summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/cifs/README
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/cifs/README')
-rw-r--r--Documentation/filesystems/cifs/README753
1 files changed, 753 insertions, 0 deletions
diff --git a/Documentation/filesystems/cifs/README b/Documentation/filesystems/cifs/README
new file mode 100644
index 000000000..2d5622f60
--- /dev/null
+++ b/Documentation/filesystems/cifs/README
@@ -0,0 +1,753 @@
+The CIFS VFS support for Linux supports many advanced network filesystem
+features such as hierarchical dfs like namespace, hardlinks, locking and more.
+It was designed to comply with the SNIA CIFS Technical Reference (which
+supersedes the 1992 X/Open SMB Standard) as well as to perform best practice
+practical interoperability with Windows 2000, Windows XP, Samba and equivalent
+servers. This code was developed in participation with the Protocol Freedom
+Information Foundation.
+
+Please see
+ http://protocolfreedom.org/ and
+ http://samba.org/samba/PFIF/
+for more details.
+
+
+For questions or bug reports please contact:
+ sfrench@samba.org (sfrench@us.ibm.com)
+
+Build instructions:
+==================
+For Linux 2.4:
+1) Get the kernel source (e.g.from http://www.kernel.org)
+and download the cifs vfs source (see the project page
+at http://us1.samba.org/samba/Linux_CIFS_client.html)
+and change directory into the top of the kernel directory
+then patch the kernel (e.g. "patch -p1 < cifs_24.patch")
+to add the cifs vfs to your kernel configure options if
+it has not already been added (e.g. current SuSE and UL
+users do not need to apply the cifs_24.patch since the cifs vfs is
+already in the kernel configure menu) and then
+mkdir linux/fs/cifs and then copy the current cifs vfs files from
+the cifs download to your kernel build directory e.g.
+
+ cp <cifs_download_dir>/fs/cifs/* to <kernel_download_dir>/fs/cifs
+
+2) make menuconfig (or make xconfig)
+3) select cifs from within the network filesystem choices
+4) save and exit
+5) make dep
+6) make modules (or "make" if CIFS VFS not to be built as a module)
+
+For Linux 2.6:
+1) Download the kernel (e.g. from http://www.kernel.org)
+and change directory into the top of the kernel directory tree
+(e.g. /usr/src/linux-2.5.73)
+2) make menuconfig (or make xconfig)
+3) select cifs from within the network filesystem choices
+4) save and exit
+5) make
+
+
+Installation instructions:
+=========================
+If you have built the CIFS vfs as module (successfully) simply
+type "make modules_install" (or if you prefer, manually copy the file to
+the modules directory e.g. /lib/modules/2.4.10-4GB/kernel/fs/cifs/cifs.o).
+
+If you have built the CIFS vfs into the kernel itself, follow the instructions
+for your distribution on how to install a new kernel (usually you
+would simply type "make install").
+
+If you do not have the utility mount.cifs (in the Samba 3.0 source tree and on
+the CIFS VFS web site) copy it to the same directory in which mount.smbfs and
+similar files reside (usually /sbin). Although the helper software is not
+required, mount.cifs is recommended. Eventually the Samba 3.0 utility program
+"net" may also be helpful since it may someday provide easier mount syntax for
+users who are used to Windows e.g.
+ net use <mount point> <UNC name or cifs URL>
+Note that running the Winbind pam/nss module (logon service) on all of your
+Linux clients is useful in mapping Uids and Gids consistently across the
+domain to the proper network user. The mount.cifs mount helper can be
+trivially built from Samba 3.0 or later source e.g. by executing:
+
+ gcc samba/source/client/mount.cifs.c -o mount.cifs
+
+If cifs is built as a module, then the size and number of network buffers
+and maximum number of simultaneous requests to one server can be configured.
+Changing these from their defaults is not recommended. By executing modinfo
+ modinfo kernel/fs/cifs/cifs.ko
+on kernel/fs/cifs/cifs.ko the list of configuration changes that can be made
+at module initialization time (by running insmod cifs.ko) can be seen.
+
+Allowing User Mounts
+====================
+To permit users to mount and unmount over directories they own is possible
+with the cifs vfs. A way to enable such mounting is to mark the mount.cifs
+utility as suid (e.g. "chmod +s /sbin/mount.cifs). To enable users to
+umount shares they mount requires
+1) mount.cifs version 1.4 or later
+2) an entry for the share in /etc/fstab indicating that a user may
+unmount it e.g.
+//server/usersharename /mnt/username cifs user 0 0
+
+Note that when the mount.cifs utility is run suid (allowing user mounts),
+in order to reduce risks, the "nosuid" mount flag is passed in on mount to
+disallow execution of an suid program mounted on the remote target.
+When mount is executed as root, nosuid is not passed in by default,
+and execution of suid programs on the remote target would be enabled
+by default. This can be changed, as with nfs and other filesystems,
+by simply specifying "nosuid" among the mount options. For user mounts
+though to be able to pass the suid flag to mount requires rebuilding
+mount.cifs with the following flag:
+
+ gcc samba/source/client/mount.cifs.c -DCIFS_ALLOW_USR_SUID -o mount.cifs
+
+There is a corresponding manual page for cifs mounting in the Samba 3.0 and
+later source tree in docs/manpages/mount.cifs.8
+
+Allowing User Unmounts
+======================
+To permit users to ummount directories that they have user mounted (see above),
+the utility umount.cifs may be used. It may be invoked directly, or if
+umount.cifs is placed in /sbin, umount can invoke the cifs umount helper
+(at least for most versions of the umount utility) for umount of cifs
+mounts, unless umount is invoked with -i (which will avoid invoking a umount
+helper). As with mount.cifs, to enable user unmounts umount.cifs must be marked
+as suid (e.g. "chmod +s /sbin/umount.cifs") or equivalent (some distributions
+allow adding entries to a file to the /etc/permissions file to achieve the
+equivalent suid effect). For this utility to succeed the target path
+must be a cifs mount, and the uid of the current user must match the uid
+of the user who mounted the resource.
+
+Also note that the customary way of allowing user mounts and unmounts is
+(instead of using mount.cifs and unmount.cifs as suid) to add a line
+to the file /etc/fstab for each //server/share you wish to mount, but
+this can become unwieldy when potential mount targets include many
+or unpredictable UNC names.
+
+Samba Considerations
+====================
+To get the maximum benefit from the CIFS VFS, we recommend using a server that
+supports the SNIA CIFS Unix Extensions standard (e.g. Samba 2.2.5 or later or
+Samba 3.0) but the CIFS vfs works fine with a wide variety of CIFS servers.
+Note that uid, gid and file permissions will display default values if you do
+not have a server that supports the Unix extensions for CIFS (such as Samba
+2.2.5 or later). To enable the Unix CIFS Extensions in the Samba server, add
+the line:
+
+ unix extensions = yes
+
+to your smb.conf file on the server. Note that the following smb.conf settings
+are also useful (on the Samba server) when the majority of clients are Unix or
+Linux:
+
+ case sensitive = yes
+ delete readonly = yes
+ ea support = yes
+
+Note that server ea support is required for supporting xattrs from the Linux
+cifs client, and that EA support is present in later versions of Samba (e.g.
+3.0.6 and later (also EA support works in all versions of Windows, at least to
+shares on NTFS filesystems). Extended Attribute (xattr) support is an optional
+feature of most Linux filesystems which may require enabling via
+make menuconfig. Client support for extended attributes (user xattr) can be
+disabled on a per-mount basis by specifying "nouser_xattr" on mount.
+
+The CIFS client can get and set POSIX ACLs (getfacl, setfacl) to Samba servers
+version 3.10 and later. Setting POSIX ACLs requires enabling both XATTR and
+then POSIX support in the CIFS configuration options when building the cifs
+module. POSIX ACL support can be disabled on a per mount basic by specifying
+"noacl" on mount.
+
+Some administrators may want to change Samba's smb.conf "map archive" and
+"create mask" parameters from the default. Unless the create mask is changed
+newly created files can end up with an unnecessarily restrictive default mode,
+which may not be what you want, although if the CIFS Unix extensions are
+enabled on the server and client, subsequent setattr calls (e.g. chmod) can
+fix the mode. Note that creating special devices (mknod) remotely
+may require specifying a mkdev function to Samba if you are not using
+Samba 3.0.6 or later. For more information on these see the manual pages
+("man smb.conf") on the Samba server system. Note that the cifs vfs,
+unlike the smbfs vfs, does not read the smb.conf on the client system
+(the few optional settings are passed in on mount via -o parameters instead).
+Note that Samba 2.2.7 or later includes a fix that allows the CIFS VFS to delete
+open files (required for strict POSIX compliance). Windows Servers already
+supported this feature. Samba server does not allow symlinks that refer to files
+outside of the share, so in Samba versions prior to 3.0.6, most symlinks to
+files with absolute paths (ie beginning with slash) such as:
+ ln -s /mnt/foo bar
+would be forbidden. Samba 3.0.6 server or later includes the ability to create
+such symlinks safely by converting unsafe symlinks (ie symlinks to server
+files that are outside of the share) to a samba specific format on the server
+that is ignored by local server applications and non-cifs clients and that will
+not be traversed by the Samba server). This is opaque to the Linux client
+application using the cifs vfs. Absolute symlinks will work to Samba 3.0.5 or
+later, but only for remote clients using the CIFS Unix extensions, and will
+be invisbile to Windows clients and typically will not affect local
+applications running on the same server as Samba.
+
+Use instructions:
+================
+Once the CIFS VFS support is built into the kernel or installed as a module
+(cifs.o), you can use mount syntax like the following to access Samba or Windows
+servers:
+
+ mount -t cifs //9.53.216.11/e$ /mnt -o user=myname,pass=mypassword
+
+Before -o the option -v may be specified to make the mount.cifs
+mount helper display the mount steps more verbosely.
+After -o the following commonly used cifs vfs specific options
+are supported:
+
+ user=<username>
+ pass=<password>
+ domain=<domain name>
+
+Other cifs mount options are described below. Use of TCP names (in addition to
+ip addresses) is available if the mount helper (mount.cifs) is installed. If
+you do not trust the server to which are mounted, or if you do not have
+cifs signing enabled (and the physical network is insecure), consider use
+of the standard mount options "noexec" and "nosuid" to reduce the risk of
+running an altered binary on your local system (downloaded from a hostile server
+or altered by a hostile router).
+
+Although mounting using format corresponding to the CIFS URL specification is
+not possible in mount.cifs yet, it is possible to use an alternate format
+for the server and sharename (which is somewhat similar to NFS style mount
+syntax) instead of the more widely used UNC format (i.e. \\server\share):
+ mount -t cifs tcp_name_of_server:share_name /mnt -o user=myname,pass=mypasswd
+
+When using the mount helper mount.cifs, passwords may be specified via alternate
+mechanisms, instead of specifying it after -o using the normal "pass=" syntax
+on the command line:
+1) By including it in a credential file. Specify credentials=filename as one
+of the mount options. Credential files contain two lines
+ username=someuser
+ password=your_password
+2) By specifying the password in the PASSWD environment variable (similarly
+the user name can be taken from the USER environment variable).
+3) By specifying the password in a file by name via PASSWD_FILE
+4) By specifying the password in a file by file descriptor via PASSWD_FD
+
+If no password is provided, mount.cifs will prompt for password entry
+
+Restrictions
+============
+Servers must support either "pure-TCP" (port 445 TCP/IP CIFS connections) or RFC
+1001/1002 support for "Netbios-Over-TCP/IP." This is not likely to be a
+problem as most servers support this.
+
+Valid filenames differ between Windows and Linux. Windows typically restricts
+filenames which contain certain reserved characters (e.g.the character :
+which is used to delimit the beginning of a stream name by Windows), while
+Linux allows a slightly wider set of valid characters in filenames. Windows
+servers can remap such characters when an explicit mapping is specified in
+the Server's registry. Samba starting with version 3.10 will allow such
+filenames (ie those which contain valid Linux characters, which normally
+would be forbidden for Windows/CIFS semantics) as long as the server is
+configured for Unix Extensions (and the client has not disabled
+/proc/fs/cifs/LinuxExtensionsEnabled).
+
+
+CIFS VFS Mount Options
+======================
+A partial list of the supported mount options follows:
+ user The user name to use when trying to establish
+ the CIFS session.
+ password The user password. If the mount helper is
+ installed, the user will be prompted for password
+ if not supplied.
+ ip The ip address of the target server
+ unc The target server Universal Network Name (export) to
+ mount.
+ domain Set the SMB/CIFS workgroup name prepended to the
+ username during CIFS session establishment
+ forceuid Set the default uid for inodes to the uid
+ passed in on mount. For mounts to servers
+ which do support the CIFS Unix extensions, such as a
+ properly configured Samba server, the server provides
+ the uid, gid and mode so this parameter should not be
+ specified unless the server and clients uid and gid
+ numbering differ. If the server and client are in the
+ same domain (e.g. running winbind or nss_ldap) and
+ the server supports the Unix Extensions then the uid
+ and gid can be retrieved from the server (and uid
+ and gid would not have to be specifed on the mount.
+ For servers which do not support the CIFS Unix
+ extensions, the default uid (and gid) returned on lookup
+ of existing files will be the uid (gid) of the person
+ who executed the mount (root, except when mount.cifs
+ is configured setuid for user mounts) unless the "uid="
+ (gid) mount option is specified. Also note that permission
+ checks (authorization checks) on accesses to a file occur
+ at the server, but there are cases in which an administrator
+ may want to restrict at the client as well. For those
+ servers which do not report a uid/gid owner
+ (such as Windows), permissions can also be checked at the
+ client, and a crude form of client side permission checking
+ can be enabled by specifying file_mode and dir_mode on
+ the client. (default)
+ forcegid (similar to above but for the groupid instead of uid) (default)
+ noforceuid Fill in file owner information (uid) by requesting it from
+ the server if possible. With this option, the value given in
+ the uid= option (on mount) will only be used if the server
+ can not support returning uids on inodes.
+ noforcegid (similar to above but for the group owner, gid, instead of uid)
+ uid Set the default uid for inodes, and indicate to the
+ cifs kernel driver which local user mounted. If the server
+ supports the unix extensions the default uid is
+ not used to fill in the owner fields of inodes (files)
+ unless the "forceuid" parameter is specified.
+ gid Set the default gid for inodes (similar to above).
+ file_mode If CIFS Unix extensions are not supported by the server
+ this overrides the default mode for file inodes.
+ fsc Enable local disk caching using FS-Cache (off by default). This
+ option could be useful to improve performance on a slow link,
+ heavily loaded server and/or network where reading from the
+ disk is faster than reading from the server (over the network).
+ This could also impact scalability positively as the
+ number of calls to the server are reduced. However, local
+ caching is not suitable for all workloads for e.g. read-once
+ type workloads. So, you need to consider carefully your
+ workload/scenario before using this option. Currently, local
+ disk caching is functional for CIFS files opened as read-only.
+ dir_mode If CIFS Unix extensions are not supported by the server
+ this overrides the default mode for directory inodes.
+ port attempt to contact the server on this tcp port, before
+ trying the usual ports (port 445, then 139).
+ iocharset Codepage used to convert local path names to and from
+ Unicode. Unicode is used by default for network path
+ names if the server supports it. If iocharset is
+ not specified then the nls_default specified
+ during the local client kernel build will be used.
+ If server does not support Unicode, this parameter is
+ unused.
+ rsize default read size (usually 16K). The client currently
+ can not use rsize larger than CIFSMaxBufSize. CIFSMaxBufSize
+ defaults to 16K and may be changed (from 8K to the maximum
+ kmalloc size allowed by your kernel) at module install time
+ for cifs.ko. Setting CIFSMaxBufSize to a very large value
+ will cause cifs to use more memory and may reduce performance
+ in some cases. To use rsize greater than 127K (the original
+ cifs protocol maximum) also requires that the server support
+ a new Unix Capability flag (for very large read) which some
+ newer servers (e.g. Samba 3.0.26 or later) do. rsize can be
+ set from a minimum of 2048 to a maximum of 130048 (127K or
+ CIFSMaxBufSize, whichever is smaller)
+ wsize default write size (default 57344)
+ maximum wsize currently allowed by CIFS is 57344 (fourteen
+ 4096 byte pages)
+ actimeo=n attribute cache timeout in seconds (default 1 second).
+ After this timeout, the cifs client requests fresh attribute
+ information from the server. This option allows to tune the
+ attribute cache timeout to suit the workload needs. Shorter
+ timeouts mean better the cache coherency, but increased number
+ of calls to the server. Longer timeouts mean reduced number
+ of calls to the server at the expense of less stricter cache
+ coherency checks (i.e. incorrect attribute cache for a short
+ period of time).
+ rw mount the network share read-write (note that the
+ server may still consider the share read-only)
+ ro mount network share read-only
+ version used to distinguish different versions of the
+ mount helper utility (not typically needed)
+ sep if first mount option (after the -o), overrides
+ the comma as the separator between the mount
+ parms. e.g.
+ -o user=myname,password=mypassword,domain=mydom
+ could be passed instead with period as the separator by
+ -o sep=.user=myname.password=mypassword.domain=mydom
+ this might be useful when comma is contained within username
+ or password or domain. This option is less important
+ when the cifs mount helper cifs.mount (version 1.1 or later)
+ is used.
+ nosuid Do not allow remote executables with the suid bit
+ program to be executed. This is only meaningful for mounts
+ to servers such as Samba which support the CIFS Unix Extensions.
+ If you do not trust the servers in your network (your mount
+ targets) it is recommended that you specify this option for
+ greater security.
+ exec Permit execution of binaries on the mount.
+ noexec Do not permit execution of binaries on the mount.
+ dev Recognize block devices on the remote mount.
+ nodev Do not recognize devices on the remote mount.
+ suid Allow remote files on this mountpoint with suid enabled to
+ be executed (default for mounts when executed as root,
+ nosuid is default for user mounts).
+ credentials Although ignored by the cifs kernel component, it is used by
+ the mount helper, mount.cifs. When mount.cifs is installed it
+ opens and reads the credential file specified in order
+ to obtain the userid and password arguments which are passed to
+ the cifs vfs.
+ guest Although ignored by the kernel component, the mount.cifs
+ mount helper will not prompt the user for a password
+ if guest is specified on the mount options. If no
+ password is specified a null password will be used.
+ perm Client does permission checks (vfs_permission check of uid
+ and gid of the file against the mode and desired operation),
+ Note that this is in addition to the normal ACL check on the
+ target machine done by the server software.
+ Client permission checking is enabled by default.
+ noperm Client does not do permission checks. This can expose
+ files on this mount to access by other users on the local
+ client system. It is typically only needed when the server
+ supports the CIFS Unix Extensions but the UIDs/GIDs on the
+ client and server system do not match closely enough to allow
+ access by the user doing the mount, but it may be useful with
+ non CIFS Unix Extension mounts for cases in which the default
+ mode is specified on the mount but is not to be enforced on the
+ client (e.g. perhaps when MultiUserMount is enabled)
+ Note that this does not affect the normal ACL check on the
+ target machine done by the server software (of the server
+ ACL against the user name provided at mount time).
+ serverino Use server's inode numbers instead of generating automatically
+ incrementing inode numbers on the client. Although this will
+ make it easier to spot hardlinked files (as they will have
+ the same inode numbers) and inode numbers may be persistent,
+ note that the server does not guarantee that the inode numbers
+ are unique if multiple server side mounts are exported under a
+ single share (since inode numbers on the servers might not
+ be unique if multiple filesystems are mounted under the same
+ shared higher level directory). Note that some older
+ (e.g. pre-Windows 2000) do not support returning UniqueIDs
+ or the CIFS Unix Extensions equivalent and for those
+ this mount option will have no effect. Exporting cifs mounts
+ under nfsd requires this mount option on the cifs mount.
+ This is now the default if server supports the
+ required network operation.
+ noserverino Client generates inode numbers (rather than using the actual one
+ from the server). These inode numbers will vary after
+ unmount or reboot which can confuse some applications,
+ but not all server filesystems support unique inode
+ numbers.
+ setuids If the CIFS Unix extensions are negotiated with the server
+ the client will attempt to set the effective uid and gid of
+ the local process on newly created files, directories, and
+ devices (create, mkdir, mknod). If the CIFS Unix Extensions
+ are not negotiated, for newly created files and directories
+ instead of using the default uid and gid specified on
+ the mount, cache the new file's uid and gid locally which means
+ that the uid for the file can change when the inode is
+ reloaded (or the user remounts the share).
+ nosetuids The client will not attempt to set the uid and gid on
+ on newly created files, directories, and devices (create,
+ mkdir, mknod) which will result in the server setting the
+ uid and gid to the default (usually the server uid of the
+ user who mounted the share). Letting the server (rather than
+ the client) set the uid and gid is the default. If the CIFS
+ Unix Extensions are not negotiated then the uid and gid for
+ new files will appear to be the uid (gid) of the mounter or the
+ uid (gid) parameter specified on the mount.
+ netbiosname When mounting to servers via port 139, specifies the RFC1001
+ source name to use to represent the client netbios machine
+ name when doing the RFC1001 netbios session initialize.
+ direct Do not do inode data caching on files opened on this mount.
+ This precludes mmapping files on this mount. In some cases
+ with fast networks and little or no caching benefits on the
+ client (e.g. when the application is doing large sequential
+ reads bigger than page size without rereading the same data)
+ this can provide better performance than the default
+ behavior which caches reads (readahead) and writes
+ (writebehind) through the local Linux client pagecache
+ if oplock (caching token) is granted and held. Note that
+ direct allows write operations larger than page size
+ to be sent to the server.
+ strictcache Use for switching on strict cache mode. In this mode the
+ client read from the cache all the time it has Oplock Level II,
+ otherwise - read from the server. All written data are stored
+ in the cache, but if the client doesn't have Exclusive Oplock,
+ it writes the data to the server.
+ rwpidforward Forward pid of a process who opened a file to any read or write
+ operation on that file. This prevent applications like WINE
+ from failing on read and write if we use mandatory brlock style.
+ acl Allow setfacl and getfacl to manage posix ACLs if server
+ supports them. (default)
+ noacl Do not allow setfacl and getfacl calls on this mount
+ user_xattr Allow getting and setting user xattrs (those attributes whose
+ name begins with "user." or "os2.") as OS/2 EAs (extended
+ attributes) to the server. This allows support of the
+ setfattr and getfattr utilities. (default)
+ nouser_xattr Do not allow getfattr/setfattr to get/set/list xattrs
+ mapchars Translate six of the seven reserved characters (not backslash)
+ *?<>|:
+ to the remap range (above 0xF000), which also
+ allows the CIFS client to recognize files created with
+ such characters by Windows's POSIX emulation. This can
+ also be useful when mounting to most versions of Samba
+ (which also forbids creating and opening files
+ whose names contain any of these seven characters).
+ This has no effect if the server does not support
+ Unicode on the wire.
+ nomapchars Do not translate any of these seven characters (default).
+ nocase Request case insensitive path name matching (case
+ sensitive is the default if the server supports it).
+ (mount option "ignorecase" is identical to "nocase")
+ posixpaths If CIFS Unix extensions are supported, attempt to
+ negotiate posix path name support which allows certain
+ characters forbidden in typical CIFS filenames, without
+ requiring remapping. (default)
+ noposixpaths If CIFS Unix extensions are supported, do not request
+ posix path name support (this may cause servers to
+ reject creatingfile with certain reserved characters).
+ nounix Disable the CIFS Unix Extensions for this mount (tree
+ connection). This is rarely needed, but it may be useful
+ in order to turn off multiple settings all at once (ie
+ posix acls, posix locks, posix paths, symlink support
+ and retrieving uids/gids/mode from the server) or to
+ work around a bug in server which implement the Unix
+ Extensions.
+ nobrl Do not send byte range lock requests to the server.
+ This is necessary for certain applications that break
+ with cifs style mandatory byte range locks (and most
+ cifs servers do not yet support requesting advisory
+ byte range locks).
+ forcemandatorylock Even if the server supports posix (advisory) byte range
+ locking, send only mandatory lock requests. For some
+ (presumably rare) applications, originally coded for
+ DOS/Windows, which require Windows style mandatory byte range
+ locking, they may be able to take advantage of this option,
+ forcing the cifs client to only send mandatory locks
+ even if the cifs server would support posix advisory locks.
+ "forcemand" is accepted as a shorter form of this mount
+ option.
+ nostrictsync If this mount option is set, when an application does an
+ fsync call then the cifs client does not send an SMB Flush
+ to the server (to force the server to write all dirty data
+ for this file immediately to disk), although cifs still sends
+ all dirty (cached) file data to the server and waits for the
+ server to respond to the write. Since SMB Flush can be
+ very slow, and some servers may be reliable enough (to risk
+ delaying slightly flushing the data to disk on the server),
+ turning on this option may be useful to improve performance for
+ applications that fsync too much, at a small risk of server
+ crash. If this mount option is not set, by default cifs will
+ send an SMB flush request (and wait for a response) on every
+ fsync call.
+ nodfs Disable DFS (global name space support) even if the
+ server claims to support it. This can help work around
+ a problem with parsing of DFS paths with Samba server
+ versions 3.0.24 and 3.0.25.
+ remount remount the share (often used to change from ro to rw mounts
+ or vice versa)
+ cifsacl Report mode bits (e.g. on stat) based on the Windows ACL for
+ the file. (EXPERIMENTAL)
+ servern Specify the server 's netbios name (RFC1001 name) to use
+ when attempting to setup a session to the server.
+ This is needed for mounting to some older servers (such
+ as OS/2 or Windows 98 and Windows ME) since they do not
+ support a default server name. A server name can be up
+ to 15 characters long and is usually uppercased.
+ sfu When the CIFS Unix Extensions are not negotiated, attempt to
+ create device files and fifos in a format compatible with
+ Services for Unix (SFU). In addition retrieve bits 10-12
+ of the mode via the SETFILEBITS extended attribute (as
+ SFU does). In the future the bottom 9 bits of the
+ mode also will be emulated using queries of the security
+ descriptor (ACL).
+ mfsymlinks Enable support for Minshall+French symlinks
+ (see http://wiki.samba.org/index.php/UNIX_Extensions#Minshall.2BFrench_symlinks)
+ This option is ignored when specified together with the
+ 'sfu' option. Minshall+French symlinks are used even if
+ the server supports the CIFS Unix Extensions.
+ sign Must use packet signing (helps avoid unwanted data modification
+ by intermediate systems in the route). Note that signing
+ does not work with lanman or plaintext authentication.
+ seal Must seal (encrypt) all data on this mounted share before
+ sending on the network. Requires support for Unix Extensions.
+ Note that this differs from the sign mount option in that it
+ causes encryption of data sent over this mounted share but other
+ shares mounted to the same server are unaffected.
+ locallease This option is rarely needed. Fcntl F_SETLEASE is
+ used by some applications such as Samba and NFSv4 server to
+ check to see whether a file is cacheable. CIFS has no way
+ to explicitly request a lease, but can check whether a file
+ is cacheable (oplocked). Unfortunately, even if a file
+ is not oplocked, it could still be cacheable (ie cifs client
+ could grant fcntl leases if no other local processes are using
+ the file) for cases for example such as when the server does not
+ support oplocks and the user is sure that the only updates to
+ the file will be from this client. Specifying this mount option
+ will allow the cifs client to check for leases (only) locally
+ for files which are not oplocked instead of denying leases
+ in that case. (EXPERIMENTAL)
+ sec Security mode. Allowed values are:
+ none attempt to connection as a null user (no name)
+ krb5 Use Kerberos version 5 authentication
+ krb5i Use Kerberos authentication and packet signing
+ ntlm Use NTLM password hashing (default)
+ ntlmi Use NTLM password hashing with signing (if
+ /proc/fs/cifs/PacketSigningEnabled on or if
+ server requires signing also can be the default)
+ ntlmv2 Use NTLMv2 password hashing
+ ntlmv2i Use NTLMv2 password hashing with packet signing
+ lanman (if configured in kernel config) use older
+ lanman hash
+hard Retry file operations if server is not responding
+soft Limit retries to unresponsive servers (usually only
+ one retry) before returning an error. (default)
+
+The mount.cifs mount helper also accepts a few mount options before -o
+including:
+
+ -S take password from stdin (equivalent to setting the environment
+ variable "PASSWD_FD=0"
+ -V print mount.cifs version
+ -? display simple usage information
+
+With most 2.6 kernel versions of modutils, the version of the cifs kernel
+module can be displayed via modinfo.
+
+Misc /proc/fs/cifs Flags and Debug Info
+=======================================
+Informational pseudo-files:
+DebugData Displays information about active CIFS sessions and
+ shares, features enabled as well as the cifs.ko
+ version.
+Stats Lists summary resource usage information as well as per
+ share statistics, if CONFIG_CIFS_STATS in enabled
+ in the kernel configuration.
+
+Configuration pseudo-files:
+PacketSigningEnabled If set to one, cifs packet signing is enabled
+ and will be used if the server requires
+ it. If set to two, cifs packet signing is
+ required even if the server considers packet
+ signing optional. (default 1)
+SecurityFlags Flags which control security negotiation and
+ also packet signing. Authentication (may/must)
+ flags (e.g. for NTLM and/or NTLMv2) may be combined with
+ the signing flags. Specifying two different password
+ hashing mechanisms (as "must use") on the other hand
+ does not make much sense. Default flags are
+ 0x07007
+ (NTLM, NTLMv2 and packet signing allowed). The maximum
+ allowable flags if you want to allow mounts to servers
+ using weaker password hashes is 0x37037 (lanman,
+ plaintext, ntlm, ntlmv2, signing allowed). Some
+ SecurityFlags require the corresponding menuconfig
+ options to be enabled (lanman and plaintext require
+ CONFIG_CIFS_WEAK_PW_HASH for example). Enabling
+ plaintext authentication currently requires also
+ enabling lanman authentication in the security flags
+ because the cifs module only supports sending
+ laintext passwords using the older lanman dialect
+ form of the session setup SMB. (e.g. for authentication
+ using plain text passwords, set the SecurityFlags
+ to 0x30030):
+
+ may use packet signing 0x00001
+ must use packet signing 0x01001
+ may use NTLM (most common password hash) 0x00002
+ must use NTLM 0x02002
+ may use NTLMv2 0x00004
+ must use NTLMv2 0x04004
+ may use Kerberos security 0x00008
+ must use Kerberos 0x08008
+ may use lanman (weak) password hash 0x00010
+ must use lanman password hash 0x10010
+ may use plaintext passwords 0x00020
+ must use plaintext passwords 0x20020
+ (reserved for future packet encryption) 0x00040
+
+cifsFYI If set to non-zero value, additional debug information
+ will be logged to the system error log. This field
+ contains three flags controlling different classes of
+ debugging entries. The maximum value it can be set
+ to is 7 which enables all debugging points (default 0).
+ Some debugging statements are not compiled into the
+ cifs kernel unless CONFIG_CIFS_DEBUG2 is enabled in the
+ kernel configuration. cifsFYI may be set to one or
+ nore of the following flags (7 sets them all):
+
+ log cifs informational messages 0x01
+ log return codes from cifs entry points 0x02
+ log slow responses (ie which take longer than 1 second)
+ CONFIG_CIFS_STATS2 must be enabled in .config 0x04
+
+
+traceSMB If set to one, debug information is logged to the
+ system error log with the start of smb requests
+ and responses (default 0)
+LookupCacheEnable If set to one, inode information is kept cached
+ for one second improving performance of lookups
+ (default 1)
+OplockEnabled If set to one, safe distributed caching enabled.
+ (default 1)
+LinuxExtensionsEnabled If set to one then the client will attempt to
+ use the CIFS "UNIX" extensions which are optional
+ protocol enhancements that allow CIFS servers
+ to return accurate UID/GID information as well
+ as support symbolic links. If you use servers
+ such as Samba that support the CIFS Unix
+ extensions but do not want to use symbolic link
+ support and want to map the uid and gid fields
+ to values supplied at mount (rather than the
+ actual values, then set this to zero. (default 1)
+
+These experimental features and tracing can be enabled by changing flags in
+/proc/fs/cifs (after the cifs module has been installed or built into the
+kernel, e.g. insmod cifs). To enable a feature set it to 1 e.g. to enable
+tracing to the kernel message log type:
+
+ echo 7 > /proc/fs/cifs/cifsFYI
+
+cifsFYI functions as a bit mask. Setting it to 1 enables additional kernel
+logging of various informational messages. 2 enables logging of non-zero
+SMB return codes while 4 enables logging of requests that take longer
+than one second to complete (except for byte range lock requests).
+Setting it to 4 requires defining CONFIG_CIFS_STATS2 manually in the
+source code (typically by setting it in the beginning of cifsglob.h),
+and setting it to seven enables all three. Finally, tracing
+the start of smb requests and responses can be enabled via:
+
+ echo 1 > /proc/fs/cifs/traceSMB
+
+Per share (per client mount) statistics are available in /proc/fs/cifs/Stats
+if the kernel was configured with cifs statistics enabled. The statistics
+represent the number of successful (ie non-zero return code from the server)
+SMB responses to some of the more common commands (open, delete, mkdir etc.).
+Also recorded is the total bytes read and bytes written to the server for
+that share. Note that due to client caching effects this can be less than the
+number of bytes read and written by the application running on the client.
+The statistics for the number of total SMBs and oplock breaks are different in
+that they represent all for that share, not just those for which the server
+returned success.
+
+Also note that "cat /proc/fs/cifs/DebugData" will display information about
+the active sessions and the shares that are mounted.
+
+Enabling Kerberos (extended security) works but requires version 1.2 or later
+of the helper program cifs.upcall to be present and to be configured in the
+/etc/request-key.conf file. The cifs.upcall helper program is from the Samba
+project(http://www.samba.org). NTLM and NTLMv2 and LANMAN support do not
+require this helper. Note that NTLMv2 security (which does not require the
+cifs.upcall helper program), instead of using Kerberos, is sufficient for
+some use cases.
+
+DFS support allows transparent redirection to shares in an MS-DFS name space.
+In addition, DFS support for target shares which are specified as UNC
+names which begin with host names (rather than IP addresses) requires
+a user space helper (such as cifs.upcall) to be present in order to
+translate host names to ip address, and the user space helper must also
+be configured in the file /etc/request-key.conf. Samba, Windows servers and
+many NAS appliances support DFS as a way of constructing a global name
+space to ease network configuration and improve reliability.
+
+To use cifs Kerberos and DFS support, the Linux keyutils package should be
+installed and something like the following lines should be added to the
+/etc/request-key.conf file:
+
+create cifs.spnego * * /usr/local/sbin/cifs.upcall %k
+create dns_resolver * * /usr/local/sbin/cifs.upcall %k
+
+CIFS kernel module parameters
+=============================
+These module parameters can be specified or modified either during the time of
+module loading or during the runtime by using the interface
+ /proc/module/cifs/parameters/<param>
+
+i.e. echo "value" > /sys/module/cifs/parameters/<param>
+
+1. enable_oplocks - Enable or disable oplocks. Oplocks are enabled by default.
+ [Y/y/1]. To disable use any of [N/n/0].
+