summaryrefslogtreecommitdiff
path: root/Documentation/devicetree/bindings/gpio
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings/gpio')
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-74x164.txt4
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt20
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-poweroff.txt36
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-restart.txt54
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-xlp.txt3
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio.txt26
-rw-r--r--Documentation/devicetree/bindings/gpio/ibm,ppc4xx-gpio.txt24
-rw-r--r--Documentation/devicetree/bindings/gpio/microchip,pic32-gpio.txt2
-rw-r--r--Documentation/devicetree/bindings/gpio/nvidia,tegra186-gpio.txt161
-rw-r--r--Documentation/devicetree/bindings/gpio/wd,mbl-gpio.txt38
10 files changed, 273 insertions, 95 deletions
diff --git a/Documentation/devicetree/bindings/gpio/gpio-74x164.txt b/Documentation/devicetree/bindings/gpio/gpio-74x164.txt
index cc2608021..ce1b2231b 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-74x164.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-74x164.txt
@@ -1,7 +1,9 @@
* Generic 8-bits shift register GPIO driver
Required properties:
-- compatible : Should be "fairchild,74hc595"
+- compatible: Should contain one of the following:
+ "fairchild,74hc595"
+ "nxp,74lvc594"
- reg : chip select number
- gpio-controller : Marks the device node as a gpio controller.
- #gpio-cells : Should be two. The first cell is the pin number and
diff --git a/Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt b/Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt
index 120bc4971..4b6cc632c 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt
@@ -1,9 +1,10 @@
-* Freescale MPC512x/MPC8xxx/Layerscape GPIO controller
+* Freescale MPC512x/MPC8xxx/QorIQ/Layerscape GPIO controller
Required properties:
- compatible : Should be "fsl,<soc>-gpio"
The following <soc>s are known to be supported:
- mpc5121, mpc5125, mpc8349, mpc8572, mpc8610, pq3, qoriq.
+ mpc5121, mpc5125, mpc8349, mpc8572, mpc8610, pq3, qoriq,
+ ls1021a, ls1043a, ls2080a.
- reg : Address and length of the register set for the device
- interrupts : Should be the port interrupt shared by all 32 pins.
- #gpio-cells : Should be two. The first cell is the pin number and
@@ -15,7 +16,7 @@ Optional properties:
- little-endian : GPIO registers are used as little endian. If not
present registers are used as big endian by default.
-Example:
+Example of gpio-controller node for a mpc5125 SoC:
gpio0: gpio@1100 {
compatible = "fsl,mpc5125-gpio";
@@ -24,3 +25,16 @@ gpio0: gpio@1100 {
interrupts = <78 0x8>;
status = "okay";
};
+
+Example of gpio-controller node for a ls2080a SoC:
+
+gpio0: gpio@2300000 {
+ compatible = "fsl,ls2080a-gpio", "fsl,qoriq-gpio";
+ reg = <0x0 0x2300000 0x0 0x10000>;
+ interrupts = <0 36 0x4>; /* Level high type */
+ gpio-controller;
+ little-endian;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+};
diff --git a/Documentation/devicetree/bindings/gpio/gpio-poweroff.txt b/Documentation/devicetree/bindings/gpio/gpio-poweroff.txt
deleted file mode 100644
index d4eab9227..000000000
--- a/Documentation/devicetree/bindings/gpio/gpio-poweroff.txt
+++ /dev/null
@@ -1,36 +0,0 @@
-Driver a GPIO line that can be used to turn the power off.
-
-The driver supports both level triggered and edge triggered power off.
-At driver load time, the driver will request the given gpio line and
-install a pm_power_off handler. If the optional properties 'input' is
-not found, the GPIO line will be driven in the inactive
-state. Otherwise its configured as an input.
-
-When the pm_power_off is called, the gpio is configured as an output,
-and drive active, so triggering a level triggered power off
-condition. This will also cause an inactive->active edge condition, so
-triggering positive edge triggered power off. After a delay of 100ms,
-the GPIO is set to inactive, thus causing an active->inactive edge,
-triggering negative edge triggered power off. After another 100ms
-delay the GPIO is driver active again. If the power is still on and
-the CPU still running after a 3000ms delay, a WARN_ON(1) is emitted.
-
-Required properties:
-- compatible : should be "gpio-poweroff".
-- gpios : The GPIO to set high/low, see "gpios property" in
- Documentation/devicetree/bindings/gpio/gpio.txt. If the pin should be
- low to power down the board set it to "Active Low", otherwise set
- gpio to "Active High".
-
-Optional properties:
-- input : Initially configure the GPIO line as an input. Only reconfigure
- it to an output when the pm_power_off function is called. If this optional
- property is not specified, the GPIO is initialized as an output in its
- inactive state.
-
-Examples:
-
-gpio-poweroff {
- compatible = "gpio-poweroff";
- gpios = <&gpio 4 0>;
-};
diff --git a/Documentation/devicetree/bindings/gpio/gpio-restart.txt b/Documentation/devicetree/bindings/gpio/gpio-restart.txt
deleted file mode 100644
index af3701bc1..000000000
--- a/Documentation/devicetree/bindings/gpio/gpio-restart.txt
+++ /dev/null
@@ -1,54 +0,0 @@
-Drive a GPIO line that can be used to restart the system from a restart
-handler.
-
-This binding supports level and edge triggered reset. At driver load
-time, the driver will request the given gpio line and install a restart
-handler. If the optional properties 'open-source' is not found, the GPIO line
-will be driven in the inactive state. Otherwise its not driven until
-the restart is initiated.
-
-When the system is restarted, the restart handler will be invoked in
-priority order. The gpio is configured as an output, and driven active,
-triggering a level triggered reset condition. This will also cause an
-inactive->active edge condition, triggering positive edge triggered
-reset. After a delay specified by active-delay, the GPIO is set to
-inactive, thus causing an active->inactive edge, triggering negative edge
-triggered reset. After a delay specified by inactive-delay, the GPIO
-is driven active again. After a delay specified by wait-delay, the
-restart handler completes allowing other restart handlers to be attempted.
-
-Required properties:
-- compatible : should be "gpio-restart".
-- gpios : The GPIO to set high/low, see "gpios property" in
- Documentation/devicetree/bindings/gpio/gpio.txt. If the pin should be
- low to reset the board set it to "Active Low", otherwise set
- gpio to "Active High".
-
-Optional properties:
-- open-source : Treat the GPIO as being open source and defer driving
- it to when the restart is initiated. If this optional property is not
- specified, the GPIO is initialized as an output in its inactive state.
-- priority : A priority ranging from 0 to 255 (default 128) according to
- the following guidelines:
- 0: Restart handler of last resort, with limited restart
- capabilities
- 128: Default restart handler; use if no other restart handler is
- expected to be available, and/or if restart functionality is
- sufficient to restart the entire system
- 255: Highest priority restart handler, will preempt all other
- restart handlers
-- active-delay: Delay (default 100) to wait after driving gpio active [ms]
-- inactive-delay: Delay (default 100) to wait after driving gpio inactive [ms]
-- wait-delay: Delay (default 3000) to wait after completing restart
- sequence [ms]
-
-Examples:
-
-gpio-restart {
- compatible = "gpio-restart";
- gpios = <&gpio 4 0>;
- priority = <128>;
- active-delay = <100>;
- inactive-delay = <100>;
- wait-delay = <3000>;
-};
diff --git a/Documentation/devicetree/bindings/gpio/gpio-xlp.txt b/Documentation/devicetree/bindings/gpio/gpio-xlp.txt
index 262ee4ddf..28662d83a 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-xlp.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-xlp.txt
@@ -3,6 +3,8 @@ Netlogic XLP Family GPIO
This GPIO driver is used for following Netlogic XLP SoCs:
XLP832, XLP316, XLP208, XLP980, XLP532
+This GPIO driver is also compatible with GPIO controller found on
+Broadcom Vulcan ARM64.
Required properties:
-------------------
@@ -13,6 +15,7 @@ Required properties:
- "netlogic,xlp208-gpio": For Netlogic XLP208
- "netlogic,xlp980-gpio": For Netlogic XLP980
- "netlogic,xlp532-gpio": For Netlogic XLP532
+ - "brcm,vulcan-gpio": For Broadcom Vulcan ARM64
- reg: Physical base address and length of the controller's registers.
- #gpio-cells: Should be two. The first cell is the pin number and the second
cell is used to specify optional parameters (currently unused).
diff --git a/Documentation/devicetree/bindings/gpio/gpio.txt b/Documentation/devicetree/bindings/gpio/gpio.txt
index 069cdf6f9..68d28f62a 100644
--- a/Documentation/devicetree/bindings/gpio/gpio.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio.txt
@@ -131,6 +131,13 @@ Every GPIO controller node must contain both an empty "gpio-controller"
property, and a #gpio-cells integer property, which indicates the number of
cells in a gpio-specifier.
+Some system-on-chips (SoCs) use the concept of GPIO banks. A GPIO bank is an
+instance of a hardware IP core on a silicon die, usually exposed to the
+programmer as a coherent range of I/O addresses. Usually each such bank is
+exposed in the device tree as an individual gpio-controller node, reflecting
+the fact that the hardware was synthesized by reusing the same IP block a
+few times over.
+
Optionally, a GPIO controller may have a "ngpios" property. This property
indicates the number of in-use slots of available slots for GPIOs. The
typical example is something like this: the hardware register is 32 bits
@@ -145,6 +152,21 @@ additional bitmask is needed to specify which GPIOs are actually in use,
and which are dummies. The bindings for this case has not yet been
specified, but should be specified if/when such hardware appears.
+Optionally, a GPIO controller may have a "gpio-line-names" property. This is
+an array of strings defining the names of the GPIO lines going out of the
+GPIO controller. This name should be the most meaningful producer name
+for the system, such as a rail name indicating the usage. Package names
+such as pin name are discouraged: such lines have opaque names (since they
+are by definition generic purpose) and such names are usually not very
+helpful. For example "MMC-CD", "Red LED Vdd" and "ethernet reset" are
+reasonable line names as they describe what the line is used for. "GPIO0"
+is not a good name to give to a GPIO line. Placeholders are discouraged:
+rather use the "" (blank string) if the use of the GPIO line is undefined
+in your design. The names are assigned starting from line offset 0 from
+left to right from the passed array. An incomplete array (where the number
+of passed named are less than ngpios) will still be used up until the last
+provided valid line index.
+
Example:
gpio-controller@00000000 {
@@ -153,6 +175,10 @@ gpio-controller@00000000 {
gpio-controller;
#gpio-cells = <2>;
ngpios = <18>;
+ gpio-line-names = "MMC-CD", "MMC-WP", "VDD eth", "RST eth", "LED R",
+ "LED G", "LED B", "Col A", "Col B", "Col C", "Col D",
+ "Row A", "Row B", "Row C", "Row D", "NMI button",
+ "poweroff", "reset";
}
The GPIO chip may contain GPIO hog definitions. GPIO hogging is a mechanism
diff --git a/Documentation/devicetree/bindings/gpio/ibm,ppc4xx-gpio.txt b/Documentation/devicetree/bindings/gpio/ibm,ppc4xx-gpio.txt
new file mode 100644
index 000000000..d58b3958f
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/ibm,ppc4xx-gpio.txt
@@ -0,0 +1,24 @@
+* IBM/AMCC/APM GPIO Controller for PowerPC 4XX series and compatible SoCs
+
+All GPIOs are pin-shared with other functions. DCRs control whether a
+particular pin that has GPIO capabilities acts as a GPIO or is used for
+another purpose. GPIO outputs are separately programmable to emulate
+an open-drain driver.
+
+Required properties:
+ - compatible: must be "ibm,ppc4xx-gpio"
+ - reg: address and length of the register set for the device
+ - #gpio-cells: must be set to 2. The first cell is the pin number
+ and the second cell is used to specify the gpio polarity:
+ 0 = active high
+ 1 = active low
+ - gpio-controller: marks the device node as a gpio controller.
+
+Example:
+
+GPIO0: gpio@ef600b00 {
+ compatible = "ibm,ppc4xx-gpio";
+ reg = <0xef600b00 0x00000048>;
+ #gpio-cells = <2>;
+ gpio-controller;
+};
diff --git a/Documentation/devicetree/bindings/gpio/microchip,pic32-gpio.txt b/Documentation/devicetree/bindings/gpio/microchip,pic32-gpio.txt
index ef3752889..dd031fc93 100644
--- a/Documentation/devicetree/bindings/gpio/microchip,pic32-gpio.txt
+++ b/Documentation/devicetree/bindings/gpio/microchip,pic32-gpio.txt
@@ -33,7 +33,7 @@ gpio0: gpio0@1f860000 {
gpio-controller;
interrupt-controller;
#interrupt-cells = <2>;
- clocks = <&PBCLK4>;
+ clocks = <&rootclk PB4CLK>;
microchip,gpio-bank = <0>;
gpio-ranges = <&pic32_pinctrl 0 0 16>;
};
diff --git a/Documentation/devicetree/bindings/gpio/nvidia,tegra186-gpio.txt b/Documentation/devicetree/bindings/gpio/nvidia,tegra186-gpio.txt
new file mode 100644
index 000000000..c82a2e221
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/nvidia,tegra186-gpio.txt
@@ -0,0 +1,161 @@
+NVIDIA Tegra186 GPIO controllers
+
+Tegra186 contains two GPIO controllers; a main controller and an "AON"
+controller. This binding document applies to both controllers. The register
+layouts for the controllers share many similarities, but also some significant
+differences. Hence, this document describes closely related but different
+bindings and compatible values.
+
+The Tegra186 GPIO controller allows software to set the IO direction of, and
+read/write the value of, numerous GPIO signals. Routing of GPIO signals to
+package balls is under the control of a separate pin controller HW block. Two
+major sets of registers exist:
+
+a) Security registers, which allow configuration of allowed access to the GPIO
+register set. These registers exist in a single contiguous block of physical
+address space. The size of this block, and the security features available,
+varies between the different GPIO controllers.
+
+Access to this set of registers is not necessary in all circumstances. Code
+that wishes to configure access to the GPIO registers needs access to these
+registers to do so. Code which simply wishes to read or write GPIO data does not
+need access to these registers.
+
+b) GPIO registers, which allow manipulation of the GPIO signals. In some GPIO
+controllers, these registers are exposed via multiple "physical aliases" in
+address space, each of which access the same underlying state. See the hardware
+documentation for rationale. Any particular GPIO client is expected to access
+just one of these physical aliases.
+
+Tegra HW documentation describes a unified naming convention for all GPIOs
+implemented by the SoC. Each GPIO is assigned to a port, and a port may control
+a number of GPIOs. Thus, each GPIO is named according to an alphabetical port
+name and an integer GPIO name within the port. For example, GPIO_PA0, GPIO_PN6,
+or GPIO_PCC3.
+
+The number of ports implemented by each GPIO controller varies. The number of
+implemented GPIOs within each port varies. GPIO registers within a controller
+are grouped and laid out according to the port they affect.
+
+The mapping from port name to the GPIO controller that implements that port, and
+the mapping from port name to register offset within a controller, are both
+extremely non-linear. The header file <dt-bindings/gpio/tegra186-gpio.h>
+describes the port-level mapping. In that file, the naming convention for ports
+matches the HW documentation. The values chosen for the names are alphabetically
+sorted within a particular controller. Drivers need to map between the DT GPIO
+IDs and HW register offsets using a lookup table.
+
+Each GPIO controller can generate a number of interrupt signals. Each signal
+represents the aggregate status for all GPIOs within a set of ports. Thus, the
+number of interrupt signals generated by a controller varies as a rough function
+of the number of ports it implements. Note that the HW documentation refers to
+both the overall controller HW module and the sets-of-ports as "controllers".
+
+Each GPIO controller in fact generates multiple interrupts signals for each set
+of ports. Each GPIO may be configured to feed into a specific one of the
+interrupt signals generated by a set-of-ports. The intent is for each generated
+signal to be routed to a different CPU, thus allowing different CPUs to each
+handle subsets of the interrupts within a port. The status of each of these
+per-port-set signals is reported via a separate register. Thus, a driver needs
+to know which status register to observe. This binding currently defines no
+configuration mechanism for this. By default, drivers should use register
+GPIO_${port}_INTERRUPT_STATUS_G1_0. Future revisions to the binding could
+define a property to configure this.
+
+Required properties:
+- compatible
+ Array of strings.
+ One of:
+ - "nvidia,tegra186-gpio".
+ - "nvidia,tegra186-gpio-aon".
+- reg-names
+ Array of strings.
+ Contains a list of names for the register spaces described by the reg
+ property. May contain the following entries, in any order:
+ - "gpio": Mandatory. GPIO control registers. This may cover either:
+ a) The single physical alias that this OS should use.
+ b) All physical aliases that exist in the controller. This is
+ appropriate when the OS is responsible for managing assignment of
+ the physical aliases.
+ - "security": Optional. Security configuration registers.
+ Users of this binding MUST look up entries in the reg property by name,
+ using this reg-names property to do so.
+- reg
+ Array of (physical base address, length) tuples.
+ Must contain one entry per entry in the reg-names property, in a matching
+ order.
+- interrupts
+ Array of interrupt specifiers.
+ The interrupt outputs from the HW block, one per set of ports, in the
+ order the HW manual describes them. The number of entries required varies
+ depending on compatible value:
+ - "nvidia,tegra186-gpio": 6 entries.
+ - "nvidia,tegra186-gpio-aon": 1 entry.
+- gpio-controller
+ Boolean.
+ Marks the device node as a GPIO controller/provider.
+- #gpio-cells
+ Single-cell integer.
+ Must be <2>.
+ Indicates how many cells are used in a consumer's GPIO specifier.
+ In the specifier:
+ - The first cell is the pin number.
+ See <dt-bindings/gpio/tegra186-gpio.h>.
+ - The second cell contains flags:
+ - Bit 0 specifies polarity
+ - 0: Active-high (normal).
+ - 1: Active-low (inverted).
+- interrupt-controller
+ Boolean.
+ Marks the device node as an interrupt controller/provider.
+- #interrupt-cells
+ Single-cell integer.
+ Must be <2>.
+ Indicates how many cells are used in a consumer's interrupt specifier.
+ In the specifier:
+ - The first cell is the GPIO number.
+ See <dt-bindings/gpio/tegra186-gpio.h>.
+ - The second cell is contains flags:
+ - Bits [3:0] indicate trigger type and level:
+ - 1: Low-to-high edge triggered.
+ - 2: High-to-low edge triggered.
+ - 4: Active high level-sensitive.
+ - 8: Active low level-sensitive.
+ Valid combinations are 1, 2, 3, 4, 8.
+
+Example:
+
+#include <dt-bindings/interrupt-controller/irq.h>
+
+gpio@2200000 {
+ compatible = "nvidia,tegra186-gpio";
+ reg-names = "security", "gpio";
+ reg =
+ <0x0 0x2200000 0x0 0x10000>,
+ <0x0 0x2210000 0x0 0x10000>;
+ interrupts =
+ <0 47 IRQ_TYPE_LEVEL_HIGH>,
+ <0 50 IRQ_TYPE_LEVEL_HIGH>,
+ <0 53 IRQ_TYPE_LEVEL_HIGH>,
+ <0 56 IRQ_TYPE_LEVEL_HIGH>,
+ <0 59 IRQ_TYPE_LEVEL_HIGH>,
+ <0 180 IRQ_TYPE_LEVEL_HIGH>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+};
+
+gpio@c2f0000 {
+ compatible = "nvidia,tegra186-gpio-aon";
+ reg-names = "security", "gpio";
+ reg =
+ <0x0 0xc2f0000 0x0 0x1000>,
+ <0x0 0xc2f1000 0x0 0x1000>;
+ interrupts =
+ <0 60 IRQ_TYPE_LEVEL_HIGH>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+};
diff --git a/Documentation/devicetree/bindings/gpio/wd,mbl-gpio.txt b/Documentation/devicetree/bindings/gpio/wd,mbl-gpio.txt
new file mode 100644
index 000000000..038c3a6a1
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/wd,mbl-gpio.txt
@@ -0,0 +1,38 @@
+Bindings for the Western Digital's MyBook Live memory-mapped GPIO controllers.
+
+The Western Digital MyBook Live has two memory-mapped GPIO controllers.
+Both GPIO controller only have a single 8-bit data register, where GPIO
+state can be read and/or written.
+
+Required properties:
+ - compatible: should be "wd,mbl-gpio"
+ - reg-names: must contain
+ "dat" - data register
+ - reg: address + size pairs describing the GPIO register sets;
+ order must correspond with the order of entries in reg-names
+ - #gpio-cells: must be set to 2. The first cell is the pin number and
+ the second cell is used to specify the gpio polarity:
+ 0 = active high
+ 1 = active low
+ - gpio-controller: Marks the device node as a gpio controller.
+
+Optional properties:
+ - no-output: GPIOs are read-only.
+
+Examples:
+ gpio0: gpio0@e0000000 {
+ compatible = "wd,mbl-gpio";
+ reg-names = "dat";
+ reg = <0xe0000000 0x1>;
+ #gpio-cells = <2>;
+ gpio-controller;
+ };
+
+ gpio1: gpio1@e0100000 {
+ compatible = "wd,mbl-gpio";
+ reg-names = "dat";
+ reg = <0xe0100000 0x1>;
+ #gpio-cells = <2>;
+ gpio-controller;
+ no-output;
+ };