diff options
Diffstat (limited to 'arch/mips/pci/pci-octeon.c')
-rw-r--r-- | arch/mips/pci/pci-octeon.c | 714 |
1 files changed, 714 insertions, 0 deletions
diff --git a/arch/mips/pci/pci-octeon.c b/arch/mips/pci/pci-octeon.c new file mode 100644 index 000000000..c258cd406 --- /dev/null +++ b/arch/mips/pci/pci-octeon.c @@ -0,0 +1,714 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 2005-2009 Cavium Networks + */ +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/pci.h> +#include <linux/interrupt.h> +#include <linux/time.h> +#include <linux/delay.h> +#include <linux/platform_device.h> +#include <linux/swiotlb.h> + +#include <asm/time.h> + +#include <asm/octeon/octeon.h> +#include <asm/octeon/cvmx-npi-defs.h> +#include <asm/octeon/cvmx-pci-defs.h> +#include <asm/octeon/pci-octeon.h> + +#include <dma-coherence.h> + +#define USE_OCTEON_INTERNAL_ARBITER + +/* + * Octeon's PCI controller uses did=3, subdid=2 for PCI IO + * addresses. Use PCI endian swapping 1 so no address swapping is + * necessary. The Linux io routines will endian swap the data. + */ +#define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull +#define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) + +/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ +#define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) + +u64 octeon_bar1_pci_phys; + +/** + * This is the bit decoding used for the Octeon PCI controller addresses + */ +union octeon_pci_address { + uint64_t u64; + struct { + uint64_t upper:2; + uint64_t reserved:13; + uint64_t io:1; + uint64_t did:5; + uint64_t subdid:3; + uint64_t reserved2:4; + uint64_t endian_swap:2; + uint64_t reserved3:10; + uint64_t bus:8; + uint64_t dev:5; + uint64_t func:3; + uint64_t reg:8; + } s; +}; + +int __initconst (*octeon_pcibios_map_irq)(const struct pci_dev *dev, + u8 slot, u8 pin); +enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; + +/** + * Map a PCI device to the appropriate interrupt line + * + * @dev: The Linux PCI device structure for the device to map + * @slot: The slot number for this device on __BUS 0__. Linux + * enumerates through all the bridges and figures out the + * slot on Bus 0 where this device eventually hooks to. + * @pin: The PCI interrupt pin read from the device, then swizzled + * as it goes through each bridge. + * Returns Interrupt number for the device + */ +int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) +{ + if (octeon_pcibios_map_irq) + return octeon_pcibios_map_irq(dev, slot, pin); + else + panic("octeon_pcibios_map_irq not set."); +} + + +/* + * Called to perform platform specific PCI setup + */ +int pcibios_plat_dev_init(struct pci_dev *dev) +{ + uint16_t config; + uint32_t dconfig; + int pos; + /* + * Force the Cache line setting to 64 bytes. The standard + * Linux bus scan doesn't seem to set it. Octeon really has + * 128 byte lines, but Intel bridges get really upset if you + * try and set values above 64 bytes. Value is specified in + * 32bit words. + */ + pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); + /* Set latency timers for all devices */ + pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); + + /* Enable reporting System errors and parity errors on all devices */ + /* Enable parity checking and error reporting */ + pci_read_config_word(dev, PCI_COMMAND, &config); + config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; + pci_write_config_word(dev, PCI_COMMAND, config); + + if (dev->subordinate) { + /* Set latency timers on sub bridges */ + pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); + /* More bridge error detection */ + pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); + config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; + pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); + } + + /* Enable the PCIe normal error reporting */ + config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ + config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ + config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */ + config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */ + pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config); + + /* Find the Advanced Error Reporting capability */ + pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); + if (pos) { + /* Clear Uncorrectable Error Status */ + pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, + &dconfig); + pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, + dconfig); + /* Enable reporting of all uncorrectable errors */ + /* Uncorrectable Error Mask - turned on bits disable errors */ + pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); + /* + * Leave severity at HW default. This only controls if + * errors are reported as uncorrectable or + * correctable, not if the error is reported. + */ + /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ + /* Clear Correctable Error Status */ + pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); + pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); + /* Enable reporting of all correctable errors */ + /* Correctable Error Mask - turned on bits disable errors */ + pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); + /* Advanced Error Capabilities */ + pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); + /* ECRC Generation Enable */ + if (config & PCI_ERR_CAP_ECRC_GENC) + config |= PCI_ERR_CAP_ECRC_GENE; + /* ECRC Check Enable */ + if (config & PCI_ERR_CAP_ECRC_CHKC) + config |= PCI_ERR_CAP_ECRC_CHKE; + pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); + /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ + /* Report all errors to the root complex */ + pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, + PCI_ERR_ROOT_CMD_COR_EN | + PCI_ERR_ROOT_CMD_NONFATAL_EN | + PCI_ERR_ROOT_CMD_FATAL_EN); + /* Clear the Root status register */ + pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); + pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); + } + + dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops; + + return 0; +} + +/** + * Return the mapping of PCI device number to IRQ line. Each + * character in the return string represents the interrupt + * line for the device at that position. Device 1 maps to the + * first character, etc. The characters A-D are used for PCI + * interrupts. + * + * Returns PCI interrupt mapping + */ +const char *octeon_get_pci_interrupts(void) +{ + /* + * Returning an empty string causes the interrupts to be + * routed based on the PCI specification. From the PCI spec: + * + * INTA# of Device Number 0 is connected to IRQW on the system + * board. (Device Number has no significance regarding being + * located on the system board or in a connector.) INTA# of + * Device Number 1 is connected to IRQX on the system + * board. INTA# of Device Number 2 is connected to IRQY on the + * system board. INTA# of Device Number 3 is connected to IRQZ + * on the system board. The table below describes how each + * agent's INTx# lines are connected to the system board + * interrupt lines. The following equation can be used to + * determine to which INTx# signal on the system board a given + * device's INTx# line(s) is connected. + * + * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, + * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = + * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and + * INTD# = 3) + */ + switch (octeon_bootinfo->board_type) { + case CVMX_BOARD_TYPE_NAO38: + /* This is really the NAC38 */ + return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; + case CVMX_BOARD_TYPE_EBH3100: + case CVMX_BOARD_TYPE_CN3010_EVB_HS5: + case CVMX_BOARD_TYPE_CN3005_EVB_HS5: + return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; + case CVMX_BOARD_TYPE_BBGW_REF: + return "AABCD"; + case CVMX_BOARD_TYPE_CUST_DSR1000N: + return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; + case CVMX_BOARD_TYPE_THUNDER: + case CVMX_BOARD_TYPE_EBH3000: + default: + return ""; + } +} + +/** + * Map a PCI device to the appropriate interrupt line + * + * @dev: The Linux PCI device structure for the device to map + * @slot: The slot number for this device on __BUS 0__. Linux + * enumerates through all the bridges and figures out the + * slot on Bus 0 where this device eventually hooks to. + * @pin: The PCI interrupt pin read from the device, then swizzled + * as it goes through each bridge. + * Returns Interrupt number for the device + */ +int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, + u8 slot, u8 pin) +{ + int irq_num; + const char *interrupts; + int dev_num; + + /* Get the board specific interrupt mapping */ + interrupts = octeon_get_pci_interrupts(); + + dev_num = dev->devfn >> 3; + if (dev_num < strlen(interrupts)) + irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + + OCTEON_IRQ_PCI_INT0; + else + irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; + return irq_num; +} + + +/* + * Read a value from configuration space + */ +static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, + int reg, int size, u32 *val) +{ + union octeon_pci_address pci_addr; + + pci_addr.u64 = 0; + pci_addr.s.upper = 2; + pci_addr.s.io = 1; + pci_addr.s.did = 3; + pci_addr.s.subdid = 1; + pci_addr.s.endian_swap = 1; + pci_addr.s.bus = bus->number; + pci_addr.s.dev = devfn >> 3; + pci_addr.s.func = devfn & 0x7; + pci_addr.s.reg = reg; + + switch (size) { + case 4: + *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); + return PCIBIOS_SUCCESSFUL; + case 2: + *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); + return PCIBIOS_SUCCESSFUL; + case 1: + *val = cvmx_read64_uint8(pci_addr.u64); + return PCIBIOS_SUCCESSFUL; + } + return PCIBIOS_FUNC_NOT_SUPPORTED; +} + + +/* + * Write a value to PCI configuration space + */ +static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, + int reg, int size, u32 val) +{ + union octeon_pci_address pci_addr; + + pci_addr.u64 = 0; + pci_addr.s.upper = 2; + pci_addr.s.io = 1; + pci_addr.s.did = 3; + pci_addr.s.subdid = 1; + pci_addr.s.endian_swap = 1; + pci_addr.s.bus = bus->number; + pci_addr.s.dev = devfn >> 3; + pci_addr.s.func = devfn & 0x7; + pci_addr.s.reg = reg; + + switch (size) { + case 4: + cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); + return PCIBIOS_SUCCESSFUL; + case 2: + cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); + return PCIBIOS_SUCCESSFUL; + case 1: + cvmx_write64_uint8(pci_addr.u64, val); + return PCIBIOS_SUCCESSFUL; + } + return PCIBIOS_FUNC_NOT_SUPPORTED; +} + + +static struct pci_ops octeon_pci_ops = { + .read = octeon_read_config, + .write = octeon_write_config, +}; + +static struct resource octeon_pci_mem_resource = { + .start = 0, + .end = 0, + .name = "Octeon PCI MEM", + .flags = IORESOURCE_MEM, +}; + +/* + * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI + * bridge + */ +static struct resource octeon_pci_io_resource = { + .start = 0x4000, + .end = OCTEON_PCI_IOSPACE_SIZE - 1, + .name = "Octeon PCI IO", + .flags = IORESOURCE_IO, +}; + +static struct pci_controller octeon_pci_controller = { + .pci_ops = &octeon_pci_ops, + .mem_resource = &octeon_pci_mem_resource, + .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, + .io_resource = &octeon_pci_io_resource, + .io_offset = 0, + .io_map_base = OCTEON_PCI_IOSPACE_BASE, +}; + + +/* + * Low level initialize the Octeon PCI controller + */ +static void octeon_pci_initialize(void) +{ + union cvmx_pci_cfg01 cfg01; + union cvmx_npi_ctl_status ctl_status; + union cvmx_pci_ctl_status_2 ctl_status_2; + union cvmx_pci_cfg19 cfg19; + union cvmx_pci_cfg16 cfg16; + union cvmx_pci_cfg22 cfg22; + union cvmx_pci_cfg56 cfg56; + + /* Reset the PCI Bus */ + cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); + cvmx_read_csr(CVMX_CIU_SOFT_PRST); + + udelay(2000); /* Hold PCI reset for 2 ms */ + + ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ + ctl_status.s.max_word = 1; + ctl_status.s.timer = 1; + cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); + + /* Deassert PCI reset and advertize PCX Host Mode Device Capability + (64b) */ + cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); + cvmx_read_csr(CVMX_CIU_SOFT_PRST); + + udelay(2000); /* Wait 2 ms after deasserting PCI reset */ + + ctl_status_2.u32 = 0; + ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set + before any PCI reads. */ + ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ + ctl_status_2.s.bar2_enb = 1; + ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ + ctl_status_2.s.bar2_esx = 1; + ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ + if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { + /* BAR1 hole */ + ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; + ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ + ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ + ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ + ctl_status_2.s.bb1 = 1; /* BAR1 is big */ + ctl_status_2.s.bb0 = 1; /* BAR0 is big */ + } + + octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); + udelay(2000); /* Wait 2 ms before doing PCI reads */ + + ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); + pr_notice("PCI Status: %s %s-bit\n", + ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", + ctl_status_2.s.ap_64ad ? "64" : "32"); + + if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { + union cvmx_pci_cnt_reg cnt_reg_start; + union cvmx_pci_cnt_reg cnt_reg_end; + unsigned long cycles, pci_clock; + + cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); + cycles = read_c0_cvmcount(); + udelay(1000); + cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); + cycles = read_c0_cvmcount() - cycles; + pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / + (cycles / (mips_hpt_frequency / 1000000)); + pr_notice("PCI Clock: %lu MHz\n", pci_clock); + } + + /* + * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 + * in PCI-X mode to allow four outstanding splits. Otherwise, + * should not change from its reset value. Don't write PCI_CFG19 + * in PCI mode (0x82000001 reset value), write it to 0x82000004 + * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. + * MRBCM -> must be one. + */ + if (ctl_status_2.s.ap_pcix) { + cfg19.u32 = 0; + /* + * Target Delayed/Split request outstanding maximum + * count. [1..31] and 0=32. NOTE: If the user + * programs these bits beyond the Designed Maximum + * outstanding count, then the designed maximum table + * depth will be used instead. No additional + * Deferred/Split transactions will be accepted if + * this outstanding maximum count is + * reached. Furthermore, no additional deferred/split + * transactions will be accepted if the I/O delay/ I/O + * Split Request outstanding maximum is reached. + */ + cfg19.s.tdomc = 4; + /* + * Master Deferred Read Request Outstanding Max Count + * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC + * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 + * 5 2 110 6 3 111 7 3 For example, if these bits are + * programmed to 100, the core can support 2 DAC + * cycles, 4 SAC cycles or a combination of 1 DAC and + * 2 SAC cycles. NOTE: For the PCI-X maximum + * outstanding split transactions, refer to + * CRE0[22:20]. + */ + cfg19.s.mdrrmc = 2; + /* + * Master Request (Memory Read) Byte Count/Byte Enable + * select. 0 = Byte Enables valid. In PCI mode, a + * burst transaction cannot be performed using Memory + * Read command=4?h6. 1 = DWORD Byte Count valid + * (default). In PCI Mode, the memory read byte + * enables are automatically generated by the + * core. Note: N3 Master Request transaction sizes are + * always determined through the + * am_attr[<35:32>|<7:0>] field. + */ + cfg19.s.mrbcm = 1; + octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); + } + + + cfg01.u32 = 0; + cfg01.s.msae = 1; /* Memory Space Access Enable */ + cfg01.s.me = 1; /* Master Enable */ + cfg01.s.pee = 1; /* PERR# Enable */ + cfg01.s.see = 1; /* System Error Enable */ + cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ + + octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); + +#ifdef USE_OCTEON_INTERNAL_ARBITER + /* + * When OCTEON is a PCI host, most systems will use OCTEON's + * internal arbiter, so must enable it before any PCI/PCI-X + * traffic can occur. + */ + { + union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; + + pci_int_arb_cfg.u64 = 0; + pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ + cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); + } +#endif /* USE_OCTEON_INTERNAL_ARBITER */ + + /* + * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, + * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to + * 1..7. + */ + cfg16.u32 = 0; + cfg16.s.mltd = 1; /* Master Latency Timer Disable */ + octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); + + /* + * Should be written to 0x4ff00. MTTV -> must be zero. + * FLUSH -> must be 1. MRV -> should be 0xFF. + */ + cfg22.u32 = 0; + /* Master Retry Value [1..255] and 0=infinite */ + cfg22.s.mrv = 0xff; + /* + * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper + * N3K operation. + */ + cfg22.s.flush = 1; + octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); + + /* + * MOST Indicates the maximum number of outstanding splits (in -1 + * notation) when OCTEON is in PCI-X mode. PCI-X performance is + * affected by the MOST selection. Should generally be written + * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, + * depending on the desired MOST of 3, 2, 1, or 0, respectively. + */ + cfg56.u32 = 0; + cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ + cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ + cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ + cfg56.s.roe = 1; /* Relaxed Ordering Enable */ + cfg56.s.mmbc = 1; /* Maximum Memory Byte Count + [0=512B,1=1024B,2=2048B,3=4096B] */ + cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 + .. 7=32] */ + + octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); + + /* + * Affects PCI performance when OCTEON services reads to its + * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are + * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and + * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, + * these values need to be changed so they won't possibly prefetch off + * of the end of memory if PCI is DMAing a buffer at the end of + * memory. Note that these values differ from their reset values. + */ + octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); + octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); + octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); +} + + +/* + * Initialize the Octeon PCI controller + */ +static int __init octeon_pci_setup(void) +{ + union cvmx_npi_mem_access_subidx mem_access; + int index; + + /* Only these chips have PCI */ + if (octeon_has_feature(OCTEON_FEATURE_PCIE)) + return 0; + + /* Point pcibios_map_irq() to the PCI version of it */ + octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; + + /* Only use the big bars on chips that support it */ + if (OCTEON_IS_MODEL(OCTEON_CN31XX) || + OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || + OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) + octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; + else + octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; + + if (!octeon_is_pci_host()) { + pr_notice("Not in host mode, PCI Controller not initialized\n"); + return 0; + } + + /* PCI I/O and PCI MEM values */ + set_io_port_base(OCTEON_PCI_IOSPACE_BASE); + ioport_resource.start = 0; + ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; + + pr_notice("%s Octeon big bar support\n", + (octeon_dma_bar_type == + OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); + + octeon_pci_initialize(); + + mem_access.u64 = 0; + mem_access.s.esr = 1; /* Endian-Swap on read. */ + mem_access.s.esw = 1; /* Endian-Swap on write. */ + mem_access.s.nsr = 0; /* No-Snoop on read. */ + mem_access.s.nsw = 0; /* No-Snoop on write. */ + mem_access.s.ror = 0; /* Relax Read on read. */ + mem_access.s.row = 0; /* Relax Order on write. */ + mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ + cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); + + /* + * Remap the Octeon BAR 2 above all 32 bit devices + * (0x8000000000ul). This is done here so it is remapped + * before the readl()'s below. We don't want BAR2 overlapping + * with BAR0/BAR1 during these reads. + */ + octeon_npi_write32(CVMX_NPI_PCI_CFG08, + (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); + octeon_npi_write32(CVMX_NPI_PCI_CFG09, + (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); + + if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { + /* Remap the Octeon BAR 0 to 0-2GB */ + octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); + octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); + + /* + * Remap the Octeon BAR 1 to map 2GB-4GB (minus the + * BAR 1 hole). + */ + octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); + octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); + + /* BAR1 movable mappings set for identity mapping */ + octeon_bar1_pci_phys = 0x80000000ull; + for (index = 0; index < 32; index++) { + union cvmx_pci_bar1_indexx bar1_index; + + bar1_index.u32 = 0; + /* Address bits[35:22] sent to L2C */ + bar1_index.s.addr_idx = + (octeon_bar1_pci_phys >> 22) + index; + /* Don't put PCI accesses in L2. */ + bar1_index.s.ca = 1; + /* Endian Swap Mode */ + bar1_index.s.end_swp = 1; + /* Set '1' when the selected address range is valid. */ + bar1_index.s.addr_v = 1; + octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), + bar1_index.u32); + } + + /* Devices go after BAR1 */ + octeon_pci_mem_resource.start = + OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - + (OCTEON_PCI_BAR1_HOLE_SIZE << 20); + octeon_pci_mem_resource.end = + octeon_pci_mem_resource.start + (1ul << 30); + } else { + /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ + octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); + octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); + + /* Remap the Octeon BAR 1 to map 0-128MB */ + octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); + octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); + + /* BAR1 movable regions contiguous to cover the swiotlb */ + octeon_bar1_pci_phys = + virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1); + + for (index = 0; index < 32; index++) { + union cvmx_pci_bar1_indexx bar1_index; + + bar1_index.u32 = 0; + /* Address bits[35:22] sent to L2C */ + bar1_index.s.addr_idx = + (octeon_bar1_pci_phys >> 22) + index; + /* Don't put PCI accesses in L2. */ + bar1_index.s.ca = 1; + /* Endian Swap Mode */ + bar1_index.s.end_swp = 1; + /* Set '1' when the selected address range is valid. */ + bar1_index.s.addr_v = 1; + octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), + bar1_index.u32); + } + + /* Devices go after BAR0 */ + octeon_pci_mem_resource.start = + OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + + (4ul << 10); + octeon_pci_mem_resource.end = + octeon_pci_mem_resource.start + (1ul << 30); + } + + register_pci_controller(&octeon_pci_controller); + + /* + * Clear any errors that might be pending from before the bus + * was setup properly. + */ + cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); + + if (IS_ERR(platform_device_register_simple("octeon_pci_edac", + -1, NULL, 0))) + pr_err("Registration of co_pci_edac failed!\n"); + + octeon_pci_dma_init(); + + return 0; +} + +arch_initcall(octeon_pci_setup); |