summaryrefslogtreecommitdiff
path: root/mm/migrate.c
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /mm/migrate.c
Initial import
Diffstat (limited to 'mm/migrate.c')
-rw-r--r--mm/migrate.c1855
1 files changed, 1855 insertions, 0 deletions
diff --git a/mm/migrate.c b/mm/migrate.c
new file mode 100644
index 000000000..f53838fe3
--- /dev/null
+++ b/mm/migrate.c
@@ -0,0 +1,1855 @@
+/*
+ * Memory Migration functionality - linux/mm/migration.c
+ *
+ * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
+ *
+ * Page migration was first developed in the context of the memory hotplug
+ * project. The main authors of the migration code are:
+ *
+ * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
+ * Hirokazu Takahashi <taka@valinux.co.jp>
+ * Dave Hansen <haveblue@us.ibm.com>
+ * Christoph Lameter
+ */
+
+#include <linux/migrate.h>
+#include <linux/export.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/pagemap.h>
+#include <linux/buffer_head.h>
+#include <linux/mm_inline.h>
+#include <linux/nsproxy.h>
+#include <linux/pagevec.h>
+#include <linux/ksm.h>
+#include <linux/rmap.h>
+#include <linux/topology.h>
+#include <linux/cpu.h>
+#include <linux/cpuset.h>
+#include <linux/writeback.h>
+#include <linux/mempolicy.h>
+#include <linux/vmalloc.h>
+#include <linux/security.h>
+#include <linux/memcontrol.h>
+#include <linux/syscalls.h>
+#include <linux/hugetlb.h>
+#include <linux/hugetlb_cgroup.h>
+#include <linux/gfp.h>
+#include <linux/balloon_compaction.h>
+#include <linux/mmu_notifier.h>
+
+#include <asm/tlbflush.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/migrate.h>
+
+#include "internal.h"
+
+/*
+ * migrate_prep() needs to be called before we start compiling a list of pages
+ * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
+ * undesirable, use migrate_prep_local()
+ */
+int migrate_prep(void)
+{
+ /*
+ * Clear the LRU lists so pages can be isolated.
+ * Note that pages may be moved off the LRU after we have
+ * drained them. Those pages will fail to migrate like other
+ * pages that may be busy.
+ */
+ lru_add_drain_all();
+
+ return 0;
+}
+
+/* Do the necessary work of migrate_prep but not if it involves other CPUs */
+int migrate_prep_local(void)
+{
+ lru_add_drain();
+
+ return 0;
+}
+
+/*
+ * Put previously isolated pages back onto the appropriate lists
+ * from where they were once taken off for compaction/migration.
+ *
+ * This function shall be used whenever the isolated pageset has been
+ * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
+ * and isolate_huge_page().
+ */
+void putback_movable_pages(struct list_head *l)
+{
+ struct page *page;
+ struct page *page2;
+
+ list_for_each_entry_safe(page, page2, l, lru) {
+ if (unlikely(PageHuge(page))) {
+ putback_active_hugepage(page);
+ continue;
+ }
+ list_del(&page->lru);
+ dec_zone_page_state(page, NR_ISOLATED_ANON +
+ page_is_file_cache(page));
+ if (unlikely(isolated_balloon_page(page)))
+ balloon_page_putback(page);
+ else
+ putback_lru_page(page);
+ }
+}
+
+/*
+ * Restore a potential migration pte to a working pte entry
+ */
+static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
+ unsigned long addr, void *old)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ swp_entry_t entry;
+ pmd_t *pmd;
+ pte_t *ptep, pte;
+ spinlock_t *ptl;
+
+ if (unlikely(PageHuge(new))) {
+ ptep = huge_pte_offset(mm, addr);
+ if (!ptep)
+ goto out;
+ ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
+ } else {
+ pmd = mm_find_pmd(mm, addr);
+ if (!pmd)
+ goto out;
+
+ ptep = pte_offset_map(pmd, addr);
+
+ /*
+ * Peek to check is_swap_pte() before taking ptlock? No, we
+ * can race mremap's move_ptes(), which skips anon_vma lock.
+ */
+
+ ptl = pte_lockptr(mm, pmd);
+ }
+
+ spin_lock(ptl);
+ pte = *ptep;
+ if (!is_swap_pte(pte))
+ goto unlock;
+
+ entry = pte_to_swp_entry(pte);
+
+ if (!is_migration_entry(entry) ||
+ migration_entry_to_page(entry) != old)
+ goto unlock;
+
+ get_page(new);
+ pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
+ if (pte_swp_soft_dirty(*ptep))
+ pte = pte_mksoft_dirty(pte);
+
+ /* Recheck VMA as permissions can change since migration started */
+ if (is_write_migration_entry(entry))
+ pte = maybe_mkwrite(pte, vma);
+
+#ifdef CONFIG_HUGETLB_PAGE
+ if (PageHuge(new)) {
+ pte = pte_mkhuge(pte);
+ pte = arch_make_huge_pte(pte, vma, new, 0);
+ }
+#endif
+ flush_dcache_page(new);
+ set_pte_at(mm, addr, ptep, pte);
+
+ if (PageHuge(new)) {
+ if (PageAnon(new))
+ hugepage_add_anon_rmap(new, vma, addr);
+ else
+ page_dup_rmap(new);
+ } else if (PageAnon(new))
+ page_add_anon_rmap(new, vma, addr);
+ else
+ page_add_file_rmap(new);
+
+ /* No need to invalidate - it was non-present before */
+ update_mmu_cache(vma, addr, ptep);
+unlock:
+ pte_unmap_unlock(ptep, ptl);
+out:
+ return SWAP_AGAIN;
+}
+
+/*
+ * Get rid of all migration entries and replace them by
+ * references to the indicated page.
+ */
+static void remove_migration_ptes(struct page *old, struct page *new)
+{
+ struct rmap_walk_control rwc = {
+ .rmap_one = remove_migration_pte,
+ .arg = old,
+ };
+
+ rmap_walk(new, &rwc);
+}
+
+/*
+ * Something used the pte of a page under migration. We need to
+ * get to the page and wait until migration is finished.
+ * When we return from this function the fault will be retried.
+ */
+void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
+ spinlock_t *ptl)
+{
+ pte_t pte;
+ swp_entry_t entry;
+ struct page *page;
+
+ spin_lock(ptl);
+ pte = *ptep;
+ if (!is_swap_pte(pte))
+ goto out;
+
+ entry = pte_to_swp_entry(pte);
+ if (!is_migration_entry(entry))
+ goto out;
+
+ page = migration_entry_to_page(entry);
+
+ /*
+ * Once radix-tree replacement of page migration started, page_count
+ * *must* be zero. And, we don't want to call wait_on_page_locked()
+ * against a page without get_page().
+ * So, we use get_page_unless_zero(), here. Even failed, page fault
+ * will occur again.
+ */
+ if (!get_page_unless_zero(page))
+ goto out;
+ pte_unmap_unlock(ptep, ptl);
+ wait_on_page_locked(page);
+ put_page(page);
+ return;
+out:
+ pte_unmap_unlock(ptep, ptl);
+}
+
+void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long address)
+{
+ spinlock_t *ptl = pte_lockptr(mm, pmd);
+ pte_t *ptep = pte_offset_map(pmd, address);
+ __migration_entry_wait(mm, ptep, ptl);
+}
+
+void migration_entry_wait_huge(struct vm_area_struct *vma,
+ struct mm_struct *mm, pte_t *pte)
+{
+ spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
+ __migration_entry_wait(mm, pte, ptl);
+}
+
+#ifdef CONFIG_BLOCK
+/* Returns true if all buffers are successfully locked */
+static bool buffer_migrate_lock_buffers(struct buffer_head *head,
+ enum migrate_mode mode)
+{
+ struct buffer_head *bh = head;
+
+ /* Simple case, sync compaction */
+ if (mode != MIGRATE_ASYNC) {
+ do {
+ get_bh(bh);
+ lock_buffer(bh);
+ bh = bh->b_this_page;
+
+ } while (bh != head);
+
+ return true;
+ }
+
+ /* async case, we cannot block on lock_buffer so use trylock_buffer */
+ do {
+ get_bh(bh);
+ if (!trylock_buffer(bh)) {
+ /*
+ * We failed to lock the buffer and cannot stall in
+ * async migration. Release the taken locks
+ */
+ struct buffer_head *failed_bh = bh;
+ put_bh(failed_bh);
+ bh = head;
+ while (bh != failed_bh) {
+ unlock_buffer(bh);
+ put_bh(bh);
+ bh = bh->b_this_page;
+ }
+ return false;
+ }
+
+ bh = bh->b_this_page;
+ } while (bh != head);
+ return true;
+}
+#else
+static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
+ enum migrate_mode mode)
+{
+ return true;
+}
+#endif /* CONFIG_BLOCK */
+
+/*
+ * Replace the page in the mapping.
+ *
+ * The number of remaining references must be:
+ * 1 for anonymous pages without a mapping
+ * 2 for pages with a mapping
+ * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
+ */
+int migrate_page_move_mapping(struct address_space *mapping,
+ struct page *newpage, struct page *page,
+ struct buffer_head *head, enum migrate_mode mode,
+ int extra_count)
+{
+ int expected_count = 1 + extra_count;
+ void **pslot;
+
+ if (!mapping) {
+ /* Anonymous page without mapping */
+ if (page_count(page) != expected_count)
+ return -EAGAIN;
+ return MIGRATEPAGE_SUCCESS;
+ }
+
+ spin_lock_irq(&mapping->tree_lock);
+
+ pslot = radix_tree_lookup_slot(&mapping->page_tree,
+ page_index(page));
+
+ expected_count += 1 + page_has_private(page);
+ if (page_count(page) != expected_count ||
+ radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
+ spin_unlock_irq(&mapping->tree_lock);
+ return -EAGAIN;
+ }
+
+ if (!page_freeze_refs(page, expected_count)) {
+ spin_unlock_irq(&mapping->tree_lock);
+ return -EAGAIN;
+ }
+
+ /*
+ * In the async migration case of moving a page with buffers, lock the
+ * buffers using trylock before the mapping is moved. If the mapping
+ * was moved, we later failed to lock the buffers and could not move
+ * the mapping back due to an elevated page count, we would have to
+ * block waiting on other references to be dropped.
+ */
+ if (mode == MIGRATE_ASYNC && head &&
+ !buffer_migrate_lock_buffers(head, mode)) {
+ page_unfreeze_refs(page, expected_count);
+ spin_unlock_irq(&mapping->tree_lock);
+ return -EAGAIN;
+ }
+
+ /*
+ * Now we know that no one else is looking at the page.
+ */
+ get_page(newpage); /* add cache reference */
+ if (PageSwapCache(page)) {
+ SetPageSwapCache(newpage);
+ set_page_private(newpage, page_private(page));
+ }
+
+ radix_tree_replace_slot(pslot, newpage);
+
+ /*
+ * Drop cache reference from old page by unfreezing
+ * to one less reference.
+ * We know this isn't the last reference.
+ */
+ page_unfreeze_refs(page, expected_count - 1);
+
+ /*
+ * If moved to a different zone then also account
+ * the page for that zone. Other VM counters will be
+ * taken care of when we establish references to the
+ * new page and drop references to the old page.
+ *
+ * Note that anonymous pages are accounted for
+ * via NR_FILE_PAGES and NR_ANON_PAGES if they
+ * are mapped to swap space.
+ */
+ __dec_zone_page_state(page, NR_FILE_PAGES);
+ __inc_zone_page_state(newpage, NR_FILE_PAGES);
+ if (!PageSwapCache(page) && PageSwapBacked(page)) {
+ __dec_zone_page_state(page, NR_SHMEM);
+ __inc_zone_page_state(newpage, NR_SHMEM);
+ }
+ spin_unlock_irq(&mapping->tree_lock);
+
+ return MIGRATEPAGE_SUCCESS;
+}
+
+/*
+ * The expected number of remaining references is the same as that
+ * of migrate_page_move_mapping().
+ */
+int migrate_huge_page_move_mapping(struct address_space *mapping,
+ struct page *newpage, struct page *page)
+{
+ int expected_count;
+ void **pslot;
+
+ if (!mapping) {
+ if (page_count(page) != 1)
+ return -EAGAIN;
+ return MIGRATEPAGE_SUCCESS;
+ }
+
+ spin_lock_irq(&mapping->tree_lock);
+
+ pslot = radix_tree_lookup_slot(&mapping->page_tree,
+ page_index(page));
+
+ expected_count = 2 + page_has_private(page);
+ if (page_count(page) != expected_count ||
+ radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
+ spin_unlock_irq(&mapping->tree_lock);
+ return -EAGAIN;
+ }
+
+ if (!page_freeze_refs(page, expected_count)) {
+ spin_unlock_irq(&mapping->tree_lock);
+ return -EAGAIN;
+ }
+
+ get_page(newpage);
+
+ radix_tree_replace_slot(pslot, newpage);
+
+ page_unfreeze_refs(page, expected_count - 1);
+
+ spin_unlock_irq(&mapping->tree_lock);
+ return MIGRATEPAGE_SUCCESS;
+}
+
+/*
+ * Gigantic pages are so large that we do not guarantee that page++ pointer
+ * arithmetic will work across the entire page. We need something more
+ * specialized.
+ */
+static void __copy_gigantic_page(struct page *dst, struct page *src,
+ int nr_pages)
+{
+ int i;
+ struct page *dst_base = dst;
+ struct page *src_base = src;
+
+ for (i = 0; i < nr_pages; ) {
+ cond_resched();
+ copy_highpage(dst, src);
+
+ i++;
+ dst = mem_map_next(dst, dst_base, i);
+ src = mem_map_next(src, src_base, i);
+ }
+}
+
+static void copy_huge_page(struct page *dst, struct page *src)
+{
+ int i;
+ int nr_pages;
+
+ if (PageHuge(src)) {
+ /* hugetlbfs page */
+ struct hstate *h = page_hstate(src);
+ nr_pages = pages_per_huge_page(h);
+
+ if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
+ __copy_gigantic_page(dst, src, nr_pages);
+ return;
+ }
+ } else {
+ /* thp page */
+ BUG_ON(!PageTransHuge(src));
+ nr_pages = hpage_nr_pages(src);
+ }
+
+ for (i = 0; i < nr_pages; i++) {
+ cond_resched();
+ copy_highpage(dst + i, src + i);
+ }
+}
+
+/*
+ * Copy the page to its new location
+ */
+void migrate_page_copy(struct page *newpage, struct page *page)
+{
+ int cpupid;
+
+ if (PageHuge(page) || PageTransHuge(page))
+ copy_huge_page(newpage, page);
+ else
+ copy_highpage(newpage, page);
+
+ if (PageError(page))
+ SetPageError(newpage);
+ if (PageReferenced(page))
+ SetPageReferenced(newpage);
+ if (PageUptodate(page))
+ SetPageUptodate(newpage);
+ if (TestClearPageActive(page)) {
+ VM_BUG_ON_PAGE(PageUnevictable(page), page);
+ SetPageActive(newpage);
+ } else if (TestClearPageUnevictable(page))
+ SetPageUnevictable(newpage);
+ if (PageChecked(page))
+ SetPageChecked(newpage);
+ if (PageMappedToDisk(page))
+ SetPageMappedToDisk(newpage);
+
+ if (PageDirty(page)) {
+ clear_page_dirty_for_io(page);
+ /*
+ * Want to mark the page and the radix tree as dirty, and
+ * redo the accounting that clear_page_dirty_for_io undid,
+ * but we can't use set_page_dirty because that function
+ * is actually a signal that all of the page has become dirty.
+ * Whereas only part of our page may be dirty.
+ */
+ if (PageSwapBacked(page))
+ SetPageDirty(newpage);
+ else
+ __set_page_dirty_nobuffers(newpage);
+ }
+
+ /*
+ * Copy NUMA information to the new page, to prevent over-eager
+ * future migrations of this same page.
+ */
+ cpupid = page_cpupid_xchg_last(page, -1);
+ page_cpupid_xchg_last(newpage, cpupid);
+
+ mlock_migrate_page(newpage, page);
+ ksm_migrate_page(newpage, page);
+ /*
+ * Please do not reorder this without considering how mm/ksm.c's
+ * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
+ */
+ if (PageSwapCache(page))
+ ClearPageSwapCache(page);
+ ClearPagePrivate(page);
+ set_page_private(page, 0);
+
+ /*
+ * If any waiters have accumulated on the new page then
+ * wake them up.
+ */
+ if (PageWriteback(newpage))
+ end_page_writeback(newpage);
+}
+
+/************************************************************
+ * Migration functions
+ ***********************************************************/
+
+/*
+ * Common logic to directly migrate a single page suitable for
+ * pages that do not use PagePrivate/PagePrivate2.
+ *
+ * Pages are locked upon entry and exit.
+ */
+int migrate_page(struct address_space *mapping,
+ struct page *newpage, struct page *page,
+ enum migrate_mode mode)
+{
+ int rc;
+
+ BUG_ON(PageWriteback(page)); /* Writeback must be complete */
+
+ rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
+
+ if (rc != MIGRATEPAGE_SUCCESS)
+ return rc;
+
+ migrate_page_copy(newpage, page);
+ return MIGRATEPAGE_SUCCESS;
+}
+EXPORT_SYMBOL(migrate_page);
+
+#ifdef CONFIG_BLOCK
+/*
+ * Migration function for pages with buffers. This function can only be used
+ * if the underlying filesystem guarantees that no other references to "page"
+ * exist.
+ */
+int buffer_migrate_page(struct address_space *mapping,
+ struct page *newpage, struct page *page, enum migrate_mode mode)
+{
+ struct buffer_head *bh, *head;
+ int rc;
+
+ if (!page_has_buffers(page))
+ return migrate_page(mapping, newpage, page, mode);
+
+ head = page_buffers(page);
+
+ rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
+
+ if (rc != MIGRATEPAGE_SUCCESS)
+ return rc;
+
+ /*
+ * In the async case, migrate_page_move_mapping locked the buffers
+ * with an IRQ-safe spinlock held. In the sync case, the buffers
+ * need to be locked now
+ */
+ if (mode != MIGRATE_ASYNC)
+ BUG_ON(!buffer_migrate_lock_buffers(head, mode));
+
+ ClearPagePrivate(page);
+ set_page_private(newpage, page_private(page));
+ set_page_private(page, 0);
+ put_page(page);
+ get_page(newpage);
+
+ bh = head;
+ do {
+ set_bh_page(bh, newpage, bh_offset(bh));
+ bh = bh->b_this_page;
+
+ } while (bh != head);
+
+ SetPagePrivate(newpage);
+
+ migrate_page_copy(newpage, page);
+
+ bh = head;
+ do {
+ unlock_buffer(bh);
+ put_bh(bh);
+ bh = bh->b_this_page;
+
+ } while (bh != head);
+
+ return MIGRATEPAGE_SUCCESS;
+}
+EXPORT_SYMBOL(buffer_migrate_page);
+#endif
+
+/*
+ * Writeback a page to clean the dirty state
+ */
+static int writeout(struct address_space *mapping, struct page *page)
+{
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_NONE,
+ .nr_to_write = 1,
+ .range_start = 0,
+ .range_end = LLONG_MAX,
+ .for_reclaim = 1
+ };
+ int rc;
+
+ if (!mapping->a_ops->writepage)
+ /* No write method for the address space */
+ return -EINVAL;
+
+ if (!clear_page_dirty_for_io(page))
+ /* Someone else already triggered a write */
+ return -EAGAIN;
+
+ /*
+ * A dirty page may imply that the underlying filesystem has
+ * the page on some queue. So the page must be clean for
+ * migration. Writeout may mean we loose the lock and the
+ * page state is no longer what we checked for earlier.
+ * At this point we know that the migration attempt cannot
+ * be successful.
+ */
+ remove_migration_ptes(page, page);
+
+ rc = mapping->a_ops->writepage(page, &wbc);
+
+ if (rc != AOP_WRITEPAGE_ACTIVATE)
+ /* unlocked. Relock */
+ lock_page(page);
+
+ return (rc < 0) ? -EIO : -EAGAIN;
+}
+
+/*
+ * Default handling if a filesystem does not provide a migration function.
+ */
+static int fallback_migrate_page(struct address_space *mapping,
+ struct page *newpage, struct page *page, enum migrate_mode mode)
+{
+ if (PageDirty(page)) {
+ /* Only writeback pages in full synchronous migration */
+ if (mode != MIGRATE_SYNC)
+ return -EBUSY;
+ return writeout(mapping, page);
+ }
+
+ /*
+ * Buffers may be managed in a filesystem specific way.
+ * We must have no buffers or drop them.
+ */
+ if (page_has_private(page) &&
+ !try_to_release_page(page, GFP_KERNEL))
+ return -EAGAIN;
+
+ return migrate_page(mapping, newpage, page, mode);
+}
+
+/*
+ * Move a page to a newly allocated page
+ * The page is locked and all ptes have been successfully removed.
+ *
+ * The new page will have replaced the old page if this function
+ * is successful.
+ *
+ * Return value:
+ * < 0 - error code
+ * MIGRATEPAGE_SUCCESS - success
+ */
+static int move_to_new_page(struct page *newpage, struct page *page,
+ int page_was_mapped, enum migrate_mode mode)
+{
+ struct address_space *mapping;
+ int rc;
+
+ /*
+ * Block others from accessing the page when we get around to
+ * establishing additional references. We are the only one
+ * holding a reference to the new page at this point.
+ */
+ if (!trylock_page(newpage))
+ BUG();
+
+ /* Prepare mapping for the new page.*/
+ newpage->index = page->index;
+ newpage->mapping = page->mapping;
+ if (PageSwapBacked(page))
+ SetPageSwapBacked(newpage);
+
+ mapping = page_mapping(page);
+ if (!mapping)
+ rc = migrate_page(mapping, newpage, page, mode);
+ else if (mapping->a_ops->migratepage)
+ /*
+ * Most pages have a mapping and most filesystems provide a
+ * migratepage callback. Anonymous pages are part of swap
+ * space which also has its own migratepage callback. This
+ * is the most common path for page migration.
+ */
+ rc = mapping->a_ops->migratepage(mapping,
+ newpage, page, mode);
+ else
+ rc = fallback_migrate_page(mapping, newpage, page, mode);
+
+ if (rc != MIGRATEPAGE_SUCCESS) {
+ newpage->mapping = NULL;
+ } else {
+ mem_cgroup_migrate(page, newpage, false);
+ if (page_was_mapped)
+ remove_migration_ptes(page, newpage);
+ page->mapping = NULL;
+ }
+
+ unlock_page(newpage);
+
+ return rc;
+}
+
+static int __unmap_and_move(struct page *page, struct page *newpage,
+ int force, enum migrate_mode mode)
+{
+ int rc = -EAGAIN;
+ int page_was_mapped = 0;
+ struct anon_vma *anon_vma = NULL;
+
+ if (!trylock_page(page)) {
+ if (!force || mode == MIGRATE_ASYNC)
+ goto out;
+
+ /*
+ * It's not safe for direct compaction to call lock_page.
+ * For example, during page readahead pages are added locked
+ * to the LRU. Later, when the IO completes the pages are
+ * marked uptodate and unlocked. However, the queueing
+ * could be merging multiple pages for one bio (e.g.
+ * mpage_readpages). If an allocation happens for the
+ * second or third page, the process can end up locking
+ * the same page twice and deadlocking. Rather than
+ * trying to be clever about what pages can be locked,
+ * avoid the use of lock_page for direct compaction
+ * altogether.
+ */
+ if (current->flags & PF_MEMALLOC)
+ goto out;
+
+ lock_page(page);
+ }
+
+ if (PageWriteback(page)) {
+ /*
+ * Only in the case of a full synchronous migration is it
+ * necessary to wait for PageWriteback. In the async case,
+ * the retry loop is too short and in the sync-light case,
+ * the overhead of stalling is too much
+ */
+ if (mode != MIGRATE_SYNC) {
+ rc = -EBUSY;
+ goto out_unlock;
+ }
+ if (!force)
+ goto out_unlock;
+ wait_on_page_writeback(page);
+ }
+ /*
+ * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
+ * we cannot notice that anon_vma is freed while we migrates a page.
+ * This get_anon_vma() delays freeing anon_vma pointer until the end
+ * of migration. File cache pages are no problem because of page_lock()
+ * File Caches may use write_page() or lock_page() in migration, then,
+ * just care Anon page here.
+ */
+ if (PageAnon(page) && !PageKsm(page)) {
+ /*
+ * Only page_lock_anon_vma_read() understands the subtleties of
+ * getting a hold on an anon_vma from outside one of its mms.
+ */
+ anon_vma = page_get_anon_vma(page);
+ if (anon_vma) {
+ /*
+ * Anon page
+ */
+ } else if (PageSwapCache(page)) {
+ /*
+ * We cannot be sure that the anon_vma of an unmapped
+ * swapcache page is safe to use because we don't
+ * know in advance if the VMA that this page belonged
+ * to still exists. If the VMA and others sharing the
+ * data have been freed, then the anon_vma could
+ * already be invalid.
+ *
+ * To avoid this possibility, swapcache pages get
+ * migrated but are not remapped when migration
+ * completes
+ */
+ } else {
+ goto out_unlock;
+ }
+ }
+
+ if (unlikely(isolated_balloon_page(page))) {
+ /*
+ * A ballooned page does not need any special attention from
+ * physical to virtual reverse mapping procedures.
+ * Skip any attempt to unmap PTEs or to remap swap cache,
+ * in order to avoid burning cycles at rmap level, and perform
+ * the page migration right away (proteced by page lock).
+ */
+ rc = balloon_page_migrate(newpage, page, mode);
+ goto out_unlock;
+ }
+
+ /*
+ * Corner case handling:
+ * 1. When a new swap-cache page is read into, it is added to the LRU
+ * and treated as swapcache but it has no rmap yet.
+ * Calling try_to_unmap() against a page->mapping==NULL page will
+ * trigger a BUG. So handle it here.
+ * 2. An orphaned page (see truncate_complete_page) might have
+ * fs-private metadata. The page can be picked up due to memory
+ * offlining. Everywhere else except page reclaim, the page is
+ * invisible to the vm, so the page can not be migrated. So try to
+ * free the metadata, so the page can be freed.
+ */
+ if (!page->mapping) {
+ VM_BUG_ON_PAGE(PageAnon(page), page);
+ if (page_has_private(page)) {
+ try_to_free_buffers(page);
+ goto out_unlock;
+ }
+ goto skip_unmap;
+ }
+
+ /* Establish migration ptes or remove ptes */
+ if (page_mapped(page)) {
+ try_to_unmap(page,
+ TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
+ page_was_mapped = 1;
+ }
+
+skip_unmap:
+ if (!page_mapped(page))
+ rc = move_to_new_page(newpage, page, page_was_mapped, mode);
+
+ if (rc && page_was_mapped)
+ remove_migration_ptes(page, page);
+
+ /* Drop an anon_vma reference if we took one */
+ if (anon_vma)
+ put_anon_vma(anon_vma);
+
+out_unlock:
+ unlock_page(page);
+out:
+ return rc;
+}
+
+/*
+ * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
+ * around it.
+ */
+#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
+#define ICE_noinline noinline
+#else
+#define ICE_noinline
+#endif
+
+/*
+ * Obtain the lock on page, remove all ptes and migrate the page
+ * to the newly allocated page in newpage.
+ */
+static ICE_noinline int unmap_and_move(new_page_t get_new_page,
+ free_page_t put_new_page,
+ unsigned long private, struct page *page,
+ int force, enum migrate_mode mode)
+{
+ int rc = 0;
+ int *result = NULL;
+ struct page *newpage = get_new_page(page, private, &result);
+
+ if (!newpage)
+ return -ENOMEM;
+
+ if (page_count(page) == 1) {
+ /* page was freed from under us. So we are done. */
+ goto out;
+ }
+
+ if (unlikely(PageTransHuge(page)))
+ if (unlikely(split_huge_page(page)))
+ goto out;
+
+ rc = __unmap_and_move(page, newpage, force, mode);
+
+out:
+ if (rc != -EAGAIN) {
+ /*
+ * A page that has been migrated has all references
+ * removed and will be freed. A page that has not been
+ * migrated will have kepts its references and be
+ * restored.
+ */
+ list_del(&page->lru);
+ dec_zone_page_state(page, NR_ISOLATED_ANON +
+ page_is_file_cache(page));
+ putback_lru_page(page);
+ }
+
+ /*
+ * If migration was not successful and there's a freeing callback, use
+ * it. Otherwise, putback_lru_page() will drop the reference grabbed
+ * during isolation.
+ */
+ if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
+ ClearPageSwapBacked(newpage);
+ put_new_page(newpage, private);
+ } else if (unlikely(__is_movable_balloon_page(newpage))) {
+ /* drop our reference, page already in the balloon */
+ put_page(newpage);
+ } else
+ putback_lru_page(newpage);
+
+ if (result) {
+ if (rc)
+ *result = rc;
+ else
+ *result = page_to_nid(newpage);
+ }
+ return rc;
+}
+
+/*
+ * Counterpart of unmap_and_move_page() for hugepage migration.
+ *
+ * This function doesn't wait the completion of hugepage I/O
+ * because there is no race between I/O and migration for hugepage.
+ * Note that currently hugepage I/O occurs only in direct I/O
+ * where no lock is held and PG_writeback is irrelevant,
+ * and writeback status of all subpages are counted in the reference
+ * count of the head page (i.e. if all subpages of a 2MB hugepage are
+ * under direct I/O, the reference of the head page is 512 and a bit more.)
+ * This means that when we try to migrate hugepage whose subpages are
+ * doing direct I/O, some references remain after try_to_unmap() and
+ * hugepage migration fails without data corruption.
+ *
+ * There is also no race when direct I/O is issued on the page under migration,
+ * because then pte is replaced with migration swap entry and direct I/O code
+ * will wait in the page fault for migration to complete.
+ */
+static int unmap_and_move_huge_page(new_page_t get_new_page,
+ free_page_t put_new_page, unsigned long private,
+ struct page *hpage, int force,
+ enum migrate_mode mode)
+{
+ int rc = 0;
+ int *result = NULL;
+ int page_was_mapped = 0;
+ struct page *new_hpage;
+ struct anon_vma *anon_vma = NULL;
+
+ /*
+ * Movability of hugepages depends on architectures and hugepage size.
+ * This check is necessary because some callers of hugepage migration
+ * like soft offline and memory hotremove don't walk through page
+ * tables or check whether the hugepage is pmd-based or not before
+ * kicking migration.
+ */
+ if (!hugepage_migration_supported(page_hstate(hpage))) {
+ putback_active_hugepage(hpage);
+ return -ENOSYS;
+ }
+
+ new_hpage = get_new_page(hpage, private, &result);
+ if (!new_hpage)
+ return -ENOMEM;
+
+ rc = -EAGAIN;
+
+ if (!trylock_page(hpage)) {
+ if (!force || mode != MIGRATE_SYNC)
+ goto out;
+ lock_page(hpage);
+ }
+
+ if (PageAnon(hpage))
+ anon_vma = page_get_anon_vma(hpage);
+
+ if (page_mapped(hpage)) {
+ try_to_unmap(hpage,
+ TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
+ page_was_mapped = 1;
+ }
+
+ if (!page_mapped(hpage))
+ rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
+
+ if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
+ remove_migration_ptes(hpage, hpage);
+
+ if (anon_vma)
+ put_anon_vma(anon_vma);
+
+ if (rc == MIGRATEPAGE_SUCCESS)
+ hugetlb_cgroup_migrate(hpage, new_hpage);
+
+ unlock_page(hpage);
+out:
+ if (rc != -EAGAIN)
+ putback_active_hugepage(hpage);
+
+ /*
+ * If migration was not successful and there's a freeing callback, use
+ * it. Otherwise, put_page() will drop the reference grabbed during
+ * isolation.
+ */
+ if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
+ put_new_page(new_hpage, private);
+ else
+ put_page(new_hpage);
+
+ if (result) {
+ if (rc)
+ *result = rc;
+ else
+ *result = page_to_nid(new_hpage);
+ }
+ return rc;
+}
+
+/*
+ * migrate_pages - migrate the pages specified in a list, to the free pages
+ * supplied as the target for the page migration
+ *
+ * @from: The list of pages to be migrated.
+ * @get_new_page: The function used to allocate free pages to be used
+ * as the target of the page migration.
+ * @put_new_page: The function used to free target pages if migration
+ * fails, or NULL if no special handling is necessary.
+ * @private: Private data to be passed on to get_new_page()
+ * @mode: The migration mode that specifies the constraints for
+ * page migration, if any.
+ * @reason: The reason for page migration.
+ *
+ * The function returns after 10 attempts or if no pages are movable any more
+ * because the list has become empty or no retryable pages exist any more.
+ * The caller should call putback_lru_pages() to return pages to the LRU
+ * or free list only if ret != 0.
+ *
+ * Returns the number of pages that were not migrated, or an error code.
+ */
+int migrate_pages(struct list_head *from, new_page_t get_new_page,
+ free_page_t put_new_page, unsigned long private,
+ enum migrate_mode mode, int reason)
+{
+ int retry = 1;
+ int nr_failed = 0;
+ int nr_succeeded = 0;
+ int pass = 0;
+ struct page *page;
+ struct page *page2;
+ int swapwrite = current->flags & PF_SWAPWRITE;
+ int rc;
+
+ if (!swapwrite)
+ current->flags |= PF_SWAPWRITE;
+
+ for(pass = 0; pass < 10 && retry; pass++) {
+ retry = 0;
+
+ list_for_each_entry_safe(page, page2, from, lru) {
+ cond_resched();
+
+ if (PageHuge(page))
+ rc = unmap_and_move_huge_page(get_new_page,
+ put_new_page, private, page,
+ pass > 2, mode);
+ else
+ rc = unmap_and_move(get_new_page, put_new_page,
+ private, page, pass > 2, mode);
+
+ switch(rc) {
+ case -ENOMEM:
+ goto out;
+ case -EAGAIN:
+ retry++;
+ break;
+ case MIGRATEPAGE_SUCCESS:
+ nr_succeeded++;
+ break;
+ default:
+ /*
+ * Permanent failure (-EBUSY, -ENOSYS, etc.):
+ * unlike -EAGAIN case, the failed page is
+ * removed from migration page list and not
+ * retried in the next outer loop.
+ */
+ nr_failed++;
+ break;
+ }
+ }
+ }
+ rc = nr_failed + retry;
+out:
+ if (nr_succeeded)
+ count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
+ if (nr_failed)
+ count_vm_events(PGMIGRATE_FAIL, nr_failed);
+ trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
+
+ if (!swapwrite)
+ current->flags &= ~PF_SWAPWRITE;
+
+ return rc;
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * Move a list of individual pages
+ */
+struct page_to_node {
+ unsigned long addr;
+ struct page *page;
+ int node;
+ int status;
+};
+
+static struct page *new_page_node(struct page *p, unsigned long private,
+ int **result)
+{
+ struct page_to_node *pm = (struct page_to_node *)private;
+
+ while (pm->node != MAX_NUMNODES && pm->page != p)
+ pm++;
+
+ if (pm->node == MAX_NUMNODES)
+ return NULL;
+
+ *result = &pm->status;
+
+ if (PageHuge(p))
+ return alloc_huge_page_node(page_hstate(compound_head(p)),
+ pm->node);
+ else
+ return alloc_pages_exact_node(pm->node,
+ GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
+}
+
+/*
+ * Move a set of pages as indicated in the pm array. The addr
+ * field must be set to the virtual address of the page to be moved
+ * and the node number must contain a valid target node.
+ * The pm array ends with node = MAX_NUMNODES.
+ */
+static int do_move_page_to_node_array(struct mm_struct *mm,
+ struct page_to_node *pm,
+ int migrate_all)
+{
+ int err;
+ struct page_to_node *pp;
+ LIST_HEAD(pagelist);
+
+ down_read(&mm->mmap_sem);
+
+ /*
+ * Build a list of pages to migrate
+ */
+ for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
+ struct vm_area_struct *vma;
+ struct page *page;
+
+ err = -EFAULT;
+ vma = find_vma(mm, pp->addr);
+ if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
+ goto set_status;
+
+ page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
+
+ err = PTR_ERR(page);
+ if (IS_ERR(page))
+ goto set_status;
+
+ err = -ENOENT;
+ if (!page)
+ goto set_status;
+
+ /* Use PageReserved to check for zero page */
+ if (PageReserved(page))
+ goto put_and_set;
+
+ pp->page = page;
+ err = page_to_nid(page);
+
+ if (err == pp->node)
+ /*
+ * Node already in the right place
+ */
+ goto put_and_set;
+
+ err = -EACCES;
+ if (page_mapcount(page) > 1 &&
+ !migrate_all)
+ goto put_and_set;
+
+ if (PageHuge(page)) {
+ if (PageHead(page))
+ isolate_huge_page(page, &pagelist);
+ goto put_and_set;
+ }
+
+ err = isolate_lru_page(page);
+ if (!err) {
+ list_add_tail(&page->lru, &pagelist);
+ inc_zone_page_state(page, NR_ISOLATED_ANON +
+ page_is_file_cache(page));
+ }
+put_and_set:
+ /*
+ * Either remove the duplicate refcount from
+ * isolate_lru_page() or drop the page ref if it was
+ * not isolated.
+ */
+ put_page(page);
+set_status:
+ pp->status = err;
+ }
+
+ err = 0;
+ if (!list_empty(&pagelist)) {
+ err = migrate_pages(&pagelist, new_page_node, NULL,
+ (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
+ if (err)
+ putback_movable_pages(&pagelist);
+ }
+
+ up_read(&mm->mmap_sem);
+ return err;
+}
+
+/*
+ * Migrate an array of page address onto an array of nodes and fill
+ * the corresponding array of status.
+ */
+static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
+ unsigned long nr_pages,
+ const void __user * __user *pages,
+ const int __user *nodes,
+ int __user *status, int flags)
+{
+ struct page_to_node *pm;
+ unsigned long chunk_nr_pages;
+ unsigned long chunk_start;
+ int err;
+
+ err = -ENOMEM;
+ pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
+ if (!pm)
+ goto out;
+
+ migrate_prep();
+
+ /*
+ * Store a chunk of page_to_node array in a page,
+ * but keep the last one as a marker
+ */
+ chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
+
+ for (chunk_start = 0;
+ chunk_start < nr_pages;
+ chunk_start += chunk_nr_pages) {
+ int j;
+
+ if (chunk_start + chunk_nr_pages > nr_pages)
+ chunk_nr_pages = nr_pages - chunk_start;
+
+ /* fill the chunk pm with addrs and nodes from user-space */
+ for (j = 0; j < chunk_nr_pages; j++) {
+ const void __user *p;
+ int node;
+
+ err = -EFAULT;
+ if (get_user(p, pages + j + chunk_start))
+ goto out_pm;
+ pm[j].addr = (unsigned long) p;
+
+ if (get_user(node, nodes + j + chunk_start))
+ goto out_pm;
+
+ err = -ENODEV;
+ if (node < 0 || node >= MAX_NUMNODES)
+ goto out_pm;
+
+ if (!node_state(node, N_MEMORY))
+ goto out_pm;
+
+ err = -EACCES;
+ if (!node_isset(node, task_nodes))
+ goto out_pm;
+
+ pm[j].node = node;
+ }
+
+ /* End marker for this chunk */
+ pm[chunk_nr_pages].node = MAX_NUMNODES;
+
+ /* Migrate this chunk */
+ err = do_move_page_to_node_array(mm, pm,
+ flags & MPOL_MF_MOVE_ALL);
+ if (err < 0)
+ goto out_pm;
+
+ /* Return status information */
+ for (j = 0; j < chunk_nr_pages; j++)
+ if (put_user(pm[j].status, status + j + chunk_start)) {
+ err = -EFAULT;
+ goto out_pm;
+ }
+ }
+ err = 0;
+
+out_pm:
+ free_page((unsigned long)pm);
+out:
+ return err;
+}
+
+/*
+ * Determine the nodes of an array of pages and store it in an array of status.
+ */
+static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
+ const void __user **pages, int *status)
+{
+ unsigned long i;
+
+ down_read(&mm->mmap_sem);
+
+ for (i = 0; i < nr_pages; i++) {
+ unsigned long addr = (unsigned long)(*pages);
+ struct vm_area_struct *vma;
+ struct page *page;
+ int err = -EFAULT;
+
+ vma = find_vma(mm, addr);
+ if (!vma || addr < vma->vm_start)
+ goto set_status;
+
+ page = follow_page(vma, addr, 0);
+
+ err = PTR_ERR(page);
+ if (IS_ERR(page))
+ goto set_status;
+
+ err = -ENOENT;
+ /* Use PageReserved to check for zero page */
+ if (!page || PageReserved(page))
+ goto set_status;
+
+ err = page_to_nid(page);
+set_status:
+ *status = err;
+
+ pages++;
+ status++;
+ }
+
+ up_read(&mm->mmap_sem);
+}
+
+/*
+ * Determine the nodes of a user array of pages and store it in
+ * a user array of status.
+ */
+static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
+ const void __user * __user *pages,
+ int __user *status)
+{
+#define DO_PAGES_STAT_CHUNK_NR 16
+ const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
+ int chunk_status[DO_PAGES_STAT_CHUNK_NR];
+
+ while (nr_pages) {
+ unsigned long chunk_nr;
+
+ chunk_nr = nr_pages;
+ if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
+ chunk_nr = DO_PAGES_STAT_CHUNK_NR;
+
+ if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
+ break;
+
+ do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
+
+ if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
+ break;
+
+ pages += chunk_nr;
+ status += chunk_nr;
+ nr_pages -= chunk_nr;
+ }
+ return nr_pages ? -EFAULT : 0;
+}
+
+/*
+ * Move a list of pages in the address space of the currently executing
+ * process.
+ */
+SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
+ const void __user * __user *, pages,
+ const int __user *, nodes,
+ int __user *, status, int, flags)
+{
+ const struct cred *cred = current_cred(), *tcred;
+ struct task_struct *task;
+ struct mm_struct *mm;
+ int err;
+ nodemask_t task_nodes;
+
+ /* Check flags */
+ if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
+ return -EINVAL;
+
+ if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
+ return -EPERM;
+
+ /* Find the mm_struct */
+ rcu_read_lock();
+ task = pid ? find_task_by_vpid(pid) : current;
+ if (!task) {
+ rcu_read_unlock();
+ return -ESRCH;
+ }
+ get_task_struct(task);
+
+ /*
+ * Check if this process has the right to modify the specified
+ * process. The right exists if the process has administrative
+ * capabilities, superuser privileges or the same
+ * userid as the target process.
+ */
+ tcred = __task_cred(task);
+ if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
+ !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
+ !capable(CAP_SYS_NICE)) {
+ rcu_read_unlock();
+ err = -EPERM;
+ goto out;
+ }
+ rcu_read_unlock();
+
+ err = security_task_movememory(task);
+ if (err)
+ goto out;
+
+ task_nodes = cpuset_mems_allowed(task);
+ mm = get_task_mm(task);
+ put_task_struct(task);
+
+ if (!mm)
+ return -EINVAL;
+
+ if (nodes)
+ err = do_pages_move(mm, task_nodes, nr_pages, pages,
+ nodes, status, flags);
+ else
+ err = do_pages_stat(mm, nr_pages, pages, status);
+
+ mmput(mm);
+ return err;
+
+out:
+ put_task_struct(task);
+ return err;
+}
+
+#ifdef CONFIG_NUMA_BALANCING
+/*
+ * Returns true if this is a safe migration target node for misplaced NUMA
+ * pages. Currently it only checks the watermarks which crude
+ */
+static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
+ unsigned long nr_migrate_pages)
+{
+ int z;
+ for (z = pgdat->nr_zones - 1; z >= 0; z--) {
+ struct zone *zone = pgdat->node_zones + z;
+
+ if (!populated_zone(zone))
+ continue;
+
+ if (!zone_reclaimable(zone))
+ continue;
+
+ /* Avoid waking kswapd by allocating pages_to_migrate pages. */
+ if (!zone_watermark_ok(zone, 0,
+ high_wmark_pages(zone) +
+ nr_migrate_pages,
+ 0, 0))
+ continue;
+ return true;
+ }
+ return false;
+}
+
+static struct page *alloc_misplaced_dst_page(struct page *page,
+ unsigned long data,
+ int **result)
+{
+ int nid = (int) data;
+ struct page *newpage;
+
+ newpage = alloc_pages_exact_node(nid,
+ (GFP_HIGHUSER_MOVABLE |
+ __GFP_THISNODE | __GFP_NOMEMALLOC |
+ __GFP_NORETRY | __GFP_NOWARN) &
+ ~GFP_IOFS, 0);
+
+ return newpage;
+}
+
+/*
+ * page migration rate limiting control.
+ * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
+ * window of time. Default here says do not migrate more than 1280M per second.
+ */
+static unsigned int migrate_interval_millisecs __read_mostly = 100;
+static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
+
+/* Returns true if the node is migrate rate-limited after the update */
+static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
+ unsigned long nr_pages)
+{
+ /*
+ * Rate-limit the amount of data that is being migrated to a node.
+ * Optimal placement is no good if the memory bus is saturated and
+ * all the time is being spent migrating!
+ */
+ if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
+ spin_lock(&pgdat->numabalancing_migrate_lock);
+ pgdat->numabalancing_migrate_nr_pages = 0;
+ pgdat->numabalancing_migrate_next_window = jiffies +
+ msecs_to_jiffies(migrate_interval_millisecs);
+ spin_unlock(&pgdat->numabalancing_migrate_lock);
+ }
+ if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
+ trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
+ nr_pages);
+ return true;
+ }
+
+ /*
+ * This is an unlocked non-atomic update so errors are possible.
+ * The consequences are failing to migrate when we potentiall should
+ * have which is not severe enough to warrant locking. If it is ever
+ * a problem, it can be converted to a per-cpu counter.
+ */
+ pgdat->numabalancing_migrate_nr_pages += nr_pages;
+ return false;
+}
+
+static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
+{
+ int page_lru;
+
+ VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
+
+ /* Avoid migrating to a node that is nearly full */
+ if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
+ return 0;
+
+ if (isolate_lru_page(page))
+ return 0;
+
+ /*
+ * migrate_misplaced_transhuge_page() skips page migration's usual
+ * check on page_count(), so we must do it here, now that the page
+ * has been isolated: a GUP pin, or any other pin, prevents migration.
+ * The expected page count is 3: 1 for page's mapcount and 1 for the
+ * caller's pin and 1 for the reference taken by isolate_lru_page().
+ */
+ if (PageTransHuge(page) && page_count(page) != 3) {
+ putback_lru_page(page);
+ return 0;
+ }
+
+ page_lru = page_is_file_cache(page);
+ mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
+ hpage_nr_pages(page));
+
+ /*
+ * Isolating the page has taken another reference, so the
+ * caller's reference can be safely dropped without the page
+ * disappearing underneath us during migration.
+ */
+ put_page(page);
+ return 1;
+}
+
+bool pmd_trans_migrating(pmd_t pmd)
+{
+ struct page *page = pmd_page(pmd);
+ return PageLocked(page);
+}
+
+/*
+ * Attempt to migrate a misplaced page to the specified destination
+ * node. Caller is expected to have an elevated reference count on
+ * the page that will be dropped by this function before returning.
+ */
+int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
+ int node)
+{
+ pg_data_t *pgdat = NODE_DATA(node);
+ int isolated;
+ int nr_remaining;
+ LIST_HEAD(migratepages);
+
+ /*
+ * Don't migrate file pages that are mapped in multiple processes
+ * with execute permissions as they are probably shared libraries.
+ */
+ if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
+ (vma->vm_flags & VM_EXEC))
+ goto out;
+
+ /*
+ * Rate-limit the amount of data that is being migrated to a node.
+ * Optimal placement is no good if the memory bus is saturated and
+ * all the time is being spent migrating!
+ */
+ if (numamigrate_update_ratelimit(pgdat, 1))
+ goto out;
+
+ isolated = numamigrate_isolate_page(pgdat, page);
+ if (!isolated)
+ goto out;
+
+ list_add(&page->lru, &migratepages);
+ nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
+ NULL, node, MIGRATE_ASYNC,
+ MR_NUMA_MISPLACED);
+ if (nr_remaining) {
+ if (!list_empty(&migratepages)) {
+ list_del(&page->lru);
+ dec_zone_page_state(page, NR_ISOLATED_ANON +
+ page_is_file_cache(page));
+ putback_lru_page(page);
+ }
+ isolated = 0;
+ } else
+ count_vm_numa_event(NUMA_PAGE_MIGRATE);
+ BUG_ON(!list_empty(&migratepages));
+ return isolated;
+
+out:
+ put_page(page);
+ return 0;
+}
+#endif /* CONFIG_NUMA_BALANCING */
+
+#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
+/*
+ * Migrates a THP to a given target node. page must be locked and is unlocked
+ * before returning.
+ */
+int migrate_misplaced_transhuge_page(struct mm_struct *mm,
+ struct vm_area_struct *vma,
+ pmd_t *pmd, pmd_t entry,
+ unsigned long address,
+ struct page *page, int node)
+{
+ spinlock_t *ptl;
+ pg_data_t *pgdat = NODE_DATA(node);
+ int isolated = 0;
+ struct page *new_page = NULL;
+ int page_lru = page_is_file_cache(page);
+ unsigned long mmun_start = address & HPAGE_PMD_MASK;
+ unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
+ pmd_t orig_entry;
+
+ /*
+ * Rate-limit the amount of data that is being migrated to a node.
+ * Optimal placement is no good if the memory bus is saturated and
+ * all the time is being spent migrating!
+ */
+ if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
+ goto out_dropref;
+
+ new_page = alloc_pages_node(node,
+ (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
+ HPAGE_PMD_ORDER);
+ if (!new_page)
+ goto out_fail;
+
+ isolated = numamigrate_isolate_page(pgdat, page);
+ if (!isolated) {
+ put_page(new_page);
+ goto out_fail;
+ }
+
+ if (mm_tlb_flush_pending(mm))
+ flush_tlb_range(vma, mmun_start, mmun_end);
+
+ /* Prepare a page as a migration target */
+ __set_page_locked(new_page);
+ SetPageSwapBacked(new_page);
+
+ /* anon mapping, we can simply copy page->mapping to the new page: */
+ new_page->mapping = page->mapping;
+ new_page->index = page->index;
+ migrate_page_copy(new_page, page);
+ WARN_ON(PageLRU(new_page));
+
+ /* Recheck the target PMD */
+ mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+ ptl = pmd_lock(mm, pmd);
+ if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
+fail_putback:
+ spin_unlock(ptl);
+ mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+
+ /* Reverse changes made by migrate_page_copy() */
+ if (TestClearPageActive(new_page))
+ SetPageActive(page);
+ if (TestClearPageUnevictable(new_page))
+ SetPageUnevictable(page);
+ mlock_migrate_page(page, new_page);
+
+ unlock_page(new_page);
+ put_page(new_page); /* Free it */
+
+ /* Retake the callers reference and putback on LRU */
+ get_page(page);
+ putback_lru_page(page);
+ mod_zone_page_state(page_zone(page),
+ NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
+
+ goto out_unlock;
+ }
+
+ orig_entry = *pmd;
+ entry = mk_pmd(new_page, vma->vm_page_prot);
+ entry = pmd_mkhuge(entry);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+
+ /*
+ * Clear the old entry under pagetable lock and establish the new PTE.
+ * Any parallel GUP will either observe the old page blocking on the
+ * page lock, block on the page table lock or observe the new page.
+ * The SetPageUptodate on the new page and page_add_new_anon_rmap
+ * guarantee the copy is visible before the pagetable update.
+ */
+ flush_cache_range(vma, mmun_start, mmun_end);
+ page_add_anon_rmap(new_page, vma, mmun_start);
+ pmdp_clear_flush_notify(vma, mmun_start, pmd);
+ set_pmd_at(mm, mmun_start, pmd, entry);
+ flush_tlb_range(vma, mmun_start, mmun_end);
+ update_mmu_cache_pmd(vma, address, &entry);
+
+ if (page_count(page) != 2) {
+ set_pmd_at(mm, mmun_start, pmd, orig_entry);
+ flush_tlb_range(vma, mmun_start, mmun_end);
+ mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
+ update_mmu_cache_pmd(vma, address, &entry);
+ page_remove_rmap(new_page);
+ goto fail_putback;
+ }
+
+ mem_cgroup_migrate(page, new_page, false);
+
+ page_remove_rmap(page);
+
+ spin_unlock(ptl);
+ mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+
+ /* Take an "isolate" reference and put new page on the LRU. */
+ get_page(new_page);
+ putback_lru_page(new_page);
+
+ unlock_page(new_page);
+ unlock_page(page);
+ put_page(page); /* Drop the rmap reference */
+ put_page(page); /* Drop the LRU isolation reference */
+
+ count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
+ count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
+
+ mod_zone_page_state(page_zone(page),
+ NR_ISOLATED_ANON + page_lru,
+ -HPAGE_PMD_NR);
+ return isolated;
+
+out_fail:
+ count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
+out_dropref:
+ ptl = pmd_lock(mm, pmd);
+ if (pmd_same(*pmd, entry)) {
+ entry = pmd_modify(entry, vma->vm_page_prot);
+ set_pmd_at(mm, mmun_start, pmd, entry);
+ update_mmu_cache_pmd(vma, address, &entry);
+ }
+ spin_unlock(ptl);
+
+out_unlock:
+ unlock_page(page);
+ put_page(page);
+ return 0;
+}
+#endif /* CONFIG_NUMA_BALANCING */
+
+#endif /* CONFIG_NUMA */