summaryrefslogtreecommitdiff
path: root/sound/soc/fsl/fsl_ssi.c
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2015-08-05 17:04:01 -0300
commit57f0f512b273f60d52568b8c6b77e17f5636edc0 (patch)
tree5e910f0e82173f4ef4f51111366a3f1299037a7b /sound/soc/fsl/fsl_ssi.c
Initial import
Diffstat (limited to 'sound/soc/fsl/fsl_ssi.c')
-rw-r--r--sound/soc/fsl/fsl_ssi.c1485
1 files changed, 1485 insertions, 0 deletions
diff --git a/sound/soc/fsl/fsl_ssi.c b/sound/soc/fsl/fsl_ssi.c
new file mode 100644
index 000000000..0d4880421
--- /dev/null
+++ b/sound/soc/fsl/fsl_ssi.c
@@ -0,0 +1,1485 @@
+/*
+ * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
+ *
+ * Author: Timur Tabi <timur@freescale.com>
+ *
+ * Copyright 2007-2010 Freescale Semiconductor, Inc.
+ *
+ * This file is licensed under the terms of the GNU General Public License
+ * version 2. This program is licensed "as is" without any warranty of any
+ * kind, whether express or implied.
+ *
+ *
+ * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
+ *
+ * The i.MX SSI core has some nasty limitations in AC97 mode. While most
+ * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
+ * one FIFO which combines all valid receive slots. We cannot even select
+ * which slots we want to receive. The WM9712 with which this driver
+ * was developed with always sends GPIO status data in slot 12 which
+ * we receive in our (PCM-) data stream. The only chance we have is to
+ * manually skip this data in the FIQ handler. With sampling rates different
+ * from 48000Hz not every frame has valid receive data, so the ratio
+ * between pcm data and GPIO status data changes. Our FIQ handler is not
+ * able to handle this, hence this driver only works with 48000Hz sampling
+ * rate.
+ * Reading and writing AC97 registers is another challenge. The core
+ * provides us status bits when the read register is updated with *another*
+ * value. When we read the same register two times (and the register still
+ * contains the same value) these status bits are not set. We work
+ * around this by not polling these bits but only wait a fixed delay.
+ */
+
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/clk.h>
+#include <linux/device.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+
+#include <sound/core.h>
+#include <sound/pcm.h>
+#include <sound/pcm_params.h>
+#include <sound/initval.h>
+#include <sound/soc.h>
+#include <sound/dmaengine_pcm.h>
+
+#include "fsl_ssi.h"
+#include "imx-pcm.h"
+
+/**
+ * FSLSSI_I2S_RATES: sample rates supported by the I2S
+ *
+ * This driver currently only supports the SSI running in I2S slave mode,
+ * which means the codec determines the sample rate. Therefore, we tell
+ * ALSA that we support all rates and let the codec driver decide what rates
+ * are really supported.
+ */
+#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
+
+/**
+ * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
+ *
+ * The SSI has a limitation in that the samples must be in the same byte
+ * order as the host CPU. This is because when multiple bytes are written
+ * to the STX register, the bytes and bits must be written in the same
+ * order. The STX is a shift register, so all the bits need to be aligned
+ * (bit-endianness must match byte-endianness). Processors typically write
+ * the bits within a byte in the same order that the bytes of a word are
+ * written in. So if the host CPU is big-endian, then only big-endian
+ * samples will be written to STX properly.
+ */
+#ifdef __BIG_ENDIAN
+#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
+ SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
+ SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
+#else
+#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
+ SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
+ SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
+#endif
+
+#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
+ CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
+ CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
+#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
+ CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
+ CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
+
+enum fsl_ssi_type {
+ FSL_SSI_MCP8610,
+ FSL_SSI_MX21,
+ FSL_SSI_MX35,
+ FSL_SSI_MX51,
+};
+
+struct fsl_ssi_reg_val {
+ u32 sier;
+ u32 srcr;
+ u32 stcr;
+ u32 scr;
+};
+
+struct fsl_ssi_rxtx_reg_val {
+ struct fsl_ssi_reg_val rx;
+ struct fsl_ssi_reg_val tx;
+};
+static const struct regmap_config fsl_ssi_regconfig = {
+ .max_register = CCSR_SSI_SACCDIS,
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+ .val_format_endian = REGMAP_ENDIAN_NATIVE,
+};
+
+struct fsl_ssi_soc_data {
+ bool imx;
+ bool offline_config;
+ u32 sisr_write_mask;
+};
+
+/**
+ * fsl_ssi_private: per-SSI private data
+ *
+ * @reg: Pointer to the regmap registers
+ * @irq: IRQ of this SSI
+ * @cpu_dai_drv: CPU DAI driver for this device
+ *
+ * @dai_fmt: DAI configuration this device is currently used with
+ * @i2s_mode: i2s and network mode configuration of the device. Is used to
+ * switch between normal and i2s/network mode
+ * mode depending on the number of channels
+ * @use_dma: DMA is used or FIQ with stream filter
+ * @use_dual_fifo: DMA with support for both FIFOs used
+ * @fifo_deph: Depth of the SSI FIFOs
+ * @rxtx_reg_val: Specific register settings for receive/transmit configuration
+ *
+ * @clk: SSI clock
+ * @baudclk: SSI baud clock for master mode
+ * @baudclk_streams: Active streams that are using baudclk
+ * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
+ *
+ * @dma_params_tx: DMA transmit parameters
+ * @dma_params_rx: DMA receive parameters
+ * @ssi_phys: physical address of the SSI registers
+ *
+ * @fiq_params: FIQ stream filtering parameters
+ *
+ * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
+ *
+ * @dbg_stats: Debugging statistics
+ *
+ * @soc: SoC specifc data
+ */
+struct fsl_ssi_private {
+ struct regmap *regs;
+ int irq;
+ struct snd_soc_dai_driver cpu_dai_drv;
+
+ unsigned int dai_fmt;
+ u8 i2s_mode;
+ bool use_dma;
+ bool use_dual_fifo;
+ bool has_ipg_clk_name;
+ unsigned int fifo_depth;
+ struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
+
+ struct clk *clk;
+ struct clk *baudclk;
+ unsigned int baudclk_streams;
+ unsigned int bitclk_freq;
+
+ /* DMA params */
+ struct snd_dmaengine_dai_dma_data dma_params_tx;
+ struct snd_dmaengine_dai_dma_data dma_params_rx;
+ dma_addr_t ssi_phys;
+
+ /* params for non-dma FIQ stream filtered mode */
+ struct imx_pcm_fiq_params fiq_params;
+
+ /* Used when using fsl-ssi as sound-card. This is only used by ppc and
+ * should be replaced with simple-sound-card. */
+ struct platform_device *pdev;
+
+ struct fsl_ssi_dbg dbg_stats;
+
+ const struct fsl_ssi_soc_data *soc;
+};
+
+/*
+ * imx51 and later SoCs have a slightly different IP that allows the
+ * SSI configuration while the SSI unit is running.
+ *
+ * More important, it is necessary on those SoCs to configure the
+ * sperate TX/RX DMA bits just before starting the stream
+ * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
+ * sends any DMA requests to the SDMA unit, otherwise it is not defined
+ * how the SDMA unit handles the DMA request.
+ *
+ * SDMA units are present on devices starting at imx35 but the imx35
+ * reference manual states that the DMA bits should not be changed
+ * while the SSI unit is running (SSIEN). So we support the necessary
+ * online configuration of fsl-ssi starting at imx51.
+ */
+
+static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
+ .imx = false,
+ .offline_config = true,
+ .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
+ CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
+ CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
+};
+
+static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
+ .imx = true,
+ .offline_config = true,
+ .sisr_write_mask = 0,
+};
+
+static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
+ .imx = true,
+ .offline_config = true,
+ .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
+ CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
+ CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
+};
+
+static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
+ .imx = true,
+ .offline_config = false,
+ .sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
+ CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
+};
+
+static const struct of_device_id fsl_ssi_ids[] = {
+ { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
+ { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
+ { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
+ { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
+ {}
+};
+MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
+
+static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
+{
+ return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97);
+}
+
+static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
+{
+ return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
+ SND_SOC_DAIFMT_CBS_CFS;
+}
+
+static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
+{
+ return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
+ SND_SOC_DAIFMT_CBM_CFS;
+}
+/**
+ * fsl_ssi_isr: SSI interrupt handler
+ *
+ * Although it's possible to use the interrupt handler to send and receive
+ * data to/from the SSI, we use the DMA instead. Programming is more
+ * complicated, but the performance is much better.
+ *
+ * This interrupt handler is used only to gather statistics.
+ *
+ * @irq: IRQ of the SSI device
+ * @dev_id: pointer to the ssi_private structure for this SSI device
+ */
+static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
+{
+ struct fsl_ssi_private *ssi_private = dev_id;
+ struct regmap *regs = ssi_private->regs;
+ __be32 sisr;
+ __be32 sisr2;
+
+ /* We got an interrupt, so read the status register to see what we
+ were interrupted for. We mask it with the Interrupt Enable register
+ so that we only check for events that we're interested in.
+ */
+ regmap_read(regs, CCSR_SSI_SISR, &sisr);
+
+ sisr2 = sisr & ssi_private->soc->sisr_write_mask;
+ /* Clear the bits that we set */
+ if (sisr2)
+ regmap_write(regs, CCSR_SSI_SISR, sisr2);
+
+ fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * Enable/Disable all rx/tx config flags at once.
+ */
+static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
+ bool enable)
+{
+ struct regmap *regs = ssi_private->regs;
+ struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
+
+ if (enable) {
+ regmap_update_bits(regs, CCSR_SSI_SIER,
+ vals->rx.sier | vals->tx.sier,
+ vals->rx.sier | vals->tx.sier);
+ regmap_update_bits(regs, CCSR_SSI_SRCR,
+ vals->rx.srcr | vals->tx.srcr,
+ vals->rx.srcr | vals->tx.srcr);
+ regmap_update_bits(regs, CCSR_SSI_STCR,
+ vals->rx.stcr | vals->tx.stcr,
+ vals->rx.stcr | vals->tx.stcr);
+ } else {
+ regmap_update_bits(regs, CCSR_SSI_SRCR,
+ vals->rx.srcr | vals->tx.srcr, 0);
+ regmap_update_bits(regs, CCSR_SSI_STCR,
+ vals->rx.stcr | vals->tx.stcr, 0);
+ regmap_update_bits(regs, CCSR_SSI_SIER,
+ vals->rx.sier | vals->tx.sier, 0);
+ }
+}
+
+/*
+ * Calculate the bits that have to be disabled for the current stream that is
+ * getting disabled. This keeps the bits enabled that are necessary for the
+ * second stream to work if 'stream_active' is true.
+ *
+ * Detailed calculation:
+ * These are the values that need to be active after disabling. For non-active
+ * second stream, this is 0:
+ * vals_stream * !!stream_active
+ *
+ * The following computes the overall differences between the setup for the
+ * to-disable stream and the active stream, a simple XOR:
+ * vals_disable ^ (vals_stream * !!(stream_active))
+ *
+ * The full expression adds a mask on all values we care about
+ */
+#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
+ ((vals_disable) & \
+ ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
+
+/*
+ * Enable/Disable a ssi configuration. You have to pass either
+ * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
+ */
+static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
+ struct fsl_ssi_reg_val *vals)
+{
+ struct regmap *regs = ssi_private->regs;
+ struct fsl_ssi_reg_val *avals;
+ int nr_active_streams;
+ u32 scr_val;
+ int keep_active;
+
+ regmap_read(regs, CCSR_SSI_SCR, &scr_val);
+
+ nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
+ !!(scr_val & CCSR_SSI_SCR_RE);
+
+ if (nr_active_streams - 1 > 0)
+ keep_active = 1;
+ else
+ keep_active = 0;
+
+ /* Find the other direction values rx or tx which we do not want to
+ * modify */
+ if (&ssi_private->rxtx_reg_val.rx == vals)
+ avals = &ssi_private->rxtx_reg_val.tx;
+ else
+ avals = &ssi_private->rxtx_reg_val.rx;
+
+ /* If vals should be disabled, start with disabling the unit */
+ if (!enable) {
+ u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
+ keep_active);
+ regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
+ }
+
+ /*
+ * We are running on a SoC which does not support online SSI
+ * reconfiguration, so we have to enable all necessary flags at once
+ * even if we do not use them later (capture and playback configuration)
+ */
+ if (ssi_private->soc->offline_config) {
+ if ((enable && !nr_active_streams) ||
+ (!enable && !keep_active))
+ fsl_ssi_rxtx_config(ssi_private, enable);
+
+ goto config_done;
+ }
+
+ /*
+ * Configure single direction units while the SSI unit is running
+ * (online configuration)
+ */
+ if (enable) {
+ regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
+ regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
+ regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
+ } else {
+ u32 sier;
+ u32 srcr;
+ u32 stcr;
+
+ /*
+ * Disabling the necessary flags for one of rx/tx while the
+ * other stream is active is a little bit more difficult. We
+ * have to disable only those flags that differ between both
+ * streams (rx XOR tx) and that are set in the stream that is
+ * disabled now. Otherwise we could alter flags of the other
+ * stream
+ */
+
+ /* These assignments are simply vals without bits set in avals*/
+ sier = fsl_ssi_disable_val(vals->sier, avals->sier,
+ keep_active);
+ srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
+ keep_active);
+ stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
+ keep_active);
+
+ regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
+ regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
+ regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
+ }
+
+config_done:
+ /* Enabling of subunits is done after configuration */
+ if (enable)
+ regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
+}
+
+
+static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
+{
+ fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
+}
+
+static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
+{
+ fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
+}
+
+/*
+ * Setup rx/tx register values used to enable/disable the streams. These will
+ * be used later in fsl_ssi_config to setup the streams without the need to
+ * check for all different SSI modes.
+ */
+static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
+{
+ struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
+
+ reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
+ reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
+ reg->rx.scr = 0;
+ reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
+ reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
+ reg->tx.scr = 0;
+
+ if (!fsl_ssi_is_ac97(ssi_private)) {
+ reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
+ reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
+ reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
+ reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
+ }
+
+ if (ssi_private->use_dma) {
+ reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
+ reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
+ } else {
+ reg->rx.sier |= CCSR_SSI_SIER_RIE;
+ reg->tx.sier |= CCSR_SSI_SIER_TIE;
+ }
+
+ reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
+ reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
+}
+
+static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
+{
+ struct regmap *regs = ssi_private->regs;
+
+ /*
+ * Setup the clock control register
+ */
+ regmap_write(regs, CCSR_SSI_STCCR,
+ CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
+ regmap_write(regs, CCSR_SSI_SRCCR,
+ CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
+
+ /*
+ * Enable AC97 mode and startup the SSI
+ */
+ regmap_write(regs, CCSR_SSI_SACNT,
+ CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
+ regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
+ regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
+
+ /*
+ * Enable SSI, Transmit and Receive. AC97 has to communicate with the
+ * codec before a stream is started.
+ */
+ regmap_update_bits(regs, CCSR_SSI_SCR,
+ CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
+ CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
+
+ regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
+}
+
+/**
+ * fsl_ssi_startup: create a new substream
+ *
+ * This is the first function called when a stream is opened.
+ *
+ * If this is the first stream open, then grab the IRQ and program most of
+ * the SSI registers.
+ */
+static int fsl_ssi_startup(struct snd_pcm_substream *substream,
+ struct snd_soc_dai *dai)
+{
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct fsl_ssi_private *ssi_private =
+ snd_soc_dai_get_drvdata(rtd->cpu_dai);
+ int ret;
+
+ ret = clk_prepare_enable(ssi_private->clk);
+ if (ret)
+ return ret;
+
+ /* When using dual fifo mode, it is safer to ensure an even period
+ * size. If appearing to an odd number while DMA always starts its
+ * task from fifo0, fifo1 would be neglected at the end of each
+ * period. But SSI would still access fifo1 with an invalid data.
+ */
+ if (ssi_private->use_dual_fifo)
+ snd_pcm_hw_constraint_step(substream->runtime, 0,
+ SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
+
+ return 0;
+}
+
+/**
+ * fsl_ssi_shutdown: shutdown the SSI
+ *
+ */
+static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
+ struct snd_soc_dai *dai)
+{
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct fsl_ssi_private *ssi_private =
+ snd_soc_dai_get_drvdata(rtd->cpu_dai);
+
+ clk_disable_unprepare(ssi_private->clk);
+
+}
+
+/**
+ * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
+ *
+ * Note: This function can be only called when using SSI as DAI master
+ *
+ * Quick instruction for parameters:
+ * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
+ * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
+ */
+static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
+ struct snd_soc_dai *cpu_dai,
+ struct snd_pcm_hw_params *hw_params)
+{
+ struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
+ struct regmap *regs = ssi_private->regs;
+ int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
+ u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
+ unsigned long clkrate, baudrate, tmprate;
+ u64 sub, savesub = 100000;
+ unsigned int freq;
+ bool baudclk_is_used;
+
+ /* Prefer the explicitly set bitclock frequency */
+ if (ssi_private->bitclk_freq)
+ freq = ssi_private->bitclk_freq;
+ else
+ freq = params_channels(hw_params) * 32 * params_rate(hw_params);
+
+ /* Don't apply it to any non-baudclk circumstance */
+ if (IS_ERR(ssi_private->baudclk))
+ return -EINVAL;
+
+ baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
+
+ /* It should be already enough to divide clock by setting pm alone */
+ psr = 0;
+ div2 = 0;
+
+ factor = (div2 + 1) * (7 * psr + 1) * 2;
+
+ for (i = 0; i < 255; i++) {
+ tmprate = freq * factor * (i + 1);
+
+ if (baudclk_is_used)
+ clkrate = clk_get_rate(ssi_private->baudclk);
+ else
+ clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
+
+ /*
+ * Hardware limitation: The bclk rate must be
+ * never greater than 1/5 IPG clock rate
+ */
+ if (clkrate * 5 > clk_get_rate(ssi_private->clk))
+ continue;
+
+ clkrate /= factor;
+ afreq = clkrate / (i + 1);
+
+ if (freq == afreq)
+ sub = 0;
+ else if (freq / afreq == 1)
+ sub = freq - afreq;
+ else if (afreq / freq == 1)
+ sub = afreq - freq;
+ else
+ continue;
+
+ /* Calculate the fraction */
+ sub *= 100000;
+ do_div(sub, freq);
+
+ if (sub < savesub) {
+ baudrate = tmprate;
+ savesub = sub;
+ pm = i;
+ }
+
+ /* We are lucky */
+ if (savesub == 0)
+ break;
+ }
+
+ /* No proper pm found if it is still remaining the initial value */
+ if (pm == 999) {
+ dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
+ return -EINVAL;
+ }
+
+ stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
+ (psr ? CCSR_SSI_SxCCR_PSR : 0);
+ mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
+ CCSR_SSI_SxCCR_PSR;
+
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
+ regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
+ else
+ regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
+
+ if (!baudclk_is_used) {
+ ret = clk_set_rate(ssi_private->baudclk, baudrate);
+ if (ret) {
+ dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
+ int clk_id, unsigned int freq, int dir)
+{
+ struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
+
+ ssi_private->bitclk_freq = freq;
+
+ return 0;
+}
+
+/**
+ * fsl_ssi_hw_params - program the sample size
+ *
+ * Most of the SSI registers have been programmed in the startup function,
+ * but the word length must be programmed here. Unfortunately, programming
+ * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
+ * cause a problem with supporting simultaneous playback and capture. If
+ * the SSI is already playing a stream, then that stream may be temporarily
+ * stopped when you start capture.
+ *
+ * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
+ * clock master.
+ */
+static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
+ struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
+{
+ struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
+ struct regmap *regs = ssi_private->regs;
+ unsigned int channels = params_channels(hw_params);
+ unsigned int sample_size =
+ snd_pcm_format_width(params_format(hw_params));
+ u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
+ int ret;
+ u32 scr_val;
+ int enabled;
+
+ regmap_read(regs, CCSR_SSI_SCR, &scr_val);
+ enabled = scr_val & CCSR_SSI_SCR_SSIEN;
+
+ /*
+ * If we're in synchronous mode, and the SSI is already enabled,
+ * then STCCR is already set properly.
+ */
+ if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
+ return 0;
+
+ if (fsl_ssi_is_i2s_master(ssi_private)) {
+ ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
+ if (ret)
+ return ret;
+
+ /* Do not enable the clock if it is already enabled */
+ if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
+ ret = clk_prepare_enable(ssi_private->baudclk);
+ if (ret)
+ return ret;
+
+ ssi_private->baudclk_streams |= BIT(substream->stream);
+ }
+ }
+
+ if (!fsl_ssi_is_ac97(ssi_private)) {
+ u8 i2smode;
+ /*
+ * Switch to normal net mode in order to have a frame sync
+ * signal every 32 bits instead of 16 bits
+ */
+ if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
+ i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
+ CCSR_SSI_SCR_NET;
+ else
+ i2smode = ssi_private->i2s_mode;
+
+ regmap_update_bits(regs, CCSR_SSI_SCR,
+ CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
+ channels == 1 ? 0 : i2smode);
+ }
+
+ /*
+ * FIXME: The documentation says that SxCCR[WL] should not be
+ * modified while the SSI is enabled. The only time this can
+ * happen is if we're trying to do simultaneous playback and
+ * capture in asynchronous mode. Unfortunately, I have been enable
+ * to get that to work at all on the P1022DS. Therefore, we don't
+ * bother to disable/enable the SSI when setting SxCCR[WL], because
+ * the SSI will stop anyway. Maybe one day, this will get fixed.
+ */
+
+ /* In synchronous mode, the SSI uses STCCR for capture */
+ if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
+ ssi_private->cpu_dai_drv.symmetric_rates)
+ regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
+ wl);
+ else
+ regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
+ wl);
+
+ return 0;
+}
+
+static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
+ struct snd_soc_dai *cpu_dai)
+{
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct fsl_ssi_private *ssi_private =
+ snd_soc_dai_get_drvdata(rtd->cpu_dai);
+
+ if (fsl_ssi_is_i2s_master(ssi_private) &&
+ ssi_private->baudclk_streams & BIT(substream->stream)) {
+ clk_disable_unprepare(ssi_private->baudclk);
+ ssi_private->baudclk_streams &= ~BIT(substream->stream);
+ }
+
+ return 0;
+}
+
+static int _fsl_ssi_set_dai_fmt(struct device *dev,
+ struct fsl_ssi_private *ssi_private,
+ unsigned int fmt)
+{
+ struct regmap *regs = ssi_private->regs;
+ u32 strcr = 0, stcr, srcr, scr, mask;
+ u8 wm;
+
+ ssi_private->dai_fmt = fmt;
+
+ if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
+ dev_err(dev, "baudclk is missing which is necessary for master mode\n");
+ return -EINVAL;
+ }
+
+ fsl_ssi_setup_reg_vals(ssi_private);
+
+ regmap_read(regs, CCSR_SSI_SCR, &scr);
+ scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
+ scr |= CCSR_SSI_SCR_SYNC_TX_FS;
+
+ mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
+ CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
+ CCSR_SSI_STCR_TEFS;
+ regmap_read(regs, CCSR_SSI_STCR, &stcr);
+ regmap_read(regs, CCSR_SSI_SRCR, &srcr);
+ stcr &= ~mask;
+ srcr &= ~mask;
+
+ ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
+ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
+ case SND_SOC_DAIFMT_I2S:
+ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
+ case SND_SOC_DAIFMT_CBM_CFS:
+ case SND_SOC_DAIFMT_CBS_CFS:
+ ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
+ regmap_update_bits(regs, CCSR_SSI_STCCR,
+ CCSR_SSI_SxCCR_DC_MASK,
+ CCSR_SSI_SxCCR_DC(2));
+ regmap_update_bits(regs, CCSR_SSI_SRCCR,
+ CCSR_SSI_SxCCR_DC_MASK,
+ CCSR_SSI_SxCCR_DC(2));
+ break;
+ case SND_SOC_DAIFMT_CBM_CFM:
+ ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* Data on rising edge of bclk, frame low, 1clk before data */
+ strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
+ CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
+ break;
+ case SND_SOC_DAIFMT_LEFT_J:
+ /* Data on rising edge of bclk, frame high */
+ strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
+ break;
+ case SND_SOC_DAIFMT_DSP_A:
+ /* Data on rising edge of bclk, frame high, 1clk before data */
+ strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
+ CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
+ break;
+ case SND_SOC_DAIFMT_DSP_B:
+ /* Data on rising edge of bclk, frame high */
+ strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
+ CCSR_SSI_STCR_TXBIT0;
+ break;
+ case SND_SOC_DAIFMT_AC97:
+ ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
+ break;
+ default:
+ return -EINVAL;
+ }
+ scr |= ssi_private->i2s_mode;
+
+ /* DAI clock inversion */
+ switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
+ case SND_SOC_DAIFMT_NB_NF:
+ /* Nothing to do for both normal cases */
+ break;
+ case SND_SOC_DAIFMT_IB_NF:
+ /* Invert bit clock */
+ strcr ^= CCSR_SSI_STCR_TSCKP;
+ break;
+ case SND_SOC_DAIFMT_NB_IF:
+ /* Invert frame clock */
+ strcr ^= CCSR_SSI_STCR_TFSI;
+ break;
+ case SND_SOC_DAIFMT_IB_IF:
+ /* Invert both clocks */
+ strcr ^= CCSR_SSI_STCR_TSCKP;
+ strcr ^= CCSR_SSI_STCR_TFSI;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* DAI clock master masks */
+ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
+ case SND_SOC_DAIFMT_CBS_CFS:
+ strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
+ scr |= CCSR_SSI_SCR_SYS_CLK_EN;
+ break;
+ case SND_SOC_DAIFMT_CBM_CFM:
+ scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
+ break;
+ case SND_SOC_DAIFMT_CBM_CFS:
+ strcr &= ~CCSR_SSI_STCR_TXDIR;
+ strcr |= CCSR_SSI_STCR_TFDIR;
+ scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ stcr |= strcr;
+ srcr |= strcr;
+
+ if (ssi_private->cpu_dai_drv.symmetric_rates) {
+ /* Need to clear RXDIR when using SYNC mode */
+ srcr &= ~CCSR_SSI_SRCR_RXDIR;
+ scr |= CCSR_SSI_SCR_SYN;
+ }
+
+ regmap_write(regs, CCSR_SSI_STCR, stcr);
+ regmap_write(regs, CCSR_SSI_SRCR, srcr);
+ regmap_write(regs, CCSR_SSI_SCR, scr);
+
+ /*
+ * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
+ * use FIFO 1. We program the transmit water to signal a DMA transfer
+ * if there are only two (or fewer) elements left in the FIFO. Two
+ * elements equals one frame (left channel, right channel). This value,
+ * however, depends on the depth of the transmit buffer.
+ *
+ * We set the watermark on the same level as the DMA burstsize. For
+ * fiq it is probably better to use the biggest possible watermark
+ * size.
+ */
+ if (ssi_private->use_dma)
+ wm = ssi_private->fifo_depth - 2;
+ else
+ wm = ssi_private->fifo_depth;
+
+ regmap_write(regs, CCSR_SSI_SFCSR,
+ CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
+ CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
+
+ if (ssi_private->use_dual_fifo) {
+ regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
+ CCSR_SSI_SRCR_RFEN1);
+ regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
+ CCSR_SSI_STCR_TFEN1);
+ regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
+ CCSR_SSI_SCR_TCH_EN);
+ }
+
+ if (fmt & SND_SOC_DAIFMT_AC97)
+ fsl_ssi_setup_ac97(ssi_private);
+
+ return 0;
+
+}
+
+/**
+ * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
+ */
+static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
+{
+ struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
+
+ return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
+}
+
+/**
+ * fsl_ssi_set_dai_tdm_slot - set TDM slot number
+ *
+ * Note: This function can be only called when using SSI as DAI master
+ */
+static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
+ u32 rx_mask, int slots, int slot_width)
+{
+ struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
+ struct regmap *regs = ssi_private->regs;
+ u32 val;
+
+ /* The slot number should be >= 2 if using Network mode or I2S mode */
+ regmap_read(regs, CCSR_SSI_SCR, &val);
+ val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
+ if (val && slots < 2) {
+ dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
+ return -EINVAL;
+ }
+
+ regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
+ CCSR_SSI_SxCCR_DC(slots));
+ regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
+ CCSR_SSI_SxCCR_DC(slots));
+
+ /* The register SxMSKs needs SSI to provide essential clock due to
+ * hardware design. So we here temporarily enable SSI to set them.
+ */
+ regmap_read(regs, CCSR_SSI_SCR, &val);
+ val &= CCSR_SSI_SCR_SSIEN;
+ regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
+ CCSR_SSI_SCR_SSIEN);
+
+ regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
+ regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
+
+ regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
+
+ return 0;
+}
+
+/**
+ * fsl_ssi_trigger: start and stop the DMA transfer.
+ *
+ * This function is called by ALSA to start, stop, pause, and resume the DMA
+ * transfer of data.
+ *
+ * The DMA channel is in external master start and pause mode, which
+ * means the SSI completely controls the flow of data.
+ */
+static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
+ struct snd_soc_dai *dai)
+{
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
+ struct regmap *regs = ssi_private->regs;
+
+ switch (cmd) {
+ case SNDRV_PCM_TRIGGER_START:
+ case SNDRV_PCM_TRIGGER_RESUME:
+ case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ fsl_ssi_tx_config(ssi_private, true);
+ else
+ fsl_ssi_rx_config(ssi_private, true);
+ break;
+
+ case SNDRV_PCM_TRIGGER_STOP:
+ case SNDRV_PCM_TRIGGER_SUSPEND:
+ case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ fsl_ssi_tx_config(ssi_private, false);
+ else
+ fsl_ssi_rx_config(ssi_private, false);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ if (fsl_ssi_is_ac97(ssi_private)) {
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
+ else
+ regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
+ }
+
+ return 0;
+}
+
+static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
+{
+ struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
+
+ if (ssi_private->soc->imx && ssi_private->use_dma) {
+ dai->playback_dma_data = &ssi_private->dma_params_tx;
+ dai->capture_dma_data = &ssi_private->dma_params_rx;
+ }
+
+ return 0;
+}
+
+static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
+ .startup = fsl_ssi_startup,
+ .shutdown = fsl_ssi_shutdown,
+ .hw_params = fsl_ssi_hw_params,
+ .hw_free = fsl_ssi_hw_free,
+ .set_fmt = fsl_ssi_set_dai_fmt,
+ .set_sysclk = fsl_ssi_set_dai_sysclk,
+ .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
+ .trigger = fsl_ssi_trigger,
+};
+
+/* Template for the CPU dai driver structure */
+static struct snd_soc_dai_driver fsl_ssi_dai_template = {
+ .probe = fsl_ssi_dai_probe,
+ .playback = {
+ .stream_name = "CPU-Playback",
+ .channels_min = 1,
+ .channels_max = 2,
+ .rates = FSLSSI_I2S_RATES,
+ .formats = FSLSSI_I2S_FORMATS,
+ },
+ .capture = {
+ .stream_name = "CPU-Capture",
+ .channels_min = 1,
+ .channels_max = 2,
+ .rates = FSLSSI_I2S_RATES,
+ .formats = FSLSSI_I2S_FORMATS,
+ },
+ .ops = &fsl_ssi_dai_ops,
+};
+
+static const struct snd_soc_component_driver fsl_ssi_component = {
+ .name = "fsl-ssi",
+};
+
+static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
+ .bus_control = true,
+ .playback = {
+ .stream_name = "AC97 Playback",
+ .channels_min = 2,
+ .channels_max = 2,
+ .rates = SNDRV_PCM_RATE_8000_48000,
+ .formats = SNDRV_PCM_FMTBIT_S16_LE,
+ },
+ .capture = {
+ .stream_name = "AC97 Capture",
+ .channels_min = 2,
+ .channels_max = 2,
+ .rates = SNDRV_PCM_RATE_48000,
+ .formats = SNDRV_PCM_FMTBIT_S16_LE,
+ },
+ .ops = &fsl_ssi_dai_ops,
+};
+
+
+static struct fsl_ssi_private *fsl_ac97_data;
+
+static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
+ unsigned short val)
+{
+ struct regmap *regs = fsl_ac97_data->regs;
+ unsigned int lreg;
+ unsigned int lval;
+
+ if (reg > 0x7f)
+ return;
+
+
+ lreg = reg << 12;
+ regmap_write(regs, CCSR_SSI_SACADD, lreg);
+
+ lval = val << 4;
+ regmap_write(regs, CCSR_SSI_SACDAT, lval);
+
+ regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
+ CCSR_SSI_SACNT_WR);
+ udelay(100);
+}
+
+static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
+ unsigned short reg)
+{
+ struct regmap *regs = fsl_ac97_data->regs;
+
+ unsigned short val = -1;
+ u32 reg_val;
+ unsigned int lreg;
+
+ lreg = (reg & 0x7f) << 12;
+ regmap_write(regs, CCSR_SSI_SACADD, lreg);
+ regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
+ CCSR_SSI_SACNT_RD);
+
+ udelay(100);
+
+ regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
+ val = (reg_val >> 4) & 0xffff;
+
+ return val;
+}
+
+static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
+ .read = fsl_ssi_ac97_read,
+ .write = fsl_ssi_ac97_write,
+};
+
+/**
+ * Make every character in a string lower-case
+ */
+static void make_lowercase(char *s)
+{
+ char *p = s;
+ char c;
+
+ while ((c = *p)) {
+ if ((c >= 'A') && (c <= 'Z'))
+ *p = c + ('a' - 'A');
+ p++;
+ }
+}
+
+static int fsl_ssi_imx_probe(struct platform_device *pdev,
+ struct fsl_ssi_private *ssi_private, void __iomem *iomem)
+{
+ struct device_node *np = pdev->dev.of_node;
+ u32 dmas[4];
+ int ret;
+
+ if (ssi_private->has_ipg_clk_name)
+ ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
+ else
+ ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(ssi_private->clk)) {
+ ret = PTR_ERR(ssi_private->clk);
+ dev_err(&pdev->dev, "could not get clock: %d\n", ret);
+ return ret;
+ }
+
+ if (!ssi_private->has_ipg_clk_name) {
+ ret = clk_prepare_enable(ssi_private->clk);
+ if (ret) {
+ dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
+ return ret;
+ }
+ }
+
+ /* For those SLAVE implementations, we ingore non-baudclk cases
+ * and, instead, abandon MASTER mode that needs baud clock.
+ */
+ ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
+ if (IS_ERR(ssi_private->baudclk))
+ dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
+ PTR_ERR(ssi_private->baudclk));
+
+ /*
+ * We have burstsize be "fifo_depth - 2" to match the SSI
+ * watermark setting in fsl_ssi_startup().
+ */
+ ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
+ ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
+ ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
+ ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
+
+ ret = of_property_read_u32_array(np, "dmas", dmas, 4);
+ if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
+ ssi_private->use_dual_fifo = true;
+ /* When using dual fifo mode, we need to keep watermark
+ * as even numbers due to dma script limitation.
+ */
+ ssi_private->dma_params_tx.maxburst &= ~0x1;
+ ssi_private->dma_params_rx.maxburst &= ~0x1;
+ }
+
+ if (!ssi_private->use_dma) {
+
+ /*
+ * Some boards use an incompatible codec. To get it
+ * working, we are using imx-fiq-pcm-audio, that
+ * can handle those codecs. DMA is not possible in this
+ * situation.
+ */
+
+ ssi_private->fiq_params.irq = ssi_private->irq;
+ ssi_private->fiq_params.base = iomem;
+ ssi_private->fiq_params.dma_params_rx =
+ &ssi_private->dma_params_rx;
+ ssi_private->fiq_params.dma_params_tx =
+ &ssi_private->dma_params_tx;
+
+ ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
+ if (ret)
+ goto error_pcm;
+ } else {
+ ret = imx_pcm_dma_init(pdev);
+ if (ret)
+ goto error_pcm;
+ }
+
+ return 0;
+
+error_pcm:
+
+ if (!ssi_private->has_ipg_clk_name)
+ clk_disable_unprepare(ssi_private->clk);
+ return ret;
+}
+
+static void fsl_ssi_imx_clean(struct platform_device *pdev,
+ struct fsl_ssi_private *ssi_private)
+{
+ if (!ssi_private->use_dma)
+ imx_pcm_fiq_exit(pdev);
+ if (!ssi_private->has_ipg_clk_name)
+ clk_disable_unprepare(ssi_private->clk);
+}
+
+static int fsl_ssi_probe(struct platform_device *pdev)
+{
+ struct fsl_ssi_private *ssi_private;
+ int ret = 0;
+ struct device_node *np = pdev->dev.of_node;
+ const struct of_device_id *of_id;
+ const char *p, *sprop;
+ const uint32_t *iprop;
+ struct resource *res;
+ void __iomem *iomem;
+ char name[64];
+
+ /* SSIs that are not connected on the board should have a
+ * status = "disabled"
+ * property in their device tree nodes.
+ */
+ if (!of_device_is_available(np))
+ return -ENODEV;
+
+ of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
+ if (!of_id || !of_id->data)
+ return -EINVAL;
+
+ ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
+ GFP_KERNEL);
+ if (!ssi_private) {
+ dev_err(&pdev->dev, "could not allocate DAI object\n");
+ return -ENOMEM;
+ }
+
+ ssi_private->soc = of_id->data;
+
+ sprop = of_get_property(np, "fsl,mode", NULL);
+ if (sprop) {
+ if (!strcmp(sprop, "ac97-slave"))
+ ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
+ }
+
+ ssi_private->use_dma = !of_property_read_bool(np,
+ "fsl,fiq-stream-filter");
+
+ if (fsl_ssi_is_ac97(ssi_private)) {
+ memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
+ sizeof(fsl_ssi_ac97_dai));
+
+ fsl_ac97_data = ssi_private;
+
+ snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
+ } else {
+ /* Initialize this copy of the CPU DAI driver structure */
+ memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
+ sizeof(fsl_ssi_dai_template));
+ }
+ ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ iomem = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(iomem))
+ return PTR_ERR(iomem);
+ ssi_private->ssi_phys = res->start;
+
+ ret = of_property_match_string(np, "clock-names", "ipg");
+ if (ret < 0) {
+ ssi_private->has_ipg_clk_name = false;
+ ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
+ &fsl_ssi_regconfig);
+ } else {
+ ssi_private->has_ipg_clk_name = true;
+ ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
+ "ipg", iomem, &fsl_ssi_regconfig);
+ }
+ if (IS_ERR(ssi_private->regs)) {
+ dev_err(&pdev->dev, "Failed to init register map\n");
+ return PTR_ERR(ssi_private->regs);
+ }
+
+ ssi_private->irq = platform_get_irq(pdev, 0);
+ if (ssi_private->irq < 0) {
+ dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
+ return ssi_private->irq;
+ }
+
+ /* Are the RX and the TX clocks locked? */
+ if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
+ ssi_private->cpu_dai_drv.symmetric_rates = 1;
+ ssi_private->cpu_dai_drv.symmetric_channels = 1;
+ ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
+ }
+
+ /* Determine the FIFO depth. */
+ iprop = of_get_property(np, "fsl,fifo-depth", NULL);
+ if (iprop)
+ ssi_private->fifo_depth = be32_to_cpup(iprop);
+ else
+ /* Older 8610 DTs didn't have the fifo-depth property */
+ ssi_private->fifo_depth = 8;
+
+ dev_set_drvdata(&pdev->dev, ssi_private);
+
+ if (ssi_private->soc->imx) {
+ ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
+ if (ret)
+ return ret;
+ }
+
+ ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
+ &ssi_private->cpu_dai_drv, 1);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
+ goto error_asoc_register;
+ }
+
+ if (ssi_private->use_dma) {
+ ret = devm_request_irq(&pdev->dev, ssi_private->irq,
+ fsl_ssi_isr, 0, dev_name(&pdev->dev),
+ ssi_private);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "could not claim irq %u\n",
+ ssi_private->irq);
+ goto error_asoc_register;
+ }
+ }
+
+ ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
+ if (ret)
+ goto error_asoc_register;
+
+ /*
+ * If codec-handle property is missing from SSI node, we assume
+ * that the machine driver uses new binding which does not require
+ * SSI driver to trigger machine driver's probe.
+ */
+ if (!of_get_property(np, "codec-handle", NULL))
+ goto done;
+
+ /* Trigger the machine driver's probe function. The platform driver
+ * name of the machine driver is taken from /compatible property of the
+ * device tree. We also pass the address of the CPU DAI driver
+ * structure.
+ */
+ sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
+ /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
+ p = strrchr(sprop, ',');
+ if (p)
+ sprop = p + 1;
+ snprintf(name, sizeof(name), "snd-soc-%s", sprop);
+ make_lowercase(name);
+
+ ssi_private->pdev =
+ platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
+ if (IS_ERR(ssi_private->pdev)) {
+ ret = PTR_ERR(ssi_private->pdev);
+ dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
+ goto error_sound_card;
+ }
+
+done:
+ if (ssi_private->dai_fmt)
+ _fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
+ ssi_private->dai_fmt);
+
+ return 0;
+
+error_sound_card:
+ fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
+
+error_asoc_register:
+ if (ssi_private->soc->imx)
+ fsl_ssi_imx_clean(pdev, ssi_private);
+
+ return ret;
+}
+
+static int fsl_ssi_remove(struct platform_device *pdev)
+{
+ struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
+
+ fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
+
+ if (ssi_private->pdev)
+ platform_device_unregister(ssi_private->pdev);
+
+ if (ssi_private->soc->imx)
+ fsl_ssi_imx_clean(pdev, ssi_private);
+
+ return 0;
+}
+
+static struct platform_driver fsl_ssi_driver = {
+ .driver = {
+ .name = "fsl-ssi-dai",
+ .of_match_table = fsl_ssi_ids,
+ },
+ .probe = fsl_ssi_probe,
+ .remove = fsl_ssi_remove,
+};
+
+module_platform_driver(fsl_ssi_driver);
+
+MODULE_ALIAS("platform:fsl-ssi-dai");
+MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
+MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
+MODULE_LICENSE("GPL v2");