summaryrefslogtreecommitdiff
path: root/Documentation/trace/tracepoints.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/trace/tracepoints.txt')
-rw-r--r--Documentation/trace/tracepoints.txt145
1 files changed, 145 insertions, 0 deletions
diff --git a/Documentation/trace/tracepoints.txt b/Documentation/trace/tracepoints.txt
new file mode 100644
index 000000000..a3efac621
--- /dev/null
+++ b/Documentation/trace/tracepoints.txt
@@ -0,0 +1,145 @@
+ Using the Linux Kernel Tracepoints
+
+ Mathieu Desnoyers
+
+
+This document introduces Linux Kernel Tracepoints and their use. It
+provides examples of how to insert tracepoints in the kernel and
+connect probe functions to them and provides some examples of probe
+functions.
+
+
+* Purpose of tracepoints
+
+A tracepoint placed in code provides a hook to call a function (probe)
+that you can provide at runtime. A tracepoint can be "on" (a probe is
+connected to it) or "off" (no probe is attached). When a tracepoint is
+"off" it has no effect, except for adding a tiny time penalty
+(checking a condition for a branch) and space penalty (adding a few
+bytes for the function call at the end of the instrumented function
+and adds a data structure in a separate section). When a tracepoint
+is "on", the function you provide is called each time the tracepoint
+is executed, in the execution context of the caller. When the function
+provided ends its execution, it returns to the caller (continuing from
+the tracepoint site).
+
+You can put tracepoints at important locations in the code. They are
+lightweight hooks that can pass an arbitrary number of parameters,
+which prototypes are described in a tracepoint declaration placed in a
+header file.
+
+They can be used for tracing and performance accounting.
+
+
+* Usage
+
+Two elements are required for tracepoints :
+
+- A tracepoint definition, placed in a header file.
+- The tracepoint statement, in C code.
+
+In order to use tracepoints, you should include linux/tracepoint.h.
+
+In include/trace/events/subsys.h :
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM subsys
+
+#if !defined(_TRACE_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_SUBSYS_H
+
+#include <linux/tracepoint.h>
+
+DECLARE_TRACE(subsys_eventname,
+ TP_PROTO(int firstarg, struct task_struct *p),
+ TP_ARGS(firstarg, p));
+
+#endif /* _TRACE_SUBSYS_H */
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
+
+In subsys/file.c (where the tracing statement must be added) :
+
+#include <trace/events/subsys.h>
+
+#define CREATE_TRACE_POINTS
+DEFINE_TRACE(subsys_eventname);
+
+void somefct(void)
+{
+ ...
+ trace_subsys_eventname(arg, task);
+ ...
+}
+
+Where :
+- subsys_eventname is an identifier unique to your event
+ - subsys is the name of your subsystem.
+ - eventname is the name of the event to trace.
+
+- TP_PROTO(int firstarg, struct task_struct *p) is the prototype of the
+ function called by this tracepoint.
+
+- TP_ARGS(firstarg, p) are the parameters names, same as found in the
+ prototype.
+
+- if you use the header in multiple source files, #define CREATE_TRACE_POINTS
+ should appear only in one source file.
+
+Connecting a function (probe) to a tracepoint is done by providing a
+probe (function to call) for the specific tracepoint through
+register_trace_subsys_eventname(). Removing a probe is done through
+unregister_trace_subsys_eventname(); it will remove the probe.
+
+tracepoint_synchronize_unregister() must be called before the end of
+the module exit function to make sure there is no caller left using
+the probe. This, and the fact that preemption is disabled around the
+probe call, make sure that probe removal and module unload are safe.
+
+The tracepoint mechanism supports inserting multiple instances of the
+same tracepoint, but a single definition must be made of a given
+tracepoint name over all the kernel to make sure no type conflict will
+occur. Name mangling of the tracepoints is done using the prototypes
+to make sure typing is correct. Verification of probe type correctness
+is done at the registration site by the compiler. Tracepoints can be
+put in inline functions, inlined static functions, and unrolled loops
+as well as regular functions.
+
+The naming scheme "subsys_event" is suggested here as a convention
+intended to limit collisions. Tracepoint names are global to the
+kernel: they are considered as being the same whether they are in the
+core kernel image or in modules.
+
+If the tracepoint has to be used in kernel modules, an
+EXPORT_TRACEPOINT_SYMBOL_GPL() or EXPORT_TRACEPOINT_SYMBOL() can be
+used to export the defined tracepoints.
+
+If you need to do a bit of work for a tracepoint parameter, and
+that work is only used for the tracepoint, that work can be encapsulated
+within an if statement with the following:
+
+ if (trace_foo_bar_enabled()) {
+ int i;
+ int tot = 0;
+
+ for (i = 0; i < count; i++)
+ tot += calculate_nuggets();
+
+ trace_foo_bar(tot);
+ }
+
+All trace_<tracepoint>() calls have a matching trace_<tracepoint>_enabled()
+function defined that returns true if the tracepoint is enabled and
+false otherwise. The trace_<tracepoint>() should always be within the
+block of the if (trace_<tracepoint>_enabled()) to prevent races between
+the tracepoint being enabled and the check being seen.
+
+The advantage of using the trace_<tracepoint>_enabled() is that it uses
+the static_key of the tracepoint to allow the if statement to be implemented
+with jump labels and avoid conditional branches.
+
+Note: The convenience macro TRACE_EVENT provides an alternative way to
+ define tracepoints. Check http://lwn.net/Articles/379903,
+ http://lwn.net/Articles/381064 and http://lwn.net/Articles/383362
+ for a series of articles with more details.