diff options
author | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
---|---|---|
committer | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
commit | 57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch) | |
tree | 5e910f0e82173f4ef4f51111366a3f1299037a7b /include/linux/mm.h |
Initial import
Diffstat (limited to 'include/linux/mm.h')
-rw-r--r-- | include/linux/mm.h | 2227 |
1 files changed, 2227 insertions, 0 deletions
diff --git a/include/linux/mm.h b/include/linux/mm.h new file mode 100644 index 000000000..ffe4ecf89 --- /dev/null +++ b/include/linux/mm.h @@ -0,0 +1,2227 @@ +#ifndef _LINUX_MM_H +#define _LINUX_MM_H + +#include <linux/errno.h> + +#ifdef __KERNEL__ + +#include <linux/mmdebug.h> +#include <linux/gfp.h> +#include <linux/bug.h> +#include <linux/list.h> +#include <linux/mmzone.h> +#include <linux/rbtree.h> +#include <linux/atomic.h> +#include <linux/debug_locks.h> +#include <linux/mm_types.h> +#include <linux/range.h> +#include <linux/pfn.h> +#include <linux/bit_spinlock.h> +#include <linux/shrinker.h> +#include <linux/resource.h> +#include <linux/page_ext.h> + +struct mempolicy; +struct anon_vma; +struct anon_vma_chain; +struct file_ra_state; +struct user_struct; +struct writeback_control; + +#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ +extern unsigned long max_mapnr; + +static inline void set_max_mapnr(unsigned long limit) +{ + max_mapnr = limit; +} +#else +static inline void set_max_mapnr(unsigned long limit) { } +#endif + +extern unsigned long totalram_pages; +extern void * high_memory; +extern int page_cluster; + +#ifdef CONFIG_SYSCTL +extern int sysctl_legacy_va_layout; +#else +#define sysctl_legacy_va_layout 0 +#endif + +#include <asm/page.h> +#include <asm/pgtable.h> +#include <asm/processor.h> + +#ifndef __pa_symbol +#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) +#endif + +/* + * To prevent common memory management code establishing + * a zero page mapping on a read fault. + * This macro should be defined within <asm/pgtable.h>. + * s390 does this to prevent multiplexing of hardware bits + * related to the physical page in case of virtualization. + */ +#ifndef mm_forbids_zeropage +#define mm_forbids_zeropage(X) (0) +#endif + +extern unsigned long sysctl_user_reserve_kbytes; +extern unsigned long sysctl_admin_reserve_kbytes; + +extern int sysctl_overcommit_memory; +extern int sysctl_overcommit_ratio; +extern unsigned long sysctl_overcommit_kbytes; + +extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, + size_t *, loff_t *); +extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, + size_t *, loff_t *); + +#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) + +/* to align the pointer to the (next) page boundary */ +#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) + +/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ +#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) + +/* + * Linux kernel virtual memory manager primitives. + * The idea being to have a "virtual" mm in the same way + * we have a virtual fs - giving a cleaner interface to the + * mm details, and allowing different kinds of memory mappings + * (from shared memory to executable loading to arbitrary + * mmap() functions). + */ + +extern struct kmem_cache *vm_area_cachep; + +#ifndef CONFIG_MMU +extern struct rb_root nommu_region_tree; +extern struct rw_semaphore nommu_region_sem; + +extern unsigned int kobjsize(const void *objp); +#endif + +/* + * vm_flags in vm_area_struct, see mm_types.h. + */ +#define VM_NONE 0x00000000 + +#define VM_READ 0x00000001 /* currently active flags */ +#define VM_WRITE 0x00000002 +#define VM_EXEC 0x00000004 +#define VM_SHARED 0x00000008 + +/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ +#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ +#define VM_MAYWRITE 0x00000020 +#define VM_MAYEXEC 0x00000040 +#define VM_MAYSHARE 0x00000080 + +#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ +#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ +#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ + +#define VM_LOCKED 0x00002000 +#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ + + /* Used by sys_madvise() */ +#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ +#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ + +#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ +#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ +#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ +#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ +#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ +#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ +#define VM_ARCH_2 0x02000000 +#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ + +#ifdef CONFIG_MEM_SOFT_DIRTY +# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ +#else +# define VM_SOFTDIRTY 0 +#endif + +#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ +#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ +#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ +#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ + +#if defined(CONFIG_X86) +# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ +#elif defined(CONFIG_PPC) +# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ +#elif defined(CONFIG_PARISC) +# define VM_GROWSUP VM_ARCH_1 +#elif defined(CONFIG_METAG) +# define VM_GROWSUP VM_ARCH_1 +#elif defined(CONFIG_IA64) +# define VM_GROWSUP VM_ARCH_1 +#elif !defined(CONFIG_MMU) +# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ +#endif + +#if defined(CONFIG_X86) +/* MPX specific bounds table or bounds directory */ +# define VM_MPX VM_ARCH_2 +#endif + +#ifndef VM_GROWSUP +# define VM_GROWSUP VM_NONE +#endif + +/* Bits set in the VMA until the stack is in its final location */ +#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) + +#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ +#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS +#endif + +#ifdef CONFIG_STACK_GROWSUP +#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) +#else +#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) +#endif + +/* + * Special vmas that are non-mergable, non-mlock()able. + * Note: mm/huge_memory.c VM_NO_THP depends on this definition. + */ +#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) + +/* This mask defines which mm->def_flags a process can inherit its parent */ +#define VM_INIT_DEF_MASK VM_NOHUGEPAGE + +/* + * mapping from the currently active vm_flags protection bits (the + * low four bits) to a page protection mask.. + */ +extern pgprot_t protection_map[16]; + +#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ +#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ +#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ +#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ +#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ +#define FAULT_FLAG_TRIED 0x20 /* Second try */ +#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ + +/* + * vm_fault is filled by the the pagefault handler and passed to the vma's + * ->fault function. The vma's ->fault is responsible for returning a bitmask + * of VM_FAULT_xxx flags that give details about how the fault was handled. + * + * pgoff should be used in favour of virtual_address, if possible. + */ +struct vm_fault { + unsigned int flags; /* FAULT_FLAG_xxx flags */ + pgoff_t pgoff; /* Logical page offset based on vma */ + void __user *virtual_address; /* Faulting virtual address */ + + struct page *cow_page; /* Handler may choose to COW */ + struct page *page; /* ->fault handlers should return a + * page here, unless VM_FAULT_NOPAGE + * is set (which is also implied by + * VM_FAULT_ERROR). + */ + /* for ->map_pages() only */ + pgoff_t max_pgoff; /* map pages for offset from pgoff till + * max_pgoff inclusive */ + pte_t *pte; /* pte entry associated with ->pgoff */ +}; + +/* + * These are the virtual MM functions - opening of an area, closing and + * unmapping it (needed to keep files on disk up-to-date etc), pointer + * to the functions called when a no-page or a wp-page exception occurs. + */ +struct vm_operations_struct { + void (*open)(struct vm_area_struct * area); + void (*close)(struct vm_area_struct * area); + int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); + void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); + + /* notification that a previously read-only page is about to become + * writable, if an error is returned it will cause a SIGBUS */ + int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); + + /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ + int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); + + /* called by access_process_vm when get_user_pages() fails, typically + * for use by special VMAs that can switch between memory and hardware + */ + int (*access)(struct vm_area_struct *vma, unsigned long addr, + void *buf, int len, int write); + + /* Called by the /proc/PID/maps code to ask the vma whether it + * has a special name. Returning non-NULL will also cause this + * vma to be dumped unconditionally. */ + const char *(*name)(struct vm_area_struct *vma); + +#ifdef CONFIG_NUMA + /* + * set_policy() op must add a reference to any non-NULL @new mempolicy + * to hold the policy upon return. Caller should pass NULL @new to + * remove a policy and fall back to surrounding context--i.e. do not + * install a MPOL_DEFAULT policy, nor the task or system default + * mempolicy. + */ + int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); + + /* + * get_policy() op must add reference [mpol_get()] to any policy at + * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure + * in mm/mempolicy.c will do this automatically. + * get_policy() must NOT add a ref if the policy at (vma,addr) is not + * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. + * If no [shared/vma] mempolicy exists at the addr, get_policy() op + * must return NULL--i.e., do not "fallback" to task or system default + * policy. + */ + struct mempolicy *(*get_policy)(struct vm_area_struct *vma, + unsigned long addr); +#endif + /* + * Called by vm_normal_page() for special PTEs to find the + * page for @addr. This is useful if the default behavior + * (using pte_page()) would not find the correct page. + */ + struct page *(*find_special_page)(struct vm_area_struct *vma, + unsigned long addr); +}; + +struct mmu_gather; +struct inode; + +#define page_private(page) ((page)->private) +#define set_page_private(page, v) ((page)->private = (v)) + +/* It's valid only if the page is free path or free_list */ +static inline void set_freepage_migratetype(struct page *page, int migratetype) +{ + page->index = migratetype; +} + +/* It's valid only if the page is free path or free_list */ +static inline int get_freepage_migratetype(struct page *page) +{ + return page->index; +} + +/* + * FIXME: take this include out, include page-flags.h in + * files which need it (119 of them) + */ +#include <linux/page-flags.h> +#include <linux/huge_mm.h> + +/* + * Methods to modify the page usage count. + * + * What counts for a page usage: + * - cache mapping (page->mapping) + * - private data (page->private) + * - page mapped in a task's page tables, each mapping + * is counted separately + * + * Also, many kernel routines increase the page count before a critical + * routine so they can be sure the page doesn't go away from under them. + */ + +/* + * Drop a ref, return true if the refcount fell to zero (the page has no users) + */ +static inline int put_page_testzero(struct page *page) +{ + VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); + return atomic_dec_and_test(&page->_count); +} + +/* + * Try to grab a ref unless the page has a refcount of zero, return false if + * that is the case. + * This can be called when MMU is off so it must not access + * any of the virtual mappings. + */ +static inline int get_page_unless_zero(struct page *page) +{ + return atomic_inc_not_zero(&page->_count); +} + +/* + * Try to drop a ref unless the page has a refcount of one, return false if + * that is the case. + * This is to make sure that the refcount won't become zero after this drop. + * This can be called when MMU is off so it must not access + * any of the virtual mappings. + */ +static inline int put_page_unless_one(struct page *page) +{ + return atomic_add_unless(&page->_count, -1, 1); +} + +extern int page_is_ram(unsigned long pfn); +extern int region_is_ram(resource_size_t phys_addr, unsigned long size); + +/* Support for virtually mapped pages */ +struct page *vmalloc_to_page(const void *addr); +unsigned long vmalloc_to_pfn(const void *addr); + +/* + * Determine if an address is within the vmalloc range + * + * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there + * is no special casing required. + */ +static inline int is_vmalloc_addr(const void *x) +{ +#ifdef CONFIG_MMU + unsigned long addr = (unsigned long)x; + + return addr >= VMALLOC_START && addr < VMALLOC_END; +#else + return 0; +#endif +} +#ifdef CONFIG_MMU +extern int is_vmalloc_or_module_addr(const void *x); +#else +static inline int is_vmalloc_or_module_addr(const void *x) +{ + return 0; +} +#endif + +extern void kvfree(const void *addr); + +static inline void compound_lock(struct page *page) +{ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + VM_BUG_ON_PAGE(PageSlab(page), page); + bit_spin_lock(PG_compound_lock, &page->flags); +#endif +} + +static inline void compound_unlock(struct page *page) +{ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + VM_BUG_ON_PAGE(PageSlab(page), page); + bit_spin_unlock(PG_compound_lock, &page->flags); +#endif +} + +static inline unsigned long compound_lock_irqsave(struct page *page) +{ + unsigned long uninitialized_var(flags); +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + local_irq_save(flags); + compound_lock(page); +#endif + return flags; +} + +static inline void compound_unlock_irqrestore(struct page *page, + unsigned long flags) +{ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + compound_unlock(page); + local_irq_restore(flags); +#endif +} + +static inline struct page *compound_head_by_tail(struct page *tail) +{ + struct page *head = tail->first_page; + + /* + * page->first_page may be a dangling pointer to an old + * compound page, so recheck that it is still a tail + * page before returning. + */ + smp_rmb(); + if (likely(PageTail(tail))) + return head; + return tail; +} + +/* + * Since either compound page could be dismantled asynchronously in THP + * or we access asynchronously arbitrary positioned struct page, there + * would be tail flag race. To handle this race, we should call + * smp_rmb() before checking tail flag. compound_head_by_tail() did it. + */ +static inline struct page *compound_head(struct page *page) +{ + if (unlikely(PageTail(page))) + return compound_head_by_tail(page); + return page; +} + +/* + * If we access compound page synchronously such as access to + * allocated page, there is no need to handle tail flag race, so we can + * check tail flag directly without any synchronization primitive. + */ +static inline struct page *compound_head_fast(struct page *page) +{ + if (unlikely(PageTail(page))) + return page->first_page; + return page; +} + +/* + * The atomic page->_mapcount, starts from -1: so that transitions + * both from it and to it can be tracked, using atomic_inc_and_test + * and atomic_add_negative(-1). + */ +static inline void page_mapcount_reset(struct page *page) +{ + atomic_set(&(page)->_mapcount, -1); +} + +static inline int page_mapcount(struct page *page) +{ + VM_BUG_ON_PAGE(PageSlab(page), page); + return atomic_read(&page->_mapcount) + 1; +} + +static inline int page_count(struct page *page) +{ + return atomic_read(&compound_head(page)->_count); +} + +static inline bool __compound_tail_refcounted(struct page *page) +{ + return !PageSlab(page) && !PageHeadHuge(page); +} + +/* + * This takes a head page as parameter and tells if the + * tail page reference counting can be skipped. + * + * For this to be safe, PageSlab and PageHeadHuge must remain true on + * any given page where they return true here, until all tail pins + * have been released. + */ +static inline bool compound_tail_refcounted(struct page *page) +{ + VM_BUG_ON_PAGE(!PageHead(page), page); + return __compound_tail_refcounted(page); +} + +static inline void get_huge_page_tail(struct page *page) +{ + /* + * __split_huge_page_refcount() cannot run from under us. + */ + VM_BUG_ON_PAGE(!PageTail(page), page); + VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); + VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); + if (compound_tail_refcounted(page->first_page)) + atomic_inc(&page->_mapcount); +} + +extern bool __get_page_tail(struct page *page); + +static inline void get_page(struct page *page) +{ + if (unlikely(PageTail(page))) + if (likely(__get_page_tail(page))) + return; + /* + * Getting a normal page or the head of a compound page + * requires to already have an elevated page->_count. + */ + VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); + atomic_inc(&page->_count); +} + +static inline struct page *virt_to_head_page(const void *x) +{ + struct page *page = virt_to_page(x); + + /* + * We don't need to worry about synchronization of tail flag + * when we call virt_to_head_page() since it is only called for + * already allocated page and this page won't be freed until + * this virt_to_head_page() is finished. So use _fast variant. + */ + return compound_head_fast(page); +} + +/* + * Setup the page count before being freed into the page allocator for + * the first time (boot or memory hotplug) + */ +static inline void init_page_count(struct page *page) +{ + atomic_set(&page->_count, 1); +} + +void put_page(struct page *page); +void put_pages_list(struct list_head *pages); + +void split_page(struct page *page, unsigned int order); +int split_free_page(struct page *page); + +/* + * Compound pages have a destructor function. Provide a + * prototype for that function and accessor functions. + * These are _only_ valid on the head of a PG_compound page. + */ + +static inline void set_compound_page_dtor(struct page *page, + compound_page_dtor *dtor) +{ + page[1].compound_dtor = dtor; +} + +static inline compound_page_dtor *get_compound_page_dtor(struct page *page) +{ + return page[1].compound_dtor; +} + +static inline int compound_order(struct page *page) +{ + if (!PageHead(page)) + return 0; + return page[1].compound_order; +} + +static inline void set_compound_order(struct page *page, unsigned long order) +{ + page[1].compound_order = order; +} + +#ifdef CONFIG_MMU +/* + * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when + * servicing faults for write access. In the normal case, do always want + * pte_mkwrite. But get_user_pages can cause write faults for mappings + * that do not have writing enabled, when used by access_process_vm. + */ +static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) +{ + if (likely(vma->vm_flags & VM_WRITE)) + pte = pte_mkwrite(pte); + return pte; +} + +void do_set_pte(struct vm_area_struct *vma, unsigned long address, + struct page *page, pte_t *pte, bool write, bool anon); +#endif + +/* + * Multiple processes may "see" the same page. E.g. for untouched + * mappings of /dev/null, all processes see the same page full of + * zeroes, and text pages of executables and shared libraries have + * only one copy in memory, at most, normally. + * + * For the non-reserved pages, page_count(page) denotes a reference count. + * page_count() == 0 means the page is free. page->lru is then used for + * freelist management in the buddy allocator. + * page_count() > 0 means the page has been allocated. + * + * Pages are allocated by the slab allocator in order to provide memory + * to kmalloc and kmem_cache_alloc. In this case, the management of the + * page, and the fields in 'struct page' are the responsibility of mm/slab.c + * unless a particular usage is carefully commented. (the responsibility of + * freeing the kmalloc memory is the caller's, of course). + * + * A page may be used by anyone else who does a __get_free_page(). + * In this case, page_count still tracks the references, and should only + * be used through the normal accessor functions. The top bits of page->flags + * and page->virtual store page management information, but all other fields + * are unused and could be used privately, carefully. The management of this + * page is the responsibility of the one who allocated it, and those who have + * subsequently been given references to it. + * + * The other pages (we may call them "pagecache pages") are completely + * managed by the Linux memory manager: I/O, buffers, swapping etc. + * The following discussion applies only to them. + * + * A pagecache page contains an opaque `private' member, which belongs to the + * page's address_space. Usually, this is the address of a circular list of + * the page's disk buffers. PG_private must be set to tell the VM to call + * into the filesystem to release these pages. + * + * A page may belong to an inode's memory mapping. In this case, page->mapping + * is the pointer to the inode, and page->index is the file offset of the page, + * in units of PAGE_CACHE_SIZE. + * + * If pagecache pages are not associated with an inode, they are said to be + * anonymous pages. These may become associated with the swapcache, and in that + * case PG_swapcache is set, and page->private is an offset into the swapcache. + * + * In either case (swapcache or inode backed), the pagecache itself holds one + * reference to the page. Setting PG_private should also increment the + * refcount. The each user mapping also has a reference to the page. + * + * The pagecache pages are stored in a per-mapping radix tree, which is + * rooted at mapping->page_tree, and indexed by offset. + * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space + * lists, we instead now tag pages as dirty/writeback in the radix tree. + * + * All pagecache pages may be subject to I/O: + * - inode pages may need to be read from disk, + * - inode pages which have been modified and are MAP_SHARED may need + * to be written back to the inode on disk, + * - anonymous pages (including MAP_PRIVATE file mappings) which have been + * modified may need to be swapped out to swap space and (later) to be read + * back into memory. + */ + +/* + * The zone field is never updated after free_area_init_core() + * sets it, so none of the operations on it need to be atomic. + */ + +/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ +#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) +#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) +#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) +#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) + +/* + * Define the bit shifts to access each section. For non-existent + * sections we define the shift as 0; that plus a 0 mask ensures + * the compiler will optimise away reference to them. + */ +#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) +#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) +#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) +#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) + +/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ +#ifdef NODE_NOT_IN_PAGE_FLAGS +#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) +#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ + SECTIONS_PGOFF : ZONES_PGOFF) +#else +#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) +#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ + NODES_PGOFF : ZONES_PGOFF) +#endif + +#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) + +#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS +#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS +#endif + +#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) +#define NODES_MASK ((1UL << NODES_WIDTH) - 1) +#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) +#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) +#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) + +static inline enum zone_type page_zonenum(const struct page *page) +{ + return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; +} + +#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) +#define SECTION_IN_PAGE_FLAGS +#endif + +/* + * The identification function is mainly used by the buddy allocator for + * determining if two pages could be buddies. We are not really identifying + * the zone since we could be using the section number id if we do not have + * node id available in page flags. + * We only guarantee that it will return the same value for two combinable + * pages in a zone. + */ +static inline int page_zone_id(struct page *page) +{ + return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; +} + +static inline int zone_to_nid(struct zone *zone) +{ +#ifdef CONFIG_NUMA + return zone->node; +#else + return 0; +#endif +} + +#ifdef NODE_NOT_IN_PAGE_FLAGS +extern int page_to_nid(const struct page *page); +#else +static inline int page_to_nid(const struct page *page) +{ + return (page->flags >> NODES_PGSHIFT) & NODES_MASK; +} +#endif + +#ifdef CONFIG_NUMA_BALANCING +static inline int cpu_pid_to_cpupid(int cpu, int pid) +{ + return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); +} + +static inline int cpupid_to_pid(int cpupid) +{ + return cpupid & LAST__PID_MASK; +} + +static inline int cpupid_to_cpu(int cpupid) +{ + return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; +} + +static inline int cpupid_to_nid(int cpupid) +{ + return cpu_to_node(cpupid_to_cpu(cpupid)); +} + +static inline bool cpupid_pid_unset(int cpupid) +{ + return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); +} + +static inline bool cpupid_cpu_unset(int cpupid) +{ + return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); +} + +static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) +{ + return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); +} + +#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) +#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS +static inline int page_cpupid_xchg_last(struct page *page, int cpupid) +{ + return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); +} + +static inline int page_cpupid_last(struct page *page) +{ + return page->_last_cpupid; +} +static inline void page_cpupid_reset_last(struct page *page) +{ + page->_last_cpupid = -1 & LAST_CPUPID_MASK; +} +#else +static inline int page_cpupid_last(struct page *page) +{ + return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; +} + +extern int page_cpupid_xchg_last(struct page *page, int cpupid); + +static inline void page_cpupid_reset_last(struct page *page) +{ + int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; + + page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); + page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; +} +#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ +#else /* !CONFIG_NUMA_BALANCING */ +static inline int page_cpupid_xchg_last(struct page *page, int cpupid) +{ + return page_to_nid(page); /* XXX */ +} + +static inline int page_cpupid_last(struct page *page) +{ + return page_to_nid(page); /* XXX */ +} + +static inline int cpupid_to_nid(int cpupid) +{ + return -1; +} + +static inline int cpupid_to_pid(int cpupid) +{ + return -1; +} + +static inline int cpupid_to_cpu(int cpupid) +{ + return -1; +} + +static inline int cpu_pid_to_cpupid(int nid, int pid) +{ + return -1; +} + +static inline bool cpupid_pid_unset(int cpupid) +{ + return 1; +} + +static inline void page_cpupid_reset_last(struct page *page) +{ +} + +static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) +{ + return false; +} +#endif /* CONFIG_NUMA_BALANCING */ + +static inline struct zone *page_zone(const struct page *page) +{ + return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; +} + +#ifdef SECTION_IN_PAGE_FLAGS +static inline void set_page_section(struct page *page, unsigned long section) +{ + page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); + page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; +} + +static inline unsigned long page_to_section(const struct page *page) +{ + return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; +} +#endif + +static inline void set_page_zone(struct page *page, enum zone_type zone) +{ + page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); + page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; +} + +static inline void set_page_node(struct page *page, unsigned long node) +{ + page->flags &= ~(NODES_MASK << NODES_PGSHIFT); + page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; +} + +static inline void set_page_links(struct page *page, enum zone_type zone, + unsigned long node, unsigned long pfn) +{ + set_page_zone(page, zone); + set_page_node(page, node); +#ifdef SECTION_IN_PAGE_FLAGS + set_page_section(page, pfn_to_section_nr(pfn)); +#endif +} + +/* + * Some inline functions in vmstat.h depend on page_zone() + */ +#include <linux/vmstat.h> + +static __always_inline void *lowmem_page_address(const struct page *page) +{ + return __va(PFN_PHYS(page_to_pfn(page))); +} + +#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) +#define HASHED_PAGE_VIRTUAL +#endif + +#if defined(WANT_PAGE_VIRTUAL) +static inline void *page_address(const struct page *page) +{ + return page->virtual; +} +static inline void set_page_address(struct page *page, void *address) +{ + page->virtual = address; +} +#define page_address_init() do { } while(0) +#endif + +#if defined(HASHED_PAGE_VIRTUAL) +void *page_address(const struct page *page); +void set_page_address(struct page *page, void *virtual); +void page_address_init(void); +#endif + +#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) +#define page_address(page) lowmem_page_address(page) +#define set_page_address(page, address) do { } while(0) +#define page_address_init() do { } while(0) +#endif + +extern void *page_rmapping(struct page *page); +extern struct anon_vma *page_anon_vma(struct page *page); +extern struct address_space *page_mapping(struct page *page); + +extern struct address_space *__page_file_mapping(struct page *); + +static inline +struct address_space *page_file_mapping(struct page *page) +{ + if (unlikely(PageSwapCache(page))) + return __page_file_mapping(page); + + return page->mapping; +} + +/* + * Return the pagecache index of the passed page. Regular pagecache pages + * use ->index whereas swapcache pages use ->private + */ +static inline pgoff_t page_index(struct page *page) +{ + if (unlikely(PageSwapCache(page))) + return page_private(page); + return page->index; +} + +extern pgoff_t __page_file_index(struct page *page); + +/* + * Return the file index of the page. Regular pagecache pages use ->index + * whereas swapcache pages use swp_offset(->private) + */ +static inline pgoff_t page_file_index(struct page *page) +{ + if (unlikely(PageSwapCache(page))) + return __page_file_index(page); + + return page->index; +} + +/* + * Return true if this page is mapped into pagetables. + */ +static inline int page_mapped(struct page *page) +{ + return atomic_read(&(page)->_mapcount) >= 0; +} + +/* + * Different kinds of faults, as returned by handle_mm_fault(). + * Used to decide whether a process gets delivered SIGBUS or + * just gets major/minor fault counters bumped up. + */ + +#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ + +#define VM_FAULT_OOM 0x0001 +#define VM_FAULT_SIGBUS 0x0002 +#define VM_FAULT_MAJOR 0x0004 +#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ +#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ +#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ +#define VM_FAULT_SIGSEGV 0x0040 + +#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ +#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ +#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ +#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ + +#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ + +#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ + VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ + VM_FAULT_FALLBACK) + +/* Encode hstate index for a hwpoisoned large page */ +#define VM_FAULT_SET_HINDEX(x) ((x) << 12) +#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) + +/* + * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. + */ +extern void pagefault_out_of_memory(void); + +#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) + +/* + * Flags passed to show_mem() and show_free_areas() to suppress output in + * various contexts. + */ +#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ + +extern void show_free_areas(unsigned int flags); +extern bool skip_free_areas_node(unsigned int flags, int nid); + +int shmem_zero_setup(struct vm_area_struct *); +#ifdef CONFIG_SHMEM +bool shmem_mapping(struct address_space *mapping); +#else +static inline bool shmem_mapping(struct address_space *mapping) +{ + return false; +} +#endif + +extern int can_do_mlock(void); +extern int user_shm_lock(size_t, struct user_struct *); +extern void user_shm_unlock(size_t, struct user_struct *); + +/* + * Parameter block passed down to zap_pte_range in exceptional cases. + */ +struct zap_details { + struct address_space *check_mapping; /* Check page->mapping if set */ + pgoff_t first_index; /* Lowest page->index to unmap */ + pgoff_t last_index; /* Highest page->index to unmap */ +}; + +struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, + pte_t pte); + +int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, + unsigned long size); +void zap_page_range(struct vm_area_struct *vma, unsigned long address, + unsigned long size, struct zap_details *); +void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, + unsigned long start, unsigned long end); + +/** + * mm_walk - callbacks for walk_page_range + * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry + * this handler is required to be able to handle + * pmd_trans_huge() pmds. They may simply choose to + * split_huge_page() instead of handling it explicitly. + * @pte_entry: if set, called for each non-empty PTE (4th-level) entry + * @pte_hole: if set, called for each hole at all levels + * @hugetlb_entry: if set, called for each hugetlb entry + * @test_walk: caller specific callback function to determine whether + * we walk over the current vma or not. A positive returned + * value means "do page table walk over the current vma," + * and a negative one means "abort current page table walk + * right now." 0 means "skip the current vma." + * @mm: mm_struct representing the target process of page table walk + * @vma: vma currently walked (NULL if walking outside vmas) + * @private: private data for callbacks' usage + * + * (see the comment on walk_page_range() for more details) + */ +struct mm_walk { + int (*pmd_entry)(pmd_t *pmd, unsigned long addr, + unsigned long next, struct mm_walk *walk); + int (*pte_entry)(pte_t *pte, unsigned long addr, + unsigned long next, struct mm_walk *walk); + int (*pte_hole)(unsigned long addr, unsigned long next, + struct mm_walk *walk); + int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, + unsigned long addr, unsigned long next, + struct mm_walk *walk); + int (*test_walk)(unsigned long addr, unsigned long next, + struct mm_walk *walk); + struct mm_struct *mm; + struct vm_area_struct *vma; + void *private; +}; + +int walk_page_range(unsigned long addr, unsigned long end, + struct mm_walk *walk); +int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); +void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, + unsigned long end, unsigned long floor, unsigned long ceiling); +int copy_page_range(struct mm_struct *dst, struct mm_struct *src, + struct vm_area_struct *vma); +void unmap_mapping_range(struct address_space *mapping, + loff_t const holebegin, loff_t const holelen, int even_cows); +int follow_pfn(struct vm_area_struct *vma, unsigned long address, + unsigned long *pfn); +int follow_phys(struct vm_area_struct *vma, unsigned long address, + unsigned int flags, unsigned long *prot, resource_size_t *phys); +int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, + void *buf, int len, int write); + +static inline void unmap_shared_mapping_range(struct address_space *mapping, + loff_t const holebegin, loff_t const holelen) +{ + unmap_mapping_range(mapping, holebegin, holelen, 0); +} + +extern void truncate_pagecache(struct inode *inode, loff_t new); +extern void truncate_setsize(struct inode *inode, loff_t newsize); +void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); +void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); +int truncate_inode_page(struct address_space *mapping, struct page *page); +int generic_error_remove_page(struct address_space *mapping, struct page *page); +int invalidate_inode_page(struct page *page); + +#ifdef CONFIG_MMU +extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long address, unsigned int flags); +extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, + unsigned long address, unsigned int fault_flags); +#else +static inline int handle_mm_fault(struct mm_struct *mm, + struct vm_area_struct *vma, unsigned long address, + unsigned int flags) +{ + /* should never happen if there's no MMU */ + BUG(); + return VM_FAULT_SIGBUS; +} +static inline int fixup_user_fault(struct task_struct *tsk, + struct mm_struct *mm, unsigned long address, + unsigned int fault_flags) +{ + /* should never happen if there's no MMU */ + BUG(); + return -EFAULT; +} +#endif + +extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int); +extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[], + int); +extern void vma_do_get_file(struct vm_area_struct *, const char[], int); +extern void vma_do_fput(struct vm_area_struct *, const char[], int); + +#define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \ + __LINE__) +#define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \ + __LINE__) +#define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__) +#define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__) + +#ifndef CONFIG_MMU +extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int); +extern void vmr_do_fput(struct vm_region *, const char[], int); + +#define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \ + __LINE__) +#define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__) +#endif /* !CONFIG_MMU */ + +extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); +extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, + void *buf, int len, int write); + +long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + unsigned int foll_flags, struct page **pages, + struct vm_area_struct **vmas, int *nonblocking); +long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + int write, int force, struct page **pages, + struct vm_area_struct **vmas); +long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + int write, int force, struct page **pages, + int *locked); +long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + int write, int force, struct page **pages, + unsigned int gup_flags); +long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + int write, int force, struct page **pages); +int get_user_pages_fast(unsigned long start, int nr_pages, int write, + struct page **pages); +struct kvec; +int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, + struct page **pages); +int get_kernel_page(unsigned long start, int write, struct page **pages); +struct page *get_dump_page(unsigned long addr); + +extern int try_to_release_page(struct page * page, gfp_t gfp_mask); +extern void do_invalidatepage(struct page *page, unsigned int offset, + unsigned int length); + +int __set_page_dirty_nobuffers(struct page *page); +int __set_page_dirty_no_writeback(struct page *page); +int redirty_page_for_writepage(struct writeback_control *wbc, + struct page *page); +void account_page_dirtied(struct page *page, struct address_space *mapping); +void account_page_cleaned(struct page *page, struct address_space *mapping); +int set_page_dirty(struct page *page); +int set_page_dirty_lock(struct page *page); +int clear_page_dirty_for_io(struct page *page); + +int get_cmdline(struct task_struct *task, char *buffer, int buflen); + +/* Is the vma a continuation of the stack vma above it? */ +static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) +{ + return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); +} + +static inline int stack_guard_page_start(struct vm_area_struct *vma, + unsigned long addr) +{ + return (vma->vm_flags & VM_GROWSDOWN) && + (vma->vm_start == addr) && + !vma_growsdown(vma->vm_prev, addr); +} + +/* Is the vma a continuation of the stack vma below it? */ +static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) +{ + return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); +} + +static inline int stack_guard_page_end(struct vm_area_struct *vma, + unsigned long addr) +{ + return (vma->vm_flags & VM_GROWSUP) && + (vma->vm_end == addr) && + !vma_growsup(vma->vm_next, addr); +} + +extern struct task_struct *task_of_stack(struct task_struct *task, + struct vm_area_struct *vma, bool in_group); + +extern unsigned long move_page_tables(struct vm_area_struct *vma, + unsigned long old_addr, struct vm_area_struct *new_vma, + unsigned long new_addr, unsigned long len, + bool need_rmap_locks); +extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, + unsigned long end, pgprot_t newprot, + int dirty_accountable, int prot_numa); +extern int mprotect_fixup(struct vm_area_struct *vma, + struct vm_area_struct **pprev, unsigned long start, + unsigned long end, unsigned long newflags); + +/* + * doesn't attempt to fault and will return short. + */ +int __get_user_pages_fast(unsigned long start, int nr_pages, int write, + struct page **pages); +/* + * per-process(per-mm_struct) statistics. + */ +static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) +{ + long val = atomic_long_read(&mm->rss_stat.count[member]); + +#ifdef SPLIT_RSS_COUNTING + /* + * counter is updated in asynchronous manner and may go to minus. + * But it's never be expected number for users. + */ + if (val < 0) + val = 0; +#endif + return (unsigned long)val; +} + +static inline void add_mm_counter(struct mm_struct *mm, int member, long value) +{ + atomic_long_add(value, &mm->rss_stat.count[member]); +} + +static inline void inc_mm_counter(struct mm_struct *mm, int member) +{ + atomic_long_inc(&mm->rss_stat.count[member]); +} + +static inline void dec_mm_counter(struct mm_struct *mm, int member) +{ + atomic_long_dec(&mm->rss_stat.count[member]); +} + +static inline unsigned long get_mm_rss(struct mm_struct *mm) +{ + return get_mm_counter(mm, MM_FILEPAGES) + + get_mm_counter(mm, MM_ANONPAGES); +} + +static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) +{ + return max(mm->hiwater_rss, get_mm_rss(mm)); +} + +static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) +{ + return max(mm->hiwater_vm, mm->total_vm); +} + +static inline void update_hiwater_rss(struct mm_struct *mm) +{ + unsigned long _rss = get_mm_rss(mm); + + if ((mm)->hiwater_rss < _rss) + (mm)->hiwater_rss = _rss; +} + +static inline void update_hiwater_vm(struct mm_struct *mm) +{ + if (mm->hiwater_vm < mm->total_vm) + mm->hiwater_vm = mm->total_vm; +} + +static inline void reset_mm_hiwater_rss(struct mm_struct *mm) +{ + mm->hiwater_rss = get_mm_rss(mm); +} + +static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, + struct mm_struct *mm) +{ + unsigned long hiwater_rss = get_mm_hiwater_rss(mm); + + if (*maxrss < hiwater_rss) + *maxrss = hiwater_rss; +} + +#if defined(SPLIT_RSS_COUNTING) +void sync_mm_rss(struct mm_struct *mm); +#else +static inline void sync_mm_rss(struct mm_struct *mm) +{ +} +#endif + +int vma_wants_writenotify(struct vm_area_struct *vma); + +extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, + spinlock_t **ptl); +static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, + spinlock_t **ptl) +{ + pte_t *ptep; + __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); + return ptep; +} + +#ifdef __PAGETABLE_PUD_FOLDED +static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, + unsigned long address) +{ + return 0; +} +#else +int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); +#endif + +#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) +static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, + unsigned long address) +{ + return 0; +} + +static inline void mm_nr_pmds_init(struct mm_struct *mm) {} + +static inline unsigned long mm_nr_pmds(struct mm_struct *mm) +{ + return 0; +} + +static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} +static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} + +#else +int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); + +static inline void mm_nr_pmds_init(struct mm_struct *mm) +{ + atomic_long_set(&mm->nr_pmds, 0); +} + +static inline unsigned long mm_nr_pmds(struct mm_struct *mm) +{ + return atomic_long_read(&mm->nr_pmds); +} + +static inline void mm_inc_nr_pmds(struct mm_struct *mm) +{ + atomic_long_inc(&mm->nr_pmds); +} + +static inline void mm_dec_nr_pmds(struct mm_struct *mm) +{ + atomic_long_dec(&mm->nr_pmds); +} +#endif + +int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, + pmd_t *pmd, unsigned long address); +int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); + +/* + * The following ifdef needed to get the 4level-fixup.h header to work. + * Remove it when 4level-fixup.h has been removed. + */ +#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) +static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) +{ + return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? + NULL: pud_offset(pgd, address); +} + +static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) +{ + return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? + NULL: pmd_offset(pud, address); +} +#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ + +#if USE_SPLIT_PTE_PTLOCKS +#if ALLOC_SPLIT_PTLOCKS +void __init ptlock_cache_init(void); +extern bool ptlock_alloc(struct page *page); +extern void ptlock_free(struct page *page); + +static inline spinlock_t *ptlock_ptr(struct page *page) +{ + return page->ptl; +} +#else /* ALLOC_SPLIT_PTLOCKS */ +static inline void ptlock_cache_init(void) +{ +} + +static inline bool ptlock_alloc(struct page *page) +{ + return true; +} + +static inline void ptlock_free(struct page *page) +{ +} + +static inline spinlock_t *ptlock_ptr(struct page *page) +{ + return &page->ptl; +} +#endif /* ALLOC_SPLIT_PTLOCKS */ + +static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) +{ + return ptlock_ptr(pmd_page(*pmd)); +} + +static inline bool ptlock_init(struct page *page) +{ + /* + * prep_new_page() initialize page->private (and therefore page->ptl) + * with 0. Make sure nobody took it in use in between. + * + * It can happen if arch try to use slab for page table allocation: + * slab code uses page->slab_cache and page->first_page (for tail + * pages), which share storage with page->ptl. + */ + VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); + if (!ptlock_alloc(page)) + return false; + spin_lock_init(ptlock_ptr(page)); + return true; +} + +/* Reset page->mapping so free_pages_check won't complain. */ +static inline void pte_lock_deinit(struct page *page) +{ + page->mapping = NULL; + ptlock_free(page); +} + +#else /* !USE_SPLIT_PTE_PTLOCKS */ +/* + * We use mm->page_table_lock to guard all pagetable pages of the mm. + */ +static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) +{ + return &mm->page_table_lock; +} +static inline void ptlock_cache_init(void) {} +static inline bool ptlock_init(struct page *page) { return true; } +static inline void pte_lock_deinit(struct page *page) {} +#endif /* USE_SPLIT_PTE_PTLOCKS */ + +static inline void pgtable_init(void) +{ + ptlock_cache_init(); + pgtable_cache_init(); +} + +static inline bool pgtable_page_ctor(struct page *page) +{ + inc_zone_page_state(page, NR_PAGETABLE); + return ptlock_init(page); +} + +static inline void pgtable_page_dtor(struct page *page) +{ + pte_lock_deinit(page); + dec_zone_page_state(page, NR_PAGETABLE); +} + +#define pte_offset_map_lock(mm, pmd, address, ptlp) \ +({ \ + spinlock_t *__ptl = pte_lockptr(mm, pmd); \ + pte_t *__pte = pte_offset_map(pmd, address); \ + *(ptlp) = __ptl; \ + spin_lock(__ptl); \ + __pte; \ +}) + +#define pte_unmap_unlock(pte, ptl) do { \ + spin_unlock(ptl); \ + pte_unmap(pte); \ +} while (0) + +#define pte_alloc_map(mm, vma, pmd, address) \ + ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ + pmd, address))? \ + NULL: pte_offset_map(pmd, address)) + +#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ + ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ + pmd, address))? \ + NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) + +#define pte_alloc_kernel(pmd, address) \ + ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ + NULL: pte_offset_kernel(pmd, address)) + +#if USE_SPLIT_PMD_PTLOCKS + +static struct page *pmd_to_page(pmd_t *pmd) +{ + unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); + return virt_to_page((void *)((unsigned long) pmd & mask)); +} + +static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) +{ + return ptlock_ptr(pmd_to_page(pmd)); +} + +static inline bool pgtable_pmd_page_ctor(struct page *page) +{ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + page->pmd_huge_pte = NULL; +#endif + return ptlock_init(page); +} + +static inline void pgtable_pmd_page_dtor(struct page *page) +{ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + VM_BUG_ON_PAGE(page->pmd_huge_pte, page); +#endif + ptlock_free(page); +} + +#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) + +#else + +static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) +{ + return &mm->page_table_lock; +} + +static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } +static inline void pgtable_pmd_page_dtor(struct page *page) {} + +#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) + +#endif + +static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) +{ + spinlock_t *ptl = pmd_lockptr(mm, pmd); + spin_lock(ptl); + return ptl; +} + +extern void free_area_init(unsigned long * zones_size); +extern void free_area_init_node(int nid, unsigned long * zones_size, + unsigned long zone_start_pfn, unsigned long *zholes_size); +extern void free_initmem(void); + +/* + * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) + * into the buddy system. The freed pages will be poisoned with pattern + * "poison" if it's within range [0, UCHAR_MAX]. + * Return pages freed into the buddy system. + */ +extern unsigned long free_reserved_area(void *start, void *end, + int poison, char *s); + +#ifdef CONFIG_HIGHMEM +/* + * Free a highmem page into the buddy system, adjusting totalhigh_pages + * and totalram_pages. + */ +extern void free_highmem_page(struct page *page); +#endif + +extern void adjust_managed_page_count(struct page *page, long count); +extern void mem_init_print_info(const char *str); + +/* Free the reserved page into the buddy system, so it gets managed. */ +static inline void __free_reserved_page(struct page *page) +{ + ClearPageReserved(page); + init_page_count(page); + __free_page(page); +} + +static inline void free_reserved_page(struct page *page) +{ + __free_reserved_page(page); + adjust_managed_page_count(page, 1); +} + +static inline void mark_page_reserved(struct page *page) +{ + SetPageReserved(page); + adjust_managed_page_count(page, -1); +} + +/* + * Default method to free all the __init memory into the buddy system. + * The freed pages will be poisoned with pattern "poison" if it's within + * range [0, UCHAR_MAX]. + * Return pages freed into the buddy system. + */ +static inline unsigned long free_initmem_default(int poison) +{ + extern char __init_begin[], __init_end[]; + + return free_reserved_area(&__init_begin, &__init_end, + poison, "unused kernel"); +} + +static inline unsigned long get_num_physpages(void) +{ + int nid; + unsigned long phys_pages = 0; + + for_each_online_node(nid) + phys_pages += node_present_pages(nid); + + return phys_pages; +} + +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP +/* + * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its + * zones, allocate the backing mem_map and account for memory holes in a more + * architecture independent manner. This is a substitute for creating the + * zone_sizes[] and zholes_size[] arrays and passing them to + * free_area_init_node() + * + * An architecture is expected to register range of page frames backed by + * physical memory with memblock_add[_node]() before calling + * free_area_init_nodes() passing in the PFN each zone ends at. At a basic + * usage, an architecture is expected to do something like + * + * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, + * max_highmem_pfn}; + * for_each_valid_physical_page_range() + * memblock_add_node(base, size, nid) + * free_area_init_nodes(max_zone_pfns); + * + * free_bootmem_with_active_regions() calls free_bootmem_node() for each + * registered physical page range. Similarly + * sparse_memory_present_with_active_regions() calls memory_present() for + * each range when SPARSEMEM is enabled. + * + * See mm/page_alloc.c for more information on each function exposed by + * CONFIG_HAVE_MEMBLOCK_NODE_MAP. + */ +extern void free_area_init_nodes(unsigned long *max_zone_pfn); +unsigned long node_map_pfn_alignment(void); +unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, + unsigned long end_pfn); +extern unsigned long absent_pages_in_range(unsigned long start_pfn, + unsigned long end_pfn); +extern void get_pfn_range_for_nid(unsigned int nid, + unsigned long *start_pfn, unsigned long *end_pfn); +extern unsigned long find_min_pfn_with_active_regions(void); +extern void free_bootmem_with_active_regions(int nid, + unsigned long max_low_pfn); +extern void sparse_memory_present_with_active_regions(int nid); + +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + +#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ + !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) +static inline int __early_pfn_to_nid(unsigned long pfn) +{ + return 0; +} +#else +/* please see mm/page_alloc.c */ +extern int __meminit early_pfn_to_nid(unsigned long pfn); +/* there is a per-arch backend function. */ +extern int __meminit __early_pfn_to_nid(unsigned long pfn); +#endif + +extern void set_dma_reserve(unsigned long new_dma_reserve); +extern void memmap_init_zone(unsigned long, int, unsigned long, + unsigned long, enum memmap_context); +extern void setup_per_zone_wmarks(void); +extern int __meminit init_per_zone_wmark_min(void); +extern void mem_init(void); +extern void __init mmap_init(void); +extern void show_mem(unsigned int flags); +extern void si_meminfo(struct sysinfo * val); +extern void si_meminfo_node(struct sysinfo *val, int nid); + +extern __printf(3, 4) +void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); + +extern void setup_per_cpu_pageset(void); + +extern void zone_pcp_update(struct zone *zone); +extern void zone_pcp_reset(struct zone *zone); + +/* page_alloc.c */ +extern int min_free_kbytes; + +/* nommu.c */ +extern atomic_long_t mmap_pages_allocated; +extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); + +/* interval_tree.c */ +void vma_interval_tree_insert(struct vm_area_struct *node, + struct rb_root *root); +void vma_interval_tree_insert_after(struct vm_area_struct *node, + struct vm_area_struct *prev, + struct rb_root *root); +void vma_interval_tree_remove(struct vm_area_struct *node, + struct rb_root *root); +struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, + unsigned long start, unsigned long last); +struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, + unsigned long start, unsigned long last); + +#define vma_interval_tree_foreach(vma, root, start, last) \ + for (vma = vma_interval_tree_iter_first(root, start, last); \ + vma; vma = vma_interval_tree_iter_next(vma, start, last)) + +void anon_vma_interval_tree_insert(struct anon_vma_chain *node, + struct rb_root *root); +void anon_vma_interval_tree_remove(struct anon_vma_chain *node, + struct rb_root *root); +struct anon_vma_chain *anon_vma_interval_tree_iter_first( + struct rb_root *root, unsigned long start, unsigned long last); +struct anon_vma_chain *anon_vma_interval_tree_iter_next( + struct anon_vma_chain *node, unsigned long start, unsigned long last); +#ifdef CONFIG_DEBUG_VM_RB +void anon_vma_interval_tree_verify(struct anon_vma_chain *node); +#endif + +#define anon_vma_interval_tree_foreach(avc, root, start, last) \ + for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ + avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) + +/* mmap.c */ +extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); +extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, + unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); +extern struct vm_area_struct *vma_merge(struct mm_struct *, + struct vm_area_struct *prev, unsigned long addr, unsigned long end, + unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, + struct mempolicy *); +extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); +extern int split_vma(struct mm_struct *, + struct vm_area_struct *, unsigned long addr, int new_below); +extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); +extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, + struct rb_node **, struct rb_node *); +extern void unlink_file_vma(struct vm_area_struct *); +extern struct vm_area_struct *copy_vma(struct vm_area_struct **, + unsigned long addr, unsigned long len, pgoff_t pgoff, + bool *need_rmap_locks); +extern void exit_mmap(struct mm_struct *); + +static inline int check_data_rlimit(unsigned long rlim, + unsigned long new, + unsigned long start, + unsigned long end_data, + unsigned long start_data) +{ + if (rlim < RLIM_INFINITY) { + if (((new - start) + (end_data - start_data)) > rlim) + return -ENOSPC; + } + + return 0; +} + +extern int mm_take_all_locks(struct mm_struct *mm); +extern void mm_drop_all_locks(struct mm_struct *mm); + +extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); +extern struct file *get_mm_exe_file(struct mm_struct *mm); + +extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); +extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, + unsigned long addr, unsigned long len, + unsigned long flags, + const struct vm_special_mapping *spec); +/* This is an obsolete alternative to _install_special_mapping. */ +extern int install_special_mapping(struct mm_struct *mm, + unsigned long addr, unsigned long len, + unsigned long flags, struct page **pages); + +extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); + +extern unsigned long mmap_region(struct file *file, unsigned long addr, + unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); +extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, + unsigned long len, unsigned long prot, unsigned long flags, + unsigned long pgoff, unsigned long *populate); +extern int do_munmap(struct mm_struct *, unsigned long, size_t); + +#ifdef CONFIG_MMU +extern int __mm_populate(unsigned long addr, unsigned long len, + int ignore_errors); +static inline void mm_populate(unsigned long addr, unsigned long len) +{ + /* Ignore errors */ + (void) __mm_populate(addr, len, 1); +} +#else +static inline void mm_populate(unsigned long addr, unsigned long len) {} +#endif + +/* These take the mm semaphore themselves */ +extern unsigned long vm_brk(unsigned long, unsigned long); +extern int vm_munmap(unsigned long, size_t); +extern unsigned long vm_mmap(struct file *, unsigned long, + unsigned long, unsigned long, + unsigned long, unsigned long); + +struct vm_unmapped_area_info { +#define VM_UNMAPPED_AREA_TOPDOWN 1 + unsigned long flags; + unsigned long length; + unsigned long low_limit; + unsigned long high_limit; + unsigned long align_mask; + unsigned long align_offset; +}; + +extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); +extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); + +/* + * Search for an unmapped address range. + * + * We are looking for a range that: + * - does not intersect with any VMA; + * - is contained within the [low_limit, high_limit) interval; + * - is at least the desired size. + * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) + */ +static inline unsigned long +vm_unmapped_area(struct vm_unmapped_area_info *info) +{ + if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) + return unmapped_area_topdown(info); + else + return unmapped_area(info); +} + +/* truncate.c */ +extern void truncate_inode_pages(struct address_space *, loff_t); +extern void truncate_inode_pages_range(struct address_space *, + loff_t lstart, loff_t lend); +extern void truncate_inode_pages_final(struct address_space *); + +/* generic vm_area_ops exported for stackable file systems */ +extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); +extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); +extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); + +/* mm/page-writeback.c */ +int write_one_page(struct page *page, int wait); +void task_dirty_inc(struct task_struct *tsk); + +/* readahead.c */ +#define VM_MAX_READAHEAD 128 /* kbytes */ +#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ + +int force_page_cache_readahead(struct address_space *mapping, struct file *filp, + pgoff_t offset, unsigned long nr_to_read); + +void page_cache_sync_readahead(struct address_space *mapping, + struct file_ra_state *ra, + struct file *filp, + pgoff_t offset, + unsigned long size); + +void page_cache_async_readahead(struct address_space *mapping, + struct file_ra_state *ra, + struct file *filp, + struct page *pg, + pgoff_t offset, + unsigned long size); + +unsigned long max_sane_readahead(unsigned long nr); + +/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ +extern int expand_stack(struct vm_area_struct *vma, unsigned long address); + +/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ +extern int expand_downwards(struct vm_area_struct *vma, + unsigned long address); +#if VM_GROWSUP +extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); +#else + #define expand_upwards(vma, address) (0) +#endif + +/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ +extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); +extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, + struct vm_area_struct **pprev); + +/* Look up the first VMA which intersects the interval start_addr..end_addr-1, + NULL if none. Assume start_addr < end_addr. */ +static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) +{ + struct vm_area_struct * vma = find_vma(mm,start_addr); + + if (vma && end_addr <= vma->vm_start) + vma = NULL; + return vma; +} + +static inline unsigned long vma_pages(struct vm_area_struct *vma) +{ + return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; +} + +/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ +static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, + unsigned long vm_start, unsigned long vm_end) +{ + struct vm_area_struct *vma = find_vma(mm, vm_start); + + if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) + vma = NULL; + + return vma; +} + +#ifdef CONFIG_MMU +pgprot_t vm_get_page_prot(unsigned long vm_flags); +void vma_set_page_prot(struct vm_area_struct *vma); +#else +static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) +{ + return __pgprot(0); +} +static inline void vma_set_page_prot(struct vm_area_struct *vma) +{ + vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); +} +#endif + +#ifdef CONFIG_NUMA_BALANCING +unsigned long change_prot_numa(struct vm_area_struct *vma, + unsigned long start, unsigned long end); +#endif + +struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); +int remap_pfn_range(struct vm_area_struct *, unsigned long addr, + unsigned long pfn, unsigned long size, pgprot_t); +int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); +int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, + unsigned long pfn); +int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, + unsigned long pfn); +int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); + + +struct page *follow_page_mask(struct vm_area_struct *vma, + unsigned long address, unsigned int foll_flags, + unsigned int *page_mask); + +static inline struct page *follow_page(struct vm_area_struct *vma, + unsigned long address, unsigned int foll_flags) +{ + unsigned int unused_page_mask; + return follow_page_mask(vma, address, foll_flags, &unused_page_mask); +} + +#define FOLL_WRITE 0x01 /* check pte is writable */ +#define FOLL_TOUCH 0x02 /* mark page accessed */ +#define FOLL_GET 0x04 /* do get_page on page */ +#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ +#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ +#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO + * and return without waiting upon it */ +#define FOLL_POPULATE 0x40 /* fault in page */ +#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ +#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ +#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ +#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ +#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ + +typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, + void *data); +extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, + unsigned long size, pte_fn_t fn, void *data); + +#ifdef CONFIG_PROC_FS +void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); +#else +static inline void vm_stat_account(struct mm_struct *mm, + unsigned long flags, struct file *file, long pages) +{ + mm->total_vm += pages; +} +#endif /* CONFIG_PROC_FS */ + +#ifdef CONFIG_DEBUG_PAGEALLOC +extern bool _debug_pagealloc_enabled; +extern void __kernel_map_pages(struct page *page, int numpages, int enable); + +static inline bool debug_pagealloc_enabled(void) +{ + return _debug_pagealloc_enabled; +} + +static inline void +kernel_map_pages(struct page *page, int numpages, int enable) +{ + if (!debug_pagealloc_enabled()) + return; + + __kernel_map_pages(page, numpages, enable); +} +#ifdef CONFIG_HIBERNATION +extern bool kernel_page_present(struct page *page); +#endif /* CONFIG_HIBERNATION */ +#else +static inline void +kernel_map_pages(struct page *page, int numpages, int enable) {} +#ifdef CONFIG_HIBERNATION +static inline bool kernel_page_present(struct page *page) { return true; } +#endif /* CONFIG_HIBERNATION */ +#endif + +#ifdef __HAVE_ARCH_GATE_AREA +extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); +extern int in_gate_area_no_mm(unsigned long addr); +extern int in_gate_area(struct mm_struct *mm, unsigned long addr); +#else +static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) +{ + return NULL; +} +static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } +static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) +{ + return 0; +} +#endif /* __HAVE_ARCH_GATE_AREA */ + +#ifdef CONFIG_SYSCTL +extern int sysctl_drop_caches; +int drop_caches_sysctl_handler(struct ctl_table *, int, + void __user *, size_t *, loff_t *); +#endif + +void drop_pagecache(void); +void drop_slab(void); +void drop_slab_node(int nid); + +#ifndef CONFIG_MMU +#define randomize_va_space 0 +#else +extern int randomize_va_space; +#endif + +const char * arch_vma_name(struct vm_area_struct *vma); +void print_vma_addr(char *prefix, unsigned long rip); + +void sparse_mem_maps_populate_node(struct page **map_map, + unsigned long pnum_begin, + unsigned long pnum_end, + unsigned long map_count, + int nodeid); + +struct page *sparse_mem_map_populate(unsigned long pnum, int nid); +pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); +pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); +pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); +pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); +void *vmemmap_alloc_block(unsigned long size, int node); +void *vmemmap_alloc_block_buf(unsigned long size, int node); +void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); +int vmemmap_populate_basepages(unsigned long start, unsigned long end, + int node); +int vmemmap_populate(unsigned long start, unsigned long end, int node); +void vmemmap_populate_print_last(void); +#ifdef CONFIG_MEMORY_HOTPLUG +void vmemmap_free(unsigned long start, unsigned long end); +#endif +void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, + unsigned long size); + +enum mf_flags { + MF_COUNT_INCREASED = 1 << 0, + MF_ACTION_REQUIRED = 1 << 1, + MF_MUST_KILL = 1 << 2, + MF_SOFT_OFFLINE = 1 << 3, +}; +extern int memory_failure(unsigned long pfn, int trapno, int flags); +extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); +extern int unpoison_memory(unsigned long pfn); +extern int sysctl_memory_failure_early_kill; +extern int sysctl_memory_failure_recovery; +extern void shake_page(struct page *p, int access); +extern atomic_long_t num_poisoned_pages; +extern int soft_offline_page(struct page *page, int flags); + +#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) +extern void clear_huge_page(struct page *page, + unsigned long addr, + unsigned int pages_per_huge_page); +extern void copy_user_huge_page(struct page *dst, struct page *src, + unsigned long addr, struct vm_area_struct *vma, + unsigned int pages_per_huge_page); +#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ + +extern struct page_ext_operations debug_guardpage_ops; +extern struct page_ext_operations page_poisoning_ops; + +#ifdef CONFIG_DEBUG_PAGEALLOC +extern unsigned int _debug_guardpage_minorder; +extern bool _debug_guardpage_enabled; + +static inline unsigned int debug_guardpage_minorder(void) +{ + return _debug_guardpage_minorder; +} + +static inline bool debug_guardpage_enabled(void) +{ + return _debug_guardpage_enabled; +} + +static inline bool page_is_guard(struct page *page) +{ + struct page_ext *page_ext; + + if (!debug_guardpage_enabled()) + return false; + + page_ext = lookup_page_ext(page); + return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); +} +#else +static inline unsigned int debug_guardpage_minorder(void) { return 0; } +static inline bool debug_guardpage_enabled(void) { return false; } +static inline bool page_is_guard(struct page *page) { return false; } +#endif /* CONFIG_DEBUG_PAGEALLOC */ + +#if MAX_NUMNODES > 1 +void __init setup_nr_node_ids(void); +#else +static inline void setup_nr_node_ids(void) {} +#endif + +#endif /* __KERNEL__ */ +#endif /* _LINUX_MM_H */ |