summaryrefslogtreecommitdiff
path: root/drivers/mtd/Kconfig
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /drivers/mtd/Kconfig
Initial import
Diffstat (limited to 'drivers/mtd/Kconfig')
-rw-r--r--drivers/mtd/Kconfig341
1 files changed, 341 insertions, 0 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig
new file mode 100644
index 000000000..a03ad2951
--- /dev/null
+++ b/drivers/mtd/Kconfig
@@ -0,0 +1,341 @@
+menuconfig MTD
+ tristate "Memory Technology Device (MTD) support"
+ depends on GENERIC_IO
+ help
+ Memory Technology Devices are flash, RAM and similar chips, often
+ used for solid state file systems on embedded devices. This option
+ will provide the generic support for MTD drivers to register
+ themselves with the kernel and for potential users of MTD devices
+ to enumerate the devices which are present and obtain a handle on
+ them. It will also allow you to select individual drivers for
+ particular hardware and users of MTD devices. If unsure, say N.
+
+if MTD
+
+config MTD_TESTS
+ tristate "MTD tests support (DANGEROUS)"
+ depends on m
+ help
+ This option includes various MTD tests into compilation. The tests
+ should normally be compiled as kernel modules. The modules perform
+ various checks and verifications when loaded.
+
+ WARNING: some of the tests will ERASE entire MTD device which they
+ test. Do not use these tests unless you really know what you do.
+
+config MTD_REDBOOT_PARTS
+ tristate "RedBoot partition table parsing"
+ ---help---
+ RedBoot is a ROM monitor and bootloader which deals with multiple
+ 'images' in flash devices by putting a table one of the erase
+ blocks on the device, similar to a partition table, which gives
+ the offsets, lengths and names of all the images stored in the
+ flash.
+
+ If you need code which can detect and parse this table, and register
+ MTD 'partitions' corresponding to each image in the table, enable
+ this option.
+
+ You will still need the parsing functions to be called by the driver
+ for your particular device. It won't happen automatically. The
+ SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
+ example.
+
+if MTD_REDBOOT_PARTS
+
+config MTD_REDBOOT_DIRECTORY_BLOCK
+ int "Location of RedBoot partition table"
+ default "-1"
+ ---help---
+ This option is the Linux counterpart to the
+ CYGNUM_REDBOOT_FIS_DIRECTORY_BLOCK RedBoot compile time
+ option.
+
+ The option specifies which Flash sectors holds the RedBoot
+ partition table. A zero or positive value gives an absolute
+ erase block number. A negative value specifies a number of
+ sectors before the end of the device.
+
+ For example "2" means block number 2, "-1" means the last
+ block and "-2" means the penultimate block.
+
+config MTD_REDBOOT_PARTS_UNALLOCATED
+ bool "Include unallocated flash regions"
+ help
+ If you need to register each unallocated flash region as a MTD
+ 'partition', enable this option.
+
+config MTD_REDBOOT_PARTS_READONLY
+ bool "Force read-only for RedBoot system images"
+ help
+ If you need to force read-only for 'RedBoot', 'RedBoot Config' and
+ 'FIS directory' images, enable this option.
+
+endif # MTD_REDBOOT_PARTS
+
+config MTD_CMDLINE_PARTS
+ tristate "Command line partition table parsing"
+ depends on MTD
+ ---help---
+ Allow generic configuration of the MTD partition tables via the kernel
+ command line. Multiple flash resources are supported for hardware where
+ different kinds of flash memory are available.
+
+ You will still need the parsing functions to be called by the driver
+ for your particular device. It won't happen automatically. The
+ SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
+ example.
+
+ The format for the command line is as follows:
+
+ mtdparts=<mtddef>[;<mtddef]
+ <mtddef> := <mtd-id>:<partdef>[,<partdef>]
+ <partdef> := <size>[@offset][<name>][ro]
+ <mtd-id> := unique id used in mapping driver/device
+ <size> := standard linux memsize OR "-" to denote all
+ remaining space
+ <name> := (NAME)
+
+ Due to the way Linux handles the command line, no spaces are
+ allowed in the partition definition, including mtd id's and partition
+ names.
+
+ Examples:
+
+ 1 flash resource (mtd-id "sa1100"), with 1 single writable partition:
+ mtdparts=sa1100:-
+
+ Same flash, but 2 named partitions, the first one being read-only:
+ mtdparts=sa1100:256k(ARMboot)ro,-(root)
+
+ If unsure, say 'N'.
+
+config MTD_AFS_PARTS
+ tristate "ARM Firmware Suite partition parsing"
+ depends on ARM
+ ---help---
+ The ARM Firmware Suite allows the user to divide flash devices into
+ multiple 'images'. Each such image has a header containing its name
+ and offset/size etc.
+
+ If you need code which can detect and parse these tables, and
+ register MTD 'partitions' corresponding to each image detected,
+ enable this option.
+
+ You will still need the parsing functions to be called by the driver
+ for your particular device. It won't happen automatically. The
+ 'physmap' map driver (CONFIG_MTD_PHYSMAP) does this, for example.
+
+config MTD_OF_PARTS
+ tristate "OpenFirmware partitioning information support"
+ default y
+ depends on OF
+ help
+ This provides a partition parsing function which derives
+ the partition map from the children of the flash node,
+ as described in Documentation/devicetree/bindings/mtd/partition.txt.
+
+config MTD_AR7_PARTS
+ tristate "TI AR7 partitioning support"
+ ---help---
+ TI AR7 partitioning support
+
+config MTD_BCM63XX_PARTS
+ tristate "BCM63XX CFE partitioning support"
+ depends on BCM63XX
+ select CRC32
+ help
+ This provides partions parsing for BCM63xx devices with CFE
+ bootloaders.
+
+config MTD_BCM47XX_PARTS
+ tristate "BCM47XX partitioning support"
+ depends on BCM47XX || ARCH_BCM_5301X
+ help
+ This provides partitions parser for devices based on BCM47xx
+ boards.
+
+comment "User Modules And Translation Layers"
+
+#
+# MTD block device support is select'ed if needed
+#
+config MTD_BLKDEVS
+ tristate
+
+config MTD_BLOCK
+ tristate "Caching block device access to MTD devices"
+ depends on BLOCK
+ select MTD_BLKDEVS
+ ---help---
+ Although most flash chips have an erase size too large to be useful
+ as block devices, it is possible to use MTD devices which are based
+ on RAM chips in this manner. This block device is a user of MTD
+ devices performing that function.
+
+ At the moment, it is also required for the Journalling Flash File
+ System(s) to obtain a handle on the MTD device when it's mounted
+ (although JFFS and JFFS2 don't actually use any of the functionality
+ of the mtdblock device).
+
+ Later, it may be extended to perform read/erase/modify/write cycles
+ on flash chips to emulate a smaller block size. Needless to say,
+ this is very unsafe, but could be useful for file systems which are
+ almost never written to.
+
+ You do not need this option for use with the DiskOnChip devices. For
+ those, enable NFTL support (CONFIG_NFTL) instead.
+
+config MTD_BLOCK_RO
+ tristate "Readonly block device access to MTD devices"
+ depends on MTD_BLOCK!=y && BLOCK
+ select MTD_BLKDEVS
+ help
+ This allows you to mount read-only file systems (such as cramfs)
+ from an MTD device, without the overhead (and danger) of the caching
+ driver.
+
+ You do not need this option for use with the DiskOnChip devices. For
+ those, enable NFTL support (CONFIG_NFTL) instead.
+
+config FTL
+ tristate "FTL (Flash Translation Layer) support"
+ depends on BLOCK
+ select MTD_BLKDEVS
+ ---help---
+ This provides support for the original Flash Translation Layer which
+ is part of the PCMCIA specification. It uses a kind of pseudo-
+ file system on a flash device to emulate a block device with
+ 512-byte sectors, on top of which you put a 'normal' file system.
+
+ You may find that the algorithms used in this code are patented
+ unless you live in the Free World where software patents aren't
+ legal - in the USA you are only permitted to use this on PCMCIA
+ hardware, although under the terms of the GPL you're obviously
+ permitted to copy, modify and distribute the code as you wish. Just
+ not use it.
+
+config NFTL
+ tristate "NFTL (NAND Flash Translation Layer) support"
+ depends on BLOCK
+ select MTD_BLKDEVS
+ ---help---
+ This provides support for the NAND Flash Translation Layer which is
+ used on M-Systems' DiskOnChip devices. It uses a kind of pseudo-
+ file system on a flash device to emulate a block device with
+ 512-byte sectors, on top of which you put a 'normal' file system.
+
+ You may find that the algorithms used in this code are patented
+ unless you live in the Free World where software patents aren't
+ legal - in the USA you are only permitted to use this on DiskOnChip
+ hardware, although under the terms of the GPL you're obviously
+ permitted to copy, modify and distribute the code as you wish. Just
+ not use it.
+
+config NFTL_RW
+ bool "Write support for NFTL"
+ depends on NFTL
+ help
+ Support for writing to the NAND Flash Translation Layer, as used
+ on the DiskOnChip.
+
+config INFTL
+ tristate "INFTL (Inverse NAND Flash Translation Layer) support"
+ depends on BLOCK
+ select MTD_BLKDEVS
+ ---help---
+ This provides support for the Inverse NAND Flash Translation
+ Layer which is used on M-Systems' newer DiskOnChip devices. It
+ uses a kind of pseudo-file system on a flash device to emulate
+ a block device with 512-byte sectors, on top of which you put
+ a 'normal' file system.
+
+ You may find that the algorithms used in this code are patented
+ unless you live in the Free World where software patents aren't
+ legal - in the USA you are only permitted to use this on DiskOnChip
+ hardware, although under the terms of the GPL you're obviously
+ permitted to copy, modify and distribute the code as you wish. Just
+ not use it.
+
+config RFD_FTL
+ tristate "Resident Flash Disk (Flash Translation Layer) support"
+ depends on BLOCK
+ select MTD_BLKDEVS
+ ---help---
+ This provides support for the flash translation layer known
+ as the Resident Flash Disk (RFD), as used by the Embedded BIOS
+ of General Software. There is a blurb at:
+
+ http://www.gensw.com/pages/prod/bios/rfd.htm
+
+config SSFDC
+ tristate "NAND SSFDC (SmartMedia) read only translation layer"
+ depends on BLOCK
+ select MTD_BLKDEVS
+ help
+ This enables read only access to SmartMedia formatted NAND
+ flash. You can mount it with FAT file system.
+
+
+config SM_FTL
+ tristate "SmartMedia/xD new translation layer"
+ depends on BLOCK
+ select MTD_BLKDEVS
+ select MTD_NAND_ECC
+ help
+ This enables EXPERIMENTAL R/W support for SmartMedia/xD
+ FTL (Flash translation layer).
+ Write support is only lightly tested, therefore this driver
+ isn't recommended to use with valuable data (anyway if you have
+ valuable data, do backups regardless of software/hardware you
+ use, because you never know what will eat your data...)
+ If you only need R/O access, you can use older R/O driver
+ (CONFIG_SSFDC)
+
+config MTD_OOPS
+ tristate "Log panic/oops to an MTD buffer"
+ help
+ This enables panic and oops messages to be logged to a circular
+ buffer in a flash partition where it can be read back at some
+ later point.
+
+config MTD_SWAP
+ tristate "Swap on MTD device support"
+ depends on MTD && SWAP
+ select MTD_BLKDEVS
+ help
+ Provides volatile block device driver on top of mtd partition
+ suitable for swapping. The mapping of written blocks is not saved.
+ The driver provides wear leveling by storing erase counter into the
+ OOB.
+
+config MTD_PARTITIONED_MASTER
+ bool "Retain master device when partitioned"
+ default n
+ depends on MTD
+ help
+ For historical reasons, by default, either a master is present or
+ several partitions are present, but not both. The concern was that
+ data listed in multiple partitions was dangerous; however, SCSI does
+ this and it is frequently useful for applications. This config option
+ leaves the master in even if the device is partitioned. It also makes
+ the parent of the partition device be the master device, rather than
+ what lies behind the master.
+
+source "drivers/mtd/chips/Kconfig"
+
+source "drivers/mtd/maps/Kconfig"
+
+source "drivers/mtd/devices/Kconfig"
+
+source "drivers/mtd/nand/Kconfig"
+
+source "drivers/mtd/onenand/Kconfig"
+
+source "drivers/mtd/lpddr/Kconfig"
+
+source "drivers/mtd/spi-nor/Kconfig"
+
+source "drivers/mtd/ubi/Kconfig"
+
+endif # MTD