diff options
Diffstat (limited to 'arch/powerpc/oprofile')
-rw-r--r-- | arch/powerpc/oprofile/Makefile | 19 | ||||
-rw-r--r-- | arch/powerpc/oprofile/backtrace.c | 130 | ||||
-rw-r--r-- | arch/powerpc/oprofile/cell/pr_util.h | 114 | ||||
-rw-r--r-- | arch/powerpc/oprofile/cell/spu_profiler.c | 252 | ||||
-rw-r--r-- | arch/powerpc/oprofile/cell/spu_task_sync.c | 661 | ||||
-rw-r--r-- | arch/powerpc/oprofile/cell/vma_map.c | 283 | ||||
-rw-r--r-- | arch/powerpc/oprofile/common.c | 247 | ||||
-rw-r--r-- | arch/powerpc/oprofile/op_model_7450.c | 211 | ||||
-rw-r--r-- | arch/powerpc/oprofile/op_model_cell.c | 1717 | ||||
-rw-r--r-- | arch/powerpc/oprofile/op_model_fsl_emb.c | 384 | ||||
-rw-r--r-- | arch/powerpc/oprofile/op_model_pa6t.c | 239 | ||||
-rw-r--r-- | arch/powerpc/oprofile/op_model_power4.c | 442 |
12 files changed, 4699 insertions, 0 deletions
diff --git a/arch/powerpc/oprofile/Makefile b/arch/powerpc/oprofile/Makefile new file mode 100644 index 000000000..cedbbeced --- /dev/null +++ b/arch/powerpc/oprofile/Makefile @@ -0,0 +1,19 @@ +subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror + +ccflags-$(CONFIG_PPC64) := $(NO_MINIMAL_TOC) + +obj-$(CONFIG_OPROFILE) += oprofile.o + +DRIVER_OBJS := $(addprefix ../../../drivers/oprofile/, \ + oprof.o cpu_buffer.o buffer_sync.o \ + event_buffer.o oprofile_files.o \ + oprofilefs.o oprofile_stats.o \ + timer_int.o ) + +oprofile-y := $(DRIVER_OBJS) common.o backtrace.o +oprofile-$(CONFIG_OPROFILE_CELL) += op_model_cell.o \ + cell/spu_profiler.o cell/vma_map.o \ + cell/spu_task_sync.o +oprofile-$(CONFIG_PPC_BOOK3S_64) += op_model_power4.o op_model_pa6t.o +oprofile-$(CONFIG_FSL_EMB_PERFMON) += op_model_fsl_emb.o +oprofile-$(CONFIG_6xx) += op_model_7450.o diff --git a/arch/powerpc/oprofile/backtrace.c b/arch/powerpc/oprofile/backtrace.c new file mode 100644 index 000000000..ecc66d5f0 --- /dev/null +++ b/arch/powerpc/oprofile/backtrace.c @@ -0,0 +1,130 @@ +/** + * Copyright (C) 2005 Brian Rogan <bcr6@cornell.edu>, IBM + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. +**/ + +#include <linux/oprofile.h> +#include <linux/sched.h> +#include <asm/processor.h> +#include <linux/uaccess.h> +#include <asm/compat.h> +#include <asm/oprofile_impl.h> + +#define STACK_SP(STACK) *(STACK) + +#define STACK_LR64(STACK) *((unsigned long *)(STACK) + 2) +#define STACK_LR32(STACK) *((unsigned int *)(STACK) + 1) + +#ifdef CONFIG_PPC64 +#define STACK_LR(STACK) STACK_LR64(STACK) +#else +#define STACK_LR(STACK) STACK_LR32(STACK) +#endif + +static unsigned int user_getsp32(unsigned int sp, int is_first) +{ + unsigned int stack_frame[2]; + void __user *p = compat_ptr(sp); + + if (!access_ok(VERIFY_READ, p, sizeof(stack_frame))) + return 0; + + /* + * The most likely reason for this is that we returned -EFAULT, + * which means that we've done all that we can do from + * interrupt context. + */ + if (__copy_from_user_inatomic(stack_frame, p, sizeof(stack_frame))) + return 0; + + if (!is_first) + oprofile_add_trace(STACK_LR32(stack_frame)); + + /* + * We do not enforce increasing stack addresses here because + * we may transition to a different stack, eg a signal handler. + */ + return STACK_SP(stack_frame); +} + +#ifdef CONFIG_PPC64 +static unsigned long user_getsp64(unsigned long sp, int is_first) +{ + unsigned long stack_frame[3]; + + if (!access_ok(VERIFY_READ, (void __user *)sp, sizeof(stack_frame))) + return 0; + + if (__copy_from_user_inatomic(stack_frame, (void __user *)sp, + sizeof(stack_frame))) + return 0; + + if (!is_first) + oprofile_add_trace(STACK_LR64(stack_frame)); + + return STACK_SP(stack_frame); +} +#endif + +static unsigned long kernel_getsp(unsigned long sp, int is_first) +{ + unsigned long *stack_frame = (unsigned long *)sp; + + if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD)) + return 0; + + if (!is_first) + oprofile_add_trace(STACK_LR(stack_frame)); + + /* + * We do not enforce increasing stack addresses here because + * we might be transitioning from an interrupt stack to a kernel + * stack. validate_sp() is designed to understand this, so just + * use it. + */ + return STACK_SP(stack_frame); +} + +void op_powerpc_backtrace(struct pt_regs * const regs, unsigned int depth) +{ + unsigned long sp = regs->gpr[1]; + int first_frame = 1; + + /* We ditch the top stackframe so need to loop through an extra time */ + depth += 1; + + if (!user_mode(regs)) { + while (depth--) { + sp = kernel_getsp(sp, first_frame); + if (!sp) + break; + first_frame = 0; + } + } else { + pagefault_disable(); +#ifdef CONFIG_PPC64 + if (!is_32bit_task()) { + while (depth--) { + sp = user_getsp64(sp, first_frame); + if (!sp) + break; + first_frame = 0; + } + pagefault_enable(); + return; + } +#endif + + while (depth--) { + sp = user_getsp32(sp, first_frame); + if (!sp) + break; + first_frame = 0; + } + pagefault_enable(); + } +} diff --git a/arch/powerpc/oprofile/cell/pr_util.h b/arch/powerpc/oprofile/cell/pr_util.h new file mode 100644 index 000000000..964b93974 --- /dev/null +++ b/arch/powerpc/oprofile/cell/pr_util.h @@ -0,0 +1,114 @@ + /* + * Cell Broadband Engine OProfile Support + * + * (C) Copyright IBM Corporation 2006 + * + * Author: Maynard Johnson <maynardj@us.ibm.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#ifndef PR_UTIL_H +#define PR_UTIL_H + +#include <linux/cpumask.h> +#include <linux/oprofile.h> +#include <asm/cell-pmu.h> +#include <asm/cell-regs.h> +#include <asm/spu.h> + +/* Defines used for sync_start */ +#define SKIP_GENERIC_SYNC 0 +#define SYNC_START_ERROR -1 +#define DO_GENERIC_SYNC 1 +#define SPUS_PER_NODE 8 +#define DEFAULT_TIMER_EXPIRE (HZ / 10) + +extern struct delayed_work spu_work; +extern int spu_prof_running; + +#define TRACE_ARRAY_SIZE 1024 + +extern spinlock_t oprof_spu_smpl_arry_lck; + +struct spu_overlay_info { /* map of sections within an SPU overlay */ + unsigned int vma; /* SPU virtual memory address from elf */ + unsigned int size; /* size of section from elf */ + unsigned int offset; /* offset of section into elf file */ + unsigned int buf; +}; + +struct vma_to_fileoffset_map { /* map of sections within an SPU program */ + struct vma_to_fileoffset_map *next; /* list pointer */ + unsigned int vma; /* SPU virtual memory address from elf */ + unsigned int size; /* size of section from elf */ + unsigned int offset; /* offset of section into elf file */ + unsigned int guard_ptr; + unsigned int guard_val; + /* + * The guard pointer is an entry in the _ovly_buf_table, + * computed using ovly.buf as the index into the table. Since + * ovly.buf values begin at '1' to reference the first (or 0th) + * entry in the _ovly_buf_table, the computation subtracts 1 + * from ovly.buf. + * The guard value is stored in the _ovly_buf_table entry and + * is an index (starting at 1) back to the _ovly_table entry + * that is pointing at this _ovly_buf_table entry. So, for + * example, for an overlay scenario with one overlay segment + * and two overlay sections: + * - Section 1 points to the first entry of the + * _ovly_buf_table, which contains a guard value + * of '1', referencing the first (index=0) entry of + * _ovly_table. + * - Section 2 points to the second entry of the + * _ovly_buf_table, which contains a guard value + * of '2', referencing the second (index=1) entry of + * _ovly_table. + */ + +}; + +struct spu_buffer { + int last_guard_val; + int ctx_sw_seen; + unsigned long *buff; + unsigned int head, tail; +}; + + +/* The three functions below are for maintaining and accessing + * the vma-to-fileoffset map. + */ +struct vma_to_fileoffset_map *create_vma_map(const struct spu *spu, + unsigned long objectid); +unsigned int vma_map_lookup(struct vma_to_fileoffset_map *map, + unsigned int vma, const struct spu *aSpu, + int *grd_val); +void vma_map_free(struct vma_to_fileoffset_map *map); + +/* + * Entry point for SPU profiling. + * cycles_reset is the SPU_CYCLES count value specified by the user. + */ +int start_spu_profiling_cycles(unsigned int cycles_reset); +void start_spu_profiling_events(void); + +void stop_spu_profiling_cycles(void); +void stop_spu_profiling_events(void); + +/* add the necessary profiling hooks */ +int spu_sync_start(void); + +/* remove the hooks */ +int spu_sync_stop(void); + +/* Record SPU program counter samples to the oprofile event buffer. */ +void spu_sync_buffer(int spu_num, unsigned int *samples, + int num_samples); + +void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset); + +#endif /* PR_UTIL_H */ diff --git a/arch/powerpc/oprofile/cell/spu_profiler.c b/arch/powerpc/oprofile/cell/spu_profiler.c new file mode 100644 index 000000000..b129d007e --- /dev/null +++ b/arch/powerpc/oprofile/cell/spu_profiler.c @@ -0,0 +1,252 @@ +/* + * Cell Broadband Engine OProfile Support + * + * (C) Copyright IBM Corporation 2006 + * + * Authors: Maynard Johnson <maynardj@us.ibm.com> + * Carl Love <carll@us.ibm.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include <linux/hrtimer.h> +#include <linux/smp.h> +#include <linux/slab.h> +#include <asm/cell-pmu.h> +#include <asm/time.h> +#include "pr_util.h" + +#define SCALE_SHIFT 14 + +static u32 *samples; + +/* spu_prof_running is a flag used to indicate if spu profiling is enabled + * or not. It is set by the routines start_spu_profiling_cycles() and + * start_spu_profiling_events(). The flag is cleared by the routines + * stop_spu_profiling_cycles() and stop_spu_profiling_events(). These + * routines are called via global_start() and global_stop() which are called in + * op_powerpc_start() and op_powerpc_stop(). These routines are called once + * per system as a result of the user starting/stopping oprofile. Hence, only + * one CPU per user at a time will be changing the value of spu_prof_running. + * In general, OProfile does not protect against multiple users trying to run + * OProfile at a time. + */ +int spu_prof_running; +static unsigned int profiling_interval; + +#define NUM_SPU_BITS_TRBUF 16 +#define SPUS_PER_TB_ENTRY 4 + +#define SPU_PC_MASK 0xFFFF + +DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck); +unsigned long oprof_spu_smpl_arry_lck_flags; + +void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset) +{ + unsigned long ns_per_cyc; + + if (!freq_khz) + freq_khz = ppc_proc_freq/1000; + + /* To calculate a timeout in nanoseconds, the basic + * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency). + * To avoid floating point math, we use the scale math + * technique as described in linux/jiffies.h. We use + * a scale factor of SCALE_SHIFT, which provides 4 decimal places + * of precision. This is close enough for the purpose at hand. + * + * The value of the timeout should be small enough that the hw + * trace buffer will not get more than about 1/3 full for the + * maximum user specified (the LFSR value) hw sampling frequency. + * This is to ensure the trace buffer will never fill even if the + * kernel thread scheduling varies under a heavy system load. + */ + + ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz; + profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT; + +} + +/* + * Extract SPU PC from trace buffer entry + */ +static void spu_pc_extract(int cpu, int entry) +{ + /* the trace buffer is 128 bits */ + u64 trace_buffer[2]; + u64 spu_mask; + int spu; + + spu_mask = SPU_PC_MASK; + + /* Each SPU PC is 16 bits; hence, four spus in each of + * the two 64-bit buffer entries that make up the + * 128-bit trace_buffer entry. Process two 64-bit values + * simultaneously. + * trace[0] SPU PC contents are: 0 1 2 3 + * trace[1] SPU PC contents are: 4 5 6 7 + */ + + cbe_read_trace_buffer(cpu, trace_buffer); + + for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) { + /* spu PC trace entry is upper 16 bits of the + * 18 bit SPU program counter + */ + samples[spu * TRACE_ARRAY_SIZE + entry] + = (spu_mask & trace_buffer[0]) << 2; + samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry] + = (spu_mask & trace_buffer[1]) << 2; + + trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF; + trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF; + } +} + +static int cell_spu_pc_collection(int cpu) +{ + u32 trace_addr; + int entry; + + /* process the collected SPU PC for the node */ + + entry = 0; + + trace_addr = cbe_read_pm(cpu, trace_address); + while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) { + /* there is data in the trace buffer to process */ + spu_pc_extract(cpu, entry); + + entry++; + + if (entry >= TRACE_ARRAY_SIZE) + /* spu_samples is full */ + break; + + trace_addr = cbe_read_pm(cpu, trace_address); + } + + return entry; +} + + +static enum hrtimer_restart profile_spus(struct hrtimer *timer) +{ + ktime_t kt; + int cpu, node, k, num_samples, spu_num; + + if (!spu_prof_running) + goto stop; + + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + node = cbe_cpu_to_node(cpu); + + /* There should only be one kernel thread at a time processing + * the samples. In the very unlikely case that the processing + * is taking a very long time and multiple kernel threads are + * started to process the samples. Make sure only one kernel + * thread is working on the samples array at a time. The + * sample array must be loaded and then processed for a given + * cpu. The sample array is not per cpu. + */ + spin_lock_irqsave(&oprof_spu_smpl_arry_lck, + oprof_spu_smpl_arry_lck_flags); + num_samples = cell_spu_pc_collection(cpu); + + if (num_samples == 0) { + spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, + oprof_spu_smpl_arry_lck_flags); + continue; + } + + for (k = 0; k < SPUS_PER_NODE; k++) { + spu_num = k + (node * SPUS_PER_NODE); + spu_sync_buffer(spu_num, + samples + (k * TRACE_ARRAY_SIZE), + num_samples); + } + + spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, + oprof_spu_smpl_arry_lck_flags); + + } + smp_wmb(); /* insure spu event buffer updates are written */ + /* don't want events intermingled... */ + + kt = ktime_set(0, profiling_interval); + if (!spu_prof_running) + goto stop; + hrtimer_forward(timer, timer->base->get_time(), kt); + return HRTIMER_RESTART; + + stop: + printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n"); + return HRTIMER_NORESTART; +} + +static struct hrtimer timer; +/* + * Entry point for SPU cycle profiling. + * NOTE: SPU profiling is done system-wide, not per-CPU. + * + * cycles_reset is the count value specified by the user when + * setting up OProfile to count SPU_CYCLES. + */ +int start_spu_profiling_cycles(unsigned int cycles_reset) +{ + ktime_t kt; + + pr_debug("timer resolution: %lu\n", TICK_NSEC); + kt = ktime_set(0, profiling_interval); + hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + hrtimer_set_expires(&timer, kt); + timer.function = profile_spus; + + /* Allocate arrays for collecting SPU PC samples */ + samples = kzalloc(SPUS_PER_NODE * + TRACE_ARRAY_SIZE * sizeof(u32), GFP_KERNEL); + + if (!samples) + return -ENOMEM; + + spu_prof_running = 1; + hrtimer_start(&timer, kt, HRTIMER_MODE_REL); + schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE); + + return 0; +} + +/* + * Entry point for SPU event profiling. + * NOTE: SPU profiling is done system-wide, not per-CPU. + * + * cycles_reset is the count value specified by the user when + * setting up OProfile to count SPU_CYCLES. + */ +void start_spu_profiling_events(void) +{ + spu_prof_running = 1; + schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE); + + return; +} + +void stop_spu_profiling_cycles(void) +{ + spu_prof_running = 0; + hrtimer_cancel(&timer); + kfree(samples); + pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n"); +} + +void stop_spu_profiling_events(void) +{ + spu_prof_running = 0; +} diff --git a/arch/powerpc/oprofile/cell/spu_task_sync.c b/arch/powerpc/oprofile/cell/spu_task_sync.c new file mode 100644 index 000000000..ed7b09770 --- /dev/null +++ b/arch/powerpc/oprofile/cell/spu_task_sync.c @@ -0,0 +1,661 @@ +/* + * Cell Broadband Engine OProfile Support + * + * (C) Copyright IBM Corporation 2006 + * + * Author: Maynard Johnson <maynardj@us.ibm.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +/* The purpose of this file is to handle SPU event task switching + * and to record SPU context information into the OProfile + * event buffer. + * + * Additionally, the spu_sync_buffer function is provided as a helper + * for recoding actual SPU program counter samples to the event buffer. + */ +#include <linux/dcookies.h> +#include <linux/kref.h> +#include <linux/mm.h> +#include <linux/fs.h> +#include <linux/file.h> +#include <linux/module.h> +#include <linux/notifier.h> +#include <linux/numa.h> +#include <linux/oprofile.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include "pr_util.h" + +#define RELEASE_ALL 9999 + +static DEFINE_SPINLOCK(buffer_lock); +static DEFINE_SPINLOCK(cache_lock); +static int num_spu_nodes; +int spu_prof_num_nodes; + +struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE]; +struct delayed_work spu_work; +static unsigned max_spu_buff; + +static void spu_buff_add(unsigned long int value, int spu) +{ + /* spu buff is a circular buffer. Add entries to the + * head. Head is the index to store the next value. + * The buffer is full when there is one available entry + * in the queue, i.e. head and tail can't be equal. + * That way we can tell the difference between the + * buffer being full versus empty. + * + * ASSUPTION: the buffer_lock is held when this function + * is called to lock the buffer, head and tail. + */ + int full = 1; + + if (spu_buff[spu].head >= spu_buff[spu].tail) { + if ((spu_buff[spu].head - spu_buff[spu].tail) + < (max_spu_buff - 1)) + full = 0; + + } else if (spu_buff[spu].tail > spu_buff[spu].head) { + if ((spu_buff[spu].tail - spu_buff[spu].head) + > 1) + full = 0; + } + + if (!full) { + spu_buff[spu].buff[spu_buff[spu].head] = value; + spu_buff[spu].head++; + + if (spu_buff[spu].head >= max_spu_buff) + spu_buff[spu].head = 0; + } else { + /* From the user's perspective make the SPU buffer + * size management/overflow look like we are using + * per cpu buffers. The user uses the same + * per cpu parameter to adjust the SPU buffer size. + * Increment the sample_lost_overflow to inform + * the user the buffer size needs to be increased. + */ + oprofile_cpu_buffer_inc_smpl_lost(); + } +} + +/* This function copies the per SPU buffers to the + * OProfile kernel buffer. + */ +void sync_spu_buff(void) +{ + int spu; + unsigned long flags; + int curr_head; + + for (spu = 0; spu < num_spu_nodes; spu++) { + /* In case there was an issue and the buffer didn't + * get created skip it. + */ + if (spu_buff[spu].buff == NULL) + continue; + + /* Hold the lock to make sure the head/tail + * doesn't change while spu_buff_add() is + * deciding if the buffer is full or not. + * Being a little paranoid. + */ + spin_lock_irqsave(&buffer_lock, flags); + curr_head = spu_buff[spu].head; + spin_unlock_irqrestore(&buffer_lock, flags); + + /* Transfer the current contents to the kernel buffer. + * data can still be added to the head of the buffer. + */ + oprofile_put_buff(spu_buff[spu].buff, + spu_buff[spu].tail, + curr_head, max_spu_buff); + + spin_lock_irqsave(&buffer_lock, flags); + spu_buff[spu].tail = curr_head; + spin_unlock_irqrestore(&buffer_lock, flags); + } + +} + +static void wq_sync_spu_buff(struct work_struct *work) +{ + /* move data from spu buffers to kernel buffer */ + sync_spu_buff(); + + /* only reschedule if profiling is not done */ + if (spu_prof_running) + schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE); +} + +/* Container for caching information about an active SPU task. */ +struct cached_info { + struct vma_to_fileoffset_map *map; + struct spu *the_spu; /* needed to access pointer to local_store */ + struct kref cache_ref; +}; + +static struct cached_info *spu_info[MAX_NUMNODES * 8]; + +static void destroy_cached_info(struct kref *kref) +{ + struct cached_info *info; + + info = container_of(kref, struct cached_info, cache_ref); + vma_map_free(info->map); + kfree(info); + module_put(THIS_MODULE); +} + +/* Return the cached_info for the passed SPU number. + * ATTENTION: Callers are responsible for obtaining the + * cache_lock if needed prior to invoking this function. + */ +static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num) +{ + struct kref *ref; + struct cached_info *ret_info; + + if (spu_num >= num_spu_nodes) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: Invalid index %d into spu info cache\n", + __func__, __LINE__, spu_num); + ret_info = NULL; + goto out; + } + if (!spu_info[spu_num] && the_spu) { + ref = spu_get_profile_private_kref(the_spu->ctx); + if (ref) { + spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref); + kref_get(&spu_info[spu_num]->cache_ref); + } + } + + ret_info = spu_info[spu_num]; + out: + return ret_info; +} + + +/* Looks for cached info for the passed spu. If not found, the + * cached info is created for the passed spu. + * Returns 0 for success; otherwise, -1 for error. + */ +static int +prepare_cached_spu_info(struct spu *spu, unsigned long objectId) +{ + unsigned long flags; + struct vma_to_fileoffset_map *new_map; + int retval = 0; + struct cached_info *info; + + /* We won't bother getting cache_lock here since + * don't do anything with the cached_info that's returned. + */ + info = get_cached_info(spu, spu->number); + + if (info) { + pr_debug("Found cached SPU info.\n"); + goto out; + } + + /* Create cached_info and set spu_info[spu->number] to point to it. + * spu->number is a system-wide value, not a per-node value. + */ + info = kzalloc(sizeof(struct cached_info), GFP_KERNEL); + if (!info) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: create vma_map failed\n", + __func__, __LINE__); + retval = -ENOMEM; + goto err_alloc; + } + new_map = create_vma_map(spu, objectId); + if (!new_map) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: create vma_map failed\n", + __func__, __LINE__); + retval = -ENOMEM; + goto err_alloc; + } + + pr_debug("Created vma_map\n"); + info->map = new_map; + info->the_spu = spu; + kref_init(&info->cache_ref); + spin_lock_irqsave(&cache_lock, flags); + spu_info[spu->number] = info; + /* Increment count before passing off ref to SPUFS. */ + kref_get(&info->cache_ref); + + /* We increment the module refcount here since SPUFS is + * responsible for the final destruction of the cached_info, + * and it must be able to access the destroy_cached_info() + * function defined in the OProfile module. We decrement + * the module refcount in destroy_cached_info. + */ + try_module_get(THIS_MODULE); + spu_set_profile_private_kref(spu->ctx, &info->cache_ref, + destroy_cached_info); + spin_unlock_irqrestore(&cache_lock, flags); + goto out; + +err_alloc: + kfree(info); +out: + return retval; +} + +/* + * NOTE: The caller is responsible for locking the + * cache_lock prior to calling this function. + */ +static int release_cached_info(int spu_index) +{ + int index, end; + + if (spu_index == RELEASE_ALL) { + end = num_spu_nodes; + index = 0; + } else { + if (spu_index >= num_spu_nodes) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: " + "Invalid index %d into spu info cache\n", + __func__, __LINE__, spu_index); + goto out; + } + end = spu_index + 1; + index = spu_index; + } + for (; index < end; index++) { + if (spu_info[index]) { + kref_put(&spu_info[index]->cache_ref, + destroy_cached_info); + spu_info[index] = NULL; + } + } + +out: + return 0; +} + +/* The source code for fast_get_dcookie was "borrowed" + * from drivers/oprofile/buffer_sync.c. + */ + +/* Optimisation. We can manage without taking the dcookie sem + * because we cannot reach this code without at least one + * dcookie user still being registered (namely, the reader + * of the event buffer). + */ +static inline unsigned long fast_get_dcookie(struct path *path) +{ + unsigned long cookie; + + if (path->dentry->d_flags & DCACHE_COOKIE) + return (unsigned long)path->dentry; + get_dcookie(path, &cookie); + return cookie; +} + +/* Look up the dcookie for the task's mm->exe_file, + * which corresponds loosely to "application name". Also, determine + * the offset for the SPU ELF object. If computed offset is + * non-zero, it implies an embedded SPU object; otherwise, it's a + * separate SPU binary, in which case we retrieve it's dcookie. + * For the embedded case, we must determine if SPU ELF is embedded + * in the executable application or another file (i.e., shared lib). + * If embedded in a shared lib, we must get the dcookie and return + * that to the caller. + */ +static unsigned long +get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp, + unsigned long *spu_bin_dcookie, + unsigned long spu_ref) +{ + unsigned long app_cookie = 0; + unsigned int my_offset = 0; + struct vm_area_struct *vma; + struct file *exe_file; + struct mm_struct *mm = spu->mm; + + if (!mm) + goto out; + + exe_file = get_mm_exe_file(mm); + if (exe_file) { + app_cookie = fast_get_dcookie(&exe_file->f_path); + pr_debug("got dcookie for %pD\n", exe_file); + fput(exe_file); + } + + down_read(&mm->mmap_sem); + for (vma = mm->mmap; vma; vma = vma->vm_next) { + if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref) + continue; + my_offset = spu_ref - vma->vm_start; + if (!vma->vm_file) + goto fail_no_image_cookie; + + pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n", + my_offset, spu_ref, vma->vm_file); + *offsetp = my_offset; + break; + } + + *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path); + pr_debug("got dcookie for %pD\n", vma->vm_file); + + up_read(&mm->mmap_sem); + +out: + return app_cookie; + +fail_no_image_cookie: + up_read(&mm->mmap_sem); + + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: Cannot find dcookie for SPU binary\n", + __func__, __LINE__); + goto out; +} + + + +/* This function finds or creates cached context information for the + * passed SPU and records SPU context information into the OProfile + * event buffer. + */ +static int process_context_switch(struct spu *spu, unsigned long objectId) +{ + unsigned long flags; + int retval; + unsigned int offset = 0; + unsigned long spu_cookie = 0, app_dcookie; + + retval = prepare_cached_spu_info(spu, objectId); + if (retval) + goto out; + + /* Get dcookie first because a mutex_lock is taken in that + * code path, so interrupts must not be disabled. + */ + app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId); + if (!app_dcookie || !spu_cookie) { + retval = -ENOENT; + goto out; + } + + /* Record context info in event buffer */ + spin_lock_irqsave(&buffer_lock, flags); + spu_buff_add(ESCAPE_CODE, spu->number); + spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number); + spu_buff_add(spu->number, spu->number); + spu_buff_add(spu->pid, spu->number); + spu_buff_add(spu->tgid, spu->number); + spu_buff_add(app_dcookie, spu->number); + spu_buff_add(spu_cookie, spu->number); + spu_buff_add(offset, spu->number); + + /* Set flag to indicate SPU PC data can now be written out. If + * the SPU program counter data is seen before an SPU context + * record is seen, the postprocessing will fail. + */ + spu_buff[spu->number].ctx_sw_seen = 1; + + spin_unlock_irqrestore(&buffer_lock, flags); + smp_wmb(); /* insure spu event buffer updates are written */ + /* don't want entries intermingled... */ +out: + return retval; +} + +/* + * This function is invoked on either a bind_context or unbind_context. + * If called for an unbind_context, the val arg is 0; otherwise, + * it is the object-id value for the spu context. + * The data arg is of type 'struct spu *'. + */ +static int spu_active_notify(struct notifier_block *self, unsigned long val, + void *data) +{ + int retval; + unsigned long flags; + struct spu *the_spu = data; + + pr_debug("SPU event notification arrived\n"); + if (!val) { + spin_lock_irqsave(&cache_lock, flags); + retval = release_cached_info(the_spu->number); + spin_unlock_irqrestore(&cache_lock, flags); + } else { + retval = process_context_switch(the_spu, val); + } + return retval; +} + +static struct notifier_block spu_active = { + .notifier_call = spu_active_notify, +}; + +static int number_of_online_nodes(void) +{ + u32 cpu; u32 tmp; + int nodes = 0; + for_each_online_cpu(cpu) { + tmp = cbe_cpu_to_node(cpu) + 1; + if (tmp > nodes) + nodes++; + } + return nodes; +} + +static int oprofile_spu_buff_create(void) +{ + int spu; + + max_spu_buff = oprofile_get_cpu_buffer_size(); + + for (spu = 0; spu < num_spu_nodes; spu++) { + /* create circular buffers to store the data in. + * use locks to manage accessing the buffers + */ + spu_buff[spu].head = 0; + spu_buff[spu].tail = 0; + + /* + * Create a buffer for each SPU. Can't reliably + * create a single buffer for all spus due to not + * enough contiguous kernel memory. + */ + + spu_buff[spu].buff = kzalloc((max_spu_buff + * sizeof(unsigned long)), + GFP_KERNEL); + + if (!spu_buff[spu].buff) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: oprofile_spu_buff_create " + "failed to allocate spu buffer %d.\n", + __func__, __LINE__, spu); + + /* release the spu buffers that have been allocated */ + while (spu >= 0) { + kfree(spu_buff[spu].buff); + spu_buff[spu].buff = 0; + spu--; + } + return -ENOMEM; + } + } + return 0; +} + +/* The main purpose of this function is to synchronize + * OProfile with SPUFS by registering to be notified of + * SPU task switches. + * + * NOTE: When profiling SPUs, we must ensure that only + * spu_sync_start is invoked and not the generic sync_start + * in drivers/oprofile/oprof.c. A return value of + * SKIP_GENERIC_SYNC or SYNC_START_ERROR will + * accomplish this. + */ +int spu_sync_start(void) +{ + int spu; + int ret = SKIP_GENERIC_SYNC; + int register_ret; + unsigned long flags = 0; + + spu_prof_num_nodes = number_of_online_nodes(); + num_spu_nodes = spu_prof_num_nodes * 8; + INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff); + + /* create buffer for storing the SPU data to put in + * the kernel buffer. + */ + ret = oprofile_spu_buff_create(); + if (ret) + goto out; + + spin_lock_irqsave(&buffer_lock, flags); + for (spu = 0; spu < num_spu_nodes; spu++) { + spu_buff_add(ESCAPE_CODE, spu); + spu_buff_add(SPU_PROFILING_CODE, spu); + spu_buff_add(num_spu_nodes, spu); + } + spin_unlock_irqrestore(&buffer_lock, flags); + + for (spu = 0; spu < num_spu_nodes; spu++) { + spu_buff[spu].ctx_sw_seen = 0; + spu_buff[spu].last_guard_val = 0; + } + + /* Register for SPU events */ + register_ret = spu_switch_event_register(&spu_active); + if (register_ret) { + ret = SYNC_START_ERROR; + goto out; + } + + pr_debug("spu_sync_start -- running.\n"); +out: + return ret; +} + +/* Record SPU program counter samples to the oprofile event buffer. */ +void spu_sync_buffer(int spu_num, unsigned int *samples, + int num_samples) +{ + unsigned long long file_offset; + unsigned long flags; + int i; + struct vma_to_fileoffset_map *map; + struct spu *the_spu; + unsigned long long spu_num_ll = spu_num; + unsigned long long spu_num_shifted = spu_num_ll << 32; + struct cached_info *c_info; + + /* We need to obtain the cache_lock here because it's + * possible that after getting the cached_info, the SPU job + * corresponding to this cached_info may end, thus resulting + * in the destruction of the cached_info. + */ + spin_lock_irqsave(&cache_lock, flags); + c_info = get_cached_info(NULL, spu_num); + if (!c_info) { + /* This legitimately happens when the SPU task ends before all + * samples are recorded. + * No big deal -- so we just drop a few samples. + */ + pr_debug("SPU_PROF: No cached SPU contex " + "for SPU #%d. Dropping samples.\n", spu_num); + goto out; + } + + map = c_info->map; + the_spu = c_info->the_spu; + spin_lock(&buffer_lock); + for (i = 0; i < num_samples; i++) { + unsigned int sample = *(samples+i); + int grd_val = 0; + file_offset = 0; + if (sample == 0) + continue; + file_offset = vma_map_lookup( map, sample, the_spu, &grd_val); + + /* If overlays are used by this SPU application, the guard + * value is non-zero, indicating which overlay section is in + * use. We need to discard samples taken during the time + * period which an overlay occurs (i.e., guard value changes). + */ + if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) { + spu_buff[spu_num].last_guard_val = grd_val; + /* Drop the rest of the samples. */ + break; + } + + /* We must ensure that the SPU context switch has been written + * out before samples for the SPU. Otherwise, the SPU context + * information is not available and the postprocessing of the + * SPU PC will fail with no available anonymous map information. + */ + if (spu_buff[spu_num].ctx_sw_seen) + spu_buff_add((file_offset | spu_num_shifted), + spu_num); + } + spin_unlock(&buffer_lock); +out: + spin_unlock_irqrestore(&cache_lock, flags); +} + + +int spu_sync_stop(void) +{ + unsigned long flags = 0; + int ret; + int k; + + ret = spu_switch_event_unregister(&spu_active); + + if (ret) + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: spu_switch_event_unregister " \ + "returned %d\n", + __func__, __LINE__, ret); + + /* flush any remaining data in the per SPU buffers */ + sync_spu_buff(); + + spin_lock_irqsave(&cache_lock, flags); + ret = release_cached_info(RELEASE_ALL); + spin_unlock_irqrestore(&cache_lock, flags); + + /* remove scheduled work queue item rather then waiting + * for every queued entry to execute. Then flush pending + * system wide buffer to event buffer. + */ + cancel_delayed_work(&spu_work); + + for (k = 0; k < num_spu_nodes; k++) { + spu_buff[k].ctx_sw_seen = 0; + + /* + * spu_sys_buff will be null if there was a problem + * allocating the buffer. Only delete if it exists. + */ + kfree(spu_buff[k].buff); + spu_buff[k].buff = 0; + } + pr_debug("spu_sync_stop -- done.\n"); + return ret; +} + diff --git a/arch/powerpc/oprofile/cell/vma_map.c b/arch/powerpc/oprofile/cell/vma_map.c new file mode 100644 index 000000000..c579b1684 --- /dev/null +++ b/arch/powerpc/oprofile/cell/vma_map.c @@ -0,0 +1,283 @@ +/* + * Cell Broadband Engine OProfile Support + * + * (C) Copyright IBM Corporation 2006 + * + * Author: Maynard Johnson <maynardj@us.ibm.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +/* The code in this source file is responsible for generating + * vma-to-fileOffset maps for both overlay and non-overlay SPU + * applications. + */ + +#include <linux/mm.h> +#include <linux/string.h> +#include <linux/uaccess.h> +#include <linux/elf.h> +#include <linux/slab.h> +#include "pr_util.h" + + +void vma_map_free(struct vma_to_fileoffset_map *map) +{ + while (map) { + struct vma_to_fileoffset_map *next = map->next; + kfree(map); + map = next; + } +} + +unsigned int +vma_map_lookup(struct vma_to_fileoffset_map *map, unsigned int vma, + const struct spu *aSpu, int *grd_val) +{ + /* + * Default the offset to the physical address + a flag value. + * Addresses of dynamically generated code can't be found in the vma + * map. For those addresses the flagged value will be sent on to + * the user space tools so they can be reported rather than just + * thrown away. + */ + u32 offset = 0x10000000 + vma; + u32 ovly_grd; + + for (; map; map = map->next) { + if (vma < map->vma || vma >= map->vma + map->size) + continue; + + if (map->guard_ptr) { + ovly_grd = *(u32 *)(aSpu->local_store + map->guard_ptr); + if (ovly_grd != map->guard_val) + continue; + *grd_val = ovly_grd; + } + offset = vma - map->vma + map->offset; + break; + } + + return offset; +} + +static struct vma_to_fileoffset_map * +vma_map_add(struct vma_to_fileoffset_map *map, unsigned int vma, + unsigned int size, unsigned int offset, unsigned int guard_ptr, + unsigned int guard_val) +{ + struct vma_to_fileoffset_map *new = + kzalloc(sizeof(struct vma_to_fileoffset_map), GFP_KERNEL); + if (!new) { + printk(KERN_ERR "SPU_PROF: %s, line %d: malloc failed\n", + __func__, __LINE__); + vma_map_free(map); + return NULL; + } + + new->next = map; + new->vma = vma; + new->size = size; + new->offset = offset; + new->guard_ptr = guard_ptr; + new->guard_val = guard_val; + + return new; +} + + +/* Parse SPE ELF header and generate a list of vma_maps. + * A pointer to the first vma_map in the generated list + * of vma_maps is returned. */ +struct vma_to_fileoffset_map *create_vma_map(const struct spu *aSpu, + unsigned long __spu_elf_start) +{ + static const unsigned char expected[EI_PAD] = { + [EI_MAG0] = ELFMAG0, + [EI_MAG1] = ELFMAG1, + [EI_MAG2] = ELFMAG2, + [EI_MAG3] = ELFMAG3, + [EI_CLASS] = ELFCLASS32, + [EI_DATA] = ELFDATA2MSB, + [EI_VERSION] = EV_CURRENT, + [EI_OSABI] = ELFOSABI_NONE + }; + + int grd_val; + struct vma_to_fileoffset_map *map = NULL; + void __user *spu_elf_start = (void __user *)__spu_elf_start; + struct spu_overlay_info ovly; + unsigned int overlay_tbl_offset = -1; + Elf32_Phdr __user *phdr_start; + Elf32_Shdr __user *shdr_start; + Elf32_Ehdr ehdr; + Elf32_Phdr phdr; + Elf32_Shdr shdr, shdr_str; + Elf32_Sym sym; + int i, j; + char name[32]; + + unsigned int ovly_table_sym = 0; + unsigned int ovly_buf_table_sym = 0; + unsigned int ovly_table_end_sym = 0; + unsigned int ovly_buf_table_end_sym = 0; + struct spu_overlay_info __user *ovly_table; + unsigned int n_ovlys; + + /* Get and validate ELF header. */ + + if (copy_from_user(&ehdr, spu_elf_start, sizeof (ehdr))) + goto fail; + + if (memcmp(ehdr.e_ident, expected, EI_PAD) != 0) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: Unexpected e_ident parsing SPU ELF\n", + __func__, __LINE__); + goto fail; + } + if (ehdr.e_machine != EM_SPU) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: Unexpected e_machine parsing SPU ELF\n", + __func__, __LINE__); + goto fail; + } + if (ehdr.e_type != ET_EXEC) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: Unexpected e_type parsing SPU ELF\n", + __func__, __LINE__); + goto fail; + } + phdr_start = spu_elf_start + ehdr.e_phoff; + shdr_start = spu_elf_start + ehdr.e_shoff; + + /* Traverse program headers. */ + for (i = 0; i < ehdr.e_phnum; i++) { + if (copy_from_user(&phdr, phdr_start + i, sizeof(phdr))) + goto fail; + + if (phdr.p_type != PT_LOAD) + continue; + if (phdr.p_flags & (1 << 27)) + continue; + + map = vma_map_add(map, phdr.p_vaddr, phdr.p_memsz, + phdr.p_offset, 0, 0); + if (!map) + goto fail; + } + + pr_debug("SPU_PROF: Created non-overlay maps\n"); + /* Traverse section table and search for overlay-related symbols. */ + for (i = 0; i < ehdr.e_shnum; i++) { + if (copy_from_user(&shdr, shdr_start + i, sizeof(shdr))) + goto fail; + + if (shdr.sh_type != SHT_SYMTAB) + continue; + if (shdr.sh_entsize != sizeof (sym)) + continue; + + if (copy_from_user(&shdr_str, + shdr_start + shdr.sh_link, + sizeof(shdr))) + goto fail; + + if (shdr_str.sh_type != SHT_STRTAB) + goto fail; + + for (j = 0; j < shdr.sh_size / sizeof (sym); j++) { + if (copy_from_user(&sym, spu_elf_start + + shdr.sh_offset + + j * sizeof (sym), + sizeof (sym))) + goto fail; + + if (copy_from_user(name, + spu_elf_start + shdr_str.sh_offset + + sym.st_name, + 20)) + goto fail; + + if (memcmp(name, "_ovly_table", 12) == 0) + ovly_table_sym = sym.st_value; + if (memcmp(name, "_ovly_buf_table", 16) == 0) + ovly_buf_table_sym = sym.st_value; + if (memcmp(name, "_ovly_table_end", 16) == 0) + ovly_table_end_sym = sym.st_value; + if (memcmp(name, "_ovly_buf_table_end", 20) == 0) + ovly_buf_table_end_sym = sym.st_value; + } + } + + /* If we don't have overlays, we're done. */ + if (ovly_table_sym == 0 || ovly_buf_table_sym == 0 + || ovly_table_end_sym == 0 || ovly_buf_table_end_sym == 0) { + pr_debug("SPU_PROF: No overlay table found\n"); + goto out; + } else { + pr_debug("SPU_PROF: Overlay table found\n"); + } + + /* The _ovly_table symbol represents a table with one entry + * per overlay section. The _ovly_buf_table symbol represents + * a table with one entry per overlay region. + * The struct spu_overlay_info gives the structure of the _ovly_table + * entries. The structure of _ovly_table_buf is simply one + * u32 word per entry. + */ + overlay_tbl_offset = vma_map_lookup(map, ovly_table_sym, + aSpu, &grd_val); + if (overlay_tbl_offset > 0x10000000) { + printk(KERN_ERR "SPU_PROF: " + "%s, line %d: Error finding SPU overlay table\n", + __func__, __LINE__); + goto fail; + } + ovly_table = spu_elf_start + overlay_tbl_offset; + + n_ovlys = (ovly_table_end_sym - + ovly_table_sym) / sizeof (ovly); + + /* Traverse overlay table. */ + for (i = 0; i < n_ovlys; i++) { + if (copy_from_user(&ovly, ovly_table + i, sizeof (ovly))) + goto fail; + + /* The ovly.vma/size/offset arguments are analogous to the same + * arguments used above for non-overlay maps. The final two + * args are referred to as the guard pointer and the guard + * value. + * The guard pointer is an entry in the _ovly_buf_table, + * computed using ovly.buf as the index into the table. Since + * ovly.buf values begin at '1' to reference the first (or 0th) + * entry in the _ovly_buf_table, the computation subtracts 1 + * from ovly.buf. + * The guard value is stored in the _ovly_buf_table entry and + * is an index (starting at 1) back to the _ovly_table entry + * that is pointing at this _ovly_buf_table entry. So, for + * example, for an overlay scenario with one overlay segment + * and two overlay sections: + * - Section 1 points to the first entry of the + * _ovly_buf_table, which contains a guard value + * of '1', referencing the first (index=0) entry of + * _ovly_table. + * - Section 2 points to the second entry of the + * _ovly_buf_table, which contains a guard value + * of '2', referencing the second (index=1) entry of + * _ovly_table. + */ + map = vma_map_add(map, ovly.vma, ovly.size, ovly.offset, + ovly_buf_table_sym + (ovly.buf-1) * 4, i+1); + if (!map) + goto fail; + } + goto out; + + fail: + map = NULL; + out: + return map; +} diff --git a/arch/powerpc/oprofile/common.c b/arch/powerpc/oprofile/common.c new file mode 100644 index 000000000..bf094c5a4 --- /dev/null +++ b/arch/powerpc/oprofile/common.c @@ -0,0 +1,247 @@ +/* + * PPC 64 oprofile support: + * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM + * PPC 32 oprofile support: (based on PPC 64 support) + * Copyright (C) Freescale Semiconductor, Inc 2004 + * Author: Andy Fleming + * + * Based on alpha version. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include <linux/oprofile.h> +#include <linux/init.h> +#include <linux/smp.h> +#include <linux/errno.h> +#include <asm/ptrace.h> +#include <asm/pmc.h> +#include <asm/cputable.h> +#include <asm/oprofile_impl.h> +#include <asm/firmware.h> + +static struct op_powerpc_model *model; + +static struct op_counter_config ctr[OP_MAX_COUNTER]; +static struct op_system_config sys; + +static int op_per_cpu_rc; + +static void op_handle_interrupt(struct pt_regs *regs) +{ + model->handle_interrupt(regs, ctr); +} + +static void op_powerpc_cpu_setup(void *dummy) +{ + int ret; + + ret = model->cpu_setup(ctr); + + if (ret != 0) + op_per_cpu_rc = ret; +} + +static int op_powerpc_setup(void) +{ + int err; + + op_per_cpu_rc = 0; + + /* Grab the hardware */ + err = reserve_pmc_hardware(op_handle_interrupt); + if (err) + return err; + + /* Pre-compute the values to stuff in the hardware registers. */ + op_per_cpu_rc = model->reg_setup(ctr, &sys, model->num_counters); + + if (op_per_cpu_rc) + goto out; + + /* Configure the registers on all cpus. If an error occurs on one + * of the cpus, op_per_cpu_rc will be set to the error */ + on_each_cpu(op_powerpc_cpu_setup, NULL, 1); + +out: if (op_per_cpu_rc) { + /* error on setup release the performance counter hardware */ + release_pmc_hardware(); + } + + return op_per_cpu_rc; +} + +static void op_powerpc_shutdown(void) +{ + release_pmc_hardware(); +} + +static void op_powerpc_cpu_start(void *dummy) +{ + /* If any of the cpus have return an error, set the + * global flag to the error so it can be returned + * to the generic OProfile caller. + */ + int ret; + + ret = model->start(ctr); + if (ret != 0) + op_per_cpu_rc = ret; +} + +static int op_powerpc_start(void) +{ + op_per_cpu_rc = 0; + + if (model->global_start) + return model->global_start(ctr); + if (model->start) { + on_each_cpu(op_powerpc_cpu_start, NULL, 1); + return op_per_cpu_rc; + } + return -EIO; /* No start function is defined for this + power architecture */ +} + +static inline void op_powerpc_cpu_stop(void *dummy) +{ + model->stop(); +} + +static void op_powerpc_stop(void) +{ + if (model->stop) + on_each_cpu(op_powerpc_cpu_stop, NULL, 1); + if (model->global_stop) + model->global_stop(); +} + +static int op_powerpc_create_files(struct dentry *root) +{ + int i; + +#ifdef CONFIG_PPC64 + /* + * There is one mmcr0, mmcr1 and mmcra for setting the events for + * all of the counters. + */ + oprofilefs_create_ulong(root, "mmcr0", &sys.mmcr0); + oprofilefs_create_ulong(root, "mmcr1", &sys.mmcr1); + oprofilefs_create_ulong(root, "mmcra", &sys.mmcra); +#ifdef CONFIG_OPROFILE_CELL + /* create a file the user tool can check to see what level of profiling + * support exits with this kernel. Initialize bit mask to indicate + * what support the kernel has: + * bit 0 - Supports SPU event profiling in addition to PPU + * event and cycles; and SPU cycle profiling + * bits 1-31 - Currently unused. + * + * If the file does not exist, then the kernel only supports SPU + * cycle profiling, PPU event and cycle profiling. + */ + oprofilefs_create_ulong(root, "cell_support", &sys.cell_support); + sys.cell_support = 0x1; /* Note, the user OProfile tool must check + * that this bit is set before attempting to + * user SPU event profiling. Older kernels + * will not have this file, hence the user + * tool is not allowed to do SPU event + * profiling on older kernels. Older kernels + * will accept SPU events but collected data + * is garbage. + */ +#endif +#endif + + for (i = 0; i < model->num_counters; ++i) { + struct dentry *dir; + char buf[4]; + + snprintf(buf, sizeof buf, "%d", i); + dir = oprofilefs_mkdir(root, buf); + + oprofilefs_create_ulong(dir, "enabled", &ctr[i].enabled); + oprofilefs_create_ulong(dir, "event", &ctr[i].event); + oprofilefs_create_ulong(dir, "count", &ctr[i].count); + + /* + * Classic PowerPC doesn't support per-counter + * control like this, but the options are + * expected, so they remain. For Freescale + * Book-E style performance monitors, we do + * support them. + */ + oprofilefs_create_ulong(dir, "kernel", &ctr[i].kernel); + oprofilefs_create_ulong(dir, "user", &ctr[i].user); + + oprofilefs_create_ulong(dir, "unit_mask", &ctr[i].unit_mask); + } + + oprofilefs_create_ulong(root, "enable_kernel", &sys.enable_kernel); + oprofilefs_create_ulong(root, "enable_user", &sys.enable_user); + + /* Default to tracing both kernel and user */ + sys.enable_kernel = 1; + sys.enable_user = 1; + + return 0; +} + +int __init oprofile_arch_init(struct oprofile_operations *ops) +{ + if (!cur_cpu_spec->oprofile_cpu_type) + return -ENODEV; + + switch (cur_cpu_spec->oprofile_type) { +#ifdef CONFIG_PPC_BOOK3S_64 +#ifdef CONFIG_OPROFILE_CELL + case PPC_OPROFILE_CELL: + if (firmware_has_feature(FW_FEATURE_LPAR)) + return -ENODEV; + model = &op_model_cell; + ops->sync_start = model->sync_start; + ops->sync_stop = model->sync_stop; + break; +#endif + case PPC_OPROFILE_POWER4: + model = &op_model_power4; + break; + case PPC_OPROFILE_PA6T: + model = &op_model_pa6t; + break; +#endif +#ifdef CONFIG_6xx + case PPC_OPROFILE_G4: + model = &op_model_7450; + break; +#endif +#if defined(CONFIG_FSL_EMB_PERFMON) + case PPC_OPROFILE_FSL_EMB: + model = &op_model_fsl_emb; + break; +#endif + default: + return -ENODEV; + } + + model->num_counters = cur_cpu_spec->num_pmcs; + + ops->cpu_type = cur_cpu_spec->oprofile_cpu_type; + ops->create_files = op_powerpc_create_files; + ops->setup = op_powerpc_setup; + ops->shutdown = op_powerpc_shutdown; + ops->start = op_powerpc_start; + ops->stop = op_powerpc_stop; + ops->backtrace = op_powerpc_backtrace; + + printk(KERN_DEBUG "oprofile: using %s performance monitoring.\n", + ops->cpu_type); + + return 0; +} + +void oprofile_arch_exit(void) +{ +} diff --git a/arch/powerpc/oprofile/op_model_7450.c b/arch/powerpc/oprofile/op_model_7450.c new file mode 100644 index 000000000..d29b6e4e5 --- /dev/null +++ b/arch/powerpc/oprofile/op_model_7450.c @@ -0,0 +1,211 @@ +/* + * arch/powerpc/oprofile/op_model_7450.c + * + * Freescale 745x/744x oprofile support, based on fsl_booke support + * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM + * + * Copyright (c) 2004 Freescale Semiconductor, Inc + * + * Author: Andy Fleming + * Maintainer: Kumar Gala <galak@kernel.crashing.org> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include <linux/oprofile.h> +#include <linux/smp.h> +#include <asm/ptrace.h> +#include <asm/processor.h> +#include <asm/cputable.h> +#include <asm/page.h> +#include <asm/pmc.h> +#include <asm/oprofile_impl.h> + +static unsigned long reset_value[OP_MAX_COUNTER]; + +static int oprofile_running; +static u32 mmcr0_val, mmcr1_val, mmcr2_val, num_pmcs; + +#define MMCR0_PMC1_SHIFT 6 +#define MMCR0_PMC2_SHIFT 0 +#define MMCR1_PMC3_SHIFT 27 +#define MMCR1_PMC4_SHIFT 22 +#define MMCR1_PMC5_SHIFT 17 +#define MMCR1_PMC6_SHIFT 11 + +#define mmcr0_event1(event) \ + ((event << MMCR0_PMC1_SHIFT) & MMCR0_PMC1SEL) +#define mmcr0_event2(event) \ + ((event << MMCR0_PMC2_SHIFT) & MMCR0_PMC2SEL) + +#define mmcr1_event3(event) \ + ((event << MMCR1_PMC3_SHIFT) & MMCR1_PMC3SEL) +#define mmcr1_event4(event) \ + ((event << MMCR1_PMC4_SHIFT) & MMCR1_PMC4SEL) +#define mmcr1_event5(event) \ + ((event << MMCR1_PMC5_SHIFT) & MMCR1_PMC5SEL) +#define mmcr1_event6(event) \ + ((event << MMCR1_PMC6_SHIFT) & MMCR1_PMC6SEL) + +#define MMCR0_INIT (MMCR0_FC | MMCR0_FCS | MMCR0_FCP | MMCR0_FCM1 | MMCR0_FCM0) + +/* Unfreezes the counters on this CPU, enables the interrupt, + * enables the counters to trigger the interrupt, and sets the + * counters to only count when the mark bit is not set. + */ +static void pmc_start_ctrs(void) +{ + u32 mmcr0 = mfspr(SPRN_MMCR0); + + mmcr0 &= ~(MMCR0_FC | MMCR0_FCM0); + mmcr0 |= (MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE); + + mtspr(SPRN_MMCR0, mmcr0); +} + +/* Disables the counters on this CPU, and freezes them */ +static void pmc_stop_ctrs(void) +{ + u32 mmcr0 = mfspr(SPRN_MMCR0); + + mmcr0 |= MMCR0_FC; + mmcr0 &= ~(MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE); + + mtspr(SPRN_MMCR0, mmcr0); +} + +/* Configures the counters on this CPU based on the global + * settings */ +static int fsl7450_cpu_setup(struct op_counter_config *ctr) +{ + /* freeze all counters */ + pmc_stop_ctrs(); + + mtspr(SPRN_MMCR0, mmcr0_val); + mtspr(SPRN_MMCR1, mmcr1_val); + if (num_pmcs > 4) + mtspr(SPRN_MMCR2, mmcr2_val); + + return 0; +} + +/* Configures the global settings for the countes on all CPUs. */ +static int fsl7450_reg_setup(struct op_counter_config *ctr, + struct op_system_config *sys, + int num_ctrs) +{ + int i; + + num_pmcs = num_ctrs; + /* Our counters count up, and "count" refers to + * how much before the next interrupt, and we interrupt + * on overflow. So we calculate the starting value + * which will give us "count" until overflow. + * Then we set the events on the enabled counters */ + for (i = 0; i < num_ctrs; ++i) + reset_value[i] = 0x80000000UL - ctr[i].count; + + /* Set events for Counters 1 & 2 */ + mmcr0_val = MMCR0_INIT | mmcr0_event1(ctr[0].event) + | mmcr0_event2(ctr[1].event); + + /* Setup user/kernel bits */ + if (sys->enable_kernel) + mmcr0_val &= ~(MMCR0_FCS); + + if (sys->enable_user) + mmcr0_val &= ~(MMCR0_FCP); + + /* Set events for Counters 3-6 */ + mmcr1_val = mmcr1_event3(ctr[2].event) + | mmcr1_event4(ctr[3].event); + if (num_ctrs > 4) + mmcr1_val |= mmcr1_event5(ctr[4].event) + | mmcr1_event6(ctr[5].event); + + mmcr2_val = 0; + + return 0; +} + +/* Sets the counters on this CPU to the chosen values, and starts them */ +static int fsl7450_start(struct op_counter_config *ctr) +{ + int i; + + mtmsr(mfmsr() | MSR_PMM); + + for (i = 0; i < num_pmcs; ++i) { + if (ctr[i].enabled) + classic_ctr_write(i, reset_value[i]); + else + classic_ctr_write(i, 0); + } + + /* Clear the freeze bit, and enable the interrupt. + * The counters won't actually start until the rfi clears + * the PMM bit */ + pmc_start_ctrs(); + + oprofile_running = 1; + + return 0; +} + +/* Stop the counters on this CPU */ +static void fsl7450_stop(void) +{ + /* freeze counters */ + pmc_stop_ctrs(); + + oprofile_running = 0; + + mb(); +} + + +/* Handle the interrupt on this CPU, and log a sample for each + * event that triggered the interrupt */ +static void fsl7450_handle_interrupt(struct pt_regs *regs, + struct op_counter_config *ctr) +{ + unsigned long pc; + int is_kernel; + int val; + int i; + + /* set the PMM bit (see comment below) */ + mtmsr(mfmsr() | MSR_PMM); + + pc = mfspr(SPRN_SIAR); + is_kernel = is_kernel_addr(pc); + + for (i = 0; i < num_pmcs; ++i) { + val = classic_ctr_read(i); + if (val < 0) { + if (oprofile_running && ctr[i].enabled) { + oprofile_add_ext_sample(pc, regs, i, is_kernel); + classic_ctr_write(i, reset_value[i]); + } else { + classic_ctr_write(i, 0); + } + } + } + + /* The freeze bit was set by the interrupt. */ + /* Clear the freeze bit, and reenable the interrupt. + * The counters won't actually start until the rfi clears + * the PM/M bit */ + pmc_start_ctrs(); +} + +struct op_powerpc_model op_model_7450= { + .reg_setup = fsl7450_reg_setup, + .cpu_setup = fsl7450_cpu_setup, + .start = fsl7450_start, + .stop = fsl7450_stop, + .handle_interrupt = fsl7450_handle_interrupt, +}; diff --git a/arch/powerpc/oprofile/op_model_cell.c b/arch/powerpc/oprofile/op_model_cell.c new file mode 100644 index 000000000..863d89386 --- /dev/null +++ b/arch/powerpc/oprofile/op_model_cell.c @@ -0,0 +1,1717 @@ +/* + * Cell Broadband Engine OProfile Support + * + * (C) Copyright IBM Corporation 2006 + * + * Author: David Erb (djerb@us.ibm.com) + * Modifications: + * Carl Love <carll@us.ibm.com> + * Maynard Johnson <maynardj@us.ibm.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include <linux/cpufreq.h> +#include <linux/delay.h> +#include <linux/jiffies.h> +#include <linux/kthread.h> +#include <linux/oprofile.h> +#include <linux/percpu.h> +#include <linux/smp.h> +#include <linux/spinlock.h> +#include <linux/timer.h> +#include <asm/cell-pmu.h> +#include <asm/cputable.h> +#include <asm/firmware.h> +#include <asm/io.h> +#include <asm/oprofile_impl.h> +#include <asm/processor.h> +#include <asm/prom.h> +#include <asm/ptrace.h> +#include <asm/reg.h> +#include <asm/rtas.h> +#include <asm/cell-regs.h> + +#include "../platforms/cell/interrupt.h" +#include "cell/pr_util.h" + +#define PPU_PROFILING 0 +#define SPU_PROFILING_CYCLES 1 +#define SPU_PROFILING_EVENTS 2 + +#define SPU_EVENT_NUM_START 4100 +#define SPU_EVENT_NUM_STOP 4399 +#define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */ +#define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */ +#define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */ + +#define NUM_SPUS_PER_NODE 8 +#define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */ + +#define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */ +#define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying + * PPU_CYCLES event + */ +#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */ + +#define NUM_THREADS 2 /* number of physical threads in + * physical processor + */ +#define NUM_DEBUG_BUS_WORDS 4 +#define NUM_INPUT_BUS_WORDS 2 + +#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */ + +/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle. + * To configure counter to send value every N cycles set counter to + * 2^32 - 1 - N. + */ +#define NUM_INTERVAL_CYC 0xFFFFFFFF - 10 + +/* + * spu_cycle_reset is the number of cycles between samples. + * This variable is used for SPU profiling and should ONLY be set + * at the beginning of cell_reg_setup; otherwise, it's read-only. + */ +static unsigned int spu_cycle_reset; +static unsigned int profiling_mode; +static int spu_evnt_phys_spu_indx; + +struct pmc_cntrl_data { + unsigned long vcntr; + unsigned long evnts; + unsigned long masks; + unsigned long enabled; +}; + +/* + * ibm,cbe-perftools rtas parameters + */ +struct pm_signal { + u16 cpu; /* Processor to modify */ + u16 sub_unit; /* hw subunit this applies to (if applicable)*/ + short int signal_group; /* Signal Group to Enable/Disable */ + u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event + * Bus Word(s) (bitmask) + */ + u8 bit; /* Trigger/Event bit (if applicable) */ +}; + +/* + * rtas call arguments + */ +enum { + SUBFUNC_RESET = 1, + SUBFUNC_ACTIVATE = 2, + SUBFUNC_DEACTIVATE = 3, + + PASSTHRU_IGNORE = 0, + PASSTHRU_ENABLE = 1, + PASSTHRU_DISABLE = 2, +}; + +struct pm_cntrl { + u16 enable; + u16 stop_at_max; + u16 trace_mode; + u16 freeze; + u16 count_mode; + u16 spu_addr_trace; + u8 trace_buf_ovflw; +}; + +static struct { + u32 group_control; + u32 debug_bus_control; + struct pm_cntrl pm_cntrl; + u32 pm07_cntrl[NR_PHYS_CTRS]; +} pm_regs; + +#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12) +#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4) +#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8) +#define GET_POLARITY(x) ((x & 0x00000002) >> 1) +#define GET_COUNT_CYCLES(x) (x & 0x00000001) +#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2) + +static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values); +static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE]; +static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS]; + +/* + * The CELL profiling code makes rtas calls to setup the debug bus to + * route the performance signals. Additionally, SPU profiling requires + * a second rtas call to setup the hardware to capture the SPU PCs. + * The EIO error value is returned if the token lookups or the rtas + * call fail. The EIO error number is the best choice of the existing + * error numbers. The probability of rtas related error is very low. But + * by returning EIO and printing additional information to dmsg the user + * will know that OProfile did not start and dmesg will tell them why. + * OProfile does not support returning errors on Stop. Not a huge issue + * since failure to reset the debug bus or stop the SPU PC collection is + * not a fatel issue. Chances are if the Stop failed, Start doesn't work + * either. + */ + +/* + * Interpetation of hdw_thread: + * 0 - even virtual cpus 0, 2, 4,... + * 1 - odd virtual cpus 1, 3, 5, ... + * + * FIXME: this is strictly wrong, we need to clean this up in a number + * of places. It works for now. -arnd + */ +static u32 hdw_thread; + +static u32 virt_cntr_inter_mask; +static struct timer_list timer_virt_cntr; +static struct timer_list timer_spu_event_swap; + +/* + * pm_signal needs to be global since it is initialized in + * cell_reg_setup at the time when the necessary information + * is available. + */ +static struct pm_signal pm_signal[NR_PHYS_CTRS]; +static int pm_rtas_token; /* token for debug bus setup call */ +static int spu_rtas_token; /* token for SPU cycle profiling */ + +static u32 reset_value[NR_PHYS_CTRS]; +static int num_counters; +static int oprofile_running; +static DEFINE_SPINLOCK(cntr_lock); + +static u32 ctr_enabled; + +static unsigned char input_bus[NUM_INPUT_BUS_WORDS]; + +/* + * Firmware interface functions + */ +static int +rtas_ibm_cbe_perftools(int subfunc, int passthru, + void *address, unsigned long length) +{ + u64 paddr = __pa(address); + + return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc, + passthru, paddr >> 32, paddr & 0xffffffff, length); +} + +static void pm_rtas_reset_signals(u32 node) +{ + int ret; + struct pm_signal pm_signal_local; + + /* + * The debug bus is being set to the passthru disable state. + * However, the FW still expects atleast one legal signal routing + * entry or it will return an error on the arguments. If we don't + * supply a valid entry, we must ignore all return values. Ignoring + * all return values means we might miss an error we should be + * concerned about. + */ + + /* fw expects physical cpu #. */ + pm_signal_local.cpu = node; + pm_signal_local.signal_group = 21; + pm_signal_local.bus_word = 1; + pm_signal_local.sub_unit = 0; + pm_signal_local.bit = 0; + + ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE, + &pm_signal_local, + sizeof(struct pm_signal)); + + if (unlikely(ret)) + /* + * Not a fatal error. For Oprofile stop, the oprofile + * functions do not support returning an error for + * failure to stop OProfile. + */ + printk(KERN_WARNING "%s: rtas returned: %d\n", + __func__, ret); +} + +static int pm_rtas_activate_signals(u32 node, u32 count) +{ + int ret; + int i, j; + struct pm_signal pm_signal_local[NR_PHYS_CTRS]; + + /* + * There is no debug setup required for the cycles event. + * Note that only events in the same group can be used. + * Otherwise, there will be conflicts in correctly routing + * the signals on the debug bus. It is the responsibility + * of the OProfile user tool to check the events are in + * the same group. + */ + i = 0; + for (j = 0; j < count; j++) { + if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) { + + /* fw expects physical cpu # */ + pm_signal_local[i].cpu = node; + pm_signal_local[i].signal_group + = pm_signal[j].signal_group; + pm_signal_local[i].bus_word = pm_signal[j].bus_word; + pm_signal_local[i].sub_unit = pm_signal[j].sub_unit; + pm_signal_local[i].bit = pm_signal[j].bit; + i++; + } + } + + if (i != 0) { + ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE, + pm_signal_local, + i * sizeof(struct pm_signal)); + + if (unlikely(ret)) { + printk(KERN_WARNING "%s: rtas returned: %d\n", + __func__, ret); + return -EIO; + } + } + + return 0; +} + +/* + * PM Signal functions + */ +static void set_pm_event(u32 ctr, int event, u32 unit_mask) +{ + struct pm_signal *p; + u32 signal_bit; + u32 bus_word, bus_type, count_cycles, polarity, input_control; + int j, i; + + if (event == PPU_CYCLES_EVENT_NUM) { + /* Special Event: Count all cpu cycles */ + pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES; + p = &(pm_signal[ctr]); + p->signal_group = PPU_CYCLES_GRP_NUM; + p->bus_word = 1; + p->sub_unit = 0; + p->bit = 0; + goto out; + } else { + pm_regs.pm07_cntrl[ctr] = 0; + } + + bus_word = GET_BUS_WORD(unit_mask); + bus_type = GET_BUS_TYPE(unit_mask); + count_cycles = GET_COUNT_CYCLES(unit_mask); + polarity = GET_POLARITY(unit_mask); + input_control = GET_INPUT_CONTROL(unit_mask); + signal_bit = (event % 100); + + p = &(pm_signal[ctr]); + + p->signal_group = event / 100; + p->bus_word = bus_word; + p->sub_unit = GET_SUB_UNIT(unit_mask); + + pm_regs.pm07_cntrl[ctr] = 0; + pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles); + pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity); + pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control); + + /* + * Some of the islands signal selection is based on 64 bit words. + * The debug bus words are 32 bits, the input words to the performance + * counters are defined as 32 bits. Need to convert the 64 bit island + * specification to the appropriate 32 input bit and bus word for the + * performance counter event selection. See the CELL Performance + * monitoring signals manual and the Perf cntr hardware descriptions + * for the details. + */ + if (input_control == 0) { + if (signal_bit > 31) { + signal_bit -= 32; + if (bus_word == 0x3) + bus_word = 0x2; + else if (bus_word == 0xc) + bus_word = 0x8; + } + + if ((bus_type == 0) && p->signal_group >= 60) + bus_type = 2; + if ((bus_type == 1) && p->signal_group >= 50) + bus_type = 0; + + pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit); + } else { + pm_regs.pm07_cntrl[ctr] = 0; + p->bit = signal_bit; + } + + for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) { + if (bus_word & (1 << i)) { + pm_regs.debug_bus_control |= + (bus_type << (30 - (2 * i))); + + for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) { + if (input_bus[j] == 0xff) { + input_bus[j] = i; + pm_regs.group_control |= + (i << (30 - (2 * j))); + + break; + } + } + } + } +out: + ; +} + +static void write_pm_cntrl(int cpu) +{ + /* + * Oprofile will use 32 bit counters, set bits 7:10 to 0 + * pmregs.pm_cntrl is a global + */ + + u32 val = 0; + if (pm_regs.pm_cntrl.enable == 1) + val |= CBE_PM_ENABLE_PERF_MON; + + if (pm_regs.pm_cntrl.stop_at_max == 1) + val |= CBE_PM_STOP_AT_MAX; + + if (pm_regs.pm_cntrl.trace_mode != 0) + val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode); + + if (pm_regs.pm_cntrl.trace_buf_ovflw == 1) + val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw); + if (pm_regs.pm_cntrl.freeze == 1) + val |= CBE_PM_FREEZE_ALL_CTRS; + + val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace); + + /* + * Routine set_count_mode must be called previously to set + * the count mode based on the user selection of user and kernel. + */ + val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode); + cbe_write_pm(cpu, pm_control, val); +} + +static inline void +set_count_mode(u32 kernel, u32 user) +{ + /* + * The user must specify user and kernel if they want them. If + * neither is specified, OProfile will count in hypervisor mode. + * pm_regs.pm_cntrl is a global + */ + if (kernel) { + if (user) + pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES; + else + pm_regs.pm_cntrl.count_mode = + CBE_COUNT_SUPERVISOR_MODE; + } else { + if (user) + pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE; + else + pm_regs.pm_cntrl.count_mode = + CBE_COUNT_HYPERVISOR_MODE; + } +} + +static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl) +{ + + pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE; + cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]); +} + +/* + * Oprofile is expected to collect data on all CPUs simultaneously. + * However, there is one set of performance counters per node. There are + * two hardware threads or virtual CPUs on each node. Hence, OProfile must + * multiplex in time the performance counter collection on the two virtual + * CPUs. The multiplexing of the performance counters is done by this + * virtual counter routine. + * + * The pmc_values used below is defined as 'per-cpu' but its use is + * more akin to 'per-node'. We need to store two sets of counter + * values per node -- one for the previous run and one for the next. + * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even + * pair of per-cpu arrays is used for storing the previous and next + * pmc values for a given node. + * NOTE: We use the per-cpu variable to improve cache performance. + * + * This routine will alternate loading the virtual counters for + * virtual CPUs + */ +static void cell_virtual_cntr(unsigned long data) +{ + int i, prev_hdw_thread, next_hdw_thread; + u32 cpu; + unsigned long flags; + + /* + * Make sure that the interrupt_hander and the virt counter are + * not both playing with the counters on the same node. + */ + + spin_lock_irqsave(&cntr_lock, flags); + + prev_hdw_thread = hdw_thread; + + /* switch the cpu handling the interrupts */ + hdw_thread = 1 ^ hdw_thread; + next_hdw_thread = hdw_thread; + + pm_regs.group_control = 0; + pm_regs.debug_bus_control = 0; + + for (i = 0; i < NUM_INPUT_BUS_WORDS; i++) + input_bus[i] = 0xff; + + /* + * There are some per thread events. Must do the + * set event, for the thread that is being started + */ + for (i = 0; i < num_counters; i++) + set_pm_event(i, + pmc_cntrl[next_hdw_thread][i].evnts, + pmc_cntrl[next_hdw_thread][i].masks); + + /* + * The following is done only once per each node, but + * we need cpu #, not node #, to pass to the cbe_xxx functions. + */ + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + /* + * stop counters, save counter values, restore counts + * for previous thread + */ + cbe_disable_pm(cpu); + cbe_disable_pm_interrupts(cpu); + for (i = 0; i < num_counters; i++) { + per_cpu(pmc_values, cpu + prev_hdw_thread)[i] + = cbe_read_ctr(cpu, i); + + if (per_cpu(pmc_values, cpu + next_hdw_thread)[i] + == 0xFFFFFFFF) + /* If the cntr value is 0xffffffff, we must + * reset that to 0xfffffff0 when the current + * thread is restarted. This will generate a + * new interrupt and make sure that we never + * restore the counters to the max value. If + * the counters were restored to the max value, + * they do not increment and no interrupts are + * generated. Hence no more samples will be + * collected on that cpu. + */ + cbe_write_ctr(cpu, i, 0xFFFFFFF0); + else + cbe_write_ctr(cpu, i, + per_cpu(pmc_values, + cpu + + next_hdw_thread)[i]); + } + + /* + * Switch to the other thread. Change the interrupt + * and control regs to be scheduled on the CPU + * corresponding to the thread to execute. + */ + for (i = 0; i < num_counters; i++) { + if (pmc_cntrl[next_hdw_thread][i].enabled) { + /* + * There are some per thread events. + * Must do the set event, enable_cntr + * for each cpu. + */ + enable_ctr(cpu, i, + pm_regs.pm07_cntrl); + } else { + cbe_write_pm07_control(cpu, i, 0); + } + } + + /* Enable interrupts on the CPU thread that is starting */ + cbe_enable_pm_interrupts(cpu, next_hdw_thread, + virt_cntr_inter_mask); + cbe_enable_pm(cpu); + } + + spin_unlock_irqrestore(&cntr_lock, flags); + + mod_timer(&timer_virt_cntr, jiffies + HZ / 10); +} + +static void start_virt_cntrs(void) +{ + init_timer(&timer_virt_cntr); + timer_virt_cntr.function = cell_virtual_cntr; + timer_virt_cntr.data = 0UL; + timer_virt_cntr.expires = jiffies + HZ / 10; + add_timer(&timer_virt_cntr); +} + +static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr, + struct op_system_config *sys, int num_ctrs) +{ + spu_cycle_reset = ctr[0].count; + + /* + * Each node will need to make the rtas call to start + * and stop SPU profiling. Get the token once and store it. + */ + spu_rtas_token = rtas_token("ibm,cbe-spu-perftools"); + + if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) { + printk(KERN_ERR + "%s: rtas token ibm,cbe-spu-perftools unknown\n", + __func__); + return -EIO; + } + return 0; +} + +/* Unfortunately, the hardware will only support event profiling + * on one SPU per node at a time. Therefore, we must time slice + * the profiling across all SPUs in the node. Note, we do this + * in parallel for each node. The following routine is called + * periodically based on kernel timer to switch which SPU is + * being monitored in a round robbin fashion. + */ +static void spu_evnt_swap(unsigned long data) +{ + int node; + int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx; + unsigned long flags; + int cpu; + int ret; + u32 interrupt_mask; + + + /* enable interrupts on cntr 0 */ + interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0); + + hdw_thread = 0; + + /* Make sure spu event interrupt handler and spu event swap + * don't access the counters simultaneously. + */ + spin_lock_irqsave(&cntr_lock, flags); + + cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx; + + if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE) + spu_evnt_phys_spu_indx = 0; + + pm_signal[0].sub_unit = spu_evnt_phys_spu_indx; + pm_signal[1].sub_unit = spu_evnt_phys_spu_indx; + pm_signal[2].sub_unit = spu_evnt_phys_spu_indx; + + /* switch the SPU being profiled on each node */ + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + node = cbe_cpu_to_node(cpu); + cur_phys_spu = (node * NUM_SPUS_PER_NODE) + + cur_spu_evnt_phys_spu_indx; + nxt_phys_spu = (node * NUM_SPUS_PER_NODE) + + spu_evnt_phys_spu_indx; + + /* + * stop counters, save counter values, restore counts + * for previous physical SPU + */ + cbe_disable_pm(cpu); + cbe_disable_pm_interrupts(cpu); + + spu_pm_cnt[cur_phys_spu] + = cbe_read_ctr(cpu, 0); + + /* restore previous count for the next spu to sample */ + /* NOTE, hardware issue, counter will not start if the + * counter value is at max (0xFFFFFFFF). + */ + if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF) + cbe_write_ctr(cpu, 0, 0xFFFFFFF0); + else + cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]); + + pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); + + /* setup the debug bus measure the one event and + * the two events to route the next SPU's PC on + * the debug bus + */ + ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3); + if (ret) + printk(KERN_ERR "%s: pm_rtas_activate_signals failed, " + "SPU event swap\n", __func__); + + /* clear the trace buffer, don't want to take PC for + * previous SPU*/ + cbe_write_pm(cpu, trace_address, 0); + + enable_ctr(cpu, 0, pm_regs.pm07_cntrl); + + /* Enable interrupts on the CPU thread that is starting */ + cbe_enable_pm_interrupts(cpu, hdw_thread, + interrupt_mask); + cbe_enable_pm(cpu); + } + + spin_unlock_irqrestore(&cntr_lock, flags); + + /* swap approximately every 0.1 seconds */ + mod_timer(&timer_spu_event_swap, jiffies + HZ / 25); +} + +static void start_spu_event_swap(void) +{ + init_timer(&timer_spu_event_swap); + timer_spu_event_swap.function = spu_evnt_swap; + timer_spu_event_swap.data = 0UL; + timer_spu_event_swap.expires = jiffies + HZ / 25; + add_timer(&timer_spu_event_swap); +} + +static int cell_reg_setup_spu_events(struct op_counter_config *ctr, + struct op_system_config *sys, int num_ctrs) +{ + int i; + + /* routine is called once for all nodes */ + + spu_evnt_phys_spu_indx = 0; + /* + * For all events except PPU CYCLEs, each node will need to make + * the rtas cbe-perftools call to setup and reset the debug bus. + * Make the token lookup call once and store it in the global + * variable pm_rtas_token. + */ + pm_rtas_token = rtas_token("ibm,cbe-perftools"); + + if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { + printk(KERN_ERR + "%s: rtas token ibm,cbe-perftools unknown\n", + __func__); + return -EIO; + } + + /* setup the pm_control register settings, + * settings will be written per node by the + * cell_cpu_setup() function. + */ + pm_regs.pm_cntrl.trace_buf_ovflw = 1; + + /* Use the occurrence trace mode to have SPU PC saved + * to the trace buffer. Occurrence data in trace buffer + * is not used. Bit 2 must be set to store SPU addresses. + */ + pm_regs.pm_cntrl.trace_mode = 2; + + pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus + event 2 & 3 */ + + /* setup the debug bus event array with the SPU PC routing events. + * Note, pm_signal[0] will be filled in by set_pm_event() call below. + */ + pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100; + pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A); + pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100; + pm_signal[1].sub_unit = spu_evnt_phys_spu_indx; + + pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100; + pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B); + pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100; + pm_signal[2].sub_unit = spu_evnt_phys_spu_indx; + + /* Set the user selected spu event to profile on, + * note, only one SPU profiling event is supported + */ + num_counters = 1; /* Only support one SPU event at a time */ + set_pm_event(0, ctr[0].event, ctr[0].unit_mask); + + reset_value[0] = 0xFFFFFFFF - ctr[0].count; + + /* global, used by cell_cpu_setup */ + ctr_enabled |= 1; + + /* Initialize the count for each SPU to the reset value */ + for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++) + spu_pm_cnt[i] = reset_value[0]; + + return 0; +} + +static int cell_reg_setup_ppu(struct op_counter_config *ctr, + struct op_system_config *sys, int num_ctrs) +{ + /* routine is called once for all nodes */ + int i, j, cpu; + + num_counters = num_ctrs; + + if (unlikely(num_ctrs > NR_PHYS_CTRS)) { + printk(KERN_ERR + "%s: Oprofile, number of specified events " \ + "exceeds number of physical counters\n", + __func__); + return -EIO; + } + + set_count_mode(sys->enable_kernel, sys->enable_user); + + /* Setup the thread 0 events */ + for (i = 0; i < num_ctrs; ++i) { + + pmc_cntrl[0][i].evnts = ctr[i].event; + pmc_cntrl[0][i].masks = ctr[i].unit_mask; + pmc_cntrl[0][i].enabled = ctr[i].enabled; + pmc_cntrl[0][i].vcntr = i; + + for_each_possible_cpu(j) + per_cpu(pmc_values, j)[i] = 0; + } + + /* + * Setup the thread 1 events, map the thread 0 event to the + * equivalent thread 1 event. + */ + for (i = 0; i < num_ctrs; ++i) { + if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111)) + pmc_cntrl[1][i].evnts = ctr[i].event + 19; + else if (ctr[i].event == 2203) + pmc_cntrl[1][i].evnts = ctr[i].event; + else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215)) + pmc_cntrl[1][i].evnts = ctr[i].event + 16; + else + pmc_cntrl[1][i].evnts = ctr[i].event; + + pmc_cntrl[1][i].masks = ctr[i].unit_mask; + pmc_cntrl[1][i].enabled = ctr[i].enabled; + pmc_cntrl[1][i].vcntr = i; + } + + for (i = 0; i < NUM_INPUT_BUS_WORDS; i++) + input_bus[i] = 0xff; + + /* + * Our counters count up, and "count" refers to + * how much before the next interrupt, and we interrupt + * on overflow. So we calculate the starting value + * which will give us "count" until overflow. + * Then we set the events on the enabled counters. + */ + for (i = 0; i < num_counters; ++i) { + /* start with virtual counter set 0 */ + if (pmc_cntrl[0][i].enabled) { + /* Using 32bit counters, reset max - count */ + reset_value[i] = 0xFFFFFFFF - ctr[i].count; + set_pm_event(i, + pmc_cntrl[0][i].evnts, + pmc_cntrl[0][i].masks); + + /* global, used by cell_cpu_setup */ + ctr_enabled |= (1 << i); + } + } + + /* initialize the previous counts for the virtual cntrs */ + for_each_online_cpu(cpu) + for (i = 0; i < num_counters; ++i) { + per_cpu(pmc_values, cpu)[i] = reset_value[i]; + } + + return 0; +} + + +/* This function is called once for all cpus combined */ +static int cell_reg_setup(struct op_counter_config *ctr, + struct op_system_config *sys, int num_ctrs) +{ + int ret=0; + spu_cycle_reset = 0; + + /* initialize the spu_arr_trace value, will be reset if + * doing spu event profiling. + */ + pm_regs.group_control = 0; + pm_regs.debug_bus_control = 0; + pm_regs.pm_cntrl.stop_at_max = 1; + pm_regs.pm_cntrl.trace_mode = 0; + pm_regs.pm_cntrl.freeze = 1; + pm_regs.pm_cntrl.trace_buf_ovflw = 0; + pm_regs.pm_cntrl.spu_addr_trace = 0; + + /* + * For all events except PPU CYCLEs, each node will need to make + * the rtas cbe-perftools call to setup and reset the debug bus. + * Make the token lookup call once and store it in the global + * variable pm_rtas_token. + */ + pm_rtas_token = rtas_token("ibm,cbe-perftools"); + + if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { + printk(KERN_ERR + "%s: rtas token ibm,cbe-perftools unknown\n", + __func__); + return -EIO; + } + + if (ctr[0].event == SPU_CYCLES_EVENT_NUM) { + profiling_mode = SPU_PROFILING_CYCLES; + ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs); + } else if ((ctr[0].event >= SPU_EVENT_NUM_START) && + (ctr[0].event <= SPU_EVENT_NUM_STOP)) { + profiling_mode = SPU_PROFILING_EVENTS; + spu_cycle_reset = ctr[0].count; + + /* for SPU event profiling, need to setup the + * pm_signal array with the events to route the + * SPU PC before making the FW call. Note, only + * one SPU event for profiling can be specified + * at a time. + */ + cell_reg_setup_spu_events(ctr, sys, num_ctrs); + } else { + profiling_mode = PPU_PROFILING; + ret = cell_reg_setup_ppu(ctr, sys, num_ctrs); + } + + return ret; +} + + + +/* This function is called once for each cpu */ +static int cell_cpu_setup(struct op_counter_config *cntr) +{ + u32 cpu = smp_processor_id(); + u32 num_enabled = 0; + int i; + int ret; + + /* Cycle based SPU profiling does not use the performance + * counters. The trace array is configured to collect + * the data. + */ + if (profiling_mode == SPU_PROFILING_CYCLES) + return 0; + + /* There is one performance monitor per processor chip (i.e. node), + * so we only need to perform this function once per node. + */ + if (cbe_get_hw_thread_id(cpu)) + return 0; + + /* Stop all counters */ + cbe_disable_pm(cpu); + cbe_disable_pm_interrupts(cpu); + + cbe_write_pm(cpu, pm_start_stop, 0); + cbe_write_pm(cpu, group_control, pm_regs.group_control); + cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control); + write_pm_cntrl(cpu); + + for (i = 0; i < num_counters; ++i) { + if (ctr_enabled & (1 << i)) { + pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu); + num_enabled++; + } + } + + /* + * The pm_rtas_activate_signals will return -EIO if the FW + * call failed. + */ + if (profiling_mode == SPU_PROFILING_EVENTS) { + /* For SPU event profiling also need to setup the + * pm interval timer + */ + ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), + num_enabled+2); + /* store PC from debug bus to Trace buffer as often + * as possible (every 10 cycles) + */ + cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); + return ret; + } else + return pm_rtas_activate_signals(cbe_cpu_to_node(cpu), + num_enabled); +} + +#define ENTRIES 303 +#define MAXLFSR 0xFFFFFF + +/* precomputed table of 24 bit LFSR values */ +static int initial_lfsr[] = { + 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424, + 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716, + 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547, + 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392, + 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026, + 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556, + 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769, + 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893, + 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017, + 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756, + 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558, + 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401, + 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720, + 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042, + 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955, + 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934, + 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783, + 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278, + 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051, + 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741, + 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972, + 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302, + 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384, + 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469, + 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697, + 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398, + 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140, + 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214, + 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386, + 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087, + 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130, + 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300, + 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475, + 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950, + 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003, + 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375, + 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426, + 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607 +}; + +/* + * The hardware uses an LFSR counting sequence to determine when to capture + * the SPU PCs. An LFSR sequence is like a puesdo random number sequence + * where each number occurs once in the sequence but the sequence is not in + * numerical order. The SPU PC capture is done when the LFSR sequence reaches + * the last value in the sequence. Hence the user specified value N + * corresponds to the LFSR number that is N from the end of the sequence. + * + * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit + * LFSR sequence is broken into four ranges. The spacing of the precomputed + * values is adjusted in each range so the error between the user specifed + * number (N) of events between samples and the actual number of events based + * on the precomputed value will be les then about 6.2%. Note, if the user + * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used. + * This is to prevent the loss of samples because the trace buffer is full. + * + * User specified N Step between Index in + * precomputed values precomputed + * table + * 0 to 2^16-1 ---- 0 + * 2^16 to 2^16+2^19-1 2^12 1 to 128 + * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256 + * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302 + * + * + * For example, the LFSR values in the second range are computed for 2^16, + * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies + * 1, 2,..., 127, 128. + * + * The 24 bit LFSR value for the nth number in the sequence can be + * calculated using the following code: + * + * #define size 24 + * int calculate_lfsr(int n) + * { + * int i; + * unsigned int newlfsr0; + * unsigned int lfsr = 0xFFFFFF; + * unsigned int howmany = n; + * + * for (i = 2; i < howmany + 2; i++) { + * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^ + * ((lfsr >> (size - 1 - 1)) & 1) ^ + * (((lfsr >> (size - 1 - 6)) & 1) ^ + * ((lfsr >> (size - 1 - 23)) & 1))); + * + * lfsr >>= 1; + * lfsr = lfsr | (newlfsr0 << (size - 1)); + * } + * return lfsr; + * } + */ + +#define V2_16 (0x1 << 16) +#define V2_19 (0x1 << 19) +#define V2_22 (0x1 << 22) + +static int calculate_lfsr(int n) +{ + /* + * The ranges and steps are in powers of 2 so the calculations + * can be done using shifts rather then divide. + */ + int index; + + if ((n >> 16) == 0) + index = 0; + else if (((n - V2_16) >> 19) == 0) + index = ((n - V2_16) >> 12) + 1; + else if (((n - V2_16 - V2_19) >> 22) == 0) + index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128; + else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0) + index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256; + else + index = ENTRIES-1; + + /* make sure index is valid */ + if ((index >= ENTRIES) || (index < 0)) + index = ENTRIES-1; + + return initial_lfsr[index]; +} + +static int pm_rtas_activate_spu_profiling(u32 node) +{ + int ret, i; + struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE]; + + /* + * Set up the rtas call to configure the debug bus to + * route the SPU PCs. Setup the pm_signal for each SPU + */ + for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) { + pm_signal_local[i].cpu = node; + pm_signal_local[i].signal_group = 41; + /* spu i on word (i/2) */ + pm_signal_local[i].bus_word = 1 << i / 2; + /* spu i */ + pm_signal_local[i].sub_unit = i; + pm_signal_local[i].bit = 63; + } + + ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, + PASSTHRU_ENABLE, pm_signal_local, + (ARRAY_SIZE(pm_signal_local) + * sizeof(struct pm_signal))); + + if (unlikely(ret)) { + printk(KERN_WARNING "%s: rtas returned: %d\n", + __func__, ret); + return -EIO; + } + + return 0; +} + +#ifdef CONFIG_CPU_FREQ +static int +oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data) +{ + int ret = 0; + struct cpufreq_freqs *frq = data; + if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) || + (val == CPUFREQ_POSTCHANGE && frq->old > frq->new)) + set_spu_profiling_frequency(frq->new, spu_cycle_reset); + return ret; +} + +static struct notifier_block cpu_freq_notifier_block = { + .notifier_call = oprof_cpufreq_notify +}; +#endif + +/* + * Note the generic OProfile stop calls do not support returning + * an error on stop. Hence, will not return an error if the FW + * calls fail on stop. Failure to reset the debug bus is not an issue. + * Failure to disable the SPU profiling is not an issue. The FW calls + * to enable the performance counters and debug bus will work even if + * the hardware was not cleanly reset. + */ +static void cell_global_stop_spu_cycles(void) +{ + int subfunc, rtn_value; + unsigned int lfsr_value; + int cpu; + + oprofile_running = 0; + smp_wmb(); + +#ifdef CONFIG_CPU_FREQ + cpufreq_unregister_notifier(&cpu_freq_notifier_block, + CPUFREQ_TRANSITION_NOTIFIER); +#endif + + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + subfunc = 3; /* + * 2 - activate SPU tracing, + * 3 - deactivate + */ + lfsr_value = 0x8f100000; + + rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL, + subfunc, cbe_cpu_to_node(cpu), + lfsr_value); + + if (unlikely(rtn_value != 0)) { + printk(KERN_ERR + "%s: rtas call ibm,cbe-spu-perftools " \ + "failed, return = %d\n", + __func__, rtn_value); + } + + /* Deactivate the signals */ + pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); + } + + stop_spu_profiling_cycles(); +} + +static void cell_global_stop_spu_events(void) +{ + int cpu; + oprofile_running = 0; + + stop_spu_profiling_events(); + smp_wmb(); + + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + cbe_sync_irq(cbe_cpu_to_node(cpu)); + /* Stop the counters */ + cbe_disable_pm(cpu); + cbe_write_pm07_control(cpu, 0, 0); + + /* Deactivate the signals */ + pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); + + /* Deactivate interrupts */ + cbe_disable_pm_interrupts(cpu); + } + del_timer_sync(&timer_spu_event_swap); +} + +static void cell_global_stop_ppu(void) +{ + int cpu; + + /* + * This routine will be called once for the system. + * There is one performance monitor per node, so we + * only need to perform this function once per node. + */ + del_timer_sync(&timer_virt_cntr); + oprofile_running = 0; + smp_wmb(); + + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + cbe_sync_irq(cbe_cpu_to_node(cpu)); + /* Stop the counters */ + cbe_disable_pm(cpu); + + /* Deactivate the signals */ + pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); + + /* Deactivate interrupts */ + cbe_disable_pm_interrupts(cpu); + } +} + +static void cell_global_stop(void) +{ + if (profiling_mode == PPU_PROFILING) + cell_global_stop_ppu(); + else if (profiling_mode == SPU_PROFILING_EVENTS) + cell_global_stop_spu_events(); + else + cell_global_stop_spu_cycles(); +} + +static int cell_global_start_spu_cycles(struct op_counter_config *ctr) +{ + int subfunc; + unsigned int lfsr_value; + int cpu; + int ret; + int rtas_error; + unsigned int cpu_khzfreq = 0; + + /* The SPU profiling uses time-based profiling based on + * cpu frequency, so if configured with the CPU_FREQ + * option, we should detect frequency changes and react + * accordingly. + */ +#ifdef CONFIG_CPU_FREQ + ret = cpufreq_register_notifier(&cpu_freq_notifier_block, + CPUFREQ_TRANSITION_NOTIFIER); + if (ret < 0) + /* this is not a fatal error */ + printk(KERN_ERR "CPU freq change registration failed: %d\n", + ret); + + else + cpu_khzfreq = cpufreq_quick_get(smp_processor_id()); +#endif + + set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset); + + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + /* + * Setup SPU cycle-based profiling. + * Set perf_mon_control bit 0 to a zero before + * enabling spu collection hardware. + */ + cbe_write_pm(cpu, pm_control, 0); + + if (spu_cycle_reset > MAX_SPU_COUNT) + /* use largest possible value */ + lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1); + else + lfsr_value = calculate_lfsr(spu_cycle_reset); + + /* must use a non zero value. Zero disables data collection. */ + if (lfsr_value == 0) + lfsr_value = calculate_lfsr(1); + + lfsr_value = lfsr_value << 8; /* shift lfsr to correct + * register location + */ + + /* debug bus setup */ + ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu)); + + if (unlikely(ret)) { + rtas_error = ret; + goto out; + } + + + subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */ + + /* start profiling */ + ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc, + cbe_cpu_to_node(cpu), lfsr_value); + + if (unlikely(ret != 0)) { + printk(KERN_ERR + "%s: rtas call ibm,cbe-spu-perftools failed, " \ + "return = %d\n", __func__, ret); + rtas_error = -EIO; + goto out; + } + } + + rtas_error = start_spu_profiling_cycles(spu_cycle_reset); + if (rtas_error) + goto out_stop; + + oprofile_running = 1; + return 0; + +out_stop: + cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */ +out: + return rtas_error; +} + +static int cell_global_start_spu_events(struct op_counter_config *ctr) +{ + int cpu; + u32 interrupt_mask = 0; + int rtn = 0; + + hdw_thread = 0; + + /* spu event profiling, uses the performance counters to generate + * an interrupt. The hardware is setup to store the SPU program + * counter into the trace array. The occurrence mode is used to + * enable storing data to the trace buffer. The bits are set + * to send/store the SPU address in the trace buffer. The debug + * bus must be setup to route the SPU program counter onto the + * debug bus. The occurrence data in the trace buffer is not used. + */ + + /* This routine gets called once for the system. + * There is one performance monitor per node, so we + * only need to perform this function once per node. + */ + + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + /* + * Setup SPU event-based profiling. + * Set perf_mon_control bit 0 to a zero before + * enabling spu collection hardware. + * + * Only support one SPU event on one SPU per node. + */ + if (ctr_enabled & 1) { + cbe_write_ctr(cpu, 0, reset_value[0]); + enable_ctr(cpu, 0, pm_regs.pm07_cntrl); + interrupt_mask |= + CBE_PM_CTR_OVERFLOW_INTR(0); + } else { + /* Disable counter */ + cbe_write_pm07_control(cpu, 0, 0); + } + + cbe_get_and_clear_pm_interrupts(cpu); + cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); + cbe_enable_pm(cpu); + + /* clear the trace buffer */ + cbe_write_pm(cpu, trace_address, 0); + } + + /* Start the timer to time slice collecting the event profile + * on each of the SPUs. Note, can collect profile on one SPU + * per node at a time. + */ + start_spu_event_swap(); + start_spu_profiling_events(); + oprofile_running = 1; + smp_wmb(); + + return rtn; +} + +static int cell_global_start_ppu(struct op_counter_config *ctr) +{ + u32 cpu, i; + u32 interrupt_mask = 0; + + /* This routine gets called once for the system. + * There is one performance monitor per node, so we + * only need to perform this function once per node. + */ + for_each_online_cpu(cpu) { + if (cbe_get_hw_thread_id(cpu)) + continue; + + interrupt_mask = 0; + + for (i = 0; i < num_counters; ++i) { + if (ctr_enabled & (1 << i)) { + cbe_write_ctr(cpu, i, reset_value[i]); + enable_ctr(cpu, i, pm_regs.pm07_cntrl); + interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i); + } else { + /* Disable counter */ + cbe_write_pm07_control(cpu, i, 0); + } + } + + cbe_get_and_clear_pm_interrupts(cpu); + cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); + cbe_enable_pm(cpu); + } + + virt_cntr_inter_mask = interrupt_mask; + oprofile_running = 1; + smp_wmb(); + + /* + * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being + * executed which manipulates the PMU. We start the "virtual counter" + * here so that we do not need to synchronize access to the PMU in + * the above for-loop. + */ + start_virt_cntrs(); + + return 0; +} + +static int cell_global_start(struct op_counter_config *ctr) +{ + if (profiling_mode == SPU_PROFILING_CYCLES) + return cell_global_start_spu_cycles(ctr); + else if (profiling_mode == SPU_PROFILING_EVENTS) + return cell_global_start_spu_events(ctr); + else + return cell_global_start_ppu(ctr); +} + + +/* The SPU interrupt handler + * + * SPU event profiling works as follows: + * The pm_signal[0] holds the one SPU event to be measured. It is routed on + * the debug bus using word 0 or 1. The value of pm_signal[1] and + * pm_signal[2] contain the necessary events to route the SPU program + * counter for the selected SPU onto the debug bus using words 2 and 3. + * The pm_interval register is setup to write the SPU PC value into the + * trace buffer at the maximum rate possible. The trace buffer is configured + * to store the PCs, wrapping when it is full. The performance counter is + * initialized to the max hardware count minus the number of events, N, between + * samples. Once the N events have occurred, a HW counter overflow occurs + * causing the generation of a HW counter interrupt which also stops the + * writing of the SPU PC values to the trace buffer. Hence the last PC + * written to the trace buffer is the SPU PC that we want. Unfortunately, + * we have to read from the beginning of the trace buffer to get to the + * last value written. We just hope the PPU has nothing better to do then + * service this interrupt. The PC for the specific SPU being profiled is + * extracted from the trace buffer processed and stored. The trace buffer + * is cleared, interrupts are cleared, the counter is reset to max - N. + * A kernel timer is used to periodically call the routine spu_evnt_swap() + * to switch to the next physical SPU in the node to profile in round robbin + * order. This way data is collected for all SPUs on the node. It does mean + * that we need to use a relatively small value of N to ensure enough samples + * on each SPU are collected each SPU is being profiled 1/8 of the time. + * It may also be necessary to use a longer sample collection period. + */ +static void cell_handle_interrupt_spu(struct pt_regs *regs, + struct op_counter_config *ctr) +{ + u32 cpu, cpu_tmp; + u64 trace_entry; + u32 interrupt_mask; + u64 trace_buffer[2]; + u64 last_trace_buffer; + u32 sample; + u32 trace_addr; + unsigned long sample_array_lock_flags; + int spu_num; + unsigned long flags; + + /* Make sure spu event interrupt handler and spu event swap + * don't access the counters simultaneously. + */ + cpu = smp_processor_id(); + spin_lock_irqsave(&cntr_lock, flags); + + cpu_tmp = cpu; + cbe_disable_pm(cpu); + + interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu); + + sample = 0xABCDEF; + trace_entry = 0xfedcba; + last_trace_buffer = 0xdeadbeaf; + + if ((oprofile_running == 1) && (interrupt_mask != 0)) { + /* disable writes to trace buff */ + cbe_write_pm(cpu, pm_interval, 0); + + /* only have one perf cntr being used, cntr 0 */ + if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0)) + && ctr[0].enabled) + /* The SPU PC values will be read + * from the trace buffer, reset counter + */ + + cbe_write_ctr(cpu, 0, reset_value[0]); + + trace_addr = cbe_read_pm(cpu, trace_address); + + while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) { + /* There is data in the trace buffer to process + * Read the buffer until you get to the last + * entry. This is the value we want. + */ + + cbe_read_trace_buffer(cpu, trace_buffer); + trace_addr = cbe_read_pm(cpu, trace_address); + } + + /* SPU Address 16 bit count format for 128 bit + * HW trace buffer is used for the SPU PC storage + * HDR bits 0:15 + * SPU Addr 0 bits 16:31 + * SPU Addr 1 bits 32:47 + * unused bits 48:127 + * + * HDR: bit4 = 1 SPU Address 0 valid + * HDR: bit5 = 1 SPU Address 1 valid + * - unfortunately, the valid bits don't seem to work + * + * Note trace_buffer[0] holds bits 0:63 of the HW + * trace buffer, trace_buffer[1] holds bits 64:127 + */ + + trace_entry = trace_buffer[0] + & 0x00000000FFFF0000; + + /* only top 16 of the 18 bit SPU PC address + * is stored in trace buffer, hence shift right + * by 16 -2 bits */ + sample = trace_entry >> 14; + last_trace_buffer = trace_buffer[0]; + + spu_num = spu_evnt_phys_spu_indx + + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE); + + /* make sure only one process at a time is calling + * spu_sync_buffer() + */ + spin_lock_irqsave(&oprof_spu_smpl_arry_lck, + sample_array_lock_flags); + spu_sync_buffer(spu_num, &sample, 1); + spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, + sample_array_lock_flags); + + smp_wmb(); /* insure spu event buffer updates are written + * don't want events intermingled... */ + + /* The counters were frozen by the interrupt. + * Reenable the interrupt and restart the counters. + */ + cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); + cbe_enable_pm_interrupts(cpu, hdw_thread, + virt_cntr_inter_mask); + + /* clear the trace buffer, re-enable writes to trace buff */ + cbe_write_pm(cpu, trace_address, 0); + cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); + + /* The writes to the various performance counters only writes + * to a latch. The new values (interrupt setting bits, reset + * counter value etc.) are not copied to the actual registers + * until the performance monitor is enabled. In order to get + * this to work as desired, the performance monitor needs to + * be disabled while writing to the latches. This is a + * HW design issue. + */ + write_pm_cntrl(cpu); + cbe_enable_pm(cpu); + } + spin_unlock_irqrestore(&cntr_lock, flags); +} + +static void cell_handle_interrupt_ppu(struct pt_regs *regs, + struct op_counter_config *ctr) +{ + u32 cpu; + u64 pc; + int is_kernel; + unsigned long flags = 0; + u32 interrupt_mask; + int i; + + cpu = smp_processor_id(); + + /* + * Need to make sure the interrupt handler and the virt counter + * routine are not running at the same time. See the + * cell_virtual_cntr() routine for additional comments. + */ + spin_lock_irqsave(&cntr_lock, flags); + + /* + * Need to disable and reenable the performance counters + * to get the desired behavior from the hardware. This + * is hardware specific. + */ + + cbe_disable_pm(cpu); + + interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu); + + /* + * If the interrupt mask has been cleared, then the virt cntr + * has cleared the interrupt. When the thread that generated + * the interrupt is restored, the data count will be restored to + * 0xffffff0 to cause the interrupt to be regenerated. + */ + + if ((oprofile_running == 1) && (interrupt_mask != 0)) { + pc = regs->nip; + is_kernel = is_kernel_addr(pc); + + for (i = 0; i < num_counters; ++i) { + if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i)) + && ctr[i].enabled) { + oprofile_add_ext_sample(pc, regs, i, is_kernel); + cbe_write_ctr(cpu, i, reset_value[i]); + } + } + + /* + * The counters were frozen by the interrupt. + * Reenable the interrupt and restart the counters. + * If there was a race between the interrupt handler and + * the virtual counter routine. The virtual counter + * routine may have cleared the interrupts. Hence must + * use the virt_cntr_inter_mask to re-enable the interrupts. + */ + cbe_enable_pm_interrupts(cpu, hdw_thread, + virt_cntr_inter_mask); + + /* + * The writes to the various performance counters only writes + * to a latch. The new values (interrupt setting bits, reset + * counter value etc.) are not copied to the actual registers + * until the performance monitor is enabled. In order to get + * this to work as desired, the performance monitor needs to + * be disabled while writing to the latches. This is a + * HW design issue. + */ + cbe_enable_pm(cpu); + } + spin_unlock_irqrestore(&cntr_lock, flags); +} + +static void cell_handle_interrupt(struct pt_regs *regs, + struct op_counter_config *ctr) +{ + if (profiling_mode == PPU_PROFILING) + cell_handle_interrupt_ppu(regs, ctr); + else + cell_handle_interrupt_spu(regs, ctr); +} + +/* + * This function is called from the generic OProfile + * driver. When profiling PPUs, we need to do the + * generic sync start; otherwise, do spu_sync_start. + */ +static int cell_sync_start(void) +{ + if ((profiling_mode == SPU_PROFILING_CYCLES) || + (profiling_mode == SPU_PROFILING_EVENTS)) + return spu_sync_start(); + else + return DO_GENERIC_SYNC; +} + +static int cell_sync_stop(void) +{ + if ((profiling_mode == SPU_PROFILING_CYCLES) || + (profiling_mode == SPU_PROFILING_EVENTS)) + return spu_sync_stop(); + else + return 1; +} + +struct op_powerpc_model op_model_cell = { + .reg_setup = cell_reg_setup, + .cpu_setup = cell_cpu_setup, + .global_start = cell_global_start, + .global_stop = cell_global_stop, + .sync_start = cell_sync_start, + .sync_stop = cell_sync_stop, + .handle_interrupt = cell_handle_interrupt, +}; diff --git a/arch/powerpc/oprofile/op_model_fsl_emb.c b/arch/powerpc/oprofile/op_model_fsl_emb.c new file mode 100644 index 000000000..14cf86fdd --- /dev/null +++ b/arch/powerpc/oprofile/op_model_fsl_emb.c @@ -0,0 +1,384 @@ +/* + * Freescale Embedded oprofile support, based on ppc64 oprofile support + * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM + * + * Copyright (c) 2004, 2010 Freescale Semiconductor, Inc + * + * Author: Andy Fleming + * Maintainer: Kumar Gala <galak@kernel.crashing.org> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include <linux/oprofile.h> +#include <linux/smp.h> +#include <asm/ptrace.h> +#include <asm/processor.h> +#include <asm/cputable.h> +#include <asm/reg_fsl_emb.h> +#include <asm/page.h> +#include <asm/pmc.h> +#include <asm/oprofile_impl.h> + +static unsigned long reset_value[OP_MAX_COUNTER]; + +static int num_counters; +static int oprofile_running; + +static inline u32 get_pmlca(int ctr) +{ + u32 pmlca; + + switch (ctr) { + case 0: + pmlca = mfpmr(PMRN_PMLCA0); + break; + case 1: + pmlca = mfpmr(PMRN_PMLCA1); + break; + case 2: + pmlca = mfpmr(PMRN_PMLCA2); + break; + case 3: + pmlca = mfpmr(PMRN_PMLCA3); + break; + case 4: + pmlca = mfpmr(PMRN_PMLCA4); + break; + case 5: + pmlca = mfpmr(PMRN_PMLCA5); + break; + default: + panic("Bad ctr number\n"); + } + + return pmlca; +} + +static inline void set_pmlca(int ctr, u32 pmlca) +{ + switch (ctr) { + case 0: + mtpmr(PMRN_PMLCA0, pmlca); + break; + case 1: + mtpmr(PMRN_PMLCA1, pmlca); + break; + case 2: + mtpmr(PMRN_PMLCA2, pmlca); + break; + case 3: + mtpmr(PMRN_PMLCA3, pmlca); + break; + case 4: + mtpmr(PMRN_PMLCA4, pmlca); + break; + case 5: + mtpmr(PMRN_PMLCA5, pmlca); + break; + default: + panic("Bad ctr number\n"); + } +} + +static inline unsigned int ctr_read(unsigned int i) +{ + switch(i) { + case 0: + return mfpmr(PMRN_PMC0); + case 1: + return mfpmr(PMRN_PMC1); + case 2: + return mfpmr(PMRN_PMC2); + case 3: + return mfpmr(PMRN_PMC3); + case 4: + return mfpmr(PMRN_PMC4); + case 5: + return mfpmr(PMRN_PMC5); + default: + return 0; + } +} + +static inline void ctr_write(unsigned int i, unsigned int val) +{ + switch(i) { + case 0: + mtpmr(PMRN_PMC0, val); + break; + case 1: + mtpmr(PMRN_PMC1, val); + break; + case 2: + mtpmr(PMRN_PMC2, val); + break; + case 3: + mtpmr(PMRN_PMC3, val); + break; + case 4: + mtpmr(PMRN_PMC4, val); + break; + case 5: + mtpmr(PMRN_PMC5, val); + break; + default: + break; + } +} + + +static void init_pmc_stop(int ctr) +{ + u32 pmlca = (PMLCA_FC | PMLCA_FCS | PMLCA_FCU | + PMLCA_FCM1 | PMLCA_FCM0); + u32 pmlcb = 0; + + switch (ctr) { + case 0: + mtpmr(PMRN_PMLCA0, pmlca); + mtpmr(PMRN_PMLCB0, pmlcb); + break; + case 1: + mtpmr(PMRN_PMLCA1, pmlca); + mtpmr(PMRN_PMLCB1, pmlcb); + break; + case 2: + mtpmr(PMRN_PMLCA2, pmlca); + mtpmr(PMRN_PMLCB2, pmlcb); + break; + case 3: + mtpmr(PMRN_PMLCA3, pmlca); + mtpmr(PMRN_PMLCB3, pmlcb); + break; + case 4: + mtpmr(PMRN_PMLCA4, pmlca); + mtpmr(PMRN_PMLCB4, pmlcb); + break; + case 5: + mtpmr(PMRN_PMLCA5, pmlca); + mtpmr(PMRN_PMLCB5, pmlcb); + break; + default: + panic("Bad ctr number!\n"); + } +} + +static void set_pmc_event(int ctr, int event) +{ + u32 pmlca; + + pmlca = get_pmlca(ctr); + + pmlca = (pmlca & ~PMLCA_EVENT_MASK) | + ((event << PMLCA_EVENT_SHIFT) & + PMLCA_EVENT_MASK); + + set_pmlca(ctr, pmlca); +} + +static void set_pmc_user_kernel(int ctr, int user, int kernel) +{ + u32 pmlca; + + pmlca = get_pmlca(ctr); + + if(user) + pmlca &= ~PMLCA_FCU; + else + pmlca |= PMLCA_FCU; + + if(kernel) + pmlca &= ~PMLCA_FCS; + else + pmlca |= PMLCA_FCS; + + set_pmlca(ctr, pmlca); +} + +static void set_pmc_marked(int ctr, int mark0, int mark1) +{ + u32 pmlca = get_pmlca(ctr); + + if(mark0) + pmlca &= ~PMLCA_FCM0; + else + pmlca |= PMLCA_FCM0; + + if(mark1) + pmlca &= ~PMLCA_FCM1; + else + pmlca |= PMLCA_FCM1; + + set_pmlca(ctr, pmlca); +} + +static void pmc_start_ctr(int ctr, int enable) +{ + u32 pmlca = get_pmlca(ctr); + + pmlca &= ~PMLCA_FC; + + if (enable) + pmlca |= PMLCA_CE; + else + pmlca &= ~PMLCA_CE; + + set_pmlca(ctr, pmlca); +} + +static void pmc_start_ctrs(int enable) +{ + u32 pmgc0 = mfpmr(PMRN_PMGC0); + + pmgc0 &= ~PMGC0_FAC; + pmgc0 |= PMGC0_FCECE; + + if (enable) + pmgc0 |= PMGC0_PMIE; + else + pmgc0 &= ~PMGC0_PMIE; + + mtpmr(PMRN_PMGC0, pmgc0); +} + +static void pmc_stop_ctrs(void) +{ + u32 pmgc0 = mfpmr(PMRN_PMGC0); + + pmgc0 |= PMGC0_FAC; + + pmgc0 &= ~(PMGC0_PMIE | PMGC0_FCECE); + + mtpmr(PMRN_PMGC0, pmgc0); +} + +static int fsl_emb_cpu_setup(struct op_counter_config *ctr) +{ + int i; + + /* freeze all counters */ + pmc_stop_ctrs(); + + for (i = 0;i < num_counters;i++) { + init_pmc_stop(i); + + set_pmc_event(i, ctr[i].event); + + set_pmc_user_kernel(i, ctr[i].user, ctr[i].kernel); + } + + return 0; +} + +static int fsl_emb_reg_setup(struct op_counter_config *ctr, + struct op_system_config *sys, + int num_ctrs) +{ + int i; + + num_counters = num_ctrs; + + /* Our counters count up, and "count" refers to + * how much before the next interrupt, and we interrupt + * on overflow. So we calculate the starting value + * which will give us "count" until overflow. + * Then we set the events on the enabled counters */ + for (i = 0; i < num_counters; ++i) + reset_value[i] = 0x80000000UL - ctr[i].count; + + return 0; +} + +static int fsl_emb_start(struct op_counter_config *ctr) +{ + int i; + + mtmsr(mfmsr() | MSR_PMM); + + for (i = 0; i < num_counters; ++i) { + if (ctr[i].enabled) { + ctr_write(i, reset_value[i]); + /* Set each enabled counter to only + * count when the Mark bit is *not* set */ + set_pmc_marked(i, 1, 0); + pmc_start_ctr(i, 1); + } else { + ctr_write(i, 0); + + /* Set the ctr to be stopped */ + pmc_start_ctr(i, 0); + } + } + + /* Clear the freeze bit, and enable the interrupt. + * The counters won't actually start until the rfi clears + * the PMM bit */ + pmc_start_ctrs(1); + + oprofile_running = 1; + + pr_debug("start on cpu %d, pmgc0 %x\n", smp_processor_id(), + mfpmr(PMRN_PMGC0)); + + return 0; +} + +static void fsl_emb_stop(void) +{ + /* freeze counters */ + pmc_stop_ctrs(); + + oprofile_running = 0; + + pr_debug("stop on cpu %d, pmgc0 %x\n", smp_processor_id(), + mfpmr(PMRN_PMGC0)); + + mb(); +} + + +static void fsl_emb_handle_interrupt(struct pt_regs *regs, + struct op_counter_config *ctr) +{ + unsigned long pc; + int is_kernel; + int val; + int i; + + pc = regs->nip; + is_kernel = is_kernel_addr(pc); + + for (i = 0; i < num_counters; ++i) { + val = ctr_read(i); + if (val < 0) { + if (oprofile_running && ctr[i].enabled) { + oprofile_add_ext_sample(pc, regs, i, is_kernel); + ctr_write(i, reset_value[i]); + } else { + ctr_write(i, 0); + } + } + } + + /* The freeze bit was set by the interrupt. */ + /* Clear the freeze bit, and reenable the interrupt. The + * counters won't actually start until the rfi clears the PMM + * bit. The PMM bit should not be set until after the interrupt + * is cleared to avoid it getting lost in some hypervisor + * environments. + */ + mtmsr(mfmsr() | MSR_PMM); + pmc_start_ctrs(1); +} + +struct op_powerpc_model op_model_fsl_emb = { + .reg_setup = fsl_emb_reg_setup, + .cpu_setup = fsl_emb_cpu_setup, + .start = fsl_emb_start, + .stop = fsl_emb_stop, + .handle_interrupt = fsl_emb_handle_interrupt, +}; diff --git a/arch/powerpc/oprofile/op_model_pa6t.c b/arch/powerpc/oprofile/op_model_pa6t.c new file mode 100644 index 000000000..a114a7c22 --- /dev/null +++ b/arch/powerpc/oprofile/op_model_pa6t.c @@ -0,0 +1,239 @@ +/* + * Copyright (C) 2006-2007 PA Semi, Inc + * + * Author: Shashi Rao, PA Semi + * + * Maintained by: Olof Johansson <olof@lixom.net> + * + * Based on arch/powerpc/oprofile/op_model_power4.c + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include <linux/oprofile.h> +#include <linux/smp.h> +#include <linux/percpu.h> +#include <asm/processor.h> +#include <asm/cputable.h> +#include <asm/oprofile_impl.h> +#include <asm/reg.h> + +static unsigned char oprofile_running; + +/* mmcr values are set in pa6t_reg_setup, used in pa6t_cpu_setup */ +static u64 mmcr0_val; +static u64 mmcr1_val; + +/* inited in pa6t_reg_setup */ +static u64 reset_value[OP_MAX_COUNTER]; + +static inline u64 ctr_read(unsigned int i) +{ + switch (i) { + case 0: + return mfspr(SPRN_PA6T_PMC0); + case 1: + return mfspr(SPRN_PA6T_PMC1); + case 2: + return mfspr(SPRN_PA6T_PMC2); + case 3: + return mfspr(SPRN_PA6T_PMC3); + case 4: + return mfspr(SPRN_PA6T_PMC4); + case 5: + return mfspr(SPRN_PA6T_PMC5); + default: + printk(KERN_ERR "ctr_read called with bad arg %u\n", i); + return 0; + } +} + +static inline void ctr_write(unsigned int i, u64 val) +{ + switch (i) { + case 0: + mtspr(SPRN_PA6T_PMC0, val); + break; + case 1: + mtspr(SPRN_PA6T_PMC1, val); + break; + case 2: + mtspr(SPRN_PA6T_PMC2, val); + break; + case 3: + mtspr(SPRN_PA6T_PMC3, val); + break; + case 4: + mtspr(SPRN_PA6T_PMC4, val); + break; + case 5: + mtspr(SPRN_PA6T_PMC5, val); + break; + default: + printk(KERN_ERR "ctr_write called with bad arg %u\n", i); + break; + } +} + + +/* precompute the values to stuff in the hardware registers */ +static int pa6t_reg_setup(struct op_counter_config *ctr, + struct op_system_config *sys, + int num_ctrs) +{ + int pmc; + + /* + * adjust the mmcr0.en[0-5] and mmcr0.inten[0-5] values obtained from the + * event_mappings file by turning off the counters that the user doesn't + * care about + * + * setup user and kernel profiling + */ + for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++) + if (!ctr[pmc].enabled) { + sys->mmcr0 &= ~(0x1UL << pmc); + sys->mmcr0 &= ~(0x1UL << (pmc+12)); + pr_debug("turned off counter %u\n", pmc); + } + + if (sys->enable_kernel) + sys->mmcr0 |= PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN; + else + sys->mmcr0 &= ~(PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN); + + if (sys->enable_user) + sys->mmcr0 |= PA6T_MMCR0_PREN; + else + sys->mmcr0 &= ~PA6T_MMCR0_PREN; + + /* + * The performance counter event settings are given in the mmcr0 and + * mmcr1 values passed from the user in the op_system_config + * structure (sys variable). + */ + mmcr0_val = sys->mmcr0; + mmcr1_val = sys->mmcr1; + pr_debug("mmcr0_val inited to %016lx\n", sys->mmcr0); + pr_debug("mmcr1_val inited to %016lx\n", sys->mmcr1); + + for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++) { + /* counters are 40 bit. Move to cputable at some point? */ + reset_value[pmc] = (0x1UL << 39) - ctr[pmc].count; + pr_debug("reset_value for pmc%u inited to 0x%llx\n", + pmc, reset_value[pmc]); + } + + return 0; +} + +/* configure registers on this cpu */ +static int pa6t_cpu_setup(struct op_counter_config *ctr) +{ + u64 mmcr0 = mmcr0_val; + u64 mmcr1 = mmcr1_val; + + /* Default is all PMCs off */ + mmcr0 &= ~(0x3FUL); + mtspr(SPRN_PA6T_MMCR0, mmcr0); + + /* program selected programmable events in */ + mtspr(SPRN_PA6T_MMCR1, mmcr1); + + pr_debug("setup on cpu %d, mmcr0 %016lx\n", smp_processor_id(), + mfspr(SPRN_PA6T_MMCR0)); + pr_debug("setup on cpu %d, mmcr1 %016lx\n", smp_processor_id(), + mfspr(SPRN_PA6T_MMCR1)); + + return 0; +} + +static int pa6t_start(struct op_counter_config *ctr) +{ + int i; + + /* Hold off event counting until rfid */ + u64 mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS; + + for (i = 0; i < cur_cpu_spec->num_pmcs; i++) + if (ctr[i].enabled) + ctr_write(i, reset_value[i]); + else + ctr_write(i, 0UL); + + mtspr(SPRN_PA6T_MMCR0, mmcr0); + + oprofile_running = 1; + + pr_debug("start on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0); + + return 0; +} + +static void pa6t_stop(void) +{ + u64 mmcr0; + + /* freeze counters */ + mmcr0 = mfspr(SPRN_PA6T_MMCR0); + mmcr0 |= PA6T_MMCR0_FCM0; + mtspr(SPRN_PA6T_MMCR0, mmcr0); + + oprofile_running = 0; + + pr_debug("stop on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0); +} + +/* handle the perfmon overflow vector */ +static void pa6t_handle_interrupt(struct pt_regs *regs, + struct op_counter_config *ctr) +{ + unsigned long pc = mfspr(SPRN_PA6T_SIAR); + int is_kernel = is_kernel_addr(pc); + u64 val; + int i; + u64 mmcr0; + + /* disable perfmon counting until rfid */ + mmcr0 = mfspr(SPRN_PA6T_MMCR0); + mtspr(SPRN_PA6T_MMCR0, mmcr0 | PA6T_MMCR0_HANDDIS); + + /* Record samples. We've got one global bit for whether a sample + * was taken, so add it for any counter that triggered overflow. + */ + for (i = 0; i < cur_cpu_spec->num_pmcs; i++) { + val = ctr_read(i); + if (val & (0x1UL << 39)) { /* Overflow bit set */ + if (oprofile_running && ctr[i].enabled) { + if (mmcr0 & PA6T_MMCR0_SIARLOG) + oprofile_add_ext_sample(pc, regs, i, is_kernel); + ctr_write(i, reset_value[i]); + } else { + ctr_write(i, 0UL); + } + } + } + + /* Restore mmcr0 to a good known value since the PMI changes it */ + mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS; + mtspr(SPRN_PA6T_MMCR0, mmcr0); +} + +struct op_powerpc_model op_model_pa6t = { + .reg_setup = pa6t_reg_setup, + .cpu_setup = pa6t_cpu_setup, + .start = pa6t_start, + .stop = pa6t_stop, + .handle_interrupt = pa6t_handle_interrupt, +}; diff --git a/arch/powerpc/oprofile/op_model_power4.c b/arch/powerpc/oprofile/op_model_power4.c new file mode 100644 index 000000000..962fe7b3e --- /dev/null +++ b/arch/powerpc/oprofile/op_model_power4.c @@ -0,0 +1,442 @@ +/* + * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM + * Added mmcra[slot] support: + * Copyright (C) 2006-2007 Will Schmidt <willschm@us.ibm.com>, IBM + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include <linux/oprofile.h> +#include <linux/smp.h> +#include <asm/firmware.h> +#include <asm/ptrace.h> +#include <asm/processor.h> +#include <asm/cputable.h> +#include <asm/rtas.h> +#include <asm/oprofile_impl.h> +#include <asm/reg.h> + +#define dbg(args...) +#define OPROFILE_PM_PMCSEL_MSK 0xffULL +#define OPROFILE_PM_UNIT_SHIFT 60 +#define OPROFILE_PM_UNIT_MSK 0xfULL +#define OPROFILE_MAX_PMC_NUM 3 +#define OPROFILE_PMSEL_FIELD_WIDTH 8 +#define OPROFILE_UNIT_FIELD_WIDTH 4 +#define MMCRA_SIAR_VALID_MASK 0x10000000ULL + +static unsigned long reset_value[OP_MAX_COUNTER]; + +static int oprofile_running; +static int use_slot_nums; + +/* mmcr values are set in power4_reg_setup, used in power4_cpu_setup */ +static u32 mmcr0_val; +static u64 mmcr1_val; +static u64 mmcra_val; +static u32 cntr_marked_events; + +static int power7_marked_instr_event(u64 mmcr1) +{ + u64 psel, unit; + int pmc, cntr_marked_events = 0; + + /* Given the MMCR1 value, look at the field for each counter to + * determine if it is a marked event. Code based on the function + * power7_marked_instr_event() in file arch/powerpc/perf/power7-pmu.c. + */ + for (pmc = 0; pmc < 4; pmc++) { + psel = mmcr1 & (OPROFILE_PM_PMCSEL_MSK + << (OPROFILE_MAX_PMC_NUM - pmc) + * OPROFILE_PMSEL_FIELD_WIDTH); + psel = (psel >> ((OPROFILE_MAX_PMC_NUM - pmc) + * OPROFILE_PMSEL_FIELD_WIDTH)) & ~1ULL; + unit = mmcr1 & (OPROFILE_PM_UNIT_MSK + << (OPROFILE_PM_UNIT_SHIFT + - (pmc * OPROFILE_PMSEL_FIELD_WIDTH ))); + unit = unit >> (OPROFILE_PM_UNIT_SHIFT + - (pmc * OPROFILE_PMSEL_FIELD_WIDTH)); + + switch (psel >> 4) { + case 2: + cntr_marked_events |= (pmc == 1 || pmc == 3) << pmc; + break; + case 3: + if (psel == 0x3c) { + cntr_marked_events |= (pmc == 0) << pmc; + break; + } + + if (psel == 0x3e) { + cntr_marked_events |= (pmc != 1) << pmc; + break; + } + + cntr_marked_events |= 1 << pmc; + break; + case 4: + case 5: + cntr_marked_events |= (unit == 0xd) << pmc; + break; + case 6: + if (psel == 0x64) + cntr_marked_events |= (pmc >= 2) << pmc; + break; + case 8: + cntr_marked_events |= (unit == 0xd) << pmc; + break; + } + } + return cntr_marked_events; +} + +static int power4_reg_setup(struct op_counter_config *ctr, + struct op_system_config *sys, + int num_ctrs) +{ + int i; + + /* + * The performance counter event settings are given in the mmcr0, + * mmcr1 and mmcra values passed from the user in the + * op_system_config structure (sys variable). + */ + mmcr0_val = sys->mmcr0; + mmcr1_val = sys->mmcr1; + mmcra_val = sys->mmcra; + + /* Power 7+ and newer architectures: + * Determine which counter events in the group (the group of events is + * specified by the bit settings in the MMCR1 register) are marked + * events for use in the interrupt handler. Do the calculation once + * before OProfile starts. Information is used in the interrupt + * handler. Starting with Power 7+ we only record the sample for + * marked events if the SIAR valid bit is set. For non marked events + * the sample is always recorded. + */ + if (pvr_version_is(PVR_POWER7p)) + cntr_marked_events = power7_marked_instr_event(mmcr1_val); + else + cntr_marked_events = 0; /* For older processors, set the bit map + * to zero so the sample will always be + * be recorded. + */ + + for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) + reset_value[i] = 0x80000000UL - ctr[i].count; + + /* setup user and kernel profiling */ + if (sys->enable_kernel) + mmcr0_val &= ~MMCR0_KERNEL_DISABLE; + else + mmcr0_val |= MMCR0_KERNEL_DISABLE; + + if (sys->enable_user) + mmcr0_val &= ~MMCR0_PROBLEM_DISABLE; + else + mmcr0_val |= MMCR0_PROBLEM_DISABLE; + + if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) || + pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) || + pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX) || + pvr_version_is(PVR_POWER5) || pvr_version_is(PVR_POWER5p)) + use_slot_nums = 1; + + return 0; +} + +extern void ppc_enable_pmcs(void); + +/* + * Older CPUs require the MMCRA sample bit to be always set, but newer + * CPUs only want it set for some groups. Eventually we will remove all + * knowledge of this bit in the kernel, oprofile userspace should be + * setting it when required. + * + * In order to keep current installations working we force the bit for + * those older CPUs. Once everyone has updated their oprofile userspace we + * can remove this hack. + */ +static inline int mmcra_must_set_sample(void) +{ + if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) || + pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) || + pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX)) + return 1; + + return 0; +} + +static int power4_cpu_setup(struct op_counter_config *ctr) +{ + unsigned int mmcr0 = mmcr0_val; + unsigned long mmcra = mmcra_val; + + ppc_enable_pmcs(); + + /* set the freeze bit */ + mmcr0 |= MMCR0_FC; + mtspr(SPRN_MMCR0, mmcr0); + + mmcr0 |= MMCR0_FCM1|MMCR0_PMXE|MMCR0_FCECE; + mmcr0 |= MMCR0_PMC1CE|MMCR0_PMCjCE; + mtspr(SPRN_MMCR0, mmcr0); + + mtspr(SPRN_MMCR1, mmcr1_val); + + if (mmcra_must_set_sample()) + mmcra |= MMCRA_SAMPLE_ENABLE; + mtspr(SPRN_MMCRA, mmcra); + + dbg("setup on cpu %d, mmcr0 %lx\n", smp_processor_id(), + mfspr(SPRN_MMCR0)); + dbg("setup on cpu %d, mmcr1 %lx\n", smp_processor_id(), + mfspr(SPRN_MMCR1)); + dbg("setup on cpu %d, mmcra %lx\n", smp_processor_id(), + mfspr(SPRN_MMCRA)); + + return 0; +} + +static int power4_start(struct op_counter_config *ctr) +{ + int i; + unsigned int mmcr0; + + /* set the PMM bit (see comment below) */ + mtmsrd(mfmsr() | MSR_PMM); + + for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) { + if (ctr[i].enabled) { + classic_ctr_write(i, reset_value[i]); + } else { + classic_ctr_write(i, 0); + } + } + + mmcr0 = mfspr(SPRN_MMCR0); + + /* + * We must clear the PMAO bit on some (GQ) chips. Just do it + * all the time + */ + mmcr0 &= ~MMCR0_PMAO; + + /* + * now clear the freeze bit, counting will not start until we + * rfid from this excetion, because only at that point will + * the PMM bit be cleared + */ + mmcr0 &= ~MMCR0_FC; + mtspr(SPRN_MMCR0, mmcr0); + + oprofile_running = 1; + + dbg("start on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0); + return 0; +} + +static void power4_stop(void) +{ + unsigned int mmcr0; + + /* freeze counters */ + mmcr0 = mfspr(SPRN_MMCR0); + mmcr0 |= MMCR0_FC; + mtspr(SPRN_MMCR0, mmcr0); + + oprofile_running = 0; + + dbg("stop on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0); + + mb(); +} + +/* Fake functions used by canonicalize_pc */ +static void __used hypervisor_bucket(void) +{ +} + +static void __used rtas_bucket(void) +{ +} + +static void __used kernel_unknown_bucket(void) +{ +} + +/* + * On GQ and newer the MMCRA stores the HV and PR bits at the time + * the SIAR was sampled. We use that to work out if the SIAR was sampled in + * the hypervisor, our exception vectors or RTAS. + * If the MMCRA_SAMPLE_ENABLE bit is set, we can use the MMCRA[slot] bits + * to more accurately identify the address of the sampled instruction. The + * mmcra[slot] bits represent the slot number of a sampled instruction + * within an instruction group. The slot will contain a value between 1 + * and 5 if MMCRA_SAMPLE_ENABLE is set, otherwise 0. + */ +static unsigned long get_pc(struct pt_regs *regs) +{ + unsigned long pc = mfspr(SPRN_SIAR); + unsigned long mmcra; + unsigned long slot; + + /* Can't do much about it */ + if (!cur_cpu_spec->oprofile_mmcra_sihv) + return pc; + + mmcra = mfspr(SPRN_MMCRA); + + if (use_slot_nums && (mmcra & MMCRA_SAMPLE_ENABLE)) { + slot = ((mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT); + if (slot > 1) + pc += 4 * (slot - 1); + } + + /* Were we in the hypervisor? */ + if (firmware_has_feature(FW_FEATURE_LPAR) && + (mmcra & cur_cpu_spec->oprofile_mmcra_sihv)) + /* function descriptor madness */ + return *((unsigned long *)hypervisor_bucket); + + /* We were in userspace, nothing to do */ + if (mmcra & cur_cpu_spec->oprofile_mmcra_sipr) + return pc; + +#ifdef CONFIG_PPC_RTAS + /* Were we in RTAS? */ + if (pc >= rtas.base && pc < (rtas.base + rtas.size)) + /* function descriptor madness */ + return *((unsigned long *)rtas_bucket); +#endif + + /* Were we in our exception vectors or SLB real mode miss handler? */ + if (pc < 0x1000000UL) + return (unsigned long)__va(pc); + + /* Not sure where we were */ + if (!is_kernel_addr(pc)) + /* function descriptor madness */ + return *((unsigned long *)kernel_unknown_bucket); + + return pc; +} + +static int get_kernel(unsigned long pc, unsigned long mmcra) +{ + int is_kernel; + + if (!cur_cpu_spec->oprofile_mmcra_sihv) { + is_kernel = is_kernel_addr(pc); + } else { + is_kernel = ((mmcra & cur_cpu_spec->oprofile_mmcra_sipr) == 0); + } + + return is_kernel; +} + +static bool pmc_overflow(unsigned long val) +{ + if ((int)val < 0) + return true; + + /* + * Events on POWER7 can roll back if a speculative event doesn't + * eventually complete. Unfortunately in some rare cases they will + * raise a performance monitor exception. We need to catch this to + * ensure we reset the PMC. In all cases the PMC will be 256 or less + * cycles from overflow. + * + * We only do this if the first pass fails to find any overflowing + * PMCs because a user might set a period of less than 256 and we + * don't want to mistakenly reset them. + */ + if (pvr_version_is(PVR_POWER7) && ((0x80000000 - val) <= 256)) + return true; + + return false; +} + +static void power4_handle_interrupt(struct pt_regs *regs, + struct op_counter_config *ctr) +{ + unsigned long pc; + int is_kernel; + int val; + int i; + unsigned int mmcr0; + unsigned long mmcra; + bool siar_valid = false; + + mmcra = mfspr(SPRN_MMCRA); + + pc = get_pc(regs); + is_kernel = get_kernel(pc, mmcra); + + /* set the PMM bit (see comment below) */ + mtmsrd(mfmsr() | MSR_PMM); + + /* Check that the SIAR valid bit in MMCRA is set to 1. */ + if ((mmcra & MMCRA_SIAR_VALID_MASK) == MMCRA_SIAR_VALID_MASK) + siar_valid = true; + + for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) { + val = classic_ctr_read(i); + if (pmc_overflow(val)) { + if (oprofile_running && ctr[i].enabled) { + /* Power 7+ and newer architectures: + * If the event is a marked event, then only + * save the sample if the SIAR valid bit is + * set. If the event is not marked, then + * always save the sample. + * Note, the Sample enable bit in the MMCRA + * register must be set to 1 if the group + * contains a marked event. + */ + if ((siar_valid && + (cntr_marked_events & (1 << i))) + || !(cntr_marked_events & (1 << i))) + oprofile_add_ext_sample(pc, regs, i, + is_kernel); + + classic_ctr_write(i, reset_value[i]); + } else { + classic_ctr_write(i, 0); + } + } + } + + mmcr0 = mfspr(SPRN_MMCR0); + + /* reset the perfmon trigger */ + mmcr0 |= MMCR0_PMXE; + + /* + * We must clear the PMAO bit on some (GQ) chips. Just do it + * all the time + */ + mmcr0 &= ~MMCR0_PMAO; + + /* Clear the appropriate bits in the MMCRA */ + mmcra &= ~cur_cpu_spec->oprofile_mmcra_clear; + mtspr(SPRN_MMCRA, mmcra); + + /* + * now clear the freeze bit, counting will not start until we + * rfid from this exception, because only at that point will + * the PMM bit be cleared + */ + mmcr0 &= ~MMCR0_FC; + mtspr(SPRN_MMCR0, mmcr0); +} + +struct op_powerpc_model op_model_power4 = { + .reg_setup = power4_reg_setup, + .cpu_setup = power4_cpu_setup, + .start = power4_start, + .stop = power4_stop, + .handle_interrupt = power4_handle_interrupt, +}; |