summaryrefslogtreecommitdiff
path: root/Documentation/media/v4l-drivers/pxa_camera.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/media/v4l-drivers/pxa_camera.rst')
-rw-r--r--Documentation/media/v4l-drivers/pxa_camera.rst192
1 files changed, 192 insertions, 0 deletions
diff --git a/Documentation/media/v4l-drivers/pxa_camera.rst b/Documentation/media/v4l-drivers/pxa_camera.rst
new file mode 100644
index 000000000..554f91b04
--- /dev/null
+++ b/Documentation/media/v4l-drivers/pxa_camera.rst
@@ -0,0 +1,192 @@
+PXA-Camera Host Driver
+======================
+
+Author: Robert Jarzmik <robert.jarzmik@free.fr>
+
+Constraints
+-----------
+
+a) Image size for YUV422P format
+ All YUV422P images are enforced to have width x height % 16 = 0.
+ This is due to DMA constraints, which transfers only planes of 8 byte
+ multiples.
+
+
+Global video workflow
+---------------------
+
+a) QCI stopped
+ Initialy, the QCI interface is stopped.
+ When a buffer is queued (pxa_videobuf_ops->buf_queue), the QCI starts.
+
+b) QCI started
+ More buffers can be queued while the QCI is started without halting the
+ capture. The new buffers are "appended" at the tail of the DMA chain, and
+ smoothly captured one frame after the other.
+
+ Once a buffer is filled in the QCI interface, it is marked as "DONE" and
+ removed from the active buffers list. It can be then requeud or dequeued by
+ userland application.
+
+ Once the last buffer is filled in, the QCI interface stops.
+
+c) Capture global finite state machine schema
+
+.. code-block:: none
+
+ +----+ +---+ +----+
+ | DQ | | Q | | DQ |
+ | v | v | v
+ +-----------+ +------------------------+
+ | STOP | | Wait for capture start |
+ +-----------+ Q +------------------------+
+ +-> | QCI: stop | ------------------> | QCI: run | <------------+
+ | | DMA: stop | | DMA: stop | |
+ | +-----------+ +-----> +------------------------+ |
+ | / | |
+ | / +---+ +----+ | |
+ |capture list empty / | Q | | DQ | | QCI Irq EOF |
+ | / | v | v v |
+ | +--------------------+ +----------------------+ |
+ | | DMA hotlink missed | | Capture running | |
+ | +--------------------+ +----------------------+ |
+ | | QCI: run | +-----> | QCI: run | <-+ |
+ | | DMA: stop | / | DMA: run | | |
+ | +--------------------+ / +----------------------+ | Other |
+ | ^ /DMA still | | channels |
+ | | capture list / running | DMA Irq End | not |
+ | | not empty / | | finished |
+ | | / v | yet |
+ | +----------------------+ +----------------------+ | |
+ | | Videobuf released | | Channel completed | | |
+ | +----------------------+ +----------------------+ | |
+ +-- | QCI: run | | QCI: run | --+ |
+ | DMA: run | | DMA: run | |
+ +----------------------+ +----------------------+ |
+ ^ / | |
+ | no overrun / | overrun |
+ | / v |
+ +--------------------+ / +----------------------+ |
+ | Frame completed | / | Frame overran | |
+ +--------------------+ <-----+ +----------------------+ restart frame |
+ | QCI: run | | QCI: stop | --------------+
+ | DMA: run | | DMA: stop |
+ +--------------------+ +----------------------+
+
+ Legend: - each box is a FSM state
+ - each arrow is the condition to transition to another state
+ - an arrow with a comment is a mandatory transition (no condition)
+ - arrow "Q" means : a buffer was enqueued
+ - arrow "DQ" means : a buffer was dequeued
+ - "QCI: stop" means the QCI interface is not enabled
+ - "DMA: stop" means all 3 DMA channels are stopped
+ - "DMA: run" means at least 1 DMA channel is still running
+
+DMA usage
+---------
+
+a) DMA flow
+ - first buffer queued for capture
+ Once a first buffer is queued for capture, the QCI is started, but data
+ transfer is not started. On "End Of Frame" interrupt, the irq handler
+ starts the DMA chain.
+ - capture of one videobuffer
+ The DMA chain starts transferring data into videobuffer RAM pages.
+ When all pages are transferred, the DMA irq is raised on "ENDINTR" status
+ - finishing one videobuffer
+ The DMA irq handler marks the videobuffer as "done", and removes it from
+ the active running queue
+ Meanwhile, the next videobuffer (if there is one), is transferred by DMA
+ - finishing the last videobuffer
+ On the DMA irq of the last videobuffer, the QCI is stopped.
+
+b) DMA prepared buffer will have this structure
+
+.. code-block:: none
+
+ +------------+-----+---------------+-----------------+
+ | desc-sg[0] | ... | desc-sg[last] | finisher/linker |
+ +------------+-----+---------------+-----------------+
+
+This structure is pointed by dma->sg_cpu.
+The descriptors are used as follows:
+
+- desc-sg[i]: i-th descriptor, transferring the i-th sg
+ element to the video buffer scatter gather
+- finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN
+- linker: has ddadr= desc-sg[0] of next video buffer, dcmd=0
+
+For the next schema, let's assume d0=desc-sg[0] .. dN=desc-sg[N],
+"f" stands for finisher and "l" for linker.
+A typical running chain is :
+
+.. code-block:: none
+
+ Videobuffer 1 Videobuffer 2
+ +---------+----+---+ +----+----+----+---+
+ | d0 | .. | dN | l | | d0 | .. | dN | f |
+ +---------+----+-|-+ ^----+----+----+---+
+ | |
+ +----+
+
+After the chaining is finished, the chain looks like :
+
+.. code-block:: none
+
+ Videobuffer 1 Videobuffer 2 Videobuffer 3
+ +---------+----+---+ +----+----+----+---+ +----+----+----+---+
+ | d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+ +---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+
+ | | | |
+ +----+ +----+
+ new_link
+
+c) DMA hot chaining timeslice issue
+
+As DMA chaining is done while DMA _is_ running, the linking may be done
+while the DMA jumps from one Videobuffer to another. On the schema, that
+would be a problem if the following sequence is encountered :
+
+- DMA chain is Videobuffer1 + Videobuffer2
+- pxa_videobuf_queue() is called to queue Videobuffer3
+- DMA controller finishes Videobuffer2, and DMA stops
+
+.. code-block:: none
+
+ =>
+ Videobuffer 1 Videobuffer 2
+ +---------+----+---+ +----+----+----+---+
+ | d0 | .. | dN | l | | d0 | .. | dN | f |
+ +---------+----+-|-+ ^----+----+----+-^-+
+ | | |
+ +----+ +-- DMA DDADR loads DDADR_STOP
+
+- pxa_dma_add_tail_buf() is called, the Videobuffer2 "finisher" is
+ replaced by a "linker" to Videobuffer3 (creation of new_link)
+- pxa_videobuf_queue() finishes
+- the DMA irq handler is called, which terminates Videobuffer2
+- Videobuffer3 capture is not scheduled on DMA chain (as it stopped !!!)
+
+.. code-block:: none
+
+ Videobuffer 1 Videobuffer 2 Videobuffer 3
+ +---------+----+---+ +----+----+----+---+ +----+----+----+---+
+ | d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+ +---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+
+ | | | |
+ +----+ +----+
+ new_link
+ DMA DDADR still is DDADR_STOP
+
+- pxa_camera_check_link_miss() is called
+ This checks if the DMA is finished and a buffer is still on the
+ pcdev->capture list. If that's the case, the capture will be restarted,
+ and Videobuffer3 is scheduled on DMA chain.
+- the DMA irq handler finishes
+
+.. note::
+
+ If DMA stops just after pxa_camera_check_link_miss() reads DDADR()
+ value, we have the guarantee that the DMA irq handler will be called back
+ when the DMA will finish the buffer, and pxa_camera_check_link_miss() will
+ be called again, to reschedule Videobuffer3.