diff options
Diffstat (limited to 'Documentation/power')
32 files changed, 8228 insertions, 0 deletions
diff --git a/Documentation/power/00-INDEX b/Documentation/power/00-INDEX new file mode 100644 index 000000000..ad04cc809 --- /dev/null +++ b/Documentation/power/00-INDEX @@ -0,0 +1,46 @@ +00-INDEX + - This file +apm-acpi.txt + - basic info about the APM and ACPI support. +basic-pm-debugging.txt + - Debugging suspend and resume +charger-manager.txt + - Battery charger management. +devices.txt + - How drivers interact with system-wide power management +drivers-testing.txt + - Testing suspend and resume support in device drivers +freezing-of-tasks.txt + - How processes and controlled during suspend +interface.txt + - Power management user interface in /sys/power +notifiers.txt + - Registering suspend notifiers in device drivers +opp.txt + - Operating Performance Point library +pci.txt + - How the PCI Subsystem Does Power Management +pm_qos_interface.txt + - info on Linux PM Quality of Service interface +power_supply_class.txt + - Tells userspace about battery, UPS, AC or DC power supply properties +runtime_pm.txt + - Power management framework for I/O devices. +s2ram.txt + - How to get suspend to ram working (and debug it when it isn't) +states.txt + - System power management states +suspend-and-cpuhotplug.txt + - Explains the interaction between Suspend-to-RAM (S3) and CPU hotplug +swsusp-and-swap-files.txt + - Using swap files with software suspend (to disk) +swsusp-dmcrypt.txt + - How to use dm-crypt and software suspend (to disk) together +swsusp.txt + - Goals, implementation, and usage of software suspend (ACPI S3) +tricks.txt + - How to trick software suspend (to disk) into working when it isn't +userland-swsusp.txt + - Experimental implementation of software suspend in userspace +video.txt + - Video issues during resume from suspend diff --git a/Documentation/power/apm-acpi.txt b/Documentation/power/apm-acpi.txt new file mode 100644 index 000000000..6cc423d36 --- /dev/null +++ b/Documentation/power/apm-acpi.txt @@ -0,0 +1,32 @@ +APM or ACPI? +------------ +If you have a relatively recent x86 mobile, desktop, or server system, +odds are it supports either Advanced Power Management (APM) or +Advanced Configuration and Power Interface (ACPI). ACPI is the newer +of the two technologies and puts power management in the hands of the +operating system, allowing for more intelligent power management than +is possible with BIOS controlled APM. + +The best way to determine which, if either, your system supports is to +build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is +enabled by default). If a working ACPI implementation is found, the +ACPI driver will override and disable APM, otherwise the APM driver +will be used. + +No, sorry, you cannot have both ACPI and APM enabled and running at +once. Some people with broken ACPI or broken APM implementations +would like to use both to get a full set of working features, but you +simply cannot mix and match the two. Only one power management +interface can be in control of the machine at once. Think about it.. + +User-space Daemons +------------------ +Both APM and ACPI rely on user-space daemons, apmd and acpid +respectively, to be completely functional. Obtain both of these +daemons from your Linux distribution or from the Internet (see below) +and be sure that they are started sometime in the system boot process. +Go ahead and start both. If ACPI or APM is not available on your +system the associated daemon will exit gracefully. + + apmd: http://ftp.debian.org/pool/main/a/apmd/ + acpid: http://acpid.sf.net/ diff --git a/Documentation/power/basic-pm-debugging.txt b/Documentation/power/basic-pm-debugging.txt new file mode 100644 index 000000000..b96098ccf --- /dev/null +++ b/Documentation/power/basic-pm-debugging.txt @@ -0,0 +1,229 @@ +Debugging hibernation and suspend + (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL + +1. Testing hibernation (aka suspend to disk or STD) + +To check if hibernation works, you can try to hibernate in the "reboot" mode: + +# echo reboot > /sys/power/disk +# echo disk > /sys/power/state + +and the system should create a hibernation image, reboot, resume and get back to +the command prompt where you have started the transition. If that happens, +hibernation is most likely to work correctly. Still, you need to repeat the +test at least a couple of times in a row for confidence. [This is necessary, +because some problems only show up on a second attempt at suspending and +resuming the system.] Moreover, hibernating in the "reboot" and "shutdown" +modes causes the PM core to skip some platform-related callbacks which on ACPI +systems might be necessary to make hibernation work. Thus, if your machine fails +to hibernate or resume in the "reboot" mode, you should try the "platform" mode: + +# echo platform > /sys/power/disk +# echo disk > /sys/power/state + +which is the default and recommended mode of hibernation. + +Unfortunately, the "platform" mode of hibernation does not work on some systems +with broken BIOSes. In such cases the "shutdown" mode of hibernation might +work: + +# echo shutdown > /sys/power/disk +# echo disk > /sys/power/state + +(it is similar to the "reboot" mode, but it requires you to press the power +button to make the system resume). + +If neither "platform" nor "shutdown" hibernation mode works, you will need to +identify what goes wrong. + +a) Test modes of hibernation + +To find out why hibernation fails on your system, you can use a special testing +facility available if the kernel is compiled with CONFIG_PM_DEBUG set. Then, +there is the file /sys/power/pm_test that can be used to make the hibernation +core run in a test mode. There are 5 test modes available: + +freezer +- test the freezing of processes + +devices +- test the freezing of processes and suspending of devices + +platform +- test the freezing of processes, suspending of devices and platform + global control methods(*) + +processors +- test the freezing of processes, suspending of devices, platform + global control methods(*) and the disabling of nonboot CPUs + +core +- test the freezing of processes, suspending of devices, platform global + control methods(*), the disabling of nonboot CPUs and suspending of + platform/system devices + +(*) the platform global control methods are only available on ACPI systems + and are only tested if the hibernation mode is set to "platform" + +To use one of them it is necessary to write the corresponding string to +/sys/power/pm_test (eg. "devices" to test the freezing of processes and +suspending devices) and issue the standard hibernation commands. For example, +to use the "devices" test mode along with the "platform" mode of hibernation, +you should do the following: + +# echo devices > /sys/power/pm_test +# echo platform > /sys/power/disk +# echo disk > /sys/power/state + +Then, the kernel will try to freeze processes, suspend devices, wait a few +seconds (5 by default, but configurable by the suspend.pm_test_delay module +parameter), resume devices and thaw processes. If "platform" is written to +/sys/power/pm_test , then after suspending devices the kernel will additionally +invoke the global control methods (eg. ACPI global control methods) used to +prepare the platform firmware for hibernation. Next, it will wait a +configurable number of seconds and invoke the platform (eg. ACPI) global +methods used to cancel hibernation etc. + +Writing "none" to /sys/power/pm_test causes the kernel to switch to the normal +hibernation/suspend operations. Also, when open for reading, /sys/power/pm_test +contains a space-separated list of all available tests (including "none" that +represents the normal functionality) in which the current test level is +indicated by square brackets. + +Generally, as you can see, each test level is more "invasive" than the previous +one and the "core" level tests the hardware and drivers as deeply as possible +without creating a hibernation image. Obviously, if the "devices" test fails, +the "platform" test will fail as well and so on. Thus, as a rule of thumb, you +should try the test modes starting from "freezer", through "devices", "platform" +and "processors" up to "core" (repeat the test on each level a couple of times +to make sure that any random factors are avoided). + +If the "freezer" test fails, there is a task that cannot be frozen (in that case +it usually is possible to identify the offending task by analysing the output of +dmesg obtained after the failing test). Failure at this level usually means +that there is a problem with the tasks freezer subsystem that should be +reported. + +If the "devices" test fails, most likely there is a driver that cannot suspend +or resume its device (in the latter case the system may hang or become unstable +after the test, so please take that into consideration). To find this driver, +you can carry out a binary search according to the rules: +- if the test fails, unload a half of the drivers currently loaded and repeat +(that would probably involve rebooting the system, so always note what drivers +have been loaded before the test), +- if the test succeeds, load a half of the drivers you have unloaded most +recently and repeat. + +Once you have found the failing driver (there can be more than just one of +them), you have to unload it every time before hibernation. In that case please +make sure to report the problem with the driver. + +It is also possible that the "devices" test will still fail after you have +unloaded all modules. In that case, you may want to look in your kernel +configuration for the drivers that can be compiled as modules (and test again +with these drivers compiled as modules). You may also try to use some special +kernel command line options such as "noapic", "noacpi" or even "acpi=off". + +If the "platform" test fails, there is a problem with the handling of the +platform (eg. ACPI) firmware on your system. In that case the "platform" mode +of hibernation is not likely to work. You can try the "shutdown" mode, but that +is rather a poor man's workaround. + +If the "processors" test fails, the disabling/enabling of nonboot CPUs does not +work (of course, this only may be an issue on SMP systems) and the problem +should be reported. In that case you can also try to switch the nonboot CPUs +off and on using the /sys/devices/system/cpu/cpu*/online sysfs attributes and +see if that works. + +If the "core" test fails, which means that suspending of the system/platform +devices has failed (these devices are suspended on one CPU with interrupts off), +the problem is most probably hardware-related and serious, so it should be +reported. + +A failure of any of the "platform", "processors" or "core" tests may cause your +system to hang or become unstable, so please beware. Such a failure usually +indicates a serious problem that very well may be related to the hardware, but +please report it anyway. + +b) Testing minimal configuration + +If all of the hibernation test modes work, you can boot the system with the +"init=/bin/bash" command line parameter and attempt to hibernate in the +"reboot", "shutdown" and "platform" modes. If that does not work, there +probably is a problem with a driver statically compiled into the kernel and you +can try to compile more drivers as modules, so that they can be tested +individually. Otherwise, there is a problem with a modular driver and you can +find it by loading a half of the modules you normally use and binary searching +in accordance with the algorithm: +- if there are n modules loaded and the attempt to suspend and resume fails, +unload n/2 of the modules and try again (that would probably involve rebooting +the system), +- if there are n modules loaded and the attempt to suspend and resume succeeds, +load n/2 modules more and try again. + +Again, if you find the offending module(s), it(they) must be unloaded every time +before hibernation, and please report the problem with it(them). + +c) Advanced debugging + +In case that hibernation does not work on your system even in the minimal +configuration and compiling more drivers as modules is not practical or some +modules cannot be unloaded, you can use one of the more advanced debugging +techniques to find the problem. First, if there is a serial port in your box, +you can boot the kernel with the 'no_console_suspend' parameter and try to log +kernel messages using the serial console. This may provide you with some +information about the reasons of the suspend (resume) failure. Alternatively, +it may be possible to use a FireWire port for debugging with firescope +(http://v3.sk/~lkundrak/firescope/). On x86 it is also possible to +use the PM_TRACE mechanism documented in Documentation/power/s2ram.txt . + +2. Testing suspend to RAM (STR) + +To verify that the STR works, it is generally more convenient to use the s2ram +tool available from http://suspend.sf.net and documented at +http://en.opensuse.org/SDB:Suspend_to_RAM (S2RAM_LINK). + +Namely, after writing "freezer", "devices", "platform", "processors", or "core" +into /sys/power/pm_test (available if the kernel is compiled with +CONFIG_PM_DEBUG set) the suspend code will work in the test mode corresponding +to given string. The STR test modes are defined in the same way as for +hibernation, so please refer to Section 1 for more information about them. In +particular, the "core" test allows you to test everything except for the actual +invocation of the platform firmware in order to put the system into the sleep +state. + +Among other things, the testing with the help of /sys/power/pm_test may allow +you to identify drivers that fail to suspend or resume their devices. They +should be unloaded every time before an STR transition. + +Next, you can follow the instructions at S2RAM_LINK to test the system, but if +it does not work "out of the box", you may need to boot it with +"init=/bin/bash" and test s2ram in the minimal configuration. In that case, +you may be able to search for failing drivers by following the procedure +analogous to the one described in section 1. If you find some failing drivers, +you will have to unload them every time before an STR transition (ie. before +you run s2ram), and please report the problems with them. + +There is a debugfs entry which shows the suspend to RAM statistics. Here is an +example of its output. + # mount -t debugfs none /sys/kernel/debug + # cat /sys/kernel/debug/suspend_stats + success: 20 + fail: 5 + failed_freeze: 0 + failed_prepare: 0 + failed_suspend: 5 + failed_suspend_noirq: 0 + failed_resume: 0 + failed_resume_noirq: 0 + failures: + last_failed_dev: alarm + adc + last_failed_errno: -16 + -16 + last_failed_step: suspend + suspend +Field success means the success number of suspend to RAM, and field fail means +the failure number. Others are the failure number of different steps of suspend +to RAM. suspend_stats just lists the last 2 failed devices, error number and +failed step of suspend. diff --git a/Documentation/power/charger-manager.txt b/Documentation/power/charger-manager.txt new file mode 100644 index 000000000..9ff1105e5 --- /dev/null +++ b/Documentation/power/charger-manager.txt @@ -0,0 +1,200 @@ +Charger Manager + (C) 2011 MyungJoo Ham <myungjoo.ham@samsung.com>, GPL + +Charger Manager provides in-kernel battery charger management that +requires temperature monitoring during suspend-to-RAM state +and where each battery may have multiple chargers attached and the userland +wants to look at the aggregated information of the multiple chargers. + +Charger Manager is a platform_driver with power-supply-class entries. +An instance of Charger Manager (a platform-device created with Charger-Manager) +represents an independent battery with chargers. If there are multiple +batteries with their own chargers acting independently in a system, +the system may need multiple instances of Charger Manager. + +1. Introduction +=============== + +Charger Manager supports the following: + +* Support for multiple chargers (e.g., a device with USB, AC, and solar panels) + A system may have multiple chargers (or power sources) and some of + they may be activated at the same time. Each charger may have its + own power-supply-class and each power-supply-class can provide + different information about the battery status. This framework + aggregates charger-related information from multiple sources and + shows combined information as a single power-supply-class. + +* Support for in suspend-to-RAM polling (with suspend_again callback) + While the battery is being charged and the system is in suspend-to-RAM, + we may need to monitor the battery health by looking at the ambient or + battery temperature. We can accomplish this by waking up the system + periodically. However, such a method wakes up devices unnecessarily for + monitoring the battery health and tasks, and user processes that are + supposed to be kept suspended. That, in turn, incurs unnecessary power + consumption and slow down charging process. Or even, such peak power + consumption can stop chargers in the middle of charging + (external power input < device power consumption), which not + only affects the charging time, but the lifespan of the battery. + + Charger Manager provides a function "cm_suspend_again" that can be + used as suspend_again callback of platform_suspend_ops. If the platform + requires tasks other than cm_suspend_again, it may implement its own + suspend_again callback that calls cm_suspend_again in the middle. + Normally, the platform will need to resume and suspend some devices + that are used by Charger Manager. + +* Support for premature full-battery event handling + If the battery voltage drops by "fullbatt_vchkdrop_uV" after + "fullbatt_vchkdrop_ms" from the full-battery event, the framework + restarts charging. This check is also performed while suspended by + setting wakeup time accordingly and using suspend_again. + +* Support for uevent-notify + With the charger-related events, the device sends + notification to users with UEVENT. + +2. Global Charger-Manager Data related with suspend_again +======================================================== +In order to setup Charger Manager with suspend-again feature +(in-suspend monitoring), the user should provide charger_global_desc +with setup_charger_manager(struct charger_global_desc *). +This charger_global_desc data for in-suspend monitoring is global +as the name suggests. Thus, the user needs to provide only once even +if there are multiple batteries. If there are multiple batteries, the +multiple instances of Charger Manager share the same charger_global_desc +and it will manage in-suspend monitoring for all instances of Charger Manager. + +The user needs to provide all the three entries properly in order to activate +in-suspend monitoring: + +struct charger_global_desc { + +char *rtc_name; + : The name of rtc (e.g., "rtc0") used to wakeup the system from + suspend for Charger Manager. The alarm interrupt (AIE) of the rtc + should be able to wake up the system from suspend. Charger Manager + saves and restores the alarm value and use the previously-defined + alarm if it is going to go off earlier than Charger Manager so that + Charger Manager does not interfere with previously-defined alarms. + +bool (*rtc_only_wakeup)(void); + : This callback should let CM know whether + the wakeup-from-suspend is caused only by the alarm of "rtc" in the + same struct. If there is any other wakeup source triggered the + wakeup, it should return false. If the "rtc" is the only wakeup + reason, it should return true. + +bool assume_timer_stops_in_suspend; + : if true, Charger Manager assumes that + the timer (CM uses jiffies as timer) stops during suspend. Then, CM + assumes that the suspend-duration is same as the alarm length. +}; + +3. How to setup suspend_again +============================= +Charger Manager provides a function "extern bool cm_suspend_again(void)". +When cm_suspend_again is called, it monitors every battery. The suspend_ops +callback of the system's platform_suspend_ops can call cm_suspend_again +function to know whether Charger Manager wants to suspend again or not. +If there are no other devices or tasks that want to use suspend_again +feature, the platform_suspend_ops may directly refer to cm_suspend_again +for its suspend_again callback. + +The cm_suspend_again() returns true (meaning "I want to suspend again") +if the system was woken up by Charger Manager and the polling +(in-suspend monitoring) results in "normal". + +4. Charger-Manager Data (struct charger_desc) +============================================= +For each battery charged independently from other batteries (if a series of +batteries are charged by a single charger, they are counted as one independent +battery), an instance of Charger Manager is attached to it. + +struct charger_desc { + +char *psy_name; + : The power-supply-class name of the battery. Default is + "battery" if psy_name is NULL. Users can access the psy entries + at "/sys/class/power_supply/[psy_name]/". + +enum polling_modes polling_mode; + : CM_POLL_DISABLE: do not poll this battery. + CM_POLL_ALWAYS: always poll this battery. + CM_POLL_EXTERNAL_POWER_ONLY: poll this battery if and only if + an external power source is attached. + CM_POLL_CHARGING_ONLY: poll this battery if and only if the + battery is being charged. + +unsigned int fullbatt_vchkdrop_ms; +unsigned int fullbatt_vchkdrop_uV; + : If both have non-zero values, Charger Manager will check the + battery voltage drop fullbatt_vchkdrop_ms after the battery is fully + charged. If the voltage drop is over fullbatt_vchkdrop_uV, Charger + Manager will try to recharge the battery by disabling and enabling + chargers. Recharge with voltage drop condition only (without delay + condition) is needed to be implemented with hardware interrupts from + fuel gauges or charger devices/chips. + +unsigned int fullbatt_uV; + : If specified with a non-zero value, Charger Manager assumes + that the battery is full (capacity = 100) if the battery is not being + charged and the battery voltage is equal to or greater than + fullbatt_uV. + +unsigned int polling_interval_ms; + : Required polling interval in ms. Charger Manager will poll + this battery every polling_interval_ms or more frequently. + +enum data_source battery_present; + : CM_BATTERY_PRESENT: assume that the battery exists. + CM_NO_BATTERY: assume that the battery does not exists. + CM_FUEL_GAUGE: get battery presence information from fuel gauge. + CM_CHARGER_STAT: get battery presence from chargers. + +char **psy_charger_stat; + : An array ending with NULL that has power-supply-class names of + chargers. Each power-supply-class should provide "PRESENT" (if + battery_present is "CM_CHARGER_STAT"), "ONLINE" (shows whether an + external power source is attached or not), and "STATUS" (shows whether + the battery is {"FULL" or not FULL} or {"FULL", "Charging", + "Discharging", "NotCharging"}). + +int num_charger_regulators; +struct regulator_bulk_data *charger_regulators; + : Regulators representing the chargers in the form for + regulator framework's bulk functions. + +char *psy_fuel_gauge; + : Power-supply-class name of the fuel gauge. + +int (*temperature_out_of_range)(int *mC); +bool measure_battery_temp; + : This callback returns 0 if the temperature is safe for charging, + a positive number if it is too hot to charge, and a negative number + if it is too cold to charge. With the variable mC, the callback returns + the temperature in 1/1000 of centigrade. + The source of temperature can be battery or ambient one according to + the value of measure_battery_temp. +}; + +5. Notify Charger-Manager of charger events: cm_notify_event() +========================================================= +If there is an charger event is required to notify +Charger Manager, a charger device driver that triggers the event can call +cm_notify_event(psy, type, msg) to notify the corresponding Charger Manager. +In the function, psy is the charger driver's power_supply pointer, which is +associated with Charger-Manager. The parameter "type" +is the same as irq's type (enum cm_event_types). The event message "msg" is +optional and is effective only if the event type is "UNDESCRIBED" or "OTHERS". + +6. Other Considerations +======================= + +At the charger/battery-related events such as battery-pulled-out, +charger-pulled-out, charger-inserted, DCIN-over/under-voltage, charger-stopped, +and others critical to chargers, the system should be configured to wake up. +At least the following should wake up the system from a suspend: +a) charger-on/off b) external-power-in/out c) battery-in/out (while charging) + +It is usually accomplished by configuring the PMIC as a wakeup source. diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt new file mode 100644 index 000000000..d172bce0f --- /dev/null +++ b/Documentation/power/devices.txt @@ -0,0 +1,697 @@ +Device Power Management + +Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc. +Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu> +Copyright (c) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com> + + +Most of the code in Linux is device drivers, so most of the Linux power +management (PM) code is also driver-specific. Most drivers will do very +little; others, especially for platforms with small batteries (like cell +phones), will do a lot. + +This writeup gives an overview of how drivers interact with system-wide +power management goals, emphasizing the models and interfaces that are +shared by everything that hooks up to the driver model core. Read it as +background for the domain-specific work you'd do with any specific driver. + + +Two Models for Device Power Management +====================================== +Drivers will use one or both of these models to put devices into low-power +states: + + System Sleep model: + Drivers can enter low-power states as part of entering system-wide + low-power states like "suspend" (also known as "suspend-to-RAM"), or + (mostly for systems with disks) "hibernation" (also known as + "suspend-to-disk"). + + This is something that device, bus, and class drivers collaborate on + by implementing various role-specific suspend and resume methods to + cleanly power down hardware and software subsystems, then reactivate + them without loss of data. + + Some drivers can manage hardware wakeup events, which make the system + leave the low-power state. This feature may be enabled or disabled + using the relevant /sys/devices/.../power/wakeup file (for Ethernet + drivers the ioctl interface used by ethtool may also be used for this + purpose); enabling it may cost some power usage, but let the whole + system enter low-power states more often. + + Runtime Power Management model: + Devices may also be put into low-power states while the system is + running, independently of other power management activity in principle. + However, devices are not generally independent of each other (for + example, a parent device cannot be suspended unless all of its child + devices have been suspended). Moreover, depending on the bus type the + device is on, it may be necessary to carry out some bus-specific + operations on the device for this purpose. Devices put into low power + states at run time may require special handling during system-wide power + transitions (suspend or hibernation). + + For these reasons not only the device driver itself, but also the + appropriate subsystem (bus type, device type or device class) driver and + the PM core are involved in runtime power management. As in the system + sleep power management case, they need to collaborate by implementing + various role-specific suspend and resume methods, so that the hardware + is cleanly powered down and reactivated without data or service loss. + +There's not a lot to be said about those low-power states except that they are +very system-specific, and often device-specific. Also, that if enough devices +have been put into low-power states (at runtime), the effect may be very similar +to entering some system-wide low-power state (system sleep) ... and that +synergies exist, so that several drivers using runtime PM might put the system +into a state where even deeper power saving options are available. + +Most suspended devices will have quiesced all I/O: no more DMA or IRQs (except +for wakeup events), no more data read or written, and requests from upstream +drivers are no longer accepted. A given bus or platform may have different +requirements though. + +Examples of hardware wakeup events include an alarm from a real time clock, +network wake-on-LAN packets, keyboard or mouse activity, and media insertion +or removal (for PCMCIA, MMC/SD, USB, and so on). + + +Interfaces for Entering System Sleep States +=========================================== +There are programming interfaces provided for subsystems (bus type, device type, +device class) and device drivers to allow them to participate in the power +management of devices they are concerned with. These interfaces cover both +system sleep and runtime power management. + + +Device Power Management Operations +---------------------------------- +Device power management operations, at the subsystem level as well as at the +device driver level, are implemented by defining and populating objects of type +struct dev_pm_ops: + +struct dev_pm_ops { + int (*prepare)(struct device *dev); + void (*complete)(struct device *dev); + int (*suspend)(struct device *dev); + int (*resume)(struct device *dev); + int (*freeze)(struct device *dev); + int (*thaw)(struct device *dev); + int (*poweroff)(struct device *dev); + int (*restore)(struct device *dev); + int (*suspend_late)(struct device *dev); + int (*resume_early)(struct device *dev); + int (*freeze_late)(struct device *dev); + int (*thaw_early)(struct device *dev); + int (*poweroff_late)(struct device *dev); + int (*restore_early)(struct device *dev); + int (*suspend_noirq)(struct device *dev); + int (*resume_noirq)(struct device *dev); + int (*freeze_noirq)(struct device *dev); + int (*thaw_noirq)(struct device *dev); + int (*poweroff_noirq)(struct device *dev); + int (*restore_noirq)(struct device *dev); + int (*runtime_suspend)(struct device *dev); + int (*runtime_resume)(struct device *dev); + int (*runtime_idle)(struct device *dev); +}; + +This structure is defined in include/linux/pm.h and the methods included in it +are also described in that file. Their roles will be explained in what follows. +For now, it should be sufficient to remember that the last three methods are +specific to runtime power management while the remaining ones are used during +system-wide power transitions. + +There also is a deprecated "old" or "legacy" interface for power management +operations available at least for some subsystems. This approach does not use +struct dev_pm_ops objects and it is suitable only for implementing system sleep +power management methods. Therefore it is not described in this document, so +please refer directly to the source code for more information about it. + + +Subsystem-Level Methods +----------------------- +The core methods to suspend and resume devices reside in struct dev_pm_ops +pointed to by the ops member of struct dev_pm_domain, or by the pm member of +struct bus_type, struct device_type and struct class. They are mostly of +interest to the people writing infrastructure for platforms and buses, like PCI +or USB, or device type and device class drivers. They also are relevant to the +writers of device drivers whose subsystems (PM domains, device types, device +classes and bus types) don't provide all power management methods. + +Bus drivers implement these methods as appropriate for the hardware and the +drivers using it; PCI works differently from USB, and so on. Not many people +write subsystem-level drivers; most driver code is a "device driver" that builds +on top of bus-specific framework code. + +For more information on these driver calls, see the description later; +they are called in phases for every device, respecting the parent-child +sequencing in the driver model tree. + + +/sys/devices/.../power/wakeup files +----------------------------------- +All device objects in the driver model contain fields that control the handling +of system wakeup events (hardware signals that can force the system out of a +sleep state). These fields are initialized by bus or device driver code using +device_set_wakeup_capable() and device_set_wakeup_enable(), defined in +include/linux/pm_wakeup.h. + +The "power.can_wakeup" flag just records whether the device (and its driver) can +physically support wakeup events. The device_set_wakeup_capable() routine +affects this flag. The "power.wakeup" field is a pointer to an object of type +struct wakeup_source used for controlling whether or not the device should use +its system wakeup mechanism and for notifying the PM core of system wakeup +events signaled by the device. This object is only present for wakeup-capable +devices (i.e. devices whose "can_wakeup" flags are set) and is created (or +removed) by device_set_wakeup_capable(). + +Whether or not a device is capable of issuing wakeup events is a hardware +matter, and the kernel is responsible for keeping track of it. By contrast, +whether or not a wakeup-capable device should issue wakeup events is a policy +decision, and it is managed by user space through a sysfs attribute: the +"power/wakeup" file. User space can write the strings "enabled" or "disabled" +to it to indicate whether or not, respectively, the device is supposed to signal +system wakeup. This file is only present if the "power.wakeup" object exists +for the given device and is created (or removed) along with that object, by +device_set_wakeup_capable(). Reads from the file will return the corresponding +string. + +The "power/wakeup" file is supposed to contain the "disabled" string initially +for the majority of devices; the major exceptions are power buttons, keyboards, +and Ethernet adapters whose WoL (wake-on-LAN) feature has been set up with +ethtool. It should also default to "enabled" for devices that don't generate +wakeup requests on their own but merely forward wakeup requests from one bus to +another (like PCI Express ports). + +The device_may_wakeup() routine returns true only if the "power.wakeup" object +exists and the corresponding "power/wakeup" file contains the string "enabled". +This information is used by subsystems, like the PCI bus type code, to see +whether or not to enable the devices' wakeup mechanisms. If device wakeup +mechanisms are enabled or disabled directly by drivers, they also should use +device_may_wakeup() to decide what to do during a system sleep transition. +Device drivers, however, are not supposed to call device_set_wakeup_enable() +directly in any case. + +It ought to be noted that system wakeup is conceptually different from "remote +wakeup" used by runtime power management, although it may be supported by the +same physical mechanism. Remote wakeup is a feature allowing devices in +low-power states to trigger specific interrupts to signal conditions in which +they should be put into the full-power state. Those interrupts may or may not +be used to signal system wakeup events, depending on the hardware design. On +some systems it is impossible to trigger them from system sleep states. In any +case, remote wakeup should always be enabled for runtime power management for +all devices and drivers that support it. + +/sys/devices/.../power/control files +------------------------------------ +Each device in the driver model has a flag to control whether it is subject to +runtime power management. This flag, called runtime_auto, is initialized by the +bus type (or generally subsystem) code using pm_runtime_allow() or +pm_runtime_forbid(); the default is to allow runtime power management. + +The setting can be adjusted by user space by writing either "on" or "auto" to +the device's power/control sysfs file. Writing "auto" calls pm_runtime_allow(), +setting the flag and allowing the device to be runtime power-managed by its +driver. Writing "on" calls pm_runtime_forbid(), clearing the flag, returning +the device to full power if it was in a low-power state, and preventing the +device from being runtime power-managed. User space can check the current value +of the runtime_auto flag by reading the file. + +The device's runtime_auto flag has no effect on the handling of system-wide +power transitions. In particular, the device can (and in the majority of cases +should and will) be put into a low-power state during a system-wide transition +to a sleep state even though its runtime_auto flag is clear. + +For more information about the runtime power management framework, refer to +Documentation/power/runtime_pm.txt. + + +Calling Drivers to Enter and Leave System Sleep States +====================================================== +When the system goes into a sleep state, each device's driver is asked to +suspend the device by putting it into a state compatible with the target +system state. That's usually some version of "off", but the details are +system-specific. Also, wakeup-enabled devices will usually stay partly +functional in order to wake the system. + +When the system leaves that low-power state, the device's driver is asked to +resume it by returning it to full power. The suspend and resume operations +always go together, and both are multi-phase operations. + +For simple drivers, suspend might quiesce the device using class code +and then turn its hardware as "off" as possible during suspend_noirq. The +matching resume calls would then completely reinitialize the hardware +before reactivating its class I/O queues. + +More power-aware drivers might prepare the devices for triggering system wakeup +events. + + +Call Sequence Guarantees +------------------------ +To ensure that bridges and similar links needing to talk to a device are +available when the device is suspended or resumed, the device tree is +walked in a bottom-up order to suspend devices. A top-down order is +used to resume those devices. + +The ordering of the device tree is defined by the order in which devices +get registered: a child can never be registered, probed or resumed before +its parent; and can't be removed or suspended after that parent. + +The policy is that the device tree should match hardware bus topology. +(Or at least the control bus, for devices which use multiple busses.) +In particular, this means that a device registration may fail if the parent of +the device is suspending (i.e. has been chosen by the PM core as the next +device to suspend) or has already suspended, as well as after all of the other +devices have been suspended. Device drivers must be prepared to cope with such +situations. + + +System Power Management Phases +------------------------------ +Suspending or resuming the system is done in several phases. Different phases +are used for freeze, standby, and memory sleep states ("suspend-to-RAM") and the +hibernation state ("suspend-to-disk"). Each phase involves executing callbacks +for every device before the next phase begins. Not all busses or classes +support all these callbacks and not all drivers use all the callbacks. The +various phases always run after tasks have been frozen and before they are +unfrozen. Furthermore, the *_noirq phases run at a time when IRQ handlers have +been disabled (except for those marked with the IRQF_NO_SUSPEND flag). + +All phases use PM domain, bus, type, class or driver callbacks (that is, methods +defined in dev->pm_domain->ops, dev->bus->pm, dev->type->pm, dev->class->pm or +dev->driver->pm). These callbacks are regarded by the PM core as mutually +exclusive. Moreover, PM domain callbacks always take precedence over all of the +other callbacks and, for example, type callbacks take precedence over bus, class +and driver callbacks. To be precise, the following rules are used to determine +which callback to execute in the given phase: + + 1. If dev->pm_domain is present, the PM core will choose the callback + included in dev->pm_domain->ops for execution + + 2. Otherwise, if both dev->type and dev->type->pm are present, the callback + included in dev->type->pm will be chosen for execution. + + 3. Otherwise, if both dev->class and dev->class->pm are present, the + callback included in dev->class->pm will be chosen for execution. + + 4. Otherwise, if both dev->bus and dev->bus->pm are present, the callback + included in dev->bus->pm will be chosen for execution. + +This allows PM domains and device types to override callbacks provided by bus +types or device classes if necessary. + +The PM domain, type, class and bus callbacks may in turn invoke device- or +driver-specific methods stored in dev->driver->pm, but they don't have to do +that. + +If the subsystem callback chosen for execution is not present, the PM core will +execute the corresponding method from dev->driver->pm instead if there is one. + + +Entering System Suspend +----------------------- +When the system goes into the freeze, standby or memory sleep state, +the phases are: + + prepare, suspend, suspend_late, suspend_noirq. + + 1. The prepare phase is meant to prevent races by preventing new devices + from being registered; the PM core would never know that all the + children of a device had been suspended if new children could be + registered at will. (By contrast, devices may be unregistered at any + time.) Unlike the other suspend-related phases, during the prepare + phase the device tree is traversed top-down. + + After the prepare callback method returns, no new children may be + registered below the device. The method may also prepare the device or + driver in some way for the upcoming system power transition, but it + should not put the device into a low-power state. + + For devices supporting runtime power management, the return value of the + prepare callback can be used to indicate to the PM core that it may + safely leave the device in runtime suspend (if runtime-suspended + already), provided that all of the device's descendants are also left in + runtime suspend. Namely, if the prepare callback returns a positive + number and that happens for all of the descendants of the device too, + and all of them (including the device itself) are runtime-suspended, the + PM core will skip the suspend, suspend_late and suspend_noirq suspend + phases as well as the resume_noirq, resume_early and resume phases of + the following system resume for all of these devices. In that case, + the complete callback will be called directly after the prepare callback + and is entirely responsible for bringing the device back to the + functional state as appropriate. + + 2. The suspend methods should quiesce the device to stop it from performing + I/O. They also may save the device registers and put it into the + appropriate low-power state, depending on the bus type the device is on, + and they may enable wakeup events. + + 3 For a number of devices it is convenient to split suspend into the + "quiesce device" and "save device state" phases, in which cases + suspend_late is meant to do the latter. It is always executed after + runtime power management has been disabled for all devices. + + 4. The suspend_noirq phase occurs after IRQ handlers have been disabled, + which means that the driver's interrupt handler will not be called while + the callback method is running. The methods should save the values of + the device's registers that weren't saved previously and finally put the + device into the appropriate low-power state. + + The majority of subsystems and device drivers need not implement this + callback. However, bus types allowing devices to share interrupt + vectors, like PCI, generally need it; otherwise a driver might encounter + an error during the suspend phase by fielding a shared interrupt + generated by some other device after its own device had been set to low + power. + +At the end of these phases, drivers should have stopped all I/O transactions +(DMA, IRQs), saved enough state that they can re-initialize or restore previous +state (as needed by the hardware), and placed the device into a low-power state. +On many platforms they will gate off one or more clock sources; sometimes they +will also switch off power supplies or reduce voltages. (Drivers supporting +runtime PM may already have performed some or all of these steps.) + +If device_may_wakeup(dev) returns true, the device should be prepared for +generating hardware wakeup signals to trigger a system wakeup event when the +system is in the sleep state. For example, enable_irq_wake() might identify +GPIO signals hooked up to a switch or other external hardware, and +pci_enable_wake() does something similar for the PCI PME signal. + +If any of these callbacks returns an error, the system won't enter the desired +low-power state. Instead the PM core will unwind its actions by resuming all +the devices that were suspended. + + +Leaving System Suspend +---------------------- +When resuming from freeze, standby or memory sleep, the phases are: + + resume_noirq, resume_early, resume, complete. + + 1. The resume_noirq callback methods should perform any actions needed + before the driver's interrupt handlers are invoked. This generally + means undoing the actions of the suspend_noirq phase. If the bus type + permits devices to share interrupt vectors, like PCI, the method should + bring the device and its driver into a state in which the driver can + recognize if the device is the source of incoming interrupts, if any, + and handle them correctly. + + For example, the PCI bus type's ->pm.resume_noirq() puts the device into + the full-power state (D0 in the PCI terminology) and restores the + standard configuration registers of the device. Then it calls the + device driver's ->pm.resume_noirq() method to perform device-specific + actions. + + 2. The resume_early methods should prepare devices for the execution of + the resume methods. This generally involves undoing the actions of the + preceding suspend_late phase. + + 3 The resume methods should bring the device back to its operating + state, so that it can perform normal I/O. This generally involves + undoing the actions of the suspend phase. + + 4. The complete phase should undo the actions of the prepare phase. Note, + however, that new children may be registered below the device as soon as + the resume callbacks occur; it's not necessary to wait until the + complete phase. + + Moreover, if the preceding prepare callback returned a positive number, + the device may have been left in runtime suspend throughout the whole + system suspend and resume (the suspend, suspend_late, suspend_noirq + phases of system suspend and the resume_noirq, resume_early, resume + phases of system resume may have been skipped for it). In that case, + the complete callback is entirely responsible for bringing the device + back to the functional state after system suspend if necessary. [For + example, it may need to queue up a runtime resume request for the device + for this purpose.] To check if that is the case, the complete callback + can consult the device's power.direct_complete flag. Namely, if that + flag is set when the complete callback is being run, it has been called + directly after the preceding prepare and special action may be required + to make the device work correctly afterward. + +At the end of these phases, drivers should be as functional as they were before +suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are +gated on. + +However, the details here may again be platform-specific. For example, +some systems support multiple "run" states, and the mode in effect at +the end of resume might not be the one which preceded suspension. +That means availability of certain clocks or power supplies changed, +which could easily affect how a driver works. + +Drivers need to be able to handle hardware which has been reset since the +suspend methods were called, for example by complete reinitialization. +This may be the hardest part, and the one most protected by NDA'd documents +and chip errata. It's simplest if the hardware state hasn't changed since +the suspend was carried out, but that can't be guaranteed (in fact, it usually +is not the case). + +Drivers must also be prepared to notice that the device has been removed +while the system was powered down, whenever that's physically possible. +PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common examples of busses +where common Linux platforms will see such removal. Details of how drivers +will notice and handle such removals are currently bus-specific, and often +involve a separate thread. + +These callbacks may return an error value, but the PM core will ignore such +errors since there's nothing it can do about them other than printing them in +the system log. + + +Entering Hibernation +-------------------- +Hibernating the system is more complicated than putting it into the other +sleep states, because it involves creating and saving a system image. +Therefore there are more phases for hibernation, with a different set of +callbacks. These phases always run after tasks have been frozen and memory has +been freed. + +The general procedure for hibernation is to quiesce all devices (freeze), create +an image of the system memory while everything is stable, reactivate all +devices (thaw), write the image to permanent storage, and finally shut down the +system (poweroff). The phases used to accomplish this are: + + prepare, freeze, freeze_late, freeze_noirq, thaw_noirq, thaw_early, + thaw, complete, prepare, poweroff, poweroff_late, poweroff_noirq + + 1. The prepare phase is discussed in the "Entering System Suspend" section + above. + + 2. The freeze methods should quiesce the device so that it doesn't generate + IRQs or DMA, and they may need to save the values of device registers. + However the device does not have to be put in a low-power state, and to + save time it's best not to do so. Also, the device should not be + prepared to generate wakeup events. + + 3. The freeze_late phase is analogous to the suspend_late phase described + above, except that the device should not be put in a low-power state and + should not be allowed to generate wakeup events by it. + + 4. The freeze_noirq phase is analogous to the suspend_noirq phase discussed + above, except again that the device should not be put in a low-power + state and should not be allowed to generate wakeup events. + +At this point the system image is created. All devices should be inactive and +the contents of memory should remain undisturbed while this happens, so that the +image forms an atomic snapshot of the system state. + + 5. The thaw_noirq phase is analogous to the resume_noirq phase discussed + above. The main difference is that its methods can assume the device is + in the same state as at the end of the freeze_noirq phase. + + 6. The thaw_early phase is analogous to the resume_early phase described + above. Its methods should undo the actions of the preceding + freeze_late, if necessary. + + 7. The thaw phase is analogous to the resume phase discussed above. Its + methods should bring the device back to an operating state, so that it + can be used for saving the image if necessary. + + 8. The complete phase is discussed in the "Leaving System Suspend" section + above. + +At this point the system image is saved, and the devices then need to be +prepared for the upcoming system shutdown. This is much like suspending them +before putting the system into the freeze, standby or memory sleep state, +and the phases are similar. + + 9. The prepare phase is discussed above. + + 10. The poweroff phase is analogous to the suspend phase. + + 11. The poweroff_late phase is analogous to the suspend_late phase. + + 12. The poweroff_noirq phase is analogous to the suspend_noirq phase. + +The poweroff, poweroff_late and poweroff_noirq callbacks should do essentially +the same things as the suspend, suspend_late and suspend_noirq callbacks, +respectively. The only notable difference is that they need not store the +device register values, because the registers should already have been stored +during the freeze, freeze_late or freeze_noirq phases. + + +Leaving Hibernation +------------------- +Resuming from hibernation is, again, more complicated than resuming from a sleep +state in which the contents of main memory are preserved, because it requires +a system image to be loaded into memory and the pre-hibernation memory contents +to be restored before control can be passed back to the image kernel. + +Although in principle, the image might be loaded into memory and the +pre-hibernation memory contents restored by the boot loader, in practice this +can't be done because boot loaders aren't smart enough and there is no +established protocol for passing the necessary information. So instead, the +boot loader loads a fresh instance of the kernel, called the boot kernel, into +memory and passes control to it in the usual way. Then the boot kernel reads +the system image, restores the pre-hibernation memory contents, and passes +control to the image kernel. Thus two different kernels are involved in +resuming from hibernation. In fact, the boot kernel may be completely different +from the image kernel: a different configuration and even a different version. +This has important consequences for device drivers and their subsystems. + +To be able to load the system image into memory, the boot kernel needs to +include at least a subset of device drivers allowing it to access the storage +medium containing the image, although it doesn't need to include all of the +drivers present in the image kernel. After the image has been loaded, the +devices managed by the boot kernel need to be prepared for passing control back +to the image kernel. This is very similar to the initial steps involved in +creating a system image, and it is accomplished in the same way, using prepare, +freeze, and freeze_noirq phases. However the devices affected by these phases +are only those having drivers in the boot kernel; other devices will still be in +whatever state the boot loader left them. + +Should the restoration of the pre-hibernation memory contents fail, the boot +kernel would go through the "thawing" procedure described above, using the +thaw_noirq, thaw, and complete phases, and then continue running normally. This +happens only rarely. Most often the pre-hibernation memory contents are +restored successfully and control is passed to the image kernel, which then +becomes responsible for bringing the system back to the working state. + +To achieve this, the image kernel must restore the devices' pre-hibernation +functionality. The operation is much like waking up from the memory sleep +state, although it involves different phases: + + restore_noirq, restore_early, restore, complete + + 1. The restore_noirq phase is analogous to the resume_noirq phase. + + 2. The restore_early phase is analogous to the resume_early phase. + + 3. The restore phase is analogous to the resume phase. + + 4. The complete phase is discussed above. + +The main difference from resume[_early|_noirq] is that restore[_early|_noirq] +must assume the device has been accessed and reconfigured by the boot loader or +the boot kernel. Consequently the state of the device may be different from the +state remembered from the freeze, freeze_late and freeze_noirq phases. The +device may even need to be reset and completely re-initialized. In many cases +this difference doesn't matter, so the resume[_early|_noirq] and +restore[_early|_norq] method pointers can be set to the same routines. +Nevertheless, different callback pointers are used in case there is a situation +where it actually does matter. + + +Device Power Management Domains +------------------------------- +Sometimes devices share reference clocks or other power resources. In those +cases it generally is not possible to put devices into low-power states +individually. Instead, a set of devices sharing a power resource can be put +into a low-power state together at the same time by turning off the shared +power resource. Of course, they also need to be put into the full-power state +together, by turning the shared power resource on. A set of devices with this +property is often referred to as a power domain. + +Support for power domains is provided through the pm_domain field of struct +device. This field is a pointer to an object of type struct dev_pm_domain, +defined in include/linux/pm.h, providing a set of power management callbacks +analogous to the subsystem-level and device driver callbacks that are executed +for the given device during all power transitions, instead of the respective +subsystem-level callbacks. Specifically, if a device's pm_domain pointer is +not NULL, the ->suspend() callback from the object pointed to by it will be +executed instead of its subsystem's (e.g. bus type's) ->suspend() callback and +analogously for all of the remaining callbacks. In other words, power +management domain callbacks, if defined for the given device, always take +precedence over the callbacks provided by the device's subsystem (e.g. bus +type). + +The support for device power management domains is only relevant to platforms +needing to use the same device driver power management callbacks in many +different power domain configurations and wanting to avoid incorporating the +support for power domains into subsystem-level callbacks, for example by +modifying the platform bus type. Other platforms need not implement it or take +it into account in any way. + + +Device Low Power (suspend) States +--------------------------------- +Device low-power states aren't standard. One device might only handle +"on" and "off", while another might support a dozen different versions of +"on" (how many engines are active?), plus a state that gets back to "on" +faster than from a full "off". + +Some busses define rules about what different suspend states mean. PCI +gives one example: after the suspend sequence completes, a non-legacy +PCI device may not perform DMA or issue IRQs, and any wakeup events it +issues would be issued through the PME# bus signal. Plus, there are +several PCI-standard device states, some of which are optional. + +In contrast, integrated system-on-chip processors often use IRQs as the +wakeup event sources (so drivers would call enable_irq_wake) and might +be able to treat DMA completion as a wakeup event (sometimes DMA can stay +active too, it'd only be the CPU and some peripherals that sleep). + +Some details here may be platform-specific. Systems may have devices that +can be fully active in certain sleep states, such as an LCD display that's +refreshed using DMA while most of the system is sleeping lightly ... and +its frame buffer might even be updated by a DSP or other non-Linux CPU while +the Linux control processor stays idle. + +Moreover, the specific actions taken may depend on the target system state. +One target system state might allow a given device to be very operational; +another might require a hard shut down with re-initialization on resume. +And two different target systems might use the same device in different +ways; the aforementioned LCD might be active in one product's "standby", +but a different product using the same SOC might work differently. + + +Power Management Notifiers +-------------------------- +There are some operations that cannot be carried out by the power management +callbacks discussed above, because the callbacks occur too late or too early. +To handle these cases, subsystems and device drivers may register power +management notifiers that are called before tasks are frozen and after they have +been thawed. Generally speaking, the PM notifiers are suitable for performing +actions that either require user space to be available, or at least won't +interfere with user space. + +For details refer to Documentation/power/notifiers.txt. + + +Runtime Power Management +======================== +Many devices are able to dynamically power down while the system is still +running. This feature is useful for devices that are not being used, and +can offer significant power savings on a running system. These devices +often support a range of runtime power states, which might use names such +as "off", "sleep", "idle", "active", and so on. Those states will in some +cases (like PCI) be partially constrained by the bus the device uses, and will +usually include hardware states that are also used in system sleep states. + +A system-wide power transition can be started while some devices are in low +power states due to runtime power management. The system sleep PM callbacks +should recognize such situations and react to them appropriately, but the +necessary actions are subsystem-specific. + +In some cases the decision may be made at the subsystem level while in other +cases the device driver may be left to decide. In some cases it may be +desirable to leave a suspended device in that state during a system-wide power +transition, but in other cases the device must be put back into the full-power +state temporarily, for example so that its system wakeup capability can be +disabled. This all depends on the hardware and the design of the subsystem and +device driver in question. + +During system-wide resume from a sleep state it's easiest to put devices into +the full-power state, as explained in Documentation/power/runtime_pm.txt. Refer +to that document for more information regarding this particular issue as well as +for information on the device runtime power management framework in general. diff --git a/Documentation/power/drivers-testing.txt b/Documentation/power/drivers-testing.txt new file mode 100644 index 000000000..638afdf4d --- /dev/null +++ b/Documentation/power/drivers-testing.txt @@ -0,0 +1,46 @@ +Testing suspend and resume support in device drivers + (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL + +1. Preparing the test system + +Unfortunately, to effectively test the support for the system-wide suspend and +resume transitions in a driver, it is necessary to suspend and resume a fully +functional system with this driver loaded. Moreover, that should be done +several times, preferably several times in a row, and separately for hibernation +(aka suspend to disk or STD) and suspend to RAM (STR), because each of these +cases involves slightly different operations and different interactions with +the machine's BIOS. + +Of course, for this purpose the test system has to be known to suspend and +resume without the driver being tested. Thus, if possible, you should first +resolve all suspend/resume-related problems in the test system before you start +testing the new driver. Please see Documentation/power/basic-pm-debugging.txt +for more information about the debugging of suspend/resume functionality. + +2. Testing the driver + +Once you have resolved the suspend/resume-related problems with your test system +without the new driver, you are ready to test it: + +a) Build the driver as a module, load it and try the test modes of hibernation + (see: Documentation/power/basic-pm-debugging.txt, 1). + +b) Load the driver and attempt to hibernate in the "reboot", "shutdown" and + "platform" modes (see: Documentation/power/basic-pm-debugging.txt, 1). + +c) Compile the driver directly into the kernel and try the test modes of + hibernation. + +d) Attempt to hibernate with the driver compiled directly into the kernel + in the "reboot", "shutdown" and "platform" modes. + +e) Try the test modes of suspend (see: Documentation/power/basic-pm-debugging.txt, + 2). [As far as the STR tests are concerned, it should not matter whether or + not the driver is built as a module.] + +f) Attempt to suspend to RAM using the s2ram tool with the driver loaded + (see: Documentation/power/basic-pm-debugging.txt, 2). + +Each of the above tests should be repeated several times and the STD tests +should be mixed with the STR tests. If any of them fails, the driver cannot be +regarded as suspend/resume-safe. diff --git a/Documentation/power/freezing-of-tasks.txt b/Documentation/power/freezing-of-tasks.txt new file mode 100644 index 000000000..85894d83b --- /dev/null +++ b/Documentation/power/freezing-of-tasks.txt @@ -0,0 +1,230 @@ +Freezing of tasks + (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL + +I. What is the freezing of tasks? + +The freezing of tasks is a mechanism by which user space processes and some +kernel threads are controlled during hibernation or system-wide suspend (on some +architectures). + +II. How does it work? + +There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN +and PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have +PF_NOFREEZE unset (all user space processes and some kernel threads) are +regarded as 'freezable' and treated in a special way before the system enters a +suspend state as well as before a hibernation image is created (in what follows +we only consider hibernation, but the description also applies to suspend). + +Namely, as the first step of the hibernation procedure the function +freeze_processes() (defined in kernel/power/process.c) is called. A system-wide +variable system_freezing_cnt (as opposed to a per-task flag) is used to indicate +whether the system is to undergo a freezing operation. And freeze_processes() +sets this variable. After this, it executes try_to_freeze_tasks() that sends a +fake signal to all user space processes, and wakes up all the kernel threads. +All freezable tasks must react to that by calling try_to_freeze(), which +results in a call to __refrigerator() (defined in kernel/freezer.c), which sets +the task's PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE and makes +it loop until PF_FROZEN is cleared for it. Then, we say that the task is +'frozen' and therefore the set of functions handling this mechanism is referred +to as 'the freezer' (these functions are defined in kernel/power/process.c, +kernel/freezer.c & include/linux/freezer.h). User space processes are generally +frozen before kernel threads. + +__refrigerator() must not be called directly. Instead, use the +try_to_freeze() function (defined in include/linux/freezer.h), that checks +if the task is to be frozen and makes the task enter __refrigerator(). + +For user space processes try_to_freeze() is called automatically from the +signal-handling code, but the freezable kernel threads need to call it +explicitly in suitable places or use the wait_event_freezable() or +wait_event_freezable_timeout() macros (defined in include/linux/freezer.h) +that combine interruptible sleep with checking if the task is to be frozen and +calling try_to_freeze(). The main loop of a freezable kernel thread may look +like the following one: + + set_freezable(); + do { + hub_events(); + wait_event_freezable(khubd_wait, + !list_empty(&hub_event_list) || + kthread_should_stop()); + } while (!kthread_should_stop() || !list_empty(&hub_event_list)); + +(from drivers/usb/core/hub.c::hub_thread()). + +If a freezable kernel thread fails to call try_to_freeze() after the freezer has +initiated a freezing operation, the freezing of tasks will fail and the entire +hibernation operation will be cancelled. For this reason, freezable kernel +threads must call try_to_freeze() somewhere or use one of the +wait_event_freezable() and wait_event_freezable_timeout() macros. + +After the system memory state has been restored from a hibernation image and +devices have been reinitialized, the function thaw_processes() is called in +order to clear the PF_FROZEN flag for each frozen task. Then, the tasks that +have been frozen leave __refrigerator() and continue running. + + +Rationale behind the functions dealing with freezing and thawing of tasks: +------------------------------------------------------------------------- + +freeze_processes(): + - freezes only userspace tasks + +freeze_kernel_threads(): + - freezes all tasks (including kernel threads) because we can't freeze + kernel threads without freezing userspace tasks + +thaw_kernel_threads(): + - thaws only kernel threads; this is particularly useful if we need to do + anything special in between thawing of kernel threads and thawing of + userspace tasks, or if we want to postpone the thawing of userspace tasks + +thaw_processes(): + - thaws all tasks (including kernel threads) because we can't thaw userspace + tasks without thawing kernel threads + + +III. Which kernel threads are freezable? + +Kernel threads are not freezable by default. However, a kernel thread may clear +PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE +directly is not allowed). From this point it is regarded as freezable +and must call try_to_freeze() in a suitable place. + +IV. Why do we do that? + +Generally speaking, there is a couple of reasons to use the freezing of tasks: + +1. The principal reason is to prevent filesystems from being damaged after +hibernation. At the moment we have no simple means of checkpointing +filesystems, so if there are any modifications made to filesystem data and/or +metadata on disks, we cannot bring them back to the state from before the +modifications. At the same time each hibernation image contains some +filesystem-related information that must be consistent with the state of the +on-disk data and metadata after the system memory state has been restored from +the image (otherwise the filesystems will be damaged in a nasty way, usually +making them almost impossible to repair). We therefore freeze tasks that might +cause the on-disk filesystems' data and metadata to be modified after the +hibernation image has been created and before the system is finally powered off. +The majority of these are user space processes, but if any of the kernel threads +may cause something like this to happen, they have to be freezable. + +2. Next, to create the hibernation image we need to free a sufficient amount of +memory (approximately 50% of available RAM) and we need to do that before +devices are deactivated, because we generally need them for swapping out. Then, +after the memory for the image has been freed, we don't want tasks to allocate +additional memory and we prevent them from doing that by freezing them earlier. +[Of course, this also means that device drivers should not allocate substantial +amounts of memory from their .suspend() callbacks before hibernation, but this +is a separate issue.] + +3. The third reason is to prevent user space processes and some kernel threads +from interfering with the suspending and resuming of devices. A user space +process running on a second CPU while we are suspending devices may, for +example, be troublesome and without the freezing of tasks we would need some +safeguards against race conditions that might occur in such a case. + +Although Linus Torvalds doesn't like the freezing of tasks, he said this in one +of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608): + +"RJW:> Why we freeze tasks at all or why we freeze kernel threads? + +Linus: In many ways, 'at all'. + +I _do_ realize the IO request queue issues, and that we cannot actually do +s2ram with some devices in the middle of a DMA. So we want to be able to +avoid *that*, there's no question about that. And I suspect that stopping +user threads and then waiting for a sync is practically one of the easier +ways to do so. + +So in practice, the 'at all' may become a 'why freeze kernel threads?' and +freezing user threads I don't find really objectionable." + +Still, there are kernel threads that may want to be freezable. For example, if +a kernel thread that belongs to a device driver accesses the device directly, it +in principle needs to know when the device is suspended, so that it doesn't try +to access it at that time. However, if the kernel thread is freezable, it will +be frozen before the driver's .suspend() callback is executed and it will be +thawed after the driver's .resume() callback has run, so it won't be accessing +the device while it's suspended. + +4. Another reason for freezing tasks is to prevent user space processes from +realizing that hibernation (or suspend) operation takes place. Ideally, user +space processes should not notice that such a system-wide operation has occurred +and should continue running without any problems after the restore (or resume +from suspend). Unfortunately, in the most general case this is quite difficult +to achieve without the freezing of tasks. Consider, for example, a process +that depends on all CPUs being online while it's running. Since we need to +disable nonboot CPUs during the hibernation, if this process is not frozen, it +may notice that the number of CPUs has changed and may start to work incorrectly +because of that. + +V. Are there any problems related to the freezing of tasks? + +Yes, there are. + +First of all, the freezing of kernel threads may be tricky if they depend one +on another. For example, if kernel thread A waits for a completion (in the +TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread B +and B is frozen in the meantime, then A will be blocked until B is thawed, which +may be undesirable. That's why kernel threads are not freezable by default. + +Second, there are the following two problems related to the freezing of user +space processes: +1. Putting processes into an uninterruptible sleep distorts the load average. +2. Now that we have FUSE, plus the framework for doing device drivers in +userspace, it gets even more complicated because some userspace processes are +now doing the sorts of things that kernel threads do +(https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html). + +The problem 1. seems to be fixable, although it hasn't been fixed so far. The +other one is more serious, but it seems that we can work around it by using +hibernation (and suspend) notifiers (in that case, though, we won't be able to +avoid the realization by the user space processes that the hibernation is taking +place). + +There are also problems that the freezing of tasks tends to expose, although +they are not directly related to it. For example, if request_firmware() is +called from a device driver's .resume() routine, it will timeout and eventually +fail, because the user land process that should respond to the request is frozen +at this point. So, seemingly, the failure is due to the freezing of tasks. +Suppose, however, that the firmware file is located on a filesystem accessible +only through another device that hasn't been resumed yet. In that case, +request_firmware() will fail regardless of whether or not the freezing of tasks +is used. Consequently, the problem is not really related to the freezing of +tasks, since it generally exists anyway. + +A driver must have all firmwares it may need in RAM before suspend() is called. +If keeping them is not practical, for example due to their size, they must be +requested early enough using the suspend notifier API described in notifiers.txt. + +VI. Are there any precautions to be taken to prevent freezing failures? + +Yes, there are. + +First of all, grabbing the 'pm_mutex' lock to mutually exclude a piece of code +from system-wide sleep such as suspend/hibernation is not encouraged. +If possible, that piece of code must instead hook onto the suspend/hibernation +notifiers to achieve mutual exclusion. Look at the CPU-Hotplug code +(kernel/cpu.c) for an example. + +However, if that is not feasible, and grabbing 'pm_mutex' is deemed necessary, +it is strongly discouraged to directly call mutex_[un]lock(&pm_mutex) since +that could lead to freezing failures, because if the suspend/hibernate code +successfully acquired the 'pm_mutex' lock, and hence that other entity failed +to acquire the lock, then that task would get blocked in TASK_UNINTERRUPTIBLE +state. As a consequence, the freezer would not be able to freeze that task, +leading to freezing failure. + +However, the [un]lock_system_sleep() APIs are safe to use in this scenario, +since they ask the freezer to skip freezing this task, since it is anyway +"frozen enough" as it is blocked on 'pm_mutex', which will be released +only after the entire suspend/hibernation sequence is complete. +So, to summarize, use [un]lock_system_sleep() instead of directly using +mutex_[un]lock(&pm_mutex). That would prevent freezing failures. + +V. Miscellaneous +/sys/power/pm_freeze_timeout controls how long it will cost at most to freeze +all user space processes or all freezable kernel threads, in unit of millisecond. +The default value is 20000, with range of unsigned integer. diff --git a/Documentation/power/interface.txt b/Documentation/power/interface.txt new file mode 100644 index 000000000..f1f0f59a7 --- /dev/null +++ b/Documentation/power/interface.txt @@ -0,0 +1,75 @@ +Power Management Interface + + +The power management subsystem provides a unified sysfs interface to +userspace, regardless of what architecture or platform one is +running. The interface exists in /sys/power/ directory (assuming sysfs +is mounted at /sys). + +/sys/power/state controls system power state. Reading from this file +returns what states are supported, which is hard-coded to 'freeze', +'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and 'disk' +(Suspend-to-Disk). + +Writing to this file one of those strings causes the system to +transition into that state. Please see the file +Documentation/power/states.txt for a description of each of those +states. + + +/sys/power/disk controls the operating mode of the suspend-to-disk +mechanism. Suspend-to-disk can be handled in several ways. We have a +few options for putting the system to sleep - using the platform driver +(e.g. ACPI or other suspend_ops), powering off the system or rebooting the +system (for testing). + +Additionally, /sys/power/disk can be used to turn on one of the two testing +modes of the suspend-to-disk mechanism: 'testproc' or 'test'. If the +suspend-to-disk mechanism is in the 'testproc' mode, writing 'disk' to +/sys/power/state will cause the kernel to disable nonboot CPUs and freeze +tasks, wait for 5 seconds, unfreeze tasks and enable nonboot CPUs. If it is +in the 'test' mode, writing 'disk' to /sys/power/state will cause the kernel +to disable nonboot CPUs and freeze tasks, shrink memory, suspend devices, wait +for 5 seconds, resume devices, unfreeze tasks and enable nonboot CPUs. Then, +we are able to look in the log messages and work out, for example, which code +is being slow and which device drivers are misbehaving. + +Reading from this file will display all supported modes and the currently +selected one in brackets, for example + + [shutdown] reboot test testproc + +Writing to this file will accept one of + + 'platform' (only if the platform supports it) + 'shutdown' + 'reboot' + 'testproc' + 'test' + +/sys/power/image_size controls the size of the image created by +the suspend-to-disk mechanism. It can be written a string +representing a non-negative integer that will be used as an upper +limit of the image size, in bytes. The suspend-to-disk mechanism will +do its best to ensure the image size will not exceed that number. However, +if this turns out to be impossible, it will try to suspend anyway using the +smallest image possible. In particular, if "0" is written to this file, the +suspend image will be as small as possible. + +Reading from this file will display the current image size limit, which +is set to 2/5 of available RAM by default. + +/sys/power/pm_trace controls the code which saves the last PM event point in +the RTC across reboots, so that you can debug a machine that just hangs +during suspend (or more commonly, during resume). Namely, the RTC is only +used to save the last PM event point if this file contains '1'. Initially it +contains '0' which may be changed to '1' by writing a string representing a +nonzero integer into it. + +To use this debugging feature you should attempt to suspend the machine, then +reboot it and run + + dmesg -s 1000000 | grep 'hash matches' + +CAUTION: Using it will cause your machine's real-time (CMOS) clock to be +set to a random invalid time after a resume. diff --git a/Documentation/power/notifiers.txt b/Documentation/power/notifiers.txt new file mode 100644 index 000000000..a81fa2543 --- /dev/null +++ b/Documentation/power/notifiers.txt @@ -0,0 +1,55 @@ +Suspend notifiers + (C) 2007-2011 Rafael J. Wysocki <rjw@sisk.pl>, GPL + +There are some operations that subsystems or drivers may want to carry out +before hibernation/suspend or after restore/resume, but they require the system +to be fully functional, so the drivers' and subsystems' .suspend() and .resume() +or even .prepare() and .complete() callbacks are not suitable for this purpose. +For example, device drivers may want to upload firmware to their devices after +resume/restore, but they cannot do it by calling request_firmware() from their +.resume() or .complete() routines (user land processes are frozen at these +points). The solution may be to load the firmware into memory before processes +are frozen and upload it from there in the .resume() routine. +A suspend/hibernation notifier may be used for this purpose. + +The subsystems or drivers having such needs can register suspend notifiers that +will be called upon the following events by the PM core: + +PM_HIBERNATION_PREPARE The system is going to hibernate, tasks will be frozen + immediately. This is different from PM_SUSPEND_PREPARE + below because here we do additional work between notifiers + and drivers freezing. + +PM_POST_HIBERNATION The system memory state has been restored from a + hibernation image or an error occurred during + hibernation. Device drivers' restore callbacks have + been executed and tasks have been thawed. + +PM_RESTORE_PREPARE The system is going to restore a hibernation image. + If all goes well, the restored kernel will issue a + PM_POST_HIBERNATION notification. + +PM_POST_RESTORE An error occurred during restore from hibernation. + Device drivers' restore callbacks have been executed + and tasks have been thawed. + +PM_SUSPEND_PREPARE The system is preparing for suspend. + +PM_POST_SUSPEND The system has just resumed or an error occurred during + suspend. Device drivers' resume callbacks have been + executed and tasks have been thawed. + +It is generally assumed that whatever the notifiers do for +PM_HIBERNATION_PREPARE, should be undone for PM_POST_HIBERNATION. Analogously, +operations performed for PM_SUSPEND_PREPARE should be reversed for +PM_POST_SUSPEND. Additionally, all of the notifiers are called for +PM_POST_HIBERNATION if one of them fails for PM_HIBERNATION_PREPARE, and +all of the notifiers are called for PM_POST_SUSPEND if one of them fails for +PM_SUSPEND_PREPARE. + +The hibernation and suspend notifiers are called with pm_mutex held. They are +defined in the usual way, but their last argument is meaningless (it is always +NULL). To register and/or unregister a suspend notifier use the functions +register_pm_notifier() and unregister_pm_notifier(), respectively, defined in +include/linux/suspend.h . If you don't need to unregister the notifier, you can +also use the pm_notifier() macro defined in include/linux/suspend.h . diff --git a/Documentation/power/opp.txt b/Documentation/power/opp.txt new file mode 100644 index 000000000..c6279c2be --- /dev/null +++ b/Documentation/power/opp.txt @@ -0,0 +1,362 @@ +Operating Performance Points (OPP) Library +========================================== + +(C) 2009-2010 Nishanth Menon <nm@ti.com>, Texas Instruments Incorporated + +Contents +-------- +1. Introduction +2. Initial OPP List Registration +3. OPP Search Functions +4. OPP Availability Control Functions +5. OPP Data Retrieval Functions +6. Data Structures + +1. Introduction +=============== +1.1 What is an Operating Performance Point (OPP)? + +Complex SoCs of today consists of a multiple sub-modules working in conjunction. +In an operational system executing varied use cases, not all modules in the SoC +need to function at their highest performing frequency all the time. To +facilitate this, sub-modules in a SoC are grouped into domains, allowing some +domains to run at lower voltage and frequency while other domains run at +voltage/frequency pairs that are higher. + +The set of discrete tuples consisting of frequency and voltage pairs that +the device will support per domain are called Operating Performance Points or +OPPs. + +As an example: +Let us consider an MPU device which supports the following: +{300MHz at minimum voltage of 1V}, {800MHz at minimum voltage of 1.2V}, +{1GHz at minimum voltage of 1.3V} + +We can represent these as three OPPs as the following {Hz, uV} tuples: +{300000000, 1000000} +{800000000, 1200000} +{1000000000, 1300000} + +1.2 Operating Performance Points Library + +OPP library provides a set of helper functions to organize and query the OPP +information. The library is located in drivers/base/power/opp.c and the header +is located in include/linux/pm_opp.h. OPP library can be enabled by enabling +CONFIG_PM_OPP from power management menuconfig menu. OPP library depends on +CONFIG_PM as certain SoCs such as Texas Instrument's OMAP framework allows to +optionally boot at a certain OPP without needing cpufreq. + +Typical usage of the OPP library is as follows: +(users) -> registers a set of default OPPs -> (library) +SoC framework -> modifies on required cases certain OPPs -> OPP layer + -> queries to search/retrieve information -> + +OPP layer expects each domain to be represented by a unique device pointer. SoC +framework registers a set of initial OPPs per device with the OPP layer. This +list is expected to be an optimally small number typically around 5 per device. +This initial list contains a set of OPPs that the framework expects to be safely +enabled by default in the system. + +Note on OPP Availability: +------------------------ +As the system proceeds to operate, SoC framework may choose to make certain +OPPs available or not available on each device based on various external +factors. Example usage: Thermal management or other exceptional situations where +SoC framework might choose to disable a higher frequency OPP to safely continue +operations until that OPP could be re-enabled if possible. + +OPP library facilitates this concept in it's implementation. The following +operational functions operate only on available opps: +opp_find_freq_{ceil, floor}, dev_pm_opp_get_voltage, dev_pm_opp_get_freq, dev_pm_opp_get_opp_count + +dev_pm_opp_find_freq_exact is meant to be used to find the opp pointer which can then +be used for dev_pm_opp_enable/disable functions to make an opp available as required. + +WARNING: Users of OPP library should refresh their availability count using +get_opp_count if dev_pm_opp_enable/disable functions are invoked for a device, the +exact mechanism to trigger these or the notification mechanism to other +dependent subsystems such as cpufreq are left to the discretion of the SoC +specific framework which uses the OPP library. Similar care needs to be taken +care to refresh the cpufreq table in cases of these operations. + +WARNING on OPP List locking mechanism: +------------------------------------------------- +OPP library uses RCU for exclusivity. RCU allows the query functions to operate +in multiple contexts and this synchronization mechanism is optimal for a read +intensive operations on data structure as the OPP library caters to. + +To ensure that the data retrieved are sane, the users such as SoC framework +should ensure that the section of code operating on OPP queries are locked +using RCU read locks. The opp_find_freq_{exact,ceil,floor}, +opp_get_{voltage, freq, opp_count} fall into this category. + +opp_{add,enable,disable} are updaters which use mutex and implement it's own +RCU locking mechanisms. These functions should *NOT* be called under RCU locks +and other contexts that prevent blocking functions in RCU or mutex operations +from working. + +2. Initial OPP List Registration +================================ +The SoC implementation calls dev_pm_opp_add function iteratively to add OPPs per +device. It is expected that the SoC framework will register the OPP entries +optimally- typical numbers range to be less than 5. The list generated by +registering the OPPs is maintained by OPP library throughout the device +operation. The SoC framework can subsequently control the availability of the +OPPs dynamically using the dev_pm_opp_enable / disable functions. + +dev_pm_opp_add - Add a new OPP for a specific domain represented by the device pointer. + The OPP is defined using the frequency and voltage. Once added, the OPP + is assumed to be available and control of it's availability can be done + with the dev_pm_opp_enable/disable functions. OPP library internally stores + and manages this information in the opp struct. This function may be + used by SoC framework to define a optimal list as per the demands of + SoC usage environment. + + WARNING: Do not use this function in interrupt context. + + Example: + soc_pm_init() + { + /* Do things */ + r = dev_pm_opp_add(mpu_dev, 1000000, 900000); + if (!r) { + pr_err("%s: unable to register mpu opp(%d)\n", r); + goto no_cpufreq; + } + /* Do cpufreq things */ + no_cpufreq: + /* Do remaining things */ + } + +3. OPP Search Functions +======================= +High level framework such as cpufreq operates on frequencies. To map the +frequency back to the corresponding OPP, OPP library provides handy functions +to search the OPP list that OPP library internally manages. These search +functions return the matching pointer representing the opp if a match is +found, else returns error. These errors are expected to be handled by standard +error checks such as IS_ERR() and appropriate actions taken by the caller. + +dev_pm_opp_find_freq_exact - Search for an OPP based on an *exact* frequency and + availability. This function is especially useful to enable an OPP which + is not available by default. + Example: In a case when SoC framework detects a situation where a + higher frequency could be made available, it can use this function to + find the OPP prior to call the dev_pm_opp_enable to actually make it available. + rcu_read_lock(); + opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false); + rcu_read_unlock(); + /* dont operate on the pointer.. just do a sanity check.. */ + if (IS_ERR(opp)) { + pr_err("frequency not disabled!\n"); + /* trigger appropriate actions.. */ + } else { + dev_pm_opp_enable(dev,1000000000); + } + + NOTE: This is the only search function that operates on OPPs which are + not available. + +dev_pm_opp_find_freq_floor - Search for an available OPP which is *at most* the + provided frequency. This function is useful while searching for a lesser + match OR operating on OPP information in the order of decreasing + frequency. + Example: To find the highest opp for a device: + freq = ULONG_MAX; + rcu_read_lock(); + dev_pm_opp_find_freq_floor(dev, &freq); + rcu_read_unlock(); + +dev_pm_opp_find_freq_ceil - Search for an available OPP which is *at least* the + provided frequency. This function is useful while searching for a + higher match OR operating on OPP information in the order of increasing + frequency. + Example 1: To find the lowest opp for a device: + freq = 0; + rcu_read_lock(); + dev_pm_opp_find_freq_ceil(dev, &freq); + rcu_read_unlock(); + Example 2: A simplified implementation of a SoC cpufreq_driver->target: + soc_cpufreq_target(..) + { + /* Do stuff like policy checks etc. */ + /* Find the best frequency match for the req */ + rcu_read_lock(); + opp = dev_pm_opp_find_freq_ceil(dev, &freq); + rcu_read_unlock(); + if (!IS_ERR(opp)) + soc_switch_to_freq_voltage(freq); + else + /* do something when we can't satisfy the req */ + /* do other stuff */ + } + +4. OPP Availability Control Functions +===================================== +A default OPP list registered with the OPP library may not cater to all possible +situation. The OPP library provides a set of functions to modify the +availability of a OPP within the OPP list. This allows SoC frameworks to have +fine grained dynamic control of which sets of OPPs are operationally available. +These functions are intended to *temporarily* remove an OPP in conditions such +as thermal considerations (e.g. don't use OPPx until the temperature drops). + +WARNING: Do not use these functions in interrupt context. + +dev_pm_opp_enable - Make a OPP available for operation. + Example: Lets say that 1GHz OPP is to be made available only if the + SoC temperature is lower than a certain threshold. The SoC framework + implementation might choose to do something as follows: + if (cur_temp < temp_low_thresh) { + /* Enable 1GHz if it was disabled */ + rcu_read_lock(); + opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false); + rcu_read_unlock(); + /* just error check */ + if (!IS_ERR(opp)) + ret = dev_pm_opp_enable(dev, 1000000000); + else + goto try_something_else; + } + +dev_pm_opp_disable - Make an OPP to be not available for operation + Example: Lets say that 1GHz OPP is to be disabled if the temperature + exceeds a threshold value. The SoC framework implementation might + choose to do something as follows: + if (cur_temp > temp_high_thresh) { + /* Disable 1GHz if it was enabled */ + rcu_read_lock(); + opp = dev_pm_opp_find_freq_exact(dev, 1000000000, true); + rcu_read_unlock(); + /* just error check */ + if (!IS_ERR(opp)) + ret = dev_pm_opp_disable(dev, 1000000000); + else + goto try_something_else; + } + +5. OPP Data Retrieval Functions +=============================== +Since OPP library abstracts away the OPP information, a set of functions to pull +information from the OPP structure is necessary. Once an OPP pointer is +retrieved using the search functions, the following functions can be used by SoC +framework to retrieve the information represented inside the OPP layer. + +dev_pm_opp_get_voltage - Retrieve the voltage represented by the opp pointer. + Example: At a cpufreq transition to a different frequency, SoC + framework requires to set the voltage represented by the OPP using + the regulator framework to the Power Management chip providing the + voltage. + soc_switch_to_freq_voltage(freq) + { + /* do things */ + rcu_read_lock(); + opp = dev_pm_opp_find_freq_ceil(dev, &freq); + v = dev_pm_opp_get_voltage(opp); + rcu_read_unlock(); + if (v) + regulator_set_voltage(.., v); + /* do other things */ + } + +dev_pm_opp_get_freq - Retrieve the freq represented by the opp pointer. + Example: Lets say the SoC framework uses a couple of helper functions + we could pass opp pointers instead of doing additional parameters to + handle quiet a bit of data parameters. + soc_cpufreq_target(..) + { + /* do things.. */ + max_freq = ULONG_MAX; + rcu_read_lock(); + max_opp = dev_pm_opp_find_freq_floor(dev,&max_freq); + requested_opp = dev_pm_opp_find_freq_ceil(dev,&freq); + if (!IS_ERR(max_opp) && !IS_ERR(requested_opp)) + r = soc_test_validity(max_opp, requested_opp); + rcu_read_unlock(); + /* do other things */ + } + soc_test_validity(..) + { + if(dev_pm_opp_get_voltage(max_opp) < dev_pm_opp_get_voltage(requested_opp)) + return -EINVAL; + if(dev_pm_opp_get_freq(max_opp) < dev_pm_opp_get_freq(requested_opp)) + return -EINVAL; + /* do things.. */ + } + +dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device + Example: Lets say a co-processor in the SoC needs to know the available + frequencies in a table, the main processor can notify as following: + soc_notify_coproc_available_frequencies() + { + /* Do things */ + rcu_read_lock(); + num_available = dev_pm_opp_get_opp_count(dev); + speeds = kzalloc(sizeof(u32) * num_available, GFP_KERNEL); + /* populate the table in increasing order */ + freq = 0; + while (!IS_ERR(opp = dev_pm_opp_find_freq_ceil(dev, &freq))) { + speeds[i] = freq; + freq++; + i++; + } + rcu_read_unlock(); + + soc_notify_coproc(AVAILABLE_FREQs, speeds, num_available); + /* Do other things */ + } + +6. Data Structures +================== +Typically an SoC contains multiple voltage domains which are variable. Each +domain is represented by a device pointer. The relationship to OPP can be +represented as follows: +SoC + |- device 1 + | |- opp 1 (availability, freq, voltage) + | |- opp 2 .. + ... ... + | `- opp n .. + |- device 2 + ... + `- device m + +OPP library maintains a internal list that the SoC framework populates and +accessed by various functions as described above. However, the structures +representing the actual OPPs and domains are internal to the OPP library itself +to allow for suitable abstraction reusable across systems. + +struct dev_pm_opp - The internal data structure of OPP library which is used to + represent an OPP. In addition to the freq, voltage, availability + information, it also contains internal book keeping information required + for the OPP library to operate on. Pointer to this structure is + provided back to the users such as SoC framework to be used as a + identifier for OPP in the interactions with OPP layer. + + WARNING: The struct dev_pm_opp pointer should not be parsed or modified by the + users. The defaults of for an instance is populated by dev_pm_opp_add, but the + availability of the OPP can be modified by dev_pm_opp_enable/disable functions. + +struct device - This is used to identify a domain to the OPP layer. The + nature of the device and it's implementation is left to the user of + OPP library such as the SoC framework. + +Overall, in a simplistic view, the data structure operations is represented as +following: + +Initialization / modification: + +-----+ /- dev_pm_opp_enable +dev_pm_opp_add --> | opp | <------- + | +-----+ \- dev_pm_opp_disable + \-------> domain_info(device) + +Search functions: + /-- dev_pm_opp_find_freq_ceil ---\ +-----+ +domain_info<---- dev_pm_opp_find_freq_exact -----> | opp | + \-- dev_pm_opp_find_freq_floor ---/ +-----+ + +Retrieval functions: ++-----+ /- dev_pm_opp_get_voltage +| opp | <--- ++-----+ \- dev_pm_opp_get_freq + +domain_info <- dev_pm_opp_get_opp_count diff --git a/Documentation/power/pci.txt b/Documentation/power/pci.txt new file mode 100644 index 000000000..62328d76b --- /dev/null +++ b/Documentation/power/pci.txt @@ -0,0 +1,1025 @@ +PCI Power Management + +Copyright (c) 2010 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc. + +An overview of concepts and the Linux kernel's interfaces related to PCI power +management. Based on previous work by Patrick Mochel <mochel@transmeta.com> +(and others). + +This document only covers the aspects of power management specific to PCI +devices. For general description of the kernel's interfaces related to device +power management refer to Documentation/power/devices.txt and +Documentation/power/runtime_pm.txt. + +--------------------------------------------------------------------------- + +1. Hardware and Platform Support for PCI Power Management +2. PCI Subsystem and Device Power Management +3. PCI Device Drivers and Power Management +4. Resources + + +1. Hardware and Platform Support for PCI Power Management +========================================================= + +1.1. Native and Platform-Based Power Management +----------------------------------------------- +In general, power management is a feature allowing one to save energy by putting +devices into states in which they draw less power (low-power states) at the +price of reduced functionality or performance. + +Usually, a device is put into a low-power state when it is underutilized or +completely inactive. However, when it is necessary to use the device once +again, it has to be put back into the "fully functional" state (full-power +state). This may happen when there are some data for the device to handle or +as a result of an external event requiring the device to be active, which may +be signaled by the device itself. + +PCI devices may be put into low-power states in two ways, by using the device +capabilities introduced by the PCI Bus Power Management Interface Specification, +or with the help of platform firmware, such as an ACPI BIOS. In the first +approach, that is referred to as the native PCI power management (native PCI PM) +in what follows, the device power state is changed as a result of writing a +specific value into one of its standard configuration registers. The second +approach requires the platform firmware to provide special methods that may be +used by the kernel to change the device's power state. + +Devices supporting the native PCI PM usually can generate wakeup signals called +Power Management Events (PMEs) to let the kernel know about external events +requiring the device to be active. After receiving a PME the kernel is supposed +to put the device that sent it into the full-power state. However, the PCI Bus +Power Management Interface Specification doesn't define any standard method of +delivering the PME from the device to the CPU and the operating system kernel. +It is assumed that the platform firmware will perform this task and therefore, +even though a PCI device is set up to generate PMEs, it also may be necessary to +prepare the platform firmware for notifying the CPU of the PMEs coming from the +device (e.g. by generating interrupts). + +In turn, if the methods provided by the platform firmware are used for changing +the power state of a device, usually the platform also provides a method for +preparing the device to generate wakeup signals. In that case, however, it +often also is necessary to prepare the device for generating PMEs using the +native PCI PM mechanism, because the method provided by the platform depends on +that. + +Thus in many situations both the native and the platform-based power management +mechanisms have to be used simultaneously to obtain the desired result. + +1.2. Native PCI Power Management +-------------------------------- +The PCI Bus Power Management Interface Specification (PCI PM Spec) was +introduced between the PCI 2.1 and PCI 2.2 Specifications. It defined a +standard interface for performing various operations related to power +management. + +The implementation of the PCI PM Spec is optional for conventional PCI devices, +but it is mandatory for PCI Express devices. If a device supports the PCI PM +Spec, it has an 8 byte power management capability field in its PCI +configuration space. This field is used to describe and control the standard +features related to the native PCI power management. + +The PCI PM Spec defines 4 operating states for devices (D0-D3) and for buses +(B0-B3). The higher the number, the less power is drawn by the device or bus +in that state. However, the higher the number, the longer the latency for +the device or bus to return to the full-power state (D0 or B0, respectively). + +There are two variants of the D3 state defined by the specification. The first +one is D3hot, referred to as the software accessible D3, because devices can be +programmed to go into it. The second one, D3cold, is the state that PCI devices +are in when the supply voltage (Vcc) is removed from them. It is not possible +to program a PCI device to go into D3cold, although there may be a programmable +interface for putting the bus the device is on into a state in which Vcc is +removed from all devices on the bus. + +PCI bus power management, however, is not supported by the Linux kernel at the +time of this writing and therefore it is not covered by this document. + +Note that every PCI device can be in the full-power state (D0) or in D3cold, +regardless of whether or not it implements the PCI PM Spec. In addition to +that, if the PCI PM Spec is implemented by the device, it must support D3hot +as well as D0. The support for the D1 and D2 power states is optional. + +PCI devices supporting the PCI PM Spec can be programmed to go to any of the +supported low-power states (except for D3cold). While in D1-D3hot the +standard configuration registers of the device must be accessible to software +(i.e. the device is required to respond to PCI configuration accesses), although +its I/O and memory spaces are then disabled. This allows the device to be +programmatically put into D0. Thus the kernel can switch the device back and +forth between D0 and the supported low-power states (except for D3cold) and the +possible power state transitions the device can undergo are the following: + ++----------------------------+ +| Current State | New State | ++----------------------------+ +| D0 | D1, D2, D3 | ++----------------------------+ +| D1 | D2, D3 | ++----------------------------+ +| D2 | D3 | ++----------------------------+ +| D1, D2, D3 | D0 | ++----------------------------+ + +The transition from D3cold to D0 occurs when the supply voltage is provided to +the device (i.e. power is restored). In that case the device returns to D0 with +a full power-on reset sequence and the power-on defaults are restored to the +device by hardware just as at initial power up. + +PCI devices supporting the PCI PM Spec can be programmed to generate PMEs +while in a low-power state (D1-D3), but they are not required to be capable +of generating PMEs from all supported low-power states. In particular, the +capability of generating PMEs from D3cold is optional and depends on the +presence of additional voltage (3.3Vaux) allowing the device to remain +sufficiently active to generate a wakeup signal. + +1.3. ACPI Device Power Management +--------------------------------- +The platform firmware support for the power management of PCI devices is +system-specific. However, if the system in question is compliant with the +Advanced Configuration and Power Interface (ACPI) Specification, like the +majority of x86-based systems, it is supposed to implement device power +management interfaces defined by the ACPI standard. + +For this purpose the ACPI BIOS provides special functions called "control +methods" that may be executed by the kernel to perform specific tasks, such as +putting a device into a low-power state. These control methods are encoded +using special byte-code language called the ACPI Machine Language (AML) and +stored in the machine's BIOS. The kernel loads them from the BIOS and executes +them as needed using an AML interpreter that translates the AML byte code into +computations and memory or I/O space accesses. This way, in theory, a BIOS +writer can provide the kernel with a means to perform actions depending +on the system design in a system-specific fashion. + +ACPI control methods may be divided into global control methods, that are not +associated with any particular devices, and device control methods, that have +to be defined separately for each device supposed to be handled with the help of +the platform. This means, in particular, that ACPI device control methods can +only be used to handle devices that the BIOS writer knew about in advance. The +ACPI methods used for device power management fall into that category. + +The ACPI specification assumes that devices can be in one of four power states +labeled as D0, D1, D2, and D3 that roughly correspond to the native PCI PM +D0-D3 states (although the difference between D3hot and D3cold is not taken +into account by ACPI). Moreover, for each power state of a device there is a +set of power resources that have to be enabled for the device to be put into +that state. These power resources are controlled (i.e. enabled or disabled) +with the help of their own control methods, _ON and _OFF, that have to be +defined individually for each of them. + +To put a device into the ACPI power state Dx (where x is a number between 0 and +3 inclusive) the kernel is supposed to (1) enable the power resources required +by the device in this state using their _ON control methods and (2) execute the +_PSx control method defined for the device. In addition to that, if the device +is going to be put into a low-power state (D1-D3) and is supposed to generate +wakeup signals from that state, the _DSW (or _PSW, replaced with _DSW by ACPI +3.0) control method defined for it has to be executed before _PSx. Power +resources that are not required by the device in the target power state and are +not required any more by any other device should be disabled (by executing their +_OFF control methods). If the current power state of the device is D3, it can +only be put into D0 this way. + +However, quite often the power states of devices are changed during a +system-wide transition into a sleep state or back into the working state. ACPI +defines four system sleep states, S1, S2, S3, and S4, and denotes the system +working state as S0. In general, the target system sleep (or working) state +determines the highest power (lowest number) state the device can be put +into and the kernel is supposed to obtain this information by executing the +device's _SxD control method (where x is a number between 0 and 4 inclusive). +If the device is required to wake up the system from the target sleep state, the +lowest power (highest number) state it can be put into is also determined by the +target state of the system. The kernel is then supposed to use the device's +_SxW control method to obtain the number of that state. It also is supposed to +use the device's _PRW control method to learn which power resources need to be +enabled for the device to be able to generate wakeup signals. + +1.4. Wakeup Signaling +--------------------- +Wakeup signals generated by PCI devices, either as native PCI PMEs, or as +a result of the execution of the _DSW (or _PSW) ACPI control method before +putting the device into a low-power state, have to be caught and handled as +appropriate. If they are sent while the system is in the working state +(ACPI S0), they should be translated into interrupts so that the kernel can +put the devices generating them into the full-power state and take care of the +events that triggered them. In turn, if they are sent while the system is +sleeping, they should cause the system's core logic to trigger wakeup. + +On ACPI-based systems wakeup signals sent by conventional PCI devices are +converted into ACPI General-Purpose Events (GPEs) which are hardware signals +from the system core logic generated in response to various events that need to +be acted upon. Every GPE is associated with one or more sources of potentially +interesting events. In particular, a GPE may be associated with a PCI device +capable of signaling wakeup. The information on the connections between GPEs +and event sources is recorded in the system's ACPI BIOS from where it can be +read by the kernel. + +If a PCI device known to the system's ACPI BIOS signals wakeup, the GPE +associated with it (if there is one) is triggered. The GPEs associated with PCI +bridges may also be triggered in response to a wakeup signal from one of the +devices below the bridge (this also is the case for root bridges) and, for +example, native PCI PMEs from devices unknown to the system's ACPI BIOS may be +handled this way. + +A GPE may be triggered when the system is sleeping (i.e. when it is in one of +the ACPI S1-S4 states), in which case system wakeup is started by its core logic +(the device that was the source of the signal causing the system wakeup to occur +may be identified later). The GPEs used in such situations are referred to as +wakeup GPEs. + +Usually, however, GPEs are also triggered when the system is in the working +state (ACPI S0) and in that case the system's core logic generates a System +Control Interrupt (SCI) to notify the kernel of the event. Then, the SCI +handler identifies the GPE that caused the interrupt to be generated which, +in turn, allows the kernel to identify the source of the event (that may be +a PCI device signaling wakeup). The GPEs used for notifying the kernel of +events occurring while the system is in the working state are referred to as +runtime GPEs. + +Unfortunately, there is no standard way of handling wakeup signals sent by +conventional PCI devices on systems that are not ACPI-based, but there is one +for PCI Express devices. Namely, the PCI Express Base Specification introduced +a native mechanism for converting native PCI PMEs into interrupts generated by +root ports. For conventional PCI devices native PMEs are out-of-band, so they +are routed separately and they need not pass through bridges (in principle they +may be routed directly to the system's core logic), but for PCI Express devices +they are in-band messages that have to pass through the PCI Express hierarchy, +including the root port on the path from the device to the Root Complex. Thus +it was possible to introduce a mechanism by which a root port generates an +interrupt whenever it receives a PME message from one of the devices below it. +The PCI Express Requester ID of the device that sent the PME message is then +recorded in one of the root port's configuration registers from where it may be +read by the interrupt handler allowing the device to be identified. [PME +messages sent by PCI Express endpoints integrated with the Root Complex don't +pass through root ports, but instead they cause a Root Complex Event Collector +(if there is one) to generate interrupts.] + +In principle the native PCI Express PME signaling may also be used on ACPI-based +systems along with the GPEs, but to use it the kernel has to ask the system's +ACPI BIOS to release control of root port configuration registers. The ACPI +BIOS, however, is not required to allow the kernel to control these registers +and if it doesn't do that, the kernel must not modify their contents. Of course +the native PCI Express PME signaling cannot be used by the kernel in that case. + + +2. PCI Subsystem and Device Power Management +============================================ + +2.1. Device Power Management Callbacks +-------------------------------------- +The PCI Subsystem participates in the power management of PCI devices in a +number of ways. First of all, it provides an intermediate code layer between +the device power management core (PM core) and PCI device drivers. +Specifically, the pm field of the PCI subsystem's struct bus_type object, +pci_bus_type, points to a struct dev_pm_ops object, pci_dev_pm_ops, containing +pointers to several device power management callbacks: + +const struct dev_pm_ops pci_dev_pm_ops = { + .prepare = pci_pm_prepare, + .complete = pci_pm_complete, + .suspend = pci_pm_suspend, + .resume = pci_pm_resume, + .freeze = pci_pm_freeze, + .thaw = pci_pm_thaw, + .poweroff = pci_pm_poweroff, + .restore = pci_pm_restore, + .suspend_noirq = pci_pm_suspend_noirq, + .resume_noirq = pci_pm_resume_noirq, + .freeze_noirq = pci_pm_freeze_noirq, + .thaw_noirq = pci_pm_thaw_noirq, + .poweroff_noirq = pci_pm_poweroff_noirq, + .restore_noirq = pci_pm_restore_noirq, + .runtime_suspend = pci_pm_runtime_suspend, + .runtime_resume = pci_pm_runtime_resume, + .runtime_idle = pci_pm_runtime_idle, +}; + +These callbacks are executed by the PM core in various situations related to +device power management and they, in turn, execute power management callbacks +provided by PCI device drivers. They also perform power management operations +involving some standard configuration registers of PCI devices that device +drivers need not know or care about. + +The structure representing a PCI device, struct pci_dev, contains several fields +that these callbacks operate on: + +struct pci_dev { + ... + pci_power_t current_state; /* Current operating state. */ + int pm_cap; /* PM capability offset in the + configuration space */ + unsigned int pme_support:5; /* Bitmask of states from which PME# + can be generated */ + unsigned int pme_interrupt:1;/* Is native PCIe PME signaling used? */ + unsigned int d1_support:1; /* Low power state D1 is supported */ + unsigned int d2_support:1; /* Low power state D2 is supported */ + unsigned int no_d1d2:1; /* D1 and D2 are forbidden */ + unsigned int wakeup_prepared:1; /* Device prepared for wake up */ + unsigned int d3_delay; /* D3->D0 transition time in ms */ + ... +}; + +They also indirectly use some fields of the struct device that is embedded in +struct pci_dev. + +2.2. Device Initialization +-------------------------- +The PCI subsystem's first task related to device power management is to +prepare the device for power management and initialize the fields of struct +pci_dev used for this purpose. This happens in two functions defined in +drivers/pci/pci.c, pci_pm_init() and platform_pci_wakeup_init(). + +The first of these functions checks if the device supports native PCI PM +and if that's the case the offset of its power management capability structure +in the configuration space is stored in the pm_cap field of the device's struct +pci_dev object. Next, the function checks which PCI low-power states are +supported by the device and from which low-power states the device can generate +native PCI PMEs. The power management fields of the device's struct pci_dev and +the struct device embedded in it are updated accordingly and the generation of +PMEs by the device is disabled. + +The second function checks if the device can be prepared to signal wakeup with +the help of the platform firmware, such as the ACPI BIOS. If that is the case, +the function updates the wakeup fields in struct device embedded in the +device's struct pci_dev and uses the firmware-provided method to prevent the +device from signaling wakeup. + +At this point the device is ready for power management. For driverless devices, +however, this functionality is limited to a few basic operations carried out +during system-wide transitions to a sleep state and back to the working state. + +2.3. Runtime Device Power Management +------------------------------------ +The PCI subsystem plays a vital role in the runtime power management of PCI +devices. For this purpose it uses the general runtime power management +(runtime PM) framework described in Documentation/power/runtime_pm.txt. +Namely, it provides subsystem-level callbacks: + + pci_pm_runtime_suspend() + pci_pm_runtime_resume() + pci_pm_runtime_idle() + +that are executed by the core runtime PM routines. It also implements the +entire mechanics necessary for handling runtime wakeup signals from PCI devices +in low-power states, which at the time of this writing works for both the native +PCI Express PME signaling and the ACPI GPE-based wakeup signaling described in +Section 1. + +First, a PCI device is put into a low-power state, or suspended, with the help +of pm_schedule_suspend() or pm_runtime_suspend() which for PCI devices call +pci_pm_runtime_suspend() to do the actual job. For this to work, the device's +driver has to provide a pm->runtime_suspend() callback (see below), which is +run by pci_pm_runtime_suspend() as the first action. If the driver's callback +returns successfully, the device's standard configuration registers are saved, +the device is prepared to generate wakeup signals and, finally, it is put into +the target low-power state. + +The low-power state to put the device into is the lowest-power (highest number) +state from which it can signal wakeup. The exact method of signaling wakeup is +system-dependent and is determined by the PCI subsystem on the basis of the +reported capabilities of the device and the platform firmware. To prepare the +device for signaling wakeup and put it into the selected low-power state, the +PCI subsystem can use the platform firmware as well as the device's native PCI +PM capabilities, if supported. + +It is expected that the device driver's pm->runtime_suspend() callback will +not attempt to prepare the device for signaling wakeup or to put it into a +low-power state. The driver ought to leave these tasks to the PCI subsystem +that has all of the information necessary to perform them. + +A suspended device is brought back into the "active" state, or resumed, +with the help of pm_request_resume() or pm_runtime_resume() which both call +pci_pm_runtime_resume() for PCI devices. Again, this only works if the device's +driver provides a pm->runtime_resume() callback (see below). However, before +the driver's callback is executed, pci_pm_runtime_resume() brings the device +back into the full-power state, prevents it from signaling wakeup while in that +state and restores its standard configuration registers. Thus the driver's +callback need not worry about the PCI-specific aspects of the device resume. + +Note that generally pci_pm_runtime_resume() may be called in two different +situations. First, it may be called at the request of the device's driver, for +example if there are some data for it to process. Second, it may be called +as a result of a wakeup signal from the device itself (this sometimes is +referred to as "remote wakeup"). Of course, for this purpose the wakeup signal +is handled in one of the ways described in Section 1 and finally converted into +a notification for the PCI subsystem after the source device has been +identified. + +The pci_pm_runtime_idle() function, called for PCI devices by pm_runtime_idle() +and pm_request_idle(), executes the device driver's pm->runtime_idle() +callback, if defined, and if that callback doesn't return error code (or is not +present at all), suspends the device with the help of pm_runtime_suspend(). +Sometimes pci_pm_runtime_idle() is called automatically by the PM core (for +example, it is called right after the device has just been resumed), in which +cases it is expected to suspend the device if that makes sense. Usually, +however, the PCI subsystem doesn't really know if the device really can be +suspended, so it lets the device's driver decide by running its +pm->runtime_idle() callback. + +2.4. System-Wide Power Transitions +---------------------------------- +There are a few different types of system-wide power transitions, described in +Documentation/power/devices.txt. Each of them requires devices to be handled +in a specific way and the PM core executes subsystem-level power management +callbacks for this purpose. They are executed in phases such that each phase +involves executing the same subsystem-level callback for every device belonging +to the given subsystem before the next phase begins. These phases always run +after tasks have been frozen. + +2.4.1. System Suspend + +When the system is going into a sleep state in which the contents of memory will +be preserved, such as one of the ACPI sleep states S1-S3, the phases are: + + prepare, suspend, suspend_noirq. + +The following PCI bus type's callbacks, respectively, are used in these phases: + + pci_pm_prepare() + pci_pm_suspend() + pci_pm_suspend_noirq() + +The pci_pm_prepare() routine first puts the device into the "fully functional" +state with the help of pm_runtime_resume(). Then, it executes the device +driver's pm->prepare() callback if defined (i.e. if the driver's struct +dev_pm_ops object is present and the prepare pointer in that object is valid). + +The pci_pm_suspend() routine first checks if the device's driver implements +legacy PCI suspend routines (see Section 3), in which case the driver's legacy +suspend callback is executed, if present, and its result is returned. Next, if +the device's driver doesn't provide a struct dev_pm_ops object (containing +pointers to the driver's callbacks), pci_pm_default_suspend() is called, which +simply turns off the device's bus master capability and runs +pcibios_disable_device() to disable it, unless the device is a bridge (PCI +bridges are ignored by this routine). Next, the device driver's pm->suspend() +callback is executed, if defined, and its result is returned if it fails. +Finally, pci_fixup_device() is called to apply hardware suspend quirks related +to the device if necessary. + +Note that the suspend phase is carried out asynchronously for PCI devices, so +the pci_pm_suspend() callback may be executed in parallel for any pair of PCI +devices that don't depend on each other in a known way (i.e. none of the paths +in the device tree from the root bridge to a leaf device contains both of them). + +The pci_pm_suspend_noirq() routine is executed after suspend_device_irqs() has +been called, which means that the device driver's interrupt handler won't be +invoked while this routine is running. It first checks if the device's driver +implements legacy PCI suspends routines (Section 3), in which case the legacy +late suspend routine is called and its result is returned (the standard +configuration registers of the device are saved if the driver's callback hasn't +done that). Second, if the device driver's struct dev_pm_ops object is not +present, the device's standard configuration registers are saved and the routine +returns success. Otherwise the device driver's pm->suspend_noirq() callback is +executed, if present, and its result is returned if it fails. Next, if the +device's standard configuration registers haven't been saved yet (one of the +device driver's callbacks executed before might do that), pci_pm_suspend_noirq() +saves them, prepares the device to signal wakeup (if necessary) and puts it into +a low-power state. + +The low-power state to put the device into is the lowest-power (highest number) +state from which it can signal wakeup while the system is in the target sleep +state. Just like in the runtime PM case described above, the mechanism of +signaling wakeup is system-dependent and determined by the PCI subsystem, which +is also responsible for preparing the device to signal wakeup from the system's +target sleep state as appropriate. + +PCI device drivers (that don't implement legacy power management callbacks) are +generally not expected to prepare devices for signaling wakeup or to put them +into low-power states. However, if one of the driver's suspend callbacks +(pm->suspend() or pm->suspend_noirq()) saves the device's standard configuration +registers, pci_pm_suspend_noirq() will assume that the device has been prepared +to signal wakeup and put into a low-power state by the driver (the driver is +then assumed to have used the helper functions provided by the PCI subsystem for +this purpose). PCI device drivers are not encouraged to do that, but in some +rare cases doing that in the driver may be the optimum approach. + +2.4.2. System Resume + +When the system is undergoing a transition from a sleep state in which the +contents of memory have been preserved, such as one of the ACPI sleep states +S1-S3, into the working state (ACPI S0), the phases are: + + resume_noirq, resume, complete. + +The following PCI bus type's callbacks, respectively, are executed in these +phases: + + pci_pm_resume_noirq() + pci_pm_resume() + pci_pm_complete() + +The pci_pm_resume_noirq() routine first puts the device into the full-power +state, restores its standard configuration registers and applies early resume +hardware quirks related to the device, if necessary. This is done +unconditionally, regardless of whether or not the device's driver implements +legacy PCI power management callbacks (this way all PCI devices are in the +full-power state and their standard configuration registers have been restored +when their interrupt handlers are invoked for the first time during resume, +which allows the kernel to avoid problems with the handling of shared interrupts +by drivers whose devices are still suspended). If legacy PCI power management +callbacks (see Section 3) are implemented by the device's driver, the legacy +early resume callback is executed and its result is returned. Otherwise, the +device driver's pm->resume_noirq() callback is executed, if defined, and its +result is returned. + +The pci_pm_resume() routine first checks if the device's standard configuration +registers have been restored and restores them if that's not the case (this +only is necessary in the error path during a failing suspend). Next, resume +hardware quirks related to the device are applied, if necessary, and if the +device's driver implements legacy PCI power management callbacks (see +Section 3), the driver's legacy resume callback is executed and its result is +returned. Otherwise, the device's wakeup signaling mechanisms are blocked and +its driver's pm->resume() callback is executed, if defined (the callback's +result is then returned). + +The resume phase is carried out asynchronously for PCI devices, like the +suspend phase described above, which means that if two PCI devices don't depend +on each other in a known way, the pci_pm_resume() routine may be executed for +the both of them in parallel. + +The pci_pm_complete() routine only executes the device driver's pm->complete() +callback, if defined. + +2.4.3. System Hibernation + +System hibernation is more complicated than system suspend, because it requires +a system image to be created and written into a persistent storage medium. The +image is created atomically and all devices are quiesced, or frozen, before that +happens. + +The freezing of devices is carried out after enough memory has been freed (at +the time of this writing the image creation requires at least 50% of system RAM +to be free) in the following three phases: + + prepare, freeze, freeze_noirq + +that correspond to the PCI bus type's callbacks: + + pci_pm_prepare() + pci_pm_freeze() + pci_pm_freeze_noirq() + +This means that the prepare phase is exactly the same as for system suspend. +The other two phases, however, are different. + +The pci_pm_freeze() routine is quite similar to pci_pm_suspend(), but it runs +the device driver's pm->freeze() callback, if defined, instead of pm->suspend(), +and it doesn't apply the suspend-related hardware quirks. It is executed +asynchronously for different PCI devices that don't depend on each other in a +known way. + +The pci_pm_freeze_noirq() routine, in turn, is similar to +pci_pm_suspend_noirq(), but it calls the device driver's pm->freeze_noirq() +routine instead of pm->suspend_noirq(). It also doesn't attempt to prepare the +device for signaling wakeup and put it into a low-power state. Still, it saves +the device's standard configuration registers if they haven't been saved by one +of the driver's callbacks. + +Once the image has been created, it has to be saved. However, at this point all +devices are frozen and they cannot handle I/O, while their ability to handle +I/O is obviously necessary for the image saving. Thus they have to be brought +back to the fully functional state and this is done in the following phases: + + thaw_noirq, thaw, complete + +using the following PCI bus type's callbacks: + + pci_pm_thaw_noirq() + pci_pm_thaw() + pci_pm_complete() + +respectively. + +The first of them, pci_pm_thaw_noirq(), is analogous to pci_pm_resume_noirq(), +but it doesn't put the device into the full power state and doesn't attempt to +restore its standard configuration registers. It also executes the device +driver's pm->thaw_noirq() callback, if defined, instead of pm->resume_noirq(). + +The pci_pm_thaw() routine is similar to pci_pm_resume(), but it runs the device +driver's pm->thaw() callback instead of pm->resume(). It is executed +asynchronously for different PCI devices that don't depend on each other in a +known way. + +The complete phase it the same as for system resume. + +After saving the image, devices need to be powered down before the system can +enter the target sleep state (ACPI S4 for ACPI-based systems). This is done in +three phases: + + prepare, poweroff, poweroff_noirq + +where the prepare phase is exactly the same as for system suspend. The other +two phases are analogous to the suspend and suspend_noirq phases, respectively. +The PCI subsystem-level callbacks they correspond to + + pci_pm_poweroff() + pci_pm_poweroff_noirq() + +work in analogy with pci_pm_suspend() and pci_pm_poweroff_noirq(), respectively, +although they don't attempt to save the device's standard configuration +registers. + +2.4.4. System Restore + +System restore requires a hibernation image to be loaded into memory and the +pre-hibernation memory contents to be restored before the pre-hibernation system +activity can be resumed. + +As described in Documentation/power/devices.txt, the hibernation image is loaded +into memory by a fresh instance of the kernel, called the boot kernel, which in +turn is loaded and run by a boot loader in the usual way. After the boot kernel +has loaded the image, it needs to replace its own code and data with the code +and data of the "hibernated" kernel stored within the image, called the image +kernel. For this purpose all devices are frozen just like before creating +the image during hibernation, in the + + prepare, freeze, freeze_noirq + +phases described above. However, the devices affected by these phases are only +those having drivers in the boot kernel; other devices will still be in whatever +state the boot loader left them. + +Should the restoration of the pre-hibernation memory contents fail, the boot +kernel would go through the "thawing" procedure described above, using the +thaw_noirq, thaw, and complete phases (that will only affect the devices having +drivers in the boot kernel), and then continue running normally. + +If the pre-hibernation memory contents are restored successfully, which is the +usual situation, control is passed to the image kernel, which then becomes +responsible for bringing the system back to the working state. To achieve this, +it must restore the devices' pre-hibernation functionality, which is done much +like waking up from the memory sleep state, although it involves different +phases: + + restore_noirq, restore, complete + +The first two of these are analogous to the resume_noirq and resume phases +described above, respectively, and correspond to the following PCI subsystem +callbacks: + + pci_pm_restore_noirq() + pci_pm_restore() + +These callbacks work in analogy with pci_pm_resume_noirq() and pci_pm_resume(), +respectively, but they execute the device driver's pm->restore_noirq() and +pm->restore() callbacks, if available. + +The complete phase is carried out in exactly the same way as during system +resume. + + +3. PCI Device Drivers and Power Management +========================================== + +3.1. Power Management Callbacks +------------------------------- +PCI device drivers participate in power management by providing callbacks to be +executed by the PCI subsystem's power management routines described above and by +controlling the runtime power management of their devices. + +At the time of this writing there are two ways to define power management +callbacks for a PCI device driver, the recommended one, based on using a +dev_pm_ops structure described in Documentation/power/devices.txt, and the +"legacy" one, in which the .suspend(), .suspend_late(), .resume_early(), and +.resume() callbacks from struct pci_driver are used. The legacy approach, +however, doesn't allow one to define runtime power management callbacks and is +not really suitable for any new drivers. Therefore it is not covered by this +document (refer to the source code to learn more about it). + +It is recommended that all PCI device drivers define a struct dev_pm_ops object +containing pointers to power management (PM) callbacks that will be executed by +the PCI subsystem's PM routines in various circumstances. A pointer to the +driver's struct dev_pm_ops object has to be assigned to the driver.pm field in +its struct pci_driver object. Once that has happened, the "legacy" PM callbacks +in struct pci_driver are ignored (even if they are not NULL). + +The PM callbacks in struct dev_pm_ops are not mandatory and if they are not +defined (i.e. the respective fields of struct dev_pm_ops are unset) the PCI +subsystem will handle the device in a simplified default manner. If they are +defined, though, they are expected to behave as described in the following +subsections. + +3.1.1. prepare() + +The prepare() callback is executed during system suspend, during hibernation +(when a hibernation image is about to be created), during power-off after +saving a hibernation image and during system restore, when a hibernation image +has just been loaded into memory. + +This callback is only necessary if the driver's device has children that in +general may be registered at any time. In that case the role of the prepare() +callback is to prevent new children of the device from being registered until +one of the resume_noirq(), thaw_noirq(), or restore_noirq() callbacks is run. + +In addition to that the prepare() callback may carry out some operations +preparing the device to be suspended, although it should not allocate memory +(if additional memory is required to suspend the device, it has to be +preallocated earlier, for example in a suspend/hibernate notifier as described +in Documentation/power/notifiers.txt). + +3.1.2. suspend() + +The suspend() callback is only executed during system suspend, after prepare() +callbacks have been executed for all devices in the system. + +This callback is expected to quiesce the device and prepare it to be put into a +low-power state by the PCI subsystem. It is not required (in fact it even is +not recommended) that a PCI driver's suspend() callback save the standard +configuration registers of the device, prepare it for waking up the system, or +put it into a low-power state. All of these operations can very well be taken +care of by the PCI subsystem, without the driver's participation. + +However, in some rare case it is convenient to carry out these operations in +a PCI driver. Then, pci_save_state(), pci_prepare_to_sleep(), and +pci_set_power_state() should be used to save the device's standard configuration +registers, to prepare it for system wakeup (if necessary), and to put it into a +low-power state, respectively. Moreover, if the driver calls pci_save_state(), +the PCI subsystem will not execute either pci_prepare_to_sleep(), or +pci_set_power_state() for its device, so the driver is then responsible for +handling the device as appropriate. + +While the suspend() callback is being executed, the driver's interrupt handler +can be invoked to handle an interrupt from the device, so all suspend-related +operations relying on the driver's ability to handle interrupts should be +carried out in this callback. + +3.1.3. suspend_noirq() + +The suspend_noirq() callback is only executed during system suspend, after +suspend() callbacks have been executed for all devices in the system and +after device interrupts have been disabled by the PM core. + +The difference between suspend_noirq() and suspend() is that the driver's +interrupt handler will not be invoked while suspend_noirq() is running. Thus +suspend_noirq() can carry out operations that would cause race conditions to +arise if they were performed in suspend(). + +3.1.4. freeze() + +The freeze() callback is hibernation-specific and is executed in two situations, +during hibernation, after prepare() callbacks have been executed for all devices +in preparation for the creation of a system image, and during restore, +after a system image has been loaded into memory from persistent storage and the +prepare() callbacks have been executed for all devices. + +The role of this callback is analogous to the role of the suspend() callback +described above. In fact, they only need to be different in the rare cases when +the driver takes the responsibility for putting the device into a low-power +state. + +In that cases the freeze() callback should not prepare the device system wakeup +or put it into a low-power state. Still, either it or freeze_noirq() should +save the device's standard configuration registers using pci_save_state(). + +3.1.5. freeze_noirq() + +The freeze_noirq() callback is hibernation-specific. It is executed during +hibernation, after prepare() and freeze() callbacks have been executed for all +devices in preparation for the creation of a system image, and during restore, +after a system image has been loaded into memory and after prepare() and +freeze() callbacks have been executed for all devices. It is always executed +after device interrupts have been disabled by the PM core. + +The role of this callback is analogous to the role of the suspend_noirq() +callback described above and it very rarely is necessary to define +freeze_noirq(). + +The difference between freeze_noirq() and freeze() is analogous to the +difference between suspend_noirq() and suspend(). + +3.1.6. poweroff() + +The poweroff() callback is hibernation-specific. It is executed when the system +is about to be powered off after saving a hibernation image to a persistent +storage. prepare() callbacks are executed for all devices before poweroff() is +called. + +The role of this callback is analogous to the role of the suspend() and freeze() +callbacks described above, although it does not need to save the contents of +the device's registers. In particular, if the driver wants to put the device +into a low-power state itself instead of allowing the PCI subsystem to do that, +the poweroff() callback should use pci_prepare_to_sleep() and +pci_set_power_state() to prepare the device for system wakeup and to put it +into a low-power state, respectively, but it need not save the device's standard +configuration registers. + +3.1.7. poweroff_noirq() + +The poweroff_noirq() callback is hibernation-specific. It is executed after +poweroff() callbacks have been executed for all devices in the system. + +The role of this callback is analogous to the role of the suspend_noirq() and +freeze_noirq() callbacks described above, but it does not need to save the +contents of the device's registers. + +The difference between poweroff_noirq() and poweroff() is analogous to the +difference between suspend_noirq() and suspend(). + +3.1.8. resume_noirq() + +The resume_noirq() callback is only executed during system resume, after the +PM core has enabled the non-boot CPUs. The driver's interrupt handler will not +be invoked while resume_noirq() is running, so this callback can carry out +operations that might race with the interrupt handler. + +Since the PCI subsystem unconditionally puts all devices into the full power +state in the resume_noirq phase of system resume and restores their standard +configuration registers, resume_noirq() is usually not necessary. In general +it should only be used for performing operations that would lead to race +conditions if carried out by resume(). + +3.1.9. resume() + +The resume() callback is only executed during system resume, after +resume_noirq() callbacks have been executed for all devices in the system and +device interrupts have been enabled by the PM core. + +This callback is responsible for restoring the pre-suspend configuration of the +device and bringing it back to the fully functional state. The device should be +able to process I/O in a usual way after resume() has returned. + +3.1.10. thaw_noirq() + +The thaw_noirq() callback is hibernation-specific. It is executed after a +system image has been created and the non-boot CPUs have been enabled by the PM +core, in the thaw_noirq phase of hibernation. It also may be executed if the +loading of a hibernation image fails during system restore (it is then executed +after enabling the non-boot CPUs). The driver's interrupt handler will not be +invoked while thaw_noirq() is running. + +The role of this callback is analogous to the role of resume_noirq(). The +difference between these two callbacks is that thaw_noirq() is executed after +freeze() and freeze_noirq(), so in general it does not need to modify the +contents of the device's registers. + +3.1.11. thaw() + +The thaw() callback is hibernation-specific. It is executed after thaw_noirq() +callbacks have been executed for all devices in the system and after device +interrupts have been enabled by the PM core. + +This callback is responsible for restoring the pre-freeze configuration of +the device, so that it will work in a usual way after thaw() has returned. + +3.1.12. restore_noirq() + +The restore_noirq() callback is hibernation-specific. It is executed in the +restore_noirq phase of hibernation, when the boot kernel has passed control to +the image kernel and the non-boot CPUs have been enabled by the image kernel's +PM core. + +This callback is analogous to resume_noirq() with the exception that it cannot +make any assumption on the previous state of the device, even if the BIOS (or +generally the platform firmware) is known to preserve that state over a +suspend-resume cycle. + +For the vast majority of PCI device drivers there is no difference between +resume_noirq() and restore_noirq(). + +3.1.13. restore() + +The restore() callback is hibernation-specific. It is executed after +restore_noirq() callbacks have been executed for all devices in the system and +after the PM core has enabled device drivers' interrupt handlers to be invoked. + +This callback is analogous to resume(), just like restore_noirq() is analogous +to resume_noirq(). Consequently, the difference between restore_noirq() and +restore() is analogous to the difference between resume_noirq() and resume(). + +For the vast majority of PCI device drivers there is no difference between +resume() and restore(). + +3.1.14. complete() + +The complete() callback is executed in the following situations: + - during system resume, after resume() callbacks have been executed for all + devices, + - during hibernation, before saving the system image, after thaw() callbacks + have been executed for all devices, + - during system restore, when the system is going back to its pre-hibernation + state, after restore() callbacks have been executed for all devices. +It also may be executed if the loading of a hibernation image into memory fails +(in that case it is run after thaw() callbacks have been executed for all +devices that have drivers in the boot kernel). + +This callback is entirely optional, although it may be necessary if the +prepare() callback performs operations that need to be reversed. + +3.1.15. runtime_suspend() + +The runtime_suspend() callback is specific to device runtime power management +(runtime PM). It is executed by the PM core's runtime PM framework when the +device is about to be suspended (i.e. quiesced and put into a low-power state) +at run time. + +This callback is responsible for freezing the device and preparing it to be +put into a low-power state, but it must allow the PCI subsystem to perform all +of the PCI-specific actions necessary for suspending the device. + +3.1.16. runtime_resume() + +The runtime_resume() callback is specific to device runtime PM. It is executed +by the PM core's runtime PM framework when the device is about to be resumed +(i.e. put into the full-power state and programmed to process I/O normally) at +run time. + +This callback is responsible for restoring the normal functionality of the +device after it has been put into the full-power state by the PCI subsystem. +The device is expected to be able to process I/O in the usual way after +runtime_resume() has returned. + +3.1.17. runtime_idle() + +The runtime_idle() callback is specific to device runtime PM. It is executed +by the PM core's runtime PM framework whenever it may be desirable to suspend +the device according to the PM core's information. In particular, it is +automatically executed right after runtime_resume() has returned in case the +resume of the device has happened as a result of a spurious event. + +This callback is optional, but if it is not implemented or if it returns 0, the +PCI subsystem will call pm_runtime_suspend() for the device, which in turn will +cause the driver's runtime_suspend() callback to be executed. + +3.1.18. Pointing Multiple Callback Pointers to One Routine + +Although in principle each of the callbacks described in the previous +subsections can be defined as a separate function, it often is convenient to +point two or more members of struct dev_pm_ops to the same routine. There are +a few convenience macros that can be used for this purpose. + +The SIMPLE_DEV_PM_OPS macro declares a struct dev_pm_ops object with one +suspend routine pointed to by the .suspend(), .freeze(), and .poweroff() +members and one resume routine pointed to by the .resume(), .thaw(), and +.restore() members. The other function pointers in this struct dev_pm_ops are +unset. + +The UNIVERSAL_DEV_PM_OPS macro is similar to SIMPLE_DEV_PM_OPS, but it +additionally sets the .runtime_resume() pointer to the same value as +.resume() (and .thaw(), and .restore()) and the .runtime_suspend() pointer to +the same value as .suspend() (and .freeze() and .poweroff()). + +The SET_SYSTEM_SLEEP_PM_OPS can be used inside of a declaration of struct +dev_pm_ops to indicate that one suspend routine is to be pointed to by the +.suspend(), .freeze(), and .poweroff() members and one resume routine is to +be pointed to by the .resume(), .thaw(), and .restore() members. + +3.2. Device Runtime Power Management +------------------------------------ +In addition to providing device power management callbacks PCI device drivers +are responsible for controlling the runtime power management (runtime PM) of +their devices. + +The PCI device runtime PM is optional, but it is recommended that PCI device +drivers implement it at least in the cases where there is a reliable way of +verifying that the device is not used (like when the network cable is detached +from an Ethernet adapter or there are no devices attached to a USB controller). + +To support the PCI runtime PM the driver first needs to implement the +runtime_suspend() and runtime_resume() callbacks. It also may need to implement +the runtime_idle() callback to prevent the device from being suspended again +every time right after the runtime_resume() callback has returned +(alternatively, the runtime_suspend() callback will have to check if the +device should really be suspended and return -EAGAIN if that is not the case). + +The runtime PM of PCI devices is disabled by default. It is also blocked by +pci_pm_init() that runs the pm_runtime_forbid() helper function. If a PCI +driver implements the runtime PM callbacks and intends to use the runtime PM +framework provided by the PM core and the PCI subsystem, it should enable this +feature by executing the pm_runtime_enable() helper function. However, the +driver should not call the pm_runtime_allow() helper function unblocking +the runtime PM of the device. Instead, it should allow user space or some +platform-specific code to do that (user space can do it via sysfs), although +once it has called pm_runtime_enable(), it must be prepared to handle the +runtime PM of the device correctly as soon as pm_runtime_allow() is called +(which may happen at any time). [It also is possible that user space causes +pm_runtime_allow() to be called via sysfs before the driver is loaded, so in +fact the driver has to be prepared to handle the runtime PM of the device as +soon as it calls pm_runtime_enable().] + +The runtime PM framework works by processing requests to suspend or resume +devices, or to check if they are idle (in which cases it is reasonable to +subsequently request that they be suspended). These requests are represented +by work items put into the power management workqueue, pm_wq. Although there +are a few situations in which power management requests are automatically +queued by the PM core (for example, after processing a request to resume a +device the PM core automatically queues a request to check if the device is +idle), device drivers are generally responsible for queuing power management +requests for their devices. For this purpose they should use the runtime PM +helper functions provided by the PM core, discussed in +Documentation/power/runtime_pm.txt. + +Devices can also be suspended and resumed synchronously, without placing a +request into pm_wq. In the majority of cases this also is done by their +drivers that use helper functions provided by the PM core for this purpose. + +For more information on the runtime PM of devices refer to +Documentation/power/runtime_pm.txt. + + +4. Resources +============ + +PCI Local Bus Specification, Rev. 3.0 +PCI Bus Power Management Interface Specification, Rev. 1.2 +Advanced Configuration and Power Interface (ACPI) Specification, Rev. 3.0b +PCI Express Base Specification, Rev. 2.0 +Documentation/power/devices.txt +Documentation/power/runtime_pm.txt diff --git a/Documentation/power/pm_qos_interface.txt b/Documentation/power/pm_qos_interface.txt new file mode 100644 index 000000000..129f7c0e1 --- /dev/null +++ b/Documentation/power/pm_qos_interface.txt @@ -0,0 +1,224 @@ +PM Quality Of Service Interface. + +This interface provides a kernel and user mode interface for registering +performance expectations by drivers, subsystems and user space applications on +one of the parameters. + +Two different PM QoS frameworks are available: +1. PM QoS classes for cpu_dma_latency, network_latency, network_throughput, +memory_bandwidth. +2. the per-device PM QoS framework provides the API to manage the per-device latency +constraints and PM QoS flags. + +Each parameters have defined units: + * latency: usec + * timeout: usec + * throughput: kbs (kilo bit / sec) + * memory bandwidth: mbs (mega bit / sec) + + +1. PM QoS framework + +The infrastructure exposes multiple misc device nodes one per implemented +parameter. The set of parameters implement is defined by pm_qos_power_init() +and pm_qos_params.h. This is done because having the available parameters +being runtime configurable or changeable from a driver was seen as too easy to +abuse. + +For each parameter a list of performance requests is maintained along with +an aggregated target value. The aggregated target value is updated with +changes to the request list or elements of the list. Typically the +aggregated target value is simply the max or min of the request values held +in the parameter list elements. +Note: the aggregated target value is implemented as an atomic variable so that +reading the aggregated value does not require any locking mechanism. + + +From kernel mode the use of this interface is simple: + +void pm_qos_add_request(handle, param_class, target_value): +Will insert an element into the list for that identified PM QoS class with the +target value. Upon change to this list the new target is recomputed and any +registered notifiers are called only if the target value is now different. +Clients of pm_qos need to save the returned handle for future use in other +pm_qos API functions. + +void pm_qos_update_request(handle, new_target_value): +Will update the list element pointed to by the handle with the new target value +and recompute the new aggregated target, calling the notification tree if the +target is changed. + +void pm_qos_remove_request(handle): +Will remove the element. After removal it will update the aggregate target and +call the notification tree if the target was changed as a result of removing +the request. + +int pm_qos_request(param_class): +Returns the aggregated value for a given PM QoS class. + +int pm_qos_request_active(handle): +Returns if the request is still active, i.e. it has not been removed from a +PM QoS class constraints list. + +int pm_qos_add_notifier(param_class, notifier): +Adds a notification callback function to the PM QoS class. The callback is +called when the aggregated value for the PM QoS class is changed. + +int pm_qos_remove_notifier(int param_class, notifier): +Removes the notification callback function for the PM QoS class. + + +From user mode: +Only processes can register a pm_qos request. To provide for automatic +cleanup of a process, the interface requires the process to register its +parameter requests in the following way: + +To register the default pm_qos target for the specific parameter, the process +must open one of /dev/[cpu_dma_latency, network_latency, network_throughput] + +As long as the device node is held open that process has a registered +request on the parameter. + +To change the requested target value the process needs to write an s32 value to +the open device node. Alternatively the user mode program could write a hex +string for the value using 10 char long format e.g. "0x12345678". This +translates to a pm_qos_update_request call. + +To remove the user mode request for a target value simply close the device +node. + + +2. PM QoS per-device latency and flags framework + +For each device, there are three lists of PM QoS requests. Two of them are +maintained along with the aggregated targets of resume latency and active +state latency tolerance (in microseconds) and the third one is for PM QoS flags. +Values are updated in response to changes of the request list. + +The target values of resume latency and active state latency tolerance are +simply the minimum of the request values held in the parameter list elements. +The PM QoS flags aggregate value is a gather (bitwise OR) of all list elements' +values. Two device PM QoS flags are defined currently: PM_QOS_FLAG_NO_POWER_OFF +and PM_QOS_FLAG_REMOTE_WAKEUP. + +Note: The aggregated target values are implemented in such a way that reading +the aggregated value does not require any locking mechanism. + + +From kernel mode the use of this interface is the following: + +int dev_pm_qos_add_request(device, handle, type, value): +Will insert an element into the list for that identified device with the +target value. Upon change to this list the new target is recomputed and any +registered notifiers are called only if the target value is now different. +Clients of dev_pm_qos need to save the handle for future use in other +dev_pm_qos API functions. + +int dev_pm_qos_update_request(handle, new_value): +Will update the list element pointed to by the handle with the new target value +and recompute the new aggregated target, calling the notification trees if the +target is changed. + +int dev_pm_qos_remove_request(handle): +Will remove the element. After removal it will update the aggregate target and +call the notification trees if the target was changed as a result of removing +the request. + +s32 dev_pm_qos_read_value(device): +Returns the aggregated value for a given device's constraints list. + +enum pm_qos_flags_status dev_pm_qos_flags(device, mask) +Check PM QoS flags of the given device against the given mask of flags. +The meaning of the return values is as follows: + PM_QOS_FLAGS_ALL: All flags from the mask are set + PM_QOS_FLAGS_SOME: Some flags from the mask are set + PM_QOS_FLAGS_NONE: No flags from the mask are set + PM_QOS_FLAGS_UNDEFINED: The device's PM QoS structure has not been + initialized or the list of requests is empty. + +int dev_pm_qos_add_ancestor_request(dev, handle, type, value) +Add a PM QoS request for the first direct ancestor of the given device whose +power.ignore_children flag is unset (for DEV_PM_QOS_RESUME_LATENCY requests) +or whose power.set_latency_tolerance callback pointer is not NULL (for +DEV_PM_QOS_LATENCY_TOLERANCE requests). + +int dev_pm_qos_expose_latency_limit(device, value) +Add a request to the device's PM QoS list of resume latency constraints and +create a sysfs attribute pm_qos_resume_latency_us under the device's power +directory allowing user space to manipulate that request. + +void dev_pm_qos_hide_latency_limit(device) +Drop the request added by dev_pm_qos_expose_latency_limit() from the device's +PM QoS list of resume latency constraints and remove sysfs attribute +pm_qos_resume_latency_us from the device's power directory. + +int dev_pm_qos_expose_flags(device, value) +Add a request to the device's PM QoS list of flags and create sysfs attributes +pm_qos_no_power_off and pm_qos_remote_wakeup under the device's power directory +allowing user space to change these flags' value. + +void dev_pm_qos_hide_flags(device) +Drop the request added by dev_pm_qos_expose_flags() from the device's PM QoS list +of flags and remove sysfs attributes pm_qos_no_power_off and pm_qos_remote_wakeup +under the device's power directory. + +Notification mechanisms: +The per-device PM QoS framework has 2 different and distinct notification trees: +a per-device notification tree and a global notification tree. + +int dev_pm_qos_add_notifier(device, notifier): +Adds a notification callback function for the device. +The callback is called when the aggregated value of the device constraints list +is changed (for resume latency device PM QoS only). + +int dev_pm_qos_remove_notifier(device, notifier): +Removes the notification callback function for the device. + +int dev_pm_qos_add_global_notifier(notifier): +Adds a notification callback function in the global notification tree of the +framework. +The callback is called when the aggregated value for any device is changed +(for resume latency device PM QoS only). + +int dev_pm_qos_remove_global_notifier(notifier): +Removes the notification callback function from the global notification tree +of the framework. + + +Active state latency tolerance + +This device PM QoS type is used to support systems in which hardware may switch +to energy-saving operation modes on the fly. In those systems, if the operation +mode chosen by the hardware attempts to save energy in an overly aggressive way, +it may cause excess latencies to be visible to software, causing it to miss +certain protocol requirements or target frame or sample rates etc. + +If there is a latency tolerance control mechanism for a given device available +to software, the .set_latency_tolerance callback in that device's dev_pm_info +structure should be populated. The routine pointed to by it is should implement +whatever is necessary to transfer the effective requirement value to the +hardware. + +Whenever the effective latency tolerance changes for the device, its +.set_latency_tolerance() callback will be executed and the effective value will +be passed to it. If that value is negative, which means that the list of +latency tolerance requirements for the device is empty, the callback is expected +to switch the underlying hardware latency tolerance control mechanism to an +autonomous mode if available. If that value is PM_QOS_LATENCY_ANY, in turn, and +the hardware supports a special "no requirement" setting, the callback is +expected to use it. That allows software to prevent the hardware from +automatically updating the device's latency tolerance in response to its power +state changes (e.g. during transitions from D3cold to D0), which generally may +be done in the autonomous latency tolerance control mode. + +If .set_latency_tolerance() is present for the device, sysfs attribute +pm_qos_latency_tolerance_us will be present in the devivce's power directory. +Then, user space can use that attribute to specify its latency tolerance +requirement for the device, if any. Writing "any" to it means "no requirement, +but do not let the hardware control latency tolerance" and writing "auto" to it +allows the hardware to be switched to the autonomous mode if there are no other +requirements from the kernel side in the device's list. + +Kernel code can use the functions described above along with the +DEV_PM_QOS_LATENCY_TOLERANCE device PM QoS type to add, remove and update +latency tolerance requirements for devices. diff --git a/Documentation/power/power_supply_class.txt b/Documentation/power/power_supply_class.txt new file mode 100644 index 000000000..82dacc06e --- /dev/null +++ b/Documentation/power/power_supply_class.txt @@ -0,0 +1,214 @@ +Linux power supply class +======================== + +Synopsis +~~~~~~~~ +Power supply class used to represent battery, UPS, AC or DC power supply +properties to user-space. + +It defines core set of attributes, which should be applicable to (almost) +every power supply out there. Attributes are available via sysfs and uevent +interfaces. + +Each attribute has well defined meaning, up to unit of measure used. While +the attributes provided are believed to be universally applicable to any +power supply, specific monitoring hardware may not be able to provide them +all, so any of them may be skipped. + +Power supply class is extensible, and allows to define drivers own attributes. +The core attribute set is subject to the standard Linux evolution (i.e. +if it will be found that some attribute is applicable to many power supply +types or their drivers, it can be added to the core set). + +It also integrates with LED framework, for the purpose of providing +typically expected feedback of battery charging/fully charged status and +AC/USB power supply online status. (Note that specific details of the +indication (including whether to use it at all) are fully controllable by +user and/or specific machine defaults, per design principles of LED +framework). + + +Attributes/properties +~~~~~~~~~~~~~~~~~~~~~ +Power supply class has predefined set of attributes, this eliminates code +duplication across drivers. Power supply class insist on reusing its +predefined attributes *and* their units. + +So, userspace gets predictable set of attributes and their units for any +kind of power supply, and can process/present them to a user in consistent +manner. Results for different power supplies and machines are also directly +comparable. + +See drivers/power/ds2760_battery.c and drivers/power/pda_power.c for the +example how to declare and handle attributes. + + +Units +~~~~~ +Quoting include/linux/power_supply.h: + + All voltages, currents, charges, energies, time and temperatures in µV, + µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise + stated. It's driver's job to convert its raw values to units in which + this class operates. + + +Attributes/properties detailed +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +~ ~ ~ ~ ~ ~ ~ Charge/Energy/Capacity - how to not confuse ~ ~ ~ ~ ~ ~ ~ +~ ~ +~ Because both "charge" (µAh) and "energy" (µWh) represents "capacity" ~ +~ of battery, this class distinguish these terms. Don't mix them! ~ +~ ~ +~ CHARGE_* attributes represents capacity in µAh only. ~ +~ ENERGY_* attributes represents capacity in µWh only. ~ +~ CAPACITY attribute represents capacity in *percents*, from 0 to 100. ~ +~ ~ +~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ + +Postfixes: +_AVG - *hardware* averaged value, use it if your hardware is really able to +report averaged values. +_NOW - momentary/instantaneous values. + +STATUS - this attribute represents operating status (charging, full, +discharging (i.e. powering a load), etc.). This corresponds to +BATTERY_STATUS_* values, as defined in battery.h. + +CHARGE_TYPE - batteries can typically charge at different rates. +This defines trickle and fast charges. For batteries that +are already charged or discharging, 'n/a' can be displayed (or +'unknown', if the status is not known). + +AUTHENTIC - indicates the power supply (battery or charger) connected +to the platform is authentic(1) or non authentic(0). + +HEALTH - represents health of the battery, values corresponds to +POWER_SUPPLY_HEALTH_*, defined in battery.h. + +VOLTAGE_OCV - open circuit voltage of the battery. + +VOLTAGE_MAX_DESIGN, VOLTAGE_MIN_DESIGN - design values for maximal and +minimal power supply voltages. Maximal/minimal means values of voltages +when battery considered "full"/"empty" at normal conditions. Yes, there is +no direct relation between voltage and battery capacity, but some dumb +batteries use voltage for very approximated calculation of capacity. +Battery driver also can use this attribute just to inform userspace +about maximal and minimal voltage thresholds of a given battery. + +VOLTAGE_MAX, VOLTAGE_MIN - same as _DESIGN voltage values except that +these ones should be used if hardware could only guess (measure and +retain) the thresholds of a given power supply. + +VOLTAGE_BOOT - Reports the voltage measured during boot + +CURRENT_BOOT - Reports the current measured during boot + +CHARGE_FULL_DESIGN, CHARGE_EMPTY_DESIGN - design charge values, when +battery considered full/empty. + +ENERGY_FULL_DESIGN, ENERGY_EMPTY_DESIGN - same as above but for energy. + +CHARGE_FULL, CHARGE_EMPTY - These attributes means "last remembered value +of charge when battery became full/empty". It also could mean "value of +charge when battery considered full/empty at given conditions (temperature, +age)". I.e. these attributes represents real thresholds, not design values. + +CHARGE_COUNTER - the current charge counter (in µAh). This could easily +be negative; there is no empty or full value. It is only useful for +relative, time-based measurements. + +CONSTANT_CHARGE_CURRENT - constant charge current programmed by charger. +CONSTANT_CHARGE_CURRENT_MAX - maximum charge current supported by the +power supply object. +INPUT_CURRENT_LIMIT - input current limit programmed by charger. Indicates +the current drawn from a charging source. +CHARGE_TERM_CURRENT - Charge termination current used to detect the end of charge +condition. + +CALIBRATE - battery or coulomb counter calibration status + +CONSTANT_CHARGE_VOLTAGE - constant charge voltage programmed by charger. +CONSTANT_CHARGE_VOLTAGE_MAX - maximum charge voltage supported by the +power supply object. + +CHARGE_CONTROL_LIMIT - current charge control limit setting +CHARGE_CONTROL_LIMIT_MAX - maximum charge control limit setting + +ENERGY_FULL, ENERGY_EMPTY - same as above but for energy. + +CAPACITY - capacity in percents. +CAPACITY_ALERT_MIN - minimum capacity alert value in percents. +CAPACITY_ALERT_MAX - maximum capacity alert value in percents. +CAPACITY_LEVEL - capacity level. This corresponds to +POWER_SUPPLY_CAPACITY_LEVEL_*. + +TEMP - temperature of the power supply. +TEMP_ALERT_MIN - minimum battery temperature alert. +TEMP_ALERT_MAX - maximum battery temperature alert. +TEMP_AMBIENT - ambient temperature. +TEMP_AMBIENT_ALERT_MIN - minimum ambient temperature alert. +TEMP_AMBIENT_ALERT_MAX - maximum ambient temperature alert. +TEMP_MIN - minimum operatable temperature +TEMP_MAX - maximum operatable temperature + +TIME_TO_EMPTY - seconds left for battery to be considered empty (i.e. +while battery powers a load) +TIME_TO_FULL - seconds left for battery to be considered full (i.e. +while battery is charging) + + +Battery <-> external power supply interaction +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Often power supplies are acting as supplies and supplicants at the same +time. Batteries are good example. So, batteries usually care if they're +externally powered or not. + +For that case, power supply class implements notification mechanism for +batteries. + +External power supply (AC) lists supplicants (batteries) names in +"supplied_to" struct member, and each power_supply_changed() call +issued by external power supply will notify supplicants via +external_power_changed callback. + + +QA +~~ +Q: Where is POWER_SUPPLY_PROP_XYZ attribute? +A: If you cannot find attribute suitable for your driver needs, feel free + to add it and send patch along with your driver. + + The attributes available currently are the ones currently provided by the + drivers written. + + Good candidates to add in future: model/part#, cycle_time, manufacturer, + etc. + + +Q: I have some very specific attribute (e.g. battery color), should I add + this attribute to standard ones? +A: Most likely, no. Such attribute can be placed in the driver itself, if + it is useful. Of course, if the attribute in question applicable to + large set of batteries, provided by many drivers, and/or comes from + some general battery specification/standard, it may be a candidate to + be added to the core attribute set. + + +Q: Suppose, my battery monitoring chip/firmware does not provides capacity + in percents, but provides charge_{now,full,empty}. Should I calculate + percentage capacity manually, inside the driver, and register CAPACITY + attribute? The same question about time_to_empty/time_to_full. +A: Most likely, no. This class is designed to export properties which are + directly measurable by the specific hardware available. + + Inferring not available properties using some heuristics or mathematical + model is not subject of work for a battery driver. Such functionality + should be factored out, and in fact, apm_power, the driver to serve + legacy APM API on top of power supply class, uses a simple heuristic of + approximating remaining battery capacity based on its charge, current, + voltage and so on. But full-fledged battery model is likely not subject + for kernel at all, as it would require floating point calculation to deal + with things like differential equations and Kalman filters. This is + better be handled by batteryd/libbattery, yet to be written. diff --git a/Documentation/power/powercap/powercap.txt b/Documentation/power/powercap/powercap.txt new file mode 100644 index 000000000..1e6ef164e --- /dev/null +++ b/Documentation/power/powercap/powercap.txt @@ -0,0 +1,236 @@ +Power Capping Framework +================================== + +The power capping framework provides a consistent interface between the kernel +and the user space that allows power capping drivers to expose the settings to +user space in a uniform way. + +Terminology +========================= +The framework exposes power capping devices to user space via sysfs in the +form of a tree of objects. The objects at the root level of the tree represent +'control types', which correspond to different methods of power capping. For +example, the intel-rapl control type represents the Intel "Running Average +Power Limit" (RAPL) technology, whereas the 'idle-injection' control type +corresponds to the use of idle injection for controlling power. + +Power zones represent different parts of the system, which can be controlled and +monitored using the power capping method determined by the control type the +given zone belongs to. They each contain attributes for monitoring power, as +well as controls represented in the form of power constraints. If the parts of +the system represented by different power zones are hierarchical (that is, one +bigger part consists of multiple smaller parts that each have their own power +controls), those power zones may also be organized in a hierarchy with one +parent power zone containing multiple subzones and so on to reflect the power +control topology of the system. In that case, it is possible to apply power +capping to a set of devices together using the parent power zone and if more +fine grained control is required, it can be applied through the subzones. + + +Example sysfs interface tree: + +/sys/devices/virtual/powercap +??? intel-rapl + ??? intel-rapl:0 + ?  ??? constraint_0_name + ?  ??? constraint_0_power_limit_uw + ?  ??? constraint_0_time_window_us + ?  ??? constraint_1_name + ?  ??? constraint_1_power_limit_uw + ?  ??? constraint_1_time_window_us + ?  ??? device -> ../../intel-rapl + ?  ??? energy_uj + ?  ??? intel-rapl:0:0 + ?  ?  ??? constraint_0_name + ?  ?  ??? constraint_0_power_limit_uw + ?  ?  ??? constraint_0_time_window_us + ?  ?  ??? constraint_1_name + ?  ?  ??? constraint_1_power_limit_uw + ?  ?  ??? constraint_1_time_window_us + ?  ?  ??? device -> ../../intel-rapl:0 + ?  ?  ??? energy_uj + ?  ?  ??? max_energy_range_uj + ?  ?  ??? name + ?  ?  ??? enabled + ?  ?  ??? power + ?  ?  ?  ??? async + ?  ?  ?  [] + ?  ?  ??? subsystem -> ../../../../../../class/power_cap + ?  ?  ??? uevent + ?  ??? intel-rapl:0:1 + ?  ?  ??? constraint_0_name + ?  ?  ??? constraint_0_power_limit_uw + ?  ?  ??? constraint_0_time_window_us + ?  ?  ??? constraint_1_name + ?  ?  ??? constraint_1_power_limit_uw + ?  ?  ??? constraint_1_time_window_us + ?  ?  ??? device -> ../../intel-rapl:0 + ?  ?  ??? energy_uj + ?  ?  ??? max_energy_range_uj + ?  ?  ??? name + ?  ?  ??? enabled + ?  ?  ??? power + ?  ?  ?  ??? async + ?  ?  ?  [] + ?  ?  ??? subsystem -> ../../../../../../class/power_cap + ?  ?  ??? uevent + ?  ??? max_energy_range_uj + ?  ??? max_power_range_uw + ?  ??? name + ?  ??? enabled + ?  ??? power + ?  ?  ??? async + ?  ?  [] + ?  ??? subsystem -> ../../../../../class/power_cap + ?  ??? enabled + ?  ??? uevent + ??? intel-rapl:1 + ?  ??? constraint_0_name + ?  ??? constraint_0_power_limit_uw + ?  ??? constraint_0_time_window_us + ?  ??? constraint_1_name + ?  ??? constraint_1_power_limit_uw + ?  ??? constraint_1_time_window_us + ?  ??? device -> ../../intel-rapl + ?  ??? energy_uj + ?  ??? intel-rapl:1:0 + ?  ?  ??? constraint_0_name + ?  ?  ??? constraint_0_power_limit_uw + ?  ?  ??? constraint_0_time_window_us + ?  ?  ??? constraint_1_name + ?  ?  ??? constraint_1_power_limit_uw + ?  ?  ??? constraint_1_time_window_us + ?  ?  ??? device -> ../../intel-rapl:1 + ?  ?  ??? energy_uj + ?  ?  ??? max_energy_range_uj + ?  ?  ??? name + ?  ?  ??? enabled + ?  ?  ??? power + ?  ?  ?  ??? async + ?  ?  ?  [] + ?  ?  ??? subsystem -> ../../../../../../class/power_cap + ?  ?  ??? uevent + ?  ??? intel-rapl:1:1 + ?  ?  ??? constraint_0_name + ?  ?  ??? constraint_0_power_limit_uw + ?  ?  ??? constraint_0_time_window_us + ?  ?  ??? constraint_1_name + ?  ?  ??? constraint_1_power_limit_uw + ?  ?  ??? constraint_1_time_window_us + ?  ?  ??? device -> ../../intel-rapl:1 + ?  ?  ??? energy_uj + ?  ?  ??? max_energy_range_uj + ?  ?  ??? name + ?  ?  ??? enabled + ?  ?  ??? power + ?  ?  ?  ??? async + ?  ?  ?  [] + ?  ?  ??? subsystem -> ../../../../../../class/power_cap + ?  ?  ??? uevent + ?  ??? max_energy_range_uj + ?  ??? max_power_range_uw + ?  ??? name + ?  ??? enabled + ?  ??? power + ?  ?  ??? async + ?  ?  [] + ?  ??? subsystem -> ../../../../../class/power_cap + ?  ??? uevent + ??? power + ?  ??? async + ?  [] + ??? subsystem -> ../../../../class/power_cap + ??? enabled + ??? uevent + +The above example illustrates a case in which the Intel RAPL technology, +available in Intel® IA-64 and IA-32 Processor Architectures, is used. There is one +control type called intel-rapl which contains two power zones, intel-rapl:0 and +intel-rapl:1, representing CPU packages. Each of these power zones contains +two subzones, intel-rapl:j:0 and intel-rapl:j:1 (j = 0, 1), representing the +"core" and the "uncore" parts of the given CPU package, respectively. All of +the zones and subzones contain energy monitoring attributes (energy_uj, +max_energy_range_uj) and constraint attributes (constraint_*) allowing controls +to be applied (the constraints in the 'package' power zones apply to the whole +CPU packages and the subzone constraints only apply to the respective parts of +the given package individually). Since Intel RAPL doesn't provide instantaneous +power value, there is no power_uw attribute. + +In addition to that, each power zone contains a name attribute, allowing the +part of the system represented by that zone to be identified. +For example: + +cat /sys/class/power_cap/intel-rapl/intel-rapl:0/name +package-0 + +The Intel RAPL technology allows two constraints, short term and long term, +with two different time windows to be applied to each power zone. Thus for +each zone there are 2 attributes representing the constraint names, 2 power +limits and 2 attributes representing the sizes of the time windows. Such that, +constraint_j_* attributes correspond to the jth constraint (j = 0,1). + +For example: + constraint_0_name + constraint_0_power_limit_uw + constraint_0_time_window_us + constraint_1_name + constraint_1_power_limit_uw + constraint_1_time_window_us + +Power Zone Attributes +================================= +Monitoring attributes +---------------------- + +energy_uj (rw): Current energy counter in micro joules. Write "0" to reset. +If the counter can not be reset, then this attribute is read only. + +max_energy_range_uj (ro): Range of the above energy counter in micro-joules. + +power_uw (ro): Current power in micro watts. + +max_power_range_uw (ro): Range of the above power value in micro-watts. + +name (ro): Name of this power zone. + +It is possible that some domains have both power ranges and energy counter ranges; +however, only one is mandatory. + +Constraints +---------------- +constraint_X_power_limit_uw (rw): Power limit in micro watts, which should be +applicable for the time window specified by "constraint_X_time_window_us". + +constraint_X_time_window_us (rw): Time window in micro seconds. + +constraint_X_name (ro): An optional name of the constraint + +constraint_X_max_power_uw(ro): Maximum allowed power in micro watts. + +constraint_X_min_power_uw(ro): Minimum allowed power in micro watts. + +constraint_X_max_time_window_us(ro): Maximum allowed time window in micro seconds. + +constraint_X_min_time_window_us(ro): Minimum allowed time window in micro seconds. + +Except power_limit_uw and time_window_us other fields are optional. + +Common zone and control type attributes +---------------------------------------- +enabled (rw): Enable/Disable controls at zone level or for all zones using +a control type. + +Power Cap Client Driver Interface +================================== +The API summary: + +Call powercap_register_control_type() to register control type object. +Call powercap_register_zone() to register a power zone (under a given +control type), either as a top-level power zone or as a subzone of another +power zone registered earlier. +The number of constraints in a power zone and the corresponding callbacks have +to be defined prior to calling powercap_register_zone() to register that zone. + +To Free a power zone call powercap_unregister_zone(). +To free a control type object call powercap_unregister_control_type(). +Detailed API can be generated using kernel-doc on include/linux/powercap.h. diff --git a/Documentation/power/regulator/consumer.txt b/Documentation/power/regulator/consumer.txt new file mode 100644 index 000000000..e51564c1a --- /dev/null +++ b/Documentation/power/regulator/consumer.txt @@ -0,0 +1,218 @@ +Regulator Consumer Driver Interface +=================================== + +This text describes the regulator interface for consumer device drivers. +Please see overview.txt for a description of the terms used in this text. + + +1. Consumer Regulator Access (static & dynamic drivers) +======================================================= + +A consumer driver can get access to its supply regulator by calling :- + +regulator = regulator_get(dev, "Vcc"); + +The consumer passes in its struct device pointer and power supply ID. The core +then finds the correct regulator by consulting a machine specific lookup table. +If the lookup is successful then this call will return a pointer to the struct +regulator that supplies this consumer. + +To release the regulator the consumer driver should call :- + +regulator_put(regulator); + +Consumers can be supplied by more than one regulator e.g. codec consumer with +analog and digital supplies :- + +digital = regulator_get(dev, "Vcc"); /* digital core */ +analog = regulator_get(dev, "Avdd"); /* analog */ + +The regulator access functions regulator_get() and regulator_put() will +usually be called in your device drivers probe() and remove() respectively. + + +2. Regulator Output Enable & Disable (static & dynamic drivers) +==================================================================== + +A consumer can enable its power supply by calling:- + +int regulator_enable(regulator); + +NOTE: The supply may already be enabled before regulator_enabled() is called. +This may happen if the consumer shares the regulator or the regulator has been +previously enabled by bootloader or kernel board initialization code. + +A consumer can determine if a regulator is enabled by calling :- + +int regulator_is_enabled(regulator); + +This will return > zero when the regulator is enabled. + + +A consumer can disable its supply when no longer needed by calling :- + +int regulator_disable(regulator); + +NOTE: This may not disable the supply if it's shared with other consumers. The +regulator will only be disabled when the enabled reference count is zero. + +Finally, a regulator can be forcefully disabled in the case of an emergency :- + +int regulator_force_disable(regulator); + +NOTE: this will immediately and forcefully shutdown the regulator output. All +consumers will be powered off. + + +3. Regulator Voltage Control & Status (dynamic drivers) +====================================================== + +Some consumer drivers need to be able to dynamically change their supply +voltage to match system operating points. e.g. CPUfreq drivers can scale +voltage along with frequency to save power, SD drivers may need to select the +correct card voltage, etc. + +Consumers can control their supply voltage by calling :- + +int regulator_set_voltage(regulator, min_uV, max_uV); + +Where min_uV and max_uV are the minimum and maximum acceptable voltages in +microvolts. + +NOTE: this can be called when the regulator is enabled or disabled. If called +when enabled, then the voltage changes instantly, otherwise the voltage +configuration changes and the voltage is physically set when the regulator is +next enabled. + +The regulators configured voltage output can be found by calling :- + +int regulator_get_voltage(regulator); + +NOTE: get_voltage() will return the configured output voltage whether the +regulator is enabled or disabled and should NOT be used to determine regulator +output state. However this can be used in conjunction with is_enabled() to +determine the regulator physical output voltage. + + +4. Regulator Current Limit Control & Status (dynamic drivers) +=========================================================== + +Some consumer drivers need to be able to dynamically change their supply +current limit to match system operating points. e.g. LCD backlight driver can +change the current limit to vary the backlight brightness, USB drivers may want +to set the limit to 500mA when supplying power. + +Consumers can control their supply current limit by calling :- + +int regulator_set_current_limit(regulator, min_uA, max_uA); + +Where min_uA and max_uA are the minimum and maximum acceptable current limit in +microamps. + +NOTE: this can be called when the regulator is enabled or disabled. If called +when enabled, then the current limit changes instantly, otherwise the current +limit configuration changes and the current limit is physically set when the +regulator is next enabled. + +A regulators current limit can be found by calling :- + +int regulator_get_current_limit(regulator); + +NOTE: get_current_limit() will return the current limit whether the regulator +is enabled or disabled and should not be used to determine regulator current +load. + + +5. Regulator Operating Mode Control & Status (dynamic drivers) +============================================================= + +Some consumers can further save system power by changing the operating mode of +their supply regulator to be more efficient when the consumers operating state +changes. e.g. consumer driver is idle and subsequently draws less current + +Regulator operating mode can be changed indirectly or directly. + +Indirect operating mode control. +-------------------------------- +Consumer drivers can request a change in their supply regulator operating mode +by calling :- + +int regulator_set_load(struct regulator *regulator, int load_uA); + +This will cause the core to recalculate the total load on the regulator (based +on all its consumers) and change operating mode (if necessary and permitted) +to best match the current operating load. + +The load_uA value can be determined from the consumer's datasheet. e.g. most +datasheets have tables showing the maximum current consumed in certain +situations. + +Most consumers will use indirect operating mode control since they have no +knowledge of the regulator or whether the regulator is shared with other +consumers. + +Direct operating mode control. +------------------------------ +Bespoke or tightly coupled drivers may want to directly control regulator +operating mode depending on their operating point. This can be achieved by +calling :- + +int regulator_set_mode(struct regulator *regulator, unsigned int mode); +unsigned int regulator_get_mode(struct regulator *regulator); + +Direct mode will only be used by consumers that *know* about the regulator and +are not sharing the regulator with other consumers. + + +6. Regulator Events +=================== +Regulators can notify consumers of external events. Events could be received by +consumers under regulator stress or failure conditions. + +Consumers can register interest in regulator events by calling :- + +int regulator_register_notifier(struct regulator *regulator, + struct notifier_block *nb); + +Consumers can unregister interest by calling :- + +int regulator_unregister_notifier(struct regulator *regulator, + struct notifier_block *nb); + +Regulators use the kernel notifier framework to send event to their interested +consumers. + +7. Regulator Direct Register Access +=================================== +Some kinds of power management hardware or firmware are designed such that +they need to do low-level hardware access to regulators, with no involvement +from the kernel. Examples of such devices are: + +- clocksource with a voltage-controlled oscillator and control logic to change + the supply voltage over I2C to achieve a desired output clock rate +- thermal management firmware that can issue an arbitrary I2C transaction to + perform system poweroff during overtemperature conditions + +To set up such a device/firmware, various parameters like I2C address of the +regulator, addresses of various regulator registers etc. need to be configured +to it. The regulator framework provides the following helpers for querying +these details. + +Bus-specific details, like I2C addresses or transfer rates are handled by the +regmap framework. To get the regulator's regmap (if supported), use :- + +struct regmap *regulator_get_regmap(struct regulator *regulator); + +To obtain the hardware register offset and bitmask for the regulator's voltage +selector register, use :- + +int regulator_get_hardware_vsel_register(struct regulator *regulator, + unsigned *vsel_reg, + unsigned *vsel_mask); + +To convert a regulator framework voltage selector code (used by +regulator_list_voltage) to a hardware-specific voltage selector that can be +directly written to the voltage selector register, use :- + +int regulator_list_hardware_vsel(struct regulator *regulator, + unsigned selector); diff --git a/Documentation/power/regulator/design.txt b/Documentation/power/regulator/design.txt new file mode 100644 index 000000000..fdd919b96 --- /dev/null +++ b/Documentation/power/regulator/design.txt @@ -0,0 +1,33 @@ +Regulator API design notes +========================== + +This document provides a brief, partially structured, overview of some +of the design considerations which impact the regulator API design. + +Safety +------ + + - Errors in regulator configuration can have very serious consequences + for the system, potentially including lasting hardware damage. + - It is not possible to automatically determine the power configuration + of the system - software-equivalent variants of the same chip may + have different power requirements, and not all components with power + requirements are visible to software. + + => The API should make no changes to the hardware state unless it has + specific knowledge that these changes are safe to perform on this + particular system. + +Consumer use cases +------------------ + + - The overwhelming majority of devices in a system will have no + requirement to do any runtime configuration of their power beyond + being able to turn it on or off. + + - Many of the power supplies in the system will be shared between many + different consumers. + + => The consumer API should be structured so that these use cases are + very easy to handle and so that consumers will work with shared + supplies without any additional effort. diff --git a/Documentation/power/regulator/machine.txt b/Documentation/power/regulator/machine.txt new file mode 100644 index 000000000..757e3b53d --- /dev/null +++ b/Documentation/power/regulator/machine.txt @@ -0,0 +1,100 @@ +Regulator Machine Driver Interface +=================================== + +The regulator machine driver interface is intended for board/machine specific +initialisation code to configure the regulator subsystem. + +Consider the following machine :- + + Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V] + | + +-> [Consumer B @ 3.3V] + +The drivers for consumers A & B must be mapped to the correct regulator in +order to control their power supplies. This mapping can be achieved in machine +initialisation code by creating a struct regulator_consumer_supply for +each regulator. + +struct regulator_consumer_supply { + const char *dev_name; /* consumer dev_name() */ + const char *supply; /* consumer supply - e.g. "vcc" */ +}; + +e.g. for the machine above + +static struct regulator_consumer_supply regulator1_consumers[] = { +{ + .dev_name = "dev_name(consumer B)", + .supply = "Vcc", +},}; + +static struct regulator_consumer_supply regulator2_consumers[] = { +{ + .dev = "dev_name(consumer A"), + .supply = "Vcc", +},}; + +This maps Regulator-1 to the 'Vcc' supply for Consumer B and maps Regulator-2 +to the 'Vcc' supply for Consumer A. + +Constraints can now be registered by defining a struct regulator_init_data +for each regulator power domain. This structure also maps the consumers +to their supply regulators :- + +static struct regulator_init_data regulator1_data = { + .constraints = { + .name = "Regulator-1", + .min_uV = 3300000, + .max_uV = 3300000, + .valid_modes_mask = REGULATOR_MODE_NORMAL, + }, + .num_consumer_supplies = ARRAY_SIZE(regulator1_consumers), + .consumer_supplies = regulator1_consumers, +}; + +The name field should be set to something that is usefully descriptive +for the board for configuration of supplies for other regulators and +for use in logging and other diagnostic output. Normally the name +used for the supply rail in the schematic is a good choice. If no +name is provided then the subsystem will choose one. + +Regulator-1 supplies power to Regulator-2. This relationship must be registered +with the core so that Regulator-1 is also enabled when Consumer A enables its +supply (Regulator-2). The supply regulator is set by the supply_regulator +field below and co:- + +static struct regulator_init_data regulator2_data = { + .supply_regulator = "Regulator-1", + .constraints = { + .min_uV = 1800000, + .max_uV = 2000000, + .valid_ops_mask = REGULATOR_CHANGE_VOLTAGE, + .valid_modes_mask = REGULATOR_MODE_NORMAL, + }, + .num_consumer_supplies = ARRAY_SIZE(regulator2_consumers), + .consumer_supplies = regulator2_consumers, +}; + +Finally the regulator devices must be registered in the usual manner. + +static struct platform_device regulator_devices[] = { +{ + .name = "regulator", + .id = DCDC_1, + .dev = { + .platform_data = ®ulator1_data, + }, +}, +{ + .name = "regulator", + .id = DCDC_2, + .dev = { + .platform_data = ®ulator2_data, + }, +}, +}; +/* register regulator 1 device */ +platform_device_register(®ulator_devices[0]); + +/* register regulator 2 device */ +platform_device_register(®ulator_devices[1]); diff --git a/Documentation/power/regulator/overview.txt b/Documentation/power/regulator/overview.txt new file mode 100644 index 000000000..40ca2d6e2 --- /dev/null +++ b/Documentation/power/regulator/overview.txt @@ -0,0 +1,171 @@ +Linux voltage and current regulator framework +============================================= + +About +===== + +This framework is designed to provide a standard kernel interface to control +voltage and current regulators. + +The intention is to allow systems to dynamically control regulator power output +in order to save power and prolong battery life. This applies to both voltage +regulators (where voltage output is controllable) and current sinks (where +current limit is controllable). + +(C) 2008 Wolfson Microelectronics PLC. +Author: Liam Girdwood <lrg@slimlogic.co.uk> + + +Nomenclature +============ + +Some terms used in this document:- + + o Regulator - Electronic device that supplies power to other devices. + Most regulators can enable and disable their output whilst + some can control their output voltage and or current. + + Input Voltage -> Regulator -> Output Voltage + + + o PMIC - Power Management IC. An IC that contains numerous regulators + and often contains other subsystems. + + + o Consumer - Electronic device that is supplied power by a regulator. + Consumers can be classified into two types:- + + Static: consumer does not change its supply voltage or + current limit. It only needs to enable or disable its + power supply. Its supply voltage is set by the hardware, + bootloader, firmware or kernel board initialisation code. + + Dynamic: consumer needs to change its supply voltage or + current limit to meet operation demands. + + + o Power Domain - Electronic circuit that is supplied its input power by the + output power of a regulator, switch or by another power + domain. + + The supply regulator may be behind a switch(s). i.e. + + Regulator -+-> Switch-1 -+-> Switch-2 --> [Consumer A] + | | + | +-> [Consumer B], [Consumer C] + | + +-> [Consumer D], [Consumer E] + + That is one regulator and three power domains: + + Domain 1: Switch-1, Consumers D & E. + Domain 2: Switch-2, Consumers B & C. + Domain 3: Consumer A. + + and this represents a "supplies" relationship: + + Domain-1 --> Domain-2 --> Domain-3. + + A power domain may have regulators that are supplied power + by other regulators. i.e. + + Regulator-1 -+-> Regulator-2 -+-> [Consumer A] + | + +-> [Consumer B] + + This gives us two regulators and two power domains: + + Domain 1: Regulator-2, Consumer B. + Domain 2: Consumer A. + + and a "supplies" relationship: + + Domain-1 --> Domain-2 + + + o Constraints - Constraints are used to define power levels for performance + and hardware protection. Constraints exist at three levels: + + Regulator Level: This is defined by the regulator hardware + operating parameters and is specified in the regulator + datasheet. i.e. + + - voltage output is in the range 800mV -> 3500mV. + - regulator current output limit is 20mA @ 5V but is + 10mA @ 10V. + + Power Domain Level: This is defined in software by kernel + level board initialisation code. It is used to constrain a + power domain to a particular power range. i.e. + + - Domain-1 voltage is 3300mV + - Domain-2 voltage is 1400mV -> 1600mV + - Domain-3 current limit is 0mA -> 20mA. + + Consumer Level: This is defined by consumer drivers + dynamically setting voltage or current limit levels. + + e.g. a consumer backlight driver asks for a current increase + from 5mA to 10mA to increase LCD illumination. This passes + to through the levels as follows :- + + Consumer: need to increase LCD brightness. Lookup and + request next current mA value in brightness table (the + consumer driver could be used on several different + personalities based upon the same reference device). + + Power Domain: is the new current limit within the domain + operating limits for this domain and system state (e.g. + battery power, USB power) + + Regulator Domains: is the new current limit within the + regulator operating parameters for input/output voltage. + + If the regulator request passes all the constraint tests + then the new regulator value is applied. + + +Design +====== + +The framework is designed and targeted at SoC based devices but may also be +relevant to non SoC devices and is split into the following four interfaces:- + + + 1. Consumer driver interface. + + This uses a similar API to the kernel clock interface in that consumer + drivers can get and put a regulator (like they can with clocks atm) and + get/set voltage, current limit, mode, enable and disable. This should + allow consumers complete control over their supply voltage and current + limit. This also compiles out if not in use so drivers can be reused in + systems with no regulator based power control. + + See Documentation/power/regulator/consumer.txt + + 2. Regulator driver interface. + + This allows regulator drivers to register their regulators and provide + operations to the core. It also has a notifier call chain for propagating + regulator events to clients. + + See Documentation/power/regulator/regulator.txt + + 3. Machine interface. + + This interface is for machine specific code and allows the creation of + voltage/current domains (with constraints) for each regulator. It can + provide regulator constraints that will prevent device damage through + overvoltage or overcurrent caused by buggy client drivers. It also + allows the creation of a regulator tree whereby some regulators are + supplied by others (similar to a clock tree). + + See Documentation/power/regulator/machine.txt + + 4. Userspace ABI. + + The framework also exports a lot of useful voltage/current/opmode data to + userspace via sysfs. This could be used to help monitor device power + consumption and status. + + See Documentation/ABI/testing/sysfs-class-regulator diff --git a/Documentation/power/regulator/regulator.txt b/Documentation/power/regulator/regulator.txt new file mode 100644 index 000000000..b17e5833c --- /dev/null +++ b/Documentation/power/regulator/regulator.txt @@ -0,0 +1,30 @@ +Regulator Driver Interface +========================== + +The regulator driver interface is relatively simple and designed to allow +regulator drivers to register their services with the core framework. + + +Registration +============ + +Drivers can register a regulator by calling :- + +struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, + const struct regulator_config *config); + +This will register the regulator's capabilities and operations to the regulator +core. + +Regulators can be unregistered by calling :- + +void regulator_unregister(struct regulator_dev *rdev); + + +Regulator Events +================ +Regulators can send events (e.g. overtemperature, undervoltage, etc) to +consumer drivers by calling :- + +int regulator_notifier_call_chain(struct regulator_dev *rdev, + unsigned long event, void *data); diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt new file mode 100644 index 000000000..44fe1d28a --- /dev/null +++ b/Documentation/power/runtime_pm.txt @@ -0,0 +1,912 @@ +Runtime Power Management Framework for I/O Devices + +(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc. +(C) 2010 Alan Stern <stern@rowland.harvard.edu> +(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com> + +1. Introduction + +Support for runtime power management (runtime PM) of I/O devices is provided +at the power management core (PM core) level by means of: + +* The power management workqueue pm_wq in which bus types and device drivers can + put their PM-related work items. It is strongly recommended that pm_wq be + used for queuing all work items related to runtime PM, because this allows + them to be synchronized with system-wide power transitions (suspend to RAM, + hibernation and resume from system sleep states). pm_wq is declared in + include/linux/pm_runtime.h and defined in kernel/power/main.c. + +* A number of runtime PM fields in the 'power' member of 'struct device' (which + is of the type 'struct dev_pm_info', defined in include/linux/pm.h) that can + be used for synchronizing runtime PM operations with one another. + +* Three device runtime PM callbacks in 'struct dev_pm_ops' (defined in + include/linux/pm.h). + +* A set of helper functions defined in drivers/base/power/runtime.c that can be + used for carrying out runtime PM operations in such a way that the + synchronization between them is taken care of by the PM core. Bus types and + device drivers are encouraged to use these functions. + +The runtime PM callbacks present in 'struct dev_pm_ops', the device runtime PM +fields of 'struct dev_pm_info' and the core helper functions provided for +runtime PM are described below. + +2. Device Runtime PM Callbacks + +There are three device runtime PM callbacks defined in 'struct dev_pm_ops': + +struct dev_pm_ops { + ... + int (*runtime_suspend)(struct device *dev); + int (*runtime_resume)(struct device *dev); + int (*runtime_idle)(struct device *dev); + ... +}; + +The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks +are executed by the PM core for the device's subsystem that may be either of +the following: + + 1. PM domain of the device, if the device's PM domain object, dev->pm_domain, + is present. + + 2. Device type of the device, if both dev->type and dev->type->pm are present. + + 3. Device class of the device, if both dev->class and dev->class->pm are + present. + + 4. Bus type of the device, if both dev->bus and dev->bus->pm are present. + +If the subsystem chosen by applying the above rules doesn't provide the relevant +callback, the PM core will invoke the corresponding driver callback stored in +dev->driver->pm directly (if present). + +The PM core always checks which callback to use in the order given above, so the +priority order of callbacks from high to low is: PM domain, device type, class +and bus type. Moreover, the high-priority one will always take precedence over +a low-priority one. The PM domain, bus type, device type and class callbacks +are referred to as subsystem-level callbacks in what follows. + +By default, the callbacks are always invoked in process context with interrupts +enabled. However, the pm_runtime_irq_safe() helper function can be used to tell +the PM core that it is safe to run the ->runtime_suspend(), ->runtime_resume() +and ->runtime_idle() callbacks for the given device in atomic context with +interrupts disabled. This implies that the callback routines in question must +not block or sleep, but it also means that the synchronous helper functions +listed at the end of Section 4 may be used for that device within an interrupt +handler or generally in an atomic context. + +The subsystem-level suspend callback, if present, is _entirely_ _responsible_ +for handling the suspend of the device as appropriate, which may, but need not +include executing the device driver's own ->runtime_suspend() callback (from the +PM core's point of view it is not necessary to implement a ->runtime_suspend() +callback in a device driver as long as the subsystem-level suspend callback +knows what to do to handle the device). + + * Once the subsystem-level suspend callback (or the driver suspend callback, + if invoked directly) has completed successfully for the given device, the PM + core regards the device as suspended, which need not mean that it has been + put into a low power state. It is supposed to mean, however, that the + device will not process data and will not communicate with the CPU(s) and + RAM until the appropriate resume callback is executed for it. The runtime + PM status of a device after successful execution of the suspend callback is + 'suspended'. + + * If the suspend callback returns -EBUSY or -EAGAIN, the device's runtime PM + status remains 'active', which means that the device _must_ be fully + operational afterwards. + + * If the suspend callback returns an error code different from -EBUSY and + -EAGAIN, the PM core regards this as a fatal error and will refuse to run + the helper functions described in Section 4 for the device until its status + is directly set to either'active', or 'suspended' (the PM core provides + special helper functions for this purpose). + +In particular, if the driver requires remote wakeup capability (i.e. hardware +mechanism allowing the device to request a change of its power state, such as +PCI PME) for proper functioning and device_run_wake() returns 'false' for the +device, then ->runtime_suspend() should return -EBUSY. On the other hand, if +device_run_wake() returns 'true' for the device and the device is put into a +low-power state during the execution of the suspend callback, it is expected +that remote wakeup will be enabled for the device. Generally, remote wakeup +should be enabled for all input devices put into low-power states at run time. + +The subsystem-level resume callback, if present, is _entirely_ _responsible_ for +handling the resume of the device as appropriate, which may, but need not +include executing the device driver's own ->runtime_resume() callback (from the +PM core's point of view it is not necessary to implement a ->runtime_resume() +callback in a device driver as long as the subsystem-level resume callback knows +what to do to handle the device). + + * Once the subsystem-level resume callback (or the driver resume callback, if + invoked directly) has completed successfully, the PM core regards the device + as fully operational, which means that the device _must_ be able to complete + I/O operations as needed. The runtime PM status of the device is then + 'active'. + + * If the resume callback returns an error code, the PM core regards this as a + fatal error and will refuse to run the helper functions described in Section + 4 for the device, until its status is directly set to either 'active', or + 'suspended' (by means of special helper functions provided by the PM core + for this purpose). + +The idle callback (a subsystem-level one, if present, or the driver one) is +executed by the PM core whenever the device appears to be idle, which is +indicated to the PM core by two counters, the device's usage counter and the +counter of 'active' children of the device. + + * If any of these counters is decreased using a helper function provided by + the PM core and it turns out to be equal to zero, the other counter is + checked. If that counter also is equal to zero, the PM core executes the + idle callback with the device as its argument. + +The action performed by the idle callback is totally dependent on the subsystem +(or driver) in question, but the expected and recommended action is to check +if the device can be suspended (i.e. if all of the conditions necessary for +suspending the device are satisfied) and to queue up a suspend request for the +device in that case. If there is no idle callback, or if the callback returns +0, then the PM core will attempt to carry out a runtime suspend of the device, +also respecting devices configured for autosuspend. In essence this means a +call to pm_runtime_autosuspend() (do note that drivers needs to update the +device last busy mark, pm_runtime_mark_last_busy(), to control the delay under +this circumstance). To prevent this (for example, if the callback routine has +started a delayed suspend), the routine must return a non-zero value. Negative +error return codes are ignored by the PM core. + +The helper functions provided by the PM core, described in Section 4, guarantee +that the following constraints are met with respect to runtime PM callbacks for +one device: + +(1) The callbacks are mutually exclusive (e.g. it is forbidden to execute + ->runtime_suspend() in parallel with ->runtime_resume() or with another + instance of ->runtime_suspend() for the same device) with the exception that + ->runtime_suspend() or ->runtime_resume() can be executed in parallel with + ->runtime_idle() (although ->runtime_idle() will not be started while any + of the other callbacks is being executed for the same device). + +(2) ->runtime_idle() and ->runtime_suspend() can only be executed for 'active' + devices (i.e. the PM core will only execute ->runtime_idle() or + ->runtime_suspend() for the devices the runtime PM status of which is + 'active'). + +(3) ->runtime_idle() and ->runtime_suspend() can only be executed for a device + the usage counter of which is equal to zero _and_ either the counter of + 'active' children of which is equal to zero, or the 'power.ignore_children' + flag of which is set. + +(4) ->runtime_resume() can only be executed for 'suspended' devices (i.e. the + PM core will only execute ->runtime_resume() for the devices the runtime + PM status of which is 'suspended'). + +Additionally, the helper functions provided by the PM core obey the following +rules: + + * If ->runtime_suspend() is about to be executed or there's a pending request + to execute it, ->runtime_idle() will not be executed for the same device. + + * A request to execute or to schedule the execution of ->runtime_suspend() + will cancel any pending requests to execute ->runtime_idle() for the same + device. + + * If ->runtime_resume() is about to be executed or there's a pending request + to execute it, the other callbacks will not be executed for the same device. + + * A request to execute ->runtime_resume() will cancel any pending or + scheduled requests to execute the other callbacks for the same device, + except for scheduled autosuspends. + +3. Runtime PM Device Fields + +The following device runtime PM fields are present in 'struct dev_pm_info', as +defined in include/linux/pm.h: + + struct timer_list suspend_timer; + - timer used for scheduling (delayed) suspend and autosuspend requests + + unsigned long timer_expires; + - timer expiration time, in jiffies (if this is different from zero, the + timer is running and will expire at that time, otherwise the timer is not + running) + + struct work_struct work; + - work structure used for queuing up requests (i.e. work items in pm_wq) + + wait_queue_head_t wait_queue; + - wait queue used if any of the helper functions needs to wait for another + one to complete + + spinlock_t lock; + - lock used for synchronisation + + atomic_t usage_count; + - the usage counter of the device + + atomic_t child_count; + - the count of 'active' children of the device + + unsigned int ignore_children; + - if set, the value of child_count is ignored (but still updated) + + unsigned int disable_depth; + - used for disabling the helper functions (they work normally if this is + equal to zero); the initial value of it is 1 (i.e. runtime PM is + initially disabled for all devices) + + int runtime_error; + - if set, there was a fatal error (one of the callbacks returned error code + as described in Section 2), so the helper functions will not work until + this flag is cleared; this is the error code returned by the failing + callback + + unsigned int idle_notification; + - if set, ->runtime_idle() is being executed + + unsigned int request_pending; + - if set, there's a pending request (i.e. a work item queued up into pm_wq) + + enum rpm_request request; + - type of request that's pending (valid if request_pending is set) + + unsigned int deferred_resume; + - set if ->runtime_resume() is about to be run while ->runtime_suspend() is + being executed for that device and it is not practical to wait for the + suspend to complete; means "start a resume as soon as you've suspended" + + unsigned int run_wake; + - set if the device is capable of generating runtime wake-up events + + enum rpm_status runtime_status; + - the runtime PM status of the device; this field's initial value is + RPM_SUSPENDED, which means that each device is initially regarded by the + PM core as 'suspended', regardless of its real hardware status + + unsigned int runtime_auto; + - if set, indicates that the user space has allowed the device driver to + power manage the device at run time via the /sys/devices/.../power/control + interface; it may only be modified with the help of the pm_runtime_allow() + and pm_runtime_forbid() helper functions + + unsigned int no_callbacks; + - indicates that the device does not use the runtime PM callbacks (see + Section 8); it may be modified only by the pm_runtime_no_callbacks() + helper function + + unsigned int irq_safe; + - indicates that the ->runtime_suspend() and ->runtime_resume() callbacks + will be invoked with the spinlock held and interrupts disabled + + unsigned int use_autosuspend; + - indicates that the device's driver supports delayed autosuspend (see + Section 9); it may be modified only by the + pm_runtime{_dont}_use_autosuspend() helper functions + + unsigned int timer_autosuspends; + - indicates that the PM core should attempt to carry out an autosuspend + when the timer expires rather than a normal suspend + + int autosuspend_delay; + - the delay time (in milliseconds) to be used for autosuspend + + unsigned long last_busy; + - the time (in jiffies) when the pm_runtime_mark_last_busy() helper + function was last called for this device; used in calculating inactivity + periods for autosuspend + +All of the above fields are members of the 'power' member of 'struct device'. + +4. Runtime PM Device Helper Functions + +The following runtime PM helper functions are defined in +drivers/base/power/runtime.c and include/linux/pm_runtime.h: + + void pm_runtime_init(struct device *dev); + - initialize the device runtime PM fields in 'struct dev_pm_info' + + void pm_runtime_remove(struct device *dev); + - make sure that the runtime PM of the device will be disabled after + removing the device from device hierarchy + + int pm_runtime_idle(struct device *dev); + - execute the subsystem-level idle callback for the device; returns an + error code on failure, where -EINPROGRESS means that ->runtime_idle() is + already being executed; if there is no callback or the callback returns 0 + then run pm_runtime_autosuspend(dev) and return its result + + int pm_runtime_suspend(struct device *dev); + - execute the subsystem-level suspend callback for the device; returns 0 on + success, 1 if the device's runtime PM status was already 'suspended', or + error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt + to suspend the device again in future and -EACCES means that + 'power.disable_depth' is different from 0 + + int pm_runtime_autosuspend(struct device *dev); + - same as pm_runtime_suspend() except that the autosuspend delay is taken + into account; if pm_runtime_autosuspend_expiration() says the delay has + not yet expired then an autosuspend is scheduled for the appropriate time + and 0 is returned + + int pm_runtime_resume(struct device *dev); + - execute the subsystem-level resume callback for the device; returns 0 on + success, 1 if the device's runtime PM status was already 'active' or + error code on failure, where -EAGAIN means it may be safe to attempt to + resume the device again in future, but 'power.runtime_error' should be + checked additionally, and -EACCES means that 'power.disable_depth' is + different from 0 + + int pm_request_idle(struct device *dev); + - submit a request to execute the subsystem-level idle callback for the + device (the request is represented by a work item in pm_wq); returns 0 on + success or error code if the request has not been queued up + + int pm_request_autosuspend(struct device *dev); + - schedule the execution of the subsystem-level suspend callback for the + device when the autosuspend delay has expired; if the delay has already + expired then the work item is queued up immediately + + int pm_schedule_suspend(struct device *dev, unsigned int delay); + - schedule the execution of the subsystem-level suspend callback for the + device in future, where 'delay' is the time to wait before queuing up a + suspend work item in pm_wq, in milliseconds (if 'delay' is zero, the work + item is queued up immediately); returns 0 on success, 1 if the device's PM + runtime status was already 'suspended', or error code if the request + hasn't been scheduled (or queued up if 'delay' is 0); if the execution of + ->runtime_suspend() is already scheduled and not yet expired, the new + value of 'delay' will be used as the time to wait + + int pm_request_resume(struct device *dev); + - submit a request to execute the subsystem-level resume callback for the + device (the request is represented by a work item in pm_wq); returns 0 on + success, 1 if the device's runtime PM status was already 'active', or + error code if the request hasn't been queued up + + void pm_runtime_get_noresume(struct device *dev); + - increment the device's usage counter + + int pm_runtime_get(struct device *dev); + - increment the device's usage counter, run pm_request_resume(dev) and + return its result + + int pm_runtime_get_sync(struct device *dev); + - increment the device's usage counter, run pm_runtime_resume(dev) and + return its result + + void pm_runtime_put_noidle(struct device *dev); + - decrement the device's usage counter + + int pm_runtime_put(struct device *dev); + - decrement the device's usage counter; if the result is 0 then run + pm_request_idle(dev) and return its result + + int pm_runtime_put_autosuspend(struct device *dev); + - decrement the device's usage counter; if the result is 0 then run + pm_request_autosuspend(dev) and return its result + + int pm_runtime_put_sync(struct device *dev); + - decrement the device's usage counter; if the result is 0 then run + pm_runtime_idle(dev) and return its result + + int pm_runtime_put_sync_suspend(struct device *dev); + - decrement the device's usage counter; if the result is 0 then run + pm_runtime_suspend(dev) and return its result + + int pm_runtime_put_sync_autosuspend(struct device *dev); + - decrement the device's usage counter; if the result is 0 then run + pm_runtime_autosuspend(dev) and return its result + + void pm_runtime_enable(struct device *dev); + - decrement the device's 'power.disable_depth' field; if that field is equal + to zero, the runtime PM helper functions can execute subsystem-level + callbacks described in Section 2 for the device + + int pm_runtime_disable(struct device *dev); + - increment the device's 'power.disable_depth' field (if the value of that + field was previously zero, this prevents subsystem-level runtime PM + callbacks from being run for the device), make sure that all of the + pending runtime PM operations on the device are either completed or + canceled; returns 1 if there was a resume request pending and it was + necessary to execute the subsystem-level resume callback for the device + to satisfy that request, otherwise 0 is returned + + int pm_runtime_barrier(struct device *dev); + - check if there's a resume request pending for the device and resume it + (synchronously) in that case, cancel any other pending runtime PM requests + regarding it and wait for all runtime PM operations on it in progress to + complete; returns 1 if there was a resume request pending and it was + necessary to execute the subsystem-level resume callback for the device to + satisfy that request, otherwise 0 is returned + + void pm_suspend_ignore_children(struct device *dev, bool enable); + - set/unset the power.ignore_children flag of the device + + int pm_runtime_set_active(struct device *dev); + - clear the device's 'power.runtime_error' flag, set the device's runtime + PM status to 'active' and update its parent's counter of 'active' + children as appropriate (it is only valid to use this function if + 'power.runtime_error' is set or 'power.disable_depth' is greater than + zero); it will fail and return error code if the device has a parent + which is not active and the 'power.ignore_children' flag of which is unset + + void pm_runtime_set_suspended(struct device *dev); + - clear the device's 'power.runtime_error' flag, set the device's runtime + PM status to 'suspended' and update its parent's counter of 'active' + children as appropriate (it is only valid to use this function if + 'power.runtime_error' is set or 'power.disable_depth' is greater than + zero) + + bool pm_runtime_active(struct device *dev); + - return true if the device's runtime PM status is 'active' or its + 'power.disable_depth' field is not equal to zero, or false otherwise + + bool pm_runtime_suspended(struct device *dev); + - return true if the device's runtime PM status is 'suspended' and its + 'power.disable_depth' field is equal to zero, or false otherwise + + bool pm_runtime_status_suspended(struct device *dev); + - return true if the device's runtime PM status is 'suspended' + + bool pm_runtime_suspended_if_enabled(struct device *dev); + - return true if the device's runtime PM status is 'suspended' and its + 'power.disable_depth' field is equal to 1 + + void pm_runtime_allow(struct device *dev); + - set the power.runtime_auto flag for the device and decrease its usage + counter (used by the /sys/devices/.../power/control interface to + effectively allow the device to be power managed at run time) + + void pm_runtime_forbid(struct device *dev); + - unset the power.runtime_auto flag for the device and increase its usage + counter (used by the /sys/devices/.../power/control interface to + effectively prevent the device from being power managed at run time) + + void pm_runtime_no_callbacks(struct device *dev); + - set the power.no_callbacks flag for the device and remove the runtime + PM attributes from /sys/devices/.../power (or prevent them from being + added when the device is registered) + + void pm_runtime_irq_safe(struct device *dev); + - set the power.irq_safe flag for the device, causing the runtime-PM + callbacks to be invoked with interrupts off + + bool pm_runtime_is_irq_safe(struct device *dev); + - return true if power.irq_safe flag was set for the device, causing + the runtime-PM callbacks to be invoked with interrupts off + + void pm_runtime_mark_last_busy(struct device *dev); + - set the power.last_busy field to the current time + + void pm_runtime_use_autosuspend(struct device *dev); + - set the power.use_autosuspend flag, enabling autosuspend delays + + void pm_runtime_dont_use_autosuspend(struct device *dev); + - clear the power.use_autosuspend flag, disabling autosuspend delays + + void pm_runtime_set_autosuspend_delay(struct device *dev, int delay); + - set the power.autosuspend_delay value to 'delay' (expressed in + milliseconds); if 'delay' is negative then runtime suspends are + prevented + + unsigned long pm_runtime_autosuspend_expiration(struct device *dev); + - calculate the time when the current autosuspend delay period will expire, + based on power.last_busy and power.autosuspend_delay; if the delay time + is 1000 ms or larger then the expiration time is rounded up to the + nearest second; returns 0 if the delay period has already expired or + power.use_autosuspend isn't set, otherwise returns the expiration time + in jiffies + +It is safe to execute the following helper functions from interrupt context: + +pm_request_idle() +pm_request_autosuspend() +pm_schedule_suspend() +pm_request_resume() +pm_runtime_get_noresume() +pm_runtime_get() +pm_runtime_put_noidle() +pm_runtime_put() +pm_runtime_put_autosuspend() +pm_runtime_enable() +pm_suspend_ignore_children() +pm_runtime_set_active() +pm_runtime_set_suspended() +pm_runtime_suspended() +pm_runtime_mark_last_busy() +pm_runtime_autosuspend_expiration() + +If pm_runtime_irq_safe() has been called for a device then the following helper +functions may also be used in interrupt context: + +pm_runtime_idle() +pm_runtime_suspend() +pm_runtime_autosuspend() +pm_runtime_resume() +pm_runtime_get_sync() +pm_runtime_put_sync() +pm_runtime_put_sync_suspend() +pm_runtime_put_sync_autosuspend() + +5. Runtime PM Initialization, Device Probing and Removal + +Initially, the runtime PM is disabled for all devices, which means that the +majority of the runtime PM helper functions described in Section 4 will return +-EAGAIN until pm_runtime_enable() is called for the device. + +In addition to that, the initial runtime PM status of all devices is +'suspended', but it need not reflect the actual physical state of the device. +Thus, if the device is initially active (i.e. it is able to process I/O), its +runtime PM status must be changed to 'active', with the help of +pm_runtime_set_active(), before pm_runtime_enable() is called for the device. + +However, if the device has a parent and the parent's runtime PM is enabled, +calling pm_runtime_set_active() for the device will affect the parent, unless +the parent's 'power.ignore_children' flag is set. Namely, in that case the +parent won't be able to suspend at run time, using the PM core's helper +functions, as long as the child's status is 'active', even if the child's +runtime PM is still disabled (i.e. pm_runtime_enable() hasn't been called for +the child yet or pm_runtime_disable() has been called for it). For this reason, +once pm_runtime_set_active() has been called for the device, pm_runtime_enable() +should be called for it too as soon as reasonably possible or its runtime PM +status should be changed back to 'suspended' with the help of +pm_runtime_set_suspended(). + +If the default initial runtime PM status of the device (i.e. 'suspended') +reflects the actual state of the device, its bus type's or its driver's +->probe() callback will likely need to wake it up using one of the PM core's +helper functions described in Section 4. In that case, pm_runtime_resume() +should be used. Of course, for this purpose the device's runtime PM has to be +enabled earlier by calling pm_runtime_enable(). + +It may be desirable to suspend the device once ->probe() has finished. +Therefore the driver core uses the asyncronous pm_request_idle() to submit a +request to execute the subsystem-level idle callback for the device at that +time. A driver that makes use of the runtime autosuspend feature, may want to +update the last busy mark before returning from ->probe(). + +Moreover, the driver core prevents runtime PM callbacks from racing with the bus +notifier callback in __device_release_driver(), which is necessary, because the +notifier is used by some subsystems to carry out operations affecting the +runtime PM functionality. It does so by calling pm_runtime_get_sync() before +driver_sysfs_remove() and the BUS_NOTIFY_UNBIND_DRIVER notifications. This +resumes the device if it's in the suspended state and prevents it from +being suspended again while those routines are being executed. + +To allow bus types and drivers to put devices into the suspended state by +calling pm_runtime_suspend() from their ->remove() routines, the driver core +executes pm_runtime_put_sync() after running the BUS_NOTIFY_UNBIND_DRIVER +notifications in __device_release_driver(). This requires bus types and +drivers to make their ->remove() callbacks avoid races with runtime PM directly, +but also it allows of more flexibility in the handling of devices during the +removal of their drivers. + +The user space can effectively disallow the driver of the device to power manage +it at run time by changing the value of its /sys/devices/.../power/control +attribute to "on", which causes pm_runtime_forbid() to be called. In principle, +this mechanism may also be used by the driver to effectively turn off the +runtime power management of the device until the user space turns it on. +Namely, during the initialization the driver can make sure that the runtime PM +status of the device is 'active' and call pm_runtime_forbid(). It should be +noted, however, that if the user space has already intentionally changed the +value of /sys/devices/.../power/control to "auto" to allow the driver to power +manage the device at run time, the driver may confuse it by using +pm_runtime_forbid() this way. + +6. Runtime PM and System Sleep + +Runtime PM and system sleep (i.e., system suspend and hibernation, also known +as suspend-to-RAM and suspend-to-disk) interact with each other in a couple of +ways. If a device is active when a system sleep starts, everything is +straightforward. But what should happen if the device is already suspended? + +The device may have different wake-up settings for runtime PM and system sleep. +For example, remote wake-up may be enabled for runtime suspend but disallowed +for system sleep (device_may_wakeup(dev) returns 'false'). When this happens, +the subsystem-level system suspend callback is responsible for changing the +device's wake-up setting (it may leave that to the device driver's system +suspend routine). It may be necessary to resume the device and suspend it again +in order to do so. The same is true if the driver uses different power levels +or other settings for runtime suspend and system sleep. + +During system resume, the simplest approach is to bring all devices back to full +power, even if they had been suspended before the system suspend began. There +are several reasons for this, including: + + * The device might need to switch power levels, wake-up settings, etc. + + * Remote wake-up events might have been lost by the firmware. + + * The device's children may need the device to be at full power in order + to resume themselves. + + * The driver's idea of the device state may not agree with the device's + physical state. This can happen during resume from hibernation. + + * The device might need to be reset. + + * Even though the device was suspended, if its usage counter was > 0 then most + likely it would need a runtime resume in the near future anyway. + +If the device had been suspended before the system suspend began and it's +brought back to full power during resume, then its runtime PM status will have +to be updated to reflect the actual post-system sleep status. The way to do +this is: + + pm_runtime_disable(dev); + pm_runtime_set_active(dev); + pm_runtime_enable(dev); + +The PM core always increments the runtime usage counter before calling the +->suspend() callback and decrements it after calling the ->resume() callback. +Hence disabling runtime PM temporarily like this will not cause any runtime +suspend attempts to be permanently lost. If the usage count goes to zero +following the return of the ->resume() callback, the ->runtime_idle() callback +will be invoked as usual. + +On some systems, however, system sleep is not entered through a global firmware +or hardware operation. Instead, all hardware components are put into low-power +states directly by the kernel in a coordinated way. Then, the system sleep +state effectively follows from the states the hardware components end up in +and the system is woken up from that state by a hardware interrupt or a similar +mechanism entirely under the kernel's control. As a result, the kernel never +gives control away and the states of all devices during resume are precisely +known to it. If that is the case and none of the situations listed above takes +place (in particular, if the system is not waking up from hibernation), it may +be more efficient to leave the devices that had been suspended before the system +suspend began in the suspended state. + +To this end, the PM core provides a mechanism allowing some coordination between +different levels of device hierarchy. Namely, if a system suspend .prepare() +callback returns a positive number for a device, that indicates to the PM core +that the device appears to be runtime-suspended and its state is fine, so it +may be left in runtime suspend provided that all of its descendants are also +left in runtime suspend. If that happens, the PM core will not execute any +system suspend and resume callbacks for all of those devices, except for the +complete callback, which is then entirely responsible for handling the device +as appropriate. This only applies to system suspend transitions that are not +related to hibernation (see Documentation/power/devices.txt for more +information). + +The PM core does its best to reduce the probability of race conditions between +the runtime PM and system suspend/resume (and hibernation) callbacks by carrying +out the following operations: + + * During system suspend pm_runtime_get_noresume() is called for every device + right before executing the subsystem-level .prepare() callback for it and + pm_runtime_barrier() is called for every device right before executing the + subsystem-level .suspend() callback for it. In addition to that the PM core + calls __pm_runtime_disable() with 'false' as the second argument for every + device right before executing the subsystem-level .suspend_late() callback + for it. + + * During system resume pm_runtime_enable() and pm_runtime_put() are called for + every device right after executing the subsystem-level .resume_early() + callback and right after executing the subsystem-level .complete() callback + for it, respectively. + +7. Generic subsystem callbacks + +Subsystems may wish to conserve code space by using the set of generic power +management callbacks provided by the PM core, defined in +driver/base/power/generic_ops.c: + + int pm_generic_runtime_suspend(struct device *dev); + - invoke the ->runtime_suspend() callback provided by the driver of this + device and return its result, or return 0 if not defined + + int pm_generic_runtime_resume(struct device *dev); + - invoke the ->runtime_resume() callback provided by the driver of this + device and return its result, or return 0 if not defined + + int pm_generic_suspend(struct device *dev); + - if the device has not been suspended at run time, invoke the ->suspend() + callback provided by its driver and return its result, or return 0 if not + defined + + int pm_generic_suspend_noirq(struct device *dev); + - if pm_runtime_suspended(dev) returns "false", invoke the ->suspend_noirq() + callback provided by the device's driver and return its result, or return + 0 if not defined + + int pm_generic_resume(struct device *dev); + - invoke the ->resume() callback provided by the driver of this device and, + if successful, change the device's runtime PM status to 'active' + + int pm_generic_resume_noirq(struct device *dev); + - invoke the ->resume_noirq() callback provided by the driver of this device + + int pm_generic_freeze(struct device *dev); + - if the device has not been suspended at run time, invoke the ->freeze() + callback provided by its driver and return its result, or return 0 if not + defined + + int pm_generic_freeze_noirq(struct device *dev); + - if pm_runtime_suspended(dev) returns "false", invoke the ->freeze_noirq() + callback provided by the device's driver and return its result, or return + 0 if not defined + + int pm_generic_thaw(struct device *dev); + - if the device has not been suspended at run time, invoke the ->thaw() + callback provided by its driver and return its result, or return 0 if not + defined + + int pm_generic_thaw_noirq(struct device *dev); + - if pm_runtime_suspended(dev) returns "false", invoke the ->thaw_noirq() + callback provided by the device's driver and return its result, or return + 0 if not defined + + int pm_generic_poweroff(struct device *dev); + - if the device has not been suspended at run time, invoke the ->poweroff() + callback provided by its driver and return its result, or return 0 if not + defined + + int pm_generic_poweroff_noirq(struct device *dev); + - if pm_runtime_suspended(dev) returns "false", run the ->poweroff_noirq() + callback provided by the device's driver and return its result, or return + 0 if not defined + + int pm_generic_restore(struct device *dev); + - invoke the ->restore() callback provided by the driver of this device and, + if successful, change the device's runtime PM status to 'active' + + int pm_generic_restore_noirq(struct device *dev); + - invoke the ->restore_noirq() callback provided by the device's driver + +These functions are the defaults used by the PM core, if a subsystem doesn't +provide its own callbacks for ->runtime_idle(), ->runtime_suspend(), +->runtime_resume(), ->suspend(), ->suspend_noirq(), ->resume(), +->resume_noirq(), ->freeze(), ->freeze_noirq(), ->thaw(), ->thaw_noirq(), +->poweroff(), ->poweroff_noirq(), ->restore(), ->restore_noirq() in the +subsystem-level dev_pm_ops structure. + +Device drivers that wish to use the same function as a system suspend, freeze, +poweroff and runtime suspend callback, and similarly for system resume, thaw, +restore, and runtime resume, can achieve this with the help of the +UNIVERSAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its +last argument to NULL). + +8. "No-Callback" Devices + +Some "devices" are only logical sub-devices of their parent and cannot be +power-managed on their own. (The prototype example is a USB interface. Entire +USB devices can go into low-power mode or send wake-up requests, but neither is +possible for individual interfaces.) The drivers for these devices have no +need of runtime PM callbacks; if the callbacks did exist, ->runtime_suspend() +and ->runtime_resume() would always return 0 without doing anything else and +->runtime_idle() would always call pm_runtime_suspend(). + +Subsystems can tell the PM core about these devices by calling +pm_runtime_no_callbacks(). This should be done after the device structure is +initialized and before it is registered (although after device registration is +also okay). The routine will set the device's power.no_callbacks flag and +prevent the non-debugging runtime PM sysfs attributes from being created. + +When power.no_callbacks is set, the PM core will not invoke the +->runtime_idle(), ->runtime_suspend(), or ->runtime_resume() callbacks. +Instead it will assume that suspends and resumes always succeed and that idle +devices should be suspended. + +As a consequence, the PM core will never directly inform the device's subsystem +or driver about runtime power changes. Instead, the driver for the device's +parent must take responsibility for telling the device's driver when the +parent's power state changes. + +9. Autosuspend, or automatically-delayed suspends + +Changing a device's power state isn't free; it requires both time and energy. +A device should be put in a low-power state only when there's some reason to +think it will remain in that state for a substantial time. A common heuristic +says that a device which hasn't been used for a while is liable to remain +unused; following this advice, drivers should not allow devices to be suspended +at runtime until they have been inactive for some minimum period. Even when +the heuristic ends up being non-optimal, it will still prevent devices from +"bouncing" too rapidly between low-power and full-power states. + +The term "autosuspend" is an historical remnant. It doesn't mean that the +device is automatically suspended (the subsystem or driver still has to call +the appropriate PM routines); rather it means that runtime suspends will +automatically be delayed until the desired period of inactivity has elapsed. + +Inactivity is determined based on the power.last_busy field. Drivers should +call pm_runtime_mark_last_busy() to update this field after carrying out I/O, +typically just before calling pm_runtime_put_autosuspend(). The desired length +of the inactivity period is a matter of policy. Subsystems can set this length +initially by calling pm_runtime_set_autosuspend_delay(), but after device +registration the length should be controlled by user space, using the +/sys/devices/.../power/autosuspend_delay_ms attribute. + +In order to use autosuspend, subsystems or drivers must call +pm_runtime_use_autosuspend() (preferably before registering the device), and +thereafter they should use the various *_autosuspend() helper functions instead +of the non-autosuspend counterparts: + + Instead of: pm_runtime_suspend use: pm_runtime_autosuspend; + Instead of: pm_schedule_suspend use: pm_request_autosuspend; + Instead of: pm_runtime_put use: pm_runtime_put_autosuspend; + Instead of: pm_runtime_put_sync use: pm_runtime_put_sync_autosuspend. + +Drivers may also continue to use the non-autosuspend helper functions; they +will behave normally, not taking the autosuspend delay into account. +Similarly, if the power.use_autosuspend field isn't set then the autosuspend +helper functions will behave just like the non-autosuspend counterparts. + +Under some circumstances a driver or subsystem may want to prevent a device +from autosuspending immediately, even though the usage counter is zero and the +autosuspend delay time has expired. If the ->runtime_suspend() callback +returns -EAGAIN or -EBUSY, and if the next autosuspend delay expiration time is +in the future (as it normally would be if the callback invoked +pm_runtime_mark_last_busy()), the PM core will automatically reschedule the +autosuspend. The ->runtime_suspend() callback can't do this rescheduling +itself because no suspend requests of any kind are accepted while the device is +suspending (i.e., while the callback is running). + +The implementation is well suited for asynchronous use in interrupt contexts. +However such use inevitably involves races, because the PM core can't +synchronize ->runtime_suspend() callbacks with the arrival of I/O requests. +This synchronization must be handled by the driver, using its private lock. +Here is a schematic pseudo-code example: + + foo_read_or_write(struct foo_priv *foo, void *data) + { + lock(&foo->private_lock); + add_request_to_io_queue(foo, data); + if (foo->num_pending_requests++ == 0) + pm_runtime_get(&foo->dev); + if (!foo->is_suspended) + foo_process_next_request(foo); + unlock(&foo->private_lock); + } + + foo_io_completion(struct foo_priv *foo, void *req) + { + lock(&foo->private_lock); + if (--foo->num_pending_requests == 0) { + pm_runtime_mark_last_busy(&foo->dev); + pm_runtime_put_autosuspend(&foo->dev); + } else { + foo_process_next_request(foo); + } + unlock(&foo->private_lock); + /* Send req result back to the user ... */ + } + + int foo_runtime_suspend(struct device *dev) + { + struct foo_priv foo = container_of(dev, ...); + int ret = 0; + + lock(&foo->private_lock); + if (foo->num_pending_requests > 0) { + ret = -EBUSY; + } else { + /* ... suspend the device ... */ + foo->is_suspended = 1; + } + unlock(&foo->private_lock); + return ret; + } + + int foo_runtime_resume(struct device *dev) + { + struct foo_priv foo = container_of(dev, ...); + + lock(&foo->private_lock); + /* ... resume the device ... */ + foo->is_suspended = 0; + pm_runtime_mark_last_busy(&foo->dev); + if (foo->num_pending_requests > 0) + foo_process_next_request(foo); + unlock(&foo->private_lock); + return 0; + } + +The important point is that after foo_io_completion() asks for an autosuspend, +the foo_runtime_suspend() callback may race with foo_read_or_write(). +Therefore foo_runtime_suspend() has to check whether there are any pending I/O +requests (while holding the private lock) before allowing the suspend to +proceed. + +In addition, the power.autosuspend_delay field can be changed by user space at +any time. If a driver cares about this, it can call +pm_runtime_autosuspend_expiration() from within the ->runtime_suspend() +callback while holding its private lock. If the function returns a nonzero +value then the delay has not yet expired and the callback should return +-EAGAIN. diff --git a/Documentation/power/s2ram.txt b/Documentation/power/s2ram.txt new file mode 100644 index 000000000..4685aee19 --- /dev/null +++ b/Documentation/power/s2ram.txt @@ -0,0 +1,85 @@ + How to get s2ram working + ~~~~~~~~~~~~~~~~~~~~~~~~ + 2006 Linus Torvalds + 2006 Pavel Machek + +1) Check suspend.sf.net, program s2ram there has long whitelist of + "known ok" machines, along with tricks to use on each one. + +2) If that does not help, try reading tricks.txt and + video.txt. Perhaps problem is as simple as broken module, and + simple module unload can fix it. + +3) You can use Linus' TRACE_RESUME infrastructure, described below. + + Using TRACE_RESUME + ~~~~~~~~~~~~~~~~~~ + +I've been working at making the machines I have able to STR, and almost +always it's a driver that is buggy. Thank God for the suspend/resume +debugging - the thing that Chuck tried to disable. That's often the _only_ +way to debug these things, and it's actually pretty powerful (but +time-consuming - having to insert TRACE_RESUME() markers into the device +driver that doesn't resume and recompile and reboot). + +Anyway, the way to debug this for people who are interested (have a +machine that doesn't boot) is: + + - enable PM_DEBUG, and PM_TRACE + + - use a script like this: + + #!/bin/sh + sync + echo 1 > /sys/power/pm_trace + echo mem > /sys/power/state + + to suspend + + - if it doesn't come back up (which is usually the problem), reboot by + holding the power button down, and look at the dmesg output for things + like + + Magic number: 4:156:725 + hash matches drivers/base/power/resume.c:28 + hash matches device 0000:01:00.0 + + which means that the last trace event was just before trying to resume + device 0000:01:00.0. Then figure out what driver is controlling that + device (lspci and /sys/devices/pci* is your friend), and see if you can + fix it, disable it, or trace into its resume function. + + If no device matches the hash (or any matches appear to be false positives), + the culprit may be a device from a loadable kernel module that is not loaded + until after the hash is checked. You can check the hash against the current + devices again after more modules are loaded using sysfs: + + cat /sys/power/pm_trace_dev_match + +For example, the above happens to be the VGA device on my EVO, which I +used to run with "radeonfb" (it's an ATI Radeon mobility). It turns out +that "radeonfb" simply cannot resume that device - it tries to set the +PLL's, and it just _hangs_. Using the regular VGA console and letting X +resume it instead works fine. + +NOTE +==== +pm_trace uses the system's Real Time Clock (RTC) to save the magic number. +Reason for this is that the RTC is the only reliably available piece of +hardware during resume operations where a value can be set that will +survive a reboot. + +pm_trace is not compatible with asynchronous suspend, so it turns +asynchronous suspend off (which may work around timing or +ordering-sensitive bugs). + +Consequence is that after a resume (even if it is successful) your system +clock will have a value corresponding to the magic number instead of the +correct date/time! It is therefore advisable to use a program like ntp-date +or rdate to reset the correct date/time from an external time source when +using this trace option. + +As the clock keeps ticking it is also essential that the reboot is done +quickly after the resume failure. The trace option does not use the seconds +or the low order bits of the minutes of the RTC, but a too long delay will +corrupt the magic value. diff --git a/Documentation/power/states.txt b/Documentation/power/states.txt new file mode 100644 index 000000000..50f3ef917 --- /dev/null +++ b/Documentation/power/states.txt @@ -0,0 +1,109 @@ +System Power Management Sleep States + +(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com> + +The kernel supports up to four system sleep states generically, although three +of them depend on the platform support code to implement the low-level details +for each state. + +The states are represented by strings that can be read or written to the +/sys/power/state file. Those strings may be "mem", "standby", "freeze" and +"disk", where the last one always represents hibernation (Suspend-To-Disk) and +the meaning of the remaining ones depends on the relative_sleep_states command +line argument. + +For relative_sleep_states=1, the strings "mem", "standby" and "freeze" label the +available non-hibernation sleep states from the deepest to the shallowest, +respectively. In that case, "mem" is always present in /sys/power/state, +because there is at least one non-hibernation sleep state in every system. If +the given system supports two non-hibernation sleep states, "standby" is present +in /sys/power/state in addition to "mem". If the system supports three +non-hibernation sleep states, "freeze" will be present in /sys/power/state in +addition to "mem" and "standby". + +For relative_sleep_states=0, which is the default, the following descriptions +apply. + +state: Suspend-To-Idle +ACPI state: S0 +Label: "freeze" + +This state is a generic, pure software, light-weight, system sleep state. +It allows more energy to be saved relative to runtime idle by freezing user +space and putting all I/O devices into low-power states (possibly +lower-power than available at run time), such that the processors can +spend more time in their idle states. + +This state can be used for platforms without Power-On Suspend/Suspend-to-RAM +support, or it can be used in addition to Suspend-to-RAM (memory sleep) +to provide reduced resume latency. It is always supported. + + +State: Standby / Power-On Suspend +ACPI State: S1 +Label: "standby" + +This state, if supported, offers moderate, though real, power savings, while +providing a relatively low-latency transition back to a working system. No +operating state is lost (the CPU retains power), so the system easily starts up +again where it left off. + +In addition to freezing user space and putting all I/O devices into low-power +states, which is done for Suspend-To-Idle too, nonboot CPUs are taken offline +and all low-level system functions are suspended during transitions into this +state. For this reason, it should allow more energy to be saved relative to +Suspend-To-Idle, but the resume latency will generally be greater than for that +state. + + +State: Suspend-to-RAM +ACPI State: S3 +Label: "mem" + +This state, if supported, offers significant power savings as everything in the +system is put into a low-power state, except for memory, which should be placed +into the self-refresh mode to retain its contents. All of the steps carried out +when entering Power-On Suspend are also carried out during transitions to STR. +Additional operations may take place depending on the platform capabilities. In +particular, on ACPI systems the kernel passes control to the BIOS (platform +firmware) as the last step during STR transitions and that usually results in +powering down some more low-level components that aren't directly controlled by +the kernel. + +System and device state is saved and kept in memory. All devices are suspended +and put into low-power states. In many cases, all peripheral buses lose power +when entering STR, so devices must be able to handle the transition back to the +"on" state. + +For at least ACPI, STR requires some minimal boot-strapping code to resume the +system from it. This may be the case on other platforms too. + + +State: Suspend-to-disk +ACPI State: S4 +Label: "disk" + +This state offers the greatest power savings, and can be used even in +the absence of low-level platform support for power management. This +state operates similarly to Suspend-to-RAM, but includes a final step +of writing memory contents to disk. On resume, this is read and memory +is restored to its pre-suspend state. + +STD can be handled by the firmware or the kernel. If it is handled by +the firmware, it usually requires a dedicated partition that must be +setup via another operating system for it to use. Despite the +inconvenience, this method requires minimal work by the kernel, since +the firmware will also handle restoring memory contents on resume. + +For suspend-to-disk, a mechanism called 'swsusp' (Swap Suspend) is used +to write memory contents to free swap space. swsusp has some restrictive +requirements, but should work in most cases. Some, albeit outdated, +documentation can be found in Documentation/power/swsusp.txt. +Alternatively, userspace can do most of the actual suspend to disk work, +see userland-swsusp.txt. + +Once memory state is written to disk, the system may either enter a +low-power state (like ACPI S4), or it may simply power down. Powering +down offers greater savings, and allows this mechanism to work on any +system. However, entering a real low-power state allows the user to +trigger wake up events (e.g. pressing a key or opening a laptop lid). diff --git a/Documentation/power/suspend-and-cpuhotplug.txt b/Documentation/power/suspend-and-cpuhotplug.txt new file mode 100644 index 000000000..2850df3bf --- /dev/null +++ b/Documentation/power/suspend-and-cpuhotplug.txt @@ -0,0 +1,275 @@ +Interaction of Suspend code (S3) with the CPU hotplug infrastructure + + (C) 2011 - 2014 Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> + + +I. How does the regular CPU hotplug code differ from how the Suspend-to-RAM + infrastructure uses it internally? And where do they share common code? + +Well, a picture is worth a thousand words... So ASCII art follows :-) + +[This depicts the current design in the kernel, and focusses only on the +interactions involving the freezer and CPU hotplug and also tries to explain +the locking involved. It outlines the notifications involved as well. +But please note that here, only the call paths are illustrated, with the aim +of describing where they take different paths and where they share code. +What happens when regular CPU hotplug and Suspend-to-RAM race with each other +is not depicted here.] + +On a high level, the suspend-resume cycle goes like this: + +|Freeze| -> |Disable nonboot| -> |Do suspend| -> |Enable nonboot| -> |Thaw | +|tasks | | cpus | | | | cpus | |tasks| + + +More details follow: + + Suspend call path + ----------------- + + Write 'mem' to + /sys/power/state + sysfs file + | + v + Acquire pm_mutex lock + | + v + Send PM_SUSPEND_PREPARE + notifications + | + v + Freeze tasks + | + | + v + disable_nonboot_cpus() + /* start */ + | + v + Acquire cpu_add_remove_lock + | + v + Iterate over CURRENTLY + online CPUs + | + | + | ---------- + v | L + ======> _cpu_down() | + | [This takes cpuhotplug.lock | + Common | before taking down the CPU | + code | and releases it when done] | O + | While it is at it, notifications | + | are sent when notable events occur, | + ======> by running all registered callbacks. | + | | O + | | + | | + v | + Note down these cpus in | P + frozen_cpus mask ---------- + | + v + Disable regular cpu hotplug + by setting cpu_hotplug_disabled=1 + | + v + Release cpu_add_remove_lock + | + v + /* disable_nonboot_cpus() complete */ + | + v + Do suspend + + + +Resuming back is likewise, with the counterparts being (in the order of +execution during resume): +* enable_nonboot_cpus() which involves: + | Acquire cpu_add_remove_lock + | Reset cpu_hotplug_disabled to 0, thereby enabling regular cpu hotplug + | Call _cpu_up() [for all those cpus in the frozen_cpus mask, in a loop] + | Release cpu_add_remove_lock + v + +* thaw tasks +* send PM_POST_SUSPEND notifications +* Release pm_mutex lock. + + +It is to be noted here that the pm_mutex lock is acquired at the very +beginning, when we are just starting out to suspend, and then released only +after the entire cycle is complete (i.e., suspend + resume). + + + + Regular CPU hotplug call path + ----------------------------- + + Write 0 (or 1) to + /sys/devices/system/cpu/cpu*/online + sysfs file + | + | + v + cpu_down() + | + v + Acquire cpu_add_remove_lock + | + v + If cpu_hotplug_disabled is 1 + return gracefully + | + | + v + ======> _cpu_down() + | [This takes cpuhotplug.lock + Common | before taking down the CPU + code | and releases it when done] + | While it is at it, notifications + | are sent when notable events occur, + ======> by running all registered callbacks. + | + | + v + Release cpu_add_remove_lock + [That's it!, for + regular CPU hotplug] + + + +So, as can be seen from the two diagrams (the parts marked as "Common code"), +regular CPU hotplug and the suspend code path converge at the _cpu_down() and +_cpu_up() functions. They differ in the arguments passed to these functions, +in that during regular CPU hotplug, 0 is passed for the 'tasks_frozen' +argument. But during suspend, since the tasks are already frozen by the time +the non-boot CPUs are offlined or onlined, the _cpu_*() functions are called +with the 'tasks_frozen' argument set to 1. +[See below for some known issues regarding this.] + + +Important files and functions/entry points: +------------------------------------------ + +kernel/power/process.c : freeze_processes(), thaw_processes() +kernel/power/suspend.c : suspend_prepare(), suspend_enter(), suspend_finish() +kernel/cpu.c: cpu_[up|down](), _cpu_[up|down](), [disable|enable]_nonboot_cpus() + + + +II. What are the issues involved in CPU hotplug? + ------------------------------------------- + +There are some interesting situations involving CPU hotplug and microcode +update on the CPUs, as discussed below: + +[Please bear in mind that the kernel requests the microcode images from +userspace, using the request_firmware() function defined in +drivers/base/firmware_class.c] + + +a. When all the CPUs are identical: + + This is the most common situation and it is quite straightforward: we want + to apply the same microcode revision to each of the CPUs. + To give an example of x86, the collect_cpu_info() function defined in + arch/x86/kernel/microcode_core.c helps in discovering the type of the CPU + and thereby in applying the correct microcode revision to it. + But note that the kernel does not maintain a common microcode image for the + all CPUs, in order to handle case 'b' described below. + + +b. When some of the CPUs are different than the rest: + + In this case since we probably need to apply different microcode revisions + to different CPUs, the kernel maintains a copy of the correct microcode + image for each CPU (after appropriate CPU type/model discovery using + functions such as collect_cpu_info()). + + +c. When a CPU is physically hot-unplugged and a new (and possibly different + type of) CPU is hot-plugged into the system: + + In the current design of the kernel, whenever a CPU is taken offline during + a regular CPU hotplug operation, upon receiving the CPU_DEAD notification + (which is sent by the CPU hotplug code), the microcode update driver's + callback for that event reacts by freeing the kernel's copy of the + microcode image for that CPU. + + Hence, when a new CPU is brought online, since the kernel finds that it + doesn't have the microcode image, it does the CPU type/model discovery + afresh and then requests the userspace for the appropriate microcode image + for that CPU, which is subsequently applied. + + For example, in x86, the mc_cpu_callback() function (which is the microcode + update driver's callback registered for CPU hotplug events) calls + microcode_update_cpu() which would call microcode_init_cpu() in this case, + instead of microcode_resume_cpu() when it finds that the kernel doesn't + have a valid microcode image. This ensures that the CPU type/model + discovery is performed and the right microcode is applied to the CPU after + getting it from userspace. + + +d. Handling microcode update during suspend/hibernate: + + Strictly speaking, during a CPU hotplug operation which does not involve + physically removing or inserting CPUs, the CPUs are not actually powered + off during a CPU offline. They are just put to the lowest C-states possible. + Hence, in such a case, it is not really necessary to re-apply microcode + when the CPUs are brought back online, since they wouldn't have lost the + image during the CPU offline operation. + + This is the usual scenario encountered during a resume after a suspend. + However, in the case of hibernation, since all the CPUs are completely + powered off, during restore it becomes necessary to apply the microcode + images to all the CPUs. + + [Note that we don't expect someone to physically pull out nodes and insert + nodes with a different type of CPUs in-between a suspend-resume or a + hibernate/restore cycle.] + + In the current design of the kernel however, during a CPU offline operation + as part of the suspend/hibernate cycle (the CPU_DEAD_FROZEN notification), + the existing copy of microcode image in the kernel is not freed up. + And during the CPU online operations (during resume/restore), since the + kernel finds that it already has copies of the microcode images for all the + CPUs, it just applies them to the CPUs, avoiding any re-discovery of CPU + type/model and the need for validating whether the microcode revisions are + right for the CPUs or not (due to the above assumption that physical CPU + hotplug will not be done in-between suspend/resume or hibernate/restore + cycles). + + +III. Are there any known problems when regular CPU hotplug and suspend race + with each other? + +Yes, they are listed below: + +1. When invoking regular CPU hotplug, the 'tasks_frozen' argument passed to + the _cpu_down() and _cpu_up() functions is *always* 0. + This might not reflect the true current state of the system, since the + tasks could have been frozen by an out-of-band event such as a suspend + operation in progress. Hence, it will lead to wrong notifications being + sent during the cpu online/offline events (eg, CPU_ONLINE notification + instead of CPU_ONLINE_FROZEN) which in turn will lead to execution of + inappropriate code by the callbacks registered for such CPU hotplug events. + +2. If a regular CPU hotplug stress test happens to race with the freezer due + to a suspend operation in progress at the same time, then we could hit the + situation described below: + + * A regular cpu online operation continues its journey from userspace + into the kernel, since the freezing has not yet begun. + * Then freezer gets to work and freezes userspace. + * If cpu online has not yet completed the microcode update stuff by now, + it will now start waiting on the frozen userspace in the + TASK_UNINTERRUPTIBLE state, in order to get the microcode image. + * Now the freezer continues and tries to freeze the remaining tasks. But + due to this wait mentioned above, the freezer won't be able to freeze + the cpu online hotplug task and hence freezing of tasks fails. + + As a result of this task freezing failure, the suspend operation gets + aborted. diff --git a/Documentation/power/suspend-and-interrupts.txt b/Documentation/power/suspend-and-interrupts.txt new file mode 100644 index 000000000..8afb29a86 --- /dev/null +++ b/Documentation/power/suspend-and-interrupts.txt @@ -0,0 +1,135 @@ +System Suspend and Device Interrupts + +Copyright (C) 2014 Intel Corp. +Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> + + +Suspending and Resuming Device IRQs +----------------------------------- + +Device interrupt request lines (IRQs) are generally disabled during system +suspend after the "late" phase of suspending devices (that is, after all of the +->prepare, ->suspend and ->suspend_late callbacks have been executed for all +devices). That is done by suspend_device_irqs(). + +The rationale for doing so is that after the "late" phase of device suspend +there is no legitimate reason why any interrupts from suspended devices should +trigger and if any devices have not been suspended properly yet, it is better to +block interrupts from them anyway. Also, in the past we had problems with +interrupt handlers for shared IRQs that device drivers implementing them were +not prepared for interrupts triggering after their devices had been suspended. +In some cases they would attempt to access, for example, memory address spaces +of suspended devices and cause unpredictable behavior to ensue as a result. +Unfortunately, such problems are very difficult to debug and the introduction +of suspend_device_irqs(), along with the "noirq" phase of device suspend and +resume, was the only practical way to mitigate them. + +Device IRQs are re-enabled during system resume, right before the "early" phase +of resuming devices (that is, before starting to execute ->resume_early +callbacks for devices). The function doing that is resume_device_irqs(). + + +The IRQF_NO_SUSPEND Flag +------------------------ + +There are interrupts that can legitimately trigger during the entire system +suspend-resume cycle, including the "noirq" phases of suspending and resuming +devices as well as during the time when nonboot CPUs are taken offline and +brought back online. That applies to timer interrupts in the first place, +but also to IPIs and to some other special-purpose interrupts. + +The IRQF_NO_SUSPEND flag is used to indicate that to the IRQ subsystem when +requesting a special-purpose interrupt. It causes suspend_device_irqs() to +leave the corresponding IRQ enabled so as to allow the interrupt to work as +expected during the suspend-resume cycle, but does not guarantee that the +interrupt will wake the system from a suspended state -- for such cases it is +necessary to use enable_irq_wake(). + +Note that the IRQF_NO_SUSPEND flag affects the entire IRQ and not just one +user of it. Thus, if the IRQ is shared, all of the interrupt handlers installed +for it will be executed as usual after suspend_device_irqs(), even if the +IRQF_NO_SUSPEND flag was not passed to request_irq() (or equivalent) by some of +the IRQ's users. For this reason, using IRQF_NO_SUSPEND and IRQF_SHARED at the +same time should be avoided. + + +System Wakeup Interrupts, enable_irq_wake() and disable_irq_wake() +------------------------------------------------------------------ + +System wakeup interrupts generally need to be configured to wake up the system +from sleep states, especially if they are used for different purposes (e.g. as +I/O interrupts) in the working state. + +That may involve turning on a special signal handling logic within the platform +(such as an SoC) so that signals from a given line are routed in a different way +during system sleep so as to trigger a system wakeup when needed. For example, +the platform may include a dedicated interrupt controller used specifically for +handling system wakeup events. Then, if a given interrupt line is supposed to +wake up the system from sleep sates, the corresponding input of that interrupt +controller needs to be enabled to receive signals from the line in question. +After wakeup, it generally is better to disable that input to prevent the +dedicated controller from triggering interrupts unnecessarily. + +The IRQ subsystem provides two helper functions to be used by device drivers for +those purposes. Namely, enable_irq_wake() turns on the platform's logic for +handling the given IRQ as a system wakeup interrupt line and disable_irq_wake() +turns that logic off. + +Calling enable_irq_wake() causes suspend_device_irqs() to treat the given IRQ +in a special way. Namely, the IRQ remains enabled, by on the first interrupt +it will be disabled, marked as pending and "suspended" so that it will be +re-enabled by resume_device_irqs() during the subsequent system resume. Also +the PM core is notified about the event which causes the system suspend in +progress to be aborted (that doesn't have to happen immediately, but at one +of the points where the suspend thread looks for pending wakeup events). + +This way every interrupt from a wakeup interrupt source will either cause the +system suspend currently in progress to be aborted or wake up the system if +already suspended. However, after suspend_device_irqs() interrupt handlers are +not executed for system wakeup IRQs. They are only executed for IRQF_NO_SUSPEND +IRQs at that time, but those IRQs should not be configured for system wakeup +using enable_irq_wake(). + + +Interrupts and Suspend-to-Idle +------------------------------ + +Suspend-to-idle (also known as the "freeze" sleep state) is a relatively new +system sleep state that works by idling all of the processors and waiting for +interrupts right after the "noirq" phase of suspending devices. + +Of course, this means that all of the interrupts with the IRQF_NO_SUSPEND flag +set will bring CPUs out of idle while in that state, but they will not cause the +IRQ subsystem to trigger a system wakeup. + +System wakeup interrupts, in turn, will trigger wakeup from suspend-to-idle in +analogy with what they do in the full system suspend case. The only difference +is that the wakeup from suspend-to-idle is signaled using the usual working +state interrupt delivery mechanisms and doesn't require the platform to use +any special interrupt handling logic for it to work. + + +IRQF_NO_SUSPEND and enable_irq_wake() +------------------------------------- + +There are very few valid reasons to use both enable_irq_wake() and the +IRQF_NO_SUSPEND flag on the same IRQ, and it is never valid to use both for the +same device. + +First of all, if the IRQ is not shared, the rules for handling IRQF_NO_SUSPEND +interrupts (interrupt handlers are invoked after suspend_device_irqs()) are +directly at odds with the rules for handling system wakeup interrupts (interrupt +handlers are not invoked after suspend_device_irqs()). + +Second, both enable_irq_wake() and IRQF_NO_SUSPEND apply to entire IRQs and not +to individual interrupt handlers, so sharing an IRQ between a system wakeup +interrupt source and an IRQF_NO_SUSPEND interrupt source does not generally +make sense. + +In rare cases an IRQ can be shared between a wakeup device driver and an +IRQF_NO_SUSPEND user. In order for this to be safe, the wakeup device driver +must be able to discern spurious IRQs from genuine wakeup events (signalling +the latter to the core with pm_system_wakeup()), must use enable_irq_wake() to +ensure that the IRQ will function as a wakeup source, and must request the IRQ +with IRQF_COND_SUSPEND to tell the core that it meets these requirements. If +these requirements are not met, it is not valid to use IRQF_COND_SUSPEND. diff --git a/Documentation/power/swsusp-and-swap-files.txt b/Documentation/power/swsusp-and-swap-files.txt new file mode 100644 index 000000000..f281886de --- /dev/null +++ b/Documentation/power/swsusp-and-swap-files.txt @@ -0,0 +1,60 @@ +Using swap files with software suspend (swsusp) + (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> + +The Linux kernel handles swap files almost in the same way as it handles swap +partitions and there are only two differences between these two types of swap +areas: +(1) swap files need not be contiguous, +(2) the header of a swap file is not in the first block of the partition that +holds it. From the swsusp's point of view (1) is not a problem, because it is +already taken care of by the swap-handling code, but (2) has to be taken into +consideration. + +In principle the location of a swap file's header may be determined with the +help of appropriate filesystem driver. Unfortunately, however, it requires the +filesystem holding the swap file to be mounted, and if this filesystem is +journaled, it cannot be mounted during resume from disk. For this reason to +identify a swap file swsusp uses the name of the partition that holds the file +and the offset from the beginning of the partition at which the swap file's +header is located. For convenience, this offset is expressed in <PAGE_SIZE> +units. + +In order to use a swap file with swsusp, you need to: + +1) Create the swap file and make it active, eg. + +# dd if=/dev/zero of=<swap_file_path> bs=1024 count=<swap_file_size_in_k> +# mkswap <swap_file_path> +# swapon <swap_file_path> + +2) Use an application that will bmap the swap file with the help of the +FIBMAP ioctl and determine the location of the file's swap header, as the +offset, in <PAGE_SIZE> units, from the beginning of the partition which +holds the swap file. + +3) Add the following parameters to the kernel command line: + +resume=<swap_file_partition> resume_offset=<swap_file_offset> + +where <swap_file_partition> is the partition on which the swap file is located +and <swap_file_offset> is the offset of the swap header determined by the +application in 2) (of course, this step may be carried out automatically +by the same application that determines the swap file's header offset using the +FIBMAP ioctl) + +OR + +Use a userland suspend application that will set the partition and offset +with the help of the SNAPSHOT_SET_SWAP_AREA ioctl described in +Documentation/power/userland-swsusp.txt (this is the only method to suspend +to a swap file allowing the resume to be initiated from an initrd or initramfs +image). + +Now, swsusp will use the swap file in the same way in which it would use a swap +partition. In particular, the swap file has to be active (ie. be present in +/proc/swaps) so that it can be used for suspending. + +Note that if the swap file used for suspending is deleted and recreated, +the location of its header need not be the same as before. Thus every time +this happens the value of the "resume_offset=" kernel command line parameter +has to be updated. diff --git a/Documentation/power/swsusp-dmcrypt.txt b/Documentation/power/swsusp-dmcrypt.txt new file mode 100644 index 000000000..59931b46f --- /dev/null +++ b/Documentation/power/swsusp-dmcrypt.txt @@ -0,0 +1,138 @@ +Author: Andreas Steinmetz <ast@domdv.de> + + +How to use dm-crypt and swsusp together: +======================================== + +Some prerequisites: +You know how dm-crypt works. If not, visit the following web page: +http://www.saout.de/misc/dm-crypt/ +You have read Documentation/power/swsusp.txt and understand it. +You did read Documentation/initrd.txt and know how an initrd works. +You know how to create or how to modify an initrd. + +Now your system is properly set up, your disk is encrypted except for +the swap device(s) and the boot partition which may contain a mini +system for crypto setup and/or rescue purposes. You may even have +an initrd that does your current crypto setup already. + +At this point you want to encrypt your swap, too. Still you want to +be able to suspend using swsusp. This, however, means that you +have to be able to either enter a passphrase or that you read +the key(s) from an external device like a pcmcia flash disk +or an usb stick prior to resume. So you need an initrd, that sets +up dm-crypt and then asks swsusp to resume from the encrypted +swap device. + +The most important thing is that you set up dm-crypt in such +a way that the swap device you suspend to/resume from has +always the same major/minor within the initrd as well as +within your running system. The easiest way to achieve this is +to always set up this swap device first with dmsetup, so that +it will always look like the following: + +brw------- 1 root root 254, 0 Jul 28 13:37 /dev/mapper/swap0 + +Now set up your kernel to use /dev/mapper/swap0 as the default +resume partition, so your kernel .config contains: + +CONFIG_PM_STD_PARTITION="/dev/mapper/swap0" + +Prepare your boot loader to use the initrd you will create or +modify. For lilo the simplest setup looks like the following +lines: + +image=/boot/vmlinuz +initrd=/boot/initrd.gz +label=linux +append="root=/dev/ram0 init=/linuxrc rw" + +Finally you need to create or modify your initrd. Lets assume +you create an initrd that reads the required dm-crypt setup +from a pcmcia flash disk card. The card is formatted with an ext2 +fs which resides on /dev/hde1 when the card is inserted. The +card contains at least the encrypted swap setup in a file +named "swapkey". /etc/fstab of your initrd contains something +like the following: + +/dev/hda1 /mnt ext3 ro 0 0 +none /proc proc defaults,noatime,nodiratime 0 0 +none /sys sysfs defaults,noatime,nodiratime 0 0 + +/dev/hda1 contains an unencrypted mini system that sets up all +of your crypto devices, again by reading the setup from the +pcmcia flash disk. What follows now is a /linuxrc for your +initrd that allows you to resume from encrypted swap and that +continues boot with your mini system on /dev/hda1 if resume +does not happen: + +#!/bin/sh +PATH=/sbin:/bin:/usr/sbin:/usr/bin +mount /proc +mount /sys +mapped=0 +noresume=`grep -c noresume /proc/cmdline` +if [ "$*" != "" ] +then + noresume=1 +fi +dmesg -n 1 +/sbin/cardmgr -q +for i in 1 2 3 4 5 6 7 8 9 0 +do + if [ -f /proc/ide/hde/media ] + then + usleep 500000 + mount -t ext2 -o ro /dev/hde1 /mnt + if [ -f /mnt/swapkey ] + then + dmsetup create swap0 /mnt/swapkey > /dev/null 2>&1 && mapped=1 + fi + umount /mnt + break + fi + usleep 500000 +done +killproc /sbin/cardmgr +dmesg -n 6 +if [ $mapped = 1 ] +then + if [ $noresume != 0 ] + then + mkswap /dev/mapper/swap0 > /dev/null 2>&1 + fi + echo 254:0 > /sys/power/resume + dmsetup remove swap0 +fi +umount /sys +mount /mnt +umount /proc +cd /mnt +pivot_root . mnt +mount /proc +umount -l /mnt +umount /proc +exec chroot . /sbin/init $* < dev/console > dev/console 2>&1 + +Please don't mind the weird loop above, busybox's msh doesn't know +the let statement. Now, what is happening in the script? +First we have to decide if we want to try to resume, or not. +We will not resume if booting with "noresume" or any parameters +for init like "single" or "emergency" as boot parameters. + +Then we need to set up dmcrypt with the setup data from the +pcmcia flash disk. If this succeeds we need to reset the swap +device if we don't want to resume. The line "echo 254:0 > /sys/power/resume" +then attempts to resume from the first device mapper device. +Note that it is important to set the device in /sys/power/resume, +regardless if resuming or not, otherwise later suspend will fail. +If resume starts, script execution terminates here. + +Otherwise we just remove the encrypted swap device and leave it to the +mini system on /dev/hda1 to set the whole crypto up (it is up to +you to modify this to your taste). + +What then follows is the well known process to change the root +file system and continue booting from there. I prefer to unmount +the initrd prior to continue booting but it is up to you to modify +this. diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt new file mode 100644 index 000000000..f732a8321 --- /dev/null +++ b/Documentation/power/swsusp.txt @@ -0,0 +1,429 @@ +Some warnings, first. + + * BIG FAT WARNING ********************************************************* + * + * If you touch anything on disk between suspend and resume... + * ...kiss your data goodbye. + * + * If you do resume from initrd after your filesystems are mounted... + * ...bye bye root partition. + * [this is actually same case as above] + * + * If you have unsupported (*) devices using DMA, you may have some + * problems. If your disk driver does not support suspend... (IDE does), + * it may cause some problems, too. If you change kernel command line + * between suspend and resume, it may do something wrong. If you change + * your hardware while system is suspended... well, it was not good idea; + * but it will probably only crash. + * + * (*) suspend/resume support is needed to make it safe. + * + * If you have any filesystems on USB devices mounted before software suspend, + * they won't be accessible after resume and you may lose data, as though + * you have unplugged the USB devices with mounted filesystems on them; + * see the FAQ below for details. (This is not true for more traditional + * power states like "standby", which normally don't turn USB off.) + +You need to append resume=/dev/your_swap_partition to kernel command +line. Then you suspend by + +echo shutdown > /sys/power/disk; echo disk > /sys/power/state + +. If you feel ACPI works pretty well on your system, you might try + +echo platform > /sys/power/disk; echo disk > /sys/power/state + +. If you would like to write hibernation image to swap and then suspend +to RAM (provided your platform supports it), you can try + +echo suspend > /sys/power/disk; echo disk > /sys/power/state + +. If you have SATA disks, you'll need recent kernels with SATA suspend +support. For suspend and resume to work, make sure your disk drivers +are built into kernel -- not modules. [There's way to make +suspend/resume with modular disk drivers, see FAQ, but you probably +should not do that.] + +If you want to limit the suspend image size to N bytes, do + +echo N > /sys/power/image_size + +before suspend (it is limited to 500 MB by default). + +. The resume process checks for the presence of the resume device, +if found, it then checks the contents for the hibernation image signature. +If both are found, it resumes the hibernation image. + +. The resume process may be triggered in two ways: + 1) During lateinit: If resume=/dev/your_swap_partition is specified on + the kernel command line, lateinit runs the resume process. If the + resume device has not been probed yet, the resume process fails and + bootup continues. + 2) Manually from an initrd or initramfs: May be run from + the init script by using the /sys/power/resume file. It is vital + that this be done prior to remounting any filesystems (even as + read-only) otherwise data may be corrupted. + +Article about goals and implementation of Software Suspend for Linux +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Author: Gábor Kuti +Last revised: 2003-10-20 by Pavel Machek + +Idea and goals to achieve + +Nowadays it is common in several laptops that they have a suspend button. It +saves the state of the machine to a filesystem or to a partition and switches +to standby mode. Later resuming the machine the saved state is loaded back to +ram and the machine can continue its work. It has two real benefits. First we +save ourselves the time machine goes down and later boots up, energy costs +are real high when running from batteries. The other gain is that we don't have to +interrupt our programs so processes that are calculating something for a long +time shouldn't need to be written interruptible. + +swsusp saves the state of the machine into active swaps and then reboots or +powerdowns. You must explicitly specify the swap partition to resume from with +``resume='' kernel option. If signature is found it loads and restores saved +state. If the option ``noresume'' is specified as a boot parameter, it skips +the resuming. If the option ``hibernate=nocompress'' is specified as a boot +parameter, it saves hibernation image without compression. + +In the meantime while the system is suspended you should not add/remove any +of the hardware, write to the filesystems, etc. + +Sleep states summary +==================== + +There are three different interfaces you can use, /proc/acpi should +work like this: + +In a really perfect world: +echo 1 > /proc/acpi/sleep # for standby +echo 2 > /proc/acpi/sleep # for suspend to ram +echo 3 > /proc/acpi/sleep # for suspend to ram, but with more power conservative +echo 4 > /proc/acpi/sleep # for suspend to disk +echo 5 > /proc/acpi/sleep # for shutdown unfriendly the system + +and perhaps +echo 4b > /proc/acpi/sleep # for suspend to disk via s4bios + +Frequently Asked Questions +========================== + +Q: well, suspending a server is IMHO a really stupid thing, +but... (Diego Zuccato): + +A: You bought new UPS for your server. How do you install it without +bringing machine down? Suspend to disk, rearrange power cables, +resume. + +You have your server on UPS. Power died, and UPS is indicating 30 +seconds to failure. What do you do? Suspend to disk. + + +Q: Maybe I'm missing something, but why don't the regular I/O paths work? + +A: We do use the regular I/O paths. However we cannot restore the data +to its original location as we load it. That would create an +inconsistent kernel state which would certainly result in an oops. +Instead, we load the image into unused memory and then atomically copy +it back to it original location. This implies, of course, a maximum +image size of half the amount of memory. + +There are two solutions to this: + +* require half of memory to be free during suspend. That way you can +read "new" data onto free spots, then cli and copy + +* assume we had special "polling" ide driver that only uses memory +between 0-640KB. That way, I'd have to make sure that 0-640KB is free +during suspending, but otherwise it would work... + +suspend2 shares this fundamental limitation, but does not include user +data and disk caches into "used memory" by saving them in +advance. That means that the limitation goes away in practice. + +Q: Does linux support ACPI S4? + +A: Yes. That's what echo platform > /sys/power/disk does. + +Q: What is 'suspend2'? + +A: suspend2 is 'Software Suspend 2', a forked implementation of +suspend-to-disk which is available as separate patches for 2.4 and 2.6 +kernels from swsusp.sourceforge.net. It includes support for SMP, 4GB +highmem and preemption. It also has a extensible architecture that +allows for arbitrary transformations on the image (compression, +encryption) and arbitrary backends for writing the image (eg to swap +or an NFS share[Work In Progress]). Questions regarding suspend2 +should be sent to the mailing list available through the suspend2 +website, and not to the Linux Kernel Mailing List. We are working +toward merging suspend2 into the mainline kernel. + +Q: What is the freezing of tasks and why are we using it? + +A: The freezing of tasks is a mechanism by which user space processes and some +kernel threads are controlled during hibernation or system-wide suspend (on some +architectures). See freezing-of-tasks.txt for details. + +Q: What is the difference between "platform" and "shutdown"? + +A: + +shutdown: save state in linux, then tell bios to powerdown + +platform: save state in linux, then tell bios to powerdown and blink + "suspended led" + +"platform" is actually right thing to do where supported, but +"shutdown" is most reliable (except on ACPI systems). + +Q: I do not understand why you have such strong objections to idea of +selective suspend. + +A: Do selective suspend during runtime power management, that's okay. But +it's useless for suspend-to-disk. (And I do not see how you could use +it for suspend-to-ram, I hope you do not want that). + +Lets see, so you suggest to + +* SUSPEND all but swap device and parents +* Snapshot +* Write image to disk +* SUSPEND swap device and parents +* Powerdown + +Oh no, that does not work, if swap device or its parents uses DMA, +you've corrupted data. You'd have to do + +* SUSPEND all but swap device and parents +* FREEZE swap device and parents +* Snapshot +* UNFREEZE swap device and parents +* Write +* SUSPEND swap device and parents + +Which means that you still need that FREEZE state, and you get more +complicated code. (And I have not yet introduce details like system +devices). + +Q: There don't seem to be any generally useful behavioral +distinctions between SUSPEND and FREEZE. + +A: Doing SUSPEND when you are asked to do FREEZE is always correct, +but it may be unnecessarily slow. If you want your driver to stay simple, +slowness may not matter to you. It can always be fixed later. + +For devices like disk it does matter, you do not want to spindown for +FREEZE. + +Q: After resuming, system is paging heavily, leading to very bad interactivity. + +A: Try running + +cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u | while read file +do + test -f "$file" && cat "$file" > /dev/null +done + +after resume. swapoff -a; swapon -a may also be useful. + +Q: What happens to devices during swsusp? They seem to be resumed +during system suspend? + +A: That's correct. We need to resume them if we want to write image to +disk. Whole sequence goes like + + Suspend part + ~~~~~~~~~~~~ + running system, user asks for suspend-to-disk + + user processes are stopped + + suspend(PMSG_FREEZE): devices are frozen so that they don't interfere + with state snapshot + + state snapshot: copy of whole used memory is taken with interrupts disabled + + resume(): devices are woken up so that we can write image to swap + + write image to swap + + suspend(PMSG_SUSPEND): suspend devices so that we can power off + + turn the power off + + Resume part + ~~~~~~~~~~~ + (is actually pretty similar) + + running system, user asks for suspend-to-disk + + user processes are stopped (in common case there are none, but with resume-from-initrd, no one knows) + + read image from disk + + suspend(PMSG_FREEZE): devices are frozen so that they don't interfere + with image restoration + + image restoration: rewrite memory with image + + resume(): devices are woken up so that system can continue + + thaw all user processes + +Q: What is this 'Encrypt suspend image' for? + +A: First of all: it is not a replacement for dm-crypt encrypted swap. +It cannot protect your computer while it is suspended. Instead it does +protect from leaking sensitive data after resume from suspend. + +Think of the following: you suspend while an application is running +that keeps sensitive data in memory. The application itself prevents +the data from being swapped out. Suspend, however, must write these +data to swap to be able to resume later on. Without suspend encryption +your sensitive data are then stored in plaintext on disk. This means +that after resume your sensitive data are accessible to all +applications having direct access to the swap device which was used +for suspend. If you don't need swap after resume these data can remain +on disk virtually forever. Thus it can happen that your system gets +broken in weeks later and sensitive data which you thought were +encrypted and protected are retrieved and stolen from the swap device. +To prevent this situation you should use 'Encrypt suspend image'. + +During suspend a temporary key is created and this key is used to +encrypt the data written to disk. When, during resume, the data was +read back into memory the temporary key is destroyed which simply +means that all data written to disk during suspend are then +inaccessible so they can't be stolen later on. The only thing that +you must then take care of is that you call 'mkswap' for the swap +partition used for suspend as early as possible during regular +boot. This asserts that any temporary key from an oopsed suspend or +from a failed or aborted resume is erased from the swap device. + +As a rule of thumb use encrypted swap to protect your data while your +system is shut down or suspended. Additionally use the encrypted +suspend image to prevent sensitive data from being stolen after +resume. + +Q: Can I suspend to a swap file? + +A: Generally, yes, you can. However, it requires you to use the "resume=" and +"resume_offset=" kernel command line parameters, so the resume from a swap file +cannot be initiated from an initrd or initramfs image. See +swsusp-and-swap-files.txt for details. + +Q: Is there a maximum system RAM size that is supported by swsusp? + +A: It should work okay with highmem. + +Q: Does swsusp (to disk) use only one swap partition or can it use +multiple swap partitions (aggregate them into one logical space)? + +A: Only one swap partition, sorry. + +Q: If my application(s) causes lots of memory & swap space to be used +(over half of the total system RAM), is it correct that it is likely +to be useless to try to suspend to disk while that app is running? + +A: No, it should work okay, as long as your app does not mlock() +it. Just prepare big enough swap partition. + +Q: What information is useful for debugging suspend-to-disk problems? + +A: Well, last messages on the screen are always useful. If something +is broken, it is usually some kernel driver, therefore trying with as +little as possible modules loaded helps a lot. I also prefer people to +suspend from console, preferably without X running. Booting with +init=/bin/bash, then swapon and starting suspend sequence manually +usually does the trick. Then it is good idea to try with latest +vanilla kernel. + +Q: How can distributions ship a swsusp-supporting kernel with modular +disk drivers (especially SATA)? + +A: Well, it can be done, load the drivers, then do echo into +/sys/power/resume file from initrd. Be sure not to mount +anything, not even read-only mount, or you are going to lose your +data. + +Q: How do I make suspend more verbose? + +A: If you want to see any non-error kernel messages on the virtual +terminal the kernel switches to during suspend, you have to set the +kernel console loglevel to at least 4 (KERN_WARNING), for example by +doing + + # save the old loglevel + read LOGLEVEL DUMMY < /proc/sys/kernel/printk + # set the loglevel so we see the progress bar. + # if the level is higher than needed, we leave it alone. + if [ $LOGLEVEL -lt 5 ]; then + echo 5 > /proc/sys/kernel/printk + fi + + IMG_SZ=0 + read IMG_SZ < /sys/power/image_size + echo -n disk > /sys/power/state + RET=$? + # + # the logic here is: + # if image_size > 0 (without kernel support, IMG_SZ will be zero), + # then try again with image_size set to zero. + if [ $RET -ne 0 -a $IMG_SZ -ne 0 ]; then # try again with minimal image size + echo 0 > /sys/power/image_size + echo -n disk > /sys/power/state + RET=$? + fi + + # restore previous loglevel + echo $LOGLEVEL > /proc/sys/kernel/printk + exit $RET + +Q: Is this true that if I have a mounted filesystem on a USB device and +I suspend to disk, I can lose data unless the filesystem has been mounted +with "sync"? + +A: That's right ... if you disconnect that device, you may lose data. +In fact, even with "-o sync" you can lose data if your programs have +information in buffers they haven't written out to a disk you disconnect, +or if you disconnect before the device finished saving data you wrote. + +Software suspend normally powers down USB controllers, which is equivalent +to disconnecting all USB devices attached to your system. + +Your system might well support low-power modes for its USB controllers +while the system is asleep, maintaining the connection, using true sleep +modes like "suspend-to-RAM" or "standby". (Don't write "disk" to the +/sys/power/state file; write "standby" or "mem".) We've not seen any +hardware that can use these modes through software suspend, although in +theory some systems might support "platform" modes that won't break the +USB connections. + +Remember that it's always a bad idea to unplug a disk drive containing a +mounted filesystem. That's true even when your system is asleep! The +safest thing is to unmount all filesystems on removable media (such USB, +Firewire, CompactFlash, MMC, external SATA, or even IDE hotplug bays) +before suspending; then remount them after resuming. + +There is a work-around for this problem. For more information, see +Documentation/usb/persist.txt. + +Q: Can I suspend-to-disk using a swap partition under LVM? + +A: No. You can suspend successfully, but you'll not be able to +resume. uswsusp should be able to work with LVM. See suspend.sf.net. + +Q: I upgraded the kernel from 2.6.15 to 2.6.16. Both kernels were +compiled with the similar configuration files. Anyway I found that +suspend to disk (and resume) is much slower on 2.6.16 compared to +2.6.15. Any idea for why that might happen or how can I speed it up? + +A: This is because the size of the suspend image is now greater than +for 2.6.15 (by saving more data we can get more responsive system +after resume). + +There's the /sys/power/image_size knob that controls the size of the +image. If you set it to 0 (eg. by echo 0 > /sys/power/image_size as +root), the 2.6.15 behavior should be restored. If it is still too +slow, take a look at suspend.sf.net -- userland suspend is faster and +supports LZF compression to speed it up further. diff --git a/Documentation/power/tricks.txt b/Documentation/power/tricks.txt new file mode 100644 index 000000000..a1b8f7249 --- /dev/null +++ b/Documentation/power/tricks.txt @@ -0,0 +1,27 @@ + swsusp/S3 tricks + ~~~~~~~~~~~~~~~~ +Pavel Machek <pavel@ucw.cz> + +If you want to trick swsusp/S3 into working, you might want to try: + +* go with minimal config, turn off drivers like USB, AGP you don't + really need + +* turn off APIC and preempt + +* use ext2. At least it has working fsck. [If something seems to go + wrong, force fsck when you have a chance] + +* turn off modules + +* use vga text console, shut down X. [If you really want X, you might + want to try vesafb later] + +* try running as few processes as possible, preferably go to single + user mode. + +* due to video issues, swsusp should be easier to get working than + S3. Try that first. + +When you make it work, try to find out what exactly was it that broke +suspend, and preferably fix that. diff --git a/Documentation/power/tuxonice-internals.txt b/Documentation/power/tuxonice-internals.txt new file mode 100644 index 000000000..0c6a2163a --- /dev/null +++ b/Documentation/power/tuxonice-internals.txt @@ -0,0 +1,532 @@ + TuxOnIce 4.0 Internal Documentation. + Updated to 23 March 2015 + +(Please note that incremental image support mentioned in this document is work +in progress. This document may need updating prior to the actual release of +4.0!) + +1. Introduction. + + TuxOnIce 4.0 is an addition to the Linux Kernel, designed to + allow the user to quickly shutdown and quickly boot a computer, without + needing to close documents or programs. It is equivalent to the + hibernate facility in some laptops. This implementation, however, + requires no special BIOS or hardware support. + + The code in these files is based upon the original implementation + prepared by Gabor Kuti and additional work by Pavel Machek and a + host of others. This code has been substantially reworked by Nigel + Cunningham, again with the help and testing of many others, not the + least of whom are Bernard Blackham and Michael Frank. At its heart, + however, the operation is essentially the same as Gabor's version. + +2. Overview of operation. + + The basic sequence of operations is as follows: + + a. Quiesce all other activity. + b. Ensure enough memory and storage space are available, and attempt + to free memory/storage if necessary. + c. Allocate the required memory and storage space. + d. Write the image. + e. Power down. + + There are a number of complicating factors which mean that things are + not as simple as the above would imply, however... + + o The activity of each process must be stopped at a point where it will + not be holding locks necessary for saving the image, or unexpectedly + restart operations due to something like a timeout and thereby make + our image inconsistent. + + o It is desirous that we sync outstanding I/O to disk before calculating + image statistics. This reduces corruption if one should suspend but + then not resume, and also makes later parts of the operation safer (see + below). + + o We need to get as close as we can to an atomic copy of the data. + Inconsistencies in the image will result in inconsistent memory contents at + resume time, and thus in instability of the system and/or file system + corruption. This would appear to imply a maximum image size of one half of + the amount of RAM, but we have a solution... (again, below). + + o In 2.6 and later, we choose to play nicely with the other suspend-to-disk + implementations. + +3. Detailed description of internals. + + a. Quiescing activity. + + Safely quiescing the system is achieved using three separate but related + aspects. + + First, we use the vanilla kerne's support for freezing processes. This code + is based on the observation that the vast majority of processes don't need + to run during suspend. They can be 'frozen'. The kernel therefore + implements a refrigerator routine, which processes enter and in which they + remain until the cycle is complete. Processes enter the refrigerator via + try_to_freeze() invocations at appropriate places. A process cannot be + frozen in any old place. It must not be holding locks that will be needed + for writing the image or freezing other processes. For this reason, + userspace processes generally enter the refrigerator via the signal + handling code, and kernel threads at the place in their event loops where + they drop locks and yield to other processes or sleep. The task of freezing + processes is complicated by the fact that there can be interdependencies + between processes. Freezing process A before process B may mean that + process B cannot be frozen, because it stops at waiting for process A + rather than in the refrigerator. This issue is seen where userspace waits + on freezeable kernel threads or fuse filesystem threads. To address this + issue, we implement the following algorithm for quiescing activity: + + - Freeze filesystems (including fuse - userspace programs starting + new requests are immediately frozen; programs already running + requests complete their work before being frozen in the next + step) + - Freeze userspace + - Thaw filesystems (this is safe now that userspace is frozen and no + fuse requests are outstanding). + - Invoke sys_sync (noop on fuse). + - Freeze filesystems + - Freeze kernel threads + + If we need to free memory, we thaw kernel threads and filesystems, but not + userspace. We can then free caches without worrying about deadlocks due to + swap files being on frozen filesystems or such like. + + b. Ensure enough memory & storage are available. + + We have a number of constraints to meet in order to be able to successfully + suspend and resume. + + First, the image will be written in two parts, described below. One of + these parts needs to have an atomic copy made, which of course implies a + maximum size of one half of the amount of system memory. The other part + ('pageset') is not atomically copied, and can therefore be as large or + small as desired. + + Second, we have constraints on the amount of storage available. In these + calculations, we may also consider any compression that will be done. The + cryptoapi module allows the user to configure an expected compression ratio. + + Third, the user can specify an arbitrary limit on the image size, in + megabytes. This limit is treated as a soft limit, so that we don't fail the + attempt to suspend if we cannot meet this constraint. + + c. Allocate the required memory and storage space. + + Having done the initial freeze, we determine whether the above constraints + are met, and seek to allocate the metadata for the image. If the constraints + are not met, or we fail to allocate the required space for the metadata, we + seek to free the amount of memory that we calculate is needed and try again. + We allow up to four iterations of this loop before aborting the cycle. If + we do fail, it should only be because of a bug in TuxOnIce's calculations + or the vanilla kernel code for freeing memory. + + These steps are merged together in the prepare_image function, found in + prepare_image.c. The functions are merged because of the cyclical nature + of the problem of calculating how much memory and storage is needed. Since + the data structures containing the information about the image must + themselves take memory and use storage, the amount of memory and storage + required changes as we prepare the image. Since the changes are not large, + only one or two iterations will be required to achieve a solution. + + The recursive nature of the algorithm is miminised by keeping user space + frozen while preparing the image, and by the fact that our records of which + pages are to be saved and which pageset they are saved in use bitmaps (so + that changes in number or fragmentation of the pages to be saved don't + feedback via changes in the amount of memory needed for metadata). The + recursiveness is thus limited to any extra slab pages allocated to store the + extents that record storage used, and the effects of seeking to free memory. + + d. Write the image. + + We previously mentioned the need to create an atomic copy of the data, and + the half-of-memory limitation that is implied in this. This limitation is + circumvented by dividing the memory to be saved into two parts, called + pagesets. + + Pageset2 contains most of the page cache - the pages on the active and + inactive LRU lists that aren't needed or modified while TuxOnIce is + running, so they can be safely written without an atomic copy. They are + therefore saved first and reloaded last. While saving these pages, + TuxOnIce carefully ensures that the work of writing the pages doesn't make + the image inconsistent. With the support for Kernel (Video) Mode Setting + going into the kernel at the time of writing, we need to check for pages + on the LRU that are used by KMS, and exclude them from pageset2. They are + atomically copied as part of pageset 1. + + Once pageset2 has been saved, we prepare to do the atomic copy of remaining + memory. As part of the preparation, we power down drivers, thereby providing + them with the opportunity to have their state recorded in the image. The + amount of memory allocated by drivers for this is usually negligible, but if + DRI is in use, video drivers may require significants amounts. Ideally we + would be able to query drivers while preparing the image as to the amount of + memory they will need. Unfortunately no such mechanism exists at the time of + writing. For this reason, TuxOnIce allows the user to set an + 'extra_pages_allowance', which is used to seek to ensure sufficient memory + is available for drivers at this point. TuxOnIce also lets the user set this + value to 0. In this case, a test driver suspend is done while preparing the + image, and the difference (plus a margin) used instead. TuxOnIce will also + automatically restart the hibernation process (twice at most) if it finds + that the extra pages allowance is not sufficient. It will then use what was + actually needed (plus a margin, again). Failure to hibernate should thus + be an extremely rare occurence. + + Having suspended the drivers, we save the CPU context before making an + atomic copy of pageset1, resuming the drivers and saving the atomic copy. + After saving the two pagesets, we just need to save our metadata before + powering down. + + As we mentioned earlier, the contents of pageset2 pages aren't needed once + they've been saved. We therefore use them as the destination of our atomic + copy. In the unlikely event that pageset1 is larger, extra pages are + allocated while the image is being prepared. This is normally only a real + possibility when the system has just been booted and the page cache is + small. + + This is where we need to be careful about syncing, however. Pageset2 will + probably contain filesystem meta data. If this is overwritten with pageset1 + and then a sync occurs, the filesystem will be corrupted - at least until + resume time and another sync of the restored data. Since there is a + possibility that the user might not resume or (may it never be!) that + TuxOnIce might oops, we do our utmost to avoid syncing filesystems after + copying pageset1. + + e. Incremental images + + TuxOnIce 4.0 introduces a new incremental image mode which changes things a + little. When incremental images are enabled, we save a 'normal' image the + first time we hibernate. One resume however, we do not free the image or + the associated storage. Instead, it is retained until the next attempt at + hibernating and a mechanism is enabled which is used to track which pages + of memory are modified between the two cycles. The modified pages can then + be added to the existing image, rather than unmodified pages being saved + again unnecessarily. + + Incremental image support is available in 64 bit Linux only, due to the + requirement for extra page flags. + + This support is accomplished in the following way: + + 1) Tracking of pages. + + The tracking of changed pages is accomplished using the page fault + mechanism. When we reach a point at which we want to start tracking + changes, most pages are marked read-only and also flagged as being + read-only because of this support. Since this cannot happen for every page + of RAM, some are marked as untracked and always treated as modified whn + preparing an incremental iamge. When a process attempts to modify a page + that is marked read-only in this way, a page fault occurs, with TuxOnIce + code marking the page writable and dirty before allowing the write to + continue. In this way, the effect of incremental images on performance is + minimised - a page only causes a fault once. Small modifications to the + page allocator further reduce the number of faults that occur - free pages + are not tracked; they are made writable and marked as dirty as part of + being allocated. + + 2) Saving the incremental image / atomicity. + + The page fault mechanism is also used to improve the means by which + atomicity of the image is acheived. When it is time to do an atomic copy, + the flags for pages are reset, with the result being that it is no longer + necessary for us to do an atomic of pageset1. Instead, we normally write + the uncopied pages to disk. When an attempt is made to modify a page that + has not yet been saved, the page-fault mechanism makes a copy of the page + prior to allowing the write. This copy is then written to disk. Likewise, + on resume, if a process attempts to write to a page that has been read + while the rest of the image is still being loaded, a copy of that page is + made prior to the write being allowed. At the end of loading the image, + modified pages can thus be restored to their 'atomic copy' contents prior + to restarting normal operation. We also mark pages that are yet to be read + as invalid PFNs, so that we can capture as a bug any attempt by a + half-restored kernel to access a page that hasn't yet been reloaded. + + f. Power down. + + Powering down uses standard kernel routines. TuxOnIce supports powering down + using the ACPI S3, S4 and S5 methods or the kernel's non-ACPI power-off. + Supporting suspend to ram (S3) as a power off option might sound strange, + but it allows the user to quickly get their system up and running again if + the battery doesn't run out (we just need to re-read the overwritten pages) + and if the battery does run out (or the user removes power), they can still + resume. + +4. Data Structures. + + TuxOnIce uses three main structures to store its metadata and configuration + information: + + a) Pageflags bitmaps. + + TuxOnIce records which pages will be in pageset1, pageset2, the destination + of the atomic copy and the source of the atomically restored image using + bitmaps. The code used is that written for swsusp, with small improvements + to match TuxOnIce's requirements. + + The pageset1 bitmap is thus easily stored in the image header for use at + resume time. + + As mentioned above, using bitmaps also means that the amount of memory and + storage required for recording the above information is constant. This + greatly simplifies the work of preparing the image. In earlier versions of + TuxOnIce, extents were used to record which pages would be stored. In that + case, however, eating memory could result in greater fragmentation of the + lists of pages, which in turn required more memory to store the extents and + more storage in the image header. These could in turn require further + freeing of memory, and another iteration. All of this complexity is removed + by having bitmaps. + + Bitmaps also make a lot of sense because TuxOnIce only ever iterates + through the lists. There is therefore no cost to not being able to find the + nth page in order 0 time. We only need to worry about the cost of finding + the n+1th page, given the location of the nth page. Bitwise optimisations + help here. + + b) Extents for block data. + + TuxOnIce supports writing the image to multiple block devices. In the case + of swap, multiple partitions and/or files may be in use, and we happily use + them all (with the exception of compcache pages, which we allocate but do + not use). This use of multiple block devices is accomplished as follows: + + Whatever the actual source of the allocated storage, the destination of the + image can be viewed in terms of one or more block devices, and on each + device, a list of sectors. To simplify matters, we only use contiguous, + PAGE_SIZE aligned sectors, like the swap code does. + + Since sector numbers on each bdev may well not start at 0, it makes much + more sense to use extents here. Contiguous ranges of pages can thus be + represented in the extents by contiguous values. + + Variations in block size are taken account of in transforming this data + into the parameters for bio submission. + + We can thus implement a layer of abstraction wherein the core of TuxOnIce + doesn't have to worry about which device we're currently writing to or + where in the device we are. It simply requests that the next page in the + pageset or header be written, leaving the details to this lower layer. + The lower layer remembers where in the sequence of devices and blocks each + pageset starts. The header always starts at the beginning of the allocated + storage. + + So extents are: + + struct extent { + unsigned long minimum, maximum; + struct extent *next; + } + + These are combined into chains of extents for a device: + + struct extent_chain { + int size; /* size of the extent ie sum (max-min+1) */ + int allocs, frees; + char *name; + struct extent *first, *last_touched; + }; + + For each bdev, we need to store a little more info (simplified definition): + + struct toi_bdev_info { + struct block_device *bdev; + + char uuid[17]; + dev_t dev_t; + int bmap_shift; + int blocks_per_page; + }; + + The uuid is the main means used to identify the device in the storage + image. This means we can cope with the dev_t representation of a device + changing between saving the image and restoring it, as may happen on some + bioses or in the LVM case. + + bmap_shift and blocks_per_page apply the effects of variations in blocks + per page settings for the filesystem and underlying bdev. For most + filesystems, these are the same, but for xfs, they can have independant + values. + + Combining these two structures together, we have everything we need to + record what devices and what blocks on each device are being used to + store the image, and to submit i/o using bio_submit. + + The last elements in the picture are a means of recording how the storage + is being used. + + We do this first and foremost by implementing a layer of abstraction on + top of the devices and extent chains which allows us to view however many + devices there might be as one long storage tape, with a single 'head' that + tracks a 'current position' on the tape: + + struct extent_iterate_state { + struct extent_chain *chains; + int num_chains; + int current_chain; + struct extent *current_extent; + unsigned long current_offset; + }; + + That is, *chains points to an array of size num_chains of extent chains. + For the filewriter, this is always a single chain. For the swapwriter, the + array is of size MAX_SWAPFILES. + + current_chain, current_extent and current_offset thus point to the current + index in the chains array (and into a matching array of struct + suspend_bdev_info), the current extent in that chain (to optimise access), + and the current value in the offset. + + The image is divided into three parts: + - The header + - Pageset 1 + - Pageset 2 + + The header always starts at the first device and first block. We know its + size before we begin to save the image because we carefully account for + everything that will be stored in it. + + The second pageset (LRU) is stored first. It begins on the next page after + the end of the header. + + The first pageset is stored second. It's start location is only known once + pageset2 has been saved, since pageset2 may be compressed as it is written. + This location is thus recorded at the end of saving pageset2. It is page + aligned also. + + Since this information is needed at resume time, and the location of extents + in memory will differ at resume time, this needs to be stored in a portable + way: + + struct extent_iterate_saved_state { + int chain_num; + int extent_num; + unsigned long offset; + }; + + We can thus implement a layer of abstraction wherein the core of TuxOnIce + doesn't have to worry about which device we're currently writing to or + where in the device we are. It simply requests that the next page in the + pageset or header be written, leaving the details to this layer, and + invokes the routines to remember and restore the position, without having + to worry about the details of how the data is arranged on disk or such like. + + c) Modules + + One aim in designing TuxOnIce was to make it flexible. We wanted to allow + for the implementation of different methods of transforming a page to be + written to disk and different methods of getting the pages stored. + + In early versions (the betas and perhaps Suspend1), compression support was + inlined in the image writing code, and the data structures and code for + managing swap were intertwined with the rest of the code. A number of people + had expressed interest in implementing image encryption, and alternative + methods of storing the image. + + In order to achieve this, TuxOnIce was given a modular design. + + A module is a single file which encapsulates the functionality needed + to transform a pageset of data (encryption or compression, for example), + or to write the pageset to a device. The former type of module is called + a 'page-transformer', the later a 'writer'. + + Modules are linked together in pipeline fashion. There may be zero or more + page transformers in a pipeline, and there is always exactly one writer. + The pipeline follows this pattern: + + --------------------------------- + | TuxOnIce Core | + --------------------------------- + | + | + --------------------------------- + | Page transformer 1 | + --------------------------------- + | + | + --------------------------------- + | Page transformer 2 | + --------------------------------- + | + | + --------------------------------- + | Writer | + --------------------------------- + + During the writing of an image, the core code feeds pages one at a time + to the first module. This module performs whatever transformations it + implements on the incoming data, completely consuming the incoming data and + feeding output in a similar manner to the next module. + + All routines are SMP safe, and the final result of the transformations is + written with an index (provided by the core) and size of the output by the + writer. As a result, we can have multithreaded I/O without needing to + worry about the sequence in which pages are written (or read). + + During reading, the pipeline works in the reverse direction. The core code + calls the first module with the address of a buffer which should be filled. + (Note that the buffer size is always PAGE_SIZE at this time). This module + will in turn request data from the next module and so on down until the + writer is made to read from the stored image. + + Part of definition of the structure of a module thus looks like this: + + int (*rw_init) (int rw, int stream_number); + int (*rw_cleanup) (int rw); + int (*write_chunk) (struct page *buffer_page); + int (*read_chunk) (struct page *buffer_page, int sync); + + It should be noted that the _cleanup routine may be called before the + full stream of data has been read or written. While writing the image, + the user may (depending upon settings) choose to abort suspending, and + if we are in the midst of writing the last portion of the image, a portion + of the second pageset may be reread. This may also happen if an error + occurs and we seek to abort the process of writing the image. + + The modular design is also useful in a number of other ways. It provides + a means where by we can add support for: + + - providing overall initialisation and cleanup routines; + - serialising configuration information in the image header; + - providing debugging information to the user; + - determining memory and image storage requirements; + - dis/enabling components at run-time; + - configuring the module (see below); + + ...and routines for writers specific to their work: + - Parsing a resume= location; + - Determining whether an image exists; + - Marking a resume as having been attempted; + - Invalidating an image; + + Since some parts of the core - the user interface and storage manager + support - have use for some of these functions, they are registered as + 'miscellaneous' modules as well. + + d) Sysfs data structures. + + This brings us naturally to support for configuring TuxOnIce. We desired to + provide a way to make TuxOnIce as flexible and configurable as possible. + The user shouldn't have to reboot just because they want to now hibernate to + a file instead of a partition, for example. + + To accomplish this, TuxOnIce implements a very generic means whereby the + core and modules can register new sysfs entries. All TuxOnIce entries use + a single _store and _show routine, both of which are found in + tuxonice_sysfs.c in the kernel/power directory. These routines handle the + most common operations - getting and setting the values of bits, integers, + longs, unsigned longs and strings in one place, and allow overrides for + customised get and set options as well as side-effect routines for all + reads and writes. + + When combined with some simple macros, a new sysfs entry can then be defined + in just a couple of lines: + + SYSFS_INT("progress_granularity", SYSFS_RW, &progress_granularity, 1, + 2048, 0, NULL), + + This defines a sysfs entry named "progress_granularity" which is rw and + allows the user to access an integer stored at &progress_granularity, giving + it a value between 1 and 2048 inclusive. + + Sysfs entries are registered under /sys/power/tuxonice, and entries for + modules are located in a subdirectory named after the module. + diff --git a/Documentation/power/tuxonice.txt b/Documentation/power/tuxonice.txt new file mode 100644 index 000000000..3bf0575ef --- /dev/null +++ b/Documentation/power/tuxonice.txt @@ -0,0 +1,948 @@ + --- TuxOnIce, version 3.0 --- + +1. What is it? +2. Why would you want it? +3. What do you need to use it? +4. Why not just use the version already in the kernel? +5. How do you use it? +6. What do all those entries in /sys/power/tuxonice do? +7. How do you get support? +8. I think I've found a bug. What should I do? +9. When will XXX be supported? +10 How does it work? +11. Who wrote TuxOnIce? + +1. What is it? + + Imagine you're sitting at your computer, working away. For some reason, you + need to turn off your computer for a while - perhaps it's time to go home + for the day. When you come back to your computer next, you're going to want + to carry on where you left off. Now imagine that you could push a button and + have your computer store the contents of its memory to disk and power down. + Then, when you next start up your computer, it loads that image back into + memory and you can carry on from where you were, just as if you'd never + turned the computer off. You have far less time to start up, no reopening of + applications or finding what directory you put that file in yesterday. + That's what TuxOnIce does. + + TuxOnIce has a long heritage. It began life as work by Gabor Kuti, who, + with some help from Pavel Machek, got an early version going in 1999. The + project was then taken over by Florent Chabaud while still in alpha version + numbers. Nigel Cunningham came on the scene when Florent was unable to + continue, moving the project into betas, then 1.0, 2.0 and so on up to + the present series. During the 2.0 series, the name was contracted to + Suspend2 and the website suspend2.net created. Beginning around July 2007, + a transition to calling the software TuxOnIce was made, to seek to help + make it clear that TuxOnIce is more concerned with hibernation than suspend + to ram. + + Pavel Machek's swsusp code, which was merged around 2.5.17 retains the + original name, and was essentially a fork of the beta code until Rafael + Wysocki came on the scene in 2005 and began to improve it further. + +2. Why would you want it? + + Why wouldn't you want it? + + Being able to save the state of your system and quickly restore it improves + your productivity - you get a useful system in far less time than through + the normal boot process. You also get to be completely 'green', using zero + power, or as close to that as possible (the computer may still provide + minimal power to some devices, so they can initiate a power on, but that + will be the same amount of power as would be used if you told the computer + to shutdown. + +3. What do you need to use it? + + a. Kernel Support. + + i) The TuxOnIce patch. + + TuxOnIce is part of the Linux Kernel. This version is not part of Linus's + 2.6 tree at the moment, so you will need to download the kernel source and + apply the latest patch. Having done that, enable the appropriate options in + make [menu|x]config (under Power Management Options - look for "Enhanced + Hibernation"), compile and install your kernel. TuxOnIce works with SMP, + Highmem, preemption, fuse filesystems, x86-32, PPC and x86_64. + + TuxOnIce patches are available from http://tuxonice.net. + + ii) Compression support. + + Compression support is implemented via the cryptoapi. You will therefore want + to select any Cryptoapi transforms that you want to use on your image from + the Cryptoapi menu while configuring your kernel. We recommend the use of the + LZO compression method - it is very fast and still achieves good compression. + + You can also tell TuxOnIce to write its image to an encrypted and/or + compressed filesystem/swap partition. In that case, you don't need to do + anything special for TuxOnIce when it comes to kernel configuration. + + iii) Configuring other options. + + While you're configuring your kernel, try to configure as much as possible + to build as modules. We recommend this because there are a number of drivers + that are still in the process of implementing proper power management + support. In those cases, the best way to work around their current lack is + to build them as modules and remove the modules while hibernating. You might + also bug the driver authors to get their support up to speed, or even help! + + b. Storage. + + i) Swap. + + TuxOnIce can store the hibernation image in your swap partition, a swap file or + a combination thereof. Whichever combination you choose, you will probably + want to create enough swap space to store the largest image you could have, + plus the space you'd normally use for swap. A good rule of thumb would be + to calculate the amount of swap you'd want without using TuxOnIce, and then + add the amount of memory you have. This swapspace can be arranged in any way + you'd like. It can be in one partition or file, or spread over a number. The + only requirement is that they be active when you start a hibernation cycle. + + There is one exception to this requirement. TuxOnIce has the ability to turn + on one swap file or partition at the start of hibernating and turn it back off + at the end. If you want to ensure you have enough memory to store a image + when your memory is fully used, you might want to make one swap partition or + file for 'normal' use, and another for TuxOnIce to activate & deactivate + automatically. (Further details below). + + ii) Normal files. + + TuxOnIce includes a 'file allocator'. The file allocator can store your + image in a simple file. Since Linux has the concept of everything being a + file, this is more powerful than it initially sounds. If, for example, you + were to set up a network block device file, you could hibernate to a network + server. This has been tested and works to a point, but nbd itself isn't + stateless enough for our purposes. + + Take extra care when setting up the file allocator. If you just type + commands without thinking and then try to hibernate, you could cause + irreversible corruption on your filesystems! Make sure you have backups. + + Most people will only want to hibernate to a local file. To achieve that, do + something along the lines of: + + echo "TuxOnIce" > /hibernation-file + dd if=/dev/zero bs=1M count=512 >> /hibernation-file + + This will create a 512MB file called /hibernation-file. To get TuxOnIce to use + it: + + echo /hibernation-file > /sys/power/tuxonice/file/target + + Then + + cat /sys/power/tuxonice/resume + + Put the results of this into your bootloader's configuration (see also step + C, below): + + ---EXAMPLE-ONLY-DON'T-COPY-AND-PASTE--- + # cat /sys/power/tuxonice/resume + file:/dev/hda2:0x1e001 + + In this example, we would edit the append= line of our lilo.conf|menu.lst + so that it included: + + resume=file:/dev/hda2:0x1e001 + ---EXAMPLE-ONLY-DON'T-COPY-AND-PASTE--- + + For those who are thinking 'Could I make the file sparse?', the answer is + 'No!'. At the moment, there is no way for TuxOnIce to fill in the holes in + a sparse file while hibernating. In the longer term (post merge!), I'd like + to change things so that the file could be dynamically resized and have + holes filled as needed. Right now, however, that's not possible and not a + priority. + + c. Bootloader configuration. + + Using TuxOnIce also requires that you add an extra parameter to + your lilo.conf or equivalent. Here's an example for a swap partition: + + append="resume=swap:/dev/hda1" + + This would tell TuxOnIce that /dev/hda1 is a swap partition you + have. TuxOnIce will use the swap signature of this partition as a + pointer to your data when you hibernate. This means that (in this example) + /dev/hda1 doesn't need to be _the_ swap partition where all of your data + is actually stored. It just needs to be a swap partition that has a + valid signature. + + You don't need to have a swap partition for this purpose. TuxOnIce + can also use a swap file, but usage is a little more complex. Having made + your swap file, turn it on and do + + cat /sys/power/tuxonice/swap/headerlocations + + (this assumes you've already compiled your kernel with TuxOnIce + support and booted it). The results of the cat command will tell you + what you need to put in lilo.conf: + + For swap partitions like /dev/hda1, simply use resume=/dev/hda1. + For swapfile `swapfile`, use resume=swap:/dev/hda2:0x242d. + + If the swapfile changes for any reason (it is moved to a different + location, it is deleted and recreated, or the filesystem is + defragmented) then you will have to check + /sys/power/tuxonice/swap/headerlocations for a new resume_block value. + + Once you've compiled and installed the kernel and adjusted your bootloader + configuration, you should only need to reboot for the most basic part + of TuxOnIce to be ready. + + If you only compile in the swap allocator, or only compile in the file + allocator, you don't need to add the "swap:" part of the resume= + parameters above. resume=/dev/hda2:0x242d will work just as well. If you + have compiled both and your storage is on swap, you can also use this + format (the swap allocator is the default allocator). + + When compiling your kernel, one of the options in the 'Power Management + Support' menu, just above the 'Enhanced Hibernation (TuxOnIce)' entry is + called 'Default resume partition'. This can be used to set a default value + for the resume= parameter. + + d. The hibernate script. + + Since the driver model in 2.6 kernels is still being developed, you may need + to do more than just configure TuxOnIce. Users of TuxOnIce usually start the + process via a script which prepares for the hibernation cycle, tells the + kernel to do its stuff and then restore things afterwards. This script might + involve: + + - Switching to a text console and back if X doesn't like the video card + status on resume. + - Un/reloading drivers that don't play well with hibernation. + + Note that you might not be able to unload some drivers if there are + processes using them. You might have to kill off processes that hold + devices open. Hint: if your X server accesses an USB mouse, doing a + 'chvt' to a text console releases the device and you can unload the + module. + + Check out the latest script (available on tuxonice.net). + + e. The userspace user interface. + + TuxOnIce has very limited support for displaying status if you only apply + the kernel patch - it can printk messages, but that is all. In addition, + some of the functions mentioned in this document (such as cancelling a cycle + or performing interactive debugging) are unavailable. To utilise these + functions, or simply get a nice display, you need the 'userui' component. + Userui comes in three flavours, usplash, fbsplash and text. Text should + work on any console. Usplash and fbsplash require the appropriate + (distro specific?) support. + + To utilise a userui, TuxOnIce just needs to be told where to find the + userspace binary: + + echo "/usr/local/sbin/tuxoniceui_fbsplash" > /sys/power/tuxonice/user_interface/program + + The hibernate script can do this for you, and a default value for this + setting can be configured when compiling the kernel. This path is also + stored in the image header, so if you have an initrd or initramfs, you can + use the userui during the first part of resuming (prior to the atomic + restore) by putting the binary in the same path in your initrd/ramfs. + Alternatively, you can put it in a different location and do an echo + similar to the above prior to the echo > do_resume. The value saved in the + image header will then be ignored. + +4. Why not just use the version already in the kernel? + + The version in the vanilla kernel has a number of drawbacks. The most + serious of these are: + - it has a maximum image size of 1/2 total memory; + - it doesn't allocate storage until after it has snapshotted memory. + This means that you can't be sure hibernating will work until you + see it start to write the image; + - it does not allow you to press escape to cancel a cycle; + - it does not allow you to press escape to cancel resuming; + - it does not allow you to automatically swapon a file when + starting a cycle; + - it does not allow you to use multiple swap partitions or files; + - it does not allow you to use ordinary files; + - it just invalidates an image and continues to boot if you + accidentally boot the wrong kernel after hibernating; + - it doesn't support any sort of nice display while hibernating; + - it is moving toward requiring that you have an initrd/initramfs + to ever have a hope of resuming (uswsusp). While uswsusp will + address some of the concerns above, it won't address all of them, + and will be more complicated to get set up; + - it doesn't have support for suspend-to-both (write a hibernation + image, then suspend to ram; I think this is known as ReadySafe + under M$). + +5. How do you use it? + + A hibernation cycle can be started directly by doing: + + echo > /sys/power/tuxonice/do_hibernate + + In practice, though, you'll probably want to use the hibernate script + to unload modules, configure the kernel the way you like it and so on. + In that case, you'd do (as root): + + hibernate + + See the hibernate script's man page for more details on the options it + takes. + + If you're using the text or splash user interface modules, one feature of + TuxOnIce that you might find useful is that you can press Escape at any time + during hibernating, and the process will be aborted. + + Due to the way hibernation works, this means you'll have your system back and + perfectly usable almost instantly. The only exception is when it's at the + very end of writing the image. Then it will need to reload a small (usually + 4-50MBs, depending upon the image characteristics) portion first. + + Likewise, when resuming, you can press escape and resuming will be aborted. + The computer will then powerdown again according to settings at that time for + the powerdown method or rebooting. + + You can change the settings for powering down while the image is being + written by pressing 'R' to toggle rebooting and 'O' to toggle between + suspending to ram and powering down completely). + + If you run into problems with resuming, adding the "noresume" option to + the kernel command line will let you skip the resume step and recover your + system. This option shouldn't normally be needed, because TuxOnIce modifies + the image header prior to the atomic restore, and will thus prompt you + if it detects that you've tried to resume an image before (this flag is + removed if you press Escape to cancel a resume, so you won't be prompted + then). + + Recent kernels (2.6.24 onwards) add support for resuming from a different + kernel to the one that was hibernated (thanks to Rafael for his work on + this - I've just embraced and enhanced the support for TuxOnIce). This + should further reduce the need for you to use the noresume option. + +6. What do all those entries in /sys/power/tuxonice do? + + /sys/power/tuxonice is the directory which contains files you can use to + tune and configure TuxOnIce to your liking. The exact contents of + the directory will depend upon the version of TuxOnIce you're + running and the options you selected at compile time. In the following + descriptions, names in brackets refer to compile time options. + (Note that they're all dependant upon you having selected CONFIG_TUXONICE + in the first place!). + + Since the values of these settings can open potential security risks, the + writeable ones are accessible only to the root user. You may want to + configure sudo to allow you to invoke your hibernate script as an ordinary + user. + + - alloc/failure_test + + This debugging option provides a way of testing TuxOnIce's handling of + memory allocation failures. Each allocation type that TuxOnIce makes has + been given a unique number (see the source code). Echo the appropriate + number into this entry, and when TuxOnIce attempts to do that allocation, + it will pretend there was a failure and act accordingly. + + - alloc/find_max_mem_allocated + + This debugging option will cause TuxOnIce to find the maximum amount of + memory it used during a cycle, and report that information in debugging + information at the end of the cycle. + + - alt_resume_param + + Instead of powering down after writing a hibernation image, TuxOnIce + supports resuming from a different image. This entry lets you set the + location of the signature for that image (the resume= value you'd use + for it). Using an alternate image and keep_image mode, you can do things + like using an alternate image to power down an uninterruptible power + supply. + + - block_io/target_outstanding_io + + This value controls the amount of memory that the block I/O code says it + needs when the core code is calculating how much memory is needed for + hibernating and for resuming. It doesn't directly control the amount of + I/O that is submitted at any one time - that depends on the amount of + available memory (we may have more available than we asked for), the + throughput that is being achieved and the ability of the CPU to keep up + with disk throughput (particularly where we're compressing pages). + + - checksum/enabled + + Use cryptoapi hashing routines to verify that Pageset2 pages don't change + while we're saving the first part of the image, and to get any pages that + do change resaved in the atomic copy. This should normally not be needed, + but if you're seeing issues, please enable this. If your issues stop you + being able to resume, enable this option, hibernate and cancel the cycle + after the atomic copy is done. If the debugging info shows a non-zero + number of pages resaved, please report this to Nigel. + + - compression/algorithm + + Set the cryptoapi algorithm used for compressing the image. + + - compression/expected_compression + + These values allow you to set an expected compression ratio, which TuxOnice + will use in calculating whether it meets constraints on the image size. If + this expected compression ratio is not attained, the hibernation cycle will + abort, so it is wise to allow some spare. You can see what compression + ratio is achieved in the logs after hibernating. + + - debug_info: + + This file returns information about your configuration that may be helpful + in diagnosing problems with hibernating. + + - did_suspend_to_both: + + This file can be used when you hibernate with powerdown method 3 (ie suspend + to ram after writing the image). There can be two outcomes in this case. We + can resume from the suspend-to-ram before the battery runs out, or we can run + out of juice and and up resuming like normal. This entry lets you find out, + post resume, which way we went. If the value is 1, we resumed from suspend + to ram. This can be useful when actions need to be run post suspend-to-ram + that don't need to be run if we did the normal resume from power off. + + - do_hibernate: + + When anything is written to this file, the kernel side of TuxOnIce will + begin to attempt to write an image to disk and power down. You'll normally + want to run the hibernate script instead, to get modules unloaded first. + + - do_resume: + + When anything is written to this file TuxOnIce will attempt to read and + restore an image. If there is no image, it will return almost immediately. + If an image exists, the echo > will never return. Instead, the original + kernel context will be restored and the original echo > do_hibernate will + return. + + - */enabled + + These option can be used to temporarily disable various parts of TuxOnIce. + + - extra_pages_allowance + + When TuxOnIce does its atomic copy, it calls the driver model suspend + and resume methods. If you have DRI enabled with a driver such as fglrx, + this can result in the driver allocating a substantial amount of memory + for storing its state. Extra_pages_allowance tells TuxOnIce how much + extra memory it should ensure is available for those allocations. If + your attempts at hibernating end with a message in dmesg indicating that + insufficient extra pages were allowed, you need to increase this value. + + - file/target: + + Read this value to get the current setting. Write to it to point TuxOnice + at a new storage location for the file allocator. See section 3.b.ii above + for details of how to set up the file allocator. + + - freezer_test + + This entry can be used to get TuxOnIce to just test the freezer and prepare + an image without actually doing a hibernation cycle. It is useful for + diagnosing freezing and image preparation issues. + + - full_pageset2 + + TuxOnIce divides the pages that are stored in an image into two sets. The + difference between the two sets is that pages in pageset 1 are atomically + copied, and pages in pageset 2 are written to disk without being copied + first. A page CAN be written to disk without being copied first if and only + if its contents will not be modified or used at any time after userspace + processes are frozen. A page MUST be in pageset 1 if its contents are + modified or used at any time after userspace processes have been frozen. + + Normally (ie if this option is enabled), TuxOnIce will put all pages on the + per-zone LRUs in pageset2, then remove those pages used by any userspace + user interface helper and TuxOnIce storage manager that are running, + together with pages used by the GEM memory manager introduced around 2.6.28 + kernels. + + If this option is disabled, a much more conservative approach will be taken. + The only pages in pageset2 will be those belonging to userspace processes, + with the exclusion of those belonging to the TuxOnIce userspace helpers + mentioned above. This will result in a much smaller pageset2, and will + therefore result in smaller images than are possible with this option + enabled. + + - ignore_rootfs + + TuxOnIce records which device is mounted as the root filesystem when + writing the hibernation image. It will normally check at resume time that + this device isn't already mounted - that would be a cause of filesystem + corruption. In some particular cases (RAM based root filesystems), you + might want to disable this check. This option allows you to do that. + + - image_exists: + + Can be used in a script to determine whether a valid image exists at the + location currently pointed to by resume=. Returns up to three lines. + The first is whether an image exists (-1 for unsure, otherwise 0 or 1). + If an image eixsts, additional lines will return the machine and version. + Echoing anything to this entry removes any current image. + + - image_size_limit: + + The maximum size of hibernation image written to disk, measured in megabytes + (1024*1024). + + - last_result: + + The result of the last hibernation cycle, as defined in + include/linux/suspend-debug.h with the values SUSPEND_ABORTED to + SUSPEND_KEPT_IMAGE. This is a bitmask. + + - late_cpu_hotplug: + + This sysfs entry controls whether cpu hotplugging is done - as normal - just + before (unplug) and after (replug) the atomic copy/restore (so that all + CPUs/cores are available for multithreaded I/O). The alternative is to + unplug all secondary CPUs/cores at the start of hibernating/resuming, and + replug them at the end of resuming. No multithreaded I/O will be possible in + this configuration, but the odd machine has been reported to require it. + + - lid_file: + + This determines which ACPI button file we look in to determine whether the + lid is open or closed after resuming from suspend to disk or power off. + If the entry is set to "lid/LID", we'll open /proc/acpi/button/lid/LID/state + and check its contents at the appropriate moment. See post_wake_state below + for more details on how this entry is used. + + - log_everything (CONFIG_PM_DEBUG): + + Setting this option results in all messages printed being logged. Normally, + only a subset are logged, so as to not slow the process and not clutter the + logs. Useful for debugging. It can be toggled during a cycle by pressing + 'L'. + + - no_load_direct: + + This is a debugging option. If, when loading the atomically copied pages of + an image, TuxOnIce finds that the destination address for a page is free, + it will normally allocate the image, load the data directly into that + address and skip it in the atomic restore. If this option is disabled, the + page will be loaded somewhere else and atomically restored like other pages. + + - no_flusher_thread: + + When doing multithreaded I/O (see below), the first online CPU can be used + to _just_ submit compressed pages when writing the image, rather than + compressing and submitting data. This option is normally disabled, but has + been included because Nigel would like to see whether it will be more useful + as the number of cores/cpus in computers increases. + + - no_multithreaded_io: + + TuxOnIce will normally create one thread per cpu/core on your computer, + each of which will then perform I/O. This will generally result in + throughput that's the maximum the storage medium can handle. There + shouldn't be any reason to disable multithreaded I/O now, but this option + has been retained for debugging purposes. + + - no_pageset2 + + See the entry for full_pageset2 above for an explanation of pagesets. + Enabling this option causes TuxOnIce to do an atomic copy of all pages, + thereby limiting the maximum image size to 1/2 of memory, as swsusp does. + + - no_pageset2_if_unneeded + + See the entry for full_pageset2 above for an explanation of pagesets. + Enabling this option causes TuxOnIce to act like no_pageset2 was enabled + if and only it isn't needed anyway. This option may still make TuxOnIce + less reliable because pageset2 pages are normally used to store the + atomic copy - drivers that want to do allocations of larger amounts of + memory in one shot will be more likely to find that those amounts aren't + available if this option is enabled. + + - pause_between_steps (CONFIG_PM_DEBUG): + + This option is used during debugging, to make TuxOnIce pause between + each step of the process. It is ignored when the nice display is on. + + - post_wake_state: + + TuxOnIce provides support for automatically waking after a user-selected + delay, and using a different powerdown method if the lid is still closed. + (Yes, we're assuming a laptop). This entry lets you choose what state + should be entered next. The values are those described under + powerdown_method, below. It can be used to suspend to RAM after hibernating, + then powerdown properly (say) 20 minutes. It can also be used to power down + properly, then wake at (say) 6.30am and suspend to RAM until you're ready + to use the machine. + + - powerdown_method: + + Used to select a method by which TuxOnIce should powerdown after writing the + image. Currently: + + 0: Don't use ACPI to power off. + 3: Attempt to enter Suspend-to-ram. + 4: Attempt to enter ACPI S4 mode. + 5: Attempt to power down via ACPI S5 mode. + + Note that these options are highly dependant upon your hardware & software: + + 3: When succesful, your machine suspends to ram instead of powering off. + The advantage of using this mode is that it doesn't matter whether your + battery has enough charge to make it through to your next resume. If it + lasts, you will simply resume from suspend to ram (and the image on disk + will be discarded). If the battery runs out, you will resume from disk + instead. The disadvantage is that it takes longer than a normal + suspend-to-ram to enter the state, since the suspend-to-disk image needs + to be written first. + 4/5: When successful, your machine will be off and comsume (almost) no power. + But it might still react to some external events like opening the lid or + trafic on a network or usb device. For the bios, resume is then the same + as warm boot, similar to a situation where you used the command `reboot' + to reboot your machine. If your machine has problems on warm boot or if + you want to protect your machine with the bios password, this is probably + not the right choice. Mode 4 may be necessary on some machines where ACPI + wake up methods need to be run to properly reinitialise hardware after a + hibernation cycle. + 0: Switch the machine completely off. The only possible wakeup is the power + button. For the bios, resume is then the same as a cold boot, in + particular you would have to provide your bios boot password if your + machine uses that feature for booting. + + - progressbar_granularity_limit: + + This option can be used to limit the granularity of the progress bar + displayed with a bootsplash screen. The value is the maximum number of + steps. That is, 10 will make the progress bar jump in 10% increments. + + - reboot: + + This option causes TuxOnIce to reboot rather than powering down + at the end of saving an image. It can be toggled during a cycle by pressing + 'R'. + + - resume: + + This sysfs entry can be used to read and set the location in which TuxOnIce + will look for the signature of an image - the value set using resume= at + boot time or CONFIG_PM_STD_PARTITION ("Default resume partition"). By + writing to this file as well as modifying your bootloader's configuration + file (eg menu.lst), you can set or reset the location of your image or the + method of storing the image without rebooting. + + - replace_swsusp (CONFIG_TOI_REPLACE_SWSUSP): + + This option makes + + echo disk > /sys/power/state + + activate TuxOnIce instead of swsusp. Regardless of whether this option is + enabled, any invocation of swsusp's resume time trigger will cause TuxOnIce + to check for an image too. This is due to the fact that at resume time, we + can't know whether this option was enabled until we see if an image is there + for us to resume from. (And when an image exists, we don't care whether we + did replace swsusp anyway - we just want to resume). + + - resume_commandline: + + This entry can be read after resuming to see the commandline that was used + when resuming began. You might use this to set up two bootloader entries + that are the same apart from the fact that one includes a extra append= + argument "at_work=1". You could then grep resume_commandline in your + post-resume scripts and configure networking (for example) differently + depending upon whether you're at home or work. resume_commandline can be + set to arbitrary text if you wish to remove sensitive contents. + + - swap/swapfilename: + + This entry is used to specify the swapfile or partition that + TuxOnIce will attempt to swapon/swapoff automatically. Thus, if + I normally use /dev/hda1 for swap, and want to use /dev/hda2 for specifically + for my hibernation image, I would + + echo /dev/hda2 > /sys/power/tuxonice/swap/swapfile + + /dev/hda2 would then be automatically swapon'd and swapoff'd. Note that the + swapon and swapoff occur while other processes are frozen (including kswapd) + so this swap file will not be used up when attempting to free memory. The + parition/file is also given the highest priority, so other swapfiles/partitions + will only be used to save the image when this one is filled. + + The value of this file is used by headerlocations along with any currently + activated swapfiles/partitions. + + - swap/headerlocations: + + This option tells you the resume= options to use for swap devices you + currently have activated. It is particularly useful when you only want to + use a swap file to store your image. See above for further details. + + - test_bio + + This is a debugging option. When enabled, TuxOnIce will not hibernate. + Instead, when asked to write an image, it will skip the atomic copy, + just doing the writing of the image and then returning control to the + user at the point where it would have powered off. This is useful for + testing throughput in different configurations. + + - test_filter_speed + + This is a debugging option. When enabled, TuxOnIce will not hibernate. + Instead, when asked to write an image, it will not write anything or do + an atomic copy, but will only run any enabled compression algorithm on the + data that would have been written (the source pages of the atomic copy in + the case of pageset 1). This is useful for comparing the performance of + compression algorithms and for determining the extent to which an upgrade + to your storage method would improve hibernation speed. + + - user_interface/debug_sections (CONFIG_PM_DEBUG): + + This value, together with the console log level, controls what debugging + information is displayed. The console log level determines the level of + detail, and this value determines what detail is displayed. This value is + a bit vector, and the meaning of the bits can be found in the kernel tree + in include/linux/tuxonice.h. It can be overridden using the kernel's + command line option suspend_dbg. + + - user_interface/default_console_level (CONFIG_PM_DEBUG): + + This determines the value of the console log level at the start of a + hibernation cycle. If debugging is compiled in, the console log level can be + changed during a cycle by pressing the digit keys. Meanings are: + + 0: Nice display. + 1: Nice display plus numerical progress. + 2: Errors only. + 3: Low level debugging info. + 4: Medium level debugging info. + 5: High level debugging info. + 6: Verbose debugging info. + + - user_interface/enable_escape: + + Setting this to "1" will enable you abort a hibernation cycle or resuming by + pressing escape, "0" (default) disables this feature. Note that enabling + this option means that you cannot initiate a hibernation cycle and then walk + away from your computer, expecting it to be secure. With feature disabled, + you can validly have this expectation once TuxOnice begins to write the + image to disk. (Prior to this point, it is possible that TuxOnice might + about because of failure to freeze all processes or because constraints + on its ability to save the image are not met). + + - user_interface/program + + This entry is used to tell TuxOnice what userspace program to use for + providing a user interface while hibernating. The program uses a netlink + socket to pass messages back and forward to the kernel, allowing all of the + functions formerly implemented in the kernel user interface components. + + - version: + + The version of TuxOnIce you have compiled into the currently running kernel. + + - wake_alarm_dir: + + As mentioned above (post_wake_state), TuxOnIce supports automatically waking + after some delay. This entry allows you to select which wake alarm to use. + It should contain the value "rtc0" if you're wanting to use + /sys/class/rtc/rtc0. + + - wake_delay: + + This value determines the delay from the end of writing the image until the + wake alarm is triggered. You can set an absolute time by writing the desired + time into /sys/class/rtc/<wake_alarm_dir>/wakealarm and leaving these values + empty. + + Note that for the wakeup to actually occur, you may need to modify entries + in /proc/acpi/wakeup. This is done by echoing the name of the button in the + first column (eg PBTN) into the file. + +7. How do you get support? + + Glad you asked. TuxOnIce is being actively maintained and supported + by Nigel (the guy doing most of the kernel coding at the moment), Bernard + (who maintains the hibernate script and userspace user interface components) + and its users. + + Resources availble include HowTos, FAQs and a Wiki, all available via + tuxonice.net. You can find the mailing lists there. + +8. I think I've found a bug. What should I do? + + By far and a way, the most common problems people have with TuxOnIce + related to drivers not having adequate power management support. In this + case, it is not a bug with TuxOnIce, but we can still help you. As we + mentioned above, such issues can usually be worked around by building the + functionality as modules and unloading them while hibernating. Please visit + the Wiki for up-to-date lists of known issues and work arounds. + + If this information doesn't help, try running: + + hibernate --bug-report + + ..and sending the output to the users mailing list. + + Good information on how to provide us with useful information from an + oops is found in the file REPORTING-BUGS, in the top level directory + of the kernel tree. If you get an oops, please especially note the + information about running what is printed on the screen through ksymoops. + The raw information is useless. + +9. When will XXX be supported? + + If there's a feature missing from TuxOnIce that you'd like, feel free to + ask. We try to be obliging, within reason. + + Patches are welcome. Please send to the list. + +10. How does it work? + + TuxOnIce does its work in a number of steps. + + a. Freezing system activity. + + The first main stage in hibernating is to stop all other activity. This is + achieved in stages. Processes are considered in fours groups, which we will + describe in reverse order for clarity's sake: Threads with the PF_NOFREEZE + flag, kernel threads without this flag, userspace processes with the + PF_SYNCTHREAD flag and all other processes. The first set (PF_NOFREEZE) are + untouched by the refrigerator code. They are allowed to run during hibernating + and resuming, and are used to support user interaction, storage access or the + like. Other kernel threads (those unneeded while hibernating) are frozen last. + This leaves us with userspace processes that need to be frozen. When a + process enters one of the *_sync system calls, we set a PF_SYNCTHREAD flag on + that process for the duration of that call. Processes that have this flag are + frozen after processes without it, so that we can seek to ensure that dirty + data is synced to disk as quickly as possible in a situation where other + processes may be submitting writes at the same time. Freezing the processes + that are submitting data stops new I/O from being submitted. Syncthreads can + then cleanly finish their work. So the order is: + + - Userspace processes without PF_SYNCTHREAD or PF_NOFREEZE; + - Userspace processes with PF_SYNCTHREAD (they won't have NOFREEZE); + - Kernel processes without PF_NOFREEZE. + + b. Eating memory. + + For a successful hibernation cycle, you need to have enough disk space to store the + image and enough memory for the various limitations of TuxOnIce's + algorithm. You can also specify a maximum image size. In order to attain + to those constraints, TuxOnIce may 'eat' memory. If, after freezing + processes, the constraints aren't met, TuxOnIce will thaw all the + other processes and begin to eat memory until its calculations indicate + the constraints are met. It will then freeze processes again and recheck + its calculations. + + c. Allocation of storage. + + Next, TuxOnIce allocates the storage that will be used to save + the image. + + The core of TuxOnIce knows nothing about how or where pages are stored. We + therefore request the active allocator (remember you might have compiled in + more than one!) to allocate enough storage for our expect image size. If + this request cannot be fulfilled, we eat more memory and try again. If it + is fulfiled, we seek to allocate additional storage, just in case our + expected compression ratio (if any) isn't achieved. This time, however, we + just continue if we can't allocate enough storage. + + If these calls to our allocator change the characteristics of the image + such that we haven't allocated enough memory, we also loop. (The allocator + may well need to allocate space for its storage information). + + d. Write the first part of the image. + + TuxOnIce stores the image in two sets of pages called 'pagesets'. + Pageset 2 contains pages on the active and inactive lists; essentially + the page cache. Pageset 1 contains all other pages, including the kernel. + We use two pagesets for one important reason: We need to make an atomic copy + of the kernel to ensure consistency of the image. Without a second pageset, + that would limit us to an image that was at most half the amount of memory + available. Using two pagesets allows us to store a full image. Since pageset + 2 pages won't be needed in saving pageset 1, we first save pageset 2 pages. + We can then make our atomic copy of the remaining pages using both pageset 2 + pages and any other pages that are free. While saving both pagesets, we are + careful not to corrupt the image. Among other things, we use lowlevel block + I/O routines that don't change the pagecache contents. + + The next step, then, is writing pageset 2. + + e. Suspending drivers and storing processor context. + + Having written pageset2, TuxOnIce calls the power management functions to + notify drivers of the hibernation, and saves the processor state in preparation + for the atomic copy of memory we are about to make. + + f. Atomic copy. + + At this stage, everything else but the TuxOnIce code is halted. Processes + are frozen or idling, drivers are quiesced and have stored (ideally and where + necessary) their configuration in memory we are about to atomically copy. + In our lowlevel architecture specific code, we have saved the CPU state. + We can therefore now do our atomic copy before resuming drivers etc. + + g. Save the atomic copy (pageset 1). + + TuxOnice can then write the atomic copy of the remaining pages. Since we + have copied the pages into other locations, we can continue to use the + normal block I/O routines without fear of corruption our image. + + f. Save the image header. + + Nearly there! We save our settings and other parameters needed for + reloading pageset 1 in an 'image header'. We also tell our allocator to + serialise its data at this stage, so that it can reread the image at resume + time. + + g. Set the image header. + + Finally, we edit the header at our resume= location. The signature is + changed by the allocator to reflect the fact that an image exists, and to + point to the start of that data if necessary (swap allocator). + + h. Power down. + + Or reboot if we're debugging and the appropriate option is selected. + + Whew! + + Reloading the image. + -------------------- + + Reloading the image is essentially the reverse of all the above. We load + our copy of pageset 1, being careful to choose locations that aren't going + to be overwritten as we copy it back (We start very early in the boot + process, so there are no other processes to quiesce here). We then copy + pageset 1 back to its original location in memory and restore the process + context. We are now running with the original kernel. Next, we reload the + pageset 2 pages, free the memory and swap used by TuxOnIce, restore + the pageset header and restart processes. Sounds easy in comparison to + hibernating, doesn't it! + + There is of course more to TuxOnIce than this, but this explanation + should be a good start. If there's interest, I'll write further + documentation on range pages and the low level I/O. + +11. Who wrote TuxOnIce? + + (Answer based on the writings of Florent Chabaud, credits in files and + Nigel's limited knowledge; apologies to anyone missed out!) + + The main developers of TuxOnIce have been... + + Gabor Kuti + Pavel Machek + Florent Chabaud + Bernard Blackham + Nigel Cunningham + + Significant portions of swsusp, the code in the vanilla kernel which + TuxOnIce enhances, have been worked on by Rafael Wysocki. Thanks should + also be expressed to him. + + The above mentioned developers have been aided in their efforts by a host + of hundreds, if not thousands of testers and people who have submitted bug + fixes & suggestions. Of special note are the efforts of Michael Frank, who + had his computers repetitively hibernate and resume for literally tens of + thousands of cycles and developed scripts to stress the system and test + TuxOnIce far beyond the point most of us (Nigel included!) would consider + testing. His efforts have contributed as much to TuxOnIce as any of the + names above. diff --git a/Documentation/power/userland-swsusp.txt b/Documentation/power/userland-swsusp.txt new file mode 100644 index 000000000..bbfcd1bbe --- /dev/null +++ b/Documentation/power/userland-swsusp.txt @@ -0,0 +1,170 @@ +Documentation for userland software suspend interface + (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> + +First, the warnings at the beginning of swsusp.txt still apply. + +Second, you should read the FAQ in swsusp.txt _now_ if you have not +done it already. + +Now, to use the userland interface for software suspend you need special +utilities that will read/write the system memory snapshot from/to the +kernel. Such utilities are available, for example, from +<http://suspend.sourceforge.net>. You may want to have a look at them if you +are going to develop your own suspend/resume utilities. + +The interface consists of a character device providing the open(), +release(), read(), and write() operations as well as several ioctl() +commands defined in include/linux/suspend_ioctls.h . The major and minor +numbers of the device are, respectively, 10 and 231, and they can +be read from /sys/class/misc/snapshot/dev. + +The device can be open either for reading or for writing. If open for +reading, it is considered to be in the suspend mode. Otherwise it is +assumed to be in the resume mode. The device cannot be open for simultaneous +reading and writing. It is also impossible to have the device open more than +once at a time. + +Even opening the device has side effects. Data structures are +allocated, and PM_HIBERNATION_PREPARE / PM_RESTORE_PREPARE chains are +called. + +The ioctl() commands recognized by the device are: + +SNAPSHOT_FREEZE - freeze user space processes (the current process is + not frozen); this is required for SNAPSHOT_CREATE_IMAGE + and SNAPSHOT_ATOMIC_RESTORE to succeed + +SNAPSHOT_UNFREEZE - thaw user space processes frozen by SNAPSHOT_FREEZE + +SNAPSHOT_CREATE_IMAGE - create a snapshot of the system memory; the + last argument of ioctl() should be a pointer to an int variable, + the value of which will indicate whether the call returned after + creating the snapshot (1) or after restoring the system memory state + from it (0) (after resume the system finds itself finishing the + SNAPSHOT_CREATE_IMAGE ioctl() again); after the snapshot + has been created the read() operation can be used to transfer + it out of the kernel + +SNAPSHOT_ATOMIC_RESTORE - restore the system memory state from the + uploaded snapshot image; before calling it you should transfer + the system memory snapshot back to the kernel using the write() + operation; this call will not succeed if the snapshot + image is not available to the kernel + +SNAPSHOT_FREE - free memory allocated for the snapshot image + +SNAPSHOT_PREF_IMAGE_SIZE - set the preferred maximum size of the image + (the kernel will do its best to ensure the image size will not exceed + this number, but if it turns out to be impossible, the kernel will + create the smallest image possible) + +SNAPSHOT_GET_IMAGE_SIZE - return the actual size of the hibernation image + +SNAPSHOT_AVAIL_SWAP_SIZE - return the amount of available swap in bytes (the + last argument should be a pointer to an unsigned int variable that will + contain the result if the call is successful). + +SNAPSHOT_ALLOC_SWAP_PAGE - allocate a swap page from the resume partition + (the last argument should be a pointer to a loff_t variable that + will contain the swap page offset if the call is successful) + +SNAPSHOT_FREE_SWAP_PAGES - free all swap pages allocated by + SNAPSHOT_ALLOC_SWAP_PAGE + +SNAPSHOT_SET_SWAP_AREA - set the resume partition and the offset (in <PAGE_SIZE> + units) from the beginning of the partition at which the swap header is + located (the last ioctl() argument should point to a struct + resume_swap_area, as defined in kernel/power/suspend_ioctls.h, + containing the resume device specification and the offset); for swap + partitions the offset is always 0, but it is different from zero for + swap files (see Documentation/power/swsusp-and-swap-files.txt for + details). + +SNAPSHOT_PLATFORM_SUPPORT - enable/disable the hibernation platform support, + depending on the argument value (enable, if the argument is nonzero) + +SNAPSHOT_POWER_OFF - make the kernel transition the system to the hibernation + state (eg. ACPI S4) using the platform (eg. ACPI) driver + +SNAPSHOT_S2RAM - suspend to RAM; using this call causes the kernel to + immediately enter the suspend-to-RAM state, so this call must always + be preceded by the SNAPSHOT_FREEZE call and it is also necessary + to use the SNAPSHOT_UNFREEZE call after the system wakes up. This call + is needed to implement the suspend-to-both mechanism in which the + suspend image is first created, as though the system had been suspended + to disk, and then the system is suspended to RAM (this makes it possible + to resume the system from RAM if there's enough battery power or restore + its state on the basis of the saved suspend image otherwise) + +The device's read() operation can be used to transfer the snapshot image from +the kernel. It has the following limitations: +- you cannot read() more than one virtual memory page at a time +- read()s across page boundaries are impossible (ie. if you read() 1/2 of + a page in the previous call, you will only be able to read() + _at_ _most_ 1/2 of the page in the next call) + +The device's write() operation is used for uploading the system memory snapshot +into the kernel. It has the same limitations as the read() operation. + +The release() operation frees all memory allocated for the snapshot image +and all swap pages allocated with SNAPSHOT_ALLOC_SWAP_PAGE (if any). +Thus it is not necessary to use either SNAPSHOT_FREE or +SNAPSHOT_FREE_SWAP_PAGES before closing the device (in fact it will also +unfreeze user space processes frozen by SNAPSHOT_UNFREEZE if they are +still frozen when the device is being closed). + +Currently it is assumed that the userland utilities reading/writing the +snapshot image from/to the kernel will use a swap partition, called the resume +partition, or a swap file as storage space (if a swap file is used, the resume +partition is the partition that holds this file). However, this is not really +required, as they can use, for example, a special (blank) suspend partition or +a file on a partition that is unmounted before SNAPSHOT_CREATE_IMAGE and +mounted afterwards. + +These utilities MUST NOT make any assumptions regarding the ordering of +data within the snapshot image. The contents of the image are entirely owned +by the kernel and its structure may be changed in future kernel releases. + +The snapshot image MUST be written to the kernel unaltered (ie. all of the image +data, metadata and header MUST be written in _exactly_ the same amount, form +and order in which they have been read). Otherwise, the behavior of the +resumed system may be totally unpredictable. + +While executing SNAPSHOT_ATOMIC_RESTORE the kernel checks if the +structure of the snapshot image is consistent with the information stored +in the image header. If any inconsistencies are detected, +SNAPSHOT_ATOMIC_RESTORE will not succeed. Still, this is not a fool-proof +mechanism and the userland utilities using the interface SHOULD use additional +means, such as checksums, to ensure the integrity of the snapshot image. + +The suspending and resuming utilities MUST lock themselves in memory, +preferably using mlockall(), before calling SNAPSHOT_FREEZE. + +The suspending utility MUST check the value stored by SNAPSHOT_CREATE_IMAGE +in the memory location pointed to by the last argument of ioctl() and proceed +in accordance with it: +1. If the value is 1 (ie. the system memory snapshot has just been + created and the system is ready for saving it): + (a) The suspending utility MUST NOT close the snapshot device + _unless_ the whole suspend procedure is to be cancelled, in + which case, if the snapshot image has already been saved, the + suspending utility SHOULD destroy it, preferably by zapping + its header. If the suspend is not to be cancelled, the + system MUST be powered off or rebooted after the snapshot + image has been saved. + (b) The suspending utility SHOULD NOT attempt to perform any + file system operations (including reads) on the file systems + that were mounted before SNAPSHOT_CREATE_IMAGE has been + called. However, it MAY mount a file system that was not + mounted at that time and perform some operations on it (eg. + use it for saving the image). +2. If the value is 0 (ie. the system state has just been restored from + the snapshot image), the suspending utility MUST close the snapshot + device. Afterwards it will be treated as a regular userland process, + so it need not exit. + +The resuming utility SHOULD NOT attempt to mount any file systems that could +be mounted before suspend and SHOULD NOT attempt to perform any operations +involving such file systems. + +For details, please refer to the source code. diff --git a/Documentation/power/video.txt b/Documentation/power/video.txt new file mode 100644 index 000000000..3e6272bc4 --- /dev/null +++ b/Documentation/power/video.txt @@ -0,0 +1,185 @@ + + Video issues with S3 resume + ~~~~~~~~~~~~~~~~~~~~~~~~~~~ + 2003-2006, Pavel Machek + +During S3 resume, hardware needs to be reinitialized. For most +devices, this is easy, and kernel driver knows how to do +it. Unfortunately there's one exception: video card. Those are usually +initialized by BIOS, and kernel does not have enough information to +boot video card. (Kernel usually does not even contain video card +driver -- vesafb and vgacon are widely used). + +This is not problem for swsusp, because during swsusp resume, BIOS is +run normally so video card is normally initialized. It should not be +problem for S1 standby, because hardware should retain its state over +that. + +We either have to run video BIOS during early resume, or interpret it +using vbetool later, or maybe nothing is necessary on particular +system because video state is preserved. Unfortunately different +methods work on different systems, and no known method suits all of +them. + +Userland application called s2ram has been developed; it contains long +whitelist of systems, and automatically selects working method for a +given system. It can be downloaded from CVS at +www.sf.net/projects/suspend . If you get a system that is not in the +whitelist, please try to find a working solution, and submit whitelist +entry so that work does not need to be repeated. + +Currently, VBE_SAVE method (6 below) works on most +systems. Unfortunately, vbetool only runs after userland is resumed, +so it makes debugging of early resume problems +hard/impossible. Methods that do not rely on userland are preferable. + +Details +~~~~~~~ + +There are a few types of systems where video works after S3 resume: + +(1) systems where video state is preserved over S3. + +(2) systems where it is possible to call the video BIOS during S3 + resume. Unfortunately, it is not correct to call the video BIOS at + that point, but it happens to work on some machines. Use + acpi_sleep=s3_bios. + +(3) systems that initialize video card into vga text mode and where + the BIOS works well enough to be able to set video mode. Use + acpi_sleep=s3_mode on these. + +(4) on some systems s3_bios kicks video into text mode, and + acpi_sleep=s3_bios,s3_mode is needed. + +(5) radeon systems, where X can soft-boot your video card. You'll need + a new enough X, and a plain text console (no vesafb or radeonfb). See + http://www.doesi.gmxhome.de/linux/tm800s3/s3.html for more information. + Alternatively, you should use vbetool (6) instead. + +(6) other radeon systems, where vbetool is enough to bring system back + to life. It needs text console to be working. Do vbetool vbestate + save > /tmp/delme; echo 3 > /proc/acpi/sleep; vbetool post; vbetool + vbestate restore < /tmp/delme; setfont <whatever>, and your video + should work. + +(7) on some systems, it is possible to boot most of kernel, and then + POSTing bios works. Ole Rohne has patch to do just that at + http://dev.gentoo.org/~marineam/patch-radeonfb-2.6.11-rc2-mm2. + +(8) on some systems, you can use the video_post utility and or + do echo 3 > /sys/power/state && /usr/sbin/video_post - which will + initialize the display in console mode. If you are in X, you can switch + to a virtual terminal and back to X using CTRL+ALT+F1 - CTRL+ALT+F7 to get + the display working in graphical mode again. + +Now, if you pass acpi_sleep=something, and it does not work with your +bios, you'll get a hard crash during resume. Be careful. Also it is +safest to do your experiments with plain old VGA console. The vesafb +and radeonfb (etc) drivers have a tendency to crash the machine during +resume. + +You may have a system where none of above works. At that point you +either invent another ugly hack that works, or write proper driver for +your video card (good luck getting docs :-(). Maybe suspending from X +(proper X, knowing your hardware, not XF68_FBcon) might have better +chance of working. + +Table of known working notebooks: + +Model hack (or "how to do it") +------------------------------------------------------------------------------ +Acer Aspire 1406LC ole's late BIOS init (7), turn off DRI +Acer TM 230 s3_bios (2) +Acer TM 242FX vbetool (6) +Acer TM C110 video_post (8) +Acer TM C300 vga=normal (only suspend on console, not in X), vbetool (6) or video_post (8) +Acer TM 4052LCi s3_bios (2) +Acer TM 636Lci s3_bios,s3_mode (4) +Acer TM 650 (Radeon M7) vga=normal plus boot-radeon (5) gets text console back +Acer TM 660 ??? (*) +Acer TM 800 vga=normal, X patches, see webpage (5) or vbetool (6) +Acer TM 803 vga=normal, X patches, see webpage (5) or vbetool (6) +Acer TM 803LCi vga=normal, vbetool (6) +Arima W730a vbetool needed (6) +Asus L2400D s3_mode (3)(***) (S1 also works OK) +Asus L3350M (SiS 740) (6) +Asus L3800C (Radeon M7) s3_bios (2) (S1 also works OK) +Asus M6887Ne vga=normal, s3_bios (2), use radeon driver instead of fglrx in x.org +Athlon64 desktop prototype s3_bios (2) +Compal CL-50 ??? (*) +Compaq Armada E500 - P3-700 none (1) (S1 also works OK) +Compaq Evo N620c vga=normal, s3_bios (2) +Dell 600m, ATI R250 Lf none (1), but needs xorg-x11-6.8.1.902-1 +Dell D600, ATI RV250 vga=normal and X, or try vbestate (6) +Dell D610 vga=normal and X (possibly vbestate (6) too, but not tested) +Dell Inspiron 4000 ??? (*) +Dell Inspiron 500m ??? (*) +Dell Inspiron 510m ??? +Dell Inspiron 5150 vbetool needed (6) +Dell Inspiron 600m ??? (*) +Dell Inspiron 8200 ??? (*) +Dell Inspiron 8500 ??? (*) +Dell Inspiron 8600 ??? (*) +eMachines athlon64 machines vbetool needed (6) (someone please get me model #s) +HP NC6000 s3_bios, may not use radeonfb (2); or vbetool (6) +HP NX7000 ??? (*) +HP Pavilion ZD7000 vbetool post needed, need open-source nv driver for X +HP Omnibook XE3 athlon version none (1) +HP Omnibook XE3GC none (1), video is S3 Savage/IX-MV +HP Omnibook XE3L-GF vbetool (6) +HP Omnibook 5150 none (1), (S1 also works OK) +IBM TP T20, model 2647-44G none (1), video is S3 Inc. 86C270-294 Savage/IX-MV, vesafb gets "interesting" but X work. +IBM TP A31 / Type 2652-M5G s3_mode (3) [works ok with BIOS 1.04 2002-08-23, but not at all with BIOS 1.11 2004-11-05 :-(] +IBM TP R32 / Type 2658-MMG none (1) +IBM TP R40 2722B3G ??? (*) +IBM TP R50p / Type 1832-22U s3_bios (2) +IBM TP R51 none (1) +IBM TP T30 236681A ??? (*) +IBM TP T40 / Type 2373-MU4 none (1) +IBM TP T40p none (1) +IBM TP R40p s3_bios (2) +IBM TP T41p s3_bios (2), switch to X after resume +IBM TP T42 s3_bios (2) +IBM ThinkPad T42p (2373-GTG) s3_bios (2) +IBM TP X20 ??? (*) +IBM TP X30 s3_bios, s3_mode (4) +IBM TP X31 / Type 2672-XXH none (1), use radeontool (http://fdd.com/software/radeon/) to turn off backlight. +IBM TP X32 none (1), but backlight is on and video is trashed after long suspend. s3_bios,s3_mode (4) works too. Perhaps that gets better results? +IBM Thinkpad X40 Type 2371-7JG s3_bios,s3_mode (4) +IBM TP 600e none(1), but a switch to console and back to X is needed +Medion MD4220 ??? (*) +Samsung P35 vbetool needed (6) +Sharp PC-AR10 (ATI rage) none (1), backlight does not switch off +Sony Vaio PCG-C1VRX/K s3_bios (2) +Sony Vaio PCG-F403 ??? (*) +Sony Vaio PCG-GRT995MP none (1), works with 'nv' X driver +Sony Vaio PCG-GR7/K none (1), but needs radeonfb, use radeontool (http://fdd.com/software/radeon/) to turn off backlight. +Sony Vaio PCG-N505SN ??? (*) +Sony Vaio vgn-s260 X or boot-radeon can init it (5) +Sony Vaio vgn-S580BH vga=normal, but suspend from X. Console will be blank unless you return to X. +Sony Vaio vgn-FS115B s3_bios (2),s3_mode (4) +Toshiba Libretto L5 none (1) +Toshiba Libretto 100CT/110CT vbetool (6) +Toshiba Portege 3020CT s3_mode (3) +Toshiba Satellite 4030CDT s3_mode (3) (S1 also works OK) +Toshiba Satellite 4080XCDT s3_mode (3) (S1 also works OK) +Toshiba Satellite 4090XCDT ??? (*) +Toshiba Satellite P10-554 s3_bios,s3_mode (4)(****) +Toshiba M30 (2) xor X with nvidia driver using internal AGP +Uniwill 244IIO ??? (*) + +Known working desktop systems +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Mainboard Graphics card hack (or "how to do it") +------------------------------------------------------------------------------ +Asus A7V8X nVidia RIVA TNT2 model 64 s3_bios,s3_mode (4) + + +(*) from https://wiki.ubuntu.com/HoaryPMResults, not sure + which options to use. If you know, please tell me. + +(***) To be tested with a newer kernel. + +(****) Not with SMP kernel, UP only. |