summaryrefslogtreecommitdiff
path: root/Documentation/powerpc
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/powerpc')
-rw-r--r--Documentation/powerpc/00-INDEX2
-rw-r--r--Documentation/powerpc/cxl.txt4
-rw-r--r--Documentation/powerpc/dscr.txt83
-rw-r--r--Documentation/powerpc/transactional_memory.txt32
4 files changed, 105 insertions, 16 deletions
diff --git a/Documentation/powerpc/00-INDEX b/Documentation/powerpc/00-INDEX
index 6fd0e8bb8..9dc845cf7 100644
--- a/Documentation/powerpc/00-INDEX
+++ b/Documentation/powerpc/00-INDEX
@@ -30,3 +30,5 @@ ptrace.txt
- Information on the ptrace interfaces for hardware debug registers.
transactional_memory.txt
- Overview of the Power8 transactional memory support.
+dscr.txt
+ - Overview DSCR (Data Stream Control Register) support.
diff --git a/Documentation/powerpc/cxl.txt b/Documentation/powerpc/cxl.txt
index 2c71ecc51..2a230d01c 100644
--- a/Documentation/powerpc/cxl.txt
+++ b/Documentation/powerpc/cxl.txt
@@ -133,6 +133,9 @@ User API
The following file operations are supported on both slave and
master devices.
+ A userspace library libcxl is avaliable here:
+ https://github.com/ibm-capi/libcxl
+ This provides a C interface to this kernel API.
open
----
@@ -366,6 +369,7 @@ Sysfs Class
enumeration and tuning of the accelerators. Its layout is
described in Documentation/ABI/testing/sysfs-class-cxl
+
Udev rules
==========
diff --git a/Documentation/powerpc/dscr.txt b/Documentation/powerpc/dscr.txt
new file mode 100644
index 000000000..1ff4400c5
--- /dev/null
+++ b/Documentation/powerpc/dscr.txt
@@ -0,0 +1,83 @@
+ DSCR (Data Stream Control Register)
+ ================================================
+
+DSCR register in powerpc allows user to have some control of prefetch of data
+stream in the processor. Please refer to the ISA documents or related manual
+for more detailed information regarding how to use this DSCR to attain this
+control of the pefetches . This document here provides an overview of kernel
+support for DSCR, related kernel objects, it's functionalities and exported
+user interface.
+
+(A) Data Structures:
+
+ (1) thread_struct:
+ dscr /* Thread DSCR value */
+ dscr_inherit /* Thread has changed default DSCR */
+
+ (2) PACA:
+ dscr_default /* per-CPU DSCR default value */
+
+ (3) sysfs.c:
+ dscr_default /* System DSCR default value */
+
+(B) Scheduler Changes:
+
+ Scheduler will write the per-CPU DSCR default which is stored in the
+ CPU's PACA value into the register if the thread has dscr_inherit value
+ cleared which means that it has not changed the default DSCR till now.
+ If the dscr_inherit value is set which means that it has changed the
+ default DSCR value, scheduler will write the changed value which will
+ now be contained in thread struct's dscr into the register instead of
+ the per-CPU default PACA based DSCR value.
+
+ NOTE: Please note here that the system wide global DSCR value never
+ gets used directly in the scheduler process context switch at all.
+
+(C) SYSFS Interface:
+
+ Global DSCR default: /sys/devices/system/cpu/dscr_default
+ CPU specific DSCR default: /sys/devices/system/cpu/cpuN/dscr
+
+ Changing the global DSCR default in the sysfs will change all the CPU
+ specific DSCR defaults immediately in their PACA structures. Again if
+ the current process has the dscr_inherit clear, it also writes the new
+ value into every CPU's DSCR register right away and updates the current
+ thread's DSCR value as well.
+
+ Changing the CPU specif DSCR default value in the sysfs does exactly
+ the same thing as above but unlike the global one above, it just changes
+ stuff for that particular CPU instead for all the CPUs on the system.
+
+(D) User Space Instructions:
+
+ The DSCR register can be accessed in the user space using any of these
+ two SPR numbers available for that purpose.
+
+ (1) Problem state SPR: 0x03 (Un-privileged, POWER8 only)
+ (2) Privileged state SPR: 0x11 (Privileged)
+
+ Accessing DSCR through privileged SPR number (0x11) from user space
+ works, as it is emulated following an illegal instruction exception
+ inside the kernel. Both mfspr and mtspr instructions are emulated.
+
+ Accessing DSCR through user level SPR (0x03) from user space will first
+ create a facility unavailable exception. Inside this exception handler
+ all mfspr isntruction based read attempts will get emulated and returned
+ where as the first mtspr instruction based write attempts will enable
+ the DSCR facility for the next time around (both for read and write) by
+ setting DSCR facility in the FSCR register.
+
+(E) Specifics about 'dscr_inherit':
+
+ The thread struct element 'dscr_inherit' represents whether the thread
+ in question has attempted and changed the DSCR itself using any of the
+ following methods. This element signifies whether the thread wants to
+ use the CPU default DSCR value or its own changed DSCR value in the
+ kernel.
+
+ (1) mtspr instruction (SPR number 0x03)
+ (2) mtspr instruction (SPR number 0x11)
+ (3) ptrace interface (Explicitly set user DSCR value)
+
+ Any child of the process created after this event in the process inherits
+ this same behaviour as well.
diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.txt
index ded69794a..ba0a2a4a5 100644
--- a/Documentation/powerpc/transactional_memory.txt
+++ b/Documentation/powerpc/transactional_memory.txt
@@ -74,22 +74,23 @@ Causes of transaction aborts
Syscalls
========
-Performing syscalls from within transaction is not recommended, and can lead
-to unpredictable results.
+Syscalls made from within an active transaction will not be performed and the
+transaction will be doomed by the kernel with the failure code TM_CAUSE_SYSCALL
+| TM_CAUSE_PERSISTENT.
-Syscalls do not by design abort transactions, but beware: The kernel code will
-not be running in transactional state. The effect of syscalls will always
-remain visible, but depending on the call they may abort your transaction as a
-side-effect, read soon-to-be-aborted transactional data that should not remain
-invisible, etc. If you constantly retry a transaction that constantly aborts
-itself by calling a syscall, you'll have a livelock & make no progress.
+Syscalls made from within a suspended transaction are performed as normal and
+the transaction is not explicitly doomed by the kernel. However, what the
+kernel does to perform the syscall may result in the transaction being doomed
+by the hardware. The syscall is performed in suspended mode so any side
+effects will be persistent, independent of transaction success or failure. No
+guarantees are provided by the kernel about which syscalls will affect
+transaction success.
-Simple syscalls (e.g. sigprocmask()) "could" be OK. Even things like write()
-from, say, printf() should be OK as long as the kernel does not access any
-memory that was accessed transactionally.
-
-Consider any syscalls that happen to work as debug-only -- not recommended for
-production use. Best to queue them up till after the transaction is over.
+Care must be taken when relying on syscalls to abort during active transactions
+if the calls are made via a library. Libraries may cache values (which may
+give the appearance of success) or perform operations that cause transaction
+failure before entering the kernel (which may produce different failure codes).
+Examples are glibc's getpid() and lazy symbol resolution.
Signals
@@ -176,8 +177,7 @@ kernel aborted a transaction:
TM_CAUSE_RESCHED Thread was rescheduled.
TM_CAUSE_TLBI Software TLB invalid.
TM_CAUSE_FAC_UNAV FP/VEC/VSX unavailable trap.
- TM_CAUSE_SYSCALL Currently unused; future syscalls that must abort
- transactions for consistency will use this.
+ TM_CAUSE_SYSCALL Syscall from active transaction.
TM_CAUSE_SIGNAL Signal delivered.
TM_CAUSE_MISC Currently unused.
TM_CAUSE_ALIGNMENT Alignment fault.