diff options
Diffstat (limited to 'Documentation/RCU/trace.txt')
-rw-r--r-- | Documentation/RCU/trace.txt | 554 |
1 files changed, 554 insertions, 0 deletions
diff --git a/Documentation/RCU/trace.txt b/Documentation/RCU/trace.txt new file mode 100644 index 000000000..08651da15 --- /dev/null +++ b/Documentation/RCU/trace.txt @@ -0,0 +1,554 @@ +CONFIG_RCU_TRACE debugfs Files and Formats + + +The rcutree and rcutiny implementations of RCU provide debugfs trace +output that summarizes counters and state. This information is useful for +debugging RCU itself, and can sometimes also help to debug abuses of RCU. +The following sections describe the debugfs files and formats, first +for rcutree and next for rcutiny. + + +CONFIG_TREE_RCU and CONFIG_PREEMPT_RCU debugfs Files and Formats + +These implementations of RCU provide several debugfs directories under the +top-level directory "rcu": + +rcu/rcu_bh +rcu/rcu_preempt +rcu/rcu_sched + +Each directory contains files for the corresponding flavor of RCU. +Note that rcu/rcu_preempt is only present for CONFIG_PREEMPT_RCU. +For CONFIG_TREE_RCU, the RCU flavor maps onto the RCU-sched flavor, +so that activity for both appears in rcu/rcu_sched. + +In addition, the following file appears in the top-level directory: +rcu/rcutorture. This file displays rcutorture test progress. The output +of "cat rcu/rcutorture" looks as follows: + +rcutorture test sequence: 0 (test in progress) +rcutorture update version number: 615 + +The first line shows the number of rcutorture tests that have completed +since boot. If a test is currently running, the "(test in progress)" +string will appear as shown above. The second line shows the number of +update cycles that the current test has started, or zero if there is +no test in progress. + + +Within each flavor directory (rcu/rcu_bh, rcu/rcu_sched, and possibly +also rcu/rcu_preempt) the following files will be present: + +rcudata: + Displays fields in struct rcu_data. +rcuexp: + Displays statistics for expedited grace periods. +rcugp: + Displays grace-period counters. +rcuhier: + Displays the struct rcu_node hierarchy. +rcu_pending: + Displays counts of the reasons rcu_pending() decided that RCU had + work to do. +rcuboost: + Displays RCU boosting statistics. Only present if + CONFIG_RCU_BOOST=y. + +The output of "cat rcu/rcu_preempt/rcudata" looks as follows: + + 0!c=30455 g=30456 pq=1/0 qp=1 dt=126535/140000000000000/0 df=2002 of=4 ql=0/0 qs=N... b=10 ci=74572 nci=0 co=1131 ca=716 + 1!c=30719 g=30720 pq=1/0 qp=0 dt=132007/140000000000000/0 df=1874 of=10 ql=0/0 qs=N... b=10 ci=123209 nci=0 co=685 ca=982 + 2!c=30150 g=30151 pq=1/1 qp=1 dt=138537/140000000000000/0 df=1707 of=8 ql=0/0 qs=N... b=10 ci=80132 nci=0 co=1328 ca=1458 + 3 c=31249 g=31250 pq=1/1 qp=0 dt=107255/140000000000000/0 df=1749 of=6 ql=0/450 qs=NRW. b=10 ci=151700 nci=0 co=509 ca=622 + 4!c=29502 g=29503 pq=1/0 qp=1 dt=83647/140000000000000/0 df=965 of=5 ql=0/0 qs=N... b=10 ci=65643 nci=0 co=1373 ca=1521 + 5 c=31201 g=31202 pq=1/0 qp=1 dt=70422/0/0 df=535 of=7 ql=0/0 qs=.... b=10 ci=58500 nci=0 co=764 ca=698 + 6!c=30253 g=30254 pq=1/0 qp=1 dt=95363/140000000000000/0 df=780 of=5 ql=0/0 qs=N... b=10 ci=100607 nci=0 co=1414 ca=1353 + 7 c=31178 g=31178 pq=1/0 qp=0 dt=91536/0/0 df=547 of=4 ql=0/0 qs=.... b=10 ci=109819 nci=0 co=1115 ca=969 + +This file has one line per CPU, or eight for this 8-CPU system. +The fields are as follows: + +o The number at the beginning of each line is the CPU number. + CPUs numbers followed by an exclamation mark are offline, + but have been online at least once since boot. There will be + no output for CPUs that have never been online, which can be + a good thing in the surprisingly common case where NR_CPUS is + substantially larger than the number of actual CPUs. + +o "c" is the count of grace periods that this CPU believes have + completed. Offlined CPUs and CPUs in dynticks idle mode may lag + quite a ways behind, for example, CPU 4 under "rcu_sched" above, + which has been offline through 16 RCU grace periods. It is not + unusual to see offline CPUs lagging by thousands of grace periods. + Note that although the grace-period number is an unsigned long, + it is printed out as a signed long to allow more human-friendly + representation near boot time. + +o "g" is the count of grace periods that this CPU believes have + started. Again, offlined CPUs and CPUs in dynticks idle mode + may lag behind. If the "c" and "g" values are equal, this CPU + has already reported a quiescent state for the last RCU grace + period that it is aware of, otherwise, the CPU believes that it + owes RCU a quiescent state. + +o "pq" indicates that this CPU has passed through a quiescent state + for the current grace period. It is possible for "pq" to be + "1" and "c" different than "g", which indicates that although + the CPU has passed through a quiescent state, either (1) this + CPU has not yet reported that fact, (2) some other CPU has not + yet reported for this grace period, or (3) both. + +o "qp" indicates that RCU still expects a quiescent state from + this CPU. Offlined CPUs and CPUs in dyntick idle mode might + well have qp=1, which is OK: RCU is still ignoring them. + +o "dt" is the current value of the dyntick counter that is incremented + when entering or leaving idle, either due to a context switch or + due to an interrupt. This number is even if the CPU is in idle + from RCU's viewpoint and odd otherwise. The number after the + first "/" is the interrupt nesting depth when in idle state, + or a large number added to the interrupt-nesting depth when + running a non-idle task. Some architectures do not accurately + count interrupt nesting when running in non-idle kernel context, + which can result in interesting anomalies such as negative + interrupt-nesting levels. The number after the second "/" + is the NMI nesting depth. + +o "df" is the number of times that some other CPU has forced a + quiescent state on behalf of this CPU due to this CPU being in + idle state. + +o "of" is the number of times that some other CPU has forced a + quiescent state on behalf of this CPU due to this CPU being + offline. In a perfect world, this might never happen, but it + turns out that offlining and onlining a CPU can take several grace + periods, and so there is likely to be an extended period of time + when RCU believes that the CPU is online when it really is not. + Please note that erring in the other direction (RCU believing a + CPU is offline when it is really alive and kicking) is a fatal + error, so it makes sense to err conservatively. + +o "ql" is the number of RCU callbacks currently residing on + this CPU. The first number is the number of "lazy" callbacks + that are known to RCU to only be freeing memory, and the number + after the "/" is the total number of callbacks, lazy or not. + These counters count callbacks regardless of what phase of + grace-period processing that they are in (new, waiting for + grace period to start, waiting for grace period to end, ready + to invoke). + +o "qs" gives an indication of the state of the callback queue + with four characters: + + "N" Indicates that there are callbacks queued that are not + ready to be handled by the next grace period, and thus + will be handled by the grace period following the next + one. + + "R" Indicates that there are callbacks queued that are + ready to be handled by the next grace period. + + "W" Indicates that there are callbacks queued that are + waiting on the current grace period. + + "D" Indicates that there are callbacks queued that have + already been handled by a prior grace period, and are + thus waiting to be invoked. Note that callbacks in + the process of being invoked are not counted here. + Callbacks in the process of being invoked are those + that have been removed from the rcu_data structures + queues by rcu_do_batch(), but which have not yet been + invoked. + + If there are no callbacks in a given one of the above states, + the corresponding character is replaced by ".". + +o "b" is the batch limit for this CPU. If more than this number + of RCU callbacks is ready to invoke, then the remainder will + be deferred. + +o "ci" is the number of RCU callbacks that have been invoked for + this CPU. Note that ci+nci+ql is the number of callbacks that have + been registered in absence of CPU-hotplug activity. + +o "nci" is the number of RCU callbacks that have been offloaded from + this CPU. This will always be zero unless the kernel was built + with CONFIG_RCU_NOCB_CPU=y and the "rcu_nocbs=" kernel boot + parameter was specified. + +o "co" is the number of RCU callbacks that have been orphaned due to + this CPU going offline. These orphaned callbacks have been moved + to an arbitrarily chosen online CPU. + +o "ca" is the number of RCU callbacks that have been adopted by this + CPU due to other CPUs going offline. Note that ci+co-ca+ql is + the number of RCU callbacks registered on this CPU. + + +Kernels compiled with CONFIG_RCU_BOOST=y display the following from +/debug/rcu/rcu_preempt/rcudata: + + 0!c=12865 g=12866 pq=1/0 qp=1 dt=83113/140000000000000/0 df=288 of=11 ql=0/0 qs=N... kt=0/O ktl=944 b=10 ci=60709 nci=0 co=748 ca=871 + 1 c=14407 g=14408 pq=1/0 qp=0 dt=100679/140000000000000/0 df=378 of=7 ql=0/119 qs=NRW. kt=0/W ktl=9b6 b=10 ci=109740 nci=0 co=589 ca=485 + 2 c=14407 g=14408 pq=1/0 qp=0 dt=105486/0/0 df=90 of=9 ql=0/89 qs=NRW. kt=0/W ktl=c0c b=10 ci=83113 nci=0 co=533 ca=490 + 3 c=14407 g=14408 pq=1/0 qp=0 dt=107138/0/0 df=142 of=8 ql=0/188 qs=NRW. kt=0/W ktl=b96 b=10 ci=121114 nci=0 co=426 ca=290 + 4 c=14405 g=14406 pq=1/0 qp=1 dt=50238/0/0 df=706 of=7 ql=0/0 qs=.... kt=0/W ktl=812 b=10 ci=34929 nci=0 co=643 ca=114 + 5!c=14168 g=14169 pq=1/0 qp=0 dt=45465/140000000000000/0 df=161 of=11 ql=0/0 qs=N... kt=0/O ktl=b4d b=10 ci=47712 nci=0 co=677 ca=722 + 6 c=14404 g=14405 pq=1/0 qp=0 dt=59454/0/0 df=94 of=6 ql=0/0 qs=.... kt=0/W ktl=e57 b=10 ci=55597 nci=0 co=701 ca=811 + 7 c=14407 g=14408 pq=1/0 qp=1 dt=68850/0/0 df=31 of=8 ql=0/0 qs=.... kt=0/W ktl=14bd b=10 ci=77475 nci=0 co=508 ca=1042 + +This is similar to the output discussed above, but contains the following +additional fields: + +o "kt" is the per-CPU kernel-thread state. The digit preceding + the first slash is zero if there is no work pending and 1 + otherwise. The character between the first pair of slashes is + as follows: + + "S" The kernel thread is stopped, in other words, all + CPUs corresponding to this rcu_node structure are + offline. + + "R" The kernel thread is running. + + "W" The kernel thread is waiting because there is no work + for it to do. + + "O" The kernel thread is waiting because it has been + forced off of its designated CPU or because its + ->cpus_allowed mask permits it to run on other than + its designated CPU. + + "Y" The kernel thread is yielding to avoid hogging CPU. + + "?" Unknown value, indicates a bug. + + The number after the final slash is the CPU that the kthread + is actually running on. + + This field is displayed only for CONFIG_RCU_BOOST kernels. + +o "ktl" is the low-order 16 bits (in hexadecimal) of the count of + the number of times that this CPU's per-CPU kthread has gone + through its loop servicing invoke_rcu_cpu_kthread() requests. + + This field is displayed only for CONFIG_RCU_BOOST kernels. + + +The output of "cat rcu/rcu_preempt/rcuexp" looks as follows: + +s=21872 d=21872 w=0 tf=0 wd1=0 wd2=0 n=0 sc=21872 dt=21872 dl=0 dx=21872 + +These fields are as follows: + +o "s" is the starting sequence number. + +o "d" is the ending sequence number. When the starting and ending + numbers differ, there is an expedited grace period in progress. + +o "w" is the number of times that the sequence numbers have been + in danger of wrapping. + +o "tf" is the number of times that contention has resulted in a + failure to begin an expedited grace period. + +o "wd1" and "wd2" are the number of times that an attempt to + start an expedited grace period found that someone else had + completed an expedited grace period that satisfies the + attempted request. "Our work is done." + +o "n" is number of times that contention was so great that + the request was demoted from an expedited grace period to + a normal grace period. + +o "sc" is the number of times that the attempt to start a + new expedited grace period succeeded. + +o "dt" is the number of times that we attempted to update + the "d" counter. + +o "dl" is the number of times that we failed to update the "d" + counter. + +o "dx" is the number of times that we succeeded in updating + the "d" counter. + + +The output of "cat rcu/rcu_preempt/rcugp" looks as follows: + +completed=31249 gpnum=31250 age=1 max=18 + +These fields are taken from the rcu_state structure, and are as follows: + +o "completed" is the number of grace periods that have completed. + It is comparable to the "c" field from rcu/rcudata in that a + CPU whose "c" field matches the value of "completed" is aware + that the corresponding RCU grace period has completed. + +o "gpnum" is the number of grace periods that have started. It is + similarly comparable to the "g" field from rcu/rcudata in that + a CPU whose "g" field matches the value of "gpnum" is aware that + the corresponding RCU grace period has started. + + If these two fields are equal, then there is no grace period + in progress, in other words, RCU is idle. On the other hand, + if the two fields differ (as they are above), then an RCU grace + period is in progress. + +o "age" is the number of jiffies that the current grace period + has extended for, or zero if there is no grace period currently + in effect. + +o "max" is the age in jiffies of the longest-duration grace period + thus far. + +The output of "cat rcu/rcu_preempt/rcuhier" looks as follows: + +c=14407 g=14408 s=0 jfq=2 j=c863 nfqs=12040/nfqsng=0(12040) fqlh=1051 oqlen=0/0 +3/3 ..>. 0:7 ^0 +e/e ..>. 0:3 ^0 d/d ..>. 4:7 ^1 + +The fields are as follows: + +o "c" is exactly the same as "completed" under rcu/rcu_preempt/rcugp. + +o "g" is exactly the same as "gpnum" under rcu/rcu_preempt/rcugp. + +o "s" is the current state of the force_quiescent_state() + state machine. + +o "jfq" is the number of jiffies remaining for this grace period + before force_quiescent_state() is invoked to help push things + along. Note that CPUs in idle mode throughout the grace period + will not report on their own, but rather must be check by some + other CPU via force_quiescent_state(). + +o "j" is the low-order four hex digits of the jiffies counter. + Yes, Paul did run into a number of problems that turned out to + be due to the jiffies counter no longer counting. Why do you ask? + +o "nfqs" is the number of calls to force_quiescent_state() since + boot. + +o "nfqsng" is the number of useless calls to force_quiescent_state(), + where there wasn't actually a grace period active. This can + no longer happen due to grace-period processing being pushed + into a kthread. The number in parentheses is the difference + between "nfqs" and "nfqsng", or the number of times that + force_quiescent_state() actually did some real work. + +o "fqlh" is the number of calls to force_quiescent_state() that + exited immediately (without even being counted in nfqs above) + due to contention on ->fqslock. + +o Each element of the form "3/3 ..>. 0:7 ^0" represents one rcu_node + structure. Each line represents one level of the hierarchy, + from root to leaves. It is best to think of the rcu_data + structures as forming yet another level after the leaves. + Note that there might be either one, two, three, or even four + levels of rcu_node structures, depending on the relationship + between CONFIG_RCU_FANOUT, CONFIG_RCU_FANOUT_LEAF (possibly + adjusted using the rcu_fanout_leaf kernel boot parameter), and + CONFIG_NR_CPUS (possibly adjusted using the nr_cpu_ids count of + possible CPUs for the booting hardware). + + o The numbers separated by the "/" are the qsmask followed + by the qsmaskinit. The qsmask will have one bit + set for each entity in the next lower level that has + not yet checked in for the current grace period ("e" + indicating CPUs 5, 6, and 7 in the example above). + The qsmaskinit will have one bit for each entity that is + currently expected to check in during each grace period. + The value of qsmaskinit is assigned to that of qsmask + at the beginning of each grace period. + + o The characters separated by the ">" indicate the state + of the blocked-tasks lists. A "G" preceding the ">" + indicates that at least one task blocked in an RCU + read-side critical section blocks the current grace + period, while a "E" preceding the ">" indicates that + at least one task blocked in an RCU read-side critical + section blocks the current expedited grace period. + A "T" character following the ">" indicates that at + least one task is blocked within an RCU read-side + critical section, regardless of whether any current + grace period (expedited or normal) is inconvenienced. + A "." character appears if the corresponding condition + does not hold, so that "..>." indicates that no tasks + are blocked. In contrast, "GE>T" indicates maximal + inconvenience from blocked tasks. CONFIG_TREE_RCU + builds of the kernel will always show "..>.". + + o The numbers separated by the ":" are the range of CPUs + served by this struct rcu_node. This can be helpful + in working out how the hierarchy is wired together. + + For example, the example rcu_node structure shown above + has "0:7", indicating that it covers CPUs 0 through 7. + + o The number after the "^" indicates the bit in the + next higher level rcu_node structure that this rcu_node + structure corresponds to. For example, the "d/d ..>. 4:7 + ^1" has a "1" in this position, indicating that it + corresponds to the "1" bit in the "3" shown in the + "3/3 ..>. 0:7 ^0" entry on the next level up. + + +The output of "cat rcu/rcu_sched/rcu_pending" looks as follows: + + 0!np=26111 qsp=29 rpq=5386 cbr=1 cng=570 gpc=3674 gps=577 nn=15903 ndw=0 + 1!np=28913 qsp=35 rpq=6097 cbr=1 cng=448 gpc=3700 gps=554 nn=18113 ndw=0 + 2!np=32740 qsp=37 rpq=6202 cbr=0 cng=476 gpc=4627 gps=546 nn=20889 ndw=0 + 3 np=23679 qsp=22 rpq=5044 cbr=1 cng=415 gpc=3403 gps=347 nn=14469 ndw=0 + 4!np=30714 qsp=4 rpq=5574 cbr=0 cng=528 gpc=3931 gps=639 nn=20042 ndw=0 + 5 np=28910 qsp=2 rpq=5246 cbr=0 cng=428 gpc=4105 gps=709 nn=18422 ndw=0 + 6!np=38648 qsp=5 rpq=7076 cbr=0 cng=840 gpc=4072 gps=961 nn=25699 ndw=0 + 7 np=37275 qsp=2 rpq=6873 cbr=0 cng=868 gpc=3416 gps=971 nn=25147 ndw=0 + +The fields are as follows: + +o The leading number is the CPU number, with "!" indicating + an offline CPU. + +o "np" is the number of times that __rcu_pending() has been invoked + for the corresponding flavor of RCU. + +o "qsp" is the number of times that the RCU was waiting for a + quiescent state from this CPU. + +o "rpq" is the number of times that the CPU had passed through + a quiescent state, but not yet reported it to RCU. + +o "cbr" is the number of times that this CPU had RCU callbacks + that had passed through a grace period, and were thus ready + to be invoked. + +o "cng" is the number of times that this CPU needed another + grace period while RCU was idle. + +o "gpc" is the number of times that an old grace period had + completed, but this CPU was not yet aware of it. + +o "gps" is the number of times that a new grace period had started, + but this CPU was not yet aware of it. + +o "ndw" is the number of times that a wakeup of an rcuo + callback-offload kthread had to be deferred in order to avoid + deadlock. + +o "nn" is the number of times that this CPU needed nothing. + + +The output of "cat rcu/rcuboost" looks as follows: + +0:3 tasks=.... kt=W ntb=0 neb=0 nnb=0 j=c864 bt=c894 + balk: nt=0 egt=4695 bt=0 nb=0 ny=56 nos=0 +4:7 tasks=.... kt=W ntb=0 neb=0 nnb=0 j=c864 bt=c894 + balk: nt=0 egt=6541 bt=0 nb=0 ny=126 nos=0 + +This information is output only for rcu_preempt. Each two-line entry +corresponds to a leaf rcu_node structure. The fields are as follows: + +o "n:m" is the CPU-number range for the corresponding two-line + entry. In the sample output above, the first entry covers + CPUs zero through three and the second entry covers CPUs four + through seven. + +o "tasks=TNEB" gives the state of the various segments of the + rnp->blocked_tasks list: + + "T" This indicates that there are some tasks that blocked + while running on one of the corresponding CPUs while + in an RCU read-side critical section. + + "N" This indicates that some of the blocked tasks are preventing + the current normal (non-expedited) grace period from + completing. + + "E" This indicates that some of the blocked tasks are preventing + the current expedited grace period from completing. + + "B" This indicates that some of the blocked tasks are in + need of RCU priority boosting. + + Each character is replaced with "." if the corresponding + condition does not hold. + +o "kt" is the state of the RCU priority-boosting kernel + thread associated with the corresponding rcu_node structure. + The state can be one of the following: + + "S" The kernel thread is stopped, in other words, all + CPUs corresponding to this rcu_node structure are + offline. + + "R" The kernel thread is running. + + "W" The kernel thread is waiting because there is no work + for it to do. + + "Y" The kernel thread is yielding to avoid hogging CPU. + + "?" Unknown value, indicates a bug. + +o "ntb" is the number of tasks boosted. + +o "neb" is the number of tasks boosted in order to complete an + expedited grace period. + +o "nnb" is the number of tasks boosted in order to complete a + normal (non-expedited) grace period. When boosting a task + that was blocking both an expedited and a normal grace period, + it is counted against the expedited total above. + +o "j" is the low-order 16 bits of the jiffies counter in + hexadecimal. + +o "bt" is the low-order 16 bits of the value that the jiffies + counter will have when we next start boosting, assuming that + the current grace period does not end beforehand. This is + also in hexadecimal. + +o "balk: nt" counts the number of times we didn't boost (in + other words, we balked) even though it was time to boost because + there were no blocked tasks to boost. This situation occurs + when there is one blocked task on one rcu_node structure and + none on some other rcu_node structure. + +o "egt" counts the number of times we balked because although + there were blocked tasks, none of them were blocking the + current grace period, whether expedited or otherwise. + +o "bt" counts the number of times we balked because boosting + had already been initiated for the current grace period. + +o "nb" counts the number of times we balked because there + was at least one task blocking the current non-expedited grace + period that never had blocked. If it is already running, it + just won't help to boost its priority! + +o "ny" counts the number of times we balked because it was + not yet time to start boosting. + +o "nos" counts the number of times we balked for other + reasons, e.g., the grace period ended first. + + +CONFIG_TINY_RCU debugfs Files and Formats + +These implementations of RCU provides a single debugfs file under the +top-level directory RCU, namely rcu/rcudata, which displays fields in +rcu_bh_ctrlblk and rcu_sched_ctrlblk. + +The output of "cat rcu/rcudata" is as follows: + +rcu_sched: qlen: 0 +rcu_bh: qlen: 0 + +This is split into rcu_sched and rcu_bh sections. The field is as +follows: + +o "qlen" is the number of RCU callbacks currently waiting either + for an RCU grace period or waiting to be invoked. This is the + only field present for rcu_sched and rcu_bh, due to the + short-circuiting of grace period in those two cases. |