summaryrefslogtreecommitdiff
path: root/Documentation/vm
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/vm')
-rw-r--r--Documentation/vm/hugetlbpage.txt6
-rw-r--r--Documentation/vm/pagemap.txt2
-rw-r--r--Documentation/vm/transhuge.txt18
-rw-r--r--Documentation/vm/z3fold.txt26
4 files changed, 39 insertions, 13 deletions
diff --git a/Documentation/vm/hugetlbpage.txt b/Documentation/vm/hugetlbpage.txt
index 54dd9b9c6..59cbc803a 100644
--- a/Documentation/vm/hugetlbpage.txt
+++ b/Documentation/vm/hugetlbpage.txt
@@ -220,7 +220,7 @@ resulting effect on persistent huge page allocation is as follows:
node list of "all" with numactl --interleave or --membind [-m] to achieve
interleaving over all nodes in the system or cpuset.
-4) Any task mempolicy specifed--e.g., using numactl--will be constrained by
+4) Any task mempolicy specified--e.g., using numactl--will be constrained by
the resource limits of any cpuset in which the task runs. Thus, there will
be no way for a task with non-default policy running in a cpuset with a
subset of the system nodes to allocate huge pages outside the cpuset
@@ -275,10 +275,10 @@ This command mounts a (pseudo) filesystem of type hugetlbfs on the directory
options sets the owner and group of the root of the file system. By default
the uid and gid of the current process are taken. The mode option sets the
mode of root of file system to value & 01777. This value is given in octal.
-By default the value 0755 is picked. If the paltform supports multiple huge
+By default the value 0755 is picked. If the platform supports multiple huge
page sizes, the pagesize option can be used to specify the huge page size and
associated pool. pagesize is specified in bytes. If pagesize is not specified
-the paltform's default huge page size and associated pool will be used. The
+the platform's default huge page size and associated pool will be used. The
size option sets the maximum value of memory (huge pages) allowed for that
filesystem (/mnt/huge). The size option can be specified in bytes, or as a
percentage of the specified huge page pool (nr_hugepages). The size is
diff --git a/Documentation/vm/pagemap.txt b/Documentation/vm/pagemap.txt
index 0e1e55588..eafcefa15 100644
--- a/Documentation/vm/pagemap.txt
+++ b/Documentation/vm/pagemap.txt
@@ -62,7 +62,7 @@ There are four components to pagemap:
14. SWAPBACKED
15. COMPOUND_HEAD
16. COMPOUND_TAIL
- 16. HUGE
+ 17. HUGE
18. UNEVICTABLE
19. HWPOISON
20. NOPAGE
diff --git a/Documentation/vm/transhuge.txt b/Documentation/vm/transhuge.txt
index d9cb65cf5..7c871d6be 100644
--- a/Documentation/vm/transhuge.txt
+++ b/Documentation/vm/transhuge.txt
@@ -340,7 +340,7 @@ unaffected. libhugetlbfs will also work fine as usual.
== Graceful fallback ==
-Code walking pagetables but unware about huge pmds can simply call
+Code walking pagetables but unaware about huge pmds can simply call
split_huge_pmd(vma, pmd, addr) where the pmd is the one returned by
pmd_offset. It's trivial to make the code transparent hugepage aware
by just grepping for "pmd_offset" and adding split_huge_pmd where
@@ -394,9 +394,9 @@ hugepage natively. Once finished you can drop the page table lock.
Refcounting on THP is mostly consistent with refcounting on other compound
pages:
- - get_page()/put_page() and GUP operate in head page's ->_count.
+ - get_page()/put_page() and GUP operate in head page's ->_refcount.
- - ->_count in tail pages is always zero: get_page_unless_zero() never
+ - ->_refcount in tail pages is always zero: get_page_unless_zero() never
succeed on tail pages.
- map/unmap of the pages with PTE entry increment/decrement ->_mapcount
@@ -414,7 +414,7 @@ tracking. The alternative is alter ->_mapcount in all subpages on each
map/unmap of the whole compound page.
We set PG_double_map when a PMD of the page got split for the first time,
-but still have PMD mapping. The addtional references go away with last
+but still have PMD mapping. The additional references go away with last
compound_mapcount.
split_huge_page internally has to distribute the refcounts in the head
@@ -426,16 +426,16 @@ requests to split pinned huge page: it expects page count to be equal to
sum of mapcount of all sub-pages plus one (split_huge_page caller must
have reference for head page).
-split_huge_page uses migration entries to stabilize page->_count and
+split_huge_page uses migration entries to stabilize page->_refcount and
page->_mapcount.
We safe against physical memory scanners too: the only legitimate way
scanner can get reference to a page is get_page_unless_zero().
-All tail pages has zero ->_count until atomic_add(). It prevent scanner
-from geting reference to tail page up to the point. After the atomic_add()
-we don't care about ->_count value. We already known how many references
-with should uncharge from head page.
+All tail pages have zero ->_refcount until atomic_add(). This prevents the
+scanner from getting a reference to the tail page up to that point. After the
+atomic_add() we don't care about the ->_refcount value. We already known how
+many references should be uncharged from the head page.
For head page get_page_unless_zero() will succeed and we don't mind. It's
clear where reference should go after split: it will stay on head page.
diff --git a/Documentation/vm/z3fold.txt b/Documentation/vm/z3fold.txt
new file mode 100644
index 000000000..38e4dac81
--- /dev/null
+++ b/Documentation/vm/z3fold.txt
@@ -0,0 +1,26 @@
+z3fold
+------
+
+z3fold is a special purpose allocator for storing compressed pages.
+It is designed to store up to three compressed pages per physical page.
+It is a zbud derivative which allows for higher compression
+ratio keeping the simplicity and determinism of its predecessor.
+
+The main differences between z3fold and zbud are:
+* unlike zbud, z3fold allows for up to PAGE_SIZE allocations
+* z3fold can hold up to 3 compressed pages in its page
+* z3fold doesn't export any API itself and is thus intended to be used
+ via the zpool API.
+
+To keep the determinism and simplicity, z3fold, just like zbud, always
+stores an integral number of compressed pages per page, but it can store
+up to 3 pages unlike zbud which can store at most 2. Therefore the
+compression ratio goes to around 2.7x while zbud's one is around 1.7x.
+
+Unlike zbud (but like zsmalloc for that matter) z3fold_alloc() does not
+return a dereferenceable pointer. Instead, it returns an unsigned long
+handle which encodes actual location of the allocated object.
+
+Keeping effective compression ratio close to zsmalloc's, z3fold doesn't
+depend on MMU enabled and provides more predictable reclaim behavior
+which makes it a better fit for small and response-critical systems.