summaryrefslogtreecommitdiff
path: root/include/linux/security.h
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-09-08 01:01:14 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-09-08 01:01:14 -0300
commite5fd91f1ef340da553f7a79da9540c3db711c937 (patch)
treeb11842027dc6641da63f4bcc524f8678263304a3 /include/linux/security.h
parent2a9b0348e685a63d97486f6749622b61e9e3292f (diff)
Linux-libre 4.2-gnu
Diffstat (limited to 'include/linux/security.h')
-rw-r--r--include/linux/security.h1628
1 files changed, 8 insertions, 1620 deletions
diff --git a/include/linux/security.h b/include/linux/security.h
index 18264ea9e..79d85ddf8 100644
--- a/include/linux/security.h
+++ b/include/linux/security.h
@@ -27,6 +27,7 @@
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
+#include <linux/mm.h>
struct linux_binprm;
struct cred;
@@ -43,7 +44,6 @@ struct file;
struct vfsmount;
struct path;
struct qstr;
-struct nameidata;
struct iattr;
struct fown_struct;
struct file_operations;
@@ -54,9 +54,6 @@ struct xattr;
struct xfrm_sec_ctx;
struct mm_struct;
-/* Maximum number of letters for an LSM name string */
-#define SECURITY_NAME_MAX 10
-
/* If capable should audit the security request */
#define SECURITY_CAP_NOAUDIT 0
#define SECURITY_CAP_AUDIT 1
@@ -69,10 +66,7 @@ struct audit_krule;
struct user_namespace;
struct timezone;
-/*
- * These functions are in security/capability.c and are used
- * as the default capabilities functions
- */
+/* These functions are in security/commoncap.c */
extern int cap_capable(const struct cred *cred, struct user_namespace *ns,
int cap, int audit);
extern int cap_settime(const struct timespec *ts, const struct timezone *tz);
@@ -114,10 +108,6 @@ struct xfrm_state;
struct xfrm_user_sec_ctx;
struct seq_file;
-extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
-
-void reset_security_ops(void);
-
#ifdef CONFIG_MMU
extern unsigned long mmap_min_addr;
extern unsigned long dac_mmap_min_addr;
@@ -188,1581 +178,8 @@ static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
opts->num_mnt_opts = 0;
}
-/**
- * struct security_operations - main security structure
- *
- * Security module identifier.
- *
- * @name:
- * A string that acts as a unique identifier for the LSM with max number
- * of characters = SECURITY_NAME_MAX.
- *
- * Security hooks for program execution operations.
- *
- * @bprm_set_creds:
- * Save security information in the bprm->security field, typically based
- * on information about the bprm->file, for later use by the apply_creds
- * hook. This hook may also optionally check permissions (e.g. for
- * transitions between security domains).
- * This hook may be called multiple times during a single execve, e.g. for
- * interpreters. The hook can tell whether it has already been called by
- * checking to see if @bprm->security is non-NULL. If so, then the hook
- * may decide either to retain the security information saved earlier or
- * to replace it.
- * @bprm contains the linux_binprm structure.
- * Return 0 if the hook is successful and permission is granted.
- * @bprm_check_security:
- * This hook mediates the point when a search for a binary handler will
- * begin. It allows a check the @bprm->security value which is set in the
- * preceding set_creds call. The primary difference from set_creds is
- * that the argv list and envp list are reliably available in @bprm. This
- * hook may be called multiple times during a single execve; and in each
- * pass set_creds is called first.
- * @bprm contains the linux_binprm structure.
- * Return 0 if the hook is successful and permission is granted.
- * @bprm_committing_creds:
- * Prepare to install the new security attributes of a process being
- * transformed by an execve operation, based on the old credentials
- * pointed to by @current->cred and the information set in @bprm->cred by
- * the bprm_set_creds hook. @bprm points to the linux_binprm structure.
- * This hook is a good place to perform state changes on the process such
- * as closing open file descriptors to which access will no longer be
- * granted when the attributes are changed. This is called immediately
- * before commit_creds().
- * @bprm_committed_creds:
- * Tidy up after the installation of the new security attributes of a
- * process being transformed by an execve operation. The new credentials
- * have, by this point, been set to @current->cred. @bprm points to the
- * linux_binprm structure. This hook is a good place to perform state
- * changes on the process such as clearing out non-inheritable signal
- * state. This is called immediately after commit_creds().
- * @bprm_secureexec:
- * Return a boolean value (0 or 1) indicating whether a "secure exec"
- * is required. The flag is passed in the auxiliary table
- * on the initial stack to the ELF interpreter to indicate whether libc
- * should enable secure mode.
- * @bprm contains the linux_binprm structure.
- *
- * Security hooks for filesystem operations.
- *
- * @sb_alloc_security:
- * Allocate and attach a security structure to the sb->s_security field.
- * The s_security field is initialized to NULL when the structure is
- * allocated.
- * @sb contains the super_block structure to be modified.
- * Return 0 if operation was successful.
- * @sb_free_security:
- * Deallocate and clear the sb->s_security field.
- * @sb contains the super_block structure to be modified.
- * @sb_statfs:
- * Check permission before obtaining filesystem statistics for the @mnt
- * mountpoint.
- * @dentry is a handle on the superblock for the filesystem.
- * Return 0 if permission is granted.
- * @sb_mount:
- * Check permission before an object specified by @dev_name is mounted on
- * the mount point named by @nd. For an ordinary mount, @dev_name
- * identifies a device if the file system type requires a device. For a
- * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
- * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
- * pathname of the object being mounted.
- * @dev_name contains the name for object being mounted.
- * @path contains the path for mount point object.
- * @type contains the filesystem type.
- * @flags contains the mount flags.
- * @data contains the filesystem-specific data.
- * Return 0 if permission is granted.
- * @sb_copy_data:
- * Allow mount option data to be copied prior to parsing by the filesystem,
- * so that the security module can extract security-specific mount
- * options cleanly (a filesystem may modify the data e.g. with strsep()).
- * This also allows the original mount data to be stripped of security-
- * specific options to avoid having to make filesystems aware of them.
- * @type the type of filesystem being mounted.
- * @orig the original mount data copied from userspace.
- * @copy copied data which will be passed to the security module.
- * Returns 0 if the copy was successful.
- * @sb_remount:
- * Extracts security system specific mount options and verifies no changes
- * are being made to those options.
- * @sb superblock being remounted
- * @data contains the filesystem-specific data.
- * Return 0 if permission is granted.
- * @sb_umount:
- * Check permission before the @mnt file system is unmounted.
- * @mnt contains the mounted file system.
- * @flags contains the unmount flags, e.g. MNT_FORCE.
- * Return 0 if permission is granted.
- * @sb_pivotroot:
- * Check permission before pivoting the root filesystem.
- * @old_path contains the path for the new location of the current root (put_old).
- * @new_path contains the path for the new root (new_root).
- * Return 0 if permission is granted.
- * @sb_set_mnt_opts:
- * Set the security relevant mount options used for a superblock
- * @sb the superblock to set security mount options for
- * @opts binary data structure containing all lsm mount data
- * @sb_clone_mnt_opts:
- * Copy all security options from a given superblock to another
- * @oldsb old superblock which contain information to clone
- * @newsb new superblock which needs filled in
- * @sb_parse_opts_str:
- * Parse a string of security data filling in the opts structure
- * @options string containing all mount options known by the LSM
- * @opts binary data structure usable by the LSM
- * @dentry_init_security:
- * Compute a context for a dentry as the inode is not yet available
- * since NFSv4 has no label backed by an EA anyway.
- * @dentry dentry to use in calculating the context.
- * @mode mode used to determine resource type.
- * @name name of the last path component used to create file
- * @ctx pointer to place the pointer to the resulting context in.
- * @ctxlen point to place the length of the resulting context.
- *
- *
- * Security hooks for inode operations.
- *
- * @inode_alloc_security:
- * Allocate and attach a security structure to @inode->i_security. The
- * i_security field is initialized to NULL when the inode structure is
- * allocated.
- * @inode contains the inode structure.
- * Return 0 if operation was successful.
- * @inode_free_security:
- * @inode contains the inode structure.
- * Deallocate the inode security structure and set @inode->i_security to
- * NULL.
- * @inode_init_security:
- * Obtain the security attribute name suffix and value to set on a newly
- * created inode and set up the incore security field for the new inode.
- * This hook is called by the fs code as part of the inode creation
- * transaction and provides for atomic labeling of the inode, unlike
- * the post_create/mkdir/... hooks called by the VFS. The hook function
- * is expected to allocate the name and value via kmalloc, with the caller
- * being responsible for calling kfree after using them.
- * If the security module does not use security attributes or does
- * not wish to put a security attribute on this particular inode,
- * then it should return -EOPNOTSUPP to skip this processing.
- * @inode contains the inode structure of the newly created inode.
- * @dir contains the inode structure of the parent directory.
- * @qstr contains the last path component of the new object
- * @name will be set to the allocated name suffix (e.g. selinux).
- * @value will be set to the allocated attribute value.
- * @len will be set to the length of the value.
- * Returns 0 if @name and @value have been successfully set,
- * -EOPNOTSUPP if no security attribute is needed, or
- * -ENOMEM on memory allocation failure.
- * @inode_create:
- * Check permission to create a regular file.
- * @dir contains inode structure of the parent of the new file.
- * @dentry contains the dentry structure for the file to be created.
- * @mode contains the file mode of the file to be created.
- * Return 0 if permission is granted.
- * @inode_link:
- * Check permission before creating a new hard link to a file.
- * @old_dentry contains the dentry structure for an existing link to the file.
- * @dir contains the inode structure of the parent directory of the new link.
- * @new_dentry contains the dentry structure for the new link.
- * Return 0 if permission is granted.
- * @path_link:
- * Check permission before creating a new hard link to a file.
- * @old_dentry contains the dentry structure for an existing link
- * to the file.
- * @new_dir contains the path structure of the parent directory of
- * the new link.
- * @new_dentry contains the dentry structure for the new link.
- * Return 0 if permission is granted.
- * @inode_unlink:
- * Check the permission to remove a hard link to a file.
- * @dir contains the inode structure of parent directory of the file.
- * @dentry contains the dentry structure for file to be unlinked.
- * Return 0 if permission is granted.
- * @path_unlink:
- * Check the permission to remove a hard link to a file.
- * @dir contains the path structure of parent directory of the file.
- * @dentry contains the dentry structure for file to be unlinked.
- * Return 0 if permission is granted.
- * @inode_symlink:
- * Check the permission to create a symbolic link to a file.
- * @dir contains the inode structure of parent directory of the symbolic link.
- * @dentry contains the dentry structure of the symbolic link.
- * @old_name contains the pathname of file.
- * Return 0 if permission is granted.
- * @path_symlink:
- * Check the permission to create a symbolic link to a file.
- * @dir contains the path structure of parent directory of
- * the symbolic link.
- * @dentry contains the dentry structure of the symbolic link.
- * @old_name contains the pathname of file.
- * Return 0 if permission is granted.
- * @inode_mkdir:
- * Check permissions to create a new directory in the existing directory
- * associated with inode structure @dir.
- * @dir contains the inode structure of parent of the directory to be created.
- * @dentry contains the dentry structure of new directory.
- * @mode contains the mode of new directory.
- * Return 0 if permission is granted.
- * @path_mkdir:
- * Check permissions to create a new directory in the existing directory
- * associated with path structure @path.
- * @dir contains the path structure of parent of the directory
- * to be created.
- * @dentry contains the dentry structure of new directory.
- * @mode contains the mode of new directory.
- * Return 0 if permission is granted.
- * @inode_rmdir:
- * Check the permission to remove a directory.
- * @dir contains the inode structure of parent of the directory to be removed.
- * @dentry contains the dentry structure of directory to be removed.
- * Return 0 if permission is granted.
- * @path_rmdir:
- * Check the permission to remove a directory.
- * @dir contains the path structure of parent of the directory to be
- * removed.
- * @dentry contains the dentry structure of directory to be removed.
- * Return 0 if permission is granted.
- * @inode_mknod:
- * Check permissions when creating a special file (or a socket or a fifo
- * file created via the mknod system call). Note that if mknod operation
- * is being done for a regular file, then the create hook will be called
- * and not this hook.
- * @dir contains the inode structure of parent of the new file.
- * @dentry contains the dentry structure of the new file.
- * @mode contains the mode of the new file.
- * @dev contains the device number.
- * Return 0 if permission is granted.
- * @path_mknod:
- * Check permissions when creating a file. Note that this hook is called
- * even if mknod operation is being done for a regular file.
- * @dir contains the path structure of parent of the new file.
- * @dentry contains the dentry structure of the new file.
- * @mode contains the mode of the new file.
- * @dev contains the undecoded device number. Use new_decode_dev() to get
- * the decoded device number.
- * Return 0 if permission is granted.
- * @inode_rename:
- * Check for permission to rename a file or directory.
- * @old_dir contains the inode structure for parent of the old link.
- * @old_dentry contains the dentry structure of the old link.
- * @new_dir contains the inode structure for parent of the new link.
- * @new_dentry contains the dentry structure of the new link.
- * Return 0 if permission is granted.
- * @path_rename:
- * Check for permission to rename a file or directory.
- * @old_dir contains the path structure for parent of the old link.
- * @old_dentry contains the dentry structure of the old link.
- * @new_dir contains the path structure for parent of the new link.
- * @new_dentry contains the dentry structure of the new link.
- * Return 0 if permission is granted.
- * @path_chmod:
- * Check for permission to change DAC's permission of a file or directory.
- * @dentry contains the dentry structure.
- * @mnt contains the vfsmnt structure.
- * @mode contains DAC's mode.
- * Return 0 if permission is granted.
- * @path_chown:
- * Check for permission to change owner/group of a file or directory.
- * @path contains the path structure.
- * @uid contains new owner's ID.
- * @gid contains new group's ID.
- * Return 0 if permission is granted.
- * @path_chroot:
- * Check for permission to change root directory.
- * @path contains the path structure.
- * Return 0 if permission is granted.
- * @inode_readlink:
- * Check the permission to read the symbolic link.
- * @dentry contains the dentry structure for the file link.
- * Return 0 if permission is granted.
- * @inode_follow_link:
- * Check permission to follow a symbolic link when looking up a pathname.
- * @dentry contains the dentry structure for the link.
- * @nd contains the nameidata structure for the parent directory.
- * Return 0 if permission is granted.
- * @inode_permission:
- * Check permission before accessing an inode. This hook is called by the
- * existing Linux permission function, so a security module can use it to
- * provide additional checking for existing Linux permission checks.
- * Notice that this hook is called when a file is opened (as well as many
- * other operations), whereas the file_security_ops permission hook is
- * called when the actual read/write operations are performed.
- * @inode contains the inode structure to check.
- * @mask contains the permission mask.
- * Return 0 if permission is granted.
- * @inode_setattr:
- * Check permission before setting file attributes. Note that the kernel
- * call to notify_change is performed from several locations, whenever
- * file attributes change (such as when a file is truncated, chown/chmod
- * operations, transferring disk quotas, etc).
- * @dentry contains the dentry structure for the file.
- * @attr is the iattr structure containing the new file attributes.
- * Return 0 if permission is granted.
- * @path_truncate:
- * Check permission before truncating a file.
- * @path contains the path structure for the file.
- * Return 0 if permission is granted.
- * @inode_getattr:
- * Check permission before obtaining file attributes.
- * @mnt is the vfsmount where the dentry was looked up
- * @dentry contains the dentry structure for the file.
- * Return 0 if permission is granted.
- * @inode_setxattr:
- * Check permission before setting the extended attributes
- * @value identified by @name for @dentry.
- * Return 0 if permission is granted.
- * @inode_post_setxattr:
- * Update inode security field after successful setxattr operation.
- * @value identified by @name for @dentry.
- * @inode_getxattr:
- * Check permission before obtaining the extended attributes
- * identified by @name for @dentry.
- * Return 0 if permission is granted.
- * @inode_listxattr:
- * Check permission before obtaining the list of extended attribute
- * names for @dentry.
- * Return 0 if permission is granted.
- * @inode_removexattr:
- * Check permission before removing the extended attribute
- * identified by @name for @dentry.
- * Return 0 if permission is granted.
- * @inode_getsecurity:
- * Retrieve a copy of the extended attribute representation of the
- * security label associated with @name for @inode via @buffer. Note that
- * @name is the remainder of the attribute name after the security prefix
- * has been removed. @alloc is used to specify of the call should return a
- * value via the buffer or just the value length Return size of buffer on
- * success.
- * @inode_setsecurity:
- * Set the security label associated with @name for @inode from the
- * extended attribute value @value. @size indicates the size of the
- * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
- * Note that @name is the remainder of the attribute name after the
- * security. prefix has been removed.
- * Return 0 on success.
- * @inode_listsecurity:
- * Copy the extended attribute names for the security labels
- * associated with @inode into @buffer. The maximum size of @buffer
- * is specified by @buffer_size. @buffer may be NULL to request
- * the size of the buffer required.
- * Returns number of bytes used/required on success.
- * @inode_need_killpriv:
- * Called when an inode has been changed.
- * @dentry is the dentry being changed.
- * Return <0 on error to abort the inode change operation.
- * Return 0 if inode_killpriv does not need to be called.
- * Return >0 if inode_killpriv does need to be called.
- * @inode_killpriv:
- * The setuid bit is being removed. Remove similar security labels.
- * Called with the dentry->d_inode->i_mutex held.
- * @dentry is the dentry being changed.
- * Return 0 on success. If error is returned, then the operation
- * causing setuid bit removal is failed.
- * @inode_getsecid:
- * Get the secid associated with the node.
- * @inode contains a pointer to the inode.
- * @secid contains a pointer to the location where result will be saved.
- * In case of failure, @secid will be set to zero.
- *
- * Security hooks for file operations
- *
- * @file_permission:
- * Check file permissions before accessing an open file. This hook is
- * called by various operations that read or write files. A security
- * module can use this hook to perform additional checking on these
- * operations, e.g. to revalidate permissions on use to support privilege
- * bracketing or policy changes. Notice that this hook is used when the
- * actual read/write operations are performed, whereas the
- * inode_security_ops hook is called when a file is opened (as well as
- * many other operations).
- * Caveat: Although this hook can be used to revalidate permissions for
- * various system call operations that read or write files, it does not
- * address the revalidation of permissions for memory-mapped files.
- * Security modules must handle this separately if they need such
- * revalidation.
- * @file contains the file structure being accessed.
- * @mask contains the requested permissions.
- * Return 0 if permission is granted.
- * @file_alloc_security:
- * Allocate and attach a security structure to the file->f_security field.
- * The security field is initialized to NULL when the structure is first
- * created.
- * @file contains the file structure to secure.
- * Return 0 if the hook is successful and permission is granted.
- * @file_free_security:
- * Deallocate and free any security structures stored in file->f_security.
- * @file contains the file structure being modified.
- * @file_ioctl:
- * @file contains the file structure.
- * @cmd contains the operation to perform.
- * @arg contains the operational arguments.
- * Check permission for an ioctl operation on @file. Note that @arg
- * sometimes represents a user space pointer; in other cases, it may be a
- * simple integer value. When @arg represents a user space pointer, it
- * should never be used by the security module.
- * Return 0 if permission is granted.
- * @mmap_addr :
- * Check permissions for a mmap operation at @addr.
- * @addr contains virtual address that will be used for the operation.
- * Return 0 if permission is granted.
- * @mmap_file :
- * Check permissions for a mmap operation. The @file may be NULL, e.g.
- * if mapping anonymous memory.
- * @file contains the file structure for file to map (may be NULL).
- * @reqprot contains the protection requested by the application.
- * @prot contains the protection that will be applied by the kernel.
- * @flags contains the operational flags.
- * Return 0 if permission is granted.
- * @file_mprotect:
- * Check permissions before changing memory access permissions.
- * @vma contains the memory region to modify.
- * @reqprot contains the protection requested by the application.
- * @prot contains the protection that will be applied by the kernel.
- * Return 0 if permission is granted.
- * @file_lock:
- * Check permission before performing file locking operations.
- * Note: this hook mediates both flock and fcntl style locks.
- * @file contains the file structure.
- * @cmd contains the posix-translated lock operation to perform
- * (e.g. F_RDLCK, F_WRLCK).
- * Return 0 if permission is granted.
- * @file_fcntl:
- * Check permission before allowing the file operation specified by @cmd
- * from being performed on the file @file. Note that @arg sometimes
- * represents a user space pointer; in other cases, it may be a simple
- * integer value. When @arg represents a user space pointer, it should
- * never be used by the security module.
- * @file contains the file structure.
- * @cmd contains the operation to be performed.
- * @arg contains the operational arguments.
- * Return 0 if permission is granted.
- * @file_set_fowner:
- * Save owner security information (typically from current->security) in
- * file->f_security for later use by the send_sigiotask hook.
- * @file contains the file structure to update.
- * Return 0 on success.
- * @file_send_sigiotask:
- * Check permission for the file owner @fown to send SIGIO or SIGURG to the
- * process @tsk. Note that this hook is sometimes called from interrupt.
- * Note that the fown_struct, @fown, is never outside the context of a
- * struct file, so the file structure (and associated security information)
- * can always be obtained:
- * container_of(fown, struct file, f_owner)
- * @tsk contains the structure of task receiving signal.
- * @fown contains the file owner information.
- * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
- * Return 0 if permission is granted.
- * @file_receive:
- * This hook allows security modules to control the ability of a process
- * to receive an open file descriptor via socket IPC.
- * @file contains the file structure being received.
- * Return 0 if permission is granted.
- * @file_open
- * Save open-time permission checking state for later use upon
- * file_permission, and recheck access if anything has changed
- * since inode_permission.
- *
- * Security hooks for task operations.
- *
- * @task_create:
- * Check permission before creating a child process. See the clone(2)
- * manual page for definitions of the @clone_flags.
- * @clone_flags contains the flags indicating what should be shared.
- * Return 0 if permission is granted.
- * @task_free:
- * @task task being freed
- * Handle release of task-related resources. (Note that this can be called
- * from interrupt context.)
- * @cred_alloc_blank:
- * @cred points to the credentials.
- * @gfp indicates the atomicity of any memory allocations.
- * Only allocate sufficient memory and attach to @cred such that
- * cred_transfer() will not get ENOMEM.
- * @cred_free:
- * @cred points to the credentials.
- * Deallocate and clear the cred->security field in a set of credentials.
- * @cred_prepare:
- * @new points to the new credentials.
- * @old points to the original credentials.
- * @gfp indicates the atomicity of any memory allocations.
- * Prepare a new set of credentials by copying the data from the old set.
- * @cred_transfer:
- * @new points to the new credentials.
- * @old points to the original credentials.
- * Transfer data from original creds to new creds
- * @kernel_act_as:
- * Set the credentials for a kernel service to act as (subjective context).
- * @new points to the credentials to be modified.
- * @secid specifies the security ID to be set
- * The current task must be the one that nominated @secid.
- * Return 0 if successful.
- * @kernel_create_files_as:
- * Set the file creation context in a set of credentials to be the same as
- * the objective context of the specified inode.
- * @new points to the credentials to be modified.
- * @inode points to the inode to use as a reference.
- * The current task must be the one that nominated @inode.
- * Return 0 if successful.
- * @kernel_fw_from_file:
- * Load firmware from userspace (not called for built-in firmware).
- * @file contains the file structure pointing to the file containing
- * the firmware to load. This argument will be NULL if the firmware
- * was loaded via the uevent-triggered blob-based interface exposed
- * by CONFIG_FW_LOADER_USER_HELPER.
- * @buf pointer to buffer containing firmware contents.
- * @size length of the firmware contents.
- * Return 0 if permission is granted.
- * @kernel_module_request:
- * Ability to trigger the kernel to automatically upcall to userspace for
- * userspace to load a kernel module with the given name.
- * @kmod_name name of the module requested by the kernel
- * Return 0 if successful.
- * @kernel_module_from_file:
- * Load a kernel module from userspace.
- * @file contains the file structure pointing to the file containing
- * the kernel module to load. If the module is being loaded from a blob,
- * this argument will be NULL.
- * Return 0 if permission is granted.
- * @task_fix_setuid:
- * Update the module's state after setting one or more of the user
- * identity attributes of the current process. The @flags parameter
- * indicates which of the set*uid system calls invoked this hook. If
- * @new is the set of credentials that will be installed. Modifications
- * should be made to this rather than to @current->cred.
- * @old is the set of credentials that are being replaces
- * @flags contains one of the LSM_SETID_* values.
- * Return 0 on success.
- * @task_setpgid:
- * Check permission before setting the process group identifier of the
- * process @p to @pgid.
- * @p contains the task_struct for process being modified.
- * @pgid contains the new pgid.
- * Return 0 if permission is granted.
- * @task_getpgid:
- * Check permission before getting the process group identifier of the
- * process @p.
- * @p contains the task_struct for the process.
- * Return 0 if permission is granted.
- * @task_getsid:
- * Check permission before getting the session identifier of the process
- * @p.
- * @p contains the task_struct for the process.
- * Return 0 if permission is granted.
- * @task_getsecid:
- * Retrieve the security identifier of the process @p.
- * @p contains the task_struct for the process and place is into @secid.
- * In case of failure, @secid will be set to zero.
- *
- * @task_setnice:
- * Check permission before setting the nice value of @p to @nice.
- * @p contains the task_struct of process.
- * @nice contains the new nice value.
- * Return 0 if permission is granted.
- * @task_setioprio
- * Check permission before setting the ioprio value of @p to @ioprio.
- * @p contains the task_struct of process.
- * @ioprio contains the new ioprio value
- * Return 0 if permission is granted.
- * @task_getioprio
- * Check permission before getting the ioprio value of @p.
- * @p contains the task_struct of process.
- * Return 0 if permission is granted.
- * @task_setrlimit:
- * Check permission before setting the resource limits of the current
- * process for @resource to @new_rlim. The old resource limit values can
- * be examined by dereferencing (current->signal->rlim + resource).
- * @resource contains the resource whose limit is being set.
- * @new_rlim contains the new limits for @resource.
- * Return 0 if permission is granted.
- * @task_setscheduler:
- * Check permission before setting scheduling policy and/or parameters of
- * process @p based on @policy and @lp.
- * @p contains the task_struct for process.
- * @policy contains the scheduling policy.
- * @lp contains the scheduling parameters.
- * Return 0 if permission is granted.
- * @task_getscheduler:
- * Check permission before obtaining scheduling information for process
- * @p.
- * @p contains the task_struct for process.
- * Return 0 if permission is granted.
- * @task_movememory
- * Check permission before moving memory owned by process @p.
- * @p contains the task_struct for process.
- * Return 0 if permission is granted.
- * @task_kill:
- * Check permission before sending signal @sig to @p. @info can be NULL,
- * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
- * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
- * from the kernel and should typically be permitted.
- * SIGIO signals are handled separately by the send_sigiotask hook in
- * file_security_ops.
- * @p contains the task_struct for process.
- * @info contains the signal information.
- * @sig contains the signal value.
- * @secid contains the sid of the process where the signal originated
- * Return 0 if permission is granted.
- * @task_wait:
- * Check permission before allowing a process to reap a child process @p
- * and collect its status information.
- * @p contains the task_struct for process.
- * Return 0 if permission is granted.
- * @task_prctl:
- * Check permission before performing a process control operation on the
- * current process.
- * @option contains the operation.
- * @arg2 contains a argument.
- * @arg3 contains a argument.
- * @arg4 contains a argument.
- * @arg5 contains a argument.
- * Return -ENOSYS if no-one wanted to handle this op, any other value to
- * cause prctl() to return immediately with that value.
- * @task_to_inode:
- * Set the security attributes for an inode based on an associated task's
- * security attributes, e.g. for /proc/pid inodes.
- * @p contains the task_struct for the task.
- * @inode contains the inode structure for the inode.
- *
- * Security hooks for Netlink messaging.
- *
- * @netlink_send:
- * Save security information for a netlink message so that permission
- * checking can be performed when the message is processed. The security
- * information can be saved using the eff_cap field of the
- * netlink_skb_parms structure. Also may be used to provide fine
- * grained control over message transmission.
- * @sk associated sock of task sending the message.
- * @skb contains the sk_buff structure for the netlink message.
- * Return 0 if the information was successfully saved and message
- * is allowed to be transmitted.
- *
- * Security hooks for Unix domain networking.
- *
- * @unix_stream_connect:
- * Check permissions before establishing a Unix domain stream connection
- * between @sock and @other.
- * @sock contains the sock structure.
- * @other contains the peer sock structure.
- * @newsk contains the new sock structure.
- * Return 0 if permission is granted.
- * @unix_may_send:
- * Check permissions before connecting or sending datagrams from @sock to
- * @other.
- * @sock contains the socket structure.
- * @other contains the peer socket structure.
- * Return 0 if permission is granted.
- *
- * The @unix_stream_connect and @unix_may_send hooks were necessary because
- * Linux provides an alternative to the conventional file name space for Unix
- * domain sockets. Whereas binding and connecting to sockets in the file name
- * space is mediated by the typical file permissions (and caught by the mknod
- * and permission hooks in inode_security_ops), binding and connecting to
- * sockets in the abstract name space is completely unmediated. Sufficient
- * control of Unix domain sockets in the abstract name space isn't possible
- * using only the socket layer hooks, since we need to know the actual target
- * socket, which is not looked up until we are inside the af_unix code.
- *
- * Security hooks for socket operations.
- *
- * @socket_create:
- * Check permissions prior to creating a new socket.
- * @family contains the requested protocol family.
- * @type contains the requested communications type.
- * @protocol contains the requested protocol.
- * @kern set to 1 if a kernel socket.
- * Return 0 if permission is granted.
- * @socket_post_create:
- * This hook allows a module to update or allocate a per-socket security
- * structure. Note that the security field was not added directly to the
- * socket structure, but rather, the socket security information is stored
- * in the associated inode. Typically, the inode alloc_security hook will
- * allocate and and attach security information to
- * sock->inode->i_security. This hook may be used to update the
- * sock->inode->i_security field with additional information that wasn't
- * available when the inode was allocated.
- * @sock contains the newly created socket structure.
- * @family contains the requested protocol family.
- * @type contains the requested communications type.
- * @protocol contains the requested protocol.
- * @kern set to 1 if a kernel socket.
- * @socket_bind:
- * Check permission before socket protocol layer bind operation is
- * performed and the socket @sock is bound to the address specified in the
- * @address parameter.
- * @sock contains the socket structure.
- * @address contains the address to bind to.
- * @addrlen contains the length of address.
- * Return 0 if permission is granted.
- * @socket_connect:
- * Check permission before socket protocol layer connect operation
- * attempts to connect socket @sock to a remote address, @address.
- * @sock contains the socket structure.
- * @address contains the address of remote endpoint.
- * @addrlen contains the length of address.
- * Return 0 if permission is granted.
- * @socket_listen:
- * Check permission before socket protocol layer listen operation.
- * @sock contains the socket structure.
- * @backlog contains the maximum length for the pending connection queue.
- * Return 0 if permission is granted.
- * @socket_accept:
- * Check permission before accepting a new connection. Note that the new
- * socket, @newsock, has been created and some information copied to it,
- * but the accept operation has not actually been performed.
- * @sock contains the listening socket structure.
- * @newsock contains the newly created server socket for connection.
- * Return 0 if permission is granted.
- * @socket_sendmsg:
- * Check permission before transmitting a message to another socket.
- * @sock contains the socket structure.
- * @msg contains the message to be transmitted.
- * @size contains the size of message.
- * Return 0 if permission is granted.
- * @socket_recvmsg:
- * Check permission before receiving a message from a socket.
- * @sock contains the socket structure.
- * @msg contains the message structure.
- * @size contains the size of message structure.
- * @flags contains the operational flags.
- * Return 0 if permission is granted.
- * @socket_getsockname:
- * Check permission before the local address (name) of the socket object
- * @sock is retrieved.
- * @sock contains the socket structure.
- * Return 0 if permission is granted.
- * @socket_getpeername:
- * Check permission before the remote address (name) of a socket object
- * @sock is retrieved.
- * @sock contains the socket structure.
- * Return 0 if permission is granted.
- * @socket_getsockopt:
- * Check permissions before retrieving the options associated with socket
- * @sock.
- * @sock contains the socket structure.
- * @level contains the protocol level to retrieve option from.
- * @optname contains the name of option to retrieve.
- * Return 0 if permission is granted.
- * @socket_setsockopt:
- * Check permissions before setting the options associated with socket
- * @sock.
- * @sock contains the socket structure.
- * @level contains the protocol level to set options for.
- * @optname contains the name of the option to set.
- * Return 0 if permission is granted.
- * @socket_shutdown:
- * Checks permission before all or part of a connection on the socket
- * @sock is shut down.
- * @sock contains the socket structure.
- * @how contains the flag indicating how future sends and receives are handled.
- * Return 0 if permission is granted.
- * @socket_sock_rcv_skb:
- * Check permissions on incoming network packets. This hook is distinct
- * from Netfilter's IP input hooks since it is the first time that the
- * incoming sk_buff @skb has been associated with a particular socket, @sk.
- * Must not sleep inside this hook because some callers hold spinlocks.
- * @sk contains the sock (not socket) associated with the incoming sk_buff.
- * @skb contains the incoming network data.
- * @socket_getpeersec_stream:
- * This hook allows the security module to provide peer socket security
- * state for unix or connected tcp sockets to userspace via getsockopt
- * SO_GETPEERSEC. For tcp sockets this can be meaningful if the
- * socket is associated with an ipsec SA.
- * @sock is the local socket.
- * @optval userspace memory where the security state is to be copied.
- * @optlen userspace int where the module should copy the actual length
- * of the security state.
- * @len as input is the maximum length to copy to userspace provided
- * by the caller.
- * Return 0 if all is well, otherwise, typical getsockopt return
- * values.
- * @socket_getpeersec_dgram:
- * This hook allows the security module to provide peer socket security
- * state for udp sockets on a per-packet basis to userspace via
- * getsockopt SO_GETPEERSEC. The application must first have indicated
- * the IP_PASSSEC option via getsockopt. It can then retrieve the
- * security state returned by this hook for a packet via the SCM_SECURITY
- * ancillary message type.
- * @skb is the skbuff for the packet being queried
- * @secdata is a pointer to a buffer in which to copy the security data
- * @seclen is the maximum length for @secdata
- * Return 0 on success, error on failure.
- * @sk_alloc_security:
- * Allocate and attach a security structure to the sk->sk_security field,
- * which is used to copy security attributes between local stream sockets.
- * @sk_free_security:
- * Deallocate security structure.
- * @sk_clone_security:
- * Clone/copy security structure.
- * @sk_getsecid:
- * Retrieve the LSM-specific secid for the sock to enable caching of network
- * authorizations.
- * @sock_graft:
- * Sets the socket's isec sid to the sock's sid.
- * @inet_conn_request:
- * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
- * @inet_csk_clone:
- * Sets the new child socket's sid to the openreq sid.
- * @inet_conn_established:
- * Sets the connection's peersid to the secmark on skb.
- * @secmark_relabel_packet:
- * check if the process should be allowed to relabel packets to the given secid
- * @security_secmark_refcount_inc
- * tells the LSM to increment the number of secmark labeling rules loaded
- * @security_secmark_refcount_dec
- * tells the LSM to decrement the number of secmark labeling rules loaded
- * @req_classify_flow:
- * Sets the flow's sid to the openreq sid.
- * @tun_dev_alloc_security:
- * This hook allows a module to allocate a security structure for a TUN
- * device.
- * @security pointer to a security structure pointer.
- * Returns a zero on success, negative values on failure.
- * @tun_dev_free_security:
- * This hook allows a module to free the security structure for a TUN
- * device.
- * @security pointer to the TUN device's security structure
- * @tun_dev_create:
- * Check permissions prior to creating a new TUN device.
- * @tun_dev_attach_queue:
- * Check permissions prior to attaching to a TUN device queue.
- * @security pointer to the TUN device's security structure.
- * @tun_dev_attach:
- * This hook can be used by the module to update any security state
- * associated with the TUN device's sock structure.
- * @sk contains the existing sock structure.
- * @security pointer to the TUN device's security structure.
- * @tun_dev_open:
- * This hook can be used by the module to update any security state
- * associated with the TUN device's security structure.
- * @security pointer to the TUN devices's security structure.
- * @skb_owned_by:
- * This hook sets the packet's owning sock.
- * @skb is the packet.
- * @sk the sock which owns the packet.
- *
- * Security hooks for XFRM operations.
- *
- * @xfrm_policy_alloc_security:
- * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy
- * Database used by the XFRM system.
- * @sec_ctx contains the security context information being provided by
- * the user-level policy update program (e.g., setkey).
- * Allocate a security structure to the xp->security field; the security
- * field is initialized to NULL when the xfrm_policy is allocated.
- * Return 0 if operation was successful (memory to allocate, legal context)
- * @gfp is to specify the context for the allocation
- * @xfrm_policy_clone_security:
- * @old_ctx contains an existing xfrm_sec_ctx.
- * @new_ctxp contains a new xfrm_sec_ctx being cloned from old.
- * Allocate a security structure in new_ctxp that contains the
- * information from the old_ctx structure.
- * Return 0 if operation was successful (memory to allocate).
- * @xfrm_policy_free_security:
- * @ctx contains the xfrm_sec_ctx
- * Deallocate xp->security.
- * @xfrm_policy_delete_security:
- * @ctx contains the xfrm_sec_ctx.
- * Authorize deletion of xp->security.
- * @xfrm_state_alloc:
- * @x contains the xfrm_state being added to the Security Association
- * Database by the XFRM system.
- * @sec_ctx contains the security context information being provided by
- * the user-level SA generation program (e.g., setkey or racoon).
- * Allocate a security structure to the x->security field; the security
- * field is initialized to NULL when the xfrm_state is allocated. Set the
- * context to correspond to sec_ctx. Return 0 if operation was successful
- * (memory to allocate, legal context).
- * @xfrm_state_alloc_acquire:
- * @x contains the xfrm_state being added to the Security Association
- * Database by the XFRM system.
- * @polsec contains the policy's security context.
- * @secid contains the secid from which to take the mls portion of the
- * context.
- * Allocate a security structure to the x->security field; the security
- * field is initialized to NULL when the xfrm_state is allocated. Set the
- * context to correspond to secid. Return 0 if operation was successful
- * (memory to allocate, legal context).
- * @xfrm_state_free_security:
- * @x contains the xfrm_state.
- * Deallocate x->security.
- * @xfrm_state_delete_security:
- * @x contains the xfrm_state.
- * Authorize deletion of x->security.
- * @xfrm_policy_lookup:
- * @ctx contains the xfrm_sec_ctx for which the access control is being
- * checked.
- * @fl_secid contains the flow security label that is used to authorize
- * access to the policy xp.
- * @dir contains the direction of the flow (input or output).
- * Check permission when a flow selects a xfrm_policy for processing
- * XFRMs on a packet. The hook is called when selecting either a
- * per-socket policy or a generic xfrm policy.
- * Return 0 if permission is granted, -ESRCH otherwise, or -errno
- * on other errors.
- * @xfrm_state_pol_flow_match:
- * @x contains the state to match.
- * @xp contains the policy to check for a match.
- * @fl contains the flow to check for a match.
- * Return 1 if there is a match.
- * @xfrm_decode_session:
- * @skb points to skb to decode.
- * @secid points to the flow key secid to set.
- * @ckall says if all xfrms used should be checked for same secid.
- * Return 0 if ckall is zero or all xfrms used have the same secid.
- *
- * Security hooks affecting all Key Management operations
- *
- * @key_alloc:
- * Permit allocation of a key and assign security data. Note that key does
- * not have a serial number assigned at this point.
- * @key points to the key.
- * @flags is the allocation flags
- * Return 0 if permission is granted, -ve error otherwise.
- * @key_free:
- * Notification of destruction; free security data.
- * @key points to the key.
- * No return value.
- * @key_permission:
- * See whether a specific operational right is granted to a process on a
- * key.
- * @key_ref refers to the key (key pointer + possession attribute bit).
- * @cred points to the credentials to provide the context against which to
- * evaluate the security data on the key.
- * @perm describes the combination of permissions required of this key.
- * Return 0 if permission is granted, -ve error otherwise.
- * @key_getsecurity:
- * Get a textual representation of the security context attached to a key
- * for the purposes of honouring KEYCTL_GETSECURITY. This function
- * allocates the storage for the NUL-terminated string and the caller
- * should free it.
- * @key points to the key to be queried.
- * @_buffer points to a pointer that should be set to point to the
- * resulting string (if no label or an error occurs).
- * Return the length of the string (including terminating NUL) or -ve if
- * an error.
- * May also return 0 (and a NULL buffer pointer) if there is no label.
- *
- * Security hooks affecting all System V IPC operations.
- *
- * @ipc_permission:
- * Check permissions for access to IPC
- * @ipcp contains the kernel IPC permission structure
- * @flag contains the desired (requested) permission set
- * Return 0 if permission is granted.
- * @ipc_getsecid:
- * Get the secid associated with the ipc object.
- * @ipcp contains the kernel IPC permission structure.
- * @secid contains a pointer to the location where result will be saved.
- * In case of failure, @secid will be set to zero.
- *
- * Security hooks for individual messages held in System V IPC message queues
- * @msg_msg_alloc_security:
- * Allocate and attach a security structure to the msg->security field.
- * The security field is initialized to NULL when the structure is first
- * created.
- * @msg contains the message structure to be modified.
- * Return 0 if operation was successful and permission is granted.
- * @msg_msg_free_security:
- * Deallocate the security structure for this message.
- * @msg contains the message structure to be modified.
- *
- * Security hooks for System V IPC Message Queues
- *
- * @msg_queue_alloc_security:
- * Allocate and attach a security structure to the
- * msq->q_perm.security field. The security field is initialized to
- * NULL when the structure is first created.
- * @msq contains the message queue structure to be modified.
- * Return 0 if operation was successful and permission is granted.
- * @msg_queue_free_security:
- * Deallocate security structure for this message queue.
- * @msq contains the message queue structure to be modified.
- * @msg_queue_associate:
- * Check permission when a message queue is requested through the
- * msgget system call. This hook is only called when returning the
- * message queue identifier for an existing message queue, not when a
- * new message queue is created.
- * @msq contains the message queue to act upon.
- * @msqflg contains the operation control flags.
- * Return 0 if permission is granted.
- * @msg_queue_msgctl:
- * Check permission when a message control operation specified by @cmd
- * is to be performed on the message queue @msq.
- * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
- * @msq contains the message queue to act upon. May be NULL.
- * @cmd contains the operation to be performed.
- * Return 0 if permission is granted.
- * @msg_queue_msgsnd:
- * Check permission before a message, @msg, is enqueued on the message
- * queue, @msq.
- * @msq contains the message queue to send message to.
- * @msg contains the message to be enqueued.
- * @msqflg contains operational flags.
- * Return 0 if permission is granted.
- * @msg_queue_msgrcv:
- * Check permission before a message, @msg, is removed from the message
- * queue, @msq. The @target task structure contains a pointer to the
- * process that will be receiving the message (not equal to the current
- * process when inline receives are being performed).
- * @msq contains the message queue to retrieve message from.
- * @msg contains the message destination.
- * @target contains the task structure for recipient process.
- * @type contains the type of message requested.
- * @mode contains the operational flags.
- * Return 0 if permission is granted.
- *
- * Security hooks for System V Shared Memory Segments
- *
- * @shm_alloc_security:
- * Allocate and attach a security structure to the shp->shm_perm.security
- * field. The security field is initialized to NULL when the structure is
- * first created.
- * @shp contains the shared memory structure to be modified.
- * Return 0 if operation was successful and permission is granted.
- * @shm_free_security:
- * Deallocate the security struct for this memory segment.
- * @shp contains the shared memory structure to be modified.
- * @shm_associate:
- * Check permission when a shared memory region is requested through the
- * shmget system call. This hook is only called when returning the shared
- * memory region identifier for an existing region, not when a new shared
- * memory region is created.
- * @shp contains the shared memory structure to be modified.
- * @shmflg contains the operation control flags.
- * Return 0 if permission is granted.
- * @shm_shmctl:
- * Check permission when a shared memory control operation specified by
- * @cmd is to be performed on the shared memory region @shp.
- * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
- * @shp contains shared memory structure to be modified.
- * @cmd contains the operation to be performed.
- * Return 0 if permission is granted.
- * @shm_shmat:
- * Check permissions prior to allowing the shmat system call to attach the
- * shared memory segment @shp to the data segment of the calling process.
- * The attaching address is specified by @shmaddr.
- * @shp contains the shared memory structure to be modified.
- * @shmaddr contains the address to attach memory region to.
- * @shmflg contains the operational flags.
- * Return 0 if permission is granted.
- *
- * Security hooks for System V Semaphores
- *
- * @sem_alloc_security:
- * Allocate and attach a security structure to the sma->sem_perm.security
- * field. The security field is initialized to NULL when the structure is
- * first created.
- * @sma contains the semaphore structure
- * Return 0 if operation was successful and permission is granted.
- * @sem_free_security:
- * deallocate security struct for this semaphore
- * @sma contains the semaphore structure.
- * @sem_associate:
- * Check permission when a semaphore is requested through the semget
- * system call. This hook is only called when returning the semaphore
- * identifier for an existing semaphore, not when a new one must be
- * created.
- * @sma contains the semaphore structure.
- * @semflg contains the operation control flags.
- * Return 0 if permission is granted.
- * @sem_semctl:
- * Check permission when a semaphore operation specified by @cmd is to be
- * performed on the semaphore @sma. The @sma may be NULL, e.g. for
- * IPC_INFO or SEM_INFO.
- * @sma contains the semaphore structure. May be NULL.
- * @cmd contains the operation to be performed.
- * Return 0 if permission is granted.
- * @sem_semop
- * Check permissions before performing operations on members of the
- * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
- * may be modified.
- * @sma contains the semaphore structure.
- * @sops contains the operations to perform.
- * @nsops contains the number of operations to perform.
- * @alter contains the flag indicating whether changes are to be made.
- * Return 0 if permission is granted.
- *
- * @binder_set_context_mgr
- * Check whether @mgr is allowed to be the binder context manager.
- * @mgr contains the task_struct for the task being registered.
- * Return 0 if permission is granted.
- * @binder_transaction
- * Check whether @from is allowed to invoke a binder transaction call
- * to @to.
- * @from contains the task_struct for the sending task.
- * @to contains the task_struct for the receiving task.
- * @binder_transfer_binder
- * Check whether @from is allowed to transfer a binder reference to @to.
- * @from contains the task_struct for the sending task.
- * @to contains the task_struct for the receiving task.
- * @binder_transfer_file
- * Check whether @from is allowed to transfer @file to @to.
- * @from contains the task_struct for the sending task.
- * @file contains the struct file being transferred.
- * @to contains the task_struct for the receiving task.
- *
- * @ptrace_access_check:
- * Check permission before allowing the current process to trace the
- * @child process.
- * Security modules may also want to perform a process tracing check
- * during an execve in the set_security or apply_creds hooks of
- * tracing check during an execve in the bprm_set_creds hook of
- * binprm_security_ops if the process is being traced and its security
- * attributes would be changed by the execve.
- * @child contains the task_struct structure for the target process.
- * @mode contains the PTRACE_MODE flags indicating the form of access.
- * Return 0 if permission is granted.
- * @ptrace_traceme:
- * Check that the @parent process has sufficient permission to trace the
- * current process before allowing the current process to present itself
- * to the @parent process for tracing.
- * @parent contains the task_struct structure for debugger process.
- * Return 0 if permission is granted.
- * @capget:
- * Get the @effective, @inheritable, and @permitted capability sets for
- * the @target process. The hook may also perform permission checking to
- * determine if the current process is allowed to see the capability sets
- * of the @target process.
- * @target contains the task_struct structure for target process.
- * @effective contains the effective capability set.
- * @inheritable contains the inheritable capability set.
- * @permitted contains the permitted capability set.
- * Return 0 if the capability sets were successfully obtained.
- * @capset:
- * Set the @effective, @inheritable, and @permitted capability sets for
- * the current process.
- * @new contains the new credentials structure for target process.
- * @old contains the current credentials structure for target process.
- * @effective contains the effective capability set.
- * @inheritable contains the inheritable capability set.
- * @permitted contains the permitted capability set.
- * Return 0 and update @new if permission is granted.
- * @capable:
- * Check whether the @tsk process has the @cap capability in the indicated
- * credentials.
- * @cred contains the credentials to use.
- * @ns contains the user namespace we want the capability in
- * @cap contains the capability <include/linux/capability.h>.
- * @audit: Whether to write an audit message or not
- * Return 0 if the capability is granted for @tsk.
- * @syslog:
- * Check permission before accessing the kernel message ring or changing
- * logging to the console.
- * See the syslog(2) manual page for an explanation of the @type values.
- * @type contains the type of action.
- * @from_file indicates the context of action (if it came from /proc).
- * Return 0 if permission is granted.
- * @settime:
- * Check permission to change the system time.
- * struct timespec and timezone are defined in include/linux/time.h
- * @ts contains new time
- * @tz contains new timezone
- * Return 0 if permission is granted.
- * @vm_enough_memory:
- * Check permissions for allocating a new virtual mapping.
- * @mm contains the mm struct it is being added to.
- * @pages contains the number of pages.
- * Return 0 if permission is granted.
- *
- * @ismaclabel:
- * Check if the extended attribute specified by @name
- * represents a MAC label. Returns 1 if name is a MAC
- * attribute otherwise returns 0.
- * @name full extended attribute name to check against
- * LSM as a MAC label.
- *
- * @secid_to_secctx:
- * Convert secid to security context. If secdata is NULL the length of
- * the result will be returned in seclen, but no secdata will be returned.
- * This does mean that the length could change between calls to check the
- * length and the next call which actually allocates and returns the secdata.
- * @secid contains the security ID.
- * @secdata contains the pointer that stores the converted security context.
- * @seclen pointer which contains the length of the data
- * @secctx_to_secid:
- * Convert security context to secid.
- * @secid contains the pointer to the generated security ID.
- * @secdata contains the security context.
- *
- * @release_secctx:
- * Release the security context.
- * @secdata contains the security context.
- * @seclen contains the length of the security context.
- *
- * Security hooks for Audit
- *
- * @audit_rule_init:
- * Allocate and initialize an LSM audit rule structure.
- * @field contains the required Audit action. Fields flags are defined in include/linux/audit.h
- * @op contains the operator the rule uses.
- * @rulestr contains the context where the rule will be applied to.
- * @lsmrule contains a pointer to receive the result.
- * Return 0 if @lsmrule has been successfully set,
- * -EINVAL in case of an invalid rule.
- *
- * @audit_rule_known:
- * Specifies whether given @rule contains any fields related to current LSM.
- * @rule contains the audit rule of interest.
- * Return 1 in case of relation found, 0 otherwise.
- *
- * @audit_rule_match:
- * Determine if given @secid matches a rule previously approved
- * by @audit_rule_known.
- * @secid contains the security id in question.
- * @field contains the field which relates to current LSM.
- * @op contains the operator that will be used for matching.
- * @rule points to the audit rule that will be checked against.
- * @actx points to the audit context associated with the check.
- * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure.
- *
- * @audit_rule_free:
- * Deallocate the LSM audit rule structure previously allocated by
- * audit_rule_init.
- * @rule contains the allocated rule
- *
- * @inode_notifysecctx:
- * Notify the security module of what the security context of an inode
- * should be. Initializes the incore security context managed by the
- * security module for this inode. Example usage: NFS client invokes
- * this hook to initialize the security context in its incore inode to the
- * value provided by the server for the file when the server returned the
- * file's attributes to the client.
- *
- * Must be called with inode->i_mutex locked.
- *
- * @inode we wish to set the security context of.
- * @ctx contains the string which we wish to set in the inode.
- * @ctxlen contains the length of @ctx.
- *
- * @inode_setsecctx:
- * Change the security context of an inode. Updates the
- * incore security context managed by the security module and invokes the
- * fs code as needed (via __vfs_setxattr_noperm) to update any backing
- * xattrs that represent the context. Example usage: NFS server invokes
- * this hook to change the security context in its incore inode and on the
- * backing filesystem to a value provided by the client on a SETATTR
- * operation.
- *
- * Must be called with inode->i_mutex locked.
- *
- * @dentry contains the inode we wish to set the security context of.
- * @ctx contains the string which we wish to set in the inode.
- * @ctxlen contains the length of @ctx.
- *
- * @inode_getsecctx:
- * On success, returns 0 and fills out @ctx and @ctxlen with the security
- * context for the given @inode.
- *
- * @inode we wish to get the security context of.
- * @ctx is a pointer in which to place the allocated security context.
- * @ctxlen points to the place to put the length of @ctx.
- * This is the main security structure.
- */
-struct security_operations {
- char name[SECURITY_NAME_MAX + 1];
-
- int (*binder_set_context_mgr) (struct task_struct *mgr);
- int (*binder_transaction) (struct task_struct *from,
- struct task_struct *to);
- int (*binder_transfer_binder) (struct task_struct *from,
- struct task_struct *to);
- int (*binder_transfer_file) (struct task_struct *from,
- struct task_struct *to, struct file *file);
-
- int (*ptrace_access_check) (struct task_struct *child, unsigned int mode);
- int (*ptrace_traceme) (struct task_struct *parent);
- int (*capget) (struct task_struct *target,
- kernel_cap_t *effective,
- kernel_cap_t *inheritable, kernel_cap_t *permitted);
- int (*capset) (struct cred *new,
- const struct cred *old,
- const kernel_cap_t *effective,
- const kernel_cap_t *inheritable,
- const kernel_cap_t *permitted);
- int (*capable) (const struct cred *cred, struct user_namespace *ns,
- int cap, int audit);
- int (*quotactl) (int cmds, int type, int id, struct super_block *sb);
- int (*quota_on) (struct dentry *dentry);
- int (*syslog) (int type);
- int (*settime) (const struct timespec *ts, const struct timezone *tz);
- int (*vm_enough_memory) (struct mm_struct *mm, long pages);
-
- int (*bprm_set_creds) (struct linux_binprm *bprm);
- int (*bprm_check_security) (struct linux_binprm *bprm);
- int (*bprm_secureexec) (struct linux_binprm *bprm);
- void (*bprm_committing_creds) (struct linux_binprm *bprm);
- void (*bprm_committed_creds) (struct linux_binprm *bprm);
-
- int (*sb_alloc_security) (struct super_block *sb);
- void (*sb_free_security) (struct super_block *sb);
- int (*sb_copy_data) (char *orig, char *copy);
- int (*sb_remount) (struct super_block *sb, void *data);
- int (*sb_kern_mount) (struct super_block *sb, int flags, void *data);
- int (*sb_show_options) (struct seq_file *m, struct super_block *sb);
- int (*sb_statfs) (struct dentry *dentry);
- int (*sb_mount) (const char *dev_name, struct path *path,
- const char *type, unsigned long flags, void *data);
- int (*sb_umount) (struct vfsmount *mnt, int flags);
- int (*sb_pivotroot) (struct path *old_path,
- struct path *new_path);
- int (*sb_set_mnt_opts) (struct super_block *sb,
- struct security_mnt_opts *opts,
- unsigned long kern_flags,
- unsigned long *set_kern_flags);
- int (*sb_clone_mnt_opts) (const struct super_block *oldsb,
- struct super_block *newsb);
- int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts);
- int (*dentry_init_security) (struct dentry *dentry, int mode,
- struct qstr *name, void **ctx,
- u32 *ctxlen);
-
-
-#ifdef CONFIG_SECURITY_PATH
- int (*path_unlink) (struct path *dir, struct dentry *dentry);
- int (*path_mkdir) (struct path *dir, struct dentry *dentry, umode_t mode);
- int (*path_rmdir) (struct path *dir, struct dentry *dentry);
- int (*path_mknod) (struct path *dir, struct dentry *dentry, umode_t mode,
- unsigned int dev);
- int (*path_truncate) (struct path *path);
- int (*path_symlink) (struct path *dir, struct dentry *dentry,
- const char *old_name);
- int (*path_link) (struct dentry *old_dentry, struct path *new_dir,
- struct dentry *new_dentry);
- int (*path_rename) (struct path *old_dir, struct dentry *old_dentry,
- struct path *new_dir, struct dentry *new_dentry);
- int (*path_chmod) (struct path *path, umode_t mode);
- int (*path_chown) (struct path *path, kuid_t uid, kgid_t gid);
- int (*path_chroot) (struct path *path);
-#endif
-
- int (*inode_alloc_security) (struct inode *inode);
- void (*inode_free_security) (struct inode *inode);
- int (*inode_init_security) (struct inode *inode, struct inode *dir,
- const struct qstr *qstr, const char **name,
- void **value, size_t *len);
- int (*inode_create) (struct inode *dir,
- struct dentry *dentry, umode_t mode);
- int (*inode_link) (struct dentry *old_dentry,
- struct inode *dir, struct dentry *new_dentry);
- int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
- int (*inode_symlink) (struct inode *dir,
- struct dentry *dentry, const char *old_name);
- int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, umode_t mode);
- int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
- int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
- umode_t mode, dev_t dev);
- int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
- struct inode *new_dir, struct dentry *new_dentry);
- int (*inode_readlink) (struct dentry *dentry);
- int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
- int (*inode_permission) (struct inode *inode, int mask);
- int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
- int (*inode_getattr) (const struct path *path);
- int (*inode_setxattr) (struct dentry *dentry, const char *name,
- const void *value, size_t size, int flags);
- void (*inode_post_setxattr) (struct dentry *dentry, const char *name,
- const void *value, size_t size, int flags);
- int (*inode_getxattr) (struct dentry *dentry, const char *name);
- int (*inode_listxattr) (struct dentry *dentry);
- int (*inode_removexattr) (struct dentry *dentry, const char *name);
- int (*inode_need_killpriv) (struct dentry *dentry);
- int (*inode_killpriv) (struct dentry *dentry);
- int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc);
- int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags);
- int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size);
- void (*inode_getsecid) (const struct inode *inode, u32 *secid);
-
- int (*file_permission) (struct file *file, int mask);
- int (*file_alloc_security) (struct file *file);
- void (*file_free_security) (struct file *file);
- int (*file_ioctl) (struct file *file, unsigned int cmd,
- unsigned long arg);
- int (*mmap_addr) (unsigned long addr);
- int (*mmap_file) (struct file *file,
- unsigned long reqprot, unsigned long prot,
- unsigned long flags);
- int (*file_mprotect) (struct vm_area_struct *vma,
- unsigned long reqprot,
- unsigned long prot);
- int (*file_lock) (struct file *file, unsigned int cmd);
- int (*file_fcntl) (struct file *file, unsigned int cmd,
- unsigned long arg);
- void (*file_set_fowner) (struct file *file);
- int (*file_send_sigiotask) (struct task_struct *tsk,
- struct fown_struct *fown, int sig);
- int (*file_receive) (struct file *file);
- int (*file_open) (struct file *file, const struct cred *cred);
-
- int (*task_create) (unsigned long clone_flags);
- void (*task_free) (struct task_struct *task);
- int (*cred_alloc_blank) (struct cred *cred, gfp_t gfp);
- void (*cred_free) (struct cred *cred);
- int (*cred_prepare)(struct cred *new, const struct cred *old,
- gfp_t gfp);
- void (*cred_transfer)(struct cred *new, const struct cred *old);
- int (*kernel_act_as)(struct cred *new, u32 secid);
- int (*kernel_create_files_as)(struct cred *new, struct inode *inode);
- int (*kernel_fw_from_file)(struct file *file, char *buf, size_t size);
- int (*kernel_module_request)(char *kmod_name);
- int (*kernel_module_from_file)(struct file *file);
- int (*task_fix_setuid) (struct cred *new, const struct cred *old,
- int flags);
- int (*task_setpgid) (struct task_struct *p, pid_t pgid);
- int (*task_getpgid) (struct task_struct *p);
- int (*task_getsid) (struct task_struct *p);
- void (*task_getsecid) (struct task_struct *p, u32 *secid);
- int (*task_setnice) (struct task_struct *p, int nice);
- int (*task_setioprio) (struct task_struct *p, int ioprio);
- int (*task_getioprio) (struct task_struct *p);
- int (*task_setrlimit) (struct task_struct *p, unsigned int resource,
- struct rlimit *new_rlim);
- int (*task_setscheduler) (struct task_struct *p);
- int (*task_getscheduler) (struct task_struct *p);
- int (*task_movememory) (struct task_struct *p);
- int (*task_kill) (struct task_struct *p,
- struct siginfo *info, int sig, u32 secid);
- int (*task_wait) (struct task_struct *p);
- int (*task_prctl) (int option, unsigned long arg2,
- unsigned long arg3, unsigned long arg4,
- unsigned long arg5);
- void (*task_to_inode) (struct task_struct *p, struct inode *inode);
-
- int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag);
- void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid);
-
- int (*msg_msg_alloc_security) (struct msg_msg *msg);
- void (*msg_msg_free_security) (struct msg_msg *msg);
-
- int (*msg_queue_alloc_security) (struct msg_queue *msq);
- void (*msg_queue_free_security) (struct msg_queue *msq);
- int (*msg_queue_associate) (struct msg_queue *msq, int msqflg);
- int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd);
- int (*msg_queue_msgsnd) (struct msg_queue *msq,
- struct msg_msg *msg, int msqflg);
- int (*msg_queue_msgrcv) (struct msg_queue *msq,
- struct msg_msg *msg,
- struct task_struct *target,
- long type, int mode);
-
- int (*shm_alloc_security) (struct shmid_kernel *shp);
- void (*shm_free_security) (struct shmid_kernel *shp);
- int (*shm_associate) (struct shmid_kernel *shp, int shmflg);
- int (*shm_shmctl) (struct shmid_kernel *shp, int cmd);
- int (*shm_shmat) (struct shmid_kernel *shp,
- char __user *shmaddr, int shmflg);
-
- int (*sem_alloc_security) (struct sem_array *sma);
- void (*sem_free_security) (struct sem_array *sma);
- int (*sem_associate) (struct sem_array *sma, int semflg);
- int (*sem_semctl) (struct sem_array *sma, int cmd);
- int (*sem_semop) (struct sem_array *sma,
- struct sembuf *sops, unsigned nsops, int alter);
-
- int (*netlink_send) (struct sock *sk, struct sk_buff *skb);
-
- void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
-
- int (*getprocattr) (struct task_struct *p, char *name, char **value);
- int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size);
- int (*ismaclabel) (const char *name);
- int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen);
- int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid);
- void (*release_secctx) (char *secdata, u32 seclen);
-
- int (*inode_notifysecctx)(struct inode *inode, void *ctx, u32 ctxlen);
- int (*inode_setsecctx)(struct dentry *dentry, void *ctx, u32 ctxlen);
- int (*inode_getsecctx)(struct inode *inode, void **ctx, u32 *ctxlen);
-
-#ifdef CONFIG_SECURITY_NETWORK
- int (*unix_stream_connect) (struct sock *sock, struct sock *other, struct sock *newsk);
- int (*unix_may_send) (struct socket *sock, struct socket *other);
-
- int (*socket_create) (int family, int type, int protocol, int kern);
- int (*socket_post_create) (struct socket *sock, int family,
- int type, int protocol, int kern);
- int (*socket_bind) (struct socket *sock,
- struct sockaddr *address, int addrlen);
- int (*socket_connect) (struct socket *sock,
- struct sockaddr *address, int addrlen);
- int (*socket_listen) (struct socket *sock, int backlog);
- int (*socket_accept) (struct socket *sock, struct socket *newsock);
- int (*socket_sendmsg) (struct socket *sock,
- struct msghdr *msg, int size);
- int (*socket_recvmsg) (struct socket *sock,
- struct msghdr *msg, int size, int flags);
- int (*socket_getsockname) (struct socket *sock);
- int (*socket_getpeername) (struct socket *sock);
- int (*socket_getsockopt) (struct socket *sock, int level, int optname);
- int (*socket_setsockopt) (struct socket *sock, int level, int optname);
- int (*socket_shutdown) (struct socket *sock, int how);
- int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb);
- int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
- int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
- int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
- void (*sk_free_security) (struct sock *sk);
- void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
- void (*sk_getsecid) (struct sock *sk, u32 *secid);
- void (*sock_graft) (struct sock *sk, struct socket *parent);
- int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb,
- struct request_sock *req);
- void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req);
- void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb);
- int (*secmark_relabel_packet) (u32 secid);
- void (*secmark_refcount_inc) (void);
- void (*secmark_refcount_dec) (void);
- void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl);
- int (*tun_dev_alloc_security) (void **security);
- void (*tun_dev_free_security) (void *security);
- int (*tun_dev_create) (void);
- int (*tun_dev_attach_queue) (void *security);
- int (*tun_dev_attach) (struct sock *sk, void *security);
- int (*tun_dev_open) (void *security);
-#endif /* CONFIG_SECURITY_NETWORK */
-
-#ifdef CONFIG_SECURITY_NETWORK_XFRM
- int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp,
- struct xfrm_user_sec_ctx *sec_ctx, gfp_t gfp);
- int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx);
- void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx);
- int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx);
- int (*xfrm_state_alloc) (struct xfrm_state *x,
- struct xfrm_user_sec_ctx *sec_ctx);
- int (*xfrm_state_alloc_acquire) (struct xfrm_state *x,
- struct xfrm_sec_ctx *polsec,
- u32 secid);
- void (*xfrm_state_free_security) (struct xfrm_state *x);
- int (*xfrm_state_delete_security) (struct xfrm_state *x);
- int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
- int (*xfrm_state_pol_flow_match) (struct xfrm_state *x,
- struct xfrm_policy *xp,
- const struct flowi *fl);
- int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall);
-#endif /* CONFIG_SECURITY_NETWORK_XFRM */
-
- /* key management security hooks */
-#ifdef CONFIG_KEYS
- int (*key_alloc) (struct key *key, const struct cred *cred, unsigned long flags);
- void (*key_free) (struct key *key);
- int (*key_permission) (key_ref_t key_ref,
- const struct cred *cred,
- unsigned perm);
- int (*key_getsecurity)(struct key *key, char **_buffer);
-#endif /* CONFIG_KEYS */
-
-#ifdef CONFIG_AUDIT
- int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule);
- int (*audit_rule_known) (struct audit_krule *krule);
- int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule,
- struct audit_context *actx);
- void (*audit_rule_free) (void *lsmrule);
-#endif /* CONFIG_AUDIT */
-};
-
/* prototypes */
extern int security_init(void);
-extern int security_module_enable(struct security_operations *ops);
-extern int register_security(struct security_operations *ops);
-extern void __init security_fixup_ops(struct security_operations *ops);
-
/* Security operations */
int security_binder_set_context_mgr(struct task_struct *mgr);
@@ -1839,7 +256,8 @@ int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags);
int security_inode_readlink(struct dentry *dentry);
-int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd);
+int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
+ bool rcu);
int security_inode_permission(struct inode *inode, int mask);
int security_inode_setattr(struct dentry *dentry, struct iattr *attr);
int security_inode_getattr(const struct path *path);
@@ -2047,7 +465,7 @@ static inline int security_settime(const struct timespec *ts,
static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
- return cap_vm_enough_memory(mm, pages);
+ return __vm_enough_memory(mm, pages, cap_vm_enough_memory(mm, pages));
}
static inline int security_bprm_set_creds(struct linux_binprm *bprm)
@@ -2242,7 +660,8 @@ static inline int security_inode_readlink(struct dentry *dentry)
}
static inline int security_inode_follow_link(struct dentry *dentry,
- struct nameidata *nd)
+ struct inode *inode,
+ bool rcu)
{
return 0;
}
@@ -2650,7 +1069,7 @@ static inline int security_setprocattr(struct task_struct *p, char *name, void *
static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
- return cap_netlink_send(sk, skb);
+ return 0;
}
static inline int security_ismaclabel(const char *name)
@@ -3218,36 +1637,5 @@ static inline void free_secdata(void *secdata)
{ }
#endif /* CONFIG_SECURITY */
-#ifdef CONFIG_SECURITY_YAMA
-extern int yama_ptrace_access_check(struct task_struct *child,
- unsigned int mode);
-extern int yama_ptrace_traceme(struct task_struct *parent);
-extern void yama_task_free(struct task_struct *task);
-extern int yama_task_prctl(int option, unsigned long arg2, unsigned long arg3,
- unsigned long arg4, unsigned long arg5);
-#else
-static inline int yama_ptrace_access_check(struct task_struct *child,
- unsigned int mode)
-{
- return 0;
-}
-
-static inline int yama_ptrace_traceme(struct task_struct *parent)
-{
- return 0;
-}
-
-static inline void yama_task_free(struct task_struct *task)
-{
-}
-
-static inline int yama_task_prctl(int option, unsigned long arg2,
- unsigned long arg3, unsigned long arg4,
- unsigned long arg5)
-{
- return -ENOSYS;
-}
-#endif /* CONFIG_SECURITY_YAMA */
-
#endif /* ! __LINUX_SECURITY_H */