diff options
Diffstat (limited to 'block/bfq.h')
-rw-r--r-- | block/bfq.h | 807 |
1 files changed, 807 insertions, 0 deletions
diff --git a/block/bfq.h b/block/bfq.h new file mode 100644 index 000000000..0ea164d41 --- /dev/null +++ b/block/bfq.h @@ -0,0 +1,807 @@ +/* + * BFQ-v7r8 for 4.0.0: data structures and common functions prototypes. + * + * Based on ideas and code from CFQ: + * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> + * + * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> + * Paolo Valente <paolo.valente@unimore.it> + * + * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> + */ + +#ifndef _BFQ_H +#define _BFQ_H + +#include <linux/blktrace_api.h> +#include <linux/hrtimer.h> +#include <linux/ioprio.h> +#include <linux/rbtree.h> + +#define BFQ_IOPRIO_CLASSES 3 +#define BFQ_CL_IDLE_TIMEOUT (HZ/5) + +#define BFQ_MIN_WEIGHT 1 +#define BFQ_MAX_WEIGHT 1000 + +#define BFQ_DEFAULT_QUEUE_IOPRIO 4 + +#define BFQ_DEFAULT_GRP_WEIGHT 10 +#define BFQ_DEFAULT_GRP_IOPRIO 0 +#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE + +struct bfq_entity; + +/** + * struct bfq_service_tree - per ioprio_class service tree. + * @active: tree for active entities (i.e., those backlogged). + * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i). + * @first_idle: idle entity with minimum F_i. + * @last_idle: idle entity with maximum F_i. + * @vtime: scheduler virtual time. + * @wsum: scheduler weight sum; active and idle entities contribute to it. + * + * Each service tree represents a B-WF2Q+ scheduler on its own. Each + * ioprio_class has its own independent scheduler, and so its own + * bfq_service_tree. All the fields are protected by the queue lock + * of the containing bfqd. + */ +struct bfq_service_tree { + struct rb_root active; + struct rb_root idle; + + struct bfq_entity *first_idle; + struct bfq_entity *last_idle; + + u64 vtime; + unsigned long wsum; +}; + +/** + * struct bfq_sched_data - multi-class scheduler. + * @in_service_entity: entity in service. + * @next_in_service: head-of-the-line entity in the scheduler. + * @service_tree: array of service trees, one per ioprio_class. + * + * bfq_sched_data is the basic scheduler queue. It supports three + * ioprio_classes, and can be used either as a toplevel queue or as + * an intermediate queue on a hierarchical setup. + * @next_in_service points to the active entity of the sched_data + * service trees that will be scheduled next. + * + * The supported ioprio_classes are the same as in CFQ, in descending + * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. + * Requests from higher priority queues are served before all the + * requests from lower priority queues; among requests of the same + * queue requests are served according to B-WF2Q+. + * All the fields are protected by the queue lock of the containing bfqd. + */ +struct bfq_sched_data { + struct bfq_entity *in_service_entity; + struct bfq_entity *next_in_service; + struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; +}; + +/** + * struct bfq_weight_counter - counter of the number of all active entities + * with a given weight. + * @weight: weight of the entities that this counter refers to. + * @num_active: number of active entities with this weight. + * @weights_node: weights tree member (see bfq_data's @queue_weights_tree + * and @group_weights_tree). + */ +struct bfq_weight_counter { + short int weight; + unsigned int num_active; + struct rb_node weights_node; +}; + +/** + * struct bfq_entity - schedulable entity. + * @rb_node: service_tree member. + * @weight_counter: pointer to the weight counter associated with this entity. + * @on_st: flag, true if the entity is on a tree (either the active or + * the idle one of its service_tree). + * @finish: B-WF2Q+ finish timestamp (aka F_i). + * @start: B-WF2Q+ start timestamp (aka S_i). + * @tree: tree the entity is enqueued into; %NULL if not on a tree. + * @min_start: minimum start time of the (active) subtree rooted at + * this entity; used for O(log N) lookups into active trees. + * @service: service received during the last round of service. + * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight. + * @weight: weight of the queue + * @parent: parent entity, for hierarchical scheduling. + * @my_sched_data: for non-leaf nodes in the cgroup hierarchy, the + * associated scheduler queue, %NULL on leaf nodes. + * @sched_data: the scheduler queue this entity belongs to. + * @ioprio: the ioprio in use. + * @new_weight: when a weight change is requested, the new weight value. + * @orig_weight: original weight, used to implement weight boosting + * @new_ioprio: when an ioprio change is requested, the new ioprio value. + * @ioprio_class: the ioprio_class in use. + * @new_ioprio_class: when an ioprio_class change is requested, the new + * ioprio_class value. + * @ioprio_changed: flag, true when the user requested a weight, ioprio or + * ioprio_class change. + * + * A bfq_entity is used to represent either a bfq_queue (leaf node in the + * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each + * entity belongs to the sched_data of the parent group in the cgroup + * hierarchy. Non-leaf entities have also their own sched_data, stored + * in @my_sched_data. + * + * Each entity stores independently its priority values; this would + * allow different weights on different devices, but this + * functionality is not exported to userspace by now. Priorities and + * weights are updated lazily, first storing the new values into the + * new_* fields, then setting the @ioprio_changed flag. As soon as + * there is a transition in the entity state that allows the priority + * update to take place the effective and the requested priority + * values are synchronized. + * + * Unless cgroups are used, the weight value is calculated from the + * ioprio to export the same interface as CFQ. When dealing with + * ``well-behaved'' queues (i.e., queues that do not spend too much + * time to consume their budget and have true sequential behavior, and + * when there are no external factors breaking anticipation) the + * relative weights at each level of the cgroups hierarchy should be + * guaranteed. All the fields are protected by the queue lock of the + * containing bfqd. + */ +struct bfq_entity { + struct rb_node rb_node; + struct bfq_weight_counter *weight_counter; + + int on_st; + + u64 finish; + u64 start; + + struct rb_root *tree; + + u64 min_start; + + unsigned long service, budget; + unsigned short weight, new_weight; + unsigned short orig_weight; + + struct bfq_entity *parent; + + struct bfq_sched_data *my_sched_data; + struct bfq_sched_data *sched_data; + + unsigned short ioprio, new_ioprio; + unsigned short ioprio_class, new_ioprio_class; + + int ioprio_changed; +}; + +struct bfq_group; + +/** + * struct bfq_queue - leaf schedulable entity. + * @ref: reference counter. + * @bfqd: parent bfq_data. + * @new_bfqq: shared bfq_queue if queue is cooperating with + * one or more other queues. + * @pos_node: request-position tree member (see bfq_data's @rq_pos_tree). + * @pos_root: request-position tree root (see bfq_data's @rq_pos_tree). + * @sort_list: sorted list of pending requests. + * @next_rq: if fifo isn't expired, next request to serve. + * @queued: nr of requests queued in @sort_list. + * @allocated: currently allocated requests. + * @meta_pending: pending metadata requests. + * @fifo: fifo list of requests in sort_list. + * @entity: entity representing this queue in the scheduler. + * @max_budget: maximum budget allowed from the feedback mechanism. + * @budget_timeout: budget expiration (in jiffies). + * @dispatched: number of requests on the dispatch list or inside driver. + * @flags: status flags. + * @bfqq_list: node for active/idle bfqq list inside our bfqd. + * @burst_list_node: node for the device's burst list. + * @seek_samples: number of seeks sampled + * @seek_total: sum of the distances of the seeks sampled + * @seek_mean: mean seek distance + * @last_request_pos: position of the last request enqueued + * @requests_within_timer: number of consecutive pairs of request completion + * and arrival, such that the queue becomes idle + * after the completion, but the next request arrives + * within an idle time slice; used only if the queue's + * IO_bound has been cleared. + * @pid: pid of the process owning the queue, used for logging purposes. + * @last_wr_start_finish: start time of the current weight-raising period if + * the @bfq-queue is being weight-raised, otherwise + * finish time of the last weight-raising period + * @wr_cur_max_time: current max raising time for this queue + * @soft_rt_next_start: minimum time instant such that, only if a new + * request is enqueued after this time instant in an + * idle @bfq_queue with no outstanding requests, then + * the task associated with the queue it is deemed as + * soft real-time (see the comments to the function + * bfq_bfqq_softrt_next_start()) + * @last_idle_bklogged: time of the last transition of the @bfq_queue from + * idle to backlogged + * @service_from_backlogged: cumulative service received from the @bfq_queue + * since the last transition from idle to + * backlogged + * @bic: pointer to the bfq_io_cq owning the bfq_queue, set to %NULL if the + * queue is shared + * + * A bfq_queue is a leaf request queue; it can be associated with an + * io_context or more, if it is async or shared between cooperating + * processes. @cgroup holds a reference to the cgroup, to be sure that it + * does not disappear while a bfqq still references it (mostly to avoid + * races between request issuing and task migration followed by cgroup + * destruction). + * All the fields are protected by the queue lock of the containing bfqd. + */ +struct bfq_queue { + atomic_t ref; + struct bfq_data *bfqd; + + /* fields for cooperating queues handling */ + struct bfq_queue *new_bfqq; + struct rb_node pos_node; + struct rb_root *pos_root; + + struct rb_root sort_list; + struct request *next_rq; + int queued[2]; + int allocated[2]; + int meta_pending; + struct list_head fifo; + + struct bfq_entity entity; + + unsigned long max_budget; + unsigned long budget_timeout; + + int dispatched; + + unsigned int flags; + + struct list_head bfqq_list; + + struct hlist_node burst_list_node; + + unsigned int seek_samples; + u64 seek_total; + sector_t seek_mean; + sector_t last_request_pos; + + unsigned int requests_within_timer; + + pid_t pid; + struct bfq_io_cq *bic; + + /* weight-raising fields */ + unsigned long wr_cur_max_time; + unsigned long soft_rt_next_start; + unsigned long last_wr_start_finish; + unsigned int wr_coeff; + unsigned long last_idle_bklogged; + unsigned long service_from_backlogged; +}; + +/** + * struct bfq_ttime - per process thinktime stats. + * @ttime_total: total process thinktime + * @ttime_samples: number of thinktime samples + * @ttime_mean: average process thinktime + */ +struct bfq_ttime { + unsigned long last_end_request; + + unsigned long ttime_total; + unsigned long ttime_samples; + unsigned long ttime_mean; +}; + +/** + * struct bfq_io_cq - per (request_queue, io_context) structure. + * @icq: associated io_cq structure + * @bfqq: array of two process queues, the sync and the async + * @ttime: associated @bfq_ttime struct + * @wr_time_left: snapshot of the time left before weight raising ends + * for the sync queue associated to this process; this + * snapshot is taken to remember this value while the weight + * raising is suspended because the queue is merged with a + * shared queue, and is used to set @raising_cur_max_time + * when the queue is split from the shared queue and its + * weight is raised again + * @saved_idle_window: same purpose as the previous field for the idle + * window + * @saved_IO_bound: same purpose as the previous two fields for the I/O + * bound classification of a queue + * @saved_in_large_burst: same purpose as the previous fields for the + * value of the field keeping the queue's belonging + * to a large burst + * @was_in_burst_list: true if the queue belonged to a burst list + * before its merge with another cooperating queue + * @cooperations: counter of consecutive successful queue merges underwent + * by any of the process' @bfq_queues + * @failed_cooperations: counter of consecutive failed queue merges of any + * of the process' @bfq_queues + */ +struct bfq_io_cq { + struct io_cq icq; /* must be the first member */ + struct bfq_queue *bfqq[2]; + struct bfq_ttime ttime; + int ioprio; + + unsigned int wr_time_left; + bool saved_idle_window; + bool saved_IO_bound; + + bool saved_in_large_burst; + bool was_in_burst_list; + + unsigned int cooperations; + unsigned int failed_cooperations; +}; + +enum bfq_device_speed { + BFQ_BFQD_FAST, + BFQ_BFQD_SLOW, +}; + +/** + * struct bfq_data - per device data structure. + * @queue: request queue for the managed device. + * @root_group: root bfq_group for the device. + * @rq_pos_tree: rbtree sorted by next_request position, used when + * determining if two or more queues have interleaving + * requests (see bfq_close_cooperator()). + * @active_numerous_groups: number of bfq_groups containing more than one + * active @bfq_entity. + * @queue_weights_tree: rbtree of weight counters of @bfq_queues, sorted by + * weight. Used to keep track of whether all @bfq_queues + * have the same weight. The tree contains one counter + * for each distinct weight associated to some active + * and not weight-raised @bfq_queue (see the comments to + * the functions bfq_weights_tree_[add|remove] for + * further details). + * @group_weights_tree: rbtree of non-queue @bfq_entity weight counters, sorted + * by weight. Used to keep track of whether all + * @bfq_groups have the same weight. The tree contains + * one counter for each distinct weight associated to + * some active @bfq_group (see the comments to the + * functions bfq_weights_tree_[add|remove] for further + * details). + * @busy_queues: number of bfq_queues containing requests (including the + * queue in service, even if it is idling). + * @busy_in_flight_queues: number of @bfq_queues containing pending or + * in-flight requests, plus the @bfq_queue in + * service, even if idle but waiting for the + * possible arrival of its next sync request. This + * field is updated only if the device is rotational, + * but used only if the device is also NCQ-capable. + * The reason why the field is updated also for non- + * NCQ-capable rotational devices is related to the + * fact that the value of @hw_tag may be set also + * later than when busy_in_flight_queues may need to + * be incremented for the first time(s). Taking also + * this possibility into account, to avoid unbalanced + * increments/decrements, would imply more overhead + * than just updating busy_in_flight_queues + * regardless of the value of @hw_tag. + * @const_seeky_busy_in_flight_queues: number of constantly-seeky @bfq_queues + * (that is, seeky queues that expired + * for budget timeout at least once) + * containing pending or in-flight + * requests, including the in-service + * @bfq_queue if constantly seeky. This + * field is updated only if the device + * is rotational, but used only if the + * device is also NCQ-capable (see the + * comments to @busy_in_flight_queues). + * @wr_busy_queues: number of weight-raised busy @bfq_queues. + * @queued: number of queued requests. + * @rq_in_driver: number of requests dispatched and waiting for completion. + * @sync_flight: number of sync requests in the driver. + * @max_rq_in_driver: max number of reqs in driver in the last + * @hw_tag_samples completed requests. + * @hw_tag_samples: nr of samples used to calculate hw_tag. + * @hw_tag: flag set to one if the driver is showing a queueing behavior. + * @budgets_assigned: number of budgets assigned. + * @idle_slice_timer: timer set when idling for the next sequential request + * from the queue in service. + * @unplug_work: delayed work to restart dispatching on the request queue. + * @in_service_queue: bfq_queue in service. + * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue. + * @last_position: on-disk position of the last served request. + * @last_budget_start: beginning of the last budget. + * @last_idling_start: beginning of the last idle slice. + * @peak_rate: peak transfer rate observed for a budget. + * @peak_rate_samples: number of samples used to calculate @peak_rate. + * @bfq_max_budget: maximum budget allotted to a bfq_queue before + * rescheduling. + * @group_list: list of all the bfq_groups active on the device. + * @active_list: list of all the bfq_queues active on the device. + * @idle_list: list of all the bfq_queues idle on the device. + * @bfq_fifo_expire: timeout for async/sync requests; when it expires + * requests are served in fifo order. + * @bfq_back_penalty: weight of backward seeks wrt forward ones. + * @bfq_back_max: maximum allowed backward seek. + * @bfq_slice_idle: maximum idling time. + * @bfq_user_max_budget: user-configured max budget value + * (0 for auto-tuning). + * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to + * async queues. + * @bfq_timeout: timeout for bfq_queues to consume their budget; used to + * to prevent seeky queues to impose long latencies to well + * behaved ones (this also implies that seeky queues cannot + * receive guarantees in the service domain; after a timeout + * they are charged for the whole allocated budget, to try + * to preserve a behavior reasonably fair among them, but + * without service-domain guarantees). + * @bfq_coop_thresh: number of queue merges after which a @bfq_queue is + * no more granted any weight-raising. + * @bfq_failed_cooperations: number of consecutive failed cooperation + * chances after which weight-raising is restored + * to a queue subject to more than bfq_coop_thresh + * queue merges. + * @bfq_requests_within_timer: number of consecutive requests that must be + * issued within the idle time slice to set + * again idling to a queue which was marked as + * non-I/O-bound (see the definition of the + * IO_bound flag for further details). + * @last_ins_in_burst: last time at which a queue entered the current + * burst of queues being activated shortly after + * each other; for more details about this and the + * following parameters related to a burst of + * activations, see the comments to the function + * @bfq_handle_burst. + * @bfq_burst_interval: reference time interval used to decide whether a + * queue has been activated shortly after + * @last_ins_in_burst. + * @burst_size: number of queues in the current burst of queue activations. + * @bfq_large_burst_thresh: maximum burst size above which the current + * queue-activation burst is deemed as 'large'. + * @large_burst: true if a large queue-activation burst is in progress. + * @burst_list: head of the burst list (as for the above fields, more details + * in the comments to the function bfq_handle_burst). + * @low_latency: if set to true, low-latency heuristics are enabled. + * @bfq_wr_coeff: maximum factor by which the weight of a weight-raised + * queue is multiplied. + * @bfq_wr_max_time: maximum duration of a weight-raising period (jiffies). + * @bfq_wr_rt_max_time: maximum duration for soft real-time processes. + * @bfq_wr_min_idle_time: minimum idle period after which weight-raising + * may be reactivated for a queue (in jiffies). + * @bfq_wr_min_inter_arr_async: minimum period between request arrivals + * after which weight-raising may be + * reactivated for an already busy queue + * (in jiffies). + * @bfq_wr_max_softrt_rate: max service-rate for a soft real-time queue, + * sectors per seconds. + * @RT_prod: cached value of the product R*T used for computing the maximum + * duration of the weight raising automatically. + * @device_speed: device-speed class for the low-latency heuristic. + * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions. + * + * All the fields are protected by the @queue lock. + */ +struct bfq_data { + struct request_queue *queue; + + struct bfq_group *root_group; + struct rb_root rq_pos_tree; + +#ifdef CONFIG_CGROUP_BFQIO + int active_numerous_groups; +#endif + + struct rb_root queue_weights_tree; + struct rb_root group_weights_tree; + + int busy_queues; + int busy_in_flight_queues; + int const_seeky_busy_in_flight_queues; + int wr_busy_queues; + int queued; + int rq_in_driver; + int sync_flight; + + int max_rq_in_driver; + int hw_tag_samples; + int hw_tag; + + int budgets_assigned; + + struct timer_list idle_slice_timer; + struct work_struct unplug_work; + + struct bfq_queue *in_service_queue; + struct bfq_io_cq *in_service_bic; + + sector_t last_position; + + ktime_t last_budget_start; + ktime_t last_idling_start; + int peak_rate_samples; + u64 peak_rate; + unsigned long bfq_max_budget; + + struct hlist_head group_list; + struct list_head active_list; + struct list_head idle_list; + + unsigned int bfq_fifo_expire[2]; + unsigned int bfq_back_penalty; + unsigned int bfq_back_max; + unsigned int bfq_slice_idle; + u64 bfq_class_idle_last_service; + + unsigned int bfq_user_max_budget; + unsigned int bfq_max_budget_async_rq; + unsigned int bfq_timeout[2]; + + unsigned int bfq_coop_thresh; + unsigned int bfq_failed_cooperations; + unsigned int bfq_requests_within_timer; + + unsigned long last_ins_in_burst; + unsigned long bfq_burst_interval; + int burst_size; + unsigned long bfq_large_burst_thresh; + bool large_burst; + struct hlist_head burst_list; + + bool low_latency; + + /* parameters of the low_latency heuristics */ + unsigned int bfq_wr_coeff; + unsigned int bfq_wr_max_time; + unsigned int bfq_wr_rt_max_time; + unsigned int bfq_wr_min_idle_time; + unsigned long bfq_wr_min_inter_arr_async; + unsigned int bfq_wr_max_softrt_rate; + u64 RT_prod; + enum bfq_device_speed device_speed; + + struct bfq_queue oom_bfqq; +}; + +enum bfqq_state_flags { + BFQ_BFQQ_FLAG_busy = 0, /* has requests or is in service */ + BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */ + BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */ + BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */ + BFQ_BFQQ_FLAG_idle_window, /* slice idling enabled */ + BFQ_BFQQ_FLAG_sync, /* synchronous queue */ + BFQ_BFQQ_FLAG_budget_new, /* no completion with this budget */ + BFQ_BFQQ_FLAG_IO_bound, /* + * bfqq has timed-out at least once + * having consumed at most 2/10 of + * its budget + */ + BFQ_BFQQ_FLAG_in_large_burst, /* + * bfqq activated in a large burst, + * see comments to bfq_handle_burst. + */ + BFQ_BFQQ_FLAG_constantly_seeky, /* + * bfqq has proved to be slow and + * seeky until budget timeout + */ + BFQ_BFQQ_FLAG_softrt_update, /* + * may need softrt-next-start + * update + */ + BFQ_BFQQ_FLAG_coop, /* bfqq is shared */ + BFQ_BFQQ_FLAG_split_coop, /* shared bfqq will be split */ + BFQ_BFQQ_FLAG_just_split, /* queue has just been split */ +}; + +#define BFQ_BFQQ_FNS(name) \ +static inline void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ +{ \ + (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \ +} \ +static inline void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ +{ \ + (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \ +} \ +static inline int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ +{ \ + return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \ +} + +BFQ_BFQQ_FNS(busy); +BFQ_BFQQ_FNS(wait_request); +BFQ_BFQQ_FNS(must_alloc); +BFQ_BFQQ_FNS(fifo_expire); +BFQ_BFQQ_FNS(idle_window); +BFQ_BFQQ_FNS(sync); +BFQ_BFQQ_FNS(budget_new); +BFQ_BFQQ_FNS(IO_bound); +BFQ_BFQQ_FNS(in_large_burst); +BFQ_BFQQ_FNS(constantly_seeky); +BFQ_BFQQ_FNS(coop); +BFQ_BFQQ_FNS(split_coop); +BFQ_BFQQ_FNS(just_split); +BFQ_BFQQ_FNS(softrt_update); +#undef BFQ_BFQQ_FNS + +/* Logging facilities. */ +#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \ + blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args) + +#define bfq_log(bfqd, fmt, args...) \ + blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) + +/* Expiration reasons. */ +enum bfqq_expiration { + BFQ_BFQQ_TOO_IDLE = 0, /* + * queue has been idling for + * too long + */ + BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */ + BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */ + BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */ +}; + +#ifdef CONFIG_CGROUP_BFQIO +/** + * struct bfq_group - per (device, cgroup) data structure. + * @entity: schedulable entity to insert into the parent group sched_data. + * @sched_data: own sched_data, to contain child entities (they may be + * both bfq_queues and bfq_groups). + * @group_node: node to be inserted into the bfqio_cgroup->group_data + * list of the containing cgroup's bfqio_cgroup. + * @bfqd_node: node to be inserted into the @bfqd->group_list list + * of the groups active on the same device; used for cleanup. + * @bfqd: the bfq_data for the device this group acts upon. + * @async_bfqq: array of async queues for all the tasks belonging to + * the group, one queue per ioprio value per ioprio_class, + * except for the idle class that has only one queue. + * @async_idle_bfqq: async queue for the idle class (ioprio is ignored). + * @my_entity: pointer to @entity, %NULL for the toplevel group; used + * to avoid too many special cases during group creation/ + * migration. + * @active_entities: number of active entities belonging to the group; + * unused for the root group. Used to know whether there + * are groups with more than one active @bfq_entity + * (see the comments to the function + * bfq_bfqq_must_not_expire()). + * + * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup + * there is a set of bfq_groups, each one collecting the lower-level + * entities belonging to the group that are acting on the same device. + * + * Locking works as follows: + * o @group_node is protected by the bfqio_cgroup lock, and is accessed + * via RCU from its readers. + * o @bfqd is protected by the queue lock, RCU is used to access it + * from the readers. + * o All the other fields are protected by the @bfqd queue lock. + */ +struct bfq_group { + struct bfq_entity entity; + struct bfq_sched_data sched_data; + + struct hlist_node group_node; + struct hlist_node bfqd_node; + + void *bfqd; + + struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; + struct bfq_queue *async_idle_bfqq; + + struct bfq_entity *my_entity; + + int active_entities; +}; + +/** + * struct bfqio_cgroup - bfq cgroup data structure. + * @css: subsystem state for bfq in the containing cgroup. + * @online: flag marked when the subsystem is inserted. + * @weight: cgroup weight. + * @ioprio: cgroup ioprio. + * @ioprio_class: cgroup ioprio_class. + * @lock: spinlock that protects @ioprio, @ioprio_class and @group_data. + * @group_data: list containing the bfq_group belonging to this cgroup. + * + * @group_data is accessed using RCU, with @lock protecting the updates, + * @ioprio and @ioprio_class are protected by @lock. + */ +struct bfqio_cgroup { + struct cgroup_subsys_state css; + bool online; + + unsigned short weight, ioprio, ioprio_class; + + spinlock_t lock; + struct hlist_head group_data; +}; +#else +struct bfq_group { + struct bfq_sched_data sched_data; + + struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; + struct bfq_queue *async_idle_bfqq; +}; +#endif + +static inline struct bfq_service_tree * +bfq_entity_service_tree(struct bfq_entity *entity) +{ + struct bfq_sched_data *sched_data = entity->sched_data; + unsigned int idx = entity->ioprio_class - 1; + + BUG_ON(idx >= BFQ_IOPRIO_CLASSES); + BUG_ON(sched_data == NULL); + + return sched_data->service_tree + idx; +} + +static inline struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, + bool is_sync) +{ + return bic->bfqq[is_sync]; +} + +static inline void bic_set_bfqq(struct bfq_io_cq *bic, + struct bfq_queue *bfqq, bool is_sync) +{ + bic->bfqq[is_sync] = bfqq; +} + +static inline struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) +{ + return bic->icq.q->elevator->elevator_data; +} + +/** + * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer. + * @ptr: a pointer to a bfqd. + * @flags: storage for the flags to be saved. + * + * This function allows bfqg->bfqd to be protected by the + * queue lock of the bfqd they reference; the pointer is dereferenced + * under RCU, so the storage for bfqd is assured to be safe as long + * as the RCU read side critical section does not end. After the + * bfqd->queue->queue_lock is taken the pointer is rechecked, to be + * sure that no other writer accessed it. If we raced with a writer, + * the function returns NULL, with the queue unlocked, otherwise it + * returns the dereferenced pointer, with the queue locked. + */ +static inline struct bfq_data *bfq_get_bfqd_locked(void **ptr, + unsigned long *flags) +{ + struct bfq_data *bfqd; + + rcu_read_lock(); + bfqd = rcu_dereference(*(struct bfq_data **)ptr); + + if (bfqd != NULL) { + spin_lock_irqsave(bfqd->queue->queue_lock, *flags); + if (*ptr == bfqd) + goto out; + spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags); + } + + bfqd = NULL; +out: + rcu_read_unlock(); + return bfqd; +} + +static inline void bfq_put_bfqd_unlock(struct bfq_data *bfqd, + unsigned long *flags) +{ + spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags); +} + +static void bfq_check_ioprio_change(struct bfq_io_cq *bic); +static void bfq_put_queue(struct bfq_queue *bfqq); +static void bfq_dispatch_insert(struct request_queue *q, struct request *rq); +static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, + struct bfq_group *bfqg, int is_sync, + struct bfq_io_cq *bic, gfp_t gfp_mask); +static void bfq_end_wr_async_queues(struct bfq_data *bfqd, + struct bfq_group *bfqg); +static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); +static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); + +#endif /* _BFQ_H */ |