summaryrefslogtreecommitdiff
path: root/arch/mips/include/asm/timex.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/mips/include/asm/timex.h')
-rw-r--r--arch/mips/include/asm/timex.h103
1 files changed, 103 insertions, 0 deletions
diff --git a/arch/mips/include/asm/timex.h b/arch/mips/include/asm/timex.h
new file mode 100644
index 000000000..b05bb70a2
--- /dev/null
+++ b/arch/mips/include/asm/timex.h
@@ -0,0 +1,103 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (C) 1998, 1999, 2003 by Ralf Baechle
+ * Copyright (C) 2014 by Maciej W. Rozycki
+ */
+#ifndef _ASM_TIMEX_H
+#define _ASM_TIMEX_H
+
+#ifdef __KERNEL__
+
+#include <linux/compiler.h>
+
+#include <asm/cpu.h>
+#include <asm/cpu-features.h>
+#include <asm/mipsregs.h>
+#include <asm/cpu-type.h>
+
+/*
+ * This is the clock rate of the i8253 PIT. A MIPS system may not have
+ * a PIT by the symbol is used all over the kernel including some APIs.
+ * So keeping it defined to the number for the PIT is the only sane thing
+ * for now.
+ */
+#define CLOCK_TICK_RATE 1193182
+
+/*
+ * Standard way to access the cycle counter.
+ * Currently only used on SMP for scheduling.
+ *
+ * Only the low 32 bits are available as a continuously counting entity.
+ * But this only means we'll force a reschedule every 8 seconds or so,
+ * which isn't an evil thing.
+ *
+ * We know that all SMP capable CPUs have cycle counters.
+ */
+
+typedef unsigned int cycles_t;
+
+/*
+ * On R4000/R4400 before version 5.0 an erratum exists such that if the
+ * cycle counter is read in the exact moment that it is matching the
+ * compare register, no interrupt will be generated.
+ *
+ * There is a suggested workaround and also the erratum can't strike if
+ * the compare interrupt isn't being used as the clock source device.
+ * However for now the implementaton of this function doesn't get these
+ * fine details right.
+ */
+static inline int can_use_mips_counter(unsigned int prid)
+{
+ int comp = (prid & PRID_COMP_MASK) != PRID_COMP_LEGACY;
+
+ if (__builtin_constant_p(cpu_has_counter) && !cpu_has_counter)
+ return 0;
+ else if (__builtin_constant_p(cpu_has_mips_r) && cpu_has_mips_r)
+ return 1;
+ else if (likely(!__builtin_constant_p(cpu_has_mips_r) && comp))
+ return 1;
+ /* Make sure we don't peek at cpu_data[0].options in the fast path! */
+ if (!__builtin_constant_p(cpu_has_counter))
+ asm volatile("" : "=m" (cpu_data[0].options));
+ if (likely(cpu_has_counter &&
+ prid >= (PRID_IMP_R4000 | PRID_REV_ENCODE_44(5, 0))))
+ return 1;
+ else
+ return 0;
+}
+
+static inline cycles_t get_cycles(void)
+{
+ if (can_use_mips_counter(read_c0_prid()))
+ return read_c0_count();
+ else
+ return 0; /* no usable counter */
+}
+
+/*
+ * Like get_cycles - but where c0_count is not available we desperately
+ * use c0_random in an attempt to get at least a little bit of entropy.
+ *
+ * R6000 and R6000A neither have a count register nor a random register.
+ * That leaves no entropy source in the CPU itself.
+ */
+static inline unsigned long random_get_entropy(void)
+{
+ unsigned int prid = read_c0_prid();
+ unsigned int imp = prid & PRID_IMP_MASK;
+
+ if (can_use_mips_counter(prid))
+ return read_c0_count();
+ else if (likely(imp != PRID_IMP_R6000 && imp != PRID_IMP_R6000A))
+ return read_c0_random();
+ else
+ return 0; /* no usable register */
+}
+#define random_get_entropy random_get_entropy
+
+#endif /* __KERNEL__ */
+
+#endif /* _ASM_TIMEX_H */