summaryrefslogtreecommitdiff
path: root/Documentation/networking/stmmac.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking/stmmac.txt')
-rw-r--r--Documentation/networking/stmmac.txt369
1 files changed, 369 insertions, 0 deletions
diff --git a/Documentation/networking/stmmac.txt b/Documentation/networking/stmmac.txt
new file mode 100644
index 000000000..e655e2453
--- /dev/null
+++ b/Documentation/networking/stmmac.txt
@@ -0,0 +1,369 @@
+ STMicroelectronics 10/100/1000 Synopsys Ethernet driver
+
+Copyright (C) 2007-2014 STMicroelectronics Ltd
+Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
+
+This is the driver for the MAC 10/100/1000 on-chip Ethernet controllers
+(Synopsys IP blocks).
+
+Currently this network device driver is for all STi embedded MAC/GMAC
+(i.e. 7xxx/5xxx SoCs), SPEAr (arm), Loongson1B (mips) and XLINX XC2V3000
+FF1152AMT0221 D1215994A VIRTEX FPGA board.
+
+DWC Ether MAC 10/100/1000 Universal version 3.70a (and older) and DWC Ether
+MAC 10/100 Universal version 4.0 have been used for developing this driver.
+
+This driver supports both the platform bus and PCI.
+
+Please, for more information also visit: www.stlinux.com
+
+1) Kernel Configuration
+The kernel configuration option is STMMAC_ETH:
+ Device Drivers ---> Network device support ---> Ethernet (1000 Mbit) --->
+ STMicroelectronics 10/100/1000 Ethernet driver (STMMAC_ETH)
+
+CONFIG_STMMAC_PLATFORM: is to enable the platform driver.
+CONFIG_STMMAC_PCI: is to enable the pci driver.
+
+2) Driver parameters list:
+ debug: message level (0: no output, 16: all);
+ phyaddr: to manually provide the physical address to the PHY device;
+ dma_rxsize: DMA rx ring size;
+ dma_txsize: DMA tx ring size;
+ buf_sz: DMA buffer size;
+ tc: control the HW FIFO threshold;
+ watchdog: transmit timeout (in milliseconds);
+ flow_ctrl: Flow control ability [on/off];
+ pause: Flow Control Pause Time;
+ eee_timer: tx EEE timer;
+ chain_mode: select chain mode instead of ring.
+
+3) Command line options
+Driver parameters can be also passed in command line by using:
+ stmmaceth=dma_rxsize:128,dma_txsize:512
+
+4) Driver information and notes
+
+4.1) Transmit process
+The xmit method is invoked when the kernel needs to transmit a packet; it sets
+the descriptors in the ring and informs the DMA engine that there is a packet
+ready to be transmitted.
+By default, the driver sets the NETIF_F_SG bit in the features field of the
+net_device structure enabling the scatter-gather feature. This is true on
+chips and configurations where the checksum can be done in hardware.
+Once the controller has finished transmitting the packet, napi will be
+scheduled to release the transmit resources.
+
+4.2) Receive process
+When one or more packets are received, an interrupt happens. The interrupts
+are not queued so the driver has to scan all the descriptors in the ring during
+the receive process.
+This is based on NAPI so the interrupt handler signals only if there is work
+to be done, and it exits.
+Then the poll method will be scheduled at some future point.
+The incoming packets are stored, by the DMA, in a list of pre-allocated socket
+buffers in order to avoid the memcpy (zero-copy).
+
+4.3) Interrupt Mitigation
+The driver is able to mitigate the number of its DMA interrupts
+using NAPI for the reception on chips older than the 3.50.
+New chips have an HW RX-Watchdog used for this mitigation.
+Mitigation parameters can be tuned by ethtool.
+
+4.4) WOL
+Wake up on Lan feature through Magic and Unicast frames are supported for the
+GMAC core.
+
+4.5) DMA descriptors
+Driver handles both normal and alternate descriptors. The latter has been only
+tested on DWC Ether MAC 10/100/1000 Universal version 3.41a and later.
+
+STMMAC supports DMA descriptor to operate both in dual buffer (RING)
+and linked-list(CHAINED) mode. In RING each descriptor points to two
+data buffer pointers whereas in CHAINED mode they point to only one data
+buffer pointer. RING mode is the default.
+
+In CHAINED mode each descriptor will have pointer to next descriptor in
+the list, hence creating the explicit chaining in the descriptor itself,
+whereas such explicit chaining is not possible in RING mode.
+
+4.5.1) Extended descriptors
+ The extended descriptors give us information about the Ethernet payload
+ when it is carrying PTP packets or TCP/UDP/ICMP over IP.
+ These are not available on GMAC Synopsys chips older than the 3.50.
+ At probe time the driver will decide if these can be actually used.
+ This support also is mandatory for PTPv2 because the extra descriptors
+ are used for saving the hardware timestamps and Extended Status.
+
+4.6) Ethtool support
+Ethtool is supported.
+
+For example, driver statistics (including RMON), internal errors can be taken
+using:
+ # ethtool -S ethX command
+
+4.7) Jumbo and Segmentation Offloading
+Jumbo frames are supported and tested for the GMAC.
+The GSO has been also added but it's performed in software.
+LRO is not supported.
+
+4.8) Physical
+The driver is compatible with Physical Abstraction Layer to be connected with
+PHY and GPHY devices.
+
+4.9) Platform information
+Several information can be passed through the platform and device-tree.
+
+struct plat_stmmacenet_data {
+ char *phy_bus_name;
+ int bus_id;
+ int phy_addr;
+ int interface;
+ struct stmmac_mdio_bus_data *mdio_bus_data;
+ struct stmmac_dma_cfg *dma_cfg;
+ int clk_csr;
+ int has_gmac;
+ int enh_desc;
+ int tx_coe;
+ int rx_coe;
+ int bugged_jumbo;
+ int pmt;
+ int force_sf_dma_mode;
+ int force_thresh_dma_mode;
+ int riwt_off;
+ int max_speed;
+ int maxmtu;
+ void (*fix_mac_speed)(void *priv, unsigned int speed);
+ void (*bus_setup)(void __iomem *ioaddr);
+ void *(*setup)(struct platform_device *pdev);
+ void (*free)(struct platform_device *pdev, void *priv);
+ int (*init)(struct platform_device *pdev, void *priv);
+ void (*exit)(struct platform_device *pdev, void *priv);
+ void *custom_cfg;
+ void *custom_data;
+ void *bsp_priv;
+};
+
+Where:
+ o phy_bus_name: phy bus name to attach to the stmmac.
+ o bus_id: bus identifier.
+ o phy_addr: the physical address can be passed from the platform.
+ If it is set to -1 the driver will automatically
+ detect it at run-time by probing all the 32 addresses.
+ o interface: PHY device's interface.
+ o mdio_bus_data: specific platform fields for the MDIO bus.
+ o dma_cfg: internal DMA parameters
+ o pbl: the Programmable Burst Length is maximum number of beats to
+ be transferred in one DMA transaction.
+ GMAC also enables the 4xPBL by default.
+ o fixed_burst/mixed_burst/burst_len
+ o clk_csr: fixed CSR Clock range selection.
+ o has_gmac: uses the GMAC core.
+ o enh_desc: if sets the MAC will use the enhanced descriptor structure.
+ o tx_coe: core is able to perform the tx csum in HW.
+ o rx_coe: the supports three check sum offloading engine types:
+ type_1, type_2 (full csum) and no RX coe.
+ o bugged_jumbo: some HWs are not able to perform the csum in HW for
+ over-sized frames due to limited buffer sizes.
+ Setting this flag the csum will be done in SW on
+ JUMBO frames.
+ o pmt: core has the embedded power module (optional).
+ o force_sf_dma_mode: force DMA to use the Store and Forward mode
+ instead of the Threshold.
+ o force_thresh_dma_mode: force DMA to use the Threshold mode other than
+ the Store and Forward mode.
+ o riwt_off: force to disable the RX watchdog feature and switch to NAPI mode.
+ o fix_mac_speed: this callback is used for modifying some syscfg registers
+ (on ST SoCs) according to the link speed negotiated by the
+ physical layer .
+ o bus_setup: perform HW setup of the bus. For example, on some ST platforms
+ this field is used to configure the AMBA bridge to generate more
+ efficient STBus traffic.
+ o setup/init/exit: callbacks used for calling a custom initialization;
+ this is sometime necessary on some platforms (e.g. ST boxes)
+ where the HW needs to have set some PIO lines or system cfg
+ registers. setup should return a pointer to private data,
+ which will be stored in bsp_priv, and then passed to init and
+ exit callbacks. init/exit callbacks should not use or modify
+ platform data.
+ o custom_cfg/custom_data: this is a custom configuration that can be passed
+ while initializing the resources.
+ o bsp_priv: another private pointer.
+
+For MDIO bus The we have:
+
+ struct stmmac_mdio_bus_data {
+ int (*phy_reset)(void *priv);
+ unsigned int phy_mask;
+ int *irqs;
+ int probed_phy_irq;
+ };
+
+Where:
+ o phy_reset: hook to reset the phy device attached to the bus.
+ o phy_mask: phy mask passed when register the MDIO bus within the driver.
+ o irqs: list of IRQs, one per PHY.
+ o probed_phy_irq: if irqs is NULL, use this for probed PHY.
+
+For DMA engine we have the following internal fields that should be
+tuned according to the HW capabilities.
+
+struct stmmac_dma_cfg {
+ int pbl;
+ int fixed_burst;
+ int burst_len_supported;
+};
+
+Where:
+ o pbl: Programmable Burst Length
+ o fixed_burst: program the DMA to use the fixed burst mode
+ o burst_len: this is the value we put in the register
+ supported values are provided as macros in
+ linux/stmmac.h header file.
+
+---
+
+Below an example how the structures above are using on ST platforms.
+
+ static struct plat_stmmacenet_data stxYYY_ethernet_platform_data = {
+ .has_gmac = 0,
+ .enh_desc = 0,
+ .fix_mac_speed = stxYYY_ethernet_fix_mac_speed,
+ |
+ |-> to write an internal syscfg
+ | on this platform when the
+ | link speed changes from 10 to
+ | 100 and viceversa
+ .init = &stmmac_claim_resource,
+ |
+ |-> On ST SoC this calls own "PAD"
+ | manager framework to claim
+ | all the resources necessary
+ | (GPIO ...). The .custom_cfg field
+ | is used to pass a custom config.
+};
+
+Below the usage of the stmmac_mdio_bus_data: on this SoC, in fact,
+there are two MAC cores: one MAC is for MDIO Bus/PHY emulation
+with fixed_link support.
+
+static struct stmmac_mdio_bus_data stmmac1_mdio_bus = {
+ .phy_reset = phy_reset;
+ |
+ |-> function to provide the phy_reset on this board
+ .phy_mask = 0,
+};
+
+static struct fixed_phy_status stmmac0_fixed_phy_status = {
+ .link = 1,
+ .speed = 100,
+ .duplex = 1,
+};
+
+During the board's device_init we can configure the first
+MAC for fixed_link by calling:
+ fixed_phy_add(PHY_POLL, 1, &stmmac0_fixed_phy_status));)
+and the second one, with a real PHY device attached to the bus,
+by using the stmmac_mdio_bus_data structure (to provide the id, the
+reset procedure etc).
+
+Note that, starting from new chips, where it is available the HW capability
+register, many configurations are discovered at run-time for example to
+understand if EEE, HW csum, PTP, enhanced descriptor etc are actually
+available. As strategy adopted in this driver, the information from the HW
+capability register can replace what has been passed from the platform.
+
+4.10) Device-tree support.
+
+Please see the following document:
+ Documentation/devicetree/bindings/net/stmmac.txt
+
+and the stmmac_of_data structure inside the include/linux/stmmac.h header file.
+
+4.11) This is a summary of the content of some relevant files:
+ o stmmac_main.c: to implement the main network device driver;
+ o stmmac_mdio.c: to provide mdio functions;
+ o stmmac_pci: this the PCI driver;
+ o stmmac_platform.c: this the platform driver (OF supported)
+ o stmmac_ethtool.c: to implement the ethtool support;
+ o stmmac.h: private driver structure;
+ o common.h: common definitions and VFTs;
+ o descs.h: descriptor structure definitions;
+ o dwmac1000_core.c: dwmac GiGa core functions;
+ o dwmac1000_dma.c: dma functions for the GMAC chip;
+ o dwmac1000.h: specific header file for the dwmac GiGa;
+ o dwmac100_core: dwmac 100 core code;
+ o dwmac100_dma.c: dma functions for the dwmac 100 chip;
+ o dwmac1000.h: specific header file for the MAC;
+ o dwmac_lib.c: generic DMA functions;
+ o enh_desc.c: functions for handling enhanced descriptors;
+ o norm_desc.c: functions for handling normal descriptors;
+ o chain_mode.c/ring_mode.c:: functions to manage RING/CHAINED modes;
+ o mmc_core.c/mmc.h: Management MAC Counters;
+ o stmmac_hwtstamp.c: HW timestamp support for PTP;
+ o stmmac_ptp.c: PTP 1588 clock;
+ o dwmac-<XXX>.c: these are for the platform glue-logic file; e.g. dwmac-sti.c
+ for STMicroelectronics SoCs.
+
+5) Debug Information
+
+The driver exports many information i.e. internal statistics,
+debug information, MAC and DMA registers etc.
+
+These can be read in several ways depending on the
+type of the information actually needed.
+
+For example a user can be use the ethtool support
+to get statistics: e.g. using: ethtool -S ethX
+(that shows the Management counters (MMC) if supported)
+or sees the MAC/DMA registers: e.g. using: ethtool -d ethX
+
+Compiling the Kernel with CONFIG_DEBUG_FS the driver will export the following
+debugfs entries:
+
+/sys/kernel/debug/stmmaceth/descriptors_status
+ To show the DMA TX/RX descriptor rings
+
+Developer can also use the "debug" module parameter to get further debug
+information (please see: NETIF Msg Level).
+
+6) Energy Efficient Ethernet
+
+Energy Efficient Ethernet(EEE) enables IEEE 802.3 MAC sublayer along
+with a family of Physical layer to operate in the Low power Idle(LPI)
+mode. The EEE mode supports the IEEE 802.3 MAC operation at 100Mbps,
+1000Mbps & 10Gbps.
+
+The LPI mode allows power saving by switching off parts of the
+communication device functionality when there is no data to be
+transmitted & received. The system on both the side of the link can
+disable some functionalities & save power during the period of low-link
+utilization. The MAC controls whether the system should enter or exit
+the LPI mode & communicate this to PHY.
+
+As soon as the interface is opened, the driver verifies if the EEE can
+be supported. This is done by looking at both the DMA HW capability
+register and the PHY devices MCD registers.
+To enter in Tx LPI mode the driver needs to have a software timer
+that enable and disable the LPI mode when there is nothing to be
+transmitted.
+
+7) Precision Time Protocol (PTP)
+The driver supports the IEEE 1588-2002, Precision Time Protocol (PTP),
+which enables precise synchronization of clocks in measurement and
+control systems implemented with technologies such as network
+communication.
+
+In addition to the basic timestamp features mentioned in IEEE 1588-2002
+Timestamps, new GMAC cores support the advanced timestamp features.
+IEEE 1588-2008 that can be enabled when configure the Kernel.
+
+8) SGMII/RGMII supports
+New GMAC devices provide own way to manage RGMII/SGMII.
+This information is available at run-time by looking at the
+HW capability register. This means that the stmmac can manage
+auto-negotiation and link status w/o using the PHYLIB stuff
+In fact, the HW provides a subset of extended registers to
+restart the ANE, verify Full/Half duplex mode and Speed.
+Also thanks to these registers it is possible to look at the
+Auto-negotiated Link Parter Ability.