
+ if (!state->bw)
+ reg71 = 1;
+ else
+ reg71 = 0;
+ rc = mb86a20s_writereg(state, 0x39, reg71);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x71, state->bw);
+ if (rc < 0)
+ goto err;
+ if (state->subchannel) {
+ rc = mb86a20s_writereg(state, 0x44, state->subchannel);
+ if (rc < 0)
+ goto err;
+ }
+
+ fclk = state->config->fclk;
+ if (!fclk)
+ fclk = 32571428;
+
+ /* Adjust IF frequency to match tuner */
+ if (fe->ops.tuner_ops.get_if_frequency)
+ fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
+
+ if (!state->if_freq)
+ state->if_freq = 3300000;
+
+ pll = (((u64)1) << 34) * state->if_freq;
+ do_div(pll, 63 * fclk);
+ pll = (1 << 25) - pll;
+ rc = mb86a20s_writereg(state, 0x28, 0x2a);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
+ if (rc < 0)
+ goto err;
+ dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
+ __func__, fclk, state->if_freq, (long long)pll);
+
+ /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
+ pll = state->if_freq * 1677721600L;
+ do_div(pll, 1628571429L);
+ rc = mb86a20s_writereg(state, 0x28, 0x20);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
+ if (rc < 0)
+ goto err;
+ dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
+ __func__, state->if_freq, (long long)pll);
+
+ if (!state->config->is_serial)
+ regD5 &= ~1;
+
+ rc = mb86a20s_writereg(state, 0x50, 0xd5);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x51, regD5);
+ if (rc < 0)
+ goto err;
+
+ rc = mb86a20s_writeregdata(state, mb86a20s_init2);
+ if (rc < 0)
+ goto err;
+
+
+err:
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+
+ if (rc < 0) {
+ state->need_init = true;
+ dev_info(&state->i2c->dev,
+ "mb86a20s: Init failed. Will try again later\n");
+ } else {
+ state->need_init = false;
+ dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
+ }
+ return rc;
+}
+
+static int mb86a20s_set_frontend(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int rc, if_freq;
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (!c->isdbt_layer_enabled)
+ c->isdbt_layer_enabled = 7;
+
+ if (c->isdbt_layer_enabled == 1)
+ state->bw = MB86A20S_1SEG;
+ else if (c->isdbt_partial_reception)
+ state->bw = MB86A20S_13SEG_PARTIAL;
+ else
+ state->bw = MB86A20S_13SEG;
+
+ if (c->inversion == INVERSION_ON)
+ state->inversion = true;
+ else
+ state->inversion = false;
+
+ if (!c->isdbt_sb_mode) {
+ state->subchannel = 0;
+ } else {
+ if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
+ c->isdbt_sb_subchannel = 0;
+
+ state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
+ }
+
+ /*
+ * Gate should already be opened, but it doesn't hurt to
+ * double-check
+ */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+ fe->ops.tuner_ops.set_params(fe);
+
+ if (fe->ops.tuner_ops.get_if_frequency)
+ fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
+
+ /*
+ * Make it more reliable: if, for some reason, the initial
+ * device initialization doesn't happen, initialize it when
+ * a SBTVD parameters are adjusted.
+ *
+ * Unfortunately, due to a hard to track bug at tda829x/tda18271,
+ * the agc callback logic is not called during DVB attach time,
+ * causing mb86a20s to not be initialized with Kworld SBTVD.
+ * So, this hack is needed, in order to make Kworld SBTVD to work.
+ *
+ * It is also needed to change the IF after the initial init.
+ *
+ * HACK: Always init the frontend when set_frontend is called:
+ * it was noticed that, on some devices, it fails to lock on a
+ * different channel. So, it is better to reset everything, even
+ * wasting some time, than to loose channel lock.
+ */
+ mb86a20s_initfe(fe);
+
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
+
+ rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
+ mb86a20s_reset_counters(fe);
+ mb86a20s_stats_not_ready(fe);
+
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+
+ return rc;
+}
+
+static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
+ fe_status_t *status)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int rc, status_nr;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
+
+ /* Get lock */
+ status_nr = mb86a20s_read_status(fe, status);
+ if (status_nr < 7) {
+ mb86a20s_stats_not_ready(fe);
+ mb86a20s_reset_frontend_cache(fe);
+ }
+ if (status_nr < 0) {
+ dev_err(&state->i2c->dev,
+ "%s: Can't read frontend lock status\n", __func__);
+ goto error;
+ }
+
+ /* Get signal strength */
+ rc = mb86a20s_read_signal_strength(fe);
+ if (rc < 0) {
+ dev_err(&state->i2c->dev,
+ "%s: Can't reset VBER registers.\n", __func__);
+ mb86a20s_stats_not_ready(fe);
+ mb86a20s_reset_frontend_cache(fe);
+
+ rc = 0; /* Status is OK */
+ goto error;
+ }
+
+ if (status_nr >= 7) {
+ /* Get TMCC info*/
+ rc = mb86a20s_get_frontend(fe);
+ if (rc < 0) {
+ dev_err(&state->i2c->dev,
+ "%s: Can't get FE TMCC data.\n", __func__);
+ rc = 0; /* Status is OK */
+ goto error;
+ }
+
+ /* Get statistics */
+ rc = mb86a20s_get_stats(fe, status_nr);
+ if (rc < 0 && rc != -EBUSY) {
+ dev_err(&state->i2c->dev,
+ "%s: Can't get FE statistics.\n", __func__);
+ rc = 0;
+ goto error;
+ }
+ rc = 0; /* Don't return EBUSY to userspace */
+ }
+ goto ok;
+
+error:
+ mb86a20s_stats_not_ready(fe);
+
+ok:
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+
+ return rc;
+}
+
+static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
+ u16 *strength)
+{
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+
+
+ *strength = c->strength.stat[0].uvalue;
+
+ return 0;
+}
+
+static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
+{
+ /*
+ * get_frontend is now handled together with other stats
+ * retrival, when read_status() is called, as some statistics
+ * will depend on the layers detection.
+ */
+ return 0;
+};
+
+static int mb86a20s_tune(struct dvb_frontend *fe,
+ bool re_tune,
+ unsigned int mode_flags,
+ unsigned int *delay,
+ fe_status_t *status)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int rc = 0;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (re_tune)
+ rc = mb86a20s_set_frontend(fe);
+
+ if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
+ mb86a20s_read_status_and_stats(fe, status);
+
+ return rc;
+}
+
+static void mb86a20s_release(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ kfree(state);
+}
+
+static struct dvb_frontend_ops mb86a20s_ops;
+
+struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
+ struct i2c_adapter *i2c)
+{
+ struct mb86a20s_state *state;
+ u8 rev;
+
+ dev_dbg(&i2c->dev, "%s called.\n", __func__);
+
+ /* allocate memory for the internal state */
+ state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
+ if (state == NULL) {
+ dev_err(&i2c->dev,
+ "%s: unable to allocate memory for state\n", __func__);
+ goto error;
+ }
+
+ /* setup the state */
+ state->config = config;
+ state->i2c = i2c;
+
+ /* create dvb_frontend */
+ memcpy(&state->frontend.ops, &mb86a20s_ops,
+ sizeof(struct dvb_frontend_ops));
+ state->frontend.demodulator_priv = state;
+
+ /* Check if it is a mb86a20s frontend */
+ rev = mb86a20s_readreg(state, 0);
+
+ if (rev == 0x13) {
+ dev_info(&i2c->dev,
+ "Detected a Fujitsu mb86a20s frontend\n");
+ } else {
+ dev_dbg(&i2c->dev,
+ "Frontend revision %d is unknown - aborting.\n",
+ rev);
+ goto error;
+ }
+
+ return &state->frontend;
+
+error:
+ kfree(state);
+ return NULL;
+}
+EXPORT_SYMBOL(mb86a20s_attach);
+
+static struct dvb_frontend_ops mb86a20s_ops = {
+ .delsys = { SYS_ISDBT },
+ /* Use dib8000 values per default */
+ .info = {
+ .name = "Fujitsu mb86A20s",
+ .caps = FE_CAN_RECOVER |
+ FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
+ FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
+ FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
+ FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
+ FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
+ /* Actually, those values depend on the used tuner */
+ .frequency_min = 45000000,
+ .frequency_max = 864000000,
+ .frequency_stepsize = 62500,
+ },
+
+ .release = mb86a20s_release,
+
+ .init = mb86a20s_initfe,
+ .set_frontend = mb86a20s_set_frontend,
+ .get_frontend = mb86a20s_get_frontend_dummy,
+ .read_status = mb86a20s_read_status_and_stats,
+ .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
+ .tune = mb86a20s_tune,
+};
+
+MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
+MODULE_AUTHOR("Mauro Carvalho Chehab");
+MODULE_LICENSE("GPL");