diff options
Diffstat (limited to 'Documentation/PCI/MSI-HOWTO.txt')
-rw-r--r-- | Documentation/PCI/MSI-HOWTO.txt | 587 |
1 files changed, 587 insertions, 0 deletions
diff --git a/Documentation/PCI/MSI-HOWTO.txt b/Documentation/PCI/MSI-HOWTO.txt new file mode 100644 index 000000000..1179850f4 --- /dev/null +++ b/Documentation/PCI/MSI-HOWTO.txt @@ -0,0 +1,587 @@ + The MSI Driver Guide HOWTO + Tom L Nguyen tom.l.nguyen@intel.com + 10/03/2003 + Revised Feb 12, 2004 by Martine Silbermann + email: Martine.Silbermann@hp.com + Revised Jun 25, 2004 by Tom L Nguyen + Revised Jul 9, 2008 by Matthew Wilcox <willy@linux.intel.com> + Copyright 2003, 2008 Intel Corporation + +1. About this guide + +This guide describes the basics of Message Signaled Interrupts (MSIs), +the advantages of using MSI over traditional interrupt mechanisms, how +to change your driver to use MSI or MSI-X and some basic diagnostics to +try if a device doesn't support MSIs. + + +2. What are MSIs? + +A Message Signaled Interrupt is a write from the device to a special +address which causes an interrupt to be received by the CPU. + +The MSI capability was first specified in PCI 2.2 and was later enhanced +in PCI 3.0 to allow each interrupt to be masked individually. The MSI-X +capability was also introduced with PCI 3.0. It supports more interrupts +per device than MSI and allows interrupts to be independently configured. + +Devices may support both MSI and MSI-X, but only one can be enabled at +a time. + + +3. Why use MSIs? + +There are three reasons why using MSIs can give an advantage over +traditional pin-based interrupts. + +Pin-based PCI interrupts are often shared amongst several devices. +To support this, the kernel must call each interrupt handler associated +with an interrupt, which leads to reduced performance for the system as +a whole. MSIs are never shared, so this problem cannot arise. + +When a device writes data to memory, then raises a pin-based interrupt, +it is possible that the interrupt may arrive before all the data has +arrived in memory (this becomes more likely with devices behind PCI-PCI +bridges). In order to ensure that all the data has arrived in memory, +the interrupt handler must read a register on the device which raised +the interrupt. PCI transaction ordering rules require that all the data +arrive in memory before the value may be returned from the register. +Using MSIs avoids this problem as the interrupt-generating write cannot +pass the data writes, so by the time the interrupt is raised, the driver +knows that all the data has arrived in memory. + +PCI devices can only support a single pin-based interrupt per function. +Often drivers have to query the device to find out what event has +occurred, slowing down interrupt handling for the common case. With +MSIs, a device can support more interrupts, allowing each interrupt +to be specialised to a different purpose. One possible design gives +infrequent conditions (such as errors) their own interrupt which allows +the driver to handle the normal interrupt handling path more efficiently. +Other possible designs include giving one interrupt to each packet queue +in a network card or each port in a storage controller. + + +4. How to use MSIs + +PCI devices are initialised to use pin-based interrupts. The device +driver has to set up the device to use MSI or MSI-X. Not all machines +support MSIs correctly, and for those machines, the APIs described below +will simply fail and the device will continue to use pin-based interrupts. + +4.1 Include kernel support for MSIs + +To support MSI or MSI-X, the kernel must be built with the CONFIG_PCI_MSI +option enabled. This option is only available on some architectures, +and it may depend on some other options also being set. For example, +on x86, you must also enable X86_UP_APIC or SMP in order to see the +CONFIG_PCI_MSI option. + +4.2 Using MSI + +Most of the hard work is done for the driver in the PCI layer. It simply +has to request that the PCI layer set up the MSI capability for this +device. + +4.2.1 pci_enable_msi + +int pci_enable_msi(struct pci_dev *dev) + +A successful call allocates ONE interrupt to the device, regardless +of how many MSIs the device supports. The device is switched from +pin-based interrupt mode to MSI mode. The dev->irq number is changed +to a new number which represents the message signaled interrupt; +consequently, this function should be called before the driver calls +request_irq(), because an MSI is delivered via a vector that is +different from the vector of a pin-based interrupt. + +4.2.2 pci_enable_msi_range + +int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec) + +This function allows a device driver to request any number of MSI +interrupts within specified range from 'minvec' to 'maxvec'. + +If this function returns a positive number it indicates the number of +MSI interrupts that have been successfully allocated. In this case +the device is switched from pin-based interrupt mode to MSI mode and +updates dev->irq to be the lowest of the new interrupts assigned to it. +The other interrupts assigned to the device are in the range dev->irq +to dev->irq + returned value - 1. Device driver can use the returned +number of successfully allocated MSI interrupts to further allocate +and initialize device resources. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to request any more MSI interrupts for +this device. + +This function should be called before the driver calls request_irq(), +because MSI interrupts are delivered via vectors that are different +from the vector of a pin-based interrupt. + +It is ideal if drivers can cope with a variable number of MSI interrupts; +there are many reasons why the platform may not be able to provide the +exact number that a driver asks for. + +There could be devices that can not operate with just any number of MSI +interrupts within a range. See chapter 4.3.1.3 to get the idea how to +handle such devices for MSI-X - the same logic applies to MSI. + +4.2.1.1 Maximum possible number of MSI interrupts + +The typical usage of MSI interrupts is to allocate as many vectors as +possible, likely up to the limit returned by pci_msi_vec_count() function: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, 1, nvec); +} + +Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive, +the value of 0 would be meaningless and could result in error. + +Some devices have a minimal limit on number of MSI interrupts. +In this case the function could look like this: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, FOO_DRIVER_MINIMUM_NVEC, nvec); +} + +4.2.1.2 Exact number of MSI interrupts + +If a driver is unable or unwilling to deal with a variable number of MSI +interrupts it could request a particular number of interrupts by passing +that number to pci_enable_msi_range() function as both 'minvec' and 'maxvec' +parameters: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, nvec, nvec); +} + +Note, unlike pci_enable_msi_exact() function, which could be also used to +enable a particular number of MSI-X interrupts, pci_enable_msi_range() +returns either a negative errno or 'nvec' (not negative errno or 0 - as +pci_enable_msi_exact() does). + +4.2.1.3 Single MSI mode + +The most notorious example of the request type described above is +enabling the single MSI mode for a device. It could be done by passing +two 1s as 'minvec' and 'maxvec': + +static int foo_driver_enable_single_msi(struct pci_dev *pdev) +{ + return pci_enable_msi_range(pdev, 1, 1); +} + +Note, unlike pci_enable_msi() function, which could be also used to +enable the single MSI mode, pci_enable_msi_range() returns either a +negative errno or 1 (not negative errno or 0 - as pci_enable_msi() +does). + +4.2.3 pci_enable_msi_exact + +int pci_enable_msi_exact(struct pci_dev *dev, int nvec) + +This variation on pci_enable_msi_range() call allows a device driver to +request exactly 'nvec' MSIs. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to request any more MSI interrupts for +this device. + +By contrast with pci_enable_msi_range() function, pci_enable_msi_exact() +returns zero in case of success, which indicates MSI interrupts have been +successfully allocated. + +4.2.4 pci_disable_msi + +void pci_disable_msi(struct pci_dev *dev) + +This function should be used to undo the effect of pci_enable_msi_range(). +Calling it restores dev->irq to the pin-based interrupt number and frees +the previously allocated MSIs. The interrupts may subsequently be assigned +to another device, so drivers should not cache the value of dev->irq. + +Before calling this function, a device driver must always call free_irq() +on any interrupt for which it previously called request_irq(). +Failure to do so results in a BUG_ON(), leaving the device with +MSI enabled and thus leaking its vector. + +4.2.4 pci_msi_vec_count + +int pci_msi_vec_count(struct pci_dev *dev) + +This function could be used to retrieve the number of MSI vectors the +device requested (via the Multiple Message Capable register). The MSI +specification only allows the returned value to be a power of two, +up to a maximum of 2^5 (32). + +If this function returns a negative number, it indicates the device is +not capable of sending MSIs. + +If this function returns a positive number, it indicates the maximum +number of MSI interrupt vectors that could be allocated. + +4.3 Using MSI-X + +The MSI-X capability is much more flexible than the MSI capability. +It supports up to 2048 interrupts, each of which can be controlled +independently. To support this flexibility, drivers must use an array of +`struct msix_entry': + +struct msix_entry { + u16 vector; /* kernel uses to write alloc vector */ + u16 entry; /* driver uses to specify entry */ +}; + +This allows for the device to use these interrupts in a sparse fashion; +for example, it could use interrupts 3 and 1027 and yet allocate only a +two-element array. The driver is expected to fill in the 'entry' value +in each element of the array to indicate for which entries the kernel +should assign interrupts; it is invalid to fill in two entries with the +same number. + +4.3.1 pci_enable_msix_range + +int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, + int minvec, int maxvec) + +Calling this function asks the PCI subsystem to allocate any number of +MSI-X interrupts within specified range from 'minvec' to 'maxvec'. +The 'entries' argument is a pointer to an array of msix_entry structs +which should be at least 'maxvec' entries in size. + +On success, the device is switched into MSI-X mode and the function +returns the number of MSI-X interrupts that have been successfully +allocated. In this case the 'vector' member in entries numbered from +0 to the returned value - 1 is populated with the interrupt number; +the driver should then call request_irq() for each 'vector' that it +decides to use. The device driver is responsible for keeping track of the +interrupts assigned to the MSI-X vectors so it can free them again later. +Device driver can use the returned number of successfully allocated MSI-X +interrupts to further allocate and initialize device resources. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to allocate any more MSI-X interrupts for +this device. + +This function, in contrast with pci_enable_msi_range(), does not adjust +dev->irq. The device will not generate interrupts for this interrupt +number once MSI-X is enabled. + +Device drivers should normally call this function once per device +during the initialization phase. + +It is ideal if drivers can cope with a variable number of MSI-X interrupts; +there are many reasons why the platform may not be able to provide the +exact number that a driver asks for. + +There could be devices that can not operate with just any number of MSI-X +interrupts within a range. E.g., an network adapter might need let's say +four vectors per each queue it provides. Therefore, a number of MSI-X +interrupts allocated should be a multiple of four. In this case interface +pci_enable_msix_range() can not be used alone to request MSI-X interrupts +(since it can allocate any number within the range, without any notion of +the multiple of four) and the device driver should master a custom logic +to request the required number of MSI-X interrupts. + +4.3.1.1 Maximum possible number of MSI-X interrupts + +The typical usage of MSI-X interrupts is to allocate as many vectors as +possible, likely up to the limit returned by pci_msix_vec_count() function: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + 1, nvec); +} + +Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive, +the value of 0 would be meaningless and could result in error. + +Some devices have a minimal limit on number of MSI-X interrupts. +In this case the function could look like this: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + FOO_DRIVER_MINIMUM_NVEC, nvec); +} + +4.3.1.2 Exact number of MSI-X interrupts + +If a driver is unable or unwilling to deal with a variable number of MSI-X +interrupts it could request a particular number of interrupts by passing +that number to pci_enable_msix_range() function as both 'minvec' and 'maxvec' +parameters: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + nvec, nvec); +} + +Note, unlike pci_enable_msix_exact() function, which could be also used to +enable a particular number of MSI-X interrupts, pci_enable_msix_range() +returns either a negative errno or 'nvec' (not negative errno or 0 - as +pci_enable_msix_exact() does). + +4.3.1.3 Specific requirements to the number of MSI-X interrupts + +As noted above, there could be devices that can not operate with just any +number of MSI-X interrupts within a range. E.g., let's assume a device that +is only capable sending the number of MSI-X interrupts which is a power of +two. A routine that enables MSI-X mode for such device might look like this: + +/* + * Assume 'minvec' and 'maxvec' are non-zero + */ +static int foo_driver_enable_msix(struct foo_adapter *adapter, + int minvec, int maxvec) +{ + int rc; + + minvec = roundup_pow_of_two(minvec); + maxvec = rounddown_pow_of_two(maxvec); + + if (minvec > maxvec) + return -ERANGE; + +retry: + rc = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + maxvec, maxvec); + /* + * -ENOSPC is the only error code allowed to be analyzed + */ + if (rc == -ENOSPC) { + if (maxvec == 1) + return -ENOSPC; + + maxvec /= 2; + + if (minvec > maxvec) + return -ENOSPC; + + goto retry; + } + + return rc; +} + +Note how pci_enable_msix_range() return value is analyzed for a fallback - +any error code other than -ENOSPC indicates a fatal error and should not +be retried. + +4.3.2 pci_enable_msix_exact + +int pci_enable_msix_exact(struct pci_dev *dev, + struct msix_entry *entries, int nvec) + +This variation on pci_enable_msix_range() call allows a device driver to +request exactly 'nvec' MSI-Xs. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to allocate any more MSI-X interrupts for +this device. + +By contrast with pci_enable_msix_range() function, pci_enable_msix_exact() +returns zero in case of success, which indicates MSI-X interrupts have been +successfully allocated. + +Another version of a routine that enables MSI-X mode for a device with +specific requirements described in chapter 4.3.1.3 might look like this: + +/* + * Assume 'minvec' and 'maxvec' are non-zero + */ +static int foo_driver_enable_msix(struct foo_adapter *adapter, + int minvec, int maxvec) +{ + int rc; + + minvec = roundup_pow_of_two(minvec); + maxvec = rounddown_pow_of_two(maxvec); + + if (minvec > maxvec) + return -ERANGE; + +retry: + rc = pci_enable_msix_exact(adapter->pdev, + adapter->msix_entries, maxvec); + + /* + * -ENOSPC is the only error code allowed to be analyzed + */ + if (rc == -ENOSPC) { + if (maxvec == 1) + return -ENOSPC; + + maxvec /= 2; + + if (minvec > maxvec) + return -ENOSPC; + + goto retry; + } else if (rc < 0) { + return rc; + } + + return maxvec; +} + +4.3.3 pci_disable_msix + +void pci_disable_msix(struct pci_dev *dev) + +This function should be used to undo the effect of pci_enable_msix_range(). +It frees the previously allocated MSI-X interrupts. The interrupts may +subsequently be assigned to another device, so drivers should not cache +the value of the 'vector' elements over a call to pci_disable_msix(). + +Before calling this function, a device driver must always call free_irq() +on any interrupt for which it previously called request_irq(). +Failure to do so results in a BUG_ON(), leaving the device with +MSI-X enabled and thus leaking its vector. + +4.3.3 The MSI-X Table + +The MSI-X capability specifies a BAR and offset within that BAR for the +MSI-X Table. This address is mapped by the PCI subsystem, and should not +be accessed directly by the device driver. If the driver wishes to +mask or unmask an interrupt, it should call disable_irq() / enable_irq(). + +4.3.4 pci_msix_vec_count + +int pci_msix_vec_count(struct pci_dev *dev) + +This function could be used to retrieve number of entries in the device +MSI-X table. + +If this function returns a negative number, it indicates the device is +not capable of sending MSI-Xs. + +If this function returns a positive number, it indicates the maximum +number of MSI-X interrupt vectors that could be allocated. + +4.4 Handling devices implementing both MSI and MSI-X capabilities + +If a device implements both MSI and MSI-X capabilities, it can +run in either MSI mode or MSI-X mode, but not both simultaneously. +This is a requirement of the PCI spec, and it is enforced by the +PCI layer. Calling pci_enable_msi_range() when MSI-X is already +enabled or pci_enable_msix_range() when MSI is already enabled +results in an error. If a device driver wishes to switch between MSI +and MSI-X at runtime, it must first quiesce the device, then switch +it back to pin-interrupt mode, before calling pci_enable_msi_range() +or pci_enable_msix_range() and resuming operation. This is not expected +to be a common operation but may be useful for debugging or testing +during development. + +4.5 Considerations when using MSIs + +4.5.1 Choosing between MSI-X and MSI + +If your device supports both MSI-X and MSI capabilities, you should use +the MSI-X facilities in preference to the MSI facilities. As mentioned +above, MSI-X supports any number of interrupts between 1 and 2048. +In contrast, MSI is restricted to a maximum of 32 interrupts (and +must be a power of two). In addition, the MSI interrupt vectors must +be allocated consecutively, so the system might not be able to allocate +as many vectors for MSI as it could for MSI-X. On some platforms, MSI +interrupts must all be targeted at the same set of CPUs whereas MSI-X +interrupts can all be targeted at different CPUs. + +4.5.2 Spinlocks + +Most device drivers have a per-device spinlock which is taken in the +interrupt handler. With pin-based interrupts or a single MSI, it is not +necessary to disable interrupts (Linux guarantees the same interrupt will +not be re-entered). If a device uses multiple interrupts, the driver +must disable interrupts while the lock is held. If the device sends +a different interrupt, the driver will deadlock trying to recursively +acquire the spinlock. Such deadlocks can be avoided by using +spin_lock_irqsave() or spin_lock_irq() which disable local interrupts +and acquire the lock (see Documentation/DocBook/kernel-locking). + +4.6 How to tell whether MSI/MSI-X is enabled on a device + +Using 'lspci -v' (as root) may show some devices with "MSI", "Message +Signalled Interrupts" or "MSI-X" capabilities. Each of these capabilities +has an 'Enable' flag which is followed with either "+" (enabled) +or "-" (disabled). + + +5. MSI quirks + +Several PCI chipsets or devices are known not to support MSIs. +The PCI stack provides three ways to disable MSIs: + +1. globally +2. on all devices behind a specific bridge +3. on a single device + +5.1. Disabling MSIs globally + +Some host chipsets simply don't support MSIs properly. If we're +lucky, the manufacturer knows this and has indicated it in the ACPI +FADT table. In this case, Linux automatically disables MSIs. +Some boards don't include this information in the table and so we have +to detect them ourselves. The complete list of these is found near the +quirk_disable_all_msi() function in drivers/pci/quirks.c. + +If you have a board which has problems with MSIs, you can pass pci=nomsi +on the kernel command line to disable MSIs on all devices. It would be +in your best interests to report the problem to linux-pci@vger.kernel.org +including a full 'lspci -v' so we can add the quirks to the kernel. + +5.2. Disabling MSIs below a bridge + +Some PCI bridges are not able to route MSIs between busses properly. +In this case, MSIs must be disabled on all devices behind the bridge. + +Some bridges allow you to enable MSIs by changing some bits in their +PCI configuration space (especially the Hypertransport chipsets such +as the nVidia nForce and Serverworks HT2000). As with host chipsets, +Linux mostly knows about them and automatically enables MSIs if it can. +If you have a bridge unknown to Linux, you can enable +MSIs in configuration space using whatever method you know works, then +enable MSIs on that bridge by doing: + + echo 1 > /sys/bus/pci/devices/$bridge/msi_bus + +where $bridge is the PCI address of the bridge you've enabled (eg +0000:00:0e.0). + +To disable MSIs, echo 0 instead of 1. Changing this value should be +done with caution as it could break interrupt handling for all devices +below this bridge. + +Again, please notify linux-pci@vger.kernel.org of any bridges that need +special handling. + +5.3. Disabling MSIs on a single device + +Some devices are known to have faulty MSI implementations. Usually this +is handled in the individual device driver, but occasionally it's necessary +to handle this with a quirk. Some drivers have an option to disable use +of MSI. While this is a convenient workaround for the driver author, +it is not good practice, and should not be emulated. + +5.4. Finding why MSIs are disabled on a device + +From the above three sections, you can see that there are many reasons +why MSIs may not be enabled for a given device. Your first step should +be to examine your dmesg carefully to determine whether MSIs are enabled +for your machine. You should also check your .config to be sure you +have enabled CONFIG_PCI_MSI. + +Then, 'lspci -t' gives the list of bridges above a device. Reading +/sys/bus/pci/devices/*/msi_bus will tell you whether MSIs are enabled (1) +or disabled (0). If 0 is found in any of the msi_bus files belonging +to bridges between the PCI root and the device, MSIs are disabled. + +It is also worth checking the device driver to see whether it supports MSIs. +For example, it may contain calls to pci_enable_msi_range() or +pci_enable_msix_range(). |