summaryrefslogtreecommitdiff
path: root/drivers/usb/host/xhci-mem.c
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /drivers/usb/host/xhci-mem.c
Initial import
Diffstat (limited to 'drivers/usb/host/xhci-mem.c')
-rw-r--r--drivers/usb/host/xhci-mem.c2548
1 files changed, 2548 insertions, 0 deletions
diff --git a/drivers/usb/host/xhci-mem.c b/drivers/usb/host/xhci-mem.c
new file mode 100644
index 000000000..3e442f77a
--- /dev/null
+++ b/drivers/usb/host/xhci-mem.c
@@ -0,0 +1,2548 @@
+/*
+ * xHCI host controller driver
+ *
+ * Copyright (C) 2008 Intel Corp.
+ *
+ * Author: Sarah Sharp
+ * Some code borrowed from the Linux EHCI driver.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/usb.h>
+#include <linux/pci.h>
+#include <linux/slab.h>
+#include <linux/dmapool.h>
+#include <linux/dma-mapping.h>
+
+#include "xhci.h"
+#include "xhci-trace.h"
+
+/*
+ * Allocates a generic ring segment from the ring pool, sets the dma address,
+ * initializes the segment to zero, and sets the private next pointer to NULL.
+ *
+ * Section 4.11.1.1:
+ * "All components of all Command and Transfer TRBs shall be initialized to '0'"
+ */
+static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
+ unsigned int cycle_state, gfp_t flags)
+{
+ struct xhci_segment *seg;
+ dma_addr_t dma;
+ int i;
+
+ seg = kzalloc(sizeof *seg, flags);
+ if (!seg)
+ return NULL;
+
+ seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
+ if (!seg->trbs) {
+ kfree(seg);
+ return NULL;
+ }
+
+ memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
+ /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
+ if (cycle_state == 0) {
+ for (i = 0; i < TRBS_PER_SEGMENT; i++)
+ seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
+ }
+ seg->dma = dma;
+ seg->next = NULL;
+
+ return seg;
+}
+
+static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
+{
+ if (seg->trbs) {
+ dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
+ seg->trbs = NULL;
+ }
+ kfree(seg);
+}
+
+static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
+ struct xhci_segment *first)
+{
+ struct xhci_segment *seg;
+
+ seg = first->next;
+ while (seg != first) {
+ struct xhci_segment *next = seg->next;
+ xhci_segment_free(xhci, seg);
+ seg = next;
+ }
+ xhci_segment_free(xhci, first);
+}
+
+/*
+ * Make the prev segment point to the next segment.
+ *
+ * Change the last TRB in the prev segment to be a Link TRB which points to the
+ * DMA address of the next segment. The caller needs to set any Link TRB
+ * related flags, such as End TRB, Toggle Cycle, and no snoop.
+ */
+static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
+ struct xhci_segment *next, enum xhci_ring_type type)
+{
+ u32 val;
+
+ if (!prev || !next)
+ return;
+ prev->next = next;
+ if (type != TYPE_EVENT) {
+ prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
+ cpu_to_le64(next->dma);
+
+ /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
+ val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
+ val &= ~TRB_TYPE_BITMASK;
+ val |= TRB_TYPE(TRB_LINK);
+ /* Always set the chain bit with 0.95 hardware */
+ /* Set chain bit for isoc rings on AMD 0.96 host */
+ if (xhci_link_trb_quirk(xhci) ||
+ (type == TYPE_ISOC &&
+ (xhci->quirks & XHCI_AMD_0x96_HOST)))
+ val |= TRB_CHAIN;
+ prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
+ }
+}
+
+/*
+ * Link the ring to the new segments.
+ * Set Toggle Cycle for the new ring if needed.
+ */
+static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
+ struct xhci_segment *first, struct xhci_segment *last,
+ unsigned int num_segs)
+{
+ struct xhci_segment *next;
+
+ if (!ring || !first || !last)
+ return;
+
+ next = ring->enq_seg->next;
+ xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
+ xhci_link_segments(xhci, last, next, ring->type);
+ ring->num_segs += num_segs;
+ ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
+
+ if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
+ ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
+ &= ~cpu_to_le32(LINK_TOGGLE);
+ last->trbs[TRBS_PER_SEGMENT-1].link.control
+ |= cpu_to_le32(LINK_TOGGLE);
+ ring->last_seg = last;
+ }
+}
+
+/*
+ * We need a radix tree for mapping physical addresses of TRBs to which stream
+ * ID they belong to. We need to do this because the host controller won't tell
+ * us which stream ring the TRB came from. We could store the stream ID in an
+ * event data TRB, but that doesn't help us for the cancellation case, since the
+ * endpoint may stop before it reaches that event data TRB.
+ *
+ * The radix tree maps the upper portion of the TRB DMA address to a ring
+ * segment that has the same upper portion of DMA addresses. For example, say I
+ * have segments of size 1KB, that are always 1KB aligned. A segment may
+ * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
+ * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
+ * pass the radix tree a key to get the right stream ID:
+ *
+ * 0x10c90fff >> 10 = 0x43243
+ * 0x10c912c0 >> 10 = 0x43244
+ * 0x10c91400 >> 10 = 0x43245
+ *
+ * Obviously, only those TRBs with DMA addresses that are within the segment
+ * will make the radix tree return the stream ID for that ring.
+ *
+ * Caveats for the radix tree:
+ *
+ * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
+ * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
+ * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
+ * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
+ * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
+ * extended systems (where the DMA address can be bigger than 32-bits),
+ * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
+ */
+static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
+ struct xhci_ring *ring,
+ struct xhci_segment *seg,
+ gfp_t mem_flags)
+{
+ unsigned long key;
+ int ret;
+
+ key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
+ /* Skip any segments that were already added. */
+ if (radix_tree_lookup(trb_address_map, key))
+ return 0;
+
+ ret = radix_tree_maybe_preload(mem_flags);
+ if (ret)
+ return ret;
+ ret = radix_tree_insert(trb_address_map,
+ key, ring);
+ radix_tree_preload_end();
+ return ret;
+}
+
+static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
+ struct xhci_segment *seg)
+{
+ unsigned long key;
+
+ key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
+ if (radix_tree_lookup(trb_address_map, key))
+ radix_tree_delete(trb_address_map, key);
+}
+
+static int xhci_update_stream_segment_mapping(
+ struct radix_tree_root *trb_address_map,
+ struct xhci_ring *ring,
+ struct xhci_segment *first_seg,
+ struct xhci_segment *last_seg,
+ gfp_t mem_flags)
+{
+ struct xhci_segment *seg;
+ struct xhci_segment *failed_seg;
+ int ret;
+
+ if (WARN_ON_ONCE(trb_address_map == NULL))
+ return 0;
+
+ seg = first_seg;
+ do {
+ ret = xhci_insert_segment_mapping(trb_address_map,
+ ring, seg, mem_flags);
+ if (ret)
+ goto remove_streams;
+ if (seg == last_seg)
+ return 0;
+ seg = seg->next;
+ } while (seg != first_seg);
+
+ return 0;
+
+remove_streams:
+ failed_seg = seg;
+ seg = first_seg;
+ do {
+ xhci_remove_segment_mapping(trb_address_map, seg);
+ if (seg == failed_seg)
+ return ret;
+ seg = seg->next;
+ } while (seg != first_seg);
+
+ return ret;
+}
+
+static void xhci_remove_stream_mapping(struct xhci_ring *ring)
+{
+ struct xhci_segment *seg;
+
+ if (WARN_ON_ONCE(ring->trb_address_map == NULL))
+ return;
+
+ seg = ring->first_seg;
+ do {
+ xhci_remove_segment_mapping(ring->trb_address_map, seg);
+ seg = seg->next;
+ } while (seg != ring->first_seg);
+}
+
+static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
+{
+ return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
+ ring->first_seg, ring->last_seg, mem_flags);
+}
+
+/* XXX: Do we need the hcd structure in all these functions? */
+void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
+{
+ if (!ring)
+ return;
+
+ if (ring->first_seg) {
+ if (ring->type == TYPE_STREAM)
+ xhci_remove_stream_mapping(ring);
+ xhci_free_segments_for_ring(xhci, ring->first_seg);
+ }
+
+ kfree(ring);
+}
+
+static void xhci_initialize_ring_info(struct xhci_ring *ring,
+ unsigned int cycle_state)
+{
+ /* The ring is empty, so the enqueue pointer == dequeue pointer */
+ ring->enqueue = ring->first_seg->trbs;
+ ring->enq_seg = ring->first_seg;
+ ring->dequeue = ring->enqueue;
+ ring->deq_seg = ring->first_seg;
+ /* The ring is initialized to 0. The producer must write 1 to the cycle
+ * bit to handover ownership of the TRB, so PCS = 1. The consumer must
+ * compare CCS to the cycle bit to check ownership, so CCS = 1.
+ *
+ * New rings are initialized with cycle state equal to 1; if we are
+ * handling ring expansion, set the cycle state equal to the old ring.
+ */
+ ring->cycle_state = cycle_state;
+ /* Not necessary for new rings, but needed for re-initialized rings */
+ ring->enq_updates = 0;
+ ring->deq_updates = 0;
+
+ /*
+ * Each segment has a link TRB, and leave an extra TRB for SW
+ * accounting purpose
+ */
+ ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
+}
+
+/* Allocate segments and link them for a ring */
+static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
+ struct xhci_segment **first, struct xhci_segment **last,
+ unsigned int num_segs, unsigned int cycle_state,
+ enum xhci_ring_type type, gfp_t flags)
+{
+ struct xhci_segment *prev;
+
+ prev = xhci_segment_alloc(xhci, cycle_state, flags);
+ if (!prev)
+ return -ENOMEM;
+ num_segs--;
+
+ *first = prev;
+ while (num_segs > 0) {
+ struct xhci_segment *next;
+
+ next = xhci_segment_alloc(xhci, cycle_state, flags);
+ if (!next) {
+ prev = *first;
+ while (prev) {
+ next = prev->next;
+ xhci_segment_free(xhci, prev);
+ prev = next;
+ }
+ return -ENOMEM;
+ }
+ xhci_link_segments(xhci, prev, next, type);
+
+ prev = next;
+ num_segs--;
+ }
+ xhci_link_segments(xhci, prev, *first, type);
+ *last = prev;
+
+ return 0;
+}
+
+/**
+ * Create a new ring with zero or more segments.
+ *
+ * Link each segment together into a ring.
+ * Set the end flag and the cycle toggle bit on the last segment.
+ * See section 4.9.1 and figures 15 and 16.
+ */
+static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
+ unsigned int num_segs, unsigned int cycle_state,
+ enum xhci_ring_type type, gfp_t flags)
+{
+ struct xhci_ring *ring;
+ int ret;
+
+ ring = kzalloc(sizeof *(ring), flags);
+ if (!ring)
+ return NULL;
+
+ ring->num_segs = num_segs;
+ INIT_LIST_HEAD(&ring->td_list);
+ ring->type = type;
+ if (num_segs == 0)
+ return ring;
+
+ ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
+ &ring->last_seg, num_segs, cycle_state, type, flags);
+ if (ret)
+ goto fail;
+
+ /* Only event ring does not use link TRB */
+ if (type != TYPE_EVENT) {
+ /* See section 4.9.2.1 and 6.4.4.1 */
+ ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
+ cpu_to_le32(LINK_TOGGLE);
+ }
+ xhci_initialize_ring_info(ring, cycle_state);
+ return ring;
+
+fail:
+ kfree(ring);
+ return NULL;
+}
+
+void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
+ struct xhci_virt_device *virt_dev,
+ unsigned int ep_index)
+{
+ int rings_cached;
+
+ rings_cached = virt_dev->num_rings_cached;
+ if (rings_cached < XHCI_MAX_RINGS_CACHED) {
+ virt_dev->ring_cache[rings_cached] =
+ virt_dev->eps[ep_index].ring;
+ virt_dev->num_rings_cached++;
+ xhci_dbg(xhci, "Cached old ring, "
+ "%d ring%s cached\n",
+ virt_dev->num_rings_cached,
+ (virt_dev->num_rings_cached > 1) ? "s" : "");
+ } else {
+ xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
+ xhci_dbg(xhci, "Ring cache full (%d rings), "
+ "freeing ring\n",
+ virt_dev->num_rings_cached);
+ }
+ virt_dev->eps[ep_index].ring = NULL;
+}
+
+/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
+ * pointers to the beginning of the ring.
+ */
+static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
+ struct xhci_ring *ring, unsigned int cycle_state,
+ enum xhci_ring_type type)
+{
+ struct xhci_segment *seg = ring->first_seg;
+ int i;
+
+ do {
+ memset(seg->trbs, 0,
+ sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
+ if (cycle_state == 0) {
+ for (i = 0; i < TRBS_PER_SEGMENT; i++)
+ seg->trbs[i].link.control |=
+ cpu_to_le32(TRB_CYCLE);
+ }
+ /* All endpoint rings have link TRBs */
+ xhci_link_segments(xhci, seg, seg->next, type);
+ seg = seg->next;
+ } while (seg != ring->first_seg);
+ ring->type = type;
+ xhci_initialize_ring_info(ring, cycle_state);
+ /* td list should be empty since all URBs have been cancelled,
+ * but just in case...
+ */
+ INIT_LIST_HEAD(&ring->td_list);
+}
+
+/*
+ * Expand an existing ring.
+ * Look for a cached ring or allocate a new ring which has same segment numbers
+ * and link the two rings.
+ */
+int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
+ unsigned int num_trbs, gfp_t flags)
+{
+ struct xhci_segment *first;
+ struct xhci_segment *last;
+ unsigned int num_segs;
+ unsigned int num_segs_needed;
+ int ret;
+
+ num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
+ (TRBS_PER_SEGMENT - 1);
+
+ /* Allocate number of segments we needed, or double the ring size */
+ num_segs = ring->num_segs > num_segs_needed ?
+ ring->num_segs : num_segs_needed;
+
+ ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
+ num_segs, ring->cycle_state, ring->type, flags);
+ if (ret)
+ return -ENOMEM;
+
+ if (ring->type == TYPE_STREAM)
+ ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
+ ring, first, last, flags);
+ if (ret) {
+ struct xhci_segment *next;
+ do {
+ next = first->next;
+ xhci_segment_free(xhci, first);
+ if (first == last)
+ break;
+ first = next;
+ } while (true);
+ return ret;
+ }
+
+ xhci_link_rings(xhci, ring, first, last, num_segs);
+ xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
+ "ring expansion succeed, now has %d segments",
+ ring->num_segs);
+
+ return 0;
+}
+
+#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
+
+static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
+ int type, gfp_t flags)
+{
+ struct xhci_container_ctx *ctx;
+
+ if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
+ return NULL;
+
+ ctx = kzalloc(sizeof(*ctx), flags);
+ if (!ctx)
+ return NULL;
+
+ ctx->type = type;
+ ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
+ if (type == XHCI_CTX_TYPE_INPUT)
+ ctx->size += CTX_SIZE(xhci->hcc_params);
+
+ ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
+ if (!ctx->bytes) {
+ kfree(ctx);
+ return NULL;
+ }
+ memset(ctx->bytes, 0, ctx->size);
+ return ctx;
+}
+
+static void xhci_free_container_ctx(struct xhci_hcd *xhci,
+ struct xhci_container_ctx *ctx)
+{
+ if (!ctx)
+ return;
+ dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
+ kfree(ctx);
+}
+
+struct xhci_input_control_ctx *xhci_get_input_control_ctx(
+ struct xhci_container_ctx *ctx)
+{
+ if (ctx->type != XHCI_CTX_TYPE_INPUT)
+ return NULL;
+
+ return (struct xhci_input_control_ctx *)ctx->bytes;
+}
+
+struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
+ struct xhci_container_ctx *ctx)
+{
+ if (ctx->type == XHCI_CTX_TYPE_DEVICE)
+ return (struct xhci_slot_ctx *)ctx->bytes;
+
+ return (struct xhci_slot_ctx *)
+ (ctx->bytes + CTX_SIZE(xhci->hcc_params));
+}
+
+struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
+ struct xhci_container_ctx *ctx,
+ unsigned int ep_index)
+{
+ /* increment ep index by offset of start of ep ctx array */
+ ep_index++;
+ if (ctx->type == XHCI_CTX_TYPE_INPUT)
+ ep_index++;
+
+ return (struct xhci_ep_ctx *)
+ (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
+}
+
+
+/***************** Streams structures manipulation *************************/
+
+static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
+ unsigned int num_stream_ctxs,
+ struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
+{
+ struct device *dev = xhci_to_hcd(xhci)->self.controller;
+ size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
+
+ if (size > MEDIUM_STREAM_ARRAY_SIZE)
+ dma_free_coherent(dev, size,
+ stream_ctx, dma);
+ else if (size <= SMALL_STREAM_ARRAY_SIZE)
+ return dma_pool_free(xhci->small_streams_pool,
+ stream_ctx, dma);
+ else
+ return dma_pool_free(xhci->medium_streams_pool,
+ stream_ctx, dma);
+}
+
+/*
+ * The stream context array for each endpoint with bulk streams enabled can
+ * vary in size, based on:
+ * - how many streams the endpoint supports,
+ * - the maximum primary stream array size the host controller supports,
+ * - and how many streams the device driver asks for.
+ *
+ * The stream context array must be a power of 2, and can be as small as
+ * 64 bytes or as large as 1MB.
+ */
+static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
+ unsigned int num_stream_ctxs, dma_addr_t *dma,
+ gfp_t mem_flags)
+{
+ struct device *dev = xhci_to_hcd(xhci)->self.controller;
+ size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
+
+ if (size > MEDIUM_STREAM_ARRAY_SIZE)
+ return dma_alloc_coherent(dev, size,
+ dma, mem_flags);
+ else if (size <= SMALL_STREAM_ARRAY_SIZE)
+ return dma_pool_alloc(xhci->small_streams_pool,
+ mem_flags, dma);
+ else
+ return dma_pool_alloc(xhci->medium_streams_pool,
+ mem_flags, dma);
+}
+
+struct xhci_ring *xhci_dma_to_transfer_ring(
+ struct xhci_virt_ep *ep,
+ u64 address)
+{
+ if (ep->ep_state & EP_HAS_STREAMS)
+ return radix_tree_lookup(&ep->stream_info->trb_address_map,
+ address >> TRB_SEGMENT_SHIFT);
+ return ep->ring;
+}
+
+struct xhci_ring *xhci_stream_id_to_ring(
+ struct xhci_virt_device *dev,
+ unsigned int ep_index,
+ unsigned int stream_id)
+{
+ struct xhci_virt_ep *ep = &dev->eps[ep_index];
+
+ if (stream_id == 0)
+ return ep->ring;
+ if (!ep->stream_info)
+ return NULL;
+
+ if (stream_id > ep->stream_info->num_streams)
+ return NULL;
+ return ep->stream_info->stream_rings[stream_id];
+}
+
+/*
+ * Change an endpoint's internal structure so it supports stream IDs. The
+ * number of requested streams includes stream 0, which cannot be used by device
+ * drivers.
+ *
+ * The number of stream contexts in the stream context array may be bigger than
+ * the number of streams the driver wants to use. This is because the number of
+ * stream context array entries must be a power of two.
+ */
+struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
+ unsigned int num_stream_ctxs,
+ unsigned int num_streams, gfp_t mem_flags)
+{
+ struct xhci_stream_info *stream_info;
+ u32 cur_stream;
+ struct xhci_ring *cur_ring;
+ u64 addr;
+ int ret;
+
+ xhci_dbg(xhci, "Allocating %u streams and %u "
+ "stream context array entries.\n",
+ num_streams, num_stream_ctxs);
+ if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
+ xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
+ return NULL;
+ }
+ xhci->cmd_ring_reserved_trbs++;
+
+ stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
+ if (!stream_info)
+ goto cleanup_trbs;
+
+ stream_info->num_streams = num_streams;
+ stream_info->num_stream_ctxs = num_stream_ctxs;
+
+ /* Initialize the array of virtual pointers to stream rings. */
+ stream_info->stream_rings = kzalloc(
+ sizeof(struct xhci_ring *)*num_streams,
+ mem_flags);
+ if (!stream_info->stream_rings)
+ goto cleanup_info;
+
+ /* Initialize the array of DMA addresses for stream rings for the HW. */
+ stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
+ num_stream_ctxs, &stream_info->ctx_array_dma,
+ mem_flags);
+ if (!stream_info->stream_ctx_array)
+ goto cleanup_ctx;
+ memset(stream_info->stream_ctx_array, 0,
+ sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
+
+ /* Allocate everything needed to free the stream rings later */
+ stream_info->free_streams_command =
+ xhci_alloc_command(xhci, true, true, mem_flags);
+ if (!stream_info->free_streams_command)
+ goto cleanup_ctx;
+
+ INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
+
+ /* Allocate rings for all the streams that the driver will use,
+ * and add their segment DMA addresses to the radix tree.
+ * Stream 0 is reserved.
+ */
+ for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
+ stream_info->stream_rings[cur_stream] =
+ xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
+ cur_ring = stream_info->stream_rings[cur_stream];
+ if (!cur_ring)
+ goto cleanup_rings;
+ cur_ring->stream_id = cur_stream;
+ cur_ring->trb_address_map = &stream_info->trb_address_map;
+ /* Set deq ptr, cycle bit, and stream context type */
+ addr = cur_ring->first_seg->dma |
+ SCT_FOR_CTX(SCT_PRI_TR) |
+ cur_ring->cycle_state;
+ stream_info->stream_ctx_array[cur_stream].stream_ring =
+ cpu_to_le64(addr);
+ xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
+ cur_stream, (unsigned long long) addr);
+
+ ret = xhci_update_stream_mapping(cur_ring, mem_flags);
+ if (ret) {
+ xhci_ring_free(xhci, cur_ring);
+ stream_info->stream_rings[cur_stream] = NULL;
+ goto cleanup_rings;
+ }
+ }
+ /* Leave the other unused stream ring pointers in the stream context
+ * array initialized to zero. This will cause the xHC to give us an
+ * error if the device asks for a stream ID we don't have setup (if it
+ * was any other way, the host controller would assume the ring is
+ * "empty" and wait forever for data to be queued to that stream ID).
+ */
+
+ return stream_info;
+
+cleanup_rings:
+ for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
+ cur_ring = stream_info->stream_rings[cur_stream];
+ if (cur_ring) {
+ xhci_ring_free(xhci, cur_ring);
+ stream_info->stream_rings[cur_stream] = NULL;
+ }
+ }
+ xhci_free_command(xhci, stream_info->free_streams_command);
+cleanup_ctx:
+ kfree(stream_info->stream_rings);
+cleanup_info:
+ kfree(stream_info);
+cleanup_trbs:
+ xhci->cmd_ring_reserved_trbs--;
+ return NULL;
+}
+/*
+ * Sets the MaxPStreams field and the Linear Stream Array field.
+ * Sets the dequeue pointer to the stream context array.
+ */
+void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
+ struct xhci_ep_ctx *ep_ctx,
+ struct xhci_stream_info *stream_info)
+{
+ u32 max_primary_streams;
+ /* MaxPStreams is the number of stream context array entries, not the
+ * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
+ * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
+ */
+ max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
+ "Setting number of stream ctx array entries to %u",
+ 1 << (max_primary_streams + 1));
+ ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
+ ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
+ | EP_HAS_LSA);
+ ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
+}
+
+/*
+ * Sets the MaxPStreams field and the Linear Stream Array field to 0.
+ * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
+ * not at the beginning of the ring).
+ */
+void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
+ struct xhci_virt_ep *ep)
+{
+ dma_addr_t addr;
+ ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
+ addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
+ ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
+}
+
+/* Frees all stream contexts associated with the endpoint,
+ *
+ * Caller should fix the endpoint context streams fields.
+ */
+void xhci_free_stream_info(struct xhci_hcd *xhci,
+ struct xhci_stream_info *stream_info)
+{
+ int cur_stream;
+ struct xhci_ring *cur_ring;
+
+ if (!stream_info)
+ return;
+
+ for (cur_stream = 1; cur_stream < stream_info->num_streams;
+ cur_stream++) {
+ cur_ring = stream_info->stream_rings[cur_stream];
+ if (cur_ring) {
+ xhci_ring_free(xhci, cur_ring);
+ stream_info->stream_rings[cur_stream] = NULL;
+ }
+ }
+ xhci_free_command(xhci, stream_info->free_streams_command);
+ xhci->cmd_ring_reserved_trbs--;
+ if (stream_info->stream_ctx_array)
+ xhci_free_stream_ctx(xhci,
+ stream_info->num_stream_ctxs,
+ stream_info->stream_ctx_array,
+ stream_info->ctx_array_dma);
+
+ kfree(stream_info->stream_rings);
+ kfree(stream_info);
+}
+
+
+/***************** Device context manipulation *************************/
+
+static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
+ struct xhci_virt_ep *ep)
+{
+ setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
+ (unsigned long)ep);
+ ep->xhci = xhci;
+}
+
+static void xhci_free_tt_info(struct xhci_hcd *xhci,
+ struct xhci_virt_device *virt_dev,
+ int slot_id)
+{
+ struct list_head *tt_list_head;
+ struct xhci_tt_bw_info *tt_info, *next;
+ bool slot_found = false;
+
+ /* If the device never made it past the Set Address stage,
+ * it may not have the real_port set correctly.
+ */
+ if (virt_dev->real_port == 0 ||
+ virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
+ xhci_dbg(xhci, "Bad real port.\n");
+ return;
+ }
+
+ tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
+ list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
+ /* Multi-TT hubs will have more than one entry */
+ if (tt_info->slot_id == slot_id) {
+ slot_found = true;
+ list_del(&tt_info->tt_list);
+ kfree(tt_info);
+ } else if (slot_found) {
+ break;
+ }
+ }
+}
+
+int xhci_alloc_tt_info(struct xhci_hcd *xhci,
+ struct xhci_virt_device *virt_dev,
+ struct usb_device *hdev,
+ struct usb_tt *tt, gfp_t mem_flags)
+{
+ struct xhci_tt_bw_info *tt_info;
+ unsigned int num_ports;
+ int i, j;
+
+ if (!tt->multi)
+ num_ports = 1;
+ else
+ num_ports = hdev->maxchild;
+
+ for (i = 0; i < num_ports; i++, tt_info++) {
+ struct xhci_interval_bw_table *bw_table;
+
+ tt_info = kzalloc(sizeof(*tt_info), mem_flags);
+ if (!tt_info)
+ goto free_tts;
+ INIT_LIST_HEAD(&tt_info->tt_list);
+ list_add(&tt_info->tt_list,
+ &xhci->rh_bw[virt_dev->real_port - 1].tts);
+ tt_info->slot_id = virt_dev->udev->slot_id;
+ if (tt->multi)
+ tt_info->ttport = i+1;
+ bw_table = &tt_info->bw_table;
+ for (j = 0; j < XHCI_MAX_INTERVAL; j++)
+ INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
+ }
+ return 0;
+
+free_tts:
+ xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
+ return -ENOMEM;
+}
+
+
+/* All the xhci_tds in the ring's TD list should be freed at this point.
+ * Should be called with xhci->lock held if there is any chance the TT lists
+ * will be manipulated by the configure endpoint, allocate device, or update
+ * hub functions while this function is removing the TT entries from the list.
+ */
+void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
+{
+ struct xhci_virt_device *dev;
+ int i;
+ int old_active_eps = 0;
+
+ /* Slot ID 0 is reserved */
+ if (slot_id == 0 || !xhci->devs[slot_id])
+ return;
+
+ dev = xhci->devs[slot_id];
+ xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
+ if (!dev)
+ return;
+
+ if (dev->tt_info)
+ old_active_eps = dev->tt_info->active_eps;
+
+ for (i = 0; i < 31; ++i) {
+ if (dev->eps[i].ring)
+ xhci_ring_free(xhci, dev->eps[i].ring);
+ if (dev->eps[i].stream_info)
+ xhci_free_stream_info(xhci,
+ dev->eps[i].stream_info);
+ /* Endpoints on the TT/root port lists should have been removed
+ * when usb_disable_device() was called for the device.
+ * We can't drop them anyway, because the udev might have gone
+ * away by this point, and we can't tell what speed it was.
+ */
+ if (!list_empty(&dev->eps[i].bw_endpoint_list))
+ xhci_warn(xhci, "Slot %u endpoint %u "
+ "not removed from BW list!\n",
+ slot_id, i);
+ }
+ /* If this is a hub, free the TT(s) from the TT list */
+ xhci_free_tt_info(xhci, dev, slot_id);
+ /* If necessary, update the number of active TTs on this root port */
+ xhci_update_tt_active_eps(xhci, dev, old_active_eps);
+
+ if (dev->ring_cache) {
+ for (i = 0; i < dev->num_rings_cached; i++)
+ xhci_ring_free(xhci, dev->ring_cache[i]);
+ kfree(dev->ring_cache);
+ }
+
+ if (dev->in_ctx)
+ xhci_free_container_ctx(xhci, dev->in_ctx);
+ if (dev->out_ctx)
+ xhci_free_container_ctx(xhci, dev->out_ctx);
+
+ kfree(xhci->devs[slot_id]);
+ xhci->devs[slot_id] = NULL;
+}
+
+int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
+ struct usb_device *udev, gfp_t flags)
+{
+ struct xhci_virt_device *dev;
+ int i;
+
+ /* Slot ID 0 is reserved */
+ if (slot_id == 0 || xhci->devs[slot_id]) {
+ xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
+ return 0;
+ }
+
+ xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
+ if (!xhci->devs[slot_id])
+ return 0;
+ dev = xhci->devs[slot_id];
+
+ /* Allocate the (output) device context that will be used in the HC. */
+ dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
+ if (!dev->out_ctx)
+ goto fail;
+
+ xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
+ (unsigned long long)dev->out_ctx->dma);
+
+ /* Allocate the (input) device context for address device command */
+ dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
+ if (!dev->in_ctx)
+ goto fail;
+
+ xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
+ (unsigned long long)dev->in_ctx->dma);
+
+ /* Initialize the cancellation list and watchdog timers for each ep */
+ for (i = 0; i < 31; i++) {
+ xhci_init_endpoint_timer(xhci, &dev->eps[i]);
+ INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
+ INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
+ }
+
+ /* Allocate endpoint 0 ring */
+ dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
+ if (!dev->eps[0].ring)
+ goto fail;
+
+ /* Allocate pointers to the ring cache */
+ dev->ring_cache = kzalloc(
+ sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
+ flags);
+ if (!dev->ring_cache)
+ goto fail;
+ dev->num_rings_cached = 0;
+
+ init_completion(&dev->cmd_completion);
+ dev->udev = udev;
+
+ /* Point to output device context in dcbaa. */
+ xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
+ xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
+ slot_id,
+ &xhci->dcbaa->dev_context_ptrs[slot_id],
+ le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
+
+ return 1;
+fail:
+ xhci_free_virt_device(xhci, slot_id);
+ return 0;
+}
+
+void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
+ struct usb_device *udev)
+{
+ struct xhci_virt_device *virt_dev;
+ struct xhci_ep_ctx *ep0_ctx;
+ struct xhci_ring *ep_ring;
+
+ virt_dev = xhci->devs[udev->slot_id];
+ ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
+ ep_ring = virt_dev->eps[0].ring;
+ /*
+ * FIXME we don't keep track of the dequeue pointer very well after a
+ * Set TR dequeue pointer, so we're setting the dequeue pointer of the
+ * host to our enqueue pointer. This should only be called after a
+ * configured device has reset, so all control transfers should have
+ * been completed or cancelled before the reset.
+ */
+ ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
+ ep_ring->enqueue)
+ | ep_ring->cycle_state);
+}
+
+/*
+ * The xHCI roothub may have ports of differing speeds in any order in the port
+ * status registers. xhci->port_array provides an array of the port speed for
+ * each offset into the port status registers.
+ *
+ * The xHCI hardware wants to know the roothub port number that the USB device
+ * is attached to (or the roothub port its ancestor hub is attached to). All we
+ * know is the index of that port under either the USB 2.0 or the USB 3.0
+ * roothub, but that doesn't give us the real index into the HW port status
+ * registers. Call xhci_find_raw_port_number() to get real index.
+ */
+static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
+ struct usb_device *udev)
+{
+ struct usb_device *top_dev;
+ struct usb_hcd *hcd;
+
+ if (udev->speed == USB_SPEED_SUPER)
+ hcd = xhci->shared_hcd;
+ else
+ hcd = xhci->main_hcd;
+
+ for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
+ top_dev = top_dev->parent)
+ /* Found device below root hub */;
+
+ return xhci_find_raw_port_number(hcd, top_dev->portnum);
+}
+
+/* Setup an xHCI virtual device for a Set Address command */
+int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
+{
+ struct xhci_virt_device *dev;
+ struct xhci_ep_ctx *ep0_ctx;
+ struct xhci_slot_ctx *slot_ctx;
+ u32 port_num;
+ u32 max_packets;
+ struct usb_device *top_dev;
+
+ dev = xhci->devs[udev->slot_id];
+ /* Slot ID 0 is reserved */
+ if (udev->slot_id == 0 || !dev) {
+ xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
+ udev->slot_id);
+ return -EINVAL;
+ }
+ ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
+ slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
+
+ /* 3) Only the control endpoint is valid - one endpoint context */
+ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
+ switch (udev->speed) {
+ case USB_SPEED_SUPER:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
+ max_packets = MAX_PACKET(512);
+ break;
+ case USB_SPEED_HIGH:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
+ max_packets = MAX_PACKET(64);
+ break;
+ /* USB core guesses at a 64-byte max packet first for FS devices */
+ case USB_SPEED_FULL:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
+ max_packets = MAX_PACKET(64);
+ break;
+ case USB_SPEED_LOW:
+ slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
+ max_packets = MAX_PACKET(8);
+ break;
+ case USB_SPEED_WIRELESS:
+ xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
+ return -EINVAL;
+ break;
+ default:
+ /* Speed was set earlier, this shouldn't happen. */
+ return -EINVAL;
+ }
+ /* Find the root hub port this device is under */
+ port_num = xhci_find_real_port_number(xhci, udev);
+ if (!port_num)
+ return -EINVAL;
+ slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
+ /* Set the port number in the virtual_device to the faked port number */
+ for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
+ top_dev = top_dev->parent)
+ /* Found device below root hub */;
+ dev->fake_port = top_dev->portnum;
+ dev->real_port = port_num;
+ xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
+ xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
+
+ /* Find the right bandwidth table that this device will be a part of.
+ * If this is a full speed device attached directly to a root port (or a
+ * decendent of one), it counts as a primary bandwidth domain, not a
+ * secondary bandwidth domain under a TT. An xhci_tt_info structure
+ * will never be created for the HS root hub.
+ */
+ if (!udev->tt || !udev->tt->hub->parent) {
+ dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
+ } else {
+ struct xhci_root_port_bw_info *rh_bw;
+ struct xhci_tt_bw_info *tt_bw;
+
+ rh_bw = &xhci->rh_bw[port_num - 1];
+ /* Find the right TT. */
+ list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
+ if (tt_bw->slot_id != udev->tt->hub->slot_id)
+ continue;
+
+ if (!dev->udev->tt->multi ||
+ (udev->tt->multi &&
+ tt_bw->ttport == dev->udev->ttport)) {
+ dev->bw_table = &tt_bw->bw_table;
+ dev->tt_info = tt_bw;
+ break;
+ }
+ }
+ if (!dev->tt_info)
+ xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
+ }
+
+ /* Is this a LS/FS device under an external HS hub? */
+ if (udev->tt && udev->tt->hub->parent) {
+ slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
+ (udev->ttport << 8));
+ if (udev->tt->multi)
+ slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
+ }
+ xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
+ xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
+
+ /* Step 4 - ring already allocated */
+ /* Step 5 */
+ ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
+
+ /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
+ ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
+ max_packets);
+
+ ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
+ dev->eps[0].ring->cycle_state);
+
+ /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
+
+ return 0;
+}
+
+/*
+ * Convert interval expressed as 2^(bInterval - 1) == interval into
+ * straight exponent value 2^n == interval.
+ *
+ */
+static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
+ struct usb_host_endpoint *ep)
+{
+ unsigned int interval;
+
+ interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
+ if (interval != ep->desc.bInterval - 1)
+ dev_warn(&udev->dev,
+ "ep %#x - rounding interval to %d %sframes\n",
+ ep->desc.bEndpointAddress,
+ 1 << interval,
+ udev->speed == USB_SPEED_FULL ? "" : "micro");
+
+ if (udev->speed == USB_SPEED_FULL) {
+ /*
+ * Full speed isoc endpoints specify interval in frames,
+ * not microframes. We are using microframes everywhere,
+ * so adjust accordingly.
+ */
+ interval += 3; /* 1 frame = 2^3 uframes */
+ }
+
+ return interval;
+}
+
+/*
+ * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
+ * microframes, rounded down to nearest power of 2.
+ */
+static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
+ struct usb_host_endpoint *ep, unsigned int desc_interval,
+ unsigned int min_exponent, unsigned int max_exponent)
+{
+ unsigned int interval;
+
+ interval = fls(desc_interval) - 1;
+ interval = clamp_val(interval, min_exponent, max_exponent);
+ if ((1 << interval) != desc_interval)
+ dev_warn(&udev->dev,
+ "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
+ ep->desc.bEndpointAddress,
+ 1 << interval,
+ desc_interval);
+
+ return interval;
+}
+
+static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
+ struct usb_host_endpoint *ep)
+{
+ if (ep->desc.bInterval == 0)
+ return 0;
+ return xhci_microframes_to_exponent(udev, ep,
+ ep->desc.bInterval, 0, 15);
+}
+
+
+static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
+ struct usb_host_endpoint *ep)
+{
+ return xhci_microframes_to_exponent(udev, ep,
+ ep->desc.bInterval * 8, 3, 10);
+}
+
+/* Return the polling or NAK interval.
+ *
+ * The polling interval is expressed in "microframes". If xHCI's Interval field
+ * is set to N, it will service the endpoint every 2^(Interval)*125us.
+ *
+ * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
+ * is set to 0.
+ */
+static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
+ struct usb_host_endpoint *ep)
+{
+ unsigned int interval = 0;
+
+ switch (udev->speed) {
+ case USB_SPEED_HIGH:
+ /* Max NAK rate */
+ if (usb_endpoint_xfer_control(&ep->desc) ||
+ usb_endpoint_xfer_bulk(&ep->desc)) {
+ interval = xhci_parse_microframe_interval(udev, ep);
+ break;
+ }
+ /* Fall through - SS and HS isoc/int have same decoding */
+
+ case USB_SPEED_SUPER:
+ if (usb_endpoint_xfer_int(&ep->desc) ||
+ usb_endpoint_xfer_isoc(&ep->desc)) {
+ interval = xhci_parse_exponent_interval(udev, ep);
+ }
+ break;
+
+ case USB_SPEED_FULL:
+ if (usb_endpoint_xfer_isoc(&ep->desc)) {
+ interval = xhci_parse_exponent_interval(udev, ep);
+ break;
+ }
+ /*
+ * Fall through for interrupt endpoint interval decoding
+ * since it uses the same rules as low speed interrupt
+ * endpoints.
+ */
+
+ case USB_SPEED_LOW:
+ if (usb_endpoint_xfer_int(&ep->desc) ||
+ usb_endpoint_xfer_isoc(&ep->desc)) {
+
+ interval = xhci_parse_frame_interval(udev, ep);
+ }
+ break;
+
+ default:
+ BUG();
+ }
+ return EP_INTERVAL(interval);
+}
+
+/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
+ * High speed endpoint descriptors can define "the number of additional
+ * transaction opportunities per microframe", but that goes in the Max Burst
+ * endpoint context field.
+ */
+static u32 xhci_get_endpoint_mult(struct usb_device *udev,
+ struct usb_host_endpoint *ep)
+{
+ if (udev->speed != USB_SPEED_SUPER ||
+ !usb_endpoint_xfer_isoc(&ep->desc))
+ return 0;
+ return ep->ss_ep_comp.bmAttributes;
+}
+
+static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
+{
+ int in;
+ u32 type;
+
+ in = usb_endpoint_dir_in(&ep->desc);
+ if (usb_endpoint_xfer_control(&ep->desc)) {
+ type = EP_TYPE(CTRL_EP);
+ } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
+ if (in)
+ type = EP_TYPE(BULK_IN_EP);
+ else
+ type = EP_TYPE(BULK_OUT_EP);
+ } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
+ if (in)
+ type = EP_TYPE(ISOC_IN_EP);
+ else
+ type = EP_TYPE(ISOC_OUT_EP);
+ } else if (usb_endpoint_xfer_int(&ep->desc)) {
+ if (in)
+ type = EP_TYPE(INT_IN_EP);
+ else
+ type = EP_TYPE(INT_OUT_EP);
+ } else {
+ type = 0;
+ }
+ return type;
+}
+
+/* Return the maximum endpoint service interval time (ESIT) payload.
+ * Basically, this is the maxpacket size, multiplied by the burst size
+ * and mult size.
+ */
+static u32 xhci_get_max_esit_payload(struct usb_device *udev,
+ struct usb_host_endpoint *ep)
+{
+ int max_burst;
+ int max_packet;
+
+ /* Only applies for interrupt or isochronous endpoints */
+ if (usb_endpoint_xfer_control(&ep->desc) ||
+ usb_endpoint_xfer_bulk(&ep->desc))
+ return 0;
+
+ if (udev->speed == USB_SPEED_SUPER)
+ return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
+
+ max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
+ max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
+ /* A 0 in max burst means 1 transfer per ESIT */
+ return max_packet * (max_burst + 1);
+}
+
+/* Set up an endpoint with one ring segment. Do not allocate stream rings.
+ * Drivers will have to call usb_alloc_streams() to do that.
+ */
+int xhci_endpoint_init(struct xhci_hcd *xhci,
+ struct xhci_virt_device *virt_dev,
+ struct usb_device *udev,
+ struct usb_host_endpoint *ep,
+ gfp_t mem_flags)
+{
+ unsigned int ep_index;
+ struct xhci_ep_ctx *ep_ctx;
+ struct xhci_ring *ep_ring;
+ unsigned int max_packet;
+ unsigned int max_burst;
+ enum xhci_ring_type type;
+ u32 max_esit_payload;
+ u32 endpoint_type;
+
+ ep_index = xhci_get_endpoint_index(&ep->desc);
+ ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
+
+ endpoint_type = xhci_get_endpoint_type(ep);
+ if (!endpoint_type)
+ return -EINVAL;
+ ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
+
+ type = usb_endpoint_type(&ep->desc);
+ /* Set up the endpoint ring */
+ virt_dev->eps[ep_index].new_ring =
+ xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
+ if (!virt_dev->eps[ep_index].new_ring) {
+ /* Attempt to use the ring cache */
+ if (virt_dev->num_rings_cached == 0)
+ return -ENOMEM;
+ virt_dev->num_rings_cached--;
+ virt_dev->eps[ep_index].new_ring =
+ virt_dev->ring_cache[virt_dev->num_rings_cached];
+ virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
+ xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
+ 1, type);
+ }
+ virt_dev->eps[ep_index].skip = false;
+ ep_ring = virt_dev->eps[ep_index].new_ring;
+ ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
+
+ ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
+ | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
+
+ /* FIXME dig Mult and streams info out of ep companion desc */
+
+ /* Allow 3 retries for everything but isoc;
+ * CErr shall be set to 0 for Isoch endpoints.
+ */
+ if (!usb_endpoint_xfer_isoc(&ep->desc))
+ ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
+ else
+ ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
+
+ /* Set the max packet size and max burst */
+ max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
+ max_burst = 0;
+ switch (udev->speed) {
+ case USB_SPEED_SUPER:
+ /* dig out max burst from ep companion desc */
+ max_burst = ep->ss_ep_comp.bMaxBurst;
+ break;
+ case USB_SPEED_HIGH:
+ /* Some devices get this wrong */
+ if (usb_endpoint_xfer_bulk(&ep->desc))
+ max_packet = 512;
+ /* bits 11:12 specify the number of additional transaction
+ * opportunities per microframe (USB 2.0, section 9.6.6)
+ */
+ if (usb_endpoint_xfer_isoc(&ep->desc) ||
+ usb_endpoint_xfer_int(&ep->desc)) {
+ max_burst = (usb_endpoint_maxp(&ep->desc)
+ & 0x1800) >> 11;
+ }
+ break;
+ case USB_SPEED_FULL:
+ case USB_SPEED_LOW:
+ break;
+ default:
+ BUG();
+ }
+ ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
+ MAX_BURST(max_burst));
+ max_esit_payload = xhci_get_max_esit_payload(udev, ep);
+ ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
+
+ /*
+ * XXX no idea how to calculate the average TRB buffer length for bulk
+ * endpoints, as the driver gives us no clue how big each scatter gather
+ * list entry (or buffer) is going to be.
+ *
+ * For isochronous and interrupt endpoints, we set it to the max
+ * available, until we have new API in the USB core to allow drivers to
+ * declare how much bandwidth they actually need.
+ *
+ * Normally, it would be calculated by taking the total of the buffer
+ * lengths in the TD and then dividing by the number of TRBs in a TD,
+ * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
+ * use Event Data TRBs, and we don't chain in a link TRB on short
+ * transfers, we're basically dividing by 1.
+ *
+ * xHCI 1.0 specification indicates that the Average TRB Length should
+ * be set to 8 for control endpoints.
+ */
+ if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
+ ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
+ else
+ ep_ctx->tx_info |=
+ cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
+
+ /* FIXME Debug endpoint context */
+ return 0;
+}
+
+void xhci_endpoint_zero(struct xhci_hcd *xhci,
+ struct xhci_virt_device *virt_dev,
+ struct usb_host_endpoint *ep)
+{
+ unsigned int ep_index;
+ struct xhci_ep_ctx *ep_ctx;
+
+ ep_index = xhci_get_endpoint_index(&ep->desc);
+ ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
+
+ ep_ctx->ep_info = 0;
+ ep_ctx->ep_info2 = 0;
+ ep_ctx->deq = 0;
+ ep_ctx->tx_info = 0;
+ /* Don't free the endpoint ring until the set interface or configuration
+ * request succeeds.
+ */
+}
+
+void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
+{
+ bw_info->ep_interval = 0;
+ bw_info->mult = 0;
+ bw_info->num_packets = 0;
+ bw_info->max_packet_size = 0;
+ bw_info->type = 0;
+ bw_info->max_esit_payload = 0;
+}
+
+void xhci_update_bw_info(struct xhci_hcd *xhci,
+ struct xhci_container_ctx *in_ctx,
+ struct xhci_input_control_ctx *ctrl_ctx,
+ struct xhci_virt_device *virt_dev)
+{
+ struct xhci_bw_info *bw_info;
+ struct xhci_ep_ctx *ep_ctx;
+ unsigned int ep_type;
+ int i;
+
+ for (i = 1; i < 31; ++i) {
+ bw_info = &virt_dev->eps[i].bw_info;
+
+ /* We can't tell what endpoint type is being dropped, but
+ * unconditionally clearing the bandwidth info for non-periodic
+ * endpoints should be harmless because the info will never be
+ * set in the first place.
+ */
+ if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
+ /* Dropped endpoint */
+ xhci_clear_endpoint_bw_info(bw_info);
+ continue;
+ }
+
+ if (EP_IS_ADDED(ctrl_ctx, i)) {
+ ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
+ ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
+
+ /* Ignore non-periodic endpoints */
+ if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
+ ep_type != ISOC_IN_EP &&
+ ep_type != INT_IN_EP)
+ continue;
+
+ /* Added or changed endpoint */
+ bw_info->ep_interval = CTX_TO_EP_INTERVAL(
+ le32_to_cpu(ep_ctx->ep_info));
+ /* Number of packets and mult are zero-based in the
+ * input context, but we want one-based for the
+ * interval table.
+ */
+ bw_info->mult = CTX_TO_EP_MULT(
+ le32_to_cpu(ep_ctx->ep_info)) + 1;
+ bw_info->num_packets = CTX_TO_MAX_BURST(
+ le32_to_cpu(ep_ctx->ep_info2)) + 1;
+ bw_info->max_packet_size = MAX_PACKET_DECODED(
+ le32_to_cpu(ep_ctx->ep_info2));
+ bw_info->type = ep_type;
+ bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
+ le32_to_cpu(ep_ctx->tx_info));
+ }
+ }
+}
+
+/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
+ * Useful when you want to change one particular aspect of the endpoint and then
+ * issue a configure endpoint command.
+ */
+void xhci_endpoint_copy(struct xhci_hcd *xhci,
+ struct xhci_container_ctx *in_ctx,
+ struct xhci_container_ctx *out_ctx,
+ unsigned int ep_index)
+{
+ struct xhci_ep_ctx *out_ep_ctx;
+ struct xhci_ep_ctx *in_ep_ctx;
+
+ out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
+ in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
+
+ in_ep_ctx->ep_info = out_ep_ctx->ep_info;
+ in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
+ in_ep_ctx->deq = out_ep_ctx->deq;
+ in_ep_ctx->tx_info = out_ep_ctx->tx_info;
+}
+
+/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
+ * Useful when you want to change one particular aspect of the endpoint and then
+ * issue a configure endpoint command. Only the context entries field matters,
+ * but we'll copy the whole thing anyway.
+ */
+void xhci_slot_copy(struct xhci_hcd *xhci,
+ struct xhci_container_ctx *in_ctx,
+ struct xhci_container_ctx *out_ctx)
+{
+ struct xhci_slot_ctx *in_slot_ctx;
+ struct xhci_slot_ctx *out_slot_ctx;
+
+ in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
+ out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
+
+ in_slot_ctx->dev_info = out_slot_ctx->dev_info;
+ in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
+ in_slot_ctx->tt_info = out_slot_ctx->tt_info;
+ in_slot_ctx->dev_state = out_slot_ctx->dev_state;
+}
+
+/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
+static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
+{
+ int i;
+ struct device *dev = xhci_to_hcd(xhci)->self.controller;
+ int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
+
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Allocating %d scratchpad buffers", num_sp);
+
+ if (!num_sp)
+ return 0;
+
+ xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
+ if (!xhci->scratchpad)
+ goto fail_sp;
+
+ xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
+ num_sp * sizeof(u64),
+ &xhci->scratchpad->sp_dma, flags);
+ if (!xhci->scratchpad->sp_array)
+ goto fail_sp2;
+
+ xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
+ if (!xhci->scratchpad->sp_buffers)
+ goto fail_sp3;
+
+ xhci->scratchpad->sp_dma_buffers =
+ kzalloc(sizeof(dma_addr_t) * num_sp, flags);
+
+ if (!xhci->scratchpad->sp_dma_buffers)
+ goto fail_sp4;
+
+ xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
+ for (i = 0; i < num_sp; i++) {
+ dma_addr_t dma;
+ void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
+ flags);
+ if (!buf)
+ goto fail_sp5;
+
+ xhci->scratchpad->sp_array[i] = dma;
+ xhci->scratchpad->sp_buffers[i] = buf;
+ xhci->scratchpad->sp_dma_buffers[i] = dma;
+ }
+
+ return 0;
+
+ fail_sp5:
+ for (i = i - 1; i >= 0; i--) {
+ dma_free_coherent(dev, xhci->page_size,
+ xhci->scratchpad->sp_buffers[i],
+ xhci->scratchpad->sp_dma_buffers[i]);
+ }
+ kfree(xhci->scratchpad->sp_dma_buffers);
+
+ fail_sp4:
+ kfree(xhci->scratchpad->sp_buffers);
+
+ fail_sp3:
+ dma_free_coherent(dev, num_sp * sizeof(u64),
+ xhci->scratchpad->sp_array,
+ xhci->scratchpad->sp_dma);
+
+ fail_sp2:
+ kfree(xhci->scratchpad);
+ xhci->scratchpad = NULL;
+
+ fail_sp:
+ return -ENOMEM;
+}
+
+static void scratchpad_free(struct xhci_hcd *xhci)
+{
+ int num_sp;
+ int i;
+ struct device *dev = xhci_to_hcd(xhci)->self.controller;
+
+ if (!xhci->scratchpad)
+ return;
+
+ num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
+
+ for (i = 0; i < num_sp; i++) {
+ dma_free_coherent(dev, xhci->page_size,
+ xhci->scratchpad->sp_buffers[i],
+ xhci->scratchpad->sp_dma_buffers[i]);
+ }
+ kfree(xhci->scratchpad->sp_dma_buffers);
+ kfree(xhci->scratchpad->sp_buffers);
+ dma_free_coherent(dev, num_sp * sizeof(u64),
+ xhci->scratchpad->sp_array,
+ xhci->scratchpad->sp_dma);
+ kfree(xhci->scratchpad);
+ xhci->scratchpad = NULL;
+}
+
+struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
+ bool allocate_in_ctx, bool allocate_completion,
+ gfp_t mem_flags)
+{
+ struct xhci_command *command;
+
+ command = kzalloc(sizeof(*command), mem_flags);
+ if (!command)
+ return NULL;
+
+ if (allocate_in_ctx) {
+ command->in_ctx =
+ xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
+ mem_flags);
+ if (!command->in_ctx) {
+ kfree(command);
+ return NULL;
+ }
+ }
+
+ if (allocate_completion) {
+ command->completion =
+ kzalloc(sizeof(struct completion), mem_flags);
+ if (!command->completion) {
+ xhci_free_container_ctx(xhci, command->in_ctx);
+ kfree(command);
+ return NULL;
+ }
+ init_completion(command->completion);
+ }
+
+ command->status = 0;
+ INIT_LIST_HEAD(&command->cmd_list);
+ return command;
+}
+
+void xhci_urb_free_priv(struct urb_priv *urb_priv)
+{
+ if (urb_priv) {
+ kfree(urb_priv->td[0]);
+ kfree(urb_priv);
+ }
+}
+
+void xhci_free_command(struct xhci_hcd *xhci,
+ struct xhci_command *command)
+{
+ xhci_free_container_ctx(xhci,
+ command->in_ctx);
+ kfree(command->completion);
+ kfree(command);
+}
+
+void xhci_mem_cleanup(struct xhci_hcd *xhci)
+{
+ struct device *dev = xhci_to_hcd(xhci)->self.controller;
+ int size;
+ int i, j, num_ports;
+
+ del_timer_sync(&xhci->cmd_timer);
+
+ /* Free the Event Ring Segment Table and the actual Event Ring */
+ size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
+ if (xhci->erst.entries)
+ dma_free_coherent(dev, size,
+ xhci->erst.entries, xhci->erst.erst_dma_addr);
+ xhci->erst.entries = NULL;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
+ if (xhci->event_ring)
+ xhci_ring_free(xhci, xhci->event_ring);
+ xhci->event_ring = NULL;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
+
+ if (xhci->lpm_command)
+ xhci_free_command(xhci, xhci->lpm_command);
+ xhci->lpm_command = NULL;
+ if (xhci->cmd_ring)
+ xhci_ring_free(xhci, xhci->cmd_ring);
+ xhci->cmd_ring = NULL;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
+ xhci_cleanup_command_queue(xhci);
+
+ num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
+ for (i = 0; i < num_ports && xhci->rh_bw; i++) {
+ struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
+ for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
+ struct list_head *ep = &bwt->interval_bw[j].endpoints;
+ while (!list_empty(ep))
+ list_del_init(ep->next);
+ }
+ }
+
+ for (i = 1; i < MAX_HC_SLOTS; ++i)
+ xhci_free_virt_device(xhci, i);
+
+ if (xhci->segment_pool)
+ dma_pool_destroy(xhci->segment_pool);
+ xhci->segment_pool = NULL;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
+
+ if (xhci->device_pool)
+ dma_pool_destroy(xhci->device_pool);
+ xhci->device_pool = NULL;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
+
+ if (xhci->small_streams_pool)
+ dma_pool_destroy(xhci->small_streams_pool);
+ xhci->small_streams_pool = NULL;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Freed small stream array pool");
+
+ if (xhci->medium_streams_pool)
+ dma_pool_destroy(xhci->medium_streams_pool);
+ xhci->medium_streams_pool = NULL;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Freed medium stream array pool");
+
+ if (xhci->dcbaa)
+ dma_free_coherent(dev, sizeof(*xhci->dcbaa),
+ xhci->dcbaa, xhci->dcbaa->dma);
+ xhci->dcbaa = NULL;
+
+ scratchpad_free(xhci);
+
+ if (!xhci->rh_bw)
+ goto no_bw;
+
+ for (i = 0; i < num_ports; i++) {
+ struct xhci_tt_bw_info *tt, *n;
+ list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
+ list_del(&tt->tt_list);
+ kfree(tt);
+ }
+ }
+
+no_bw:
+ xhci->cmd_ring_reserved_trbs = 0;
+ xhci->num_usb2_ports = 0;
+ xhci->num_usb3_ports = 0;
+ xhci->num_active_eps = 0;
+ kfree(xhci->usb2_ports);
+ kfree(xhci->usb3_ports);
+ kfree(xhci->port_array);
+ kfree(xhci->rh_bw);
+ kfree(xhci->ext_caps);
+
+ xhci->page_size = 0;
+ xhci->page_shift = 0;
+ xhci->bus_state[0].bus_suspended = 0;
+ xhci->bus_state[1].bus_suspended = 0;
+}
+
+static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
+ struct xhci_segment *input_seg,
+ union xhci_trb *start_trb,
+ union xhci_trb *end_trb,
+ dma_addr_t input_dma,
+ struct xhci_segment *result_seg,
+ char *test_name, int test_number)
+{
+ unsigned long long start_dma;
+ unsigned long long end_dma;
+ struct xhci_segment *seg;
+
+ start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
+ end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
+
+ seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
+ if (seg != result_seg) {
+ xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
+ test_name, test_number);
+ xhci_warn(xhci, "Tested TRB math w/ seg %p and "
+ "input DMA 0x%llx\n",
+ input_seg,
+ (unsigned long long) input_dma);
+ xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
+ "ending TRB %p (0x%llx DMA)\n",
+ start_trb, start_dma,
+ end_trb, end_dma);
+ xhci_warn(xhci, "Expected seg %p, got seg %p\n",
+ result_seg, seg);
+ trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
+ true);
+ return -1;
+ }
+ return 0;
+}
+
+/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
+static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
+{
+ struct {
+ dma_addr_t input_dma;
+ struct xhci_segment *result_seg;
+ } simple_test_vector [] = {
+ /* A zeroed DMA field should fail */
+ { 0, NULL },
+ /* One TRB before the ring start should fail */
+ { xhci->event_ring->first_seg->dma - 16, NULL },
+ /* One byte before the ring start should fail */
+ { xhci->event_ring->first_seg->dma - 1, NULL },
+ /* Starting TRB should succeed */
+ { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
+ /* Ending TRB should succeed */
+ { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
+ xhci->event_ring->first_seg },
+ /* One byte after the ring end should fail */
+ { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
+ /* One TRB after the ring end should fail */
+ { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
+ /* An address of all ones should fail */
+ { (dma_addr_t) (~0), NULL },
+ };
+ struct {
+ struct xhci_segment *input_seg;
+ union xhci_trb *start_trb;
+ union xhci_trb *end_trb;
+ dma_addr_t input_dma;
+ struct xhci_segment *result_seg;
+ } complex_test_vector [] = {
+ /* Test feeding a valid DMA address from a different ring */
+ { .input_seg = xhci->event_ring->first_seg,
+ .start_trb = xhci->event_ring->first_seg->trbs,
+ .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
+ .input_dma = xhci->cmd_ring->first_seg->dma,
+ .result_seg = NULL,
+ },
+ /* Test feeding a valid end TRB from a different ring */
+ { .input_seg = xhci->event_ring->first_seg,
+ .start_trb = xhci->event_ring->first_seg->trbs,
+ .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
+ .input_dma = xhci->cmd_ring->first_seg->dma,
+ .result_seg = NULL,
+ },
+ /* Test feeding a valid start and end TRB from a different ring */
+ { .input_seg = xhci->event_ring->first_seg,
+ .start_trb = xhci->cmd_ring->first_seg->trbs,
+ .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
+ .input_dma = xhci->cmd_ring->first_seg->dma,
+ .result_seg = NULL,
+ },
+ /* TRB in this ring, but after this TD */
+ { .input_seg = xhci->event_ring->first_seg,
+ .start_trb = &xhci->event_ring->first_seg->trbs[0],
+ .end_trb = &xhci->event_ring->first_seg->trbs[3],
+ .input_dma = xhci->event_ring->first_seg->dma + 4*16,
+ .result_seg = NULL,
+ },
+ /* TRB in this ring, but before this TD */
+ { .input_seg = xhci->event_ring->first_seg,
+ .start_trb = &xhci->event_ring->first_seg->trbs[3],
+ .end_trb = &xhci->event_ring->first_seg->trbs[6],
+ .input_dma = xhci->event_ring->first_seg->dma + 2*16,
+ .result_seg = NULL,
+ },
+ /* TRB in this ring, but after this wrapped TD */
+ { .input_seg = xhci->event_ring->first_seg,
+ .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
+ .end_trb = &xhci->event_ring->first_seg->trbs[1],
+ .input_dma = xhci->event_ring->first_seg->dma + 2*16,
+ .result_seg = NULL,
+ },
+ /* TRB in this ring, but before this wrapped TD */
+ { .input_seg = xhci->event_ring->first_seg,
+ .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
+ .end_trb = &xhci->event_ring->first_seg->trbs[1],
+ .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
+ .result_seg = NULL,
+ },
+ /* TRB not in this ring, and we have a wrapped TD */
+ { .input_seg = xhci->event_ring->first_seg,
+ .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
+ .end_trb = &xhci->event_ring->first_seg->trbs[1],
+ .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
+ .result_seg = NULL,
+ },
+ };
+
+ unsigned int num_tests;
+ int i, ret;
+
+ num_tests = ARRAY_SIZE(simple_test_vector);
+ for (i = 0; i < num_tests; i++) {
+ ret = xhci_test_trb_in_td(xhci,
+ xhci->event_ring->first_seg,
+ xhci->event_ring->first_seg->trbs,
+ &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
+ simple_test_vector[i].input_dma,
+ simple_test_vector[i].result_seg,
+ "Simple", i);
+ if (ret < 0)
+ return ret;
+ }
+
+ num_tests = ARRAY_SIZE(complex_test_vector);
+ for (i = 0; i < num_tests; i++) {
+ ret = xhci_test_trb_in_td(xhci,
+ complex_test_vector[i].input_seg,
+ complex_test_vector[i].start_trb,
+ complex_test_vector[i].end_trb,
+ complex_test_vector[i].input_dma,
+ complex_test_vector[i].result_seg,
+ "Complex", i);
+ if (ret < 0)
+ return ret;
+ }
+ xhci_dbg(xhci, "TRB math tests passed.\n");
+ return 0;
+}
+
+static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
+{
+ u64 temp;
+ dma_addr_t deq;
+
+ deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
+ xhci->event_ring->dequeue);
+ if (deq == 0 && !in_interrupt())
+ xhci_warn(xhci, "WARN something wrong with SW event ring "
+ "dequeue ptr.\n");
+ /* Update HC event ring dequeue pointer */
+ temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
+ temp &= ERST_PTR_MASK;
+ /* Don't clear the EHB bit (which is RW1C) because
+ * there might be more events to service.
+ */
+ temp &= ~ERST_EHB;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Write event ring dequeue pointer, "
+ "preserving EHB bit");
+ xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
+ &xhci->ir_set->erst_dequeue);
+}
+
+static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
+ __le32 __iomem *addr, u8 major_revision, int max_caps)
+{
+ u32 temp, port_offset, port_count;
+ int i;
+
+ if (major_revision > 0x03) {
+ xhci_warn(xhci, "Ignoring unknown port speed, "
+ "Ext Cap %p, revision = 0x%x\n",
+ addr, major_revision);
+ /* Ignoring port protocol we can't understand. FIXME */
+ return;
+ }
+
+ /* Port offset and count in the third dword, see section 7.2 */
+ temp = readl(addr + 2);
+ port_offset = XHCI_EXT_PORT_OFF(temp);
+ port_count = XHCI_EXT_PORT_COUNT(temp);
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Ext Cap %p, port offset = %u, "
+ "count = %u, revision = 0x%x",
+ addr, port_offset, port_count, major_revision);
+ /* Port count includes the current port offset */
+ if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
+ /* WTF? "Valid values are ‘1’ to MaxPorts" */
+ return;
+
+ /* cache usb2 port capabilities */
+ if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
+ xhci->ext_caps[xhci->num_ext_caps++] = temp;
+
+ /* Check the host's USB2 LPM capability */
+ if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
+ (temp & XHCI_L1C)) {
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "xHCI 0.96: support USB2 software lpm");
+ xhci->sw_lpm_support = 1;
+ }
+
+ if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "xHCI 1.0: support USB2 software lpm");
+ xhci->sw_lpm_support = 1;
+ if (temp & XHCI_HLC) {
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "xHCI 1.0: support USB2 hardware lpm");
+ xhci->hw_lpm_support = 1;
+ }
+ }
+
+ port_offset--;
+ for (i = port_offset; i < (port_offset + port_count); i++) {
+ /* Duplicate entry. Ignore the port if the revisions differ. */
+ if (xhci->port_array[i] != 0) {
+ xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
+ " port %u\n", addr, i);
+ xhci_warn(xhci, "Port was marked as USB %u, "
+ "duplicated as USB %u\n",
+ xhci->port_array[i], major_revision);
+ /* Only adjust the roothub port counts if we haven't
+ * found a similar duplicate.
+ */
+ if (xhci->port_array[i] != major_revision &&
+ xhci->port_array[i] != DUPLICATE_ENTRY) {
+ if (xhci->port_array[i] == 0x03)
+ xhci->num_usb3_ports--;
+ else
+ xhci->num_usb2_ports--;
+ xhci->port_array[i] = DUPLICATE_ENTRY;
+ }
+ /* FIXME: Should we disable the port? */
+ continue;
+ }
+ xhci->port_array[i] = major_revision;
+ if (major_revision == 0x03)
+ xhci->num_usb3_ports++;
+ else
+ xhci->num_usb2_ports++;
+ }
+ /* FIXME: Should we disable ports not in the Extended Capabilities? */
+}
+
+/*
+ * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
+ * specify what speeds each port is supposed to be. We can't count on the port
+ * speed bits in the PORTSC register being correct until a device is connected,
+ * but we need to set up the two fake roothubs with the correct number of USB
+ * 3.0 and USB 2.0 ports at host controller initialization time.
+ */
+static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
+{
+ __le32 __iomem *addr, *tmp_addr;
+ u32 offset, tmp_offset;
+ unsigned int num_ports;
+ int i, j, port_index;
+ int cap_count = 0;
+
+ addr = &xhci->cap_regs->hcc_params;
+ offset = XHCI_HCC_EXT_CAPS(readl(addr));
+ if (offset == 0) {
+ xhci_err(xhci, "No Extended Capability registers, "
+ "unable to set up roothub.\n");
+ return -ENODEV;
+ }
+
+ num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
+ xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
+ if (!xhci->port_array)
+ return -ENOMEM;
+
+ xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
+ if (!xhci->rh_bw)
+ return -ENOMEM;
+ for (i = 0; i < num_ports; i++) {
+ struct xhci_interval_bw_table *bw_table;
+
+ INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
+ bw_table = &xhci->rh_bw[i].bw_table;
+ for (j = 0; j < XHCI_MAX_INTERVAL; j++)
+ INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
+ }
+
+ /*
+ * For whatever reason, the first capability offset is from the
+ * capability register base, not from the HCCPARAMS register.
+ * See section 5.3.6 for offset calculation.
+ */
+ addr = &xhci->cap_regs->hc_capbase + offset;
+
+ tmp_addr = addr;
+ tmp_offset = offset;
+
+ /* count extended protocol capability entries for later caching */
+ do {
+ u32 cap_id;
+ cap_id = readl(tmp_addr);
+ if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
+ cap_count++;
+ tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
+ tmp_addr += tmp_offset;
+ } while (tmp_offset);
+
+ xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
+ if (!xhci->ext_caps)
+ return -ENOMEM;
+
+ while (1) {
+ u32 cap_id;
+
+ cap_id = readl(addr);
+ if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
+ xhci_add_in_port(xhci, num_ports, addr,
+ (u8) XHCI_EXT_PORT_MAJOR(cap_id),
+ cap_count);
+ offset = XHCI_EXT_CAPS_NEXT(cap_id);
+ if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
+ == num_ports)
+ break;
+ /*
+ * Once you're into the Extended Capabilities, the offset is
+ * always relative to the register holding the offset.
+ */
+ addr += offset;
+ }
+
+ if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
+ xhci_warn(xhci, "No ports on the roothubs?\n");
+ return -ENODEV;
+ }
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Found %u USB 2.0 ports and %u USB 3.0 ports.",
+ xhci->num_usb2_ports, xhci->num_usb3_ports);
+
+ /* Place limits on the number of roothub ports so that the hub
+ * descriptors aren't longer than the USB core will allocate.
+ */
+ if (xhci->num_usb3_ports > 15) {
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Limiting USB 3.0 roothub ports to 15.");
+ xhci->num_usb3_ports = 15;
+ }
+ if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Limiting USB 2.0 roothub ports to %u.",
+ USB_MAXCHILDREN);
+ xhci->num_usb2_ports = USB_MAXCHILDREN;
+ }
+
+ /*
+ * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
+ * Not sure how the USB core will handle a hub with no ports...
+ */
+ if (xhci->num_usb2_ports) {
+ xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
+ xhci->num_usb2_ports, flags);
+ if (!xhci->usb2_ports)
+ return -ENOMEM;
+
+ port_index = 0;
+ for (i = 0; i < num_ports; i++) {
+ if (xhci->port_array[i] == 0x03 ||
+ xhci->port_array[i] == 0 ||
+ xhci->port_array[i] == DUPLICATE_ENTRY)
+ continue;
+
+ xhci->usb2_ports[port_index] =
+ &xhci->op_regs->port_status_base +
+ NUM_PORT_REGS*i;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "USB 2.0 port at index %u, "
+ "addr = %p", i,
+ xhci->usb2_ports[port_index]);
+ port_index++;
+ if (port_index == xhci->num_usb2_ports)
+ break;
+ }
+ }
+ if (xhci->num_usb3_ports) {
+ xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
+ xhci->num_usb3_ports, flags);
+ if (!xhci->usb3_ports)
+ return -ENOMEM;
+
+ port_index = 0;
+ for (i = 0; i < num_ports; i++)
+ if (xhci->port_array[i] == 0x03) {
+ xhci->usb3_ports[port_index] =
+ &xhci->op_regs->port_status_base +
+ NUM_PORT_REGS*i;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "USB 3.0 port at index %u, "
+ "addr = %p", i,
+ xhci->usb3_ports[port_index]);
+ port_index++;
+ if (port_index == xhci->num_usb3_ports)
+ break;
+ }
+ }
+ return 0;
+}
+
+int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
+{
+ dma_addr_t dma;
+ struct device *dev = xhci_to_hcd(xhci)->self.controller;
+ unsigned int val, val2;
+ u64 val_64;
+ struct xhci_segment *seg;
+ u32 page_size, temp;
+ int i;
+
+ INIT_LIST_HEAD(&xhci->cmd_list);
+
+ page_size = readl(&xhci->op_regs->page_size);
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Supported page size register = 0x%x", page_size);
+ for (i = 0; i < 16; i++) {
+ if ((0x1 & page_size) != 0)
+ break;
+ page_size = page_size >> 1;
+ }
+ if (i < 16)
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Supported page size of %iK", (1 << (i+12)) / 1024);
+ else
+ xhci_warn(xhci, "WARN: no supported page size\n");
+ /* Use 4K pages, since that's common and the minimum the HC supports */
+ xhci->page_shift = 12;
+ xhci->page_size = 1 << xhci->page_shift;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "HCD page size set to %iK", xhci->page_size / 1024);
+
+ /*
+ * Program the Number of Device Slots Enabled field in the CONFIG
+ * register with the max value of slots the HC can handle.
+ */
+ val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// xHC can handle at most %d device slots.", val);
+ val2 = readl(&xhci->op_regs->config_reg);
+ val |= (val2 & ~HCS_SLOTS_MASK);
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Setting Max device slots reg = 0x%x.", val);
+ writel(val, &xhci->op_regs->config_reg);
+
+ /*
+ * Section 5.4.8 - doorbell array must be
+ * "physically contiguous and 64-byte (cache line) aligned".
+ */
+ xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
+ GFP_KERNEL);
+ if (!xhci->dcbaa)
+ goto fail;
+ memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
+ xhci->dcbaa->dma = dma;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Device context base array address = 0x%llx (DMA), %p (virt)",
+ (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
+ xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
+
+ /*
+ * Initialize the ring segment pool. The ring must be a contiguous
+ * structure comprised of TRBs. The TRBs must be 16 byte aligned,
+ * however, the command ring segment needs 64-byte aligned segments
+ * and our use of dma addresses in the trb_address_map radix tree needs
+ * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
+ */
+ xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
+ TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
+
+ /* See Table 46 and Note on Figure 55 */
+ xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
+ 2112, 64, xhci->page_size);
+ if (!xhci->segment_pool || !xhci->device_pool)
+ goto fail;
+
+ /* Linear stream context arrays don't have any boundary restrictions,
+ * and only need to be 16-byte aligned.
+ */
+ xhci->small_streams_pool =
+ dma_pool_create("xHCI 256 byte stream ctx arrays",
+ dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
+ xhci->medium_streams_pool =
+ dma_pool_create("xHCI 1KB stream ctx arrays",
+ dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
+ /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
+ * will be allocated with dma_alloc_coherent()
+ */
+
+ if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
+ goto fail;
+
+ /* Set up the command ring to have one segments for now. */
+ xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
+ if (!xhci->cmd_ring)
+ goto fail;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Allocated command ring at %p", xhci->cmd_ring);
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
+ (unsigned long long)xhci->cmd_ring->first_seg->dma);
+
+ /* Set the address in the Command Ring Control register */
+ val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
+ val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
+ (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
+ xhci->cmd_ring->cycle_state;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Setting command ring address to 0x%x", val);
+ xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
+ xhci_dbg_cmd_ptrs(xhci);
+
+ xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
+ if (!xhci->lpm_command)
+ goto fail;
+
+ /* Reserve one command ring TRB for disabling LPM.
+ * Since the USB core grabs the shared usb_bus bandwidth mutex before
+ * disabling LPM, we only need to reserve one TRB for all devices.
+ */
+ xhci->cmd_ring_reserved_trbs++;
+
+ val = readl(&xhci->cap_regs->db_off);
+ val &= DBOFF_MASK;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Doorbell array is located at offset 0x%x"
+ " from cap regs base addr", val);
+ xhci->dba = (void __iomem *) xhci->cap_regs + val;
+ xhci_dbg_regs(xhci);
+ xhci_print_run_regs(xhci);
+ /* Set ir_set to interrupt register set 0 */
+ xhci->ir_set = &xhci->run_regs->ir_set[0];
+
+ /*
+ * Event ring setup: Allocate a normal ring, but also setup
+ * the event ring segment table (ERST). Section 4.9.3.
+ */
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
+ xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
+ flags);
+ if (!xhci->event_ring)
+ goto fail;
+ if (xhci_check_trb_in_td_math(xhci) < 0)
+ goto fail;
+
+ xhci->erst.entries = dma_alloc_coherent(dev,
+ sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
+ GFP_KERNEL);
+ if (!xhci->erst.entries)
+ goto fail;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Allocated event ring segment table at 0x%llx",
+ (unsigned long long)dma);
+
+ memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
+ xhci->erst.num_entries = ERST_NUM_SEGS;
+ xhci->erst.erst_dma_addr = dma;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
+ xhci->erst.num_entries,
+ xhci->erst.entries,
+ (unsigned long long)xhci->erst.erst_dma_addr);
+
+ /* set ring base address and size for each segment table entry */
+ for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
+ struct xhci_erst_entry *entry = &xhci->erst.entries[val];
+ entry->seg_addr = cpu_to_le64(seg->dma);
+ entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
+ entry->rsvd = 0;
+ seg = seg->next;
+ }
+
+ /* set ERST count with the number of entries in the segment table */
+ val = readl(&xhci->ir_set->erst_size);
+ val &= ERST_SIZE_MASK;
+ val |= ERST_NUM_SEGS;
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Write ERST size = %i to ir_set 0 (some bits preserved)",
+ val);
+ writel(val, &xhci->ir_set->erst_size);
+
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Set ERST entries to point to event ring.");
+ /* set the segment table base address */
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "// Set ERST base address for ir_set 0 = 0x%llx",
+ (unsigned long long)xhci->erst.erst_dma_addr);
+ val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
+ val_64 &= ERST_PTR_MASK;
+ val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
+ xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
+
+ /* Set the event ring dequeue address */
+ xhci_set_hc_event_deq(xhci);
+ xhci_dbg_trace(xhci, trace_xhci_dbg_init,
+ "Wrote ERST address to ir_set 0.");
+ xhci_print_ir_set(xhci, 0);
+
+ /* init command timeout timer */
+ setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
+ (unsigned long)xhci);
+
+ /*
+ * XXX: Might need to set the Interrupter Moderation Register to
+ * something other than the default (~1ms minimum between interrupts).
+ * See section 5.5.1.2.
+ */
+ init_completion(&xhci->addr_dev);
+ for (i = 0; i < MAX_HC_SLOTS; ++i)
+ xhci->devs[i] = NULL;
+ for (i = 0; i < USB_MAXCHILDREN; ++i) {
+ xhci->bus_state[0].resume_done[i] = 0;
+ xhci->bus_state[1].resume_done[i] = 0;
+ /* Only the USB 2.0 completions will ever be used. */
+ init_completion(&xhci->bus_state[1].rexit_done[i]);
+ }
+
+ if (scratchpad_alloc(xhci, flags))
+ goto fail;
+ if (xhci_setup_port_arrays(xhci, flags))
+ goto fail;
+
+ /* Enable USB 3.0 device notifications for function remote wake, which
+ * is necessary for allowing USB 3.0 devices to do remote wakeup from
+ * U3 (device suspend).
+ */
+ temp = readl(&xhci->op_regs->dev_notification);
+ temp &= ~DEV_NOTE_MASK;
+ temp |= DEV_NOTE_FWAKE;
+ writel(temp, &xhci->op_regs->dev_notification);
+
+ return 0;
+
+fail:
+ xhci_warn(xhci, "Couldn't initialize memory\n");
+ xhci_halt(xhci);
+ xhci_reset(xhci);
+ xhci_mem_cleanup(xhci);
+ return -ENOMEM;
+}