diff options
author | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
---|---|---|
committer | André Fabian Silva Delgado <emulatorman@parabola.nu> | 2015-08-05 17:04:01 -0300 |
commit | 57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch) | |
tree | 5e910f0e82173f4ef4f51111366a3f1299037a7b /mm/swap.c |
Initial import
Diffstat (limited to 'mm/swap.c')
-rw-r--r-- | mm/swap.c | 1162 |
1 files changed, 1162 insertions, 0 deletions
diff --git a/mm/swap.c b/mm/swap.c new file mode 100644 index 000000000..a7251a8ed --- /dev/null +++ b/mm/swap.c @@ -0,0 +1,1162 @@ +/* + * linux/mm/swap.c + * + * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds + */ + +/* + * This file contains the default values for the operation of the + * Linux VM subsystem. Fine-tuning documentation can be found in + * Documentation/sysctl/vm.txt. + * Started 18.12.91 + * Swap aging added 23.2.95, Stephen Tweedie. + * Buffermem limits added 12.3.98, Rik van Riel. + */ + +#include <linux/mm.h> +#include <linux/sched.h> +#include <linux/kernel_stat.h> +#include <linux/swap.h> +#include <linux/mman.h> +#include <linux/pagemap.h> +#include <linux/pagevec.h> +#include <linux/init.h> +#include <linux/export.h> +#include <linux/mm_inline.h> +#include <linux/percpu_counter.h> +#include <linux/percpu.h> +#include <linux/cpu.h> +#include <linux/notifier.h> +#include <linux/backing-dev.h> +#include <linux/memcontrol.h> +#include <linux/gfp.h> +#include <linux/uio.h> +#include <linux/hugetlb.h> + +#include "internal.h" + +#define CREATE_TRACE_POINTS +#include <trace/events/pagemap.h> + +/* How many pages do we try to swap or page in/out together? */ +int page_cluster; + +static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); +static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); +static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); + +/* + * This path almost never happens for VM activity - pages are normally + * freed via pagevecs. But it gets used by networking. + */ +static void __page_cache_release(struct page *page) +{ + if (PageLRU(page)) { + struct zone *zone = page_zone(page); + struct lruvec *lruvec; + unsigned long flags; + + spin_lock_irqsave(&zone->lru_lock, flags); + lruvec = mem_cgroup_page_lruvec(page, zone); + VM_BUG_ON_PAGE(!PageLRU(page), page); + __ClearPageLRU(page); + del_page_from_lru_list(page, lruvec, page_off_lru(page)); + spin_unlock_irqrestore(&zone->lru_lock, flags); + } + mem_cgroup_uncharge(page); +} + +static void __put_single_page(struct page *page) +{ + __page_cache_release(page); + free_hot_cold_page(page, false); +} + +static void __put_compound_page(struct page *page) +{ + compound_page_dtor *dtor; + + /* + * __page_cache_release() is supposed to be called for thp, not for + * hugetlb. This is because hugetlb page does never have PageLRU set + * (it's never listed to any LRU lists) and no memcg routines should + * be called for hugetlb (it has a separate hugetlb_cgroup.) + */ + if (!PageHuge(page)) + __page_cache_release(page); + dtor = get_compound_page_dtor(page); + (*dtor)(page); +} + +/** + * Two special cases here: we could avoid taking compound_lock_irqsave + * and could skip the tail refcounting(in _mapcount). + * + * 1. Hugetlbfs page: + * + * PageHeadHuge will remain true until the compound page + * is released and enters the buddy allocator, and it could + * not be split by __split_huge_page_refcount(). + * + * So if we see PageHeadHuge set, and we have the tail page pin, + * then we could safely put head page. + * + * 2. Slab THP page: + * + * PG_slab is cleared before the slab frees the head page, and + * tail pin cannot be the last reference left on the head page, + * because the slab code is free to reuse the compound page + * after a kfree/kmem_cache_free without having to check if + * there's any tail pin left. In turn all tail pinsmust be always + * released while the head is still pinned by the slab code + * and so we know PG_slab will be still set too. + * + * So if we see PageSlab set, and we have the tail page pin, + * then we could safely put head page. + */ +static __always_inline +void put_unrefcounted_compound_page(struct page *page_head, struct page *page) +{ + /* + * If @page is a THP tail, we must read the tail page + * flags after the head page flags. The + * __split_huge_page_refcount side enforces write memory barriers + * between clearing PageTail and before the head page + * can be freed and reallocated. + */ + smp_rmb(); + if (likely(PageTail(page))) { + /* + * __split_huge_page_refcount cannot race + * here, see the comment above this function. + */ + VM_BUG_ON_PAGE(!PageHead(page_head), page_head); + VM_BUG_ON_PAGE(page_mapcount(page) != 0, page); + if (put_page_testzero(page_head)) { + /* + * If this is the tail of a slab THP page, + * the tail pin must not be the last reference + * held on the page, because the PG_slab cannot + * be cleared before all tail pins (which skips + * the _mapcount tail refcounting) have been + * released. + * + * If this is the tail of a hugetlbfs page, + * the tail pin may be the last reference on + * the page instead, because PageHeadHuge will + * not go away until the compound page enters + * the buddy allocator. + */ + VM_BUG_ON_PAGE(PageSlab(page_head), page_head); + __put_compound_page(page_head); + } + } else + /* + * __split_huge_page_refcount run before us, + * @page was a THP tail. The split @page_head + * has been freed and reallocated as slab or + * hugetlbfs page of smaller order (only + * possible if reallocated as slab on x86). + */ + if (put_page_testzero(page)) + __put_single_page(page); +} + +static __always_inline +void put_refcounted_compound_page(struct page *page_head, struct page *page) +{ + if (likely(page != page_head && get_page_unless_zero(page_head))) { + unsigned long flags; + + /* + * @page_head wasn't a dangling pointer but it may not + * be a head page anymore by the time we obtain the + * lock. That is ok as long as it can't be freed from + * under us. + */ + flags = compound_lock_irqsave(page_head); + if (unlikely(!PageTail(page))) { + /* __split_huge_page_refcount run before us */ + compound_unlock_irqrestore(page_head, flags); + if (put_page_testzero(page_head)) { + /* + * The @page_head may have been freed + * and reallocated as a compound page + * of smaller order and then freed + * again. All we know is that it + * cannot have become: a THP page, a + * compound page of higher order, a + * tail page. That is because we + * still hold the refcount of the + * split THP tail and page_head was + * the THP head before the split. + */ + if (PageHead(page_head)) + __put_compound_page(page_head); + else + __put_single_page(page_head); + } +out_put_single: + if (put_page_testzero(page)) + __put_single_page(page); + return; + } + VM_BUG_ON_PAGE(page_head != page->first_page, page); + /* + * We can release the refcount taken by + * get_page_unless_zero() now that + * __split_huge_page_refcount() is blocked on the + * compound_lock. + */ + if (put_page_testzero(page_head)) + VM_BUG_ON_PAGE(1, page_head); + /* __split_huge_page_refcount will wait now */ + VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page); + atomic_dec(&page->_mapcount); + VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head); + VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); + compound_unlock_irqrestore(page_head, flags); + + if (put_page_testzero(page_head)) { + if (PageHead(page_head)) + __put_compound_page(page_head); + else + __put_single_page(page_head); + } + } else { + /* @page_head is a dangling pointer */ + VM_BUG_ON_PAGE(PageTail(page), page); + goto out_put_single; + } +} + +static void put_compound_page(struct page *page) +{ + struct page *page_head; + + /* + * We see the PageCompound set and PageTail not set, so @page maybe: + * 1. hugetlbfs head page, or + * 2. THP head page. + */ + if (likely(!PageTail(page))) { + if (put_page_testzero(page)) { + /* + * By the time all refcounts have been released + * split_huge_page cannot run anymore from under us. + */ + if (PageHead(page)) + __put_compound_page(page); + else + __put_single_page(page); + } + return; + } + + /* + * We see the PageCompound set and PageTail set, so @page maybe: + * 1. a tail hugetlbfs page, or + * 2. a tail THP page, or + * 3. a split THP page. + * + * Case 3 is possible, as we may race with + * __split_huge_page_refcount tearing down a THP page. + */ + page_head = compound_head_by_tail(page); + if (!__compound_tail_refcounted(page_head)) + put_unrefcounted_compound_page(page_head, page); + else + put_refcounted_compound_page(page_head, page); +} + +void put_page(struct page *page) +{ + if (unlikely(PageCompound(page))) + put_compound_page(page); + else if (put_page_testzero(page)) + __put_single_page(page); +} +EXPORT_SYMBOL(put_page); + +/* + * This function is exported but must not be called by anything other + * than get_page(). It implements the slow path of get_page(). + */ +bool __get_page_tail(struct page *page) +{ + /* + * This takes care of get_page() if run on a tail page + * returned by one of the get_user_pages/follow_page variants. + * get_user_pages/follow_page itself doesn't need the compound + * lock because it runs __get_page_tail_foll() under the + * proper PT lock that already serializes against + * split_huge_page(). + */ + unsigned long flags; + bool got; + struct page *page_head = compound_head(page); + + /* Ref to put_compound_page() comment. */ + if (!__compound_tail_refcounted(page_head)) { + smp_rmb(); + if (likely(PageTail(page))) { + /* + * This is a hugetlbfs page or a slab + * page. __split_huge_page_refcount + * cannot race here. + */ + VM_BUG_ON_PAGE(!PageHead(page_head), page_head); + __get_page_tail_foll(page, true); + return true; + } else { + /* + * __split_huge_page_refcount run + * before us, "page" was a THP + * tail. The split page_head has been + * freed and reallocated as slab or + * hugetlbfs page of smaller order + * (only possible if reallocated as + * slab on x86). + */ + return false; + } + } + + got = false; + if (likely(page != page_head && get_page_unless_zero(page_head))) { + /* + * page_head wasn't a dangling pointer but it + * may not be a head page anymore by the time + * we obtain the lock. That is ok as long as it + * can't be freed from under us. + */ + flags = compound_lock_irqsave(page_head); + /* here __split_huge_page_refcount won't run anymore */ + if (likely(PageTail(page))) { + __get_page_tail_foll(page, false); + got = true; + } + compound_unlock_irqrestore(page_head, flags); + if (unlikely(!got)) + put_page(page_head); + } + return got; +} +EXPORT_SYMBOL(__get_page_tail); + +/** + * put_pages_list() - release a list of pages + * @pages: list of pages threaded on page->lru + * + * Release a list of pages which are strung together on page.lru. Currently + * used by read_cache_pages() and related error recovery code. + */ +void put_pages_list(struct list_head *pages) +{ + while (!list_empty(pages)) { + struct page *victim; + + victim = list_entry(pages->prev, struct page, lru); + list_del(&victim->lru); + page_cache_release(victim); + } +} +EXPORT_SYMBOL(put_pages_list); + +/* + * get_kernel_pages() - pin kernel pages in memory + * @kiov: An array of struct kvec structures + * @nr_segs: number of segments to pin + * @write: pinning for read/write, currently ignored + * @pages: array that receives pointers to the pages pinned. + * Should be at least nr_segs long. + * + * Returns number of pages pinned. This may be fewer than the number + * requested. If nr_pages is 0 or negative, returns 0. If no pages + * were pinned, returns -errno. Each page returned must be released + * with a put_page() call when it is finished with. + */ +int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, + struct page **pages) +{ + int seg; + + for (seg = 0; seg < nr_segs; seg++) { + if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) + return seg; + + pages[seg] = kmap_to_page(kiov[seg].iov_base); + page_cache_get(pages[seg]); + } + + return seg; +} +EXPORT_SYMBOL_GPL(get_kernel_pages); + +/* + * get_kernel_page() - pin a kernel page in memory + * @start: starting kernel address + * @write: pinning for read/write, currently ignored + * @pages: array that receives pointer to the page pinned. + * Must be at least nr_segs long. + * + * Returns 1 if page is pinned. If the page was not pinned, returns + * -errno. The page returned must be released with a put_page() call + * when it is finished with. + */ +int get_kernel_page(unsigned long start, int write, struct page **pages) +{ + const struct kvec kiov = { + .iov_base = (void *)start, + .iov_len = PAGE_SIZE + }; + + return get_kernel_pages(&kiov, 1, write, pages); +} +EXPORT_SYMBOL_GPL(get_kernel_page); + +static void pagevec_lru_move_fn(struct pagevec *pvec, + void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), + void *arg) +{ + int i; + struct zone *zone = NULL; + struct lruvec *lruvec; + unsigned long flags = 0; + + for (i = 0; i < pagevec_count(pvec); i++) { + struct page *page = pvec->pages[i]; + struct zone *pagezone = page_zone(page); + + if (pagezone != zone) { + if (zone) + spin_unlock_irqrestore(&zone->lru_lock, flags); + zone = pagezone; + spin_lock_irqsave(&zone->lru_lock, flags); + } + + lruvec = mem_cgroup_page_lruvec(page, zone); + (*move_fn)(page, lruvec, arg); + } + if (zone) + spin_unlock_irqrestore(&zone->lru_lock, flags); + release_pages(pvec->pages, pvec->nr, pvec->cold); + pagevec_reinit(pvec); +} + +static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, + void *arg) +{ + int *pgmoved = arg; + + if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { + enum lru_list lru = page_lru_base_type(page); + list_move_tail(&page->lru, &lruvec->lists[lru]); + (*pgmoved)++; + } +} + +/* + * pagevec_move_tail() must be called with IRQ disabled. + * Otherwise this may cause nasty races. + */ +static void pagevec_move_tail(struct pagevec *pvec) +{ + int pgmoved = 0; + + pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); + __count_vm_events(PGROTATED, pgmoved); +} + +/* + * Writeback is about to end against a page which has been marked for immediate + * reclaim. If it still appears to be reclaimable, move it to the tail of the + * inactive list. + */ +void rotate_reclaimable_page(struct page *page) +{ + if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && + !PageUnevictable(page) && PageLRU(page)) { + struct pagevec *pvec; + unsigned long flags; + + page_cache_get(page); + local_irq_save(flags); + pvec = this_cpu_ptr(&lru_rotate_pvecs); + if (!pagevec_add(pvec, page)) + pagevec_move_tail(pvec); + local_irq_restore(flags); + } +} + +static void update_page_reclaim_stat(struct lruvec *lruvec, + int file, int rotated) +{ + struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; + + reclaim_stat->recent_scanned[file]++; + if (rotated) + reclaim_stat->recent_rotated[file]++; +} + +static void __activate_page(struct page *page, struct lruvec *lruvec, + void *arg) +{ + if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { + int file = page_is_file_cache(page); + int lru = page_lru_base_type(page); + + del_page_from_lru_list(page, lruvec, lru); + SetPageActive(page); + lru += LRU_ACTIVE; + add_page_to_lru_list(page, lruvec, lru); + trace_mm_lru_activate(page); + + __count_vm_event(PGACTIVATE); + update_page_reclaim_stat(lruvec, file, 1); + } +} + +#ifdef CONFIG_SMP +static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); + +static void activate_page_drain(int cpu) +{ + struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); + + if (pagevec_count(pvec)) + pagevec_lru_move_fn(pvec, __activate_page, NULL); +} + +static bool need_activate_page_drain(int cpu) +{ + return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; +} + +void activate_page(struct page *page) +{ + if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { + struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); + + page_cache_get(page); + if (!pagevec_add(pvec, page)) + pagevec_lru_move_fn(pvec, __activate_page, NULL); + put_cpu_var(activate_page_pvecs); + } +} + +#else +static inline void activate_page_drain(int cpu) +{ +} + +static bool need_activate_page_drain(int cpu) +{ + return false; +} + +void activate_page(struct page *page) +{ + struct zone *zone = page_zone(page); + + spin_lock_irq(&zone->lru_lock); + __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); + spin_unlock_irq(&zone->lru_lock); +} +#endif + +static void __lru_cache_activate_page(struct page *page) +{ + struct pagevec *pvec = &get_cpu_var(lru_add_pvec); + int i; + + /* + * Search backwards on the optimistic assumption that the page being + * activated has just been added to this pagevec. Note that only + * the local pagevec is examined as a !PageLRU page could be in the + * process of being released, reclaimed, migrated or on a remote + * pagevec that is currently being drained. Furthermore, marking + * a remote pagevec's page PageActive potentially hits a race where + * a page is marked PageActive just after it is added to the inactive + * list causing accounting errors and BUG_ON checks to trigger. + */ + for (i = pagevec_count(pvec) - 1; i >= 0; i--) { + struct page *pagevec_page = pvec->pages[i]; + + if (pagevec_page == page) { + SetPageActive(page); + break; + } + } + + put_cpu_var(lru_add_pvec); +} + +/* + * Mark a page as having seen activity. + * + * inactive,unreferenced -> inactive,referenced + * inactive,referenced -> active,unreferenced + * active,unreferenced -> active,referenced + * + * When a newly allocated page is not yet visible, so safe for non-atomic ops, + * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). + */ +void mark_page_accessed(struct page *page) +{ + if (!PageActive(page) && !PageUnevictable(page) && + PageReferenced(page)) { + + /* + * If the page is on the LRU, queue it for activation via + * activate_page_pvecs. Otherwise, assume the page is on a + * pagevec, mark it active and it'll be moved to the active + * LRU on the next drain. + */ + if (PageLRU(page)) + activate_page(page); + else + __lru_cache_activate_page(page); + ClearPageReferenced(page); + if (page_is_file_cache(page)) + workingset_activation(page); + } else if (!PageReferenced(page)) { + SetPageReferenced(page); + } +} +EXPORT_SYMBOL(mark_page_accessed); + +static void __lru_cache_add(struct page *page) +{ + struct pagevec *pvec = &get_cpu_var(lru_add_pvec); + + page_cache_get(page); + if (!pagevec_space(pvec)) + __pagevec_lru_add(pvec); + pagevec_add(pvec, page); + put_cpu_var(lru_add_pvec); +} + +/** + * lru_cache_add: add a page to the page lists + * @page: the page to add + */ +void lru_cache_add_anon(struct page *page) +{ + if (PageActive(page)) + ClearPageActive(page); + __lru_cache_add(page); +} + +void lru_cache_add_file(struct page *page) +{ + if (PageActive(page)) + ClearPageActive(page); + __lru_cache_add(page); +} +EXPORT_SYMBOL(lru_cache_add_file); + +/** + * lru_cache_add - add a page to a page list + * @page: the page to be added to the LRU. + * + * Queue the page for addition to the LRU via pagevec. The decision on whether + * to add the page to the [in]active [file|anon] list is deferred until the + * pagevec is drained. This gives a chance for the caller of lru_cache_add() + * have the page added to the active list using mark_page_accessed(). + */ +void lru_cache_add(struct page *page) +{ + VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); + VM_BUG_ON_PAGE(PageLRU(page), page); + __lru_cache_add(page); +} + +/** + * add_page_to_unevictable_list - add a page to the unevictable list + * @page: the page to be added to the unevictable list + * + * Add page directly to its zone's unevictable list. To avoid races with + * tasks that might be making the page evictable, through eg. munlock, + * munmap or exit, while it's not on the lru, we want to add the page + * while it's locked or otherwise "invisible" to other tasks. This is + * difficult to do when using the pagevec cache, so bypass that. + */ +void add_page_to_unevictable_list(struct page *page) +{ + struct zone *zone = page_zone(page); + struct lruvec *lruvec; + + spin_lock_irq(&zone->lru_lock); + lruvec = mem_cgroup_page_lruvec(page, zone); + ClearPageActive(page); + SetPageUnevictable(page); + SetPageLRU(page); + add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); + spin_unlock_irq(&zone->lru_lock); +} + +/** + * lru_cache_add_active_or_unevictable + * @page: the page to be added to LRU + * @vma: vma in which page is mapped for determining reclaimability + * + * Place @page on the active or unevictable LRU list, depending on its + * evictability. Note that if the page is not evictable, it goes + * directly back onto it's zone's unevictable list, it does NOT use a + * per cpu pagevec. + */ +void lru_cache_add_active_or_unevictable(struct page *page, + struct vm_area_struct *vma) +{ + VM_BUG_ON_PAGE(PageLRU(page), page); + + if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { + SetPageActive(page); + lru_cache_add(page); + return; + } + + if (!TestSetPageMlocked(page)) { + /* + * We use the irq-unsafe __mod_zone_page_stat because this + * counter is not modified from interrupt context, and the pte + * lock is held(spinlock), which implies preemption disabled. + */ + __mod_zone_page_state(page_zone(page), NR_MLOCK, + hpage_nr_pages(page)); + count_vm_event(UNEVICTABLE_PGMLOCKED); + } + add_page_to_unevictable_list(page); +} + +/* + * If the page can not be invalidated, it is moved to the + * inactive list to speed up its reclaim. It is moved to the + * head of the list, rather than the tail, to give the flusher + * threads some time to write it out, as this is much more + * effective than the single-page writeout from reclaim. + * + * If the page isn't page_mapped and dirty/writeback, the page + * could reclaim asap using PG_reclaim. + * + * 1. active, mapped page -> none + * 2. active, dirty/writeback page -> inactive, head, PG_reclaim + * 3. inactive, mapped page -> none + * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim + * 5. inactive, clean -> inactive, tail + * 6. Others -> none + * + * In 4, why it moves inactive's head, the VM expects the page would + * be write it out by flusher threads as this is much more effective + * than the single-page writeout from reclaim. + */ +static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, + void *arg) +{ + int lru, file; + bool active; + + if (!PageLRU(page)) + return; + + if (PageUnevictable(page)) + return; + + /* Some processes are using the page */ + if (page_mapped(page)) + return; + + active = PageActive(page); + file = page_is_file_cache(page); + lru = page_lru_base_type(page); + + del_page_from_lru_list(page, lruvec, lru + active); + ClearPageActive(page); + ClearPageReferenced(page); + add_page_to_lru_list(page, lruvec, lru); + + if (PageWriteback(page) || PageDirty(page)) { + /* + * PG_reclaim could be raced with end_page_writeback + * It can make readahead confusing. But race window + * is _really_ small and it's non-critical problem. + */ + SetPageReclaim(page); + } else { + /* + * The page's writeback ends up during pagevec + * We moves tha page into tail of inactive. + */ + list_move_tail(&page->lru, &lruvec->lists[lru]); + __count_vm_event(PGROTATED); + } + + if (active) + __count_vm_event(PGDEACTIVATE); + update_page_reclaim_stat(lruvec, file, 0); +} + +/* + * Drain pages out of the cpu's pagevecs. + * Either "cpu" is the current CPU, and preemption has already been + * disabled; or "cpu" is being hot-unplugged, and is already dead. + */ +void lru_add_drain_cpu(int cpu) +{ + struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); + + if (pagevec_count(pvec)) + __pagevec_lru_add(pvec); + + pvec = &per_cpu(lru_rotate_pvecs, cpu); + if (pagevec_count(pvec)) { + unsigned long flags; + + /* No harm done if a racing interrupt already did this */ + local_irq_save(flags); + pagevec_move_tail(pvec); + local_irq_restore(flags); + } + + pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); + if (pagevec_count(pvec)) + pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); + + activate_page_drain(cpu); +} + +/** + * deactivate_file_page - forcefully deactivate a file page + * @page: page to deactivate + * + * This function hints the VM that @page is a good reclaim candidate, + * for example if its invalidation fails due to the page being dirty + * or under writeback. + */ +void deactivate_file_page(struct page *page) +{ + /* + * In a workload with many unevictable page such as mprotect, + * unevictable page deactivation for accelerating reclaim is pointless. + */ + if (PageUnevictable(page)) + return; + + if (likely(get_page_unless_zero(page))) { + struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); + + if (!pagevec_add(pvec, page)) + pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); + put_cpu_var(lru_deactivate_file_pvecs); + } +} + +void lru_add_drain(void) +{ + lru_add_drain_cpu(get_cpu()); + put_cpu(); +} + +static void lru_add_drain_per_cpu(struct work_struct *dummy) +{ + lru_add_drain(); +} + +static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); + +void lru_add_drain_all(void) +{ + static DEFINE_MUTEX(lock); + static struct cpumask has_work; + int cpu; + + mutex_lock(&lock); + get_online_cpus(); + cpumask_clear(&has_work); + + for_each_online_cpu(cpu) { + struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); + + if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || + pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || + pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || + need_activate_page_drain(cpu)) { + INIT_WORK(work, lru_add_drain_per_cpu); + schedule_work_on(cpu, work); + cpumask_set_cpu(cpu, &has_work); + } + } + + for_each_cpu(cpu, &has_work) + flush_work(&per_cpu(lru_add_drain_work, cpu)); + + put_online_cpus(); + mutex_unlock(&lock); +} + +/** + * release_pages - batched page_cache_release() + * @pages: array of pages to release + * @nr: number of pages + * @cold: whether the pages are cache cold + * + * Decrement the reference count on all the pages in @pages. If it + * fell to zero, remove the page from the LRU and free it. + */ +void release_pages(struct page **pages, int nr, bool cold) +{ + int i; + LIST_HEAD(pages_to_free); + struct zone *zone = NULL; + struct lruvec *lruvec; + unsigned long uninitialized_var(flags); + unsigned int uninitialized_var(lock_batch); + + for (i = 0; i < nr; i++) { + struct page *page = pages[i]; + + if (unlikely(PageCompound(page))) { + if (zone) { + spin_unlock_irqrestore(&zone->lru_lock, flags); + zone = NULL; + } + put_compound_page(page); + continue; + } + + /* + * Make sure the IRQ-safe lock-holding time does not get + * excessive with a continuous string of pages from the + * same zone. The lock is held only if zone != NULL. + */ + if (zone && ++lock_batch == SWAP_CLUSTER_MAX) { + spin_unlock_irqrestore(&zone->lru_lock, flags); + zone = NULL; + } + + if (!put_page_testzero(page)) + continue; + + if (PageLRU(page)) { + struct zone *pagezone = page_zone(page); + + if (pagezone != zone) { + if (zone) + spin_unlock_irqrestore(&zone->lru_lock, + flags); + lock_batch = 0; + zone = pagezone; + spin_lock_irqsave(&zone->lru_lock, flags); + } + + lruvec = mem_cgroup_page_lruvec(page, zone); + VM_BUG_ON_PAGE(!PageLRU(page), page); + __ClearPageLRU(page); + del_page_from_lru_list(page, lruvec, page_off_lru(page)); + } + + /* Clear Active bit in case of parallel mark_page_accessed */ + __ClearPageActive(page); + + list_add(&page->lru, &pages_to_free); + } + if (zone) + spin_unlock_irqrestore(&zone->lru_lock, flags); + + mem_cgroup_uncharge_list(&pages_to_free); + free_hot_cold_page_list(&pages_to_free, cold); +} +EXPORT_SYMBOL(release_pages); + +/* + * The pages which we're about to release may be in the deferred lru-addition + * queues. That would prevent them from really being freed right now. That's + * OK from a correctness point of view but is inefficient - those pages may be + * cache-warm and we want to give them back to the page allocator ASAP. + * + * So __pagevec_release() will drain those queues here. __pagevec_lru_add() + * and __pagevec_lru_add_active() call release_pages() directly to avoid + * mutual recursion. + */ +void __pagevec_release(struct pagevec *pvec) +{ + lru_add_drain(); + release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); + pagevec_reinit(pvec); +} +EXPORT_SYMBOL(__pagevec_release); + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +/* used by __split_huge_page_refcount() */ +void lru_add_page_tail(struct page *page, struct page *page_tail, + struct lruvec *lruvec, struct list_head *list) +{ + const int file = 0; + + VM_BUG_ON_PAGE(!PageHead(page), page); + VM_BUG_ON_PAGE(PageCompound(page_tail), page); + VM_BUG_ON_PAGE(PageLRU(page_tail), page); + VM_BUG_ON(NR_CPUS != 1 && + !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); + + if (!list) + SetPageLRU(page_tail); + + if (likely(PageLRU(page))) + list_add_tail(&page_tail->lru, &page->lru); + else if (list) { + /* page reclaim is reclaiming a huge page */ + get_page(page_tail); + list_add_tail(&page_tail->lru, list); + } else { + struct list_head *list_head; + /* + * Head page has not yet been counted, as an hpage, + * so we must account for each subpage individually. + * + * Use the standard add function to put page_tail on the list, + * but then correct its position so they all end up in order. + */ + add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); + list_head = page_tail->lru.prev; + list_move_tail(&page_tail->lru, list_head); + } + + if (!PageUnevictable(page)) + update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, + void *arg) +{ + int file = page_is_file_cache(page); + int active = PageActive(page); + enum lru_list lru = page_lru(page); + + VM_BUG_ON_PAGE(PageLRU(page), page); + + SetPageLRU(page); + add_page_to_lru_list(page, lruvec, lru); + update_page_reclaim_stat(lruvec, file, active); + trace_mm_lru_insertion(page, lru); +} + +/* + * Add the passed pages to the LRU, then drop the caller's refcount + * on them. Reinitialises the caller's pagevec. + */ +void __pagevec_lru_add(struct pagevec *pvec) +{ + pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); +} +EXPORT_SYMBOL(__pagevec_lru_add); + +/** + * pagevec_lookup_entries - gang pagecache lookup + * @pvec: Where the resulting entries are placed + * @mapping: The address_space to search + * @start: The starting entry index + * @nr_entries: The maximum number of entries + * @indices: The cache indices corresponding to the entries in @pvec + * + * pagevec_lookup_entries() will search for and return a group of up + * to @nr_entries pages and shadow entries in the mapping. All + * entries are placed in @pvec. pagevec_lookup_entries() takes a + * reference against actual pages in @pvec. + * + * The search returns a group of mapping-contiguous entries with + * ascending indexes. There may be holes in the indices due to + * not-present entries. + * + * pagevec_lookup_entries() returns the number of entries which were + * found. + */ +unsigned pagevec_lookup_entries(struct pagevec *pvec, + struct address_space *mapping, + pgoff_t start, unsigned nr_pages, + pgoff_t *indices) +{ + pvec->nr = find_get_entries(mapping, start, nr_pages, + pvec->pages, indices); + return pagevec_count(pvec); +} + +/** + * pagevec_remove_exceptionals - pagevec exceptionals pruning + * @pvec: The pagevec to prune + * + * pagevec_lookup_entries() fills both pages and exceptional radix + * tree entries into the pagevec. This function prunes all + * exceptionals from @pvec without leaving holes, so that it can be + * passed on to page-only pagevec operations. + */ +void pagevec_remove_exceptionals(struct pagevec *pvec) +{ + int i, j; + + for (i = 0, j = 0; i < pagevec_count(pvec); i++) { + struct page *page = pvec->pages[i]; + if (!radix_tree_exceptional_entry(page)) + pvec->pages[j++] = page; + } + pvec->nr = j; +} + +/** + * pagevec_lookup - gang pagecache lookup + * @pvec: Where the resulting pages are placed + * @mapping: The address_space to search + * @start: The starting page index + * @nr_pages: The maximum number of pages + * + * pagevec_lookup() will search for and return a group of up to @nr_pages pages + * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a + * reference against the pages in @pvec. + * + * The search returns a group of mapping-contiguous pages with ascending + * indexes. There may be holes in the indices due to not-present pages. + * + * pagevec_lookup() returns the number of pages which were found. + */ +unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, + pgoff_t start, unsigned nr_pages) +{ + pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); + return pagevec_count(pvec); +} +EXPORT_SYMBOL(pagevec_lookup); + +unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, + pgoff_t *index, int tag, unsigned nr_pages) +{ + pvec->nr = find_get_pages_tag(mapping, index, tag, + nr_pages, pvec->pages); + return pagevec_count(pvec); +} +EXPORT_SYMBOL(pagevec_lookup_tag); + +/* + * Perform any setup for the swap system + */ +void __init swap_setup(void) +{ + unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); +#ifdef CONFIG_SWAP + int i; + + for (i = 0; i < MAX_SWAPFILES; i++) + spin_lock_init(&swapper_spaces[i].tree_lock); +#endif + + /* Use a smaller cluster for small-memory machines */ + if (megs < 16) + page_cluster = 2; + else + page_cluster = 3; + /* + * Right now other parts of the system means that we + * _really_ don't want to cluster much more + */ +} |