summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/nand_base.c
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /drivers/mtd/nand/nand_base.c
Initial import
Diffstat (limited to 'drivers/mtd/nand/nand_base.c')
-rw-r--r--drivers/mtd/nand/nand_base.c4286
1 files changed, 4286 insertions, 0 deletions
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
new file mode 100644
index 000000000..c2e1232cd
--- /dev/null
+++ b/drivers/mtd/nand/nand_base.c
@@ -0,0 +1,4286 @@
+/*
+ * drivers/mtd/nand.c
+ *
+ * Overview:
+ * This is the generic MTD driver for NAND flash devices. It should be
+ * capable of working with almost all NAND chips currently available.
+ *
+ * Additional technical information is available on
+ * http://www.linux-mtd.infradead.org/doc/nand.html
+ *
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * Credits:
+ * David Woodhouse for adding multichip support
+ *
+ * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ * rework for 2K page size chips
+ *
+ * TODO:
+ * Enable cached programming for 2k page size chips
+ * Check, if mtd->ecctype should be set to MTD_ECC_HW
+ * if we have HW ECC support.
+ * BBT table is not serialized, has to be fixed
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mm.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/nand_bch.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <linux/leds.h>
+#include <linux/io.h>
+#include <linux/mtd/partitions.h>
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_ecclayout nand_oob_8 = {
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2},
+ .oobfree = {
+ {.offset = 3,
+ .length = 2},
+ {.offset = 6,
+ .length = 2} }
+};
+
+static struct nand_ecclayout nand_oob_16 = {
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 6, 7},
+ .oobfree = {
+ {.offset = 8,
+ . length = 8} }
+};
+
+static struct nand_ecclayout nand_oob_64 = {
+ .eccbytes = 24,
+ .eccpos = {
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = {
+ {.offset = 2,
+ .length = 38} }
+};
+
+static struct nand_ecclayout nand_oob_128 = {
+ .eccbytes = 48,
+ .eccpos = {
+ 80, 81, 82, 83, 84, 85, 86, 87,
+ 88, 89, 90, 91, 92, 93, 94, 95,
+ 96, 97, 98, 99, 100, 101, 102, 103,
+ 104, 105, 106, 107, 108, 109, 110, 111,
+ 112, 113, 114, 115, 116, 117, 118, 119,
+ 120, 121, 122, 123, 124, 125, 126, 127},
+ .oobfree = {
+ {.offset = 2,
+ .length = 78} }
+};
+
+static int nand_get_device(struct mtd_info *mtd, int new_state);
+
+static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops);
+
+/*
+ * For devices which display every fart in the system on a separate LED. Is
+ * compiled away when LED support is disabled.
+ */
+DEFINE_LED_TRIGGER(nand_led_trigger);
+
+static int check_offs_len(struct mtd_info *mtd,
+ loff_t ofs, uint64_t len)
+{
+ struct nand_chip *chip = mtd->priv;
+ int ret = 0;
+
+ /* Start address must align on block boundary */
+ if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
+ pr_debug("%s: unaligned address\n", __func__);
+ ret = -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
+ pr_debug("%s: length not block aligned\n", __func__);
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Release chip lock and wake up anyone waiting on the device.
+ */
+static void nand_release_device(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ /* Release the controller and the chip */
+ spin_lock(&chip->controller->lock);
+ chip->controller->active = NULL;
+ chip->state = FL_READY;
+ wake_up(&chip->controller->wq);
+ spin_unlock(&chip->controller->lock);
+}
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 8bit buswidth
+ */
+static uint8_t nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ return readb(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswidth with endianness conversion.
+ *
+ */
+static uint8_t nand_read_byte16(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswidth without endianness conversion.
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ return readw(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd: MTD device structure
+ * @chipnr: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ switch (chipnr) {
+ case -1:
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+ break;
+ case 0:
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write single byte to chip
+ * @mtd: MTD device structure
+ * @byte: value to write
+ *
+ * Default function to write a byte to I/O[7:0]
+ */
+static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ chip->write_buf(mtd, &byte, 1);
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
+ * @mtd: MTD device structure
+ * @byte: value to write
+ *
+ * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
+ */
+static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
+{
+ struct nand_chip *chip = mtd->priv;
+ uint16_t word = byte;
+
+ /*
+ * It's not entirely clear what should happen to I/O[15:8] when writing
+ * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
+ *
+ * When the host supports a 16-bit bus width, only data is
+ * transferred at the 16-bit width. All address and command line
+ * transfers shall use only the lower 8-bits of the data bus. During
+ * command transfers, the host may place any value on the upper
+ * 8-bits of the data bus. During address transfers, the host shall
+ * set the upper 8-bits of the data bus to 00h.
+ *
+ * One user of the write_byte callback is nand_onfi_set_features. The
+ * four parameters are specified to be written to I/O[7:0], but this is
+ * neither an address nor a command transfer. Let's assume a 0 on the
+ * upper I/O lines is OK.
+ */
+ chip->write_buf(mtd, (uint8_t *)&word, 2);
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswidth.
+ */
+static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ iowrite8_rep(chip->IO_ADDR_W, buf, len);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswidth.
+ */
+static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ ioread8_rep(chip->IO_ADDR_R, buf, len);
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswidth.
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ u16 *p = (u16 *) buf;
+
+ iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswidth.
+ */
+static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ u16 *p = (u16 *) buf;
+
+ ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ *
+ * Check, if the block is bad.
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ int page, chipnr, res = 0, i = 0;
+ struct nand_chip *chip = mtd->priv;
+ u16 bad;
+
+ if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
+ ofs += mtd->erasesize - mtd->writesize;
+
+ page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+
+ if (getchip) {
+ chipnr = (int)(ofs >> chip->chip_shift);
+
+ nand_get_device(mtd, FL_READING);
+
+ /* Select the NAND device */
+ chip->select_chip(mtd, chipnr);
+ }
+
+ do {
+ if (chip->options & NAND_BUSWIDTH_16) {
+ chip->cmdfunc(mtd, NAND_CMD_READOOB,
+ chip->badblockpos & 0xFE, page);
+ bad = cpu_to_le16(chip->read_word(mtd));
+ if (chip->badblockpos & 0x1)
+ bad >>= 8;
+ else
+ bad &= 0xFF;
+ } else {
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
+ page);
+ bad = chip->read_byte(mtd);
+ }
+
+ if (likely(chip->badblockbits == 8))
+ res = bad != 0xFF;
+ else
+ res = hweight8(bad) < chip->badblockbits;
+ ofs += mtd->writesize;
+ page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+ i++;
+ } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
+
+ if (getchip) {
+ chip->select_chip(mtd, -1);
+ nand_release_device(mtd);
+ }
+
+ return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by a hardware
+ * specific driver. It provides the details for writing a bad block marker to a
+ * block.
+ */
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mtd_oob_ops ops;
+ uint8_t buf[2] = { 0, 0 };
+ int ret = 0, res, i = 0;
+
+ memset(&ops, 0, sizeof(ops));
+ ops.oobbuf = buf;
+ ops.ooboffs = chip->badblockpos;
+ if (chip->options & NAND_BUSWIDTH_16) {
+ ops.ooboffs &= ~0x01;
+ ops.len = ops.ooblen = 2;
+ } else {
+ ops.len = ops.ooblen = 1;
+ }
+ ops.mode = MTD_OPS_PLACE_OOB;
+
+ /* Write to first/last page(s) if necessary */
+ if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
+ ofs += mtd->erasesize - mtd->writesize;
+ do {
+ res = nand_do_write_oob(mtd, ofs, &ops);
+ if (!ret)
+ ret = res;
+
+ i++;
+ ofs += mtd->writesize;
+ } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
+
+ return ret;
+}
+
+/**
+ * nand_block_markbad_lowlevel - mark a block bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This function performs the generic NAND bad block marking steps (i.e., bad
+ * block table(s) and/or marker(s)). We only allow the hardware driver to
+ * specify how to write bad block markers to OOB (chip->block_markbad).
+ *
+ * We try operations in the following order:
+ * (1) erase the affected block, to allow OOB marker to be written cleanly
+ * (2) write bad block marker to OOB area of affected block (unless flag
+ * NAND_BBT_NO_OOB_BBM is present)
+ * (3) update the BBT
+ * Note that we retain the first error encountered in (2) or (3), finish the
+ * procedures, and dump the error in the end.
+*/
+static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *chip = mtd->priv;
+ int res, ret = 0;
+
+ if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
+ struct erase_info einfo;
+
+ /* Attempt erase before marking OOB */
+ memset(&einfo, 0, sizeof(einfo));
+ einfo.mtd = mtd;
+ einfo.addr = ofs;
+ einfo.len = 1ULL << chip->phys_erase_shift;
+ nand_erase_nand(mtd, &einfo, 0);
+
+ /* Write bad block marker to OOB */
+ nand_get_device(mtd, FL_WRITING);
+ ret = chip->block_markbad(mtd, ofs);
+ nand_release_device(mtd);
+ }
+
+ /* Mark block bad in BBT */
+ if (chip->bbt) {
+ res = nand_markbad_bbt(mtd, ofs);
+ if (!ret)
+ ret = res;
+ }
+
+ if (!ret)
+ mtd->ecc_stats.badblocks++;
+
+ return ret;
+}
+
+/**
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd: MTD device structure
+ *
+ * Check, if the device is write protected. The function expects, that the
+ * device is already selected.
+ */
+static int nand_check_wp(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ /* Broken xD cards report WP despite being writable */
+ if (chip->options & NAND_BROKEN_XD)
+ return 0;
+
+ /* Check the WP bit */
+ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+ return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
+}
+
+/**
+ * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * Check if the block is marked as reserved.
+ */
+static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ if (!chip->bbt)
+ return 0;
+ /* Return info from the table */
+ return nand_isreserved_bbt(mtd, ofs);
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ * @allowbbt: 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
+ int allowbbt)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ if (!chip->bbt)
+ return chip->block_bad(mtd, ofs, getchip);
+
+ /* Return info from the table */
+ return nand_isbad_bbt(mtd, ofs, allowbbt);
+}
+
+/**
+ * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
+ * @mtd: MTD device structure
+ * @timeo: Timeout
+ *
+ * Helper function for nand_wait_ready used when needing to wait in interrupt
+ * context.
+ */
+static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
+{
+ struct nand_chip *chip = mtd->priv;
+ int i;
+
+ /* Wait for the device to get ready */
+ for (i = 0; i < timeo; i++) {
+ if (chip->dev_ready(mtd))
+ break;
+ touch_softlockup_watchdog();
+ mdelay(1);
+ }
+}
+
+/* Wait for the ready pin, after a command. The timeout is caught later. */
+void nand_wait_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ unsigned long timeo = jiffies + msecs_to_jiffies(20);
+
+ /* 400ms timeout */
+ if (in_interrupt() || oops_in_progress)
+ return panic_nand_wait_ready(mtd, 400);
+
+ led_trigger_event(nand_led_trigger, LED_FULL);
+ /* Wait until command is processed or timeout occurs */
+ do {
+ if (chip->dev_ready(mtd))
+ break;
+ touch_softlockup_watchdog();
+ } while (time_before(jiffies, timeo));
+ led_trigger_event(nand_led_trigger, LED_OFF);
+}
+EXPORT_SYMBOL_GPL(nand_wait_ready);
+
+/**
+ * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
+ * @mtd: MTD device structure
+ * @timeo: Timeout in ms
+ *
+ * Wait for status ready (i.e. command done) or timeout.
+ */
+static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
+{
+ register struct nand_chip *chip = mtd->priv;
+
+ timeo = jiffies + msecs_to_jiffies(timeo);
+ do {
+ if ((chip->read_byte(mtd) & NAND_STATUS_READY))
+ break;
+ touch_softlockup_watchdog();
+ } while (time_before(jiffies, timeo));
+};
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page devices
+ * (512 Bytes per page).
+ */
+static void nand_command(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ register struct nand_chip *chip = mtd->priv;
+ int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
+
+ /* Write out the command to the device */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->writesize) {
+ /* OOB area */
+ column -= mtd->writesize;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ chip->cmd_ctrl(mtd, readcmd, ctrl);
+ ctrl &= ~NAND_CTRL_CHANGE;
+ }
+ chip->cmd_ctrl(mtd, command, ctrl);
+
+ /* Address cycle, when necessary */
+ ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (chip->options & NAND_BUSWIDTH_16 &&
+ !nand_opcode_8bits(command))
+ column >>= 1;
+ chip->cmd_ctrl(mtd, column, ctrl);
+ ctrl &= ~NAND_CTRL_CHANGE;
+ }
+ if (page_addr != -1) {
+ chip->cmd_ctrl(mtd, page_addr, ctrl);
+ ctrl &= ~NAND_CTRL_CHANGE;
+ chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
+ /* One more address cycle for devices > 32MiB */
+ if (chip->chipsize > (32 << 20))
+ chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
+ }
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+ /*
+ * Program and erase have their own busy handlers status and sequential
+ * in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (chip->dev_ready)
+ break;
+ udelay(chip->chip_delay);
+ chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
+ NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+ chip->cmd_ctrl(mtd,
+ NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+ /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
+ nand_wait_status_ready(mtd, 250);
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!chip->dev_ready) {
+ udelay(chip->chip_delay);
+ return;
+ }
+ }
+ /*
+ * Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine.
+ */
+ ndelay(100);
+
+ nand_wait_ready(mtd);
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page
+ * devices. We don't have the separate regions as we have in the small page
+ * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
+ */
+static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ register struct nand_chip *chip = mtd->priv;
+
+ /* Emulate NAND_CMD_READOOB */
+ if (command == NAND_CMD_READOOB) {
+ column += mtd->writesize;
+ command = NAND_CMD_READ0;
+ }
+
+ /* Command latch cycle */
+ chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+
+ if (column != -1 || page_addr != -1) {
+ int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (chip->options & NAND_BUSWIDTH_16 &&
+ !nand_opcode_8bits(command))
+ column >>= 1;
+ chip->cmd_ctrl(mtd, column, ctrl);
+ ctrl &= ~NAND_CTRL_CHANGE;
+ chip->cmd_ctrl(mtd, column >> 8, ctrl);
+ }
+ if (page_addr != -1) {
+ chip->cmd_ctrl(mtd, page_addr, ctrl);
+ chip->cmd_ctrl(mtd, page_addr >> 8,
+ NAND_NCE | NAND_ALE);
+ /* One more address cycle for devices > 128MiB */
+ if (chip->chipsize > (128 << 20))
+ chip->cmd_ctrl(mtd, page_addr >> 16,
+ NAND_NCE | NAND_ALE);
+ }
+ }
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+ /*
+ * Program and erase have their own busy handlers status, sequential
+ * in and status need no delay.
+ */
+ switch (command) {
+
+ case NAND_CMD_CACHEDPROG:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_RNDIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (chip->dev_ready)
+ break;
+ udelay(chip->chip_delay);
+ chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
+ NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+ NAND_NCE | NAND_CTRL_CHANGE);
+ /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
+ nand_wait_status_ready(mtd, 250);
+ return;
+
+ case NAND_CMD_RNDOUT:
+ /* No ready / busy check necessary */
+ chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
+ NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+ NAND_NCE | NAND_CTRL_CHANGE);
+ return;
+
+ case NAND_CMD_READ0:
+ chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
+ NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+ NAND_NCE | NAND_CTRL_CHANGE);
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay.
+ */
+ if (!chip->dev_ready) {
+ udelay(chip->chip_delay);
+ return;
+ }
+ }
+
+ /*
+ * Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine.
+ */
+ ndelay(100);
+
+ nand_wait_ready(mtd);
+}
+
+/**
+ * panic_nand_get_device - [GENERIC] Get chip for selected access
+ * @chip: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Used when in panic, no locks are taken.
+ */
+static void panic_nand_get_device(struct nand_chip *chip,
+ struct mtd_info *mtd, int new_state)
+{
+ /* Hardware controller shared among independent devices */
+ chip->controller->active = chip;
+ chip->state = new_state;
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int
+nand_get_device(struct mtd_info *mtd, int new_state)
+{
+ struct nand_chip *chip = mtd->priv;
+ spinlock_t *lock = &chip->controller->lock;
+ wait_queue_head_t *wq = &chip->controller->wq;
+ DECLARE_WAITQUEUE(wait, current);
+retry:
+ spin_lock(lock);
+
+ /* Hardware controller shared among independent devices */
+ if (!chip->controller->active)
+ chip->controller->active = chip;
+
+ if (chip->controller->active == chip && chip->state == FL_READY) {
+ chip->state = new_state;
+ spin_unlock(lock);
+ return 0;
+ }
+ if (new_state == FL_PM_SUSPENDED) {
+ if (chip->controller->active->state == FL_PM_SUSPENDED) {
+ chip->state = FL_PM_SUSPENDED;
+ spin_unlock(lock);
+ return 0;
+ }
+ }
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(wq, &wait);
+ spin_unlock(lock);
+ schedule();
+ remove_wait_queue(wq, &wait);
+ goto retry;
+}
+
+/**
+ * panic_nand_wait - [GENERIC] wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ * @timeo: timeout
+ *
+ * Wait for command done. This is a helper function for nand_wait used when
+ * we are in interrupt context. May happen when in panic and trying to write
+ * an oops through mtdoops.
+ */
+static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
+ unsigned long timeo)
+{
+ int i;
+ for (i = 0; i < timeo; i++) {
+ if (chip->dev_ready) {
+ if (chip->dev_ready(mtd))
+ break;
+ } else {
+ if (chip->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ mdelay(1);
+ }
+}
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ *
+ * Wait for command done. This applies to erase and program only. Erase can
+ * take up to 400ms and program up to 20ms according to general NAND and
+ * SmartMedia specs.
+ */
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+
+ int status, state = chip->state;
+ unsigned long timeo = (state == FL_ERASING ? 400 : 20);
+
+ led_trigger_event(nand_led_trigger, LED_FULL);
+
+ /*
+ * Apply this short delay always to ensure that we do wait tWB in any
+ * case on any machine.
+ */
+ ndelay(100);
+
+ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+
+ if (in_interrupt() || oops_in_progress)
+ panic_nand_wait(mtd, chip, timeo);
+ else {
+ timeo = jiffies + msecs_to_jiffies(timeo);
+ while (time_before(jiffies, timeo)) {
+ if (chip->dev_ready) {
+ if (chip->dev_ready(mtd))
+ break;
+ } else {
+ if (chip->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ cond_resched();
+ }
+ }
+ led_trigger_event(nand_led_trigger, LED_OFF);
+
+ status = (int)chip->read_byte(mtd);
+ /* This can happen if in case of timeout or buggy dev_ready */
+ WARN_ON(!(status & NAND_STATUS_READY));
+ return status;
+}
+
+/**
+ * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
+ * @mtd: mtd info
+ * @ofs: offset to start unlock from
+ * @len: length to unlock
+ * @invert: when = 0, unlock the range of blocks within the lower and
+ * upper boundary address
+ * when = 1, unlock the range of blocks outside the boundaries
+ * of the lower and upper boundary address
+ *
+ * Returs unlock status.
+ */
+static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
+ uint64_t len, int invert)
+{
+ int ret = 0;
+ int status, page;
+ struct nand_chip *chip = mtd->priv;
+
+ /* Submit address of first page to unlock */
+ page = ofs >> chip->page_shift;
+ chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
+
+ /* Submit address of last page to unlock */
+ page = (ofs + len) >> chip->page_shift;
+ chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
+ (page | invert) & chip->pagemask);
+
+ /* Call wait ready function */
+ status = chip->waitfunc(mtd, chip);
+ /* See if device thinks it succeeded */
+ if (status & NAND_STATUS_FAIL) {
+ pr_debug("%s: error status = 0x%08x\n",
+ __func__, status);
+ ret = -EIO;
+ }
+
+ return ret;
+}
+
+/**
+ * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
+ * @mtd: mtd info
+ * @ofs: offset to start unlock from
+ * @len: length to unlock
+ *
+ * Returns unlock status.
+ */
+int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ int ret = 0;
+ int chipnr;
+ struct nand_chip *chip = mtd->priv;
+
+ pr_debug("%s: start = 0x%012llx, len = %llu\n",
+ __func__, (unsigned long long)ofs, len);
+
+ if (check_offs_len(mtd, ofs, len))
+ return -EINVAL;
+
+ /* Align to last block address if size addresses end of the device */
+ if (ofs + len == mtd->size)
+ len -= mtd->erasesize;
+
+ nand_get_device(mtd, FL_UNLOCKING);
+
+ /* Shift to get chip number */
+ chipnr = ofs >> chip->chip_shift;
+
+ chip->select_chip(mtd, chipnr);
+
+ /*
+ * Reset the chip.
+ * If we want to check the WP through READ STATUS and check the bit 7
+ * we must reset the chip
+ * some operation can also clear the bit 7 of status register
+ * eg. erase/program a locked block
+ */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ pr_debug("%s: device is write protected!\n",
+ __func__);
+ ret = -EIO;
+ goto out;
+ }
+
+ ret = __nand_unlock(mtd, ofs, len, 0);
+
+out:
+ chip->select_chip(mtd, -1);
+ nand_release_device(mtd);
+
+ return ret;
+}
+EXPORT_SYMBOL(nand_unlock);
+
+/**
+ * nand_lock - [REPLACEABLE] locks all blocks present in the device
+ * @mtd: mtd info
+ * @ofs: offset to start unlock from
+ * @len: length to unlock
+ *
+ * This feature is not supported in many NAND parts. 'Micron' NAND parts do
+ * have this feature, but it allows only to lock all blocks, not for specified
+ * range for block. Implementing 'lock' feature by making use of 'unlock', for
+ * now.
+ *
+ * Returns lock status.
+ */
+int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ int ret = 0;
+ int chipnr, status, page;
+ struct nand_chip *chip = mtd->priv;
+
+ pr_debug("%s: start = 0x%012llx, len = %llu\n",
+ __func__, (unsigned long long)ofs, len);
+
+ if (check_offs_len(mtd, ofs, len))
+ return -EINVAL;
+
+ nand_get_device(mtd, FL_LOCKING);
+
+ /* Shift to get chip number */
+ chipnr = ofs >> chip->chip_shift;
+
+ chip->select_chip(mtd, chipnr);
+
+ /*
+ * Reset the chip.
+ * If we want to check the WP through READ STATUS and check the bit 7
+ * we must reset the chip
+ * some operation can also clear the bit 7 of status register
+ * eg. erase/program a locked block
+ */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ pr_debug("%s: device is write protected!\n",
+ __func__);
+ status = MTD_ERASE_FAILED;
+ ret = -EIO;
+ goto out;
+ }
+
+ /* Submit address of first page to lock */
+ page = ofs >> chip->page_shift;
+ chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
+
+ /* Call wait ready function */
+ status = chip->waitfunc(mtd, chip);
+ /* See if device thinks it succeeded */
+ if (status & NAND_STATUS_FAIL) {
+ pr_debug("%s: error status = 0x%08x\n",
+ __func__, status);
+ ret = -EIO;
+ goto out;
+ }
+
+ ret = __nand_unlock(mtd, ofs, len, 0x1);
+
+out:
+ chip->select_chip(mtd, -1);
+ nand_release_device(mtd);
+
+ return ret;
+}
+EXPORT_SYMBOL(nand_lock);
+
+/**
+ * nand_read_page_raw - [INTERN] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Not for syndrome calculating ECC controllers, which use a special oob layout.
+ */
+static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ chip->read_buf(mtd, buf, mtd->writesize);
+ if (oob_required)
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ return 0;
+}
+
+/**
+ * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * We need a special oob layout and handling even when OOB isn't used.
+ */
+static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ int eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ uint8_t *oob = chip->oob_poi;
+ int steps, size;
+
+ for (steps = chip->ecc.steps; steps > 0; steps--) {
+ chip->read_buf(mtd, buf, eccsize);
+ buf += eccsize;
+
+ if (chip->ecc.prepad) {
+ chip->read_buf(mtd, oob, chip->ecc.prepad);
+ oob += chip->ecc.prepad;
+ }
+
+ chip->read_buf(mtd, oob, eccbytes);
+ oob += eccbytes;
+
+ if (chip->ecc.postpad) {
+ chip->read_buf(mtd, oob, chip->ecc.postpad);
+ oob += chip->ecc.postpad;
+ }
+ }
+
+ size = mtd->oobsize - (oob - chip->oob_poi);
+ if (size)
+ chip->read_buf(mtd, oob, size);
+
+ return 0;
+}
+
+/**
+ * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ */
+static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ unsigned int max_bitflips = 0;
+
+ chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+ return max_bitflips;
+}
+
+/**
+ * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @data_offs: offset of requested data within the page
+ * @readlen: data length
+ * @bufpoi: buffer to store read data
+ * @page: page number to read
+ */
+static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+ uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
+ int page)
+{
+ int start_step, end_step, num_steps;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ uint8_t *p;
+ int data_col_addr, i, gaps = 0;
+ int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
+ int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
+ int index;
+ unsigned int max_bitflips = 0;
+
+ /* Column address within the page aligned to ECC size (256bytes) */
+ start_step = data_offs / chip->ecc.size;
+ end_step = (data_offs + readlen - 1) / chip->ecc.size;
+ num_steps = end_step - start_step + 1;
+ index = start_step * chip->ecc.bytes;
+
+ /* Data size aligned to ECC ecc.size */
+ datafrag_len = num_steps * chip->ecc.size;
+ eccfrag_len = num_steps * chip->ecc.bytes;
+
+ data_col_addr = start_step * chip->ecc.size;
+ /* If we read not a page aligned data */
+ if (data_col_addr != 0)
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
+
+ p = bufpoi + data_col_addr;
+ chip->read_buf(mtd, p, datafrag_len);
+
+ /* Calculate ECC */
+ for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
+ chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
+
+ /*
+ * The performance is faster if we position offsets according to
+ * ecc.pos. Let's make sure that there are no gaps in ECC positions.
+ */
+ for (i = 0; i < eccfrag_len - 1; i++) {
+ if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
+ gaps = 1;
+ break;
+ }
+ }
+ if (gaps) {
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ } else {
+ /*
+ * Send the command to read the particular ECC bytes take care
+ * about buswidth alignment in read_buf.
+ */
+ aligned_pos = eccpos[index] & ~(busw - 1);
+ aligned_len = eccfrag_len;
+ if (eccpos[index] & (busw - 1))
+ aligned_len++;
+ if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
+ aligned_len++;
+
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
+ mtd->writesize + aligned_pos, -1);
+ chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
+ }
+
+ for (i = 0; i < eccfrag_len; i++)
+ chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
+
+ p = bufpoi + data_col_addr;
+ for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
+ int stat;
+
+ stat = chip->ecc.correct(mtd, p,
+ &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+ return max_bitflips;
+}
+
+/**
+ * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Not for syndrome calculating ECC controllers which need a special oob layout.
+ */
+static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ unsigned int max_bitflips = 0;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ chip->ecc.hwctl(mtd, NAND_ECC_READ);
+ chip->read_buf(mtd, p, eccsize);
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+ }
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+ return max_bitflips;
+}
+
+/**
+ * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Hardware ECC for large page chips, require OOB to be read first. For this
+ * ECC mode, the write_page method is re-used from ECC_HW. These methods
+ * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
+ * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
+ * the data area, by overwriting the NAND manufacturer bad block markings.
+ */
+static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ unsigned int max_bitflips = 0;
+
+ /* Read the OOB area first */
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ chip->ecc.hwctl(mtd, NAND_ECC_READ);
+ chip->read_buf(mtd, p, eccsize);
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+ return max_bitflips;
+}
+
+/**
+ * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * The hw generator calculates the error syndrome automatically. Therefore we
+ * need a special oob layout and handling.
+ */
+static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *oob = chip->oob_poi;
+ unsigned int max_bitflips = 0;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ chip->ecc.hwctl(mtd, NAND_ECC_READ);
+ chip->read_buf(mtd, p, eccsize);
+
+ if (chip->ecc.prepad) {
+ chip->read_buf(mtd, oob, chip->ecc.prepad);
+ oob += chip->ecc.prepad;
+ }
+
+ chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
+ chip->read_buf(mtd, oob, eccbytes);
+ stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+
+ oob += eccbytes;
+
+ if (chip->ecc.postpad) {
+ chip->read_buf(mtd, oob, chip->ecc.postpad);
+ oob += chip->ecc.postpad;
+ }
+ }
+
+ /* Calculate remaining oob bytes */
+ i = mtd->oobsize - (oob - chip->oob_poi);
+ if (i)
+ chip->read_buf(mtd, oob, i);
+
+ return max_bitflips;
+}
+
+/**
+ * nand_transfer_oob - [INTERN] Transfer oob to client buffer
+ * @chip: nand chip structure
+ * @oob: oob destination address
+ * @ops: oob ops structure
+ * @len: size of oob to transfer
+ */
+static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
+ struct mtd_oob_ops *ops, size_t len)
+{
+ switch (ops->mode) {
+
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_RAW:
+ memcpy(oob, chip->oob_poi + ops->ooboffs, len);
+ return oob + len;
+
+ case MTD_OPS_AUTO_OOB: {
+ struct nand_oobfree *free = chip->ecc.layout->oobfree;
+ uint32_t boffs = 0, roffs = ops->ooboffs;
+ size_t bytes = 0;
+
+ for (; free->length && len; free++, len -= bytes) {
+ /* Read request not from offset 0? */
+ if (unlikely(roffs)) {
+ if (roffs >= free->length) {
+ roffs -= free->length;
+ continue;
+ }
+ boffs = free->offset + roffs;
+ bytes = min_t(size_t, len,
+ (free->length - roffs));
+ roffs = 0;
+ } else {
+ bytes = min_t(size_t, len, free->length);
+ boffs = free->offset;
+ }
+ memcpy(oob, chip->oob_poi + boffs, bytes);
+ oob += bytes;
+ }
+ return oob;
+ }
+ default:
+ BUG();
+ }
+ return NULL;
+}
+
+/**
+ * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
+ * @mtd: MTD device structure
+ * @retry_mode: the retry mode to use
+ *
+ * Some vendors supply a special command to shift the Vt threshold, to be used
+ * when there are too many bitflips in a page (i.e., ECC error). After setting
+ * a new threshold, the host should retry reading the page.
+ */
+static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ pr_debug("setting READ RETRY mode %d\n", retry_mode);
+
+ if (retry_mode >= chip->read_retries)
+ return -EINVAL;
+
+ if (!chip->setup_read_retry)
+ return -EOPNOTSUPP;
+
+ return chip->setup_read_retry(mtd, retry_mode);
+}
+
+/**
+ * nand_do_read_ops - [INTERN] Read data with ECC
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob ops structure
+ *
+ * Internal function. Called with chip held.
+ */
+static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ int chipnr, page, realpage, col, bytes, aligned, oob_required;
+ struct nand_chip *chip = mtd->priv;
+ int ret = 0;
+ uint32_t readlen = ops->len;
+ uint32_t oobreadlen = ops->ooblen;
+ uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
+ mtd->oobavail : mtd->oobsize;
+
+ uint8_t *bufpoi, *oob, *buf;
+ int use_bufpoi;
+ unsigned int max_bitflips = 0;
+ int retry_mode = 0;
+ bool ecc_fail = false;
+
+ chipnr = (int)(from >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ realpage = (int)(from >> chip->page_shift);
+ page = realpage & chip->pagemask;
+
+ col = (int)(from & (mtd->writesize - 1));
+
+ buf = ops->datbuf;
+ oob = ops->oobbuf;
+ oob_required = oob ? 1 : 0;
+
+ while (1) {
+ unsigned int ecc_failures = mtd->ecc_stats.failed;
+
+ bytes = min(mtd->writesize - col, readlen);
+ aligned = (bytes == mtd->writesize);
+
+ if (!aligned)
+ use_bufpoi = 1;
+ else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+ use_bufpoi = !virt_addr_valid(buf);
+ else
+ use_bufpoi = 0;
+
+ /* Is the current page in the buffer? */
+ if (realpage != chip->pagebuf || oob) {
+ bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
+
+ if (use_bufpoi && aligned)
+ pr_debug("%s: using read bounce buffer for buf@%p\n",
+ __func__, buf);
+
+read_retry:
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+
+ /*
+ * Now read the page into the buffer. Absent an error,
+ * the read methods return max bitflips per ecc step.
+ */
+ if (unlikely(ops->mode == MTD_OPS_RAW))
+ ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
+ oob_required,
+ page);
+ else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
+ !oob)
+ ret = chip->ecc.read_subpage(mtd, chip,
+ col, bytes, bufpoi,
+ page);
+ else
+ ret = chip->ecc.read_page(mtd, chip, bufpoi,
+ oob_required, page);
+ if (ret < 0) {
+ if (use_bufpoi)
+ /* Invalidate page cache */
+ chip->pagebuf = -1;
+ break;
+ }
+
+ max_bitflips = max_t(unsigned int, max_bitflips, ret);
+
+ /* Transfer not aligned data */
+ if (use_bufpoi) {
+ if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
+ !(mtd->ecc_stats.failed - ecc_failures) &&
+ (ops->mode != MTD_OPS_RAW)) {
+ chip->pagebuf = realpage;
+ chip->pagebuf_bitflips = ret;
+ } else {
+ /* Invalidate page cache */
+ chip->pagebuf = -1;
+ }
+ memcpy(buf, chip->buffers->databuf + col, bytes);
+ }
+
+ if (unlikely(oob)) {
+ int toread = min(oobreadlen, max_oobsize);
+
+ if (toread) {
+ oob = nand_transfer_oob(chip,
+ oob, ops, toread);
+ oobreadlen -= toread;
+ }
+ }
+
+ if (chip->options & NAND_NEED_READRDY) {
+ /* Apply delay or wait for ready/busy pin */
+ if (!chip->dev_ready)
+ udelay(chip->chip_delay);
+ else
+ nand_wait_ready(mtd);
+ }
+
+ if (mtd->ecc_stats.failed - ecc_failures) {
+ if (retry_mode + 1 < chip->read_retries) {
+ retry_mode++;
+ ret = nand_setup_read_retry(mtd,
+ retry_mode);
+ if (ret < 0)
+ break;
+
+ /* Reset failures; retry */
+ mtd->ecc_stats.failed = ecc_failures;
+ goto read_retry;
+ } else {
+ /* No more retry modes; real failure */
+ ecc_fail = true;
+ }
+ }
+
+ buf += bytes;
+ } else {
+ memcpy(buf, chip->buffers->databuf + col, bytes);
+ buf += bytes;
+ max_bitflips = max_t(unsigned int, max_bitflips,
+ chip->pagebuf_bitflips);
+ }
+
+ readlen -= bytes;
+
+ /* Reset to retry mode 0 */
+ if (retry_mode) {
+ ret = nand_setup_read_retry(mtd, 0);
+ if (ret < 0)
+ break;
+ retry_mode = 0;
+ }
+
+ if (!readlen)
+ break;
+
+ /* For subsequent reads align to page boundary */
+ col = 0;
+ /* Increment page address */
+ realpage++;
+
+ page = realpage & chip->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ chip->select_chip(mtd, -1);
+ chip->select_chip(mtd, chipnr);
+ }
+ }
+ chip->select_chip(mtd, -1);
+
+ ops->retlen = ops->len - (size_t) readlen;
+ if (oob)
+ ops->oobretlen = ops->ooblen - oobreadlen;
+
+ if (ret < 0)
+ return ret;
+
+ if (ecc_fail)
+ return -EBADMSG;
+
+ return max_bitflips;
+}
+
+/**
+ * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * Get hold of the chip and call nand_do_read.
+ */
+static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, uint8_t *buf)
+{
+ struct mtd_oob_ops ops;
+ int ret;
+
+ nand_get_device(mtd, FL_READING);
+ memset(&ops, 0, sizeof(ops));
+ ops.len = len;
+ ops.datbuf = buf;
+ ops.mode = MTD_OPS_PLACE_OOB;
+ ret = nand_do_read_ops(mtd, from, &ops);
+ *retlen = ops.retlen;
+ nand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ */
+static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ return 0;
+}
+
+/**
+ * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
+ * with syndromes
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ */
+static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ int length = mtd->oobsize;
+ int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+ int eccsize = chip->ecc.size;
+ uint8_t *bufpoi = chip->oob_poi;
+ int i, toread, sndrnd = 0, pos;
+
+ chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
+ for (i = 0; i < chip->ecc.steps; i++) {
+ if (sndrnd) {
+ pos = eccsize + i * (eccsize + chunk);
+ if (mtd->writesize > 512)
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
+ else
+ chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
+ } else
+ sndrnd = 1;
+ toread = min_t(int, length, chunk);
+ chip->read_buf(mtd, bufpoi, toread);
+ bufpoi += toread;
+ length -= toread;
+ }
+ if (length > 0)
+ chip->read_buf(mtd, bufpoi, length);
+
+ return 0;
+}
+
+/**
+ * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ int status = 0;
+ const uint8_t *buf = chip->oob_poi;
+ int length = mtd->oobsize;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+ chip->write_buf(mtd, buf, length);
+ /* Send command to program the OOB data */
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
+ * with syndrome - only for large page flash
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+static int nand_write_oob_syndrome(struct mtd_info *mtd,
+ struct nand_chip *chip, int page)
+{
+ int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+ int eccsize = chip->ecc.size, length = mtd->oobsize;
+ int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
+ const uint8_t *bufpoi = chip->oob_poi;
+
+ /*
+ * data-ecc-data-ecc ... ecc-oob
+ * or
+ * data-pad-ecc-pad-data-pad .... ecc-pad-oob
+ */
+ if (!chip->ecc.prepad && !chip->ecc.postpad) {
+ pos = steps * (eccsize + chunk);
+ steps = 0;
+ } else
+ pos = eccsize;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
+ for (i = 0; i < steps; i++) {
+ if (sndcmd) {
+ if (mtd->writesize <= 512) {
+ uint32_t fill = 0xFFFFFFFF;
+
+ len = eccsize;
+ while (len > 0) {
+ int num = min_t(int, len, 4);
+ chip->write_buf(mtd, (uint8_t *)&fill,
+ num);
+ len -= num;
+ }
+ } else {
+ pos = eccsize + i * (eccsize + chunk);
+ chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
+ }
+ } else
+ sndcmd = 1;
+ len = min_t(int, length, chunk);
+ chip->write_buf(mtd, bufpoi, len);
+ bufpoi += len;
+ length -= len;
+ }
+ if (length > 0)
+ chip->write_buf(mtd, bufpoi, length);
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * nand_do_read_oob - [INTERN] NAND read out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob operations description structure
+ *
+ * NAND read out-of-band data from the spare area.
+ */
+static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ int page, realpage, chipnr;
+ struct nand_chip *chip = mtd->priv;
+ struct mtd_ecc_stats stats;
+ int readlen = ops->ooblen;
+ int len;
+ uint8_t *buf = ops->oobbuf;
+ int ret = 0;
+
+ pr_debug("%s: from = 0x%08Lx, len = %i\n",
+ __func__, (unsigned long long)from, readlen);
+
+ stats = mtd->ecc_stats;
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ len = chip->ecc.layout->oobavail;
+ else
+ len = mtd->oobsize;
+
+ if (unlikely(ops->ooboffs >= len)) {
+ pr_debug("%s: attempt to start read outside oob\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /* Do not allow reads past end of device */
+ if (unlikely(from >= mtd->size ||
+ ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
+ (from >> chip->page_shift)) * len)) {
+ pr_debug("%s: attempt to read beyond end of device\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ chipnr = (int)(from >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ /* Shift to get page */
+ realpage = (int)(from >> chip->page_shift);
+ page = realpage & chip->pagemask;
+
+ while (1) {
+ if (ops->mode == MTD_OPS_RAW)
+ ret = chip->ecc.read_oob_raw(mtd, chip, page);
+ else
+ ret = chip->ecc.read_oob(mtd, chip, page);
+
+ if (ret < 0)
+ break;
+
+ len = min(len, readlen);
+ buf = nand_transfer_oob(chip, buf, ops, len);
+
+ if (chip->options & NAND_NEED_READRDY) {
+ /* Apply delay or wait for ready/busy pin */
+ if (!chip->dev_ready)
+ udelay(chip->chip_delay);
+ else
+ nand_wait_ready(mtd);
+ }
+
+ readlen -= len;
+ if (!readlen)
+ break;
+
+ /* Increment page address */
+ realpage++;
+
+ page = realpage & chip->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ chip->select_chip(mtd, -1);
+ chip->select_chip(mtd, chipnr);
+ }
+ }
+ chip->select_chip(mtd, -1);
+
+ ops->oobretlen = ops->ooblen - readlen;
+
+ if (ret < 0)
+ return ret;
+
+ if (mtd->ecc_stats.failed - stats.failed)
+ return -EBADMSG;
+
+ return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob operation description structure
+ *
+ * NAND read data and/or out-of-band data.
+ */
+static int nand_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ int ret = -ENOTSUPP;
+
+ ops->retlen = 0;
+
+ /* Do not allow reads past end of device */
+ if (ops->datbuf && (from + ops->len) > mtd->size) {
+ pr_debug("%s: attempt to read beyond end of device\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ nand_get_device(mtd, FL_READING);
+
+ switch (ops->mode) {
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_AUTO_OOB:
+ case MTD_OPS_RAW:
+ break;
+
+ default:
+ goto out;
+ }
+
+ if (!ops->datbuf)
+ ret = nand_do_read_oob(mtd, from, ops);
+ else
+ ret = nand_do_read_ops(mtd, from, ops);
+
+out:
+ nand_release_device(mtd);
+ return ret;
+}
+
+
+/**
+ * nand_write_page_raw - [INTERN] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ *
+ * Not for syndrome calculating ECC controllers, which use a special oob layout.
+ */
+static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ chip->write_buf(mtd, buf, mtd->writesize);
+ if (oob_required)
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+/**
+ * nand_write_page_raw_syndrome - [INTERN] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ *
+ * We need a special oob layout and handling even when ECC isn't checked.
+ */
+static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ int eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ uint8_t *oob = chip->oob_poi;
+ int steps, size;
+
+ for (steps = chip->ecc.steps; steps > 0; steps--) {
+ chip->write_buf(mtd, buf, eccsize);
+ buf += eccsize;
+
+ if (chip->ecc.prepad) {
+ chip->write_buf(mtd, oob, chip->ecc.prepad);
+ oob += chip->ecc.prepad;
+ }
+
+ chip->write_buf(mtd, oob, eccbytes);
+ oob += eccbytes;
+
+ if (chip->ecc.postpad) {
+ chip->write_buf(mtd, oob, chip->ecc.postpad);
+ oob += chip->ecc.postpad;
+ }
+ }
+
+ size = mtd->oobsize - (oob - chip->oob_poi);
+ if (size)
+ chip->write_buf(mtd, oob, size);
+
+ return 0;
+}
+/**
+ * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ const uint8_t *p = buf;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+ /* Software ECC calculation */
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+ return chip->ecc.write_page_raw(mtd, chip, buf, 1);
+}
+
+/**
+ * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ const uint8_t *p = buf;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+ chip->write_buf(mtd, p, eccsize);
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+ }
+
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+
+/**
+ * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @offset: column address of subpage within the page
+ * @data_len: data length
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int nand_write_subpage_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, uint32_t offset,
+ uint32_t data_len, const uint8_t *buf,
+ int oob_required)
+{
+ uint8_t *oob_buf = chip->oob_poi;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ int ecc_steps = chip->ecc.steps;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ uint32_t start_step = offset / ecc_size;
+ uint32_t end_step = (offset + data_len - 1) / ecc_size;
+ int oob_bytes = mtd->oobsize / ecc_steps;
+ int step, i;
+
+ for (step = 0; step < ecc_steps; step++) {
+ /* configure controller for WRITE access */
+ chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+ /* write data (untouched subpages already masked by 0xFF) */
+ chip->write_buf(mtd, buf, ecc_size);
+
+ /* mask ECC of un-touched subpages by padding 0xFF */
+ if ((step < start_step) || (step > end_step))
+ memset(ecc_calc, 0xff, ecc_bytes);
+ else
+ chip->ecc.calculate(mtd, buf, ecc_calc);
+
+ /* mask OOB of un-touched subpages by padding 0xFF */
+ /* if oob_required, preserve OOB metadata of written subpage */
+ if (!oob_required || (step < start_step) || (step > end_step))
+ memset(oob_buf, 0xff, oob_bytes);
+
+ buf += ecc_size;
+ ecc_calc += ecc_bytes;
+ oob_buf += oob_bytes;
+ }
+
+ /* copy calculated ECC for whole page to chip->buffer->oob */
+ /* this include masked-value(0xFF) for unwritten subpages */
+ ecc_calc = chip->buffers->ecccalc;
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+ /* write OOB buffer to NAND device */
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+
+/**
+ * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ *
+ * The hw generator calculates the error syndrome automatically. Therefore we
+ * need a special oob layout and handling.
+ */
+static int nand_write_page_syndrome(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ const uint8_t *p = buf;
+ uint8_t *oob = chip->oob_poi;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+
+ chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+ chip->write_buf(mtd, p, eccsize);
+
+ if (chip->ecc.prepad) {
+ chip->write_buf(mtd, oob, chip->ecc.prepad);
+ oob += chip->ecc.prepad;
+ }
+
+ chip->ecc.calculate(mtd, p, oob);
+ chip->write_buf(mtd, oob, eccbytes);
+ oob += eccbytes;
+
+ if (chip->ecc.postpad) {
+ chip->write_buf(mtd, oob, chip->ecc.postpad);
+ oob += chip->ecc.postpad;
+ }
+ }
+
+ /* Calculate remaining oob bytes */
+ i = mtd->oobsize - (oob - chip->oob_poi);
+ if (i)
+ chip->write_buf(mtd, oob, i);
+
+ return 0;
+}
+
+/**
+ * nand_write_page - [REPLACEABLE] write one page
+ * @mtd: MTD device structure
+ * @chip: NAND chip descriptor
+ * @offset: address offset within the page
+ * @data_len: length of actual data to be written
+ * @buf: the data to write
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ * @cached: cached programming
+ * @raw: use _raw version of write_page
+ */
+static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint32_t offset, int data_len, const uint8_t *buf,
+ int oob_required, int page, int cached, int raw)
+{
+ int status, subpage;
+
+ if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
+ chip->ecc.write_subpage)
+ subpage = offset || (data_len < mtd->writesize);
+ else
+ subpage = 0;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+
+ if (unlikely(raw))
+ status = chip->ecc.write_page_raw(mtd, chip, buf,
+ oob_required);
+ else if (subpage)
+ status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
+ buf, oob_required);
+ else
+ status = chip->ecc.write_page(mtd, chip, buf, oob_required);
+
+ if (status < 0)
+ return status;
+
+ /*
+ * Cached progamming disabled for now. Not sure if it's worth the
+ * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
+ */
+ cached = 0;
+
+ if (!cached || !NAND_HAS_CACHEPROG(chip)) {
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
+ /*
+ * See if operation failed and additional status checks are
+ * available.
+ */
+ if ((status & NAND_STATUS_FAIL) && (chip->errstat))
+ status = chip->errstat(mtd, chip, FL_WRITING, status,
+ page);
+
+ if (status & NAND_STATUS_FAIL)
+ return -EIO;
+ } else {
+ chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
+ }
+
+ return 0;
+}
+
+/**
+ * nand_fill_oob - [INTERN] Transfer client buffer to oob
+ * @mtd: MTD device structure
+ * @oob: oob data buffer
+ * @len: oob data write length
+ * @ops: oob ops structure
+ */
+static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
+ struct mtd_oob_ops *ops)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ /*
+ * Initialise to all 0xFF, to avoid the possibility of left over OOB
+ * data from a previous OOB read.
+ */
+ memset(chip->oob_poi, 0xff, mtd->oobsize);
+
+ switch (ops->mode) {
+
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_RAW:
+ memcpy(chip->oob_poi + ops->ooboffs, oob, len);
+ return oob + len;
+
+ case MTD_OPS_AUTO_OOB: {
+ struct nand_oobfree *free = chip->ecc.layout->oobfree;
+ uint32_t boffs = 0, woffs = ops->ooboffs;
+ size_t bytes = 0;
+
+ for (; free->length && len; free++, len -= bytes) {
+ /* Write request not from offset 0? */
+ if (unlikely(woffs)) {
+ if (woffs >= free->length) {
+ woffs -= free->length;
+ continue;
+ }
+ boffs = free->offset + woffs;
+ bytes = min_t(size_t, len,
+ (free->length - woffs));
+ woffs = 0;
+ } else {
+ bytes = min_t(size_t, len, free->length);
+ boffs = free->offset;
+ }
+ memcpy(chip->oob_poi + boffs, oob, bytes);
+ oob += bytes;
+ }
+ return oob;
+ }
+ default:
+ BUG();
+ }
+ return NULL;
+}
+
+#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
+
+/**
+ * nand_do_write_ops - [INTERN] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operations description structure
+ *
+ * NAND write with ECC.
+ */
+static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ int chipnr, realpage, page, blockmask, column;
+ struct nand_chip *chip = mtd->priv;
+ uint32_t writelen = ops->len;
+
+ uint32_t oobwritelen = ops->ooblen;
+ uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
+ mtd->oobavail : mtd->oobsize;
+
+ uint8_t *oob = ops->oobbuf;
+ uint8_t *buf = ops->datbuf;
+ int ret;
+ int oob_required = oob ? 1 : 0;
+
+ ops->retlen = 0;
+ if (!writelen)
+ return 0;
+
+ /* Reject writes, which are not page aligned */
+ if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
+ pr_notice("%s: attempt to write non page aligned data\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ column = to & (mtd->writesize - 1);
+
+ chipnr = (int)(to >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ ret = -EIO;
+ goto err_out;
+ }
+
+ realpage = (int)(to >> chip->page_shift);
+ page = realpage & chip->pagemask;
+ blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
+
+ /* Invalidate the page cache, when we write to the cached page */
+ if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
+ ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
+ chip->pagebuf = -1;
+
+ /* Don't allow multipage oob writes with offset */
+ if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
+ ret = -EINVAL;
+ goto err_out;
+ }
+
+ while (1) {
+ int bytes = mtd->writesize;
+ int cached = writelen > bytes && page != blockmask;
+ uint8_t *wbuf = buf;
+ int use_bufpoi;
+ int part_pagewr = (column || writelen < (mtd->writesize - 1));
+
+ if (part_pagewr)
+ use_bufpoi = 1;
+ else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+ use_bufpoi = !virt_addr_valid(buf);
+ else
+ use_bufpoi = 0;
+
+ /* Partial page write?, or need to use bounce buffer */
+ if (use_bufpoi) {
+ pr_debug("%s: using write bounce buffer for buf@%p\n",
+ __func__, buf);
+ cached = 0;
+ if (part_pagewr)
+ bytes = min_t(int, bytes - column, writelen);
+ chip->pagebuf = -1;
+ memset(chip->buffers->databuf, 0xff, mtd->writesize);
+ memcpy(&chip->buffers->databuf[column], buf, bytes);
+ wbuf = chip->buffers->databuf;
+ }
+
+ if (unlikely(oob)) {
+ size_t len = min(oobwritelen, oobmaxlen);
+ oob = nand_fill_oob(mtd, oob, len, ops);
+ oobwritelen -= len;
+ } else {
+ /* We still need to erase leftover OOB data */
+ memset(chip->oob_poi, 0xff, mtd->oobsize);
+ }
+ ret = chip->write_page(mtd, chip, column, bytes, wbuf,
+ oob_required, page, cached,
+ (ops->mode == MTD_OPS_RAW));
+ if (ret)
+ break;
+
+ writelen -= bytes;
+ if (!writelen)
+ break;
+
+ column = 0;
+ buf += bytes;
+ realpage++;
+
+ page = realpage & chip->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ chip->select_chip(mtd, -1);
+ chip->select_chip(mtd, chipnr);
+ }
+ }
+
+ ops->retlen = ops->len - writelen;
+ if (unlikely(oob))
+ ops->oobretlen = ops->ooblen;
+
+err_out:
+ chip->select_chip(mtd, -1);
+ return ret;
+}
+
+/**
+ * panic_nand_write - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write with ECC. Used when performing writes in interrupt context, this
+ * may for example be called by mtdoops when writing an oops while in panic.
+ */
+static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const uint8_t *buf)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mtd_oob_ops ops;
+ int ret;
+
+ /* Wait for the device to get ready */
+ panic_nand_wait(mtd, chip, 400);
+
+ /* Grab the device */
+ panic_nand_get_device(chip, mtd, FL_WRITING);
+
+ memset(&ops, 0, sizeof(ops));
+ ops.len = len;
+ ops.datbuf = (uint8_t *)buf;
+ ops.mode = MTD_OPS_PLACE_OOB;
+
+ ret = nand_do_write_ops(mtd, to, &ops);
+
+ *retlen = ops.retlen;
+ return ret;
+}
+
+/**
+ * nand_write - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write with ECC.
+ */
+static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const uint8_t *buf)
+{
+ struct mtd_oob_ops ops;
+ int ret;
+
+ nand_get_device(mtd, FL_WRITING);
+ memset(&ops, 0, sizeof(ops));
+ ops.len = len;
+ ops.datbuf = (uint8_t *)buf;
+ ops.mode = MTD_OPS_PLACE_OOB;
+ ret = nand_do_write_ops(mtd, to, &ops);
+ *retlen = ops.retlen;
+ nand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * nand_do_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ *
+ * NAND write out-of-band.
+ */
+static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ int chipnr, page, status, len;
+ struct nand_chip *chip = mtd->priv;
+
+ pr_debug("%s: to = 0x%08x, len = %i\n",
+ __func__, (unsigned int)to, (int)ops->ooblen);
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ len = chip->ecc.layout->oobavail;
+ else
+ len = mtd->oobsize;
+
+ /* Do not allow write past end of page */
+ if ((ops->ooboffs + ops->ooblen) > len) {
+ pr_debug("%s: attempt to write past end of page\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ if (unlikely(ops->ooboffs >= len)) {
+ pr_debug("%s: attempt to start write outside oob\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /* Do not allow write past end of device */
+ if (unlikely(to >= mtd->size ||
+ ops->ooboffs + ops->ooblen >
+ ((mtd->size >> chip->page_shift) -
+ (to >> chip->page_shift)) * len)) {
+ pr_debug("%s: attempt to write beyond end of device\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ chipnr = (int)(to >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ /* Shift to get page */
+ page = (int)(to >> chip->page_shift);
+
+ /*
+ * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
+ * of my DiskOnChip 2000 test units) will clear the whole data page too
+ * if we don't do this. I have no clue why, but I seem to have 'fixed'
+ * it in the doc2000 driver in August 1999. dwmw2.
+ */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ chip->select_chip(mtd, -1);
+ return -EROFS;
+ }
+
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page == chip->pagebuf)
+ chip->pagebuf = -1;
+
+ nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
+
+ if (ops->mode == MTD_OPS_RAW)
+ status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
+ else
+ status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
+
+ chip->select_chip(mtd, -1);
+
+ if (status)
+ return status;
+
+ ops->oobretlen = ops->ooblen;
+
+ return 0;
+}
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ */
+static int nand_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ int ret = -ENOTSUPP;
+
+ ops->retlen = 0;
+
+ /* Do not allow writes past end of device */
+ if (ops->datbuf && (to + ops->len) > mtd->size) {
+ pr_debug("%s: attempt to write beyond end of device\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ nand_get_device(mtd, FL_WRITING);
+
+ switch (ops->mode) {
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_AUTO_OOB:
+ case MTD_OPS_RAW:
+ break;
+
+ default:
+ goto out;
+ }
+
+ if (!ops->datbuf)
+ ret = nand_do_write_oob(mtd, to, ops);
+ else
+ ret = nand_do_write_ops(mtd, to, ops);
+
+out:
+ nand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * single_erase - [GENERIC] NAND standard block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips. Returns NAND status.
+ */
+static int single_erase(struct mtd_info *mtd, int page)
+{
+ struct nand_chip *chip = mtd->priv;
+ /* Send commands to erase a block */
+ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
+ chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+
+ return chip->waitfunc(mtd, chip);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ *
+ * Erase one ore more blocks.
+ */
+static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ return nand_erase_nand(mtd, instr, 0);
+}
+
+/**
+ * nand_erase_nand - [INTERN] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks.
+ */
+int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
+ int allowbbt)
+{
+ int page, status, pages_per_block, ret, chipnr;
+ struct nand_chip *chip = mtd->priv;
+ loff_t len;
+
+ pr_debug("%s: start = 0x%012llx, len = %llu\n",
+ __func__, (unsigned long long)instr->addr,
+ (unsigned long long)instr->len);
+
+ if (check_offs_len(mtd, instr->addr, instr->len))
+ return -EINVAL;
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device(mtd, FL_ERASING);
+
+ /* Shift to get first page */
+ page = (int)(instr->addr >> chip->page_shift);
+ chipnr = (int)(instr->addr >> chip->chip_shift);
+
+ /* Calculate pages in each block */
+ pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
+
+ /* Select the NAND device */
+ chip->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ pr_debug("%s: device is write protected!\n",
+ __func__);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* Loop through the pages */
+ len = instr->len;
+
+ instr->state = MTD_ERASING;
+
+ while (len) {
+ /* Check if we have a bad block, we do not erase bad blocks! */
+ if (nand_block_checkbad(mtd, ((loff_t) page) <<
+ chip->page_shift, 0, allowbbt)) {
+ pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
+ __func__, page);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /*
+ * Invalidate the page cache, if we erase the block which
+ * contains the current cached page.
+ */
+ if (page <= chip->pagebuf && chip->pagebuf <
+ (page + pages_per_block))
+ chip->pagebuf = -1;
+
+ status = chip->erase(mtd, page & chip->pagemask);
+
+ /*
+ * See if operation failed and additional status checks are
+ * available
+ */
+ if ((status & NAND_STATUS_FAIL) && (chip->errstat))
+ status = chip->errstat(mtd, chip, FL_ERASING,
+ status, page);
+
+ /* See if block erase succeeded */
+ if (status & NAND_STATUS_FAIL) {
+ pr_debug("%s: failed erase, page 0x%08x\n",
+ __func__, page);
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr =
+ ((loff_t)page << chip->page_shift);
+ goto erase_exit;
+ }
+
+ /* Increment page address and decrement length */
+ len -= (1ULL << chip->phys_erase_shift);
+ page += pages_per_block;
+
+ /* Check, if we cross a chip boundary */
+ if (len && !(page & chip->pagemask)) {
+ chipnr++;
+ chip->select_chip(mtd, -1);
+ chip->select_chip(mtd, chipnr);
+ }
+ }
+ instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+ ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+
+ /* Deselect and wake up anyone waiting on the device */
+ chip->select_chip(mtd, -1);
+ nand_release_device(mtd);
+
+ /* Do call back function */
+ if (!ret)
+ mtd_erase_callback(instr);
+
+ /* Return more or less happy */
+ return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd: MTD device structure
+ *
+ * Sync is actually a wait for chip ready function.
+ */
+static void nand_sync(struct mtd_info *mtd)
+{
+ pr_debug("%s: called\n", __func__);
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device(mtd, FL_SYNCING);
+ /* Release it and go back */
+ nand_release_device(mtd);
+}
+
+/**
+ * nand_block_isbad - [MTD Interface] Check if block at offset is bad
+ * @mtd: MTD device structure
+ * @offs: offset relative to mtd start
+ */
+static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
+{
+ return nand_block_checkbad(mtd, offs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ int ret;
+
+ ret = nand_block_isbad(mtd, ofs);
+ if (ret) {
+ /* If it was bad already, return success and do nothing */
+ if (ret > 0)
+ return 0;
+ return ret;
+ }
+
+ return nand_block_markbad_lowlevel(mtd, ofs);
+}
+
+/**
+ * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
+ * @mtd: MTD device structure
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ */
+static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, uint8_t *subfeature_param)
+{
+ int status;
+ int i;
+
+ if (!chip->onfi_version ||
+ !(le16_to_cpu(chip->onfi_params.opt_cmd)
+ & ONFI_OPT_CMD_SET_GET_FEATURES))
+ return -EINVAL;
+
+ chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
+ for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+ chip->write_byte(mtd, subfeature_param[i]);
+
+ status = chip->waitfunc(mtd, chip);
+ if (status & NAND_STATUS_FAIL)
+ return -EIO;
+ return 0;
+}
+
+/**
+ * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
+ * @mtd: MTD device structure
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ */
+static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, uint8_t *subfeature_param)
+{
+ int i;
+
+ if (!chip->onfi_version ||
+ !(le16_to_cpu(chip->onfi_params.opt_cmd)
+ & ONFI_OPT_CMD_SET_GET_FEATURES))
+ return -EINVAL;
+
+ /* clear the sub feature parameters */
+ memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
+
+ chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
+ for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+ *subfeature_param++ = chip->read_byte(mtd);
+ return 0;
+}
+
+/**
+ * nand_suspend - [MTD Interface] Suspend the NAND flash
+ * @mtd: MTD device structure
+ */
+static int nand_suspend(struct mtd_info *mtd)
+{
+ return nand_get_device(mtd, FL_PM_SUSPENDED);
+}
+
+/**
+ * nand_resume - [MTD Interface] Resume the NAND flash
+ * @mtd: MTD device structure
+ */
+static void nand_resume(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ if (chip->state == FL_PM_SUSPENDED)
+ nand_release_device(mtd);
+ else
+ pr_err("%s called for a chip which is not in suspended state\n",
+ __func__);
+}
+
+/**
+ * nand_shutdown - [MTD Interface] Finish the current NAND operation and
+ * prevent further operations
+ * @mtd: MTD device structure
+ */
+static void nand_shutdown(struct mtd_info *mtd)
+{
+ nand_get_device(mtd, FL_SHUTDOWN);
+}
+
+/* Set default functions */
+static void nand_set_defaults(struct nand_chip *chip, int busw)
+{
+ /* check for proper chip_delay setup, set 20us if not */
+ if (!chip->chip_delay)
+ chip->chip_delay = 20;
+
+ /* check, if a user supplied command function given */
+ if (chip->cmdfunc == NULL)
+ chip->cmdfunc = nand_command;
+
+ /* check, if a user supplied wait function given */
+ if (chip->waitfunc == NULL)
+ chip->waitfunc = nand_wait;
+
+ if (!chip->select_chip)
+ chip->select_chip = nand_select_chip;
+
+ /* set for ONFI nand */
+ if (!chip->onfi_set_features)
+ chip->onfi_set_features = nand_onfi_set_features;
+ if (!chip->onfi_get_features)
+ chip->onfi_get_features = nand_onfi_get_features;
+
+ /* If called twice, pointers that depend on busw may need to be reset */
+ if (!chip->read_byte || chip->read_byte == nand_read_byte)
+ chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+ if (!chip->read_word)
+ chip->read_word = nand_read_word;
+ if (!chip->block_bad)
+ chip->block_bad = nand_block_bad;
+ if (!chip->block_markbad)
+ chip->block_markbad = nand_default_block_markbad;
+ if (!chip->write_buf || chip->write_buf == nand_write_buf)
+ chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+ if (!chip->write_byte || chip->write_byte == nand_write_byte)
+ chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+ if (!chip->read_buf || chip->read_buf == nand_read_buf)
+ chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+ if (!chip->scan_bbt)
+ chip->scan_bbt = nand_default_bbt;
+
+ if (!chip->controller) {
+ chip->controller = &chip->hwcontrol;
+ spin_lock_init(&chip->controller->lock);
+ init_waitqueue_head(&chip->controller->wq);
+ }
+
+}
+
+/* Sanitize ONFI strings so we can safely print them */
+static void sanitize_string(uint8_t *s, size_t len)
+{
+ ssize_t i;
+
+ /* Null terminate */
+ s[len - 1] = 0;
+
+ /* Remove non printable chars */
+ for (i = 0; i < len - 1; i++) {
+ if (s[i] < ' ' || s[i] > 127)
+ s[i] = '?';
+ }
+
+ /* Remove trailing spaces */
+ strim(s);
+}
+
+static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
+{
+ int i;
+ while (len--) {
+ crc ^= *p++ << 8;
+ for (i = 0; i < 8; i++)
+ crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
+ }
+
+ return crc;
+}
+
+/* Parse the Extended Parameter Page. */
+static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
+ struct nand_chip *chip, struct nand_onfi_params *p)
+{
+ struct onfi_ext_param_page *ep;
+ struct onfi_ext_section *s;
+ struct onfi_ext_ecc_info *ecc;
+ uint8_t *cursor;
+ int ret = -EINVAL;
+ int len;
+ int i;
+
+ len = le16_to_cpu(p->ext_param_page_length) * 16;
+ ep = kmalloc(len, GFP_KERNEL);
+ if (!ep)
+ return -ENOMEM;
+
+ /* Send our own NAND_CMD_PARAM. */
+ chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
+
+ /* Use the Change Read Column command to skip the ONFI param pages. */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
+ sizeof(*p) * p->num_of_param_pages , -1);
+
+ /* Read out the Extended Parameter Page. */
+ chip->read_buf(mtd, (uint8_t *)ep, len);
+ if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
+ != le16_to_cpu(ep->crc))) {
+ pr_debug("fail in the CRC.\n");
+ goto ext_out;
+ }
+
+ /*
+ * Check the signature.
+ * Do not strictly follow the ONFI spec, maybe changed in future.
+ */
+ if (strncmp(ep->sig, "EPPS", 4)) {
+ pr_debug("The signature is invalid.\n");
+ goto ext_out;
+ }
+
+ /* find the ECC section. */
+ cursor = (uint8_t *)(ep + 1);
+ for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
+ s = ep->sections + i;
+ if (s->type == ONFI_SECTION_TYPE_2)
+ break;
+ cursor += s->length * 16;
+ }
+ if (i == ONFI_EXT_SECTION_MAX) {
+ pr_debug("We can not find the ECC section.\n");
+ goto ext_out;
+ }
+
+ /* get the info we want. */
+ ecc = (struct onfi_ext_ecc_info *)cursor;
+
+ if (!ecc->codeword_size) {
+ pr_debug("Invalid codeword size\n");
+ goto ext_out;
+ }
+
+ chip->ecc_strength_ds = ecc->ecc_bits;
+ chip->ecc_step_ds = 1 << ecc->codeword_size;
+ ret = 0;
+
+ext_out:
+ kfree(ep);
+ return ret;
+}
+
+static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
+{
+ struct nand_chip *chip = mtd->priv;
+ uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
+
+ return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
+ feature);
+}
+
+/*
+ * Configure chip properties from Micron vendor-specific ONFI table
+ */
+static void nand_onfi_detect_micron(struct nand_chip *chip,
+ struct nand_onfi_params *p)
+{
+ struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
+
+ if (le16_to_cpu(p->vendor_revision) < 1)
+ return;
+
+ chip->read_retries = micron->read_retry_options;
+ chip->setup_read_retry = nand_setup_read_retry_micron;
+}
+
+/*
+ * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
+ */
+static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
+ int *busw)
+{
+ struct nand_onfi_params *p = &chip->onfi_params;
+ int i, j;
+ int val;
+
+ /* Try ONFI for unknown chip or LP */
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
+ if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
+ chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
+ return 0;
+
+ chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
+ for (i = 0; i < 3; i++) {
+ for (j = 0; j < sizeof(*p); j++)
+ ((uint8_t *)p)[j] = chip->read_byte(mtd);
+ if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
+ le16_to_cpu(p->crc)) {
+ break;
+ }
+ }
+
+ if (i == 3) {
+ pr_err("Could not find valid ONFI parameter page; aborting\n");
+ return 0;
+ }
+
+ /* Check version */
+ val = le16_to_cpu(p->revision);
+ if (val & (1 << 5))
+ chip->onfi_version = 23;
+ else if (val & (1 << 4))
+ chip->onfi_version = 22;
+ else if (val & (1 << 3))
+ chip->onfi_version = 21;
+ else if (val & (1 << 2))
+ chip->onfi_version = 20;
+ else if (val & (1 << 1))
+ chip->onfi_version = 10;
+
+ if (!chip->onfi_version) {
+ pr_info("unsupported ONFI version: %d\n", val);
+ return 0;
+ }
+
+ sanitize_string(p->manufacturer, sizeof(p->manufacturer));
+ sanitize_string(p->model, sizeof(p->model));
+ if (!mtd->name)
+ mtd->name = p->model;
+
+ mtd->writesize = le32_to_cpu(p->byte_per_page);
+
+ /*
+ * pages_per_block and blocks_per_lun may not be a power-of-2 size
+ * (don't ask me who thought of this...). MTD assumes that these
+ * dimensions will be power-of-2, so just truncate the remaining area.
+ */
+ mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
+ mtd->erasesize *= mtd->writesize;
+
+ mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+
+ /* See erasesize comment */
+ chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
+ chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
+ chip->bits_per_cell = p->bits_per_cell;
+
+ if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
+ *busw = NAND_BUSWIDTH_16;
+ else
+ *busw = 0;
+
+ if (p->ecc_bits != 0xff) {
+ chip->ecc_strength_ds = p->ecc_bits;
+ chip->ecc_step_ds = 512;
+ } else if (chip->onfi_version >= 21 &&
+ (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
+
+ /*
+ * The nand_flash_detect_ext_param_page() uses the
+ * Change Read Column command which maybe not supported
+ * by the chip->cmdfunc. So try to update the chip->cmdfunc
+ * now. We do not replace user supplied command function.
+ */
+ if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
+ chip->cmdfunc = nand_command_lp;
+
+ /* The Extended Parameter Page is supported since ONFI 2.1. */
+ if (nand_flash_detect_ext_param_page(mtd, chip, p))
+ pr_warn("Failed to detect ONFI extended param page\n");
+ } else {
+ pr_warn("Could not retrieve ONFI ECC requirements\n");
+ }
+
+ if (p->jedec_id == NAND_MFR_MICRON)
+ nand_onfi_detect_micron(chip, p);
+
+ return 1;
+}
+
+/*
+ * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
+ */
+static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
+ int *busw)
+{
+ struct nand_jedec_params *p = &chip->jedec_params;
+ struct jedec_ecc_info *ecc;
+ int val;
+ int i, j;
+
+ /* Try JEDEC for unknown chip or LP */
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
+ if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
+ chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
+ chip->read_byte(mtd) != 'C')
+ return 0;
+
+ chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
+ for (i = 0; i < 3; i++) {
+ for (j = 0; j < sizeof(*p); j++)
+ ((uint8_t *)p)[j] = chip->read_byte(mtd);
+
+ if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
+ le16_to_cpu(p->crc))
+ break;
+ }
+
+ if (i == 3) {
+ pr_err("Could not find valid JEDEC parameter page; aborting\n");
+ return 0;
+ }
+
+ /* Check version */
+ val = le16_to_cpu(p->revision);
+ if (val & (1 << 2))
+ chip->jedec_version = 10;
+ else if (val & (1 << 1))
+ chip->jedec_version = 1; /* vendor specific version */
+
+ if (!chip->jedec_version) {
+ pr_info("unsupported JEDEC version: %d\n", val);
+ return 0;
+ }
+
+ sanitize_string(p->manufacturer, sizeof(p->manufacturer));
+ sanitize_string(p->model, sizeof(p->model));
+ if (!mtd->name)
+ mtd->name = p->model;
+
+ mtd->writesize = le32_to_cpu(p->byte_per_page);
+
+ /* Please reference to the comment for nand_flash_detect_onfi. */
+ mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
+ mtd->erasesize *= mtd->writesize;
+
+ mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+
+ /* Please reference to the comment for nand_flash_detect_onfi. */
+ chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
+ chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
+ chip->bits_per_cell = p->bits_per_cell;
+
+ if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
+ *busw = NAND_BUSWIDTH_16;
+ else
+ *busw = 0;
+
+ /* ECC info */
+ ecc = &p->ecc_info[0];
+
+ if (ecc->codeword_size >= 9) {
+ chip->ecc_strength_ds = ecc->ecc_bits;
+ chip->ecc_step_ds = 1 << ecc->codeword_size;
+ } else {
+ pr_warn("Invalid codeword size\n");
+ }
+
+ return 1;
+}
+
+/*
+ * nand_id_has_period - Check if an ID string has a given wraparound period
+ * @id_data: the ID string
+ * @arrlen: the length of the @id_data array
+ * @period: the period of repitition
+ *
+ * Check if an ID string is repeated within a given sequence of bytes at
+ * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
+ * period of 3). This is a helper function for nand_id_len(). Returns non-zero
+ * if the repetition has a period of @period; otherwise, returns zero.
+ */
+static int nand_id_has_period(u8 *id_data, int arrlen, int period)
+{
+ int i, j;
+ for (i = 0; i < period; i++)
+ for (j = i + period; j < arrlen; j += period)
+ if (id_data[i] != id_data[j])
+ return 0;
+ return 1;
+}
+
+/*
+ * nand_id_len - Get the length of an ID string returned by CMD_READID
+ * @id_data: the ID string
+ * @arrlen: the length of the @id_data array
+
+ * Returns the length of the ID string, according to known wraparound/trailing
+ * zero patterns. If no pattern exists, returns the length of the array.
+ */
+static int nand_id_len(u8 *id_data, int arrlen)
+{
+ int last_nonzero, period;
+
+ /* Find last non-zero byte */
+ for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
+ if (id_data[last_nonzero])
+ break;
+
+ /* All zeros */
+ if (last_nonzero < 0)
+ return 0;
+
+ /* Calculate wraparound period */
+ for (period = 1; period < arrlen; period++)
+ if (nand_id_has_period(id_data, arrlen, period))
+ break;
+
+ /* There's a repeated pattern */
+ if (period < arrlen)
+ return period;
+
+ /* There are trailing zeros */
+ if (last_nonzero < arrlen - 1)
+ return last_nonzero + 1;
+
+ /* No pattern detected */
+ return arrlen;
+}
+
+/* Extract the bits of per cell from the 3rd byte of the extended ID */
+static int nand_get_bits_per_cell(u8 cellinfo)
+{
+ int bits;
+
+ bits = cellinfo & NAND_CI_CELLTYPE_MSK;
+ bits >>= NAND_CI_CELLTYPE_SHIFT;
+ return bits + 1;
+}
+
+/*
+ * Many new NAND share similar device ID codes, which represent the size of the
+ * chip. The rest of the parameters must be decoded according to generic or
+ * manufacturer-specific "extended ID" decoding patterns.
+ */
+static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
+ u8 id_data[8], int *busw)
+{
+ int extid, id_len;
+ /* The 3rd id byte holds MLC / multichip data */
+ chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
+ /* The 4th id byte is the important one */
+ extid = id_data[3];
+
+ id_len = nand_id_len(id_data, 8);
+
+ /*
+ * Field definitions are in the following datasheets:
+ * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
+ * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
+ * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
+ *
+ * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
+ * ID to decide what to do.
+ */
+ if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
+ !nand_is_slc(chip) && id_data[5] != 0x00) {
+ /* Calc pagesize */
+ mtd->writesize = 2048 << (extid & 0x03);
+ extid >>= 2;
+ /* Calc oobsize */
+ switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
+ case 1:
+ mtd->oobsize = 128;
+ break;
+ case 2:
+ mtd->oobsize = 218;
+ break;
+ case 3:
+ mtd->oobsize = 400;
+ break;
+ case 4:
+ mtd->oobsize = 436;
+ break;
+ case 5:
+ mtd->oobsize = 512;
+ break;
+ case 6:
+ mtd->oobsize = 640;
+ break;
+ case 7:
+ default: /* Other cases are "reserved" (unknown) */
+ mtd->oobsize = 1024;
+ break;
+ }
+ extid >>= 2;
+ /* Calc blocksize */
+ mtd->erasesize = (128 * 1024) <<
+ (((extid >> 1) & 0x04) | (extid & 0x03));
+ *busw = 0;
+ } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
+ !nand_is_slc(chip)) {
+ unsigned int tmp;
+
+ /* Calc pagesize */
+ mtd->writesize = 2048 << (extid & 0x03);
+ extid >>= 2;
+ /* Calc oobsize */
+ switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
+ case 0:
+ mtd->oobsize = 128;
+ break;
+ case 1:
+ mtd->oobsize = 224;
+ break;
+ case 2:
+ mtd->oobsize = 448;
+ break;
+ case 3:
+ mtd->oobsize = 64;
+ break;
+ case 4:
+ mtd->oobsize = 32;
+ break;
+ case 5:
+ mtd->oobsize = 16;
+ break;
+ default:
+ mtd->oobsize = 640;
+ break;
+ }
+ extid >>= 2;
+ /* Calc blocksize */
+ tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
+ if (tmp < 0x03)
+ mtd->erasesize = (128 * 1024) << tmp;
+ else if (tmp == 0x03)
+ mtd->erasesize = 768 * 1024;
+ else
+ mtd->erasesize = (64 * 1024) << tmp;
+ *busw = 0;
+ } else {
+ /* Calc pagesize */
+ mtd->writesize = 1024 << (extid & 0x03);
+ extid >>= 2;
+ /* Calc oobsize */
+ mtd->oobsize = (8 << (extid & 0x01)) *
+ (mtd->writesize >> 9);
+ extid >>= 2;
+ /* Calc blocksize. Blocksize is multiples of 64KiB */
+ mtd->erasesize = (64 * 1024) << (extid & 0x03);
+ extid >>= 2;
+ /* Get buswidth information */
+ *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+
+ /*
+ * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
+ * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
+ * follows:
+ * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
+ * 110b -> 24nm
+ * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
+ */
+ if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
+ nand_is_slc(chip) &&
+ (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
+ !(id_data[4] & 0x80) /* !BENAND */) {
+ mtd->oobsize = 32 * mtd->writesize >> 9;
+ }
+
+ }
+}
+
+/*
+ * Old devices have chip data hardcoded in the device ID table. nand_decode_id
+ * decodes a matching ID table entry and assigns the MTD size parameters for
+ * the chip.
+ */
+static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
+ struct nand_flash_dev *type, u8 id_data[8],
+ int *busw)
+{
+ int maf_id = id_data[0];
+
+ mtd->erasesize = type->erasesize;
+ mtd->writesize = type->pagesize;
+ mtd->oobsize = mtd->writesize / 32;
+ *busw = type->options & NAND_BUSWIDTH_16;
+
+ /* All legacy ID NAND are small-page, SLC */
+ chip->bits_per_cell = 1;
+
+ /*
+ * Check for Spansion/AMD ID + repeating 5th, 6th byte since
+ * some Spansion chips have erasesize that conflicts with size
+ * listed in nand_ids table.
+ * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
+ */
+ if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
+ && id_data[6] == 0x00 && id_data[7] == 0x00
+ && mtd->writesize == 512) {
+ mtd->erasesize = 128 * 1024;
+ mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
+ }
+}
+
+/*
+ * Set the bad block marker/indicator (BBM/BBI) patterns according to some
+ * heuristic patterns using various detected parameters (e.g., manufacturer,
+ * page size, cell-type information).
+ */
+static void nand_decode_bbm_options(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 id_data[8])
+{
+ int maf_id = id_data[0];
+
+ /* Set the bad block position */
+ if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
+ chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
+ else
+ chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
+
+ /*
+ * Bad block marker is stored in the last page of each block on Samsung
+ * and Hynix MLC devices; stored in first two pages of each block on
+ * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
+ * AMD/Spansion, and Macronix. All others scan only the first page.
+ */
+ if (!nand_is_slc(chip) &&
+ (maf_id == NAND_MFR_SAMSUNG ||
+ maf_id == NAND_MFR_HYNIX))
+ chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
+ else if ((nand_is_slc(chip) &&
+ (maf_id == NAND_MFR_SAMSUNG ||
+ maf_id == NAND_MFR_HYNIX ||
+ maf_id == NAND_MFR_TOSHIBA ||
+ maf_id == NAND_MFR_AMD ||
+ maf_id == NAND_MFR_MACRONIX)) ||
+ (mtd->writesize == 2048 &&
+ maf_id == NAND_MFR_MICRON))
+ chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+}
+
+static inline bool is_full_id_nand(struct nand_flash_dev *type)
+{
+ return type->id_len;
+}
+
+static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
+ struct nand_flash_dev *type, u8 *id_data, int *busw)
+{
+ if (!strncmp(type->id, id_data, type->id_len)) {
+ mtd->writesize = type->pagesize;
+ mtd->erasesize = type->erasesize;
+ mtd->oobsize = type->oobsize;
+
+ chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
+ chip->chipsize = (uint64_t)type->chipsize << 20;
+ chip->options |= type->options;
+ chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
+ chip->ecc_step_ds = NAND_ECC_STEP(type);
+ chip->onfi_timing_mode_default =
+ type->onfi_timing_mode_default;
+
+ *busw = type->options & NAND_BUSWIDTH_16;
+
+ if (!mtd->name)
+ mtd->name = type->name;
+
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Get the flash and manufacturer id and lookup if the type is supported.
+ */
+static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ int *maf_id, int *dev_id,
+ struct nand_flash_dev *type)
+{
+ int busw;
+ int i, maf_idx;
+ u8 id_data[8];
+
+ /* Select the device */
+ chip->select_chip(mtd, 0);
+
+ /*
+ * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
+ * after power-up.
+ */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Send the command for reading device ID */
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ *maf_id = chip->read_byte(mtd);
+ *dev_id = chip->read_byte(mtd);
+
+ /*
+ * Try again to make sure, as some systems the bus-hold or other
+ * interface concerns can cause random data which looks like a
+ * possibly credible NAND flash to appear. If the two results do
+ * not match, ignore the device completely.
+ */
+
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read entire ID string */
+ for (i = 0; i < 8; i++)
+ id_data[i] = chip->read_byte(mtd);
+
+ if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
+ pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
+ *maf_id, *dev_id, id_data[0], id_data[1]);
+ return ERR_PTR(-ENODEV);
+ }
+
+ if (!type)
+ type = nand_flash_ids;
+
+ for (; type->name != NULL; type++) {
+ if (is_full_id_nand(type)) {
+ if (find_full_id_nand(mtd, chip, type, id_data, &busw))
+ goto ident_done;
+ } else if (*dev_id == type->dev_id) {
+ break;
+ }
+ }
+
+ chip->onfi_version = 0;
+ if (!type->name || !type->pagesize) {
+ /* Check if the chip is ONFI compliant */
+ if (nand_flash_detect_onfi(mtd, chip, &busw))
+ goto ident_done;
+
+ /* Check if the chip is JEDEC compliant */
+ if (nand_flash_detect_jedec(mtd, chip, &busw))
+ goto ident_done;
+ }
+
+ if (!type->name)
+ return ERR_PTR(-ENODEV);
+
+ if (!mtd->name)
+ mtd->name = type->name;
+
+ chip->chipsize = (uint64_t)type->chipsize << 20;
+
+ if (!type->pagesize && chip->init_size) {
+ /* Set the pagesize, oobsize, erasesize by the driver */
+ busw = chip->init_size(mtd, chip, id_data);
+ } else if (!type->pagesize) {
+ /* Decode parameters from extended ID */
+ nand_decode_ext_id(mtd, chip, id_data, &busw);
+ } else {
+ nand_decode_id(mtd, chip, type, id_data, &busw);
+ }
+ /* Get chip options */
+ chip->options |= type->options;
+
+ /*
+ * Check if chip is not a Samsung device. Do not clear the
+ * options for chips which do not have an extended id.
+ */
+ if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
+ chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+ident_done:
+
+ /* Try to identify manufacturer */
+ for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
+ if (nand_manuf_ids[maf_idx].id == *maf_id)
+ break;
+ }
+
+ if (chip->options & NAND_BUSWIDTH_AUTO) {
+ WARN_ON(chip->options & NAND_BUSWIDTH_16);
+ chip->options |= busw;
+ nand_set_defaults(chip, busw);
+ } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
+ /*
+ * Check, if buswidth is correct. Hardware drivers should set
+ * chip correct!
+ */
+ pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
+ *maf_id, *dev_id);
+ pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
+ pr_warn("bus width %d instead %d bit\n",
+ (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
+ busw ? 16 : 8);
+ return ERR_PTR(-EINVAL);
+ }
+
+ nand_decode_bbm_options(mtd, chip, id_data);
+
+ /* Calculate the address shift from the page size */
+ chip->page_shift = ffs(mtd->writesize) - 1;
+ /* Convert chipsize to number of pages per chip -1 */
+ chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
+
+ chip->bbt_erase_shift = chip->phys_erase_shift =
+ ffs(mtd->erasesize) - 1;
+ if (chip->chipsize & 0xffffffff)
+ chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
+ else {
+ chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
+ chip->chip_shift += 32 - 1;
+ }
+
+ chip->badblockbits = 8;
+ chip->erase = single_erase;
+
+ /* Do not replace user supplied command function! */
+ if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
+ chip->cmdfunc = nand_command_lp;
+
+ pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
+ *maf_id, *dev_id);
+
+ if (chip->onfi_version)
+ pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+ chip->onfi_params.model);
+ else if (chip->jedec_version)
+ pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+ chip->jedec_params.model);
+ else
+ pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+ type->name);
+
+ pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
+ (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
+ mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
+ return type;
+}
+
+/**
+ * nand_scan_ident - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: number of chips to scan for
+ * @table: alternative NAND ID table
+ *
+ * This is the first phase of the normal nand_scan() function. It reads the
+ * flash ID and sets up MTD fields accordingly.
+ *
+ * The mtd->owner field must be set to the module of the caller.
+ */
+int nand_scan_ident(struct mtd_info *mtd, int maxchips,
+ struct nand_flash_dev *table)
+{
+ int i, nand_maf_id, nand_dev_id;
+ struct nand_chip *chip = mtd->priv;
+ struct nand_flash_dev *type;
+
+ /* Set the default functions */
+ nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
+
+ /* Read the flash type */
+ type = nand_get_flash_type(mtd, chip, &nand_maf_id,
+ &nand_dev_id, table);
+
+ if (IS_ERR(type)) {
+ if (!(chip->options & NAND_SCAN_SILENT_NODEV))
+ pr_warn("No NAND device found\n");
+ chip->select_chip(mtd, -1);
+ return PTR_ERR(type);
+ }
+
+ chip->select_chip(mtd, -1);
+
+ /* Check for a chip array */
+ for (i = 1; i < maxchips; i++) {
+ chip->select_chip(mtd, i);
+ /* See comment in nand_get_flash_type for reset */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+ /* Send the command for reading device ID */
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+ /* Read manufacturer and device IDs */
+ if (nand_maf_id != chip->read_byte(mtd) ||
+ nand_dev_id != chip->read_byte(mtd)) {
+ chip->select_chip(mtd, -1);
+ break;
+ }
+ chip->select_chip(mtd, -1);
+ }
+ if (i > 1)
+ pr_info("%d chips detected\n", i);
+
+ /* Store the number of chips and calc total size for mtd */
+ chip->numchips = i;
+ mtd->size = i * chip->chipsize;
+
+ return 0;
+}
+EXPORT_SYMBOL(nand_scan_ident);
+
+/*
+ * Check if the chip configuration meet the datasheet requirements.
+
+ * If our configuration corrects A bits per B bytes and the minimum
+ * required correction level is X bits per Y bytes, then we must ensure
+ * both of the following are true:
+ *
+ * (1) A / B >= X / Y
+ * (2) A >= X
+ *
+ * Requirement (1) ensures we can correct for the required bitflip density.
+ * Requirement (2) ensures we can correct even when all bitflips are clumped
+ * in the same sector.
+ */
+static bool nand_ecc_strength_good(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int corr, ds_corr;
+
+ if (ecc->size == 0 || chip->ecc_step_ds == 0)
+ /* Not enough information */
+ return true;
+
+ /*
+ * We get the number of corrected bits per page to compare
+ * the correction density.
+ */
+ corr = (mtd->writesize * ecc->strength) / ecc->size;
+ ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
+
+ return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
+}
+
+/**
+ * nand_scan_tail - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ *
+ * This is the second phase of the normal nand_scan() function. It fills out
+ * all the uninitialized function pointers with the defaults and scans for a
+ * bad block table if appropriate.
+ */
+int nand_scan_tail(struct mtd_info *mtd)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ struct nand_buffers *nbuf;
+
+ /* New bad blocks should be marked in OOB, flash-based BBT, or both */
+ BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
+ !(chip->bbt_options & NAND_BBT_USE_FLASH));
+
+ if (!(chip->options & NAND_OWN_BUFFERS)) {
+ nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
+ + mtd->oobsize * 3, GFP_KERNEL);
+ if (!nbuf)
+ return -ENOMEM;
+ nbuf->ecccalc = (uint8_t *)(nbuf + 1);
+ nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
+ nbuf->databuf = nbuf->ecccode + mtd->oobsize;
+
+ chip->buffers = nbuf;
+ } else {
+ if (!chip->buffers)
+ return -ENOMEM;
+ }
+
+ /* Set the internal oob buffer location, just after the page data */
+ chip->oob_poi = chip->buffers->databuf + mtd->writesize;
+
+ /*
+ * If no default placement scheme is given, select an appropriate one.
+ */
+ if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
+ switch (mtd->oobsize) {
+ case 8:
+ ecc->layout = &nand_oob_8;
+ break;
+ case 16:
+ ecc->layout = &nand_oob_16;
+ break;
+ case 64:
+ ecc->layout = &nand_oob_64;
+ break;
+ case 128:
+ ecc->layout = &nand_oob_128;
+ break;
+ default:
+ pr_warn("No oob scheme defined for oobsize %d\n",
+ mtd->oobsize);
+ BUG();
+ }
+ }
+
+ if (!chip->write_page)
+ chip->write_page = nand_write_page;
+
+ /*
+ * Check ECC mode, default to software if 3byte/512byte hardware ECC is
+ * selected and we have 256 byte pagesize fallback to software ECC
+ */
+
+ switch (ecc->mode) {
+ case NAND_ECC_HW_OOB_FIRST:
+ /* Similar to NAND_ECC_HW, but a separate read_page handle */
+ if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
+ pr_warn("No ECC functions supplied; hardware ECC not possible\n");
+ BUG();
+ }
+ if (!ecc->read_page)
+ ecc->read_page = nand_read_page_hwecc_oob_first;
+
+ case NAND_ECC_HW:
+ /* Use standard hwecc read page function? */
+ if (!ecc->read_page)
+ ecc->read_page = nand_read_page_hwecc;
+ if (!ecc->write_page)
+ ecc->write_page = nand_write_page_hwecc;
+ if (!ecc->read_page_raw)
+ ecc->read_page_raw = nand_read_page_raw;
+ if (!ecc->write_page_raw)
+ ecc->write_page_raw = nand_write_page_raw;
+ if (!ecc->read_oob)
+ ecc->read_oob = nand_read_oob_std;
+ if (!ecc->write_oob)
+ ecc->write_oob = nand_write_oob_std;
+ if (!ecc->read_subpage)
+ ecc->read_subpage = nand_read_subpage;
+ if (!ecc->write_subpage)
+ ecc->write_subpage = nand_write_subpage_hwecc;
+
+ case NAND_ECC_HW_SYNDROME:
+ if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
+ (!ecc->read_page ||
+ ecc->read_page == nand_read_page_hwecc ||
+ !ecc->write_page ||
+ ecc->write_page == nand_write_page_hwecc)) {
+ pr_warn("No ECC functions supplied; hardware ECC not possible\n");
+ BUG();
+ }
+ /* Use standard syndrome read/write page function? */
+ if (!ecc->read_page)
+ ecc->read_page = nand_read_page_syndrome;
+ if (!ecc->write_page)
+ ecc->write_page = nand_write_page_syndrome;
+ if (!ecc->read_page_raw)
+ ecc->read_page_raw = nand_read_page_raw_syndrome;
+ if (!ecc->write_page_raw)
+ ecc->write_page_raw = nand_write_page_raw_syndrome;
+ if (!ecc->read_oob)
+ ecc->read_oob = nand_read_oob_syndrome;
+ if (!ecc->write_oob)
+ ecc->write_oob = nand_write_oob_syndrome;
+
+ if (mtd->writesize >= ecc->size) {
+ if (!ecc->strength) {
+ pr_warn("Driver must set ecc.strength when using hardware ECC\n");
+ BUG();
+ }
+ break;
+ }
+ pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+ ecc->size, mtd->writesize);
+ ecc->mode = NAND_ECC_SOFT;
+
+ case NAND_ECC_SOFT:
+ ecc->calculate = nand_calculate_ecc;
+ ecc->correct = nand_correct_data;
+ ecc->read_page = nand_read_page_swecc;
+ ecc->read_subpage = nand_read_subpage;
+ ecc->write_page = nand_write_page_swecc;
+ ecc->read_page_raw = nand_read_page_raw;
+ ecc->write_page_raw = nand_write_page_raw;
+ ecc->read_oob = nand_read_oob_std;
+ ecc->write_oob = nand_write_oob_std;
+ if (!ecc->size)
+ ecc->size = 256;
+ ecc->bytes = 3;
+ ecc->strength = 1;
+ break;
+
+ case NAND_ECC_SOFT_BCH:
+ if (!mtd_nand_has_bch()) {
+ pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
+ BUG();
+ }
+ ecc->calculate = nand_bch_calculate_ecc;
+ ecc->correct = nand_bch_correct_data;
+ ecc->read_page = nand_read_page_swecc;
+ ecc->read_subpage = nand_read_subpage;
+ ecc->write_page = nand_write_page_swecc;
+ ecc->read_page_raw = nand_read_page_raw;
+ ecc->write_page_raw = nand_write_page_raw;
+ ecc->read_oob = nand_read_oob_std;
+ ecc->write_oob = nand_write_oob_std;
+ /*
+ * Board driver should supply ecc.size and ecc.strength values
+ * to select how many bits are correctable. Otherwise, default
+ * to 4 bits for large page devices.
+ */
+ if (!ecc->size && (mtd->oobsize >= 64)) {
+ ecc->size = 512;
+ ecc->strength = 4;
+ }
+
+ /* See nand_bch_init() for details. */
+ ecc->bytes = DIV_ROUND_UP(
+ ecc->strength * fls(8 * ecc->size), 8);
+ ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
+ &ecc->layout);
+ if (!ecc->priv) {
+ pr_warn("BCH ECC initialization failed!\n");
+ BUG();
+ }
+ break;
+
+ case NAND_ECC_NONE:
+ pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
+ ecc->read_page = nand_read_page_raw;
+ ecc->write_page = nand_write_page_raw;
+ ecc->read_oob = nand_read_oob_std;
+ ecc->read_page_raw = nand_read_page_raw;
+ ecc->write_page_raw = nand_write_page_raw;
+ ecc->write_oob = nand_write_oob_std;
+ ecc->size = mtd->writesize;
+ ecc->bytes = 0;
+ ecc->strength = 0;
+ break;
+
+ default:
+ pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
+ BUG();
+ }
+
+ /* For many systems, the standard OOB write also works for raw */
+ if (!ecc->read_oob_raw)
+ ecc->read_oob_raw = ecc->read_oob;
+ if (!ecc->write_oob_raw)
+ ecc->write_oob_raw = ecc->write_oob;
+
+ /*
+ * The number of bytes available for a client to place data into
+ * the out of band area.
+ */
+ ecc->layout->oobavail = 0;
+ for (i = 0; ecc->layout->oobfree[i].length
+ && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
+ ecc->layout->oobavail += ecc->layout->oobfree[i].length;
+ mtd->oobavail = ecc->layout->oobavail;
+
+ /* ECC sanity check: warn if it's too weak */
+ if (!nand_ecc_strength_good(mtd))
+ pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
+ mtd->name);
+
+ /*
+ * Set the number of read / write steps for one page depending on ECC
+ * mode.
+ */
+ ecc->steps = mtd->writesize / ecc->size;
+ if (ecc->steps * ecc->size != mtd->writesize) {
+ pr_warn("Invalid ECC parameters\n");
+ BUG();
+ }
+ ecc->total = ecc->steps * ecc->bytes;
+
+ /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
+ if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
+ switch (ecc->steps) {
+ case 2:
+ mtd->subpage_sft = 1;
+ break;
+ case 4:
+ case 8:
+ case 16:
+ mtd->subpage_sft = 2;
+ break;
+ }
+ }
+ chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
+
+ /* Initialize state */
+ chip->state = FL_READY;
+
+ /* Invalidate the pagebuffer reference */
+ chip->pagebuf = -1;
+
+ /* Large page NAND with SOFT_ECC should support subpage reads */
+ switch (ecc->mode) {
+ case NAND_ECC_SOFT:
+ case NAND_ECC_SOFT_BCH:
+ if (chip->page_shift > 9)
+ chip->options |= NAND_SUBPAGE_READ;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Fill in remaining MTD driver data */
+ mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
+ mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
+ MTD_CAP_NANDFLASH;
+ mtd->_erase = nand_erase;
+ mtd->_point = NULL;
+ mtd->_unpoint = NULL;
+ mtd->_read = nand_read;
+ mtd->_write = nand_write;
+ mtd->_panic_write = panic_nand_write;
+ mtd->_read_oob = nand_read_oob;
+ mtd->_write_oob = nand_write_oob;
+ mtd->_sync = nand_sync;
+ mtd->_lock = NULL;
+ mtd->_unlock = NULL;
+ mtd->_suspend = nand_suspend;
+ mtd->_resume = nand_resume;
+ mtd->_reboot = nand_shutdown;
+ mtd->_block_isreserved = nand_block_isreserved;
+ mtd->_block_isbad = nand_block_isbad;
+ mtd->_block_markbad = nand_block_markbad;
+ mtd->writebufsize = mtd->writesize;
+
+ /* propagate ecc info to mtd_info */
+ mtd->ecclayout = ecc->layout;
+ mtd->ecc_strength = ecc->strength;
+ mtd->ecc_step_size = ecc->size;
+ /*
+ * Initialize bitflip_threshold to its default prior scan_bbt() call.
+ * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
+ * properly set.
+ */
+ if (!mtd->bitflip_threshold)
+ mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
+
+ /* Check, if we should skip the bad block table scan */
+ if (chip->options & NAND_SKIP_BBTSCAN)
+ return 0;
+
+ /* Build bad block table */
+ return chip->scan_bbt(mtd);
+}
+EXPORT_SYMBOL(nand_scan_tail);
+
+/*
+ * is_module_text_address() isn't exported, and it's mostly a pointless
+ * test if this is a module _anyway_ -- they'd have to try _really_ hard
+ * to call us from in-kernel code if the core NAND support is modular.
+ */
+#ifdef MODULE
+#define caller_is_module() (1)
+#else
+#define caller_is_module() \
+ is_module_text_address((unsigned long)__builtin_return_address(0))
+#endif
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: number of chips to scan for
+ *
+ * This fills out all the uninitialized function pointers with the defaults.
+ * The flash ID is read and the mtd/chip structures are filled with the
+ * appropriate values. The mtd->owner field must be set to the module of the
+ * caller.
+ */
+int nand_scan(struct mtd_info *mtd, int maxchips)
+{
+ int ret;
+
+ /* Many callers got this wrong, so check for it for a while... */
+ if (!mtd->owner && caller_is_module()) {
+ pr_crit("%s called with NULL mtd->owner!\n", __func__);
+ BUG();
+ }
+
+ ret = nand_scan_ident(mtd, maxchips, NULL);
+ if (!ret)
+ ret = nand_scan_tail(mtd);
+ return ret;
+}
+EXPORT_SYMBOL(nand_scan);
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device
+ * @mtd: MTD device structure
+ */
+void nand_release(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
+ nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
+
+ mtd_device_unregister(mtd);
+
+ /* Free bad block table memory */
+ kfree(chip->bbt);
+ if (!(chip->options & NAND_OWN_BUFFERS))
+ kfree(chip->buffers);
+
+ /* Free bad block descriptor memory */
+ if (chip->badblock_pattern && chip->badblock_pattern->options
+ & NAND_BBT_DYNAMICSTRUCT)
+ kfree(chip->badblock_pattern);
+}
+EXPORT_SYMBOL_GPL(nand_release);
+
+static int __init nand_base_init(void)
+{
+ led_trigger_register_simple("nand-disk", &nand_led_trigger);
+ return 0;
+}
+
+static void __exit nand_base_exit(void)
+{
+ led_trigger_unregister_simple(nand_led_trigger);
+}
+
+module_init(nand_base_init);
+module_exit(nand_base_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
+MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION("Generic NAND flash driver code");