summaryrefslogtreecommitdiff
path: root/include/linux/wait.h
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /include/linux/wait.h
Initial import
Diffstat (limited to 'include/linux/wait.h')
-rw-r--r--include/linux/wait.h1155
1 files changed, 1155 insertions, 0 deletions
diff --git a/include/linux/wait.h b/include/linux/wait.h
new file mode 100644
index 000000000..2db833498
--- /dev/null
+++ b/include/linux/wait.h
@@ -0,0 +1,1155 @@
+#ifndef _LINUX_WAIT_H
+#define _LINUX_WAIT_H
+/*
+ * Linux wait queue related types and methods
+ */
+#include <linux/list.h>
+#include <linux/stddef.h>
+#include <linux/spinlock.h>
+#include <asm/current.h>
+#include <uapi/linux/wait.h>
+
+typedef struct __wait_queue wait_queue_t;
+typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
+int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
+
+/* __wait_queue::flags */
+#define WQ_FLAG_EXCLUSIVE 0x01
+#define WQ_FLAG_WOKEN 0x02
+
+struct __wait_queue {
+ unsigned int flags;
+ void *private;
+ wait_queue_func_t func;
+ struct list_head task_list;
+};
+
+struct wait_bit_key {
+ void *flags;
+ int bit_nr;
+#define WAIT_ATOMIC_T_BIT_NR -1
+ unsigned long timeout;
+};
+
+struct wait_bit_queue {
+ struct wait_bit_key key;
+ wait_queue_t wait;
+};
+
+struct __wait_queue_head {
+ spinlock_t lock;
+ struct list_head task_list;
+};
+typedef struct __wait_queue_head wait_queue_head_t;
+
+struct task_struct;
+
+/*
+ * Macros for declaration and initialisaton of the datatypes
+ */
+
+#define __WAITQUEUE_INITIALIZER(name, tsk) { \
+ .private = tsk, \
+ .func = default_wake_function, \
+ .task_list = { NULL, NULL } }
+
+#define DECLARE_WAITQUEUE(name, tsk) \
+ wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
+
+#define __WAIT_QUEUE_HEAD_INITIALIZER(name) { \
+ .lock = __SPIN_LOCK_UNLOCKED(name.lock), \
+ .task_list = { &(name).task_list, &(name).task_list } }
+
+#define DECLARE_WAIT_QUEUE_HEAD(name) \
+ wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
+
+#define __WAIT_BIT_KEY_INITIALIZER(word, bit) \
+ { .flags = word, .bit_nr = bit, }
+
+#define __WAIT_ATOMIC_T_KEY_INITIALIZER(p) \
+ { .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
+
+extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
+
+#define init_waitqueue_head(q) \
+ do { \
+ static struct lock_class_key __key; \
+ \
+ __init_waitqueue_head((q), #q, &__key); \
+ } while (0)
+
+#ifdef CONFIG_LOCKDEP
+# define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
+ ({ init_waitqueue_head(&name); name; })
+# define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
+ wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
+#else
+# define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
+#endif
+
+static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
+{
+ q->flags = 0;
+ q->private = p;
+ q->func = default_wake_function;
+}
+
+static inline void
+init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
+{
+ q->flags = 0;
+ q->private = NULL;
+ q->func = func;
+}
+
+static inline int waitqueue_active(wait_queue_head_t *q)
+{
+ return !list_empty(&q->task_list);
+}
+
+extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
+extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
+extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
+
+static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
+{
+ list_add(&new->task_list, &head->task_list);
+}
+
+/*
+ * Used for wake-one threads:
+ */
+static inline void
+__add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
+{
+ wait->flags |= WQ_FLAG_EXCLUSIVE;
+ __add_wait_queue(q, wait);
+}
+
+static inline void __add_wait_queue_tail(wait_queue_head_t *head,
+ wait_queue_t *new)
+{
+ list_add_tail(&new->task_list, &head->task_list);
+}
+
+static inline void
+__add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
+{
+ wait->flags |= WQ_FLAG_EXCLUSIVE;
+ __add_wait_queue_tail(q, wait);
+}
+
+static inline void
+__remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
+{
+ list_del(&old->task_list);
+}
+
+typedef int wait_bit_action_f(struct wait_bit_key *);
+void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
+void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
+void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
+void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
+void __wake_up_bit(wait_queue_head_t *, void *, int);
+int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
+int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
+void wake_up_bit(void *, int);
+void wake_up_atomic_t(atomic_t *);
+int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
+int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
+int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
+int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
+wait_queue_head_t *bit_waitqueue(void *, int);
+
+#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
+#define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL)
+#define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL)
+#define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL, 1)
+#define wake_up_all_locked(x) __wake_up_locked((x), TASK_NORMAL, 0)
+
+#define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
+#define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
+#define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
+#define wake_up_interruptible_sync(x) __wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
+
+/*
+ * Wakeup macros to be used to report events to the targets.
+ */
+#define wake_up_poll(x, m) \
+ __wake_up(x, TASK_NORMAL, 1, (void *) (m))
+#define wake_up_locked_poll(x, m) \
+ __wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
+#define wake_up_interruptible_poll(x, m) \
+ __wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
+#define wake_up_interruptible_sync_poll(x, m) \
+ __wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
+
+#define ___wait_cond_timeout(condition) \
+({ \
+ bool __cond = (condition); \
+ if (__cond && !__ret) \
+ __ret = 1; \
+ __cond || !__ret; \
+})
+
+#define ___wait_is_interruptible(state) \
+ (!__builtin_constant_p(state) || \
+ state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE) \
+
+/*
+ * The below macro ___wait_event() has an explicit shadow of the __ret
+ * variable when used from the wait_event_*() macros.
+ *
+ * This is so that both can use the ___wait_cond_timeout() construct
+ * to wrap the condition.
+ *
+ * The type inconsistency of the wait_event_*() __ret variable is also
+ * on purpose; we use long where we can return timeout values and int
+ * otherwise.
+ */
+
+#define ___wait_event(wq, condition, state, exclusive, ret, cmd) \
+({ \
+ __label__ __out; \
+ wait_queue_t __wait; \
+ long __ret = ret; /* explicit shadow */ \
+ \
+ INIT_LIST_HEAD(&__wait.task_list); \
+ if (exclusive) \
+ __wait.flags = WQ_FLAG_EXCLUSIVE; \
+ else \
+ __wait.flags = 0; \
+ \
+ for (;;) { \
+ long __int = prepare_to_wait_event(&wq, &__wait, state);\
+ \
+ if (condition) \
+ break; \
+ \
+ if (___wait_is_interruptible(state) && __int) { \
+ __ret = __int; \
+ if (exclusive) { \
+ abort_exclusive_wait(&wq, &__wait, \
+ state, NULL); \
+ goto __out; \
+ } \
+ break; \
+ } \
+ \
+ cmd; \
+ } \
+ finish_wait(&wq, &__wait); \
+__out: __ret; \
+})
+
+#define __wait_event(wq, condition) \
+ (void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
+ schedule())
+
+/**
+ * wait_event - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
+ * @condition evaluates to true. The @condition is checked each time
+ * the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ */
+#define wait_event(wq, condition) \
+do { \
+ might_sleep(); \
+ if (condition) \
+ break; \
+ __wait_event(wq, condition); \
+} while (0)
+
+#define __io_wait_event(wq, condition) \
+ (void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
+ io_schedule())
+
+/*
+ * io_wait_event() -- like wait_event() but with io_schedule()
+ */
+#define io_wait_event(wq, condition) \
+do { \
+ might_sleep(); \
+ if (condition) \
+ break; \
+ __io_wait_event(wq, condition); \
+} while (0)
+
+#define __wait_event_freezable(wq, condition) \
+ ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0, \
+ schedule(); try_to_freeze())
+
+/**
+ * wait_event - sleep (or freeze) until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute
+ * to system load) until the @condition evaluates to true. The
+ * @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ */
+#define wait_event_freezable(wq, condition) \
+({ \
+ int __ret = 0; \
+ might_sleep(); \
+ if (!(condition)) \
+ __ret = __wait_event_freezable(wq, condition); \
+ __ret; \
+})
+
+#define __wait_event_timeout(wq, condition, timeout) \
+ ___wait_event(wq, ___wait_cond_timeout(condition), \
+ TASK_UNINTERRUPTIBLE, 0, timeout, \
+ __ret = schedule_timeout(__ret))
+
+/**
+ * wait_event_timeout - sleep until a condition gets true or a timeout elapses
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @timeout: timeout, in jiffies
+ *
+ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
+ * @condition evaluates to true. The @condition is checked each time
+ * the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * Returns:
+ * 0 if the @condition evaluated to %false after the @timeout elapsed,
+ * 1 if the @condition evaluated to %true after the @timeout elapsed,
+ * or the remaining jiffies (at least 1) if the @condition evaluated
+ * to %true before the @timeout elapsed.
+ */
+#define wait_event_timeout(wq, condition, timeout) \
+({ \
+ long __ret = timeout; \
+ might_sleep(); \
+ if (!___wait_cond_timeout(condition)) \
+ __ret = __wait_event_timeout(wq, condition, timeout); \
+ __ret; \
+})
+
+#define __wait_event_freezable_timeout(wq, condition, timeout) \
+ ___wait_event(wq, ___wait_cond_timeout(condition), \
+ TASK_INTERRUPTIBLE, 0, timeout, \
+ __ret = schedule_timeout(__ret); try_to_freeze())
+
+/*
+ * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
+ * increasing load and is freezable.
+ */
+#define wait_event_freezable_timeout(wq, condition, timeout) \
+({ \
+ long __ret = timeout; \
+ might_sleep(); \
+ if (!___wait_cond_timeout(condition)) \
+ __ret = __wait_event_freezable_timeout(wq, condition, timeout); \
+ __ret; \
+})
+
+#define __wait_event_cmd(wq, condition, cmd1, cmd2) \
+ (void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
+ cmd1; schedule(); cmd2)
+
+/**
+ * wait_event_cmd - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @cmd1: the command will be executed before sleep
+ * @cmd2: the command will be executed after sleep
+ *
+ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
+ * @condition evaluates to true. The @condition is checked each time
+ * the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ */
+#define wait_event_cmd(wq, condition, cmd1, cmd2) \
+do { \
+ if (condition) \
+ break; \
+ __wait_event_cmd(wq, condition, cmd1, cmd2); \
+} while (0)
+
+#define __wait_event_interruptible(wq, condition) \
+ ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0, \
+ schedule())
+
+/**
+ * wait_event_interruptible - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function will return -ERESTARTSYS if it was interrupted by a
+ * signal and 0 if @condition evaluated to true.
+ */
+#define wait_event_interruptible(wq, condition) \
+({ \
+ int __ret = 0; \
+ might_sleep(); \
+ if (!(condition)) \
+ __ret = __wait_event_interruptible(wq, condition); \
+ __ret; \
+})
+
+#define __wait_event_interruptible_timeout(wq, condition, timeout) \
+ ___wait_event(wq, ___wait_cond_timeout(condition), \
+ TASK_INTERRUPTIBLE, 0, timeout, \
+ __ret = schedule_timeout(__ret))
+
+/**
+ * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @timeout: timeout, in jiffies
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * Returns:
+ * 0 if the @condition evaluated to %false after the @timeout elapsed,
+ * 1 if the @condition evaluated to %true after the @timeout elapsed,
+ * the remaining jiffies (at least 1) if the @condition evaluated
+ * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
+ * interrupted by a signal.
+ */
+#define wait_event_interruptible_timeout(wq, condition, timeout) \
+({ \
+ long __ret = timeout; \
+ might_sleep(); \
+ if (!___wait_cond_timeout(condition)) \
+ __ret = __wait_event_interruptible_timeout(wq, \
+ condition, timeout); \
+ __ret; \
+})
+
+#define __wait_event_hrtimeout(wq, condition, timeout, state) \
+({ \
+ int __ret = 0; \
+ struct hrtimer_sleeper __t; \
+ \
+ hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC, \
+ HRTIMER_MODE_REL); \
+ hrtimer_init_sleeper(&__t, current); \
+ if ((timeout).tv64 != KTIME_MAX) \
+ hrtimer_start_range_ns(&__t.timer, timeout, \
+ current->timer_slack_ns, \
+ HRTIMER_MODE_REL); \
+ \
+ __ret = ___wait_event(wq, condition, state, 0, 0, \
+ if (!__t.task) { \
+ __ret = -ETIME; \
+ break; \
+ } \
+ schedule()); \
+ \
+ hrtimer_cancel(&__t.timer); \
+ destroy_hrtimer_on_stack(&__t.timer); \
+ __ret; \
+})
+
+/**
+ * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @timeout: timeout, as a ktime_t
+ *
+ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function returns 0 if @condition became true, or -ETIME if the timeout
+ * elapsed.
+ */
+#define wait_event_hrtimeout(wq, condition, timeout) \
+({ \
+ int __ret = 0; \
+ might_sleep(); \
+ if (!(condition)) \
+ __ret = __wait_event_hrtimeout(wq, condition, timeout, \
+ TASK_UNINTERRUPTIBLE); \
+ __ret; \
+})
+
+/**
+ * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @timeout: timeout, as a ktime_t
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function returns 0 if @condition became true, -ERESTARTSYS if it was
+ * interrupted by a signal, or -ETIME if the timeout elapsed.
+ */
+#define wait_event_interruptible_hrtimeout(wq, condition, timeout) \
+({ \
+ long __ret = 0; \
+ might_sleep(); \
+ if (!(condition)) \
+ __ret = __wait_event_hrtimeout(wq, condition, timeout, \
+ TASK_INTERRUPTIBLE); \
+ __ret; \
+})
+
+#define __wait_event_interruptible_exclusive(wq, condition) \
+ ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \
+ schedule())
+
+#define wait_event_interruptible_exclusive(wq, condition) \
+({ \
+ int __ret = 0; \
+ might_sleep(); \
+ if (!(condition)) \
+ __ret = __wait_event_interruptible_exclusive(wq, condition);\
+ __ret; \
+})
+
+
+#define __wait_event_freezable_exclusive(wq, condition) \
+ ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \
+ schedule(); try_to_freeze())
+
+#define wait_event_freezable_exclusive(wq, condition) \
+({ \
+ int __ret = 0; \
+ might_sleep(); \
+ if (!(condition)) \
+ __ret = __wait_event_freezable_exclusive(wq, condition);\
+ __ret; \
+})
+
+
+#define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
+({ \
+ int __ret = 0; \
+ DEFINE_WAIT(__wait); \
+ if (exclusive) \
+ __wait.flags |= WQ_FLAG_EXCLUSIVE; \
+ do { \
+ if (likely(list_empty(&__wait.task_list))) \
+ __add_wait_queue_tail(&(wq), &__wait); \
+ set_current_state(TASK_INTERRUPTIBLE); \
+ if (signal_pending(current)) { \
+ __ret = -ERESTARTSYS; \
+ break; \
+ } \
+ if (irq) \
+ spin_unlock_irq(&(wq).lock); \
+ else \
+ spin_unlock(&(wq).lock); \
+ schedule(); \
+ if (irq) \
+ spin_lock_irq(&(wq).lock); \
+ else \
+ spin_lock(&(wq).lock); \
+ } while (!(condition)); \
+ __remove_wait_queue(&(wq), &__wait); \
+ __set_current_state(TASK_RUNNING); \
+ __ret; \
+})
+
+
+/**
+ * wait_event_interruptible_locked - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * It must be called with wq.lock being held. This spinlock is
+ * unlocked while sleeping but @condition testing is done while lock
+ * is held and when this macro exits the lock is held.
+ *
+ * The lock is locked/unlocked using spin_lock()/spin_unlock()
+ * functions which must match the way they are locked/unlocked outside
+ * of this macro.
+ *
+ * wake_up_locked() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function will return -ERESTARTSYS if it was interrupted by a
+ * signal and 0 if @condition evaluated to true.
+ */
+#define wait_event_interruptible_locked(wq, condition) \
+ ((condition) \
+ ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
+
+/**
+ * wait_event_interruptible_locked_irq - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * It must be called with wq.lock being held. This spinlock is
+ * unlocked while sleeping but @condition testing is done while lock
+ * is held and when this macro exits the lock is held.
+ *
+ * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
+ * functions which must match the way they are locked/unlocked outside
+ * of this macro.
+ *
+ * wake_up_locked() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function will return -ERESTARTSYS if it was interrupted by a
+ * signal and 0 if @condition evaluated to true.
+ */
+#define wait_event_interruptible_locked_irq(wq, condition) \
+ ((condition) \
+ ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
+
+/**
+ * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * It must be called with wq.lock being held. This spinlock is
+ * unlocked while sleeping but @condition testing is done while lock
+ * is held and when this macro exits the lock is held.
+ *
+ * The lock is locked/unlocked using spin_lock()/spin_unlock()
+ * functions which must match the way they are locked/unlocked outside
+ * of this macro.
+ *
+ * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
+ * set thus when other process waits process on the list if this
+ * process is awaken further processes are not considered.
+ *
+ * wake_up_locked() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function will return -ERESTARTSYS if it was interrupted by a
+ * signal and 0 if @condition evaluated to true.
+ */
+#define wait_event_interruptible_exclusive_locked(wq, condition) \
+ ((condition) \
+ ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
+
+/**
+ * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * It must be called with wq.lock being held. This spinlock is
+ * unlocked while sleeping but @condition testing is done while lock
+ * is held and when this macro exits the lock is held.
+ *
+ * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
+ * functions which must match the way they are locked/unlocked outside
+ * of this macro.
+ *
+ * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
+ * set thus when other process waits process on the list if this
+ * process is awaken further processes are not considered.
+ *
+ * wake_up_locked() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function will return -ERESTARTSYS if it was interrupted by a
+ * signal and 0 if @condition evaluated to true.
+ */
+#define wait_event_interruptible_exclusive_locked_irq(wq, condition) \
+ ((condition) \
+ ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
+
+
+#define __wait_event_killable(wq, condition) \
+ ___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
+
+/**
+ * wait_event_killable - sleep until a condition gets true
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ *
+ * The process is put to sleep (TASK_KILLABLE) until the
+ * @condition evaluates to true or a signal is received.
+ * The @condition is checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * The function will return -ERESTARTSYS if it was interrupted by a
+ * signal and 0 if @condition evaluated to true.
+ */
+#define wait_event_killable(wq, condition) \
+({ \
+ int __ret = 0; \
+ might_sleep(); \
+ if (!(condition)) \
+ __ret = __wait_event_killable(wq, condition); \
+ __ret; \
+})
+
+
+#define __wait_event_lock_irq(wq, condition, lock, cmd) \
+ (void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
+ spin_unlock_irq(&lock); \
+ cmd; \
+ schedule(); \
+ spin_lock_irq(&lock))
+
+/**
+ * wait_event_lock_irq_cmd - sleep until a condition gets true. The
+ * condition is checked under the lock. This
+ * is expected to be called with the lock
+ * taken.
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @lock: a locked spinlock_t, which will be released before cmd
+ * and schedule() and reacquired afterwards.
+ * @cmd: a command which is invoked outside the critical section before
+ * sleep
+ *
+ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
+ * @condition evaluates to true. The @condition is checked each time
+ * the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * This is supposed to be called while holding the lock. The lock is
+ * dropped before invoking the cmd and going to sleep and is reacquired
+ * afterwards.
+ */
+#define wait_event_lock_irq_cmd(wq, condition, lock, cmd) \
+do { \
+ if (condition) \
+ break; \
+ __wait_event_lock_irq(wq, condition, lock, cmd); \
+} while (0)
+
+/**
+ * wait_event_lock_irq - sleep until a condition gets true. The
+ * condition is checked under the lock. This
+ * is expected to be called with the lock
+ * taken.
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @lock: a locked spinlock_t, which will be released before schedule()
+ * and reacquired afterwards.
+ *
+ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
+ * @condition evaluates to true. The @condition is checked each time
+ * the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * This is supposed to be called while holding the lock. The lock is
+ * dropped before going to sleep and is reacquired afterwards.
+ */
+#define wait_event_lock_irq(wq, condition, lock) \
+do { \
+ if (condition) \
+ break; \
+ __wait_event_lock_irq(wq, condition, lock, ); \
+} while (0)
+
+
+#define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd) \
+ ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0, \
+ spin_unlock_irq(&lock); \
+ cmd; \
+ schedule(); \
+ spin_lock_irq(&lock))
+
+/**
+ * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
+ * The condition is checked under the lock. This is expected to
+ * be called with the lock taken.
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @lock: a locked spinlock_t, which will be released before cmd and
+ * schedule() and reacquired afterwards.
+ * @cmd: a command which is invoked outside the critical section before
+ * sleep
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or a signal is received. The @condition is
+ * checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * This is supposed to be called while holding the lock. The lock is
+ * dropped before invoking the cmd and going to sleep and is reacquired
+ * afterwards.
+ *
+ * The macro will return -ERESTARTSYS if it was interrupted by a signal
+ * and 0 if @condition evaluated to true.
+ */
+#define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd) \
+({ \
+ int __ret = 0; \
+ if (!(condition)) \
+ __ret = __wait_event_interruptible_lock_irq(wq, \
+ condition, lock, cmd); \
+ __ret; \
+})
+
+/**
+ * wait_event_interruptible_lock_irq - sleep until a condition gets true.
+ * The condition is checked under the lock. This is expected
+ * to be called with the lock taken.
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @lock: a locked spinlock_t, which will be released before schedule()
+ * and reacquired afterwards.
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or signal is received. The @condition is
+ * checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * This is supposed to be called while holding the lock. The lock is
+ * dropped before going to sleep and is reacquired afterwards.
+ *
+ * The macro will return -ERESTARTSYS if it was interrupted by a signal
+ * and 0 if @condition evaluated to true.
+ */
+#define wait_event_interruptible_lock_irq(wq, condition, lock) \
+({ \
+ int __ret = 0; \
+ if (!(condition)) \
+ __ret = __wait_event_interruptible_lock_irq(wq, \
+ condition, lock,); \
+ __ret; \
+})
+
+#define __wait_event_interruptible_lock_irq_timeout(wq, condition, \
+ lock, timeout) \
+ ___wait_event(wq, ___wait_cond_timeout(condition), \
+ TASK_INTERRUPTIBLE, 0, timeout, \
+ spin_unlock_irq(&lock); \
+ __ret = schedule_timeout(__ret); \
+ spin_lock_irq(&lock));
+
+/**
+ * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
+ * true or a timeout elapses. The condition is checked under
+ * the lock. This is expected to be called with the lock taken.
+ * @wq: the waitqueue to wait on
+ * @condition: a C expression for the event to wait for
+ * @lock: a locked spinlock_t, which will be released before schedule()
+ * and reacquired afterwards.
+ * @timeout: timeout, in jiffies
+ *
+ * The process is put to sleep (TASK_INTERRUPTIBLE) until the
+ * @condition evaluates to true or signal is received. The @condition is
+ * checked each time the waitqueue @wq is woken up.
+ *
+ * wake_up() has to be called after changing any variable that could
+ * change the result of the wait condition.
+ *
+ * This is supposed to be called while holding the lock. The lock is
+ * dropped before going to sleep and is reacquired afterwards.
+ *
+ * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
+ * was interrupted by a signal, and the remaining jiffies otherwise
+ * if the condition evaluated to true before the timeout elapsed.
+ */
+#define wait_event_interruptible_lock_irq_timeout(wq, condition, lock, \
+ timeout) \
+({ \
+ long __ret = timeout; \
+ if (!___wait_cond_timeout(condition)) \
+ __ret = __wait_event_interruptible_lock_irq_timeout( \
+ wq, condition, lock, timeout); \
+ __ret; \
+})
+
+/*
+ * Waitqueues which are removed from the waitqueue_head at wakeup time
+ */
+void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
+void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
+long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
+void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
+void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
+long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
+int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
+int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
+int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
+
+#define DEFINE_WAIT_FUNC(name, function) \
+ wait_queue_t name = { \
+ .private = current, \
+ .func = function, \
+ .task_list = LIST_HEAD_INIT((name).task_list), \
+ }
+
+#define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
+
+#define DEFINE_WAIT_BIT(name, word, bit) \
+ struct wait_bit_queue name = { \
+ .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \
+ .wait = { \
+ .private = current, \
+ .func = wake_bit_function, \
+ .task_list = \
+ LIST_HEAD_INIT((name).wait.task_list), \
+ }, \
+ }
+
+#define init_wait(wait) \
+ do { \
+ (wait)->private = current; \
+ (wait)->func = autoremove_wake_function; \
+ INIT_LIST_HEAD(&(wait)->task_list); \
+ (wait)->flags = 0; \
+ } while (0)
+
+
+extern int bit_wait(struct wait_bit_key *);
+extern int bit_wait_io(struct wait_bit_key *);
+extern int bit_wait_timeout(struct wait_bit_key *);
+extern int bit_wait_io_timeout(struct wait_bit_key *);
+
+/**
+ * wait_on_bit - wait for a bit to be cleared
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ *
+ * There is a standard hashed waitqueue table for generic use. This
+ * is the part of the hashtable's accessor API that waits on a bit.
+ * For instance, if one were to have waiters on a bitflag, one would
+ * call wait_on_bit() in threads waiting for the bit to clear.
+ * One uses wait_on_bit() where one is waiting for the bit to clear,
+ * but has no intention of setting it.
+ * Returned value will be zero if the bit was cleared, or non-zero
+ * if the process received a signal and the mode permitted wakeup
+ * on that signal.
+ */
+static inline int
+wait_on_bit(void *word, int bit, unsigned mode)
+{
+ might_sleep();
+ if (!test_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit(word, bit,
+ bit_wait,
+ mode);
+}
+
+/**
+ * wait_on_bit_io - wait for a bit to be cleared
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared. This is similar to wait_on_bit(), but calls
+ * io_schedule() instead of schedule() for the actual waiting.
+ *
+ * Returned value will be zero if the bit was cleared, or non-zero
+ * if the process received a signal and the mode permitted wakeup
+ * on that signal.
+ */
+static inline int
+wait_on_bit_io(void *word, int bit, unsigned mode)
+{
+ might_sleep();
+ if (!test_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit(word, bit,
+ bit_wait_io,
+ mode);
+}
+
+/**
+ * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ * @timeout: timeout, in jiffies
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared. This is similar to wait_on_bit(), except also takes a
+ * timeout parameter.
+ *
+ * Returned value will be zero if the bit was cleared before the
+ * @timeout elapsed, or non-zero if the @timeout elapsed or process
+ * received a signal and the mode permitted wakeup on that signal.
+ */
+static inline int
+wait_on_bit_timeout(void *word, int bit, unsigned mode, unsigned long timeout)
+{
+ might_sleep();
+ if (!test_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit_timeout(word, bit,
+ bit_wait_timeout,
+ mode, timeout);
+}
+
+/**
+ * wait_on_bit_action - wait for a bit to be cleared
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @action: the function used to sleep, which may take special actions
+ * @mode: the task state to sleep in
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared, and allow the waiting action to be specified.
+ * This is like wait_on_bit() but allows fine control of how the waiting
+ * is done.
+ *
+ * Returned value will be zero if the bit was cleared, or non-zero
+ * if the process received a signal and the mode permitted wakeup
+ * on that signal.
+ */
+static inline int
+wait_on_bit_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
+{
+ might_sleep();
+ if (!test_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit(word, bit, action, mode);
+}
+
+/**
+ * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ *
+ * There is a standard hashed waitqueue table for generic use. This
+ * is the part of the hashtable's accessor API that waits on a bit
+ * when one intends to set it, for instance, trying to lock bitflags.
+ * For instance, if one were to have waiters trying to set bitflag
+ * and waiting for it to clear before setting it, one would call
+ * wait_on_bit() in threads waiting to be able to set the bit.
+ * One uses wait_on_bit_lock() where one is waiting for the bit to
+ * clear with the intention of setting it, and when done, clearing it.
+ *
+ * Returns zero if the bit was (eventually) found to be clear and was
+ * set. Returns non-zero if a signal was delivered to the process and
+ * the @mode allows that signal to wake the process.
+ */
+static inline int
+wait_on_bit_lock(void *word, int bit, unsigned mode)
+{
+ might_sleep();
+ if (!test_and_set_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
+}
+
+/**
+ * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared and then to atomically set it. This is similar
+ * to wait_on_bit(), but calls io_schedule() instead of schedule()
+ * for the actual waiting.
+ *
+ * Returns zero if the bit was (eventually) found to be clear and was
+ * set. Returns non-zero if a signal was delivered to the process and
+ * the @mode allows that signal to wake the process.
+ */
+static inline int
+wait_on_bit_lock_io(void *word, int bit, unsigned mode)
+{
+ might_sleep();
+ if (!test_and_set_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
+}
+
+/**
+ * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @action: the function used to sleep, which may take special actions
+ * @mode: the task state to sleep in
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared and then to set it, and allow the waiting action
+ * to be specified.
+ * This is like wait_on_bit() but allows fine control of how the waiting
+ * is done.
+ *
+ * Returns zero if the bit was (eventually) found to be clear and was
+ * set. Returns non-zero if a signal was delivered to the process and
+ * the @mode allows that signal to wake the process.
+ */
+static inline int
+wait_on_bit_lock_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
+{
+ might_sleep();
+ if (!test_and_set_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit_lock(word, bit, action, mode);
+}
+
+/**
+ * wait_on_atomic_t - Wait for an atomic_t to become 0
+ * @val: The atomic value being waited on, a kernel virtual address
+ * @action: the function used to sleep, which may take special actions
+ * @mode: the task state to sleep in
+ *
+ * Wait for an atomic_t to become 0. We abuse the bit-wait waitqueue table for
+ * the purpose of getting a waitqueue, but we set the key to a bit number
+ * outside of the target 'word'.
+ */
+static inline
+int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
+{
+ might_sleep();
+ if (atomic_read(val) == 0)
+ return 0;
+ return out_of_line_wait_on_atomic_t(val, action, mode);
+}
+
+#endif /* _LINUX_WAIT_H */