summaryrefslogtreecommitdiff
path: root/arch/sparc/kernel/perf_event.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/sparc/kernel/perf_event.c')
-rw-r--r--arch/sparc/kernel/perf_event.c1810
1 files changed, 1810 insertions, 0 deletions
diff --git a/arch/sparc/kernel/perf_event.c b/arch/sparc/kernel/perf_event.c
new file mode 100644
index 000000000..59cf917a7
--- /dev/null
+++ b/arch/sparc/kernel/perf_event.c
@@ -0,0 +1,1810 @@
+/* Performance event support for sparc64.
+ *
+ * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
+ *
+ * This code is based almost entirely upon the x86 perf event
+ * code, which is:
+ *
+ * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
+ * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
+ * Copyright (C) 2009 Jaswinder Singh Rajput
+ * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
+ * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
+ */
+
+#include <linux/perf_event.h>
+#include <linux/kprobes.h>
+#include <linux/ftrace.h>
+#include <linux/kernel.h>
+#include <linux/kdebug.h>
+#include <linux/mutex.h>
+
+#include <asm/stacktrace.h>
+#include <asm/cpudata.h>
+#include <asm/uaccess.h>
+#include <linux/atomic.h>
+#include <asm/nmi.h>
+#include <asm/pcr.h>
+#include <asm/cacheflush.h>
+
+#include "kernel.h"
+#include "kstack.h"
+
+/* Two classes of sparc64 chips currently exist. All of which have
+ * 32-bit counters which can generate overflow interrupts on the
+ * transition from 0xffffffff to 0.
+ *
+ * All chips upto and including SPARC-T3 have two performance
+ * counters. The two 32-bit counters are accessed in one go using a
+ * single 64-bit register.
+ *
+ * On these older chips both counters are controlled using a single
+ * control register. The only way to stop all sampling is to clear
+ * all of the context (user, supervisor, hypervisor) sampling enable
+ * bits. But these bits apply to both counters, thus the two counters
+ * can't be enabled/disabled individually.
+ *
+ * Furthermore, the control register on these older chips have two
+ * event fields, one for each of the two counters. It's thus nearly
+ * impossible to have one counter going while keeping the other one
+ * stopped. Therefore it is possible to get overflow interrupts for
+ * counters not currently "in use" and that condition must be checked
+ * in the overflow interrupt handler.
+ *
+ * So we use a hack, in that we program inactive counters with the
+ * "sw_count0" and "sw_count1" events. These count how many times
+ * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
+ * unusual way to encode a NOP and therefore will not trigger in
+ * normal code.
+ *
+ * Starting with SPARC-T4 we have one control register per counter.
+ * And the counters are stored in individual registers. The registers
+ * for the counters are 64-bit but only a 32-bit counter is
+ * implemented. The event selections on SPARC-T4 lack any
+ * restrictions, therefore we can elide all of the complicated
+ * conflict resolution code we have for SPARC-T3 and earlier chips.
+ */
+
+#define MAX_HWEVENTS 4
+#define MAX_PCRS 4
+#define MAX_PERIOD ((1UL << 32) - 1)
+
+#define PIC_UPPER_INDEX 0
+#define PIC_LOWER_INDEX 1
+#define PIC_NO_INDEX -1
+
+struct cpu_hw_events {
+ /* Number of events currently scheduled onto this cpu.
+ * This tells how many entries in the arrays below
+ * are valid.
+ */
+ int n_events;
+
+ /* Number of new events added since the last hw_perf_disable().
+ * This works because the perf event layer always adds new
+ * events inside of a perf_{disable,enable}() sequence.
+ */
+ int n_added;
+
+ /* Array of events current scheduled on this cpu. */
+ struct perf_event *event[MAX_HWEVENTS];
+
+ /* Array of encoded longs, specifying the %pcr register
+ * encoding and the mask of PIC counters this even can
+ * be scheduled on. See perf_event_encode() et al.
+ */
+ unsigned long events[MAX_HWEVENTS];
+
+ /* The current counter index assigned to an event. When the
+ * event hasn't been programmed into the cpu yet, this will
+ * hold PIC_NO_INDEX. The event->hw.idx value tells us where
+ * we ought to schedule the event.
+ */
+ int current_idx[MAX_HWEVENTS];
+
+ /* Software copy of %pcr register(s) on this cpu. */
+ u64 pcr[MAX_HWEVENTS];
+
+ /* Enabled/disable state. */
+ int enabled;
+
+ unsigned int group_flag;
+};
+static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
+
+/* An event map describes the characteristics of a performance
+ * counter event. In particular it gives the encoding as well as
+ * a mask telling which counters the event can be measured on.
+ *
+ * The mask is unused on SPARC-T4 and later.
+ */
+struct perf_event_map {
+ u16 encoding;
+ u8 pic_mask;
+#define PIC_NONE 0x00
+#define PIC_UPPER 0x01
+#define PIC_LOWER 0x02
+};
+
+/* Encode a perf_event_map entry into a long. */
+static unsigned long perf_event_encode(const struct perf_event_map *pmap)
+{
+ return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
+}
+
+static u8 perf_event_get_msk(unsigned long val)
+{
+ return val & 0xff;
+}
+
+static u64 perf_event_get_enc(unsigned long val)
+{
+ return val >> 16;
+}
+
+#define C(x) PERF_COUNT_HW_CACHE_##x
+
+#define CACHE_OP_UNSUPPORTED 0xfffe
+#define CACHE_OP_NONSENSE 0xffff
+
+typedef struct perf_event_map cache_map_t
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX];
+
+struct sparc_pmu {
+ const struct perf_event_map *(*event_map)(int);
+ const cache_map_t *cache_map;
+ int max_events;
+ u32 (*read_pmc)(int);
+ void (*write_pmc)(int, u64);
+ int upper_shift;
+ int lower_shift;
+ int event_mask;
+ int user_bit;
+ int priv_bit;
+ int hv_bit;
+ int irq_bit;
+ int upper_nop;
+ int lower_nop;
+ unsigned int flags;
+#define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
+#define SPARC_PMU_HAS_CONFLICTS 0x00000002
+ int max_hw_events;
+ int num_pcrs;
+ int num_pic_regs;
+};
+
+static u32 sparc_default_read_pmc(int idx)
+{
+ u64 val;
+
+ val = pcr_ops->read_pic(0);
+ if (idx == PIC_UPPER_INDEX)
+ val >>= 32;
+
+ return val & 0xffffffff;
+}
+
+static void sparc_default_write_pmc(int idx, u64 val)
+{
+ u64 shift, mask, pic;
+
+ shift = 0;
+ if (idx == PIC_UPPER_INDEX)
+ shift = 32;
+
+ mask = ((u64) 0xffffffff) << shift;
+ val <<= shift;
+
+ pic = pcr_ops->read_pic(0);
+ pic &= ~mask;
+ pic |= val;
+ pcr_ops->write_pic(0, pic);
+}
+
+static const struct perf_event_map ultra3_perfmon_event_map[] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
+ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
+ [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
+};
+
+static const struct perf_event_map *ultra3_event_map(int event_id)
+{
+ return &ultra3_perfmon_event_map[event_id];
+}
+
+static const cache_map_t ultra3_cache_map = {
+[C(L1D)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
+ [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
+ [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
+ [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
+ [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
+ [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
+ [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(DTLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(BPU)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(NODE)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+};
+
+static const struct sparc_pmu ultra3_pmu = {
+ .event_map = ultra3_event_map,
+ .cache_map = &ultra3_cache_map,
+ .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
+ .read_pmc = sparc_default_read_pmc,
+ .write_pmc = sparc_default_write_pmc,
+ .upper_shift = 11,
+ .lower_shift = 4,
+ .event_mask = 0x3f,
+ .user_bit = PCR_UTRACE,
+ .priv_bit = PCR_STRACE,
+ .upper_nop = 0x1c,
+ .lower_nop = 0x14,
+ .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
+ SPARC_PMU_HAS_CONFLICTS),
+ .max_hw_events = 2,
+ .num_pcrs = 1,
+ .num_pic_regs = 1,
+};
+
+/* Niagara1 is very limited. The upper PIC is hard-locked to count
+ * only instructions, so it is free running which creates all kinds of
+ * problems. Some hardware designs make one wonder if the creator
+ * even looked at how this stuff gets used by software.
+ */
+static const struct perf_event_map niagara1_perfmon_event_map[] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
+ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
+ [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
+};
+
+static const struct perf_event_map *niagara1_event_map(int event_id)
+{
+ return &niagara1_perfmon_event_map[event_id];
+}
+
+static const cache_map_t niagara1_cache_map = {
+[C(L1D)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
+ [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
+ [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(DTLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(BPU)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(NODE)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+};
+
+static const struct sparc_pmu niagara1_pmu = {
+ .event_map = niagara1_event_map,
+ .cache_map = &niagara1_cache_map,
+ .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
+ .read_pmc = sparc_default_read_pmc,
+ .write_pmc = sparc_default_write_pmc,
+ .upper_shift = 0,
+ .lower_shift = 4,
+ .event_mask = 0x7,
+ .user_bit = PCR_UTRACE,
+ .priv_bit = PCR_STRACE,
+ .upper_nop = 0x0,
+ .lower_nop = 0x0,
+ .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
+ SPARC_PMU_HAS_CONFLICTS),
+ .max_hw_events = 2,
+ .num_pcrs = 1,
+ .num_pic_regs = 1,
+};
+
+static const struct perf_event_map niagara2_perfmon_event_map[] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
+ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
+ [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
+};
+
+static const struct perf_event_map *niagara2_event_map(int event_id)
+{
+ return &niagara2_perfmon_event_map[event_id];
+}
+
+static const cache_map_t niagara2_cache_map = {
+[C(L1D)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
+ [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
+ [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
+ [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
+ [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
+ [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
+ [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(DTLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(BPU)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(NODE)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+};
+
+static const struct sparc_pmu niagara2_pmu = {
+ .event_map = niagara2_event_map,
+ .cache_map = &niagara2_cache_map,
+ .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
+ .read_pmc = sparc_default_read_pmc,
+ .write_pmc = sparc_default_write_pmc,
+ .upper_shift = 19,
+ .lower_shift = 6,
+ .event_mask = 0xfff,
+ .user_bit = PCR_UTRACE,
+ .priv_bit = PCR_STRACE,
+ .hv_bit = PCR_N2_HTRACE,
+ .irq_bit = 0x30,
+ .upper_nop = 0x220,
+ .lower_nop = 0x220,
+ .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
+ SPARC_PMU_HAS_CONFLICTS),
+ .max_hw_events = 2,
+ .num_pcrs = 1,
+ .num_pic_regs = 1,
+};
+
+static const struct perf_event_map niagara4_perfmon_event_map[] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
+ [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
+ [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
+};
+
+static const struct perf_event_map *niagara4_event_map(int event_id)
+{
+ return &niagara4_perfmon_event_map[event_id];
+}
+
+static const cache_map_t niagara4_cache_map = {
+[C(L1D)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
+ [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
+ [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
+ [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
+ [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(DTLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(BPU)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+[C(NODE)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+ [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_WRITE) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+ [ C(OP_PREFETCH) ] = {
+ [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+ [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
+ },
+},
+};
+
+static u32 sparc_vt_read_pmc(int idx)
+{
+ u64 val = pcr_ops->read_pic(idx);
+
+ return val & 0xffffffff;
+}
+
+static void sparc_vt_write_pmc(int idx, u64 val)
+{
+ u64 pcr;
+
+ pcr = pcr_ops->read_pcr(idx);
+ /* ensure ov and ntc are reset */
+ pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
+
+ pcr_ops->write_pic(idx, val & 0xffffffff);
+
+ pcr_ops->write_pcr(idx, pcr);
+}
+
+static const struct sparc_pmu niagara4_pmu = {
+ .event_map = niagara4_event_map,
+ .cache_map = &niagara4_cache_map,
+ .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
+ .read_pmc = sparc_vt_read_pmc,
+ .write_pmc = sparc_vt_write_pmc,
+ .upper_shift = 5,
+ .lower_shift = 5,
+ .event_mask = 0x7ff,
+ .user_bit = PCR_N4_UTRACE,
+ .priv_bit = PCR_N4_STRACE,
+
+ /* We explicitly don't support hypervisor tracing. The T4
+ * generates the overflow event for precise events via a trap
+ * which will not be generated (ie. it's completely lost) if
+ * we happen to be in the hypervisor when the event triggers.
+ * Essentially, the overflow event reporting is completely
+ * unusable when you have hypervisor mode tracing enabled.
+ */
+ .hv_bit = 0,
+
+ .irq_bit = PCR_N4_TOE,
+ .upper_nop = 0,
+ .lower_nop = 0,
+ .flags = 0,
+ .max_hw_events = 4,
+ .num_pcrs = 4,
+ .num_pic_regs = 4,
+};
+
+static const struct sparc_pmu sparc_m7_pmu = {
+ .event_map = niagara4_event_map,
+ .cache_map = &niagara4_cache_map,
+ .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
+ .read_pmc = sparc_vt_read_pmc,
+ .write_pmc = sparc_vt_write_pmc,
+ .upper_shift = 5,
+ .lower_shift = 5,
+ .event_mask = 0x7ff,
+ .user_bit = PCR_N4_UTRACE,
+ .priv_bit = PCR_N4_STRACE,
+
+ /* We explicitly don't support hypervisor tracing. */
+ .hv_bit = 0,
+
+ .irq_bit = PCR_N4_TOE,
+ .upper_nop = 0,
+ .lower_nop = 0,
+ .flags = 0,
+ .max_hw_events = 4,
+ .num_pcrs = 4,
+ .num_pic_regs = 4,
+};
+static const struct sparc_pmu *sparc_pmu __read_mostly;
+
+static u64 event_encoding(u64 event_id, int idx)
+{
+ if (idx == PIC_UPPER_INDEX)
+ event_id <<= sparc_pmu->upper_shift;
+ else
+ event_id <<= sparc_pmu->lower_shift;
+ return event_id;
+}
+
+static u64 mask_for_index(int idx)
+{
+ return event_encoding(sparc_pmu->event_mask, idx);
+}
+
+static u64 nop_for_index(int idx)
+{
+ return event_encoding(idx == PIC_UPPER_INDEX ?
+ sparc_pmu->upper_nop :
+ sparc_pmu->lower_nop, idx);
+}
+
+static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
+{
+ u64 enc, val, mask = mask_for_index(idx);
+ int pcr_index = 0;
+
+ if (sparc_pmu->num_pcrs > 1)
+ pcr_index = idx;
+
+ enc = perf_event_get_enc(cpuc->events[idx]);
+
+ val = cpuc->pcr[pcr_index];
+ val &= ~mask;
+ val |= event_encoding(enc, idx);
+ cpuc->pcr[pcr_index] = val;
+
+ pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
+}
+
+static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
+{
+ u64 mask = mask_for_index(idx);
+ u64 nop = nop_for_index(idx);
+ int pcr_index = 0;
+ u64 val;
+
+ if (sparc_pmu->num_pcrs > 1)
+ pcr_index = idx;
+
+ val = cpuc->pcr[pcr_index];
+ val &= ~mask;
+ val |= nop;
+ cpuc->pcr[pcr_index] = val;
+
+ pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
+}
+
+static u64 sparc_perf_event_update(struct perf_event *event,
+ struct hw_perf_event *hwc, int idx)
+{
+ int shift = 64 - 32;
+ u64 prev_raw_count, new_raw_count;
+ s64 delta;
+
+again:
+ prev_raw_count = local64_read(&hwc->prev_count);
+ new_raw_count = sparc_pmu->read_pmc(idx);
+
+ if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
+ new_raw_count) != prev_raw_count)
+ goto again;
+
+ delta = (new_raw_count << shift) - (prev_raw_count << shift);
+ delta >>= shift;
+
+ local64_add(delta, &event->count);
+ local64_sub(delta, &hwc->period_left);
+
+ return new_raw_count;
+}
+
+static int sparc_perf_event_set_period(struct perf_event *event,
+ struct hw_perf_event *hwc, int idx)
+{
+ s64 left = local64_read(&hwc->period_left);
+ s64 period = hwc->sample_period;
+ int ret = 0;
+
+ if (unlikely(left <= -period)) {
+ left = period;
+ local64_set(&hwc->period_left, left);
+ hwc->last_period = period;
+ ret = 1;
+ }
+
+ if (unlikely(left <= 0)) {
+ left += period;
+ local64_set(&hwc->period_left, left);
+ hwc->last_period = period;
+ ret = 1;
+ }
+ if (left > MAX_PERIOD)
+ left = MAX_PERIOD;
+
+ local64_set(&hwc->prev_count, (u64)-left);
+
+ sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
+
+ perf_event_update_userpage(event);
+
+ return ret;
+}
+
+static void read_in_all_counters(struct cpu_hw_events *cpuc)
+{
+ int i;
+
+ for (i = 0; i < cpuc->n_events; i++) {
+ struct perf_event *cp = cpuc->event[i];
+
+ if (cpuc->current_idx[i] != PIC_NO_INDEX &&
+ cpuc->current_idx[i] != cp->hw.idx) {
+ sparc_perf_event_update(cp, &cp->hw,
+ cpuc->current_idx[i]);
+ cpuc->current_idx[i] = PIC_NO_INDEX;
+ }
+ }
+}
+
+/* On this PMU all PICs are programmed using a single PCR. Calculate
+ * the combined control register value.
+ *
+ * For such chips we require that all of the events have the same
+ * configuration, so just fetch the settings from the first entry.
+ */
+static void calculate_single_pcr(struct cpu_hw_events *cpuc)
+{
+ int i;
+
+ if (!cpuc->n_added)
+ goto out;
+
+ /* Assign to counters all unassigned events. */
+ for (i = 0; i < cpuc->n_events; i++) {
+ struct perf_event *cp = cpuc->event[i];
+ struct hw_perf_event *hwc = &cp->hw;
+ int idx = hwc->idx;
+ u64 enc;
+
+ if (cpuc->current_idx[i] != PIC_NO_INDEX)
+ continue;
+
+ sparc_perf_event_set_period(cp, hwc, idx);
+ cpuc->current_idx[i] = idx;
+
+ enc = perf_event_get_enc(cpuc->events[i]);
+ cpuc->pcr[0] &= ~mask_for_index(idx);
+ if (hwc->state & PERF_HES_STOPPED)
+ cpuc->pcr[0] |= nop_for_index(idx);
+ else
+ cpuc->pcr[0] |= event_encoding(enc, idx);
+ }
+out:
+ cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
+}
+
+static void sparc_pmu_start(struct perf_event *event, int flags);
+
+/* On this PMU each PIC has it's own PCR control register. */
+static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
+{
+ int i;
+
+ if (!cpuc->n_added)
+ goto out;
+
+ for (i = 0; i < cpuc->n_events; i++) {
+ struct perf_event *cp = cpuc->event[i];
+ struct hw_perf_event *hwc = &cp->hw;
+ int idx = hwc->idx;
+
+ if (cpuc->current_idx[i] != PIC_NO_INDEX)
+ continue;
+
+ cpuc->current_idx[i] = idx;
+
+ sparc_pmu_start(cp, PERF_EF_RELOAD);
+ }
+out:
+ for (i = 0; i < cpuc->n_events; i++) {
+ struct perf_event *cp = cpuc->event[i];
+ int idx = cp->hw.idx;
+
+ cpuc->pcr[idx] |= cp->hw.config_base;
+ }
+}
+
+/* If performance event entries have been added, move existing events
+ * around (if necessary) and then assign new entries to counters.
+ */
+static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
+{
+ if (cpuc->n_added)
+ read_in_all_counters(cpuc);
+
+ if (sparc_pmu->num_pcrs == 1) {
+ calculate_single_pcr(cpuc);
+ } else {
+ calculate_multiple_pcrs(cpuc);
+ }
+}
+
+static void sparc_pmu_enable(struct pmu *pmu)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int i;
+
+ if (cpuc->enabled)
+ return;
+
+ cpuc->enabled = 1;
+ barrier();
+
+ if (cpuc->n_events)
+ update_pcrs_for_enable(cpuc);
+
+ for (i = 0; i < sparc_pmu->num_pcrs; i++)
+ pcr_ops->write_pcr(i, cpuc->pcr[i]);
+}
+
+static void sparc_pmu_disable(struct pmu *pmu)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int i;
+
+ if (!cpuc->enabled)
+ return;
+
+ cpuc->enabled = 0;
+ cpuc->n_added = 0;
+
+ for (i = 0; i < sparc_pmu->num_pcrs; i++) {
+ u64 val = cpuc->pcr[i];
+
+ val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
+ sparc_pmu->hv_bit | sparc_pmu->irq_bit);
+ cpuc->pcr[i] = val;
+ pcr_ops->write_pcr(i, cpuc->pcr[i]);
+ }
+}
+
+static int active_event_index(struct cpu_hw_events *cpuc,
+ struct perf_event *event)
+{
+ int i;
+
+ for (i = 0; i < cpuc->n_events; i++) {
+ if (cpuc->event[i] == event)
+ break;
+ }
+ BUG_ON(i == cpuc->n_events);
+ return cpuc->current_idx[i];
+}
+
+static void sparc_pmu_start(struct perf_event *event, int flags)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int idx = active_event_index(cpuc, event);
+
+ if (flags & PERF_EF_RELOAD) {
+ WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
+ sparc_perf_event_set_period(event, &event->hw, idx);
+ }
+
+ event->hw.state = 0;
+
+ sparc_pmu_enable_event(cpuc, &event->hw, idx);
+}
+
+static void sparc_pmu_stop(struct perf_event *event, int flags)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int idx = active_event_index(cpuc, event);
+
+ if (!(event->hw.state & PERF_HES_STOPPED)) {
+ sparc_pmu_disable_event(cpuc, &event->hw, idx);
+ event->hw.state |= PERF_HES_STOPPED;
+ }
+
+ if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
+ sparc_perf_event_update(event, &event->hw, idx);
+ event->hw.state |= PERF_HES_UPTODATE;
+ }
+}
+
+static void sparc_pmu_del(struct perf_event *event, int _flags)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ unsigned long flags;
+ int i;
+
+ local_irq_save(flags);
+
+ for (i = 0; i < cpuc->n_events; i++) {
+ if (event == cpuc->event[i]) {
+ /* Absorb the final count and turn off the
+ * event.
+ */
+ sparc_pmu_stop(event, PERF_EF_UPDATE);
+
+ /* Shift remaining entries down into
+ * the existing slot.
+ */
+ while (++i < cpuc->n_events) {
+ cpuc->event[i - 1] = cpuc->event[i];
+ cpuc->events[i - 1] = cpuc->events[i];
+ cpuc->current_idx[i - 1] =
+ cpuc->current_idx[i];
+ }
+
+ perf_event_update_userpage(event);
+
+ cpuc->n_events--;
+ break;
+ }
+ }
+
+ local_irq_restore(flags);
+}
+
+static void sparc_pmu_read(struct perf_event *event)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int idx = active_event_index(cpuc, event);
+ struct hw_perf_event *hwc = &event->hw;
+
+ sparc_perf_event_update(event, hwc, idx);
+}
+
+static atomic_t active_events = ATOMIC_INIT(0);
+static DEFINE_MUTEX(pmc_grab_mutex);
+
+static void perf_stop_nmi_watchdog(void *unused)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int i;
+
+ stop_nmi_watchdog(NULL);
+ for (i = 0; i < sparc_pmu->num_pcrs; i++)
+ cpuc->pcr[i] = pcr_ops->read_pcr(i);
+}
+
+static void perf_event_grab_pmc(void)
+{
+ if (atomic_inc_not_zero(&active_events))
+ return;
+
+ mutex_lock(&pmc_grab_mutex);
+ if (atomic_read(&active_events) == 0) {
+ if (atomic_read(&nmi_active) > 0) {
+ on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
+ BUG_ON(atomic_read(&nmi_active) != 0);
+ }
+ atomic_inc(&active_events);
+ }
+ mutex_unlock(&pmc_grab_mutex);
+}
+
+static void perf_event_release_pmc(void)
+{
+ if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
+ if (atomic_read(&nmi_active) == 0)
+ on_each_cpu(start_nmi_watchdog, NULL, 1);
+ mutex_unlock(&pmc_grab_mutex);
+ }
+}
+
+static const struct perf_event_map *sparc_map_cache_event(u64 config)
+{
+ unsigned int cache_type, cache_op, cache_result;
+ const struct perf_event_map *pmap;
+
+ if (!sparc_pmu->cache_map)
+ return ERR_PTR(-ENOENT);
+
+ cache_type = (config >> 0) & 0xff;
+ if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
+ return ERR_PTR(-EINVAL);
+
+ cache_op = (config >> 8) & 0xff;
+ if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
+ return ERR_PTR(-EINVAL);
+
+ cache_result = (config >> 16) & 0xff;
+ if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
+ return ERR_PTR(-EINVAL);
+
+ pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
+
+ if (pmap->encoding == CACHE_OP_UNSUPPORTED)
+ return ERR_PTR(-ENOENT);
+
+ if (pmap->encoding == CACHE_OP_NONSENSE)
+ return ERR_PTR(-EINVAL);
+
+ return pmap;
+}
+
+static void hw_perf_event_destroy(struct perf_event *event)
+{
+ perf_event_release_pmc();
+}
+
+/* Make sure all events can be scheduled into the hardware at
+ * the same time. This is simplified by the fact that we only
+ * need to support 2 simultaneous HW events.
+ *
+ * As a side effect, the evts[]->hw.idx values will be assigned
+ * on success. These are pending indexes. When the events are
+ * actually programmed into the chip, these values will propagate
+ * to the per-cpu cpuc->current_idx[] slots, see the code in
+ * maybe_change_configuration() for details.
+ */
+static int sparc_check_constraints(struct perf_event **evts,
+ unsigned long *events, int n_ev)
+{
+ u8 msk0 = 0, msk1 = 0;
+ int idx0 = 0;
+
+ /* This case is possible when we are invoked from
+ * hw_perf_group_sched_in().
+ */
+ if (!n_ev)
+ return 0;
+
+ if (n_ev > sparc_pmu->max_hw_events)
+ return -1;
+
+ if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
+ int i;
+
+ for (i = 0; i < n_ev; i++)
+ evts[i]->hw.idx = i;
+ return 0;
+ }
+
+ msk0 = perf_event_get_msk(events[0]);
+ if (n_ev == 1) {
+ if (msk0 & PIC_LOWER)
+ idx0 = 1;
+ goto success;
+ }
+ BUG_ON(n_ev != 2);
+ msk1 = perf_event_get_msk(events[1]);
+
+ /* If both events can go on any counter, OK. */
+ if (msk0 == (PIC_UPPER | PIC_LOWER) &&
+ msk1 == (PIC_UPPER | PIC_LOWER))
+ goto success;
+
+ /* If one event is limited to a specific counter,
+ * and the other can go on both, OK.
+ */
+ if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
+ msk1 == (PIC_UPPER | PIC_LOWER)) {
+ if (msk0 & PIC_LOWER)
+ idx0 = 1;
+ goto success;
+ }
+
+ if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
+ msk0 == (PIC_UPPER | PIC_LOWER)) {
+ if (msk1 & PIC_UPPER)
+ idx0 = 1;
+ goto success;
+ }
+
+ /* If the events are fixed to different counters, OK. */
+ if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
+ (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
+ if (msk0 & PIC_LOWER)
+ idx0 = 1;
+ goto success;
+ }
+
+ /* Otherwise, there is a conflict. */
+ return -1;
+
+success:
+ evts[0]->hw.idx = idx0;
+ if (n_ev == 2)
+ evts[1]->hw.idx = idx0 ^ 1;
+ return 0;
+}
+
+static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
+{
+ int eu = 0, ek = 0, eh = 0;
+ struct perf_event *event;
+ int i, n, first;
+
+ if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
+ return 0;
+
+ n = n_prev + n_new;
+ if (n <= 1)
+ return 0;
+
+ first = 1;
+ for (i = 0; i < n; i++) {
+ event = evts[i];
+ if (first) {
+ eu = event->attr.exclude_user;
+ ek = event->attr.exclude_kernel;
+ eh = event->attr.exclude_hv;
+ first = 0;
+ } else if (event->attr.exclude_user != eu ||
+ event->attr.exclude_kernel != ek ||
+ event->attr.exclude_hv != eh) {
+ return -EAGAIN;
+ }
+ }
+
+ return 0;
+}
+
+static int collect_events(struct perf_event *group, int max_count,
+ struct perf_event *evts[], unsigned long *events,
+ int *current_idx)
+{
+ struct perf_event *event;
+ int n = 0;
+
+ if (!is_software_event(group)) {
+ if (n >= max_count)
+ return -1;
+ evts[n] = group;
+ events[n] = group->hw.event_base;
+ current_idx[n++] = PIC_NO_INDEX;
+ }
+ list_for_each_entry(event, &group->sibling_list, group_entry) {
+ if (!is_software_event(event) &&
+ event->state != PERF_EVENT_STATE_OFF) {
+ if (n >= max_count)
+ return -1;
+ evts[n] = event;
+ events[n] = event->hw.event_base;
+ current_idx[n++] = PIC_NO_INDEX;
+ }
+ }
+ return n;
+}
+
+static int sparc_pmu_add(struct perf_event *event, int ef_flags)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int n0, ret = -EAGAIN;
+ unsigned long flags;
+
+ local_irq_save(flags);
+
+ n0 = cpuc->n_events;
+ if (n0 >= sparc_pmu->max_hw_events)
+ goto out;
+
+ cpuc->event[n0] = event;
+ cpuc->events[n0] = event->hw.event_base;
+ cpuc->current_idx[n0] = PIC_NO_INDEX;
+
+ event->hw.state = PERF_HES_UPTODATE;
+ if (!(ef_flags & PERF_EF_START))
+ event->hw.state |= PERF_HES_STOPPED;
+
+ /*
+ * If group events scheduling transaction was started,
+ * skip the schedulability test here, it will be performed
+ * at commit time(->commit_txn) as a whole
+ */
+ if (cpuc->group_flag & PERF_EVENT_TXN)
+ goto nocheck;
+
+ if (check_excludes(cpuc->event, n0, 1))
+ goto out;
+ if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
+ goto out;
+
+nocheck:
+ cpuc->n_events++;
+ cpuc->n_added++;
+
+ ret = 0;
+out:
+ local_irq_restore(flags);
+ return ret;
+}
+
+static int sparc_pmu_event_init(struct perf_event *event)
+{
+ struct perf_event_attr *attr = &event->attr;
+ struct perf_event *evts[MAX_HWEVENTS];
+ struct hw_perf_event *hwc = &event->hw;
+ unsigned long events[MAX_HWEVENTS];
+ int current_idx_dmy[MAX_HWEVENTS];
+ const struct perf_event_map *pmap;
+ int n;
+
+ if (atomic_read(&nmi_active) < 0)
+ return -ENODEV;
+
+ /* does not support taken branch sampling */
+ if (has_branch_stack(event))
+ return -EOPNOTSUPP;
+
+ switch (attr->type) {
+ case PERF_TYPE_HARDWARE:
+ if (attr->config >= sparc_pmu->max_events)
+ return -EINVAL;
+ pmap = sparc_pmu->event_map(attr->config);
+ break;
+
+ case PERF_TYPE_HW_CACHE:
+ pmap = sparc_map_cache_event(attr->config);
+ if (IS_ERR(pmap))
+ return PTR_ERR(pmap);
+ break;
+
+ case PERF_TYPE_RAW:
+ pmap = NULL;
+ break;
+
+ default:
+ return -ENOENT;
+
+ }
+
+ if (pmap) {
+ hwc->event_base = perf_event_encode(pmap);
+ } else {
+ /*
+ * User gives us "(encoding << 16) | pic_mask" for
+ * PERF_TYPE_RAW events.
+ */
+ hwc->event_base = attr->config;
+ }
+
+ /* We save the enable bits in the config_base. */
+ hwc->config_base = sparc_pmu->irq_bit;
+ if (!attr->exclude_user)
+ hwc->config_base |= sparc_pmu->user_bit;
+ if (!attr->exclude_kernel)
+ hwc->config_base |= sparc_pmu->priv_bit;
+ if (!attr->exclude_hv)
+ hwc->config_base |= sparc_pmu->hv_bit;
+
+ n = 0;
+ if (event->group_leader != event) {
+ n = collect_events(event->group_leader,
+ sparc_pmu->max_hw_events - 1,
+ evts, events, current_idx_dmy);
+ if (n < 0)
+ return -EINVAL;
+ }
+ events[n] = hwc->event_base;
+ evts[n] = event;
+
+ if (check_excludes(evts, n, 1))
+ return -EINVAL;
+
+ if (sparc_check_constraints(evts, events, n + 1))
+ return -EINVAL;
+
+ hwc->idx = PIC_NO_INDEX;
+
+ /* Try to do all error checking before this point, as unwinding
+ * state after grabbing the PMC is difficult.
+ */
+ perf_event_grab_pmc();
+ event->destroy = hw_perf_event_destroy;
+
+ if (!hwc->sample_period) {
+ hwc->sample_period = MAX_PERIOD;
+ hwc->last_period = hwc->sample_period;
+ local64_set(&hwc->period_left, hwc->sample_period);
+ }
+
+ return 0;
+}
+
+/*
+ * Start group events scheduling transaction
+ * Set the flag to make pmu::enable() not perform the
+ * schedulability test, it will be performed at commit time
+ */
+static void sparc_pmu_start_txn(struct pmu *pmu)
+{
+ struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+
+ perf_pmu_disable(pmu);
+ cpuhw->group_flag |= PERF_EVENT_TXN;
+}
+
+/*
+ * Stop group events scheduling transaction
+ * Clear the flag and pmu::enable() will perform the
+ * schedulability test.
+ */
+static void sparc_pmu_cancel_txn(struct pmu *pmu)
+{
+ struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+
+ cpuhw->group_flag &= ~PERF_EVENT_TXN;
+ perf_pmu_enable(pmu);
+}
+
+/*
+ * Commit group events scheduling transaction
+ * Perform the group schedulability test as a whole
+ * Return 0 if success
+ */
+static int sparc_pmu_commit_txn(struct pmu *pmu)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int n;
+
+ if (!sparc_pmu)
+ return -EINVAL;
+
+ cpuc = this_cpu_ptr(&cpu_hw_events);
+ n = cpuc->n_events;
+ if (check_excludes(cpuc->event, 0, n))
+ return -EINVAL;
+ if (sparc_check_constraints(cpuc->event, cpuc->events, n))
+ return -EAGAIN;
+
+ cpuc->group_flag &= ~PERF_EVENT_TXN;
+ perf_pmu_enable(pmu);
+ return 0;
+}
+
+static struct pmu pmu = {
+ .pmu_enable = sparc_pmu_enable,
+ .pmu_disable = sparc_pmu_disable,
+ .event_init = sparc_pmu_event_init,
+ .add = sparc_pmu_add,
+ .del = sparc_pmu_del,
+ .start = sparc_pmu_start,
+ .stop = sparc_pmu_stop,
+ .read = sparc_pmu_read,
+ .start_txn = sparc_pmu_start_txn,
+ .cancel_txn = sparc_pmu_cancel_txn,
+ .commit_txn = sparc_pmu_commit_txn,
+};
+
+void perf_event_print_debug(void)
+{
+ unsigned long flags;
+ int cpu, i;
+
+ if (!sparc_pmu)
+ return;
+
+ local_irq_save(flags);
+
+ cpu = smp_processor_id();
+
+ pr_info("\n");
+ for (i = 0; i < sparc_pmu->num_pcrs; i++)
+ pr_info("CPU#%d: PCR%d[%016llx]\n",
+ cpu, i, pcr_ops->read_pcr(i));
+ for (i = 0; i < sparc_pmu->num_pic_regs; i++)
+ pr_info("CPU#%d: PIC%d[%016llx]\n",
+ cpu, i, pcr_ops->read_pic(i));
+
+ local_irq_restore(flags);
+}
+
+static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
+ unsigned long cmd, void *__args)
+{
+ struct die_args *args = __args;
+ struct perf_sample_data data;
+ struct cpu_hw_events *cpuc;
+ struct pt_regs *regs;
+ int i;
+
+ if (!atomic_read(&active_events))
+ return NOTIFY_DONE;
+
+ switch (cmd) {
+ case DIE_NMI:
+ break;
+
+ default:
+ return NOTIFY_DONE;
+ }
+
+ regs = args->regs;
+
+ cpuc = this_cpu_ptr(&cpu_hw_events);
+
+ /* If the PMU has the TOE IRQ enable bits, we need to do a
+ * dummy write to the %pcr to clear the overflow bits and thus
+ * the interrupt.
+ *
+ * Do this before we peek at the counters to determine
+ * overflow so we don't lose any events.
+ */
+ if (sparc_pmu->irq_bit &&
+ sparc_pmu->num_pcrs == 1)
+ pcr_ops->write_pcr(0, cpuc->pcr[0]);
+
+ for (i = 0; i < cpuc->n_events; i++) {
+ struct perf_event *event = cpuc->event[i];
+ int idx = cpuc->current_idx[i];
+ struct hw_perf_event *hwc;
+ u64 val;
+
+ if (sparc_pmu->irq_bit &&
+ sparc_pmu->num_pcrs > 1)
+ pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
+
+ hwc = &event->hw;
+ val = sparc_perf_event_update(event, hwc, idx);
+ if (val & (1ULL << 31))
+ continue;
+
+ perf_sample_data_init(&data, 0, hwc->last_period);
+ if (!sparc_perf_event_set_period(event, hwc, idx))
+ continue;
+
+ if (perf_event_overflow(event, &data, regs))
+ sparc_pmu_stop(event, 0);
+ }
+
+ return NOTIFY_STOP;
+}
+
+static __read_mostly struct notifier_block perf_event_nmi_notifier = {
+ .notifier_call = perf_event_nmi_handler,
+};
+
+static bool __init supported_pmu(void)
+{
+ if (!strcmp(sparc_pmu_type, "ultra3") ||
+ !strcmp(sparc_pmu_type, "ultra3+") ||
+ !strcmp(sparc_pmu_type, "ultra3i") ||
+ !strcmp(sparc_pmu_type, "ultra4+")) {
+ sparc_pmu = &ultra3_pmu;
+ return true;
+ }
+ if (!strcmp(sparc_pmu_type, "niagara")) {
+ sparc_pmu = &niagara1_pmu;
+ return true;
+ }
+ if (!strcmp(sparc_pmu_type, "niagara2") ||
+ !strcmp(sparc_pmu_type, "niagara3")) {
+ sparc_pmu = &niagara2_pmu;
+ return true;
+ }
+ if (!strcmp(sparc_pmu_type, "niagara4") ||
+ !strcmp(sparc_pmu_type, "niagara5")) {
+ sparc_pmu = &niagara4_pmu;
+ return true;
+ }
+ if (!strcmp(sparc_pmu_type, "sparc-m7")) {
+ sparc_pmu = &sparc_m7_pmu;
+ return true;
+ }
+ return false;
+}
+
+static int __init init_hw_perf_events(void)
+{
+ int err;
+
+ pr_info("Performance events: ");
+
+ err = pcr_arch_init();
+ if (err || !supported_pmu()) {
+ pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
+ return 0;
+ }
+
+ pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
+
+ perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
+ register_die_notifier(&perf_event_nmi_notifier);
+
+ return 0;
+}
+pure_initcall(init_hw_perf_events);
+
+void perf_callchain_kernel(struct perf_callchain_entry *entry,
+ struct pt_regs *regs)
+{
+ unsigned long ksp, fp;
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+ int graph = 0;
+#endif
+
+ stack_trace_flush();
+
+ perf_callchain_store(entry, regs->tpc);
+
+ ksp = regs->u_regs[UREG_I6];
+ fp = ksp + STACK_BIAS;
+ do {
+ struct sparc_stackf *sf;
+ struct pt_regs *regs;
+ unsigned long pc;
+
+ if (!kstack_valid(current_thread_info(), fp))
+ break;
+
+ sf = (struct sparc_stackf *) fp;
+ regs = (struct pt_regs *) (sf + 1);
+
+ if (kstack_is_trap_frame(current_thread_info(), regs)) {
+ if (user_mode(regs))
+ break;
+ pc = regs->tpc;
+ fp = regs->u_regs[UREG_I6] + STACK_BIAS;
+ } else {
+ pc = sf->callers_pc;
+ fp = (unsigned long)sf->fp + STACK_BIAS;
+ }
+ perf_callchain_store(entry, pc);
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+ if ((pc + 8UL) == (unsigned long) &return_to_handler) {
+ int index = current->curr_ret_stack;
+ if (current->ret_stack && index >= graph) {
+ pc = current->ret_stack[index - graph].ret;
+ perf_callchain_store(entry, pc);
+ graph++;
+ }
+ }
+#endif
+ } while (entry->nr < PERF_MAX_STACK_DEPTH);
+}
+
+static void perf_callchain_user_64(struct perf_callchain_entry *entry,
+ struct pt_regs *regs)
+{
+ unsigned long ufp;
+
+ ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
+ do {
+ struct sparc_stackf __user *usf;
+ struct sparc_stackf sf;
+ unsigned long pc;
+
+ usf = (struct sparc_stackf __user *)ufp;
+ if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
+ break;
+
+ pc = sf.callers_pc;
+ ufp = (unsigned long)sf.fp + STACK_BIAS;
+ perf_callchain_store(entry, pc);
+ } while (entry->nr < PERF_MAX_STACK_DEPTH);
+}
+
+static void perf_callchain_user_32(struct perf_callchain_entry *entry,
+ struct pt_regs *regs)
+{
+ unsigned long ufp;
+
+ ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
+ do {
+ unsigned long pc;
+
+ if (thread32_stack_is_64bit(ufp)) {
+ struct sparc_stackf __user *usf;
+ struct sparc_stackf sf;
+
+ ufp += STACK_BIAS;
+ usf = (struct sparc_stackf __user *)ufp;
+ if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
+ break;
+ pc = sf.callers_pc & 0xffffffff;
+ ufp = ((unsigned long) sf.fp) & 0xffffffff;
+ } else {
+ struct sparc_stackf32 __user *usf;
+ struct sparc_stackf32 sf;
+ usf = (struct sparc_stackf32 __user *)ufp;
+ if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
+ break;
+ pc = sf.callers_pc;
+ ufp = (unsigned long)sf.fp;
+ }
+ perf_callchain_store(entry, pc);
+ } while (entry->nr < PERF_MAX_STACK_DEPTH);
+}
+
+void
+perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
+{
+ perf_callchain_store(entry, regs->tpc);
+
+ if (!current->mm)
+ return;
+
+ flushw_user();
+ if (test_thread_flag(TIF_32BIT))
+ perf_callchain_user_32(entry, regs);
+ else
+ perf_callchain_user_64(entry, regs);
+}