diff options
Diffstat (limited to 'drivers/dma/ppc4xx/adma.c')
-rw-r--r-- | drivers/dma/ppc4xx/adma.c | 4649 |
1 files changed, 4649 insertions, 0 deletions
diff --git a/drivers/dma/ppc4xx/adma.c b/drivers/dma/ppc4xx/adma.c new file mode 100644 index 000000000..9217f893b --- /dev/null +++ b/drivers/dma/ppc4xx/adma.c @@ -0,0 +1,4649 @@ +/* + * Copyright (C) 2006-2009 DENX Software Engineering. + * + * Author: Yuri Tikhonov <yur@emcraft.com> + * + * Further porting to arch/powerpc by + * Anatolij Gustschin <agust@denx.de> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * The full GNU General Public License is included in this distribution in the + * file called COPYING. + */ + +/* + * This driver supports the asynchrounous DMA copy and RAID engines available + * on the AMCC PPC440SPe Processors. + * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) + * ADMA driver written by D.Williams. + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/async_tx.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/slab.h> +#include <linux/uaccess.h> +#include <linux/proc_fs.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/of_irq.h> +#include <linux/of_platform.h> +#include <asm/dcr.h> +#include <asm/dcr-regs.h> +#include "adma.h" +#include "../dmaengine.h" + +enum ppc_adma_init_code { + PPC_ADMA_INIT_OK = 0, + PPC_ADMA_INIT_MEMRES, + PPC_ADMA_INIT_MEMREG, + PPC_ADMA_INIT_ALLOC, + PPC_ADMA_INIT_COHERENT, + PPC_ADMA_INIT_CHANNEL, + PPC_ADMA_INIT_IRQ1, + PPC_ADMA_INIT_IRQ2, + PPC_ADMA_INIT_REGISTER +}; + +static char *ppc_adma_errors[] = { + [PPC_ADMA_INIT_OK] = "ok", + [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource", + [PPC_ADMA_INIT_MEMREG] = "failed to request memory region", + [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev " + "structure", + [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for " + "hardware descriptors", + [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel", + [PPC_ADMA_INIT_IRQ1] = "failed to request first irq", + [PPC_ADMA_INIT_IRQ2] = "failed to request second irq", + [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device", +}; + +static enum ppc_adma_init_code +ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM]; + +struct ppc_dma_chan_ref { + struct dma_chan *chan; + struct list_head node; +}; + +/* The list of channels exported by ppc440spe ADMA */ +struct list_head +ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list); + +/* This flag is set when want to refetch the xor chain in the interrupt + * handler + */ +static u32 do_xor_refetch; + +/* Pointer to DMA0, DMA1 CP/CS FIFO */ +static void *ppc440spe_dma_fifo_buf; + +/* Pointers to last submitted to DMA0, DMA1 CDBs */ +static struct ppc440spe_adma_desc_slot *chan_last_sub[3]; +static struct ppc440spe_adma_desc_slot *chan_first_cdb[3]; + +/* Pointer to last linked and submitted xor CB */ +static struct ppc440spe_adma_desc_slot *xor_last_linked; +static struct ppc440spe_adma_desc_slot *xor_last_submit; + +/* This array is used in data-check operations for storing a pattern */ +static char ppc440spe_qword[16]; + +static atomic_t ppc440spe_adma_err_irq_ref; +static dcr_host_t ppc440spe_mq_dcr_host; +static unsigned int ppc440spe_mq_dcr_len; + +/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up + * the block size in transactions, then we do not allow to activate more than + * only one RXOR transactions simultaneously. So use this var to store + * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is + * set) or not (PPC440SPE_RXOR_RUN is clear). + */ +static unsigned long ppc440spe_rxor_state; + +/* These are used in enable & check routines + */ +static u32 ppc440spe_r6_enabled; +static struct ppc440spe_adma_chan *ppc440spe_r6_tchan; +static struct completion ppc440spe_r6_test_comp; + +static int ppc440spe_adma_dma2rxor_prep_src( + struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_rxor *cursor, int index, + int src_cnt, u32 addr); +static void ppc440spe_adma_dma2rxor_set_src( + struct ppc440spe_adma_desc_slot *desc, + int index, dma_addr_t addr); +static void ppc440spe_adma_dma2rxor_set_mult( + struct ppc440spe_adma_desc_slot *desc, + int index, u8 mult); + +#ifdef ADMA_LL_DEBUG +#define ADMA_LL_DBG(x) ({ if (1) x; 0; }) +#else +#define ADMA_LL_DBG(x) ({ if (0) x; 0; }) +#endif + +static void print_cb(struct ppc440spe_adma_chan *chan, void *block) +{ + struct dma_cdb *cdb; + struct xor_cb *cb; + int i; + + switch (chan->device->id) { + case 0: + case 1: + cdb = block; + + pr_debug("CDB at %p [%d]:\n" + "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n" + "\t sg1u 0x%08x sg1l 0x%08x\n" + "\t sg2u 0x%08x sg2l 0x%08x\n" + "\t sg3u 0x%08x sg3l 0x%08x\n", + cdb, chan->device->id, + cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt), + le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l), + le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l), + le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l) + ); + break; + case 2: + cb = block; + + pr_debug("CB at %p [%d]:\n" + "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n" + "\t cbtah 0x%08x cbtal 0x%08x\n" + "\t cblah 0x%08x cblal 0x%08x\n", + cb, chan->device->id, + cb->cbc, cb->cbbc, cb->cbs, + cb->cbtah, cb->cbtal, + cb->cblah, cb->cblal); + for (i = 0; i < 16; i++) { + if (i && !cb->ops[i].h && !cb->ops[i].l) + continue; + pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n", + i, cb->ops[i].h, cb->ops[i].l); + } + break; + } +} + +static void print_cb_list(struct ppc440spe_adma_chan *chan, + struct ppc440spe_adma_desc_slot *iter) +{ + for (; iter; iter = iter->hw_next) + print_cb(chan, iter->hw_desc); +} + +static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src, + unsigned int src_cnt) +{ + int i; + + pr_debug("\n%s(%d):\nsrc: ", __func__, id); + for (i = 0; i < src_cnt; i++) + pr_debug("\t0x%016llx ", src[i]); + pr_debug("dst:\n\t0x%016llx\n", dst); +} + +static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src, + unsigned int src_cnt) +{ + int i; + + pr_debug("\n%s(%d):\nsrc: ", __func__, id); + for (i = 0; i < src_cnt; i++) + pr_debug("\t0x%016llx ", src[i]); + pr_debug("dst: "); + for (i = 0; i < 2; i++) + pr_debug("\t0x%016llx ", dst[i]); +} + +static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src, + unsigned int src_cnt, + const unsigned char *scf) +{ + int i; + + pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id); + if (scf) { + for (i = 0; i < src_cnt; i++) + pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]); + } else { + for (i = 0; i < src_cnt; i++) + pr_debug("\t0x%016llx(no) ", src[i]); + } + + pr_debug("dst: "); + for (i = 0; i < 2; i++) + pr_debug("\t0x%016llx ", src[src_cnt + i]); +} + +/****************************************************************************** + * Command (Descriptor) Blocks low-level routines + ******************************************************************************/ +/** + * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT + * pseudo operation + */ +static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan) +{ + struct xor_cb *p; + + switch (chan->device->id) { + case PPC440SPE_XOR_ID: + p = desc->hw_desc; + memset(desc->hw_desc, 0, sizeof(struct xor_cb)); + /* NOP with Command Block Complete Enable */ + p->cbc = XOR_CBCR_CBCE_BIT; + break; + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); + /* NOP with interrupt */ + set_bit(PPC440SPE_DESC_INT, &desc->flags); + break; + default: + printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, + __func__); + break; + } +} + +/** + * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR + * pseudo operation + */ +static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc) +{ + memset(desc->hw_desc, 0, sizeof(struct xor_cb)); + desc->hw_next = NULL; + desc->src_cnt = 0; + desc->dst_cnt = 1; +} + +/** + * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation + */ +static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc, + int src_cnt, unsigned long flags) +{ + struct xor_cb *hw_desc = desc->hw_desc; + + memset(desc->hw_desc, 0, sizeof(struct xor_cb)); + desc->hw_next = NULL; + desc->src_cnt = src_cnt; + desc->dst_cnt = 1; + + hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt; + if (flags & DMA_PREP_INTERRUPT) + /* Enable interrupt on completion */ + hw_desc->cbc |= XOR_CBCR_CBCE_BIT; +} + +/** + * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ + * operation in DMA2 controller + */ +static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc, + int dst_cnt, int src_cnt, unsigned long flags) +{ + struct xor_cb *hw_desc = desc->hw_desc; + + memset(desc->hw_desc, 0, sizeof(struct xor_cb)); + desc->hw_next = NULL; + desc->src_cnt = src_cnt; + desc->dst_cnt = dst_cnt; + memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags)); + desc->descs_per_op = 0; + + hw_desc->cbc = XOR_CBCR_TGT_BIT; + if (flags & DMA_PREP_INTERRUPT) + /* Enable interrupt on completion */ + hw_desc->cbc |= XOR_CBCR_CBCE_BIT; +} + +#define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE +#define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1) +#define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1) + +/** + * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation + * with DMA0/1 + */ +static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc, + int dst_cnt, int src_cnt, unsigned long flags, + unsigned long op) +{ + struct dma_cdb *hw_desc; + struct ppc440spe_adma_desc_slot *iter; + u8 dopc; + + /* Common initialization of a PQ descriptors chain */ + set_bits(op, &desc->flags); + desc->src_cnt = src_cnt; + desc->dst_cnt = dst_cnt; + + /* WXOR MULTICAST if both P and Q are being computed + * MV_SG1_SG2 if Q only + */ + dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? + DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; + + list_for_each_entry(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + + if (likely(!list_is_last(&iter->chain_node, + &desc->group_list))) { + /* set 'next' pointer */ + iter->hw_next = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, chain_node); + clear_bit(PPC440SPE_DESC_INT, &iter->flags); + } else { + /* this is the last descriptor. + * this slot will be pasted from ADMA level + * each time it wants to configure parameters + * of the transaction (src, dst, ...) + */ + iter->hw_next = NULL; + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC440SPE_DESC_INT, &iter->flags); + else + clear_bit(PPC440SPE_DESC_INT, &iter->flags); + } + } + + /* Set OPS depending on WXOR/RXOR type of operation */ + if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) { + /* This is a WXOR only chain: + * - first descriptors are for zeroing destinations + * if PPC440SPE_ZERO_P/Q set; + * - descriptors remained are for GF-XOR operations. + */ + iter = list_first_entry(&desc->group_list, + struct ppc440spe_adma_desc_slot, + chain_node); + + if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) { + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + iter = list_first_entry(&iter->chain_node, + struct ppc440spe_adma_desc_slot, + chain_node); + } + + if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) { + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + iter = list_first_entry(&iter->chain_node, + struct ppc440spe_adma_desc_slot, + chain_node); + } + + list_for_each_entry_from(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + hw_desc->opc = dopc; + } + } else { + /* This is either RXOR-only or mixed RXOR/WXOR */ + + /* The first 1 or 2 slots in chain are always RXOR, + * if need to calculate P & Q, then there are two + * RXOR slots; if only P or only Q, then there is one + */ + iter = list_first_entry(&desc->group_list, + struct ppc440spe_adma_desc_slot, + chain_node); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + + if (desc->dst_cnt == DMA_DEST_MAX_NUM) { + iter = list_first_entry(&iter->chain_node, + struct ppc440spe_adma_desc_slot, + chain_node); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + } + + /* The remaining descs (if any) are WXORs */ + if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) { + iter = list_first_entry(&iter->chain_node, + struct ppc440spe_adma_desc_slot, + chain_node); + list_for_each_entry_from(iter, &desc->group_list, + chain_node) { + hw_desc = iter->hw_desc; + hw_desc->opc = dopc; + } + } + } +} + +/** + * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor + * for PQ_ZERO_SUM operation + */ +static void ppc440spe_desc_init_dma01pqzero_sum( + struct ppc440spe_adma_desc_slot *desc, + int dst_cnt, int src_cnt) +{ + struct dma_cdb *hw_desc; + struct ppc440spe_adma_desc_slot *iter; + int i = 0; + u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST : + DMA_CDB_OPC_MV_SG1_SG2; + /* + * Initialize starting from 2nd or 3rd descriptor dependent + * on dst_cnt. First one or two slots are for cloning P + * and/or Q to chan->pdest and/or chan->qdest as we have + * to preserve original P/Q. + */ + iter = list_first_entry(&desc->group_list, + struct ppc440spe_adma_desc_slot, chain_node); + iter = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, chain_node); + + if (dst_cnt > 1) { + iter = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, chain_node); + } + /* initialize each source descriptor in chain */ + list_for_each_entry_from(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + iter->src_cnt = 0; + iter->dst_cnt = 0; + + /* This is a ZERO_SUM operation: + * - <src_cnt> descriptors starting from 2nd or 3rd + * descriptor are for GF-XOR operations; + * - remaining <dst_cnt> descriptors are for checking the result + */ + if (i++ < src_cnt) + /* MV_SG1_SG2 if only Q is being verified + * MULTICAST if both P and Q are being verified + */ + hw_desc->opc = dopc; + else + /* DMA_CDB_OPC_DCHECK128 operation */ + hw_desc->opc = DMA_CDB_OPC_DCHECK128; + + if (likely(!list_is_last(&iter->chain_node, + &desc->group_list))) { + /* set 'next' pointer */ + iter->hw_next = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + } else { + /* this is the last descriptor. + * this slot will be pasted from ADMA level + * each time it wants to configure parameters + * of the transaction (src, dst, ...) + */ + iter->hw_next = NULL; + /* always enable interrupt generation since we get + * the status of pqzero from the handler + */ + set_bit(PPC440SPE_DESC_INT, &iter->flags); + } + } + desc->src_cnt = src_cnt; + desc->dst_cnt = dst_cnt; +} + +/** + * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation + */ +static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc, + unsigned long flags) +{ + struct dma_cdb *hw_desc = desc->hw_desc; + + memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); + desc->hw_next = NULL; + desc->src_cnt = 1; + desc->dst_cnt = 1; + + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC440SPE_DESC_INT, &desc->flags); + else + clear_bit(PPC440SPE_DESC_INT, &desc->flags); + + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; +} + +/** + * ppc440spe_desc_set_src_addr - set source address into the descriptor + */ +static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan, + int src_idx, dma_addr_t addrh, + dma_addr_t addrl) +{ + struct dma_cdb *dma_hw_desc; + struct xor_cb *xor_hw_desc; + phys_addr_t addr64, tmplow, tmphi; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + if (!addrh) { + addr64 = addrl; + tmphi = (addr64 >> 32); + tmplow = (addr64 & 0xFFFFFFFF); + } else { + tmphi = addrh; + tmplow = addrl; + } + dma_hw_desc = desc->hw_desc; + dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow); + dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi); + break; + case PPC440SPE_XOR_ID: + xor_hw_desc = desc->hw_desc; + xor_hw_desc->ops[src_idx].l = addrl; + xor_hw_desc->ops[src_idx].h |= addrh; + break; + } +} + +/** + * ppc440spe_desc_set_src_mult - set source address mult into the descriptor + */ +static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan, u32 mult_index, + int sg_index, unsigned char mult_value) +{ + struct dma_cdb *dma_hw_desc; + struct xor_cb *xor_hw_desc; + u32 *psgu; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + dma_hw_desc = desc->hw_desc; + + switch (sg_index) { + /* for RXOR operations set multiplier + * into source cued address + */ + case DMA_CDB_SG_SRC: + psgu = &dma_hw_desc->sg1u; + break; + /* for WXOR operations set multiplier + * into destination cued address(es) + */ + case DMA_CDB_SG_DST1: + psgu = &dma_hw_desc->sg2u; + break; + case DMA_CDB_SG_DST2: + psgu = &dma_hw_desc->sg3u; + break; + default: + BUG(); + } + + *psgu |= cpu_to_le32(mult_value << mult_index); + break; + case PPC440SPE_XOR_ID: + xor_hw_desc = desc->hw_desc; + break; + default: + BUG(); + } +} + +/** + * ppc440spe_desc_set_dest_addr - set destination address into the descriptor + */ +static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan, + dma_addr_t addrh, dma_addr_t addrl, + u32 dst_idx) +{ + struct dma_cdb *dma_hw_desc; + struct xor_cb *xor_hw_desc; + phys_addr_t addr64, tmphi, tmplow; + u32 *psgu, *psgl; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + if (!addrh) { + addr64 = addrl; + tmphi = (addr64 >> 32); + tmplow = (addr64 & 0xFFFFFFFF); + } else { + tmphi = addrh; + tmplow = addrl; + } + dma_hw_desc = desc->hw_desc; + + psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u; + psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l; + + *psgl = cpu_to_le32((u32)tmplow); + *psgu |= cpu_to_le32((u32)tmphi); + break; + case PPC440SPE_XOR_ID: + xor_hw_desc = desc->hw_desc; + xor_hw_desc->cbtal = addrl; + xor_hw_desc->cbtah |= addrh; + break; + } +} + +/** + * ppc440spe_desc_set_byte_count - set number of data bytes involved + * into the operation + */ +static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan, + u32 byte_count) +{ + struct dma_cdb *dma_hw_desc; + struct xor_cb *xor_hw_desc; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + dma_hw_desc = desc->hw_desc; + dma_hw_desc->cnt = cpu_to_le32(byte_count); + break; + case PPC440SPE_XOR_ID: + xor_hw_desc = desc->hw_desc; + xor_hw_desc->cbbc = byte_count; + break; + } +} + +/** + * ppc440spe_desc_set_rxor_block_size - set RXOR block size + */ +static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count) +{ + /* assume that byte_count is aligned on the 512-boundary; + * thus write it directly to the register (bits 23:31 are + * reserved there). + */ + dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count); +} + +/** + * ppc440spe_desc_set_dcheck - set CHECK pattern + */ +static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan, u8 *qword) +{ + struct dma_cdb *dma_hw_desc; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + dma_hw_desc = desc->hw_desc; + iowrite32(qword[0], &dma_hw_desc->sg3l); + iowrite32(qword[4], &dma_hw_desc->sg3u); + iowrite32(qword[8], &dma_hw_desc->sg2l); + iowrite32(qword[12], &dma_hw_desc->sg2u); + break; + default: + BUG(); + } +} + +/** + * ppc440spe_xor_set_link - set link address in xor CB + */ +static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc, + struct ppc440spe_adma_desc_slot *next_desc) +{ + struct xor_cb *xor_hw_desc = prev_desc->hw_desc; + + if (unlikely(!next_desc || !(next_desc->phys))) { + printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n", + __func__, next_desc, + next_desc ? next_desc->phys : 0); + BUG(); + } + + xor_hw_desc->cbs = 0; + xor_hw_desc->cblal = next_desc->phys; + xor_hw_desc->cblah = 0; + xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; +} + +/** + * ppc440spe_desc_set_link - set the address of descriptor following this + * descriptor in chain + */ +static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan, + struct ppc440spe_adma_desc_slot *prev_desc, + struct ppc440spe_adma_desc_slot *next_desc) +{ + unsigned long flags; + struct ppc440spe_adma_desc_slot *tail = next_desc; + + if (unlikely(!prev_desc || !next_desc || + (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { + /* If previous next is overwritten something is wrong. + * though we may refetch from append to initiate list + * processing; in this case - it's ok. + */ + printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " + "prev->hw_next=0x%p\n", __func__, prev_desc, + next_desc, prev_desc ? prev_desc->hw_next : 0); + BUG(); + } + + local_irq_save(flags); + + /* do s/w chaining both for DMA and XOR descriptors */ + prev_desc->hw_next = next_desc; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + break; + case PPC440SPE_XOR_ID: + /* bind descriptor to the chain */ + while (tail->hw_next) + tail = tail->hw_next; + xor_last_linked = tail; + + if (prev_desc == xor_last_submit) + /* do not link to the last submitted CB */ + break; + ppc440spe_xor_set_link(prev_desc, next_desc); + break; + } + + local_irq_restore(flags); +} + +/** + * ppc440spe_desc_get_link - get the address of the descriptor that + * follows this one + */ +static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan) +{ + if (!desc->hw_next) + return 0; + + return desc->hw_next->phys; +} + +/** + * ppc440spe_desc_is_aligned - check alignment + */ +static inline int ppc440spe_desc_is_aligned( + struct ppc440spe_adma_desc_slot *desc, int num_slots) +{ + return (desc->idx & (num_slots - 1)) ? 0 : 1; +} + +/** + * ppc440spe_chan_xor_slot_count - get the number of slots necessary for + * XOR operation + */ +static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt, + int *slots_per_op) +{ + int slot_cnt; + + /* each XOR descriptor provides up to 16 source operands */ + slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; + + if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)) + return slot_cnt; + + printk(KERN_ERR "%s: len %d > max %d !!\n", + __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); + BUG(); + return slot_cnt; +} + +/** + * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for + * DMA2 PQ operation + */ +static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs, + int src_cnt, size_t len) +{ + signed long long order = 0; + int state = 0; + int addr_count = 0; + int i; + for (i = 1; i < src_cnt; i++) { + dma_addr_t cur_addr = srcs[i]; + dma_addr_t old_addr = srcs[i-1]; + switch (state) { + case 0: + if (cur_addr == old_addr + len) { + /* direct RXOR */ + order = 1; + state = 1; + if (i == src_cnt-1) + addr_count++; + } else if (old_addr == cur_addr + len) { + /* reverse RXOR */ + order = -1; + state = 1; + if (i == src_cnt-1) + addr_count++; + } else { + state = 3; + } + break; + case 1: + if (i == src_cnt-2 || (order == -1 + && cur_addr != old_addr - len)) { + order = 0; + state = 0; + addr_count++; + } else if (cur_addr == old_addr + len*order) { + state = 2; + if (i == src_cnt-1) + addr_count++; + } else if (cur_addr == old_addr + 2*len) { + state = 2; + if (i == src_cnt-1) + addr_count++; + } else if (cur_addr == old_addr + 3*len) { + state = 2; + if (i == src_cnt-1) + addr_count++; + } else { + order = 0; + state = 0; + addr_count++; + } + break; + case 2: + order = 0; + state = 0; + addr_count++; + break; + } + if (state == 3) + break; + } + if (src_cnt <= 1 || (state != 1 && state != 2)) { + pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n", + __func__, src_cnt, state, addr_count, order); + for (i = 0; i < src_cnt; i++) + pr_err("\t[%d] 0x%llx \n", i, srcs[i]); + BUG(); + } + + return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS; +} + + +/****************************************************************************** + * ADMA channel low-level routines + ******************************************************************************/ + +static u32 +ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan); +static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan); + +/** + * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine + */ +static void ppc440spe_adma_device_clear_eot_status( + struct ppc440spe_adma_chan *chan) +{ + struct dma_regs *dma_reg; + struct xor_regs *xor_reg; + u8 *p = chan->device->dma_desc_pool_virt; + struct dma_cdb *cdb; + u32 rv, i; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + /* read FIFO to ack */ + dma_reg = chan->device->dma_reg; + while ((rv = ioread32(&dma_reg->csfpl))) { + i = rv & DMA_CDB_ADDR_MSK; + cdb = (struct dma_cdb *)&p[i - + (u32)chan->device->dma_desc_pool]; + + /* Clear opcode to ack. This is necessary for + * ZeroSum operations only + */ + cdb->opc = 0; + + if (test_bit(PPC440SPE_RXOR_RUN, + &ppc440spe_rxor_state)) { + /* probably this is a completed RXOR op, + * get pointer to CDB using the fact that + * physical and virtual addresses of CDB + * in pools have the same offsets + */ + if (le32_to_cpu(cdb->sg1u) & + DMA_CUED_XOR_BASE) { + /* this is a RXOR */ + clear_bit(PPC440SPE_RXOR_RUN, + &ppc440spe_rxor_state); + } + } + + if (rv & DMA_CDB_STATUS_MSK) { + /* ZeroSum check failed + */ + struct ppc440spe_adma_desc_slot *iter; + dma_addr_t phys = rv & ~DMA_CDB_MSK; + + /* + * Update the status of corresponding + * descriptor. + */ + list_for_each_entry(iter, &chan->chain, + chain_node) { + if (iter->phys == phys) + break; + } + /* + * if cannot find the corresponding + * slot it's a bug + */ + BUG_ON(&iter->chain_node == &chan->chain); + + if (iter->xor_check_result) { + if (test_bit(PPC440SPE_DESC_PCHECK, + &iter->flags)) { + *iter->xor_check_result |= + SUM_CHECK_P_RESULT; + } else + if (test_bit(PPC440SPE_DESC_QCHECK, + &iter->flags)) { + *iter->xor_check_result |= + SUM_CHECK_Q_RESULT; + } else + BUG(); + } + } + } + + rv = ioread32(&dma_reg->dsts); + if (rv) { + pr_err("DMA%d err status: 0x%x\n", + chan->device->id, rv); + /* write back to clear */ + iowrite32(rv, &dma_reg->dsts); + } + break; + case PPC440SPE_XOR_ID: + /* reset status bits to ack */ + xor_reg = chan->device->xor_reg; + rv = ioread32be(&xor_reg->sr); + iowrite32be(rv, &xor_reg->sr); + + if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) { + if (rv & XOR_IE_RPTIE_BIT) { + /* Read PLB Timeout Error. + * Try to resubmit the CB + */ + u32 val = ioread32be(&xor_reg->ccbalr); + + iowrite32be(val, &xor_reg->cblalr); + + val = ioread32be(&xor_reg->crsr); + iowrite32be(val | XOR_CRSR_XAE_BIT, + &xor_reg->crsr); + } else + pr_err("XOR ERR 0x%x status\n", rv); + break; + } + + /* if the XORcore is idle, but there are unprocessed CBs + * then refetch the s/w chain here + */ + if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) && + do_xor_refetch) + ppc440spe_chan_append(chan); + break; + } +} + +/** + * ppc440spe_chan_is_busy - get the channel status + */ +static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan) +{ + struct dma_regs *dma_reg; + struct xor_regs *xor_reg; + int busy = 0; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + dma_reg = chan->device->dma_reg; + /* if command FIFO's head and tail pointers are equal and + * status tail is the same as command, then channel is free + */ + if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) || + ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp)) + busy = 1; + break; + case PPC440SPE_XOR_ID: + /* use the special status bit for the XORcore + */ + xor_reg = chan->device->xor_reg; + busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0; + break; + } + + return busy; +} + +/** + * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain + */ +static void ppc440spe_chan_set_first_xor_descriptor( + struct ppc440spe_adma_chan *chan, + struct ppc440spe_adma_desc_slot *next_desc) +{ + struct xor_regs *xor_reg = chan->device->xor_reg; + + if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) + printk(KERN_INFO "%s: Warn: XORcore is running " + "when try to set the first CDB!\n", + __func__); + + xor_last_submit = xor_last_linked = next_desc; + + iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr); + + iowrite32be(next_desc->phys, &xor_reg->cblalr); + iowrite32be(0, &xor_reg->cblahr); + iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT, + &xor_reg->cbcr); + + chan->hw_chain_inited = 1; +} + +/** + * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO. + * called with irqs disabled + */ +static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan, + struct ppc440spe_adma_desc_slot *desc) +{ + u32 pcdb; + struct dma_regs *dma_reg = chan->device->dma_reg; + + pcdb = desc->phys; + if (!test_bit(PPC440SPE_DESC_INT, &desc->flags)) + pcdb |= DMA_CDB_NO_INT; + + chan_last_sub[chan->device->id] = desc; + + ADMA_LL_DBG(print_cb(chan, desc->hw_desc)); + + iowrite32(pcdb, &dma_reg->cpfpl); +} + +/** + * ppc440spe_chan_append - update the h/w chain in the channel + */ +static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan) +{ + struct xor_regs *xor_reg; + struct ppc440spe_adma_desc_slot *iter; + struct xor_cb *xcb; + u32 cur_desc; + unsigned long flags; + + local_irq_save(flags); + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + cur_desc = ppc440spe_chan_get_current_descriptor(chan); + + if (likely(cur_desc)) { + iter = chan_last_sub[chan->device->id]; + BUG_ON(!iter); + } else { + /* first peer */ + iter = chan_first_cdb[chan->device->id]; + BUG_ON(!iter); + ppc440spe_dma_put_desc(chan, iter); + chan->hw_chain_inited = 1; + } + + /* is there something new to append */ + if (!iter->hw_next) + break; + + /* flush descriptors from the s/w queue to fifo */ + list_for_each_entry_continue(iter, &chan->chain, chain_node) { + ppc440spe_dma_put_desc(chan, iter); + if (!iter->hw_next) + break; + } + break; + case PPC440SPE_XOR_ID: + /* update h/w links and refetch */ + if (!xor_last_submit->hw_next) + break; + + xor_reg = chan->device->xor_reg; + /* the last linked CDB has to generate an interrupt + * that we'd be able to append the next lists to h/w + * regardless of the XOR engine state at the moment of + * appending of these next lists + */ + xcb = xor_last_linked->hw_desc; + xcb->cbc |= XOR_CBCR_CBCE_BIT; + + if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) { + /* XORcore is idle. Refetch now */ + do_xor_refetch = 0; + ppc440spe_xor_set_link(xor_last_submit, + xor_last_submit->hw_next); + + ADMA_LL_DBG(print_cb_list(chan, + xor_last_submit->hw_next)); + + xor_last_submit = xor_last_linked; + iowrite32be(ioread32be(&xor_reg->crsr) | + XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT, + &xor_reg->crsr); + } else { + /* XORcore is running. Refetch later in the handler */ + do_xor_refetch = 1; + } + + break; + } + + local_irq_restore(flags); +} + +/** + * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor + */ +static u32 +ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan) +{ + struct dma_regs *dma_reg; + struct xor_regs *xor_reg; + + if (unlikely(!chan->hw_chain_inited)) + /* h/w descriptor chain is not initialized yet */ + return 0; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + dma_reg = chan->device->dma_reg; + return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK); + case PPC440SPE_XOR_ID: + xor_reg = chan->device->xor_reg; + return ioread32be(&xor_reg->ccbalr); + } + return 0; +} + +/** + * ppc440spe_chan_run - enable the channel + */ +static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan) +{ + struct xor_regs *xor_reg; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + /* DMAs are always enabled, do nothing */ + break; + case PPC440SPE_XOR_ID: + /* drain write buffer */ + xor_reg = chan->device->xor_reg; + + /* fetch descriptor pointed to in <link> */ + iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT, + &xor_reg->crsr); + break; + } +} + +/****************************************************************************** + * ADMA device level + ******************************************************************************/ + +static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan); +static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan); + +static dma_cookie_t +ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx); + +static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx, + dma_addr_t addr, int index); +static void +ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx, + dma_addr_t addr, int index); + +static void +ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx, + dma_addr_t *paddr, unsigned long flags); +static void +ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx, + dma_addr_t addr, int index); +static void +ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx, + unsigned char mult, int index, int dst_pos); +static void +ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx, + dma_addr_t paddr, dma_addr_t qaddr); + +static struct page *ppc440spe_rxor_srcs[32]; + +/** + * ppc440spe_can_rxor - check if the operands may be processed with RXOR + */ +static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len) +{ + int i, order = 0, state = 0; + int idx = 0; + + if (unlikely(!(src_cnt > 1))) + return 0; + + BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs)); + + /* Skip holes in the source list before checking */ + for (i = 0; i < src_cnt; i++) { + if (!srcs[i]) + continue; + ppc440spe_rxor_srcs[idx++] = srcs[i]; + } + src_cnt = idx; + + for (i = 1; i < src_cnt; i++) { + char *cur_addr = page_address(ppc440spe_rxor_srcs[i]); + char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]); + + switch (state) { + case 0: + if (cur_addr == old_addr + len) { + /* direct RXOR */ + order = 1; + state = 1; + } else if (old_addr == cur_addr + len) { + /* reverse RXOR */ + order = -1; + state = 1; + } else + goto out; + break; + case 1: + if ((i == src_cnt - 2) || + (order == -1 && cur_addr != old_addr - len)) { + order = 0; + state = 0; + } else if ((cur_addr == old_addr + len * order) || + (cur_addr == old_addr + 2 * len) || + (cur_addr == old_addr + 3 * len)) { + state = 2; + } else { + order = 0; + state = 0; + } + break; + case 2: + order = 0; + state = 0; + break; + } + } + +out: + if (state == 1 || state == 2) + return 1; + + return 0; +} + +/** + * ppc440spe_adma_device_estimate - estimate the efficiency of processing + * the operation given on this channel. It's assumed that 'chan' is + * capable to process 'cap' type of operation. + * @chan: channel to use + * @cap: type of transaction + * @dst_lst: array of destination pointers + * @dst_cnt: number of destination operands + * @src_lst: array of source pointers + * @src_cnt: number of source operands + * @src_sz: size of each source operand + */ +static int ppc440spe_adma_estimate(struct dma_chan *chan, + enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt, + struct page **src_lst, int src_cnt, size_t src_sz) +{ + int ef = 1; + + if (cap == DMA_PQ || cap == DMA_PQ_VAL) { + /* If RAID-6 capabilities were not activated don't try + * to use them + */ + if (unlikely(!ppc440spe_r6_enabled)) + return -1; + } + /* In the current implementation of ppc440spe ADMA driver it + * makes sense to pick out only pq case, because it may be + * processed: + * (1) either using Biskup method on DMA2; + * (2) or on DMA0/1. + * Thus we give a favour to (1) if the sources are suitable; + * else let it be processed on one of the DMA0/1 engines. + * In the sum_product case where destination is also the + * source process it on DMA0/1 only. + */ + if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) { + + if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1]) + ef = 0; /* sum_product case, process on DMA0/1 */ + else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz)) + ef = 3; /* override (DMA0/1 + idle) */ + else + ef = 0; /* can't process on DMA2 if !rxor */ + } + + /* channel idleness increases the priority */ + if (likely(ef) && + !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan))) + ef++; + + return ef; +} + +struct dma_chan * +ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap, + struct page **dst_lst, int dst_cnt, struct page **src_lst, + int src_cnt, size_t src_sz) +{ + struct dma_chan *best_chan = NULL; + struct ppc_dma_chan_ref *ref; + int best_rank = -1; + + if (unlikely(!src_sz)) + return NULL; + if (src_sz > PAGE_SIZE) { + /* + * should a user of the api ever pass > PAGE_SIZE requests + * we sort out cases where temporary page-sized buffers + * are used. + */ + switch (cap) { + case DMA_PQ: + if (src_cnt == 1 && dst_lst[1] == src_lst[0]) + return NULL; + if (src_cnt == 2 && dst_lst[1] == src_lst[1]) + return NULL; + break; + case DMA_PQ_VAL: + case DMA_XOR_VAL: + return NULL; + default: + break; + } + } + + list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) { + if (dma_has_cap(cap, ref->chan->device->cap_mask)) { + int rank; + + rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst, + dst_cnt, src_lst, src_cnt, src_sz); + if (rank > best_rank) { + best_rank = rank; + best_chan = ref->chan; + } + } + } + + return best_chan; +} +EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel); + +/** + * ppc440spe_get_group_entry - get group entry with index idx + * @tdesc: is the last allocated slot in the group. + */ +static struct ppc440spe_adma_desc_slot * +ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx) +{ + struct ppc440spe_adma_desc_slot *iter = tdesc->group_head; + int i = 0; + + if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { + printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", + __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); + BUG(); + } + + list_for_each_entry(iter, &tdesc->group_list, chain_node) { + if (i++ == entry_idx) + break; + } + return iter; +} + +/** + * ppc440spe_adma_free_slots - flags descriptor slots for reuse + * @slot: Slot to free + * Caller must hold &ppc440spe_chan->lock while calling this function + */ +static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot, + struct ppc440spe_adma_chan *chan) +{ + int stride = slot->slots_per_op; + + while (stride--) { + slot->slots_per_op = 0; + slot = list_entry(slot->slot_node.next, + struct ppc440spe_adma_desc_slot, + slot_node); + } +} + +/** + * ppc440spe_adma_run_tx_complete_actions - call functions to be called + * upon completion + */ +static dma_cookie_t ppc440spe_adma_run_tx_complete_actions( + struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan, + dma_cookie_t cookie) +{ + BUG_ON(desc->async_tx.cookie < 0); + if (desc->async_tx.cookie > 0) { + cookie = desc->async_tx.cookie; + desc->async_tx.cookie = 0; + + /* call the callback (must not sleep or submit new + * operations to this channel) + */ + if (desc->async_tx.callback) + desc->async_tx.callback( + desc->async_tx.callback_param); + + dma_descriptor_unmap(&desc->async_tx); + } + + /* run dependent operations */ + dma_run_dependencies(&desc->async_tx); + + return cookie; +} + +/** + * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set) + */ +static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_adma_chan *chan) +{ + /* the client is allowed to attach dependent operations + * until 'ack' is set + */ + if (!async_tx_test_ack(&desc->async_tx)) + return 0; + + /* leave the last descriptor in the chain + * so we can append to it + */ + if (list_is_last(&desc->chain_node, &chan->chain) || + desc->phys == ppc440spe_chan_get_current_descriptor(chan)) + return 1; + + if (chan->device->id != PPC440SPE_XOR_ID) { + /* our DMA interrupt handler clears opc field of + * each processed descriptor. For all types of + * operations except for ZeroSum we do not actually + * need ack from the interrupt handler. ZeroSum is a + * special case since the result of this operation + * is available from the handler only, so if we see + * such type of descriptor (which is unprocessed yet) + * then leave it in chain. + */ + struct dma_cdb *cdb = desc->hw_desc; + if (cdb->opc == DMA_CDB_OPC_DCHECK128) + return 1; + } + + dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n", + desc->phys, desc->idx, desc->slots_per_op); + + list_del(&desc->chain_node); + ppc440spe_adma_free_slots(desc, chan); + return 0; +} + +/** + * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine + * which runs through the channel CDBs list until reach the descriptor + * currently processed. When routine determines that all CDBs of group + * are completed then corresponding callbacks (if any) are called and slots + * are freed. + */ +static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) +{ + struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL; + dma_cookie_t cookie = 0; + u32 current_desc = ppc440spe_chan_get_current_descriptor(chan); + int busy = ppc440spe_chan_is_busy(chan); + int seen_current = 0, slot_cnt = 0, slots_per_op = 0; + + dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", + chan->device->id, __func__); + + if (!current_desc) { + /* There were no transactions yet, so + * nothing to clean + */ + return; + } + + /* free completed slots from the chain starting with + * the oldest descriptor + */ + list_for_each_entry_safe(iter, _iter, &chan->chain, + chain_node) { + dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " + "busy: %d this_desc: %#llx next_desc: %#x " + "cur: %#x ack: %d\n", + iter->async_tx.cookie, iter->idx, busy, iter->phys, + ppc440spe_desc_get_link(iter, chan), current_desc, + async_tx_test_ack(&iter->async_tx)); + prefetch(_iter); + prefetch(&_iter->async_tx); + + /* do not advance past the current descriptor loaded into the + * hardware channel,subsequent descriptors are either in process + * or have not been submitted + */ + if (seen_current) + break; + + /* stop the search if we reach the current descriptor and the + * channel is busy, or if it appears that the current descriptor + * needs to be re-read (i.e. has been appended to) + */ + if (iter->phys == current_desc) { + BUG_ON(seen_current++); + if (busy || ppc440spe_desc_get_link(iter, chan)) { + /* not all descriptors of the group have + * been completed; exit. + */ + break; + } + } + + /* detect the start of a group transaction */ + if (!slot_cnt && !slots_per_op) { + slot_cnt = iter->slot_cnt; + slots_per_op = iter->slots_per_op; + if (slot_cnt <= slots_per_op) { + slot_cnt = 0; + slots_per_op = 0; + } + } + + if (slot_cnt) { + if (!group_start) + group_start = iter; + slot_cnt -= slots_per_op; + } + + /* all the members of a group are complete */ + if (slots_per_op != 0 && slot_cnt == 0) { + struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter; + int end_of_chain = 0; + + /* clean up the group */ + slot_cnt = group_start->slot_cnt; + grp_iter = group_start; + list_for_each_entry_safe_from(grp_iter, _grp_iter, + &chan->chain, chain_node) { + + cookie = ppc440spe_adma_run_tx_complete_actions( + grp_iter, chan, cookie); + + slot_cnt -= slots_per_op; + end_of_chain = ppc440spe_adma_clean_slot( + grp_iter, chan); + if (end_of_chain && slot_cnt) { + /* Should wait for ZeroSum completion */ + if (cookie > 0) + chan->common.completed_cookie = cookie; + return; + } + + if (slot_cnt == 0 || end_of_chain) + break; + } + + /* the group should be complete at this point */ + BUG_ON(slot_cnt); + + slots_per_op = 0; + group_start = NULL; + if (end_of_chain) + break; + else + continue; + } else if (slots_per_op) /* wait for group completion */ + continue; + + cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan, + cookie); + + if (ppc440spe_adma_clean_slot(iter, chan)) + break; + } + + BUG_ON(!seen_current); + + if (cookie > 0) { + chan->common.completed_cookie = cookie; + pr_debug("\tcompleted cookie %d\n", cookie); + } + +} + +/** + * ppc440spe_adma_tasklet - clean up watch-dog initiator + */ +static void ppc440spe_adma_tasklet(unsigned long data) +{ + struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data; + + spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING); + __ppc440spe_adma_slot_cleanup(chan); + spin_unlock(&chan->lock); +} + +/** + * ppc440spe_adma_slot_cleanup - clean up scheduled initiator + */ +static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) +{ + spin_lock_bh(&chan->lock); + __ppc440spe_adma_slot_cleanup(chan); + spin_unlock_bh(&chan->lock); +} + +/** + * ppc440spe_adma_alloc_slots - allocate free slots (if any) + */ +static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots( + struct ppc440spe_adma_chan *chan, int num_slots, + int slots_per_op) +{ + struct ppc440spe_adma_desc_slot *iter = NULL, *_iter; + struct ppc440spe_adma_desc_slot *alloc_start = NULL; + struct list_head chain = LIST_HEAD_INIT(chain); + int slots_found, retry = 0; + + + BUG_ON(!num_slots || !slots_per_op); + /* start search from the last allocated descrtiptor + * if a contiguous allocation can not be found start searching + * from the beginning of the list + */ +retry: + slots_found = 0; + if (retry == 0) + iter = chan->last_used; + else + iter = list_entry(&chan->all_slots, + struct ppc440spe_adma_desc_slot, + slot_node); + list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, + slot_node) { + prefetch(_iter); + prefetch(&_iter->async_tx); + if (iter->slots_per_op) { + slots_found = 0; + continue; + } + + /* start the allocation if the slot is correctly aligned */ + if (!slots_found++) + alloc_start = iter; + + if (slots_found == num_slots) { + struct ppc440spe_adma_desc_slot *alloc_tail = NULL; + struct ppc440spe_adma_desc_slot *last_used = NULL; + + iter = alloc_start; + while (num_slots) { + int i; + /* pre-ack all but the last descriptor */ + if (num_slots != slots_per_op) + async_tx_ack(&iter->async_tx); + + list_add_tail(&iter->chain_node, &chain); + alloc_tail = iter; + iter->async_tx.cookie = 0; + iter->hw_next = NULL; + iter->flags = 0; + iter->slot_cnt = num_slots; + iter->xor_check_result = NULL; + for (i = 0; i < slots_per_op; i++) { + iter->slots_per_op = slots_per_op - i; + last_used = iter; + iter = list_entry(iter->slot_node.next, + struct ppc440spe_adma_desc_slot, + slot_node); + } + num_slots -= slots_per_op; + } + alloc_tail->group_head = alloc_start; + alloc_tail->async_tx.cookie = -EBUSY; + list_splice(&chain, &alloc_tail->group_list); + chan->last_used = last_used; + return alloc_tail; + } + } + if (!retry++) + goto retry; + + /* try to free some slots if the allocation fails */ + tasklet_schedule(&chan->irq_tasklet); + return NULL; +} + +/** + * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots + */ +static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + struct ppc440spe_adma_desc_slot *slot = NULL; + char *hw_desc; + int i, db_sz; + int init; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + init = ppc440spe_chan->slots_allocated ? 0 : 1; + chan->chan_id = ppc440spe_chan->device->id; + + /* Allocate descriptor slots */ + i = ppc440spe_chan->slots_allocated; + if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID) + db_sz = sizeof(struct dma_cdb); + else + db_sz = sizeof(struct xor_cb); + + for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) { + slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot), + GFP_KERNEL); + if (!slot) { + printk(KERN_INFO "SPE ADMA Channel only initialized" + " %d descriptor slots", i--); + break; + } + + hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt; + slot->hw_desc = (void *) &hw_desc[i * db_sz]; + dma_async_tx_descriptor_init(&slot->async_tx, chan); + slot->async_tx.tx_submit = ppc440spe_adma_tx_submit; + INIT_LIST_HEAD(&slot->chain_node); + INIT_LIST_HEAD(&slot->slot_node); + INIT_LIST_HEAD(&slot->group_list); + slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz; + slot->idx = i; + + spin_lock_bh(&ppc440spe_chan->lock); + ppc440spe_chan->slots_allocated++; + list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots); + spin_unlock_bh(&ppc440spe_chan->lock); + } + + if (i && !ppc440spe_chan->last_used) { + ppc440spe_chan->last_used = + list_entry(ppc440spe_chan->all_slots.next, + struct ppc440spe_adma_desc_slot, + slot_node); + } + + dev_dbg(ppc440spe_chan->device->common.dev, + "ppc440spe adma%d: allocated %d descriptor slots\n", + ppc440spe_chan->device->id, i); + + /* initialize the channel and the chain with a null operation */ + if (init) { + switch (ppc440spe_chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + ppc440spe_chan->hw_chain_inited = 0; + /* Use WXOR for self-testing */ + if (!ppc440spe_r6_tchan) + ppc440spe_r6_tchan = ppc440spe_chan; + break; + case PPC440SPE_XOR_ID: + ppc440spe_chan_start_null_xor(ppc440spe_chan); + break; + default: + BUG(); + } + ppc440spe_chan->needs_unmap = 1; + } + + return (i > 0) ? i : -ENOMEM; +} + +/** + * ppc440spe_rxor_set_region_data - + */ +static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc, + u8 xor_arg_no, u32 mask) +{ + struct xor_cb *xcb = desc->hw_desc; + + xcb->ops[xor_arg_no].h |= mask; +} + +/** + * ppc440spe_rxor_set_src - + */ +static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc, + u8 xor_arg_no, dma_addr_t addr) +{ + struct xor_cb *xcb = desc->hw_desc; + + xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE; + xcb->ops[xor_arg_no].l = addr; +} + +/** + * ppc440spe_rxor_set_mult - + */ +static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc, + u8 xor_arg_no, u8 idx, u8 mult) +{ + struct xor_cb *xcb = desc->hw_desc; + + xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8); +} + +/** + * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold + * has been achieved + */ +static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan) +{ + dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n", + chan->device->id, chan->pending); + + if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) { + chan->pending = 0; + ppc440spe_chan_append(chan); + } +} + +/** + * ppc440spe_adma_tx_submit - submit new descriptor group to the channel + * (it's not necessary that descriptors will be submitted to the h/w + * chains too right now) + */ +static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx) +{ + struct ppc440spe_adma_desc_slot *sw_desc; + struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan); + struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail; + int slot_cnt; + int slots_per_op; + dma_cookie_t cookie; + + sw_desc = tx_to_ppc440spe_adma_slot(tx); + + group_start = sw_desc->group_head; + slot_cnt = group_start->slot_cnt; + slots_per_op = group_start->slots_per_op; + + spin_lock_bh(&chan->lock); + cookie = dma_cookie_assign(tx); + + if (unlikely(list_empty(&chan->chain))) { + /* first peer */ + list_splice_init(&sw_desc->group_list, &chan->chain); + chan_first_cdb[chan->device->id] = group_start; + } else { + /* isn't first peer, bind CDBs to chain */ + old_chain_tail = list_entry(chan->chain.prev, + struct ppc440spe_adma_desc_slot, + chain_node); + list_splice_init(&sw_desc->group_list, + &old_chain_tail->chain_node); + /* fix up the hardware chain */ + ppc440spe_desc_set_link(chan, old_chain_tail, group_start); + } + + /* increment the pending count by the number of operations */ + chan->pending += slot_cnt / slots_per_op; + ppc440spe_adma_check_threshold(chan); + spin_unlock_bh(&chan->lock); + + dev_dbg(chan->device->common.dev, + "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n", + chan->device->id, __func__, + sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); + + return cookie; +} + +/** + * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation + */ +static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt( + struct dma_chan *chan, unsigned long flags) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + struct ppc440spe_adma_desc_slot *sw_desc, *group_start; + int slot_cnt, slots_per_op; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + + dev_dbg(ppc440spe_chan->device->common.dev, + "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id, + __func__); + + spin_lock_bh(&ppc440spe_chan->lock); + slot_cnt = slots_per_op = 1; + sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan); + group_start->unmap_len = 0; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&ppc440spe_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation + */ +static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy( + struct dma_chan *chan, dma_addr_t dma_dest, + dma_addr_t dma_src, size_t len, unsigned long flags) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + struct ppc440spe_adma_desc_slot *sw_desc, *group_start; + int slot_cnt, slots_per_op; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + + if (unlikely(!len)) + return NULL; + + BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT); + + spin_lock_bh(&ppc440spe_chan->lock); + + dev_dbg(ppc440spe_chan->device->common.dev, + "ppc440spe adma%d: %s len: %u int_en %d\n", + ppc440spe_chan->device->id, __func__, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + slot_cnt = slots_per_op = 1; + sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + ppc440spe_desc_init_memcpy(group_start, flags); + ppc440spe_adma_set_dest(group_start, dma_dest, 0); + ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0); + ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&ppc440spe_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation + */ +static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor( + struct dma_chan *chan, dma_addr_t dma_dest, + dma_addr_t *dma_src, u32 src_cnt, size_t len, + unsigned long flags) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + struct ppc440spe_adma_desc_slot *sw_desc, *group_start; + int slot_cnt, slots_per_op; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + + ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id, + dma_dest, dma_src, src_cnt)); + if (unlikely(!len)) + return NULL; + BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); + + dev_dbg(ppc440spe_chan->device->common.dev, + "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", + ppc440spe_chan->device->id, __func__, src_cnt, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + spin_lock_bh(&ppc440spe_chan->lock); + slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op); + sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + ppc440spe_desc_init_xor(group_start, src_cnt, flags); + ppc440spe_adma_set_dest(group_start, dma_dest, 0); + while (src_cnt--) + ppc440spe_adma_memcpy_xor_set_src(group_start, + dma_src[src_cnt], src_cnt); + ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&ppc440spe_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + +static inline void +ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc, + int src_cnt); +static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor); + +/** + * ppc440spe_adma_init_dma2rxor_slot - + */ +static void ppc440spe_adma_init_dma2rxor_slot( + struct ppc440spe_adma_desc_slot *desc, + dma_addr_t *src, int src_cnt) +{ + int i; + + /* initialize CDB */ + for (i = 0; i < src_cnt; i++) { + ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i, + desc->src_cnt, (u32)src[i]); + } +} + +/** + * ppc440spe_dma01_prep_mult - + * for Q operation where destination is also the source + */ +static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult( + struct ppc440spe_adma_chan *ppc440spe_chan, + dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, + const unsigned char *scf, size_t len, unsigned long flags) +{ + struct ppc440spe_adma_desc_slot *sw_desc = NULL; + unsigned long op = 0; + int slot_cnt; + + set_bit(PPC440SPE_DESC_WXOR, &op); + slot_cnt = 2; + + spin_lock_bh(&ppc440spe_chan->lock); + + /* use WXOR, each descriptor occupies one slot */ + sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); + if (sw_desc) { + struct ppc440spe_adma_chan *chan; + struct ppc440spe_adma_desc_slot *iter; + struct dma_cdb *hw_desc; + + chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); + set_bits(op, &sw_desc->flags); + sw_desc->src_cnt = src_cnt; + sw_desc->dst_cnt = dst_cnt; + /* First descriptor, zero data in the destination and copy it + * to q page using MULTICAST transfer. + */ + iter = list_first_entry(&sw_desc->group_list, + struct ppc440spe_adma_desc_slot, + chain_node); + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + /* set 'next' pointer */ + iter->hw_next = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + clear_bit(PPC440SPE_DESC_INT, &iter->flags); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MULTICAST; + + ppc440spe_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, dst[0], 0); + ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1); + ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, + src[0]); + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); + iter->unmap_len = len; + + /* + * Second descriptor, multiply data from the q page + * and store the result in real destination. + */ + iter = list_first_entry(&iter->chain_node, + struct ppc440spe_adma_desc_slot, + chain_node); + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + iter->hw_next = NULL; + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC440SPE_DESC_INT, &iter->flags); + else + clear_bit(PPC440SPE_DESC_INT, &iter->flags); + + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + ppc440spe_desc_set_src_addr(iter, chan, 0, + DMA_CUED_XOR_HB, dst[1]); + ppc440spe_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, dst[0], 0); + + ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, + DMA_CDB_SG_DST1, scf[0]); + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); + iter->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + + spin_unlock_bh(&ppc440spe_chan->lock); + + return sw_desc; +} + +/** + * ppc440spe_dma01_prep_sum_product - + * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also + * the source. + */ +static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product( + struct ppc440spe_adma_chan *ppc440spe_chan, + dma_addr_t *dst, dma_addr_t *src, int src_cnt, + const unsigned char *scf, size_t len, unsigned long flags) +{ + struct ppc440spe_adma_desc_slot *sw_desc = NULL; + unsigned long op = 0; + int slot_cnt; + + set_bit(PPC440SPE_DESC_WXOR, &op); + slot_cnt = 3; + + spin_lock_bh(&ppc440spe_chan->lock); + + /* WXOR, each descriptor occupies one slot */ + sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); + if (sw_desc) { + struct ppc440spe_adma_chan *chan; + struct ppc440spe_adma_desc_slot *iter; + struct dma_cdb *hw_desc; + + chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); + set_bits(op, &sw_desc->flags); + sw_desc->src_cnt = src_cnt; + sw_desc->dst_cnt = 1; + /* 1st descriptor, src[1] data to q page and zero destination */ + iter = list_first_entry(&sw_desc->group_list, + struct ppc440spe_adma_desc_slot, + chain_node); + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + iter->hw_next = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + clear_bit(PPC440SPE_DESC_INT, &iter->flags); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MULTICAST; + + ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, + *dst, 0); + ppc440spe_desc_set_dest_addr(iter, chan, 0, + ppc440spe_chan->qdest, 1); + ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, + src[1]); + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); + iter->unmap_len = len; + + /* 2nd descriptor, multiply src[1] data and store the + * result in destination */ + iter = list_first_entry(&iter->chain_node, + struct ppc440spe_adma_desc_slot, + chain_node); + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + /* set 'next' pointer */ + iter->hw_next = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC440SPE_DESC_INT, &iter->flags); + else + clear_bit(PPC440SPE_DESC_INT, &iter->flags); + + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, + ppc440spe_chan->qdest); + ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, + *dst, 0); + ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, + DMA_CDB_SG_DST1, scf[1]); + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); + iter->unmap_len = len; + + /* + * 3rd descriptor, multiply src[0] data and xor it + * with destination + */ + iter = list_first_entry(&iter->chain_node, + struct ppc440spe_adma_desc_slot, + chain_node); + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + iter->hw_next = NULL; + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC440SPE_DESC_INT, &iter->flags); + else + clear_bit(PPC440SPE_DESC_INT, &iter->flags); + + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, + src[0]); + ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, + *dst, 0); + ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, + DMA_CDB_SG_DST1, scf[0]); + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); + iter->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + + spin_unlock_bh(&ppc440spe_chan->lock); + + return sw_desc; +} + +static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq( + struct ppc440spe_adma_chan *ppc440spe_chan, + dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, + const unsigned char *scf, size_t len, unsigned long flags) +{ + int slot_cnt; + struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; + unsigned long op = 0; + unsigned char mult = 1; + + pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", + __func__, dst_cnt, src_cnt, len); + /* select operations WXOR/RXOR depending on the + * source addresses of operators and the number + * of destinations (RXOR support only Q-parity calculations) + */ + set_bit(PPC440SPE_DESC_WXOR, &op); + if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) { + /* no active RXOR; + * do RXOR if: + * - there are more than 1 source, + * - len is aligned on 512-byte boundary, + * - source addresses fit to one of 4 possible regions. + */ + if (src_cnt > 1 && + !(len & MQ0_CF2H_RXOR_BS_MASK) && + (src[0] + len) == src[1]) { + /* may do RXOR R1 R2 */ + set_bit(PPC440SPE_DESC_RXOR, &op); + if (src_cnt != 2) { + /* may try to enhance region of RXOR */ + if ((src[1] + len) == src[2]) { + /* do RXOR R1 R2 R3 */ + set_bit(PPC440SPE_DESC_RXOR123, + &op); + } else if ((src[1] + len * 2) == src[2]) { + /* do RXOR R1 R2 R4 */ + set_bit(PPC440SPE_DESC_RXOR124, &op); + } else if ((src[1] + len * 3) == src[2]) { + /* do RXOR R1 R2 R5 */ + set_bit(PPC440SPE_DESC_RXOR125, + &op); + } else { + /* do RXOR R1 R2 */ + set_bit(PPC440SPE_DESC_RXOR12, + &op); + } + } else { + /* do RXOR R1 R2 */ + set_bit(PPC440SPE_DESC_RXOR12, &op); + } + } + + if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { + /* can not do this operation with RXOR */ + clear_bit(PPC440SPE_RXOR_RUN, + &ppc440spe_rxor_state); + } else { + /* can do; set block size right now */ + ppc440spe_desc_set_rxor_block_size(len); + } + } + + /* Number of necessary slots depends on operation type selected */ + if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { + /* This is a WXOR only chain. Need descriptors for each + * source to GF-XOR them with WXOR, and need descriptors + * for each destination to zero them with WXOR + */ + slot_cnt = src_cnt; + + if (flags & DMA_PREP_ZERO_P) { + slot_cnt++; + set_bit(PPC440SPE_ZERO_P, &op); + } + if (flags & DMA_PREP_ZERO_Q) { + slot_cnt++; + set_bit(PPC440SPE_ZERO_Q, &op); + } + } else { + /* Need 1/2 descriptor for RXOR operation, and + * need (src_cnt - (2 or 3)) for WXOR of sources + * remained (if any) + */ + slot_cnt = dst_cnt; + + if (flags & DMA_PREP_ZERO_P) + set_bit(PPC440SPE_ZERO_P, &op); + if (flags & DMA_PREP_ZERO_Q) + set_bit(PPC440SPE_ZERO_Q, &op); + + if (test_bit(PPC440SPE_DESC_RXOR12, &op)) + slot_cnt += src_cnt - 2; + else + slot_cnt += src_cnt - 3; + + /* Thus we have either RXOR only chain or + * mixed RXOR/WXOR + */ + if (slot_cnt == dst_cnt) + /* RXOR only chain */ + clear_bit(PPC440SPE_DESC_WXOR, &op); + } + + spin_lock_bh(&ppc440spe_chan->lock); + /* for both RXOR/WXOR each descriptor occupies one slot */ + sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); + if (sw_desc) { + ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt, + flags, op); + + /* setup dst/src/mult */ + pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n", + __func__, dst[0], dst[1]); + ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); + while (src_cnt--) { + ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], + src_cnt); + + /* NOTE: "Multi = 0 is equivalent to = 1" as it + * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf + * doesn't work for RXOR with DMA0/1! Instead, multi=0 + * leads to zeroing source data after RXOR. + * So, for P case set-up mult=1 explicitly. + */ + if (!(flags & DMA_PREP_PQ_DISABLE_Q)) + mult = scf[src_cnt]; + ppc440spe_adma_pq_set_src_mult(sw_desc, + mult, src_cnt, dst_cnt - 1); + } + + /* Setup byte count foreach slot just allocated */ + sw_desc->async_tx.flags = flags; + list_for_each_entry(iter, &sw_desc->group_list, + chain_node) { + ppc440spe_desc_set_byte_count(iter, + ppc440spe_chan, len); + iter->unmap_len = len; + } + } + spin_unlock_bh(&ppc440spe_chan->lock); + + return sw_desc; +} + +static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq( + struct ppc440spe_adma_chan *ppc440spe_chan, + dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, + const unsigned char *scf, size_t len, unsigned long flags) +{ + int slot_cnt, descs_per_op; + struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; + unsigned long op = 0; + unsigned char mult = 1; + + BUG_ON(!dst_cnt); + /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", + __func__, dst_cnt, src_cnt, len);*/ + + spin_lock_bh(&ppc440spe_chan->lock); + descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len); + if (descs_per_op < 0) { + spin_unlock_bh(&ppc440spe_chan->lock); + return NULL; + } + + /* depending on number of sources we have 1 or 2 RXOR chains */ + slot_cnt = descs_per_op * dst_cnt; + + sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); + if (sw_desc) { + op = slot_cnt; + sw_desc->async_tx.flags = flags; + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt, + --op ? 0 : flags); + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, + len); + iter->unmap_len = len; + + ppc440spe_init_rxor_cursor(&(iter->rxor_cursor)); + iter->rxor_cursor.len = len; + iter->descs_per_op = descs_per_op; + } + op = 0; + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + op++; + if (op % descs_per_op == 0) + ppc440spe_adma_init_dma2rxor_slot(iter, src, + src_cnt); + if (likely(!list_is_last(&iter->chain_node, + &sw_desc->group_list))) { + /* set 'next' pointer */ + iter->hw_next = + list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + ppc440spe_xor_set_link(iter, iter->hw_next); + } else { + /* this is the last descriptor. */ + iter->hw_next = NULL; + } + } + + /* fixup head descriptor */ + sw_desc->dst_cnt = dst_cnt; + if (flags & DMA_PREP_ZERO_P) + set_bit(PPC440SPE_ZERO_P, &sw_desc->flags); + if (flags & DMA_PREP_ZERO_Q) + set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags); + + /* setup dst/src/mult */ + ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); + + while (src_cnt--) { + /* handle descriptors (if dst_cnt == 2) inside + * the ppc440spe_adma_pq_set_srcxxx() functions + */ + ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], + src_cnt); + if (!(flags & DMA_PREP_PQ_DISABLE_Q)) + mult = scf[src_cnt]; + ppc440spe_adma_pq_set_src_mult(sw_desc, + mult, src_cnt, dst_cnt - 1); + } + } + spin_unlock_bh(&ppc440spe_chan->lock); + ppc440spe_desc_set_rxor_block_size(len); + return sw_desc; +} + +/** + * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation + */ +static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq( + struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, + unsigned int src_cnt, const unsigned char *scf, + size_t len, unsigned long flags) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + struct ppc440spe_adma_desc_slot *sw_desc = NULL; + int dst_cnt = 0; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + + ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id, + dst, src, src_cnt)); + BUG_ON(!len); + BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); + BUG_ON(!src_cnt); + + if (src_cnt == 1 && dst[1] == src[0]) { + dma_addr_t dest[2]; + + /* dst[1] is real destination (Q) */ + dest[0] = dst[1]; + /* this is the page to multicast source data to */ + dest[1] = ppc440spe_chan->qdest; + sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan, + dest, 2, src, src_cnt, scf, len, flags); + return sw_desc ? &sw_desc->async_tx : NULL; + } + + if (src_cnt == 2 && dst[1] == src[1]) { + sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan, + &dst[1], src, 2, scf, len, flags); + return sw_desc ? &sw_desc->async_tx : NULL; + } + + if (!(flags & DMA_PREP_PQ_DISABLE_P)) { + BUG_ON(!dst[0]); + dst_cnt++; + flags |= DMA_PREP_ZERO_P; + } + + if (!(flags & DMA_PREP_PQ_DISABLE_Q)) { + BUG_ON(!dst[1]); + dst_cnt++; + flags |= DMA_PREP_ZERO_Q; + } + + BUG_ON(!dst_cnt); + + dev_dbg(ppc440spe_chan->device->common.dev, + "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", + ppc440spe_chan->device->id, __func__, src_cnt, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + switch (ppc440spe_chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan, + dst, dst_cnt, src, src_cnt, scf, + len, flags); + break; + + case PPC440SPE_XOR_ID: + sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan, + dst, dst_cnt, src, src_cnt, scf, + len, flags); + break; + } + + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for + * a PQ_ZERO_SUM operation + */ +static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum( + struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, + unsigned int src_cnt, const unsigned char *scf, size_t len, + enum sum_check_flags *pqres, unsigned long flags) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + struct ppc440spe_adma_desc_slot *sw_desc, *iter; + dma_addr_t pdest, qdest; + int slot_cnt, slots_per_op, idst, dst_cnt; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + + if (flags & DMA_PREP_PQ_DISABLE_P) + pdest = 0; + else + pdest = pq[0]; + + if (flags & DMA_PREP_PQ_DISABLE_Q) + qdest = 0; + else + qdest = pq[1]; + + ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id, + src, src_cnt, scf)); + + /* Always use WXOR for P/Q calculations (two destinations). + * Need 1 or 2 extra slots to verify results are zero. + */ + idst = dst_cnt = (pdest && qdest) ? 2 : 1; + + /* One additional slot per destination to clone P/Q + * before calculation (we have to preserve destinations). + */ + slot_cnt = src_cnt + dst_cnt * 2; + slots_per_op = 1; + + spin_lock_bh(&ppc440spe_chan->lock); + sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt); + + /* Setup byte count for each slot just allocated */ + sw_desc->async_tx.flags = flags; + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, + len); + iter->unmap_len = len; + } + + if (pdest) { + struct dma_cdb *hw_desc; + struct ppc440spe_adma_chan *chan; + + iter = sw_desc->group_head; + chan = to_ppc440spe_adma_chan(iter->async_tx.chan); + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + iter->hw_next = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + iter->src_cnt = 0; + iter->dst_cnt = 0; + ppc440spe_desc_set_dest_addr(iter, chan, 0, + ppc440spe_chan->pdest, 0); + ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest); + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, + len); + iter->unmap_len = 0; + /* override pdest to preserve original P */ + pdest = ppc440spe_chan->pdest; + } + if (qdest) { + struct dma_cdb *hw_desc; + struct ppc440spe_adma_chan *chan; + + iter = list_first_entry(&sw_desc->group_list, + struct ppc440spe_adma_desc_slot, + chain_node); + chan = to_ppc440spe_adma_chan(iter->async_tx.chan); + + if (pdest) { + iter = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + } + + memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); + iter->hw_next = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + iter->src_cnt = 0; + iter->dst_cnt = 0; + ppc440spe_desc_set_dest_addr(iter, chan, 0, + ppc440spe_chan->qdest, 0); + ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest); + ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, + len); + iter->unmap_len = 0; + /* override qdest to preserve original Q */ + qdest = ppc440spe_chan->qdest; + } + + /* Setup destinations for P/Q ops */ + ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest); + + /* Setup zero QWORDs into DCHECK CDBs */ + idst = dst_cnt; + list_for_each_entry_reverse(iter, &sw_desc->group_list, + chain_node) { + /* + * The last CDB corresponds to Q-parity check, + * the one before last CDB corresponds + * P-parity check + */ + if (idst == DMA_DEST_MAX_NUM) { + if (idst == dst_cnt) { + set_bit(PPC440SPE_DESC_QCHECK, + &iter->flags); + } else { + set_bit(PPC440SPE_DESC_PCHECK, + &iter->flags); + } + } else { + if (qdest) { + set_bit(PPC440SPE_DESC_QCHECK, + &iter->flags); + } else { + set_bit(PPC440SPE_DESC_PCHECK, + &iter->flags); + } + } + iter->xor_check_result = pqres; + + /* + * set it to zero, if check fail then result will + * be updated + */ + *iter->xor_check_result = 0; + ppc440spe_desc_set_dcheck(iter, ppc440spe_chan, + ppc440spe_qword); + + if (!(--dst_cnt)) + break; + } + + /* Setup sources and mults for P/Q ops */ + list_for_each_entry_continue_reverse(iter, &sw_desc->group_list, + chain_node) { + struct ppc440spe_adma_chan *chan; + u32 mult_dst; + + chan = to_ppc440spe_adma_chan(iter->async_tx.chan); + ppc440spe_desc_set_src_addr(iter, chan, 0, + DMA_CUED_XOR_HB, + src[src_cnt - 1]); + if (qdest) { + mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 : + DMA_CDB_SG_DST1; + ppc440spe_desc_set_src_mult(iter, chan, + DMA_CUED_MULT1_OFF, + mult_dst, + scf[src_cnt - 1]); + } + if (!(--src_cnt)) + break; + } + } + spin_unlock_bh(&ppc440spe_chan->lock); + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for + * XOR ZERO_SUM operation + */ +static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum( + struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, + size_t len, enum sum_check_flags *result, unsigned long flags) +{ + struct dma_async_tx_descriptor *tx; + dma_addr_t pq[2]; + + /* validate P, disable Q */ + pq[0] = src[0]; + pq[1] = 0; + flags |= DMA_PREP_PQ_DISABLE_Q; + + tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1], + src_cnt - 1, 0, len, + result, flags); + return tx; +} + +/** + * ppc440spe_adma_set_dest - set destination address into descriptor + */ +static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, + dma_addr_t addr, int index) +{ + struct ppc440spe_adma_chan *chan; + + BUG_ON(index >= sw_desc->dst_cnt); + + chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + /* to do: support transfers lengths > + * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT + */ + ppc440spe_desc_set_dest_addr(sw_desc->group_head, + chan, 0, addr, index); + break; + case PPC440SPE_XOR_ID: + sw_desc = ppc440spe_get_group_entry(sw_desc, index); + ppc440spe_desc_set_dest_addr(sw_desc, + chan, 0, addr, index); + break; + } +} + +static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter, + struct ppc440spe_adma_chan *chan, dma_addr_t addr) +{ + /* To clear destinations update the descriptor + * (P or Q depending on index) as follows: + * addr is destination (0 corresponds to SG2): + */ + ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); + + /* ... and the addr is source: */ + ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr); + + /* addr is always SG2 then the mult is always DST1 */ + ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, + DMA_CDB_SG_DST1, 1); +} + +/** + * ppc440spe_adma_pq_set_dest - set destination address into descriptor + * for the PQXOR operation + */ +static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, + dma_addr_t *addrs, unsigned long flags) +{ + struct ppc440spe_adma_desc_slot *iter; + struct ppc440spe_adma_chan *chan; + dma_addr_t paddr, qaddr; + dma_addr_t addr = 0, ppath, qpath; + int index = 0, i; + + chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); + + if (flags & DMA_PREP_PQ_DISABLE_P) + paddr = 0; + else + paddr = addrs[0]; + + if (flags & DMA_PREP_PQ_DISABLE_Q) + qaddr = 0; + else + qaddr = addrs[1]; + + if (!paddr || !qaddr) + addr = paddr ? paddr : qaddr; + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + /* walk through the WXOR source list and set P/Q-destinations + * for each slot: + */ + if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { + /* This is WXOR-only chain; may have 1/2 zero descs */ + if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) + index++; + if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) + index++; + + iter = ppc440spe_get_group_entry(sw_desc, index); + if (addr) { + /* one destination */ + list_for_each_entry_from(iter, + &sw_desc->group_list, chain_node) + ppc440spe_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, addr, 0); + } else { + /* two destinations */ + list_for_each_entry_from(iter, + &sw_desc->group_list, chain_node) { + ppc440spe_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, paddr, 0); + ppc440spe_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, qaddr, 1); + } + } + + if (index) { + /* To clear destinations update the descriptor + * (1st,2nd, or both depending on flags) + */ + index = 0; + if (test_bit(PPC440SPE_ZERO_P, + &sw_desc->flags)) { + iter = ppc440spe_get_group_entry( + sw_desc, index++); + ppc440spe_adma_pq_zero_op(iter, chan, + paddr); + } + + if (test_bit(PPC440SPE_ZERO_Q, + &sw_desc->flags)) { + iter = ppc440spe_get_group_entry( + sw_desc, index++); + ppc440spe_adma_pq_zero_op(iter, chan, + qaddr); + } + + return; + } + } else { + /* This is RXOR-only or RXOR/WXOR mixed chain */ + + /* If we want to include destination into calculations, + * then make dest addresses cued with mult=1 (XOR). + */ + ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + + /* Setup destination(s) in RXOR slot(s) */ + iter = ppc440spe_get_group_entry(sw_desc, index++); + ppc440spe_desc_set_dest_addr(iter, chan, + paddr ? ppath : qpath, + paddr ? paddr : qaddr, 0); + if (!addr) { + /* two destinations */ + iter = ppc440spe_get_group_entry(sw_desc, + index++); + ppc440spe_desc_set_dest_addr(iter, chan, + qpath, qaddr, 0); + } + + if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) { + /* Setup destination(s) in remaining WXOR + * slots + */ + iter = ppc440spe_get_group_entry(sw_desc, + index); + if (addr) { + /* one destination */ + list_for_each_entry_from(iter, + &sw_desc->group_list, + chain_node) + ppc440spe_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + addr, 0); + + } else { + /* two destinations */ + list_for_each_entry_from(iter, + &sw_desc->group_list, + chain_node) { + ppc440spe_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + paddr, 0); + ppc440spe_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + qaddr, 1); + } + } + } + + } + break; + + case PPC440SPE_XOR_ID: + /* DMA2 descriptors have only 1 destination, so there are + * two chains - one for each dest. + * If we want to include destination into calculations, + * then make dest addresses cued with mult=1 (XOR). + */ + ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + + qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + + iter = ppc440spe_get_group_entry(sw_desc, 0); + for (i = 0; i < sw_desc->descs_per_op; i++) { + ppc440spe_desc_set_dest_addr(iter, chan, + paddr ? ppath : qpath, + paddr ? paddr : qaddr, 0); + iter = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + } + + if (!addr) { + /* Two destinations; setup Q here */ + iter = ppc440spe_get_group_entry(sw_desc, + sw_desc->descs_per_op); + for (i = 0; i < sw_desc->descs_per_op; i++) { + ppc440spe_desc_set_dest_addr(iter, + chan, qpath, qaddr, 0); + iter = list_entry(iter->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + } + } + + break; + } +} + +/** + * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor + * for the PQ_ZERO_SUM operation + */ +static void ppc440spe_adma_pqzero_sum_set_dest( + struct ppc440spe_adma_desc_slot *sw_desc, + dma_addr_t paddr, dma_addr_t qaddr) +{ + struct ppc440spe_adma_desc_slot *iter, *end; + struct ppc440spe_adma_chan *chan; + dma_addr_t addr = 0; + int idx; + + chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); + + /* walk through the WXOR source list and set P/Q-destinations + * for each slot + */ + idx = (paddr && qaddr) ? 2 : 1; + /* set end */ + list_for_each_entry_reverse(end, &sw_desc->group_list, + chain_node) { + if (!(--idx)) + break; + } + /* set start */ + idx = (paddr && qaddr) ? 2 : 1; + iter = ppc440spe_get_group_entry(sw_desc, idx); + + if (paddr && qaddr) { + /* two destinations */ + list_for_each_entry_from(iter, &sw_desc->group_list, + chain_node) { + if (unlikely(iter == end)) + break; + ppc440spe_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, paddr, 0); + ppc440spe_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, qaddr, 1); + } + } else { + /* one destination */ + addr = paddr ? paddr : qaddr; + list_for_each_entry_from(iter, &sw_desc->group_list, + chain_node) { + if (unlikely(iter == end)) + break; + ppc440spe_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, addr, 0); + } + } + + /* The remaining descriptors are DATACHECK. These have no need in + * destination. Actually, these destinations are used there + * as sources for check operation. So, set addr as source. + */ + ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr); + + if (!addr) { + end = list_entry(end->chain_node.next, + struct ppc440spe_adma_desc_slot, chain_node); + ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr); + } +} + +/** + * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor + */ +static inline void ppc440spe_desc_set_xor_src_cnt( + struct ppc440spe_adma_desc_slot *desc, + int src_cnt) +{ + struct xor_cb *hw_desc = desc->hw_desc; + + hw_desc->cbc &= ~XOR_CDCR_OAC_MSK; + hw_desc->cbc |= src_cnt; +} + +/** + * ppc440spe_adma_pq_set_src - set source address into descriptor + */ +static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc, + dma_addr_t addr, int index) +{ + struct ppc440spe_adma_chan *chan; + dma_addr_t haddr = 0; + struct ppc440spe_adma_desc_slot *iter = NULL; + + chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain + */ + if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { + /* RXOR-only or RXOR/WXOR operation */ + int iskip = test_bit(PPC440SPE_DESC_RXOR12, + &sw_desc->flags) ? 2 : 3; + + if (index == 0) { + /* 1st slot (RXOR) */ + /* setup sources region (R1-2-3, R1-2-4, + * or R1-2-5) + */ + if (test_bit(PPC440SPE_DESC_RXOR12, + &sw_desc->flags)) + haddr = DMA_RXOR12 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC440SPE_DESC_RXOR123, + &sw_desc->flags)) + haddr = DMA_RXOR123 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC440SPE_DESC_RXOR124, + &sw_desc->flags)) + haddr = DMA_RXOR124 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC440SPE_DESC_RXOR125, + &sw_desc->flags)) + haddr = DMA_RXOR125 << + DMA_CUED_REGION_OFF; + else + BUG(); + haddr |= DMA_CUED_XOR_BASE; + iter = ppc440spe_get_group_entry(sw_desc, 0); + } else if (index < iskip) { + /* 1st slot (RXOR) + * shall actually set source address only once + * instead of first <iskip> + */ + iter = NULL; + } else { + /* 2nd/3d and next slots (WXOR); + * skip first slot with RXOR + */ + haddr = DMA_CUED_XOR_HB; + iter = ppc440spe_get_group_entry(sw_desc, + index - iskip + sw_desc->dst_cnt); + } + } else { + int znum = 0; + + /* WXOR-only operation; skip first slots with + * zeroing destinations + */ + if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) + znum++; + if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) + znum++; + + haddr = DMA_CUED_XOR_HB; + iter = ppc440spe_get_group_entry(sw_desc, + index + znum); + } + + if (likely(iter)) { + ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr); + + if (!index && + test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) && + sw_desc->dst_cnt == 2) { + /* if we have two destinations for RXOR, then + * setup source in the second descr too + */ + iter = ppc440spe_get_group_entry(sw_desc, 1); + ppc440spe_desc_set_src_addr(iter, chan, 0, + haddr, addr); + } + } + break; + + case PPC440SPE_XOR_ID: + /* DMA2 may do Biskup */ + iter = sw_desc->group_head; + if (iter->dst_cnt == 2) { + /* both P & Q calculations required; set P src here */ + ppc440spe_adma_dma2rxor_set_src(iter, index, addr); + + /* this is for Q */ + iter = ppc440spe_get_group_entry(sw_desc, + sw_desc->descs_per_op); + } + ppc440spe_adma_dma2rxor_set_src(iter, index, addr); + break; + } +} + +/** + * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor + */ +static void ppc440spe_adma_memcpy_xor_set_src( + struct ppc440spe_adma_desc_slot *sw_desc, + dma_addr_t addr, int index) +{ + struct ppc440spe_adma_chan *chan; + + chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); + sw_desc = sw_desc->group_head; + + if (likely(sw_desc)) + ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr); +} + +/** + * ppc440spe_adma_dma2rxor_inc_addr - + */ +static void ppc440spe_adma_dma2rxor_inc_addr( + struct ppc440spe_adma_desc_slot *desc, + struct ppc440spe_rxor *cursor, int index, int src_cnt) +{ + cursor->addr_count++; + if (index == src_cnt - 1) { + ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); + } else if (cursor->addr_count == XOR_MAX_OPS) { + ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); + cursor->addr_count = 0; + cursor->desc_count++; + } +} + +/** + * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB + */ +static int ppc440spe_adma_dma2rxor_prep_src( + struct ppc440spe_adma_desc_slot *hdesc, + struct ppc440spe_rxor *cursor, int index, + int src_cnt, u32 addr) +{ + int rval = 0; + u32 sign; + struct ppc440spe_adma_desc_slot *desc = hdesc; + int i; + + for (i = 0; i < cursor->desc_count; i++) { + desc = list_entry(hdesc->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + } + + switch (cursor->state) { + case 0: + if (addr == cursor->addrl + cursor->len) { + /* direct RXOR */ + cursor->state = 1; + cursor->xor_count++; + if (index == src_cnt-1) { + ppc440spe_rxor_set_region(desc, + cursor->addr_count, + DMA_RXOR12 << DMA_CUED_REGION_OFF); + ppc440spe_adma_dma2rxor_inc_addr( + desc, cursor, index, src_cnt); + } + } else if (cursor->addrl == addr + cursor->len) { + /* reverse RXOR */ + cursor->state = 1; + cursor->xor_count++; + set_bit(cursor->addr_count, &desc->reverse_flags[0]); + if (index == src_cnt-1) { + ppc440spe_rxor_set_region(desc, + cursor->addr_count, + DMA_RXOR12 << DMA_CUED_REGION_OFF); + ppc440spe_adma_dma2rxor_inc_addr( + desc, cursor, index, src_cnt); + } + } else { + printk(KERN_ERR "Cannot build " + "DMA2 RXOR command block.\n"); + BUG(); + } + break; + case 1: + sign = test_bit(cursor->addr_count, + desc->reverse_flags) + ? -1 : 1; + if (index == src_cnt-2 || (sign == -1 + && addr != cursor->addrl - 2*cursor->len)) { + cursor->state = 0; + cursor->xor_count = 1; + cursor->addrl = addr; + ppc440spe_rxor_set_region(desc, + cursor->addr_count, + DMA_RXOR12 << DMA_CUED_REGION_OFF); + ppc440spe_adma_dma2rxor_inc_addr( + desc, cursor, index, src_cnt); + } else if (addr == cursor->addrl + 2*sign*cursor->len) { + cursor->state = 2; + cursor->xor_count = 0; + ppc440spe_rxor_set_region(desc, + cursor->addr_count, + DMA_RXOR123 << DMA_CUED_REGION_OFF); + if (index == src_cnt-1) { + ppc440spe_adma_dma2rxor_inc_addr( + desc, cursor, index, src_cnt); + } + } else if (addr == cursor->addrl + 3*cursor->len) { + cursor->state = 2; + cursor->xor_count = 0; + ppc440spe_rxor_set_region(desc, + cursor->addr_count, + DMA_RXOR124 << DMA_CUED_REGION_OFF); + if (index == src_cnt-1) { + ppc440spe_adma_dma2rxor_inc_addr( + desc, cursor, index, src_cnt); + } + } else if (addr == cursor->addrl + 4*cursor->len) { + cursor->state = 2; + cursor->xor_count = 0; + ppc440spe_rxor_set_region(desc, + cursor->addr_count, + DMA_RXOR125 << DMA_CUED_REGION_OFF); + if (index == src_cnt-1) { + ppc440spe_adma_dma2rxor_inc_addr( + desc, cursor, index, src_cnt); + } + } else { + cursor->state = 0; + cursor->xor_count = 1; + cursor->addrl = addr; + ppc440spe_rxor_set_region(desc, + cursor->addr_count, + DMA_RXOR12 << DMA_CUED_REGION_OFF); + ppc440spe_adma_dma2rxor_inc_addr( + desc, cursor, index, src_cnt); + } + break; + case 2: + cursor->state = 0; + cursor->addrl = addr; + cursor->xor_count++; + if (index) { + ppc440spe_adma_dma2rxor_inc_addr( + desc, cursor, index, src_cnt); + } + break; + } + + return rval; +} + +/** + * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that + * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call + */ +static void ppc440spe_adma_dma2rxor_set_src( + struct ppc440spe_adma_desc_slot *desc, + int index, dma_addr_t addr) +{ + struct xor_cb *xcb = desc->hw_desc; + int k = 0, op = 0, lop = 0; + + /* get the RXOR operand which corresponds to index addr */ + while (op <= index) { + lop = op; + if (k == XOR_MAX_OPS) { + k = 0; + desc = list_entry(desc->chain_node.next, + struct ppc440spe_adma_desc_slot, chain_node); + xcb = desc->hw_desc; + + } + if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == + (DMA_RXOR12 << DMA_CUED_REGION_OFF)) + op += 2; + else + op += 3; + } + + BUG_ON(k < 1); + + if (test_bit(k-1, desc->reverse_flags)) { + /* reverse operand order; put last op in RXOR group */ + if (index == op - 1) + ppc440spe_rxor_set_src(desc, k - 1, addr); + } else { + /* direct operand order; put first op in RXOR group */ + if (index == lop) + ppc440spe_rxor_set_src(desc, k - 1, addr); + } +} + +/** + * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that + * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call + */ +static void ppc440spe_adma_dma2rxor_set_mult( + struct ppc440spe_adma_desc_slot *desc, + int index, u8 mult) +{ + struct xor_cb *xcb = desc->hw_desc; + int k = 0, op = 0, lop = 0; + + /* get the RXOR operand which corresponds to index mult */ + while (op <= index) { + lop = op; + if (k == XOR_MAX_OPS) { + k = 0; + desc = list_entry(desc->chain_node.next, + struct ppc440spe_adma_desc_slot, + chain_node); + xcb = desc->hw_desc; + + } + if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == + (DMA_RXOR12 << DMA_CUED_REGION_OFF)) + op += 2; + else + op += 3; + } + + BUG_ON(k < 1); + if (test_bit(k-1, desc->reverse_flags)) { + /* reverse order */ + ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult); + } else { + /* direct order */ + ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult); + } +} + +/** + * ppc440spe_init_rxor_cursor - + */ +static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor) +{ + memset(cursor, 0, sizeof(struct ppc440spe_rxor)); + cursor->state = 2; +} + +/** + * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into + * descriptor for the PQXOR operation + */ +static void ppc440spe_adma_pq_set_src_mult( + struct ppc440spe_adma_desc_slot *sw_desc, + unsigned char mult, int index, int dst_pos) +{ + struct ppc440spe_adma_chan *chan; + u32 mult_idx, mult_dst; + struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL; + + chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); + + switch (chan->device->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { + int region = test_bit(PPC440SPE_DESC_RXOR12, + &sw_desc->flags) ? 2 : 3; + + if (index < region) { + /* RXOR multipliers */ + iter = ppc440spe_get_group_entry(sw_desc, + sw_desc->dst_cnt - 1); + if (sw_desc->dst_cnt == 2) + iter1 = ppc440spe_get_group_entry( + sw_desc, 0); + + mult_idx = DMA_CUED_MULT1_OFF + (index << 3); + mult_dst = DMA_CDB_SG_SRC; + } else { + /* WXOR multiplier */ + iter = ppc440spe_get_group_entry(sw_desc, + index - region + + sw_desc->dst_cnt); + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = dst_pos ? DMA_CDB_SG_DST2 : + DMA_CDB_SG_DST1; + } + } else { + int znum = 0; + + /* WXOR-only; + * skip first slots with destinations (if ZERO_DST has + * place) + */ + if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) + znum++; + if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) + znum++; + + iter = ppc440spe_get_group_entry(sw_desc, index + znum); + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; + } + + if (likely(iter)) { + ppc440spe_desc_set_src_mult(iter, chan, + mult_idx, mult_dst, mult); + + if (unlikely(iter1)) { + /* if we have two destinations for RXOR, then + * we've just set Q mult. Set-up P now. + */ + ppc440spe_desc_set_src_mult(iter1, chan, + mult_idx, mult_dst, 1); + } + + } + break; + + case PPC440SPE_XOR_ID: + iter = sw_desc->group_head; + if (sw_desc->dst_cnt == 2) { + /* both P & Q calculations required; set P mult here */ + ppc440spe_adma_dma2rxor_set_mult(iter, index, 1); + + /* and then set Q mult */ + iter = ppc440spe_get_group_entry(sw_desc, + sw_desc->descs_per_op); + } + ppc440spe_adma_dma2rxor_set_mult(iter, index, mult); + break; + } +} + +/** + * ppc440spe_adma_free_chan_resources - free the resources allocated + */ +static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + struct ppc440spe_adma_desc_slot *iter, *_iter; + int in_use_descs = 0; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + ppc440spe_adma_slot_cleanup(ppc440spe_chan); + + spin_lock_bh(&ppc440spe_chan->lock); + list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain, + chain_node) { + in_use_descs++; + list_del(&iter->chain_node); + } + list_for_each_entry_safe_reverse(iter, _iter, + &ppc440spe_chan->all_slots, slot_node) { + list_del(&iter->slot_node); + kfree(iter); + ppc440spe_chan->slots_allocated--; + } + ppc440spe_chan->last_used = NULL; + + dev_dbg(ppc440spe_chan->device->common.dev, + "ppc440spe adma%d %s slots_allocated %d\n", + ppc440spe_chan->device->id, + __func__, ppc440spe_chan->slots_allocated); + spin_unlock_bh(&ppc440spe_chan->lock); + + /* one is ok since we left it on there on purpose */ + if (in_use_descs > 1) + printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n", + in_use_descs - 1); +} + +/** + * ppc440spe_adma_tx_status - poll the status of an ADMA transaction + * @chan: ADMA channel handle + * @cookie: ADMA transaction identifier + * @txstate: a holder for the current state of the channel + */ +static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan, + dma_cookie_t cookie, struct dma_tx_state *txstate) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + enum dma_status ret; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + ret = dma_cookie_status(chan, cookie, txstate); + if (ret == DMA_COMPLETE) + return ret; + + ppc440spe_adma_slot_cleanup(ppc440spe_chan); + + return dma_cookie_status(chan, cookie, txstate); +} + +/** + * ppc440spe_adma_eot_handler - end of transfer interrupt handler + */ +static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data) +{ + struct ppc440spe_adma_chan *chan = data; + + dev_dbg(chan->device->common.dev, + "ppc440spe adma%d: %s\n", chan->device->id, __func__); + + tasklet_schedule(&chan->irq_tasklet); + ppc440spe_adma_device_clear_eot_status(chan); + + return IRQ_HANDLED; +} + +/** + * ppc440spe_adma_err_handler - DMA error interrupt handler; + * do the same things as a eot handler + */ +static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data) +{ + struct ppc440spe_adma_chan *chan = data; + + dev_dbg(chan->device->common.dev, + "ppc440spe adma%d: %s\n", chan->device->id, __func__); + + tasklet_schedule(&chan->irq_tasklet); + ppc440spe_adma_device_clear_eot_status(chan); + + return IRQ_HANDLED; +} + +/** + * ppc440spe_test_callback - called when test operation has been done + */ +static void ppc440spe_test_callback(void *unused) +{ + complete(&ppc440spe_r6_test_comp); +} + +/** + * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w + */ +static void ppc440spe_adma_issue_pending(struct dma_chan *chan) +{ + struct ppc440spe_adma_chan *ppc440spe_chan; + + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + dev_dbg(ppc440spe_chan->device->common.dev, + "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id, + __func__, ppc440spe_chan->pending); + + if (ppc440spe_chan->pending) { + ppc440spe_chan->pending = 0; + ppc440spe_chan_append(ppc440spe_chan); + } +} + +/** + * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines + * use FIFOs (as opposite to chains used in XOR) so this is a XOR + * specific operation) + */ +static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan) +{ + struct ppc440spe_adma_desc_slot *sw_desc, *group_start; + dma_cookie_t cookie; + int slot_cnt, slots_per_op; + + dev_dbg(chan->device->common.dev, + "ppc440spe adma%d: %s\n", chan->device->id, __func__); + + spin_lock_bh(&chan->lock); + slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op); + sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + list_splice_init(&sw_desc->group_list, &chan->chain); + async_tx_ack(&sw_desc->async_tx); + ppc440spe_desc_init_null_xor(group_start); + + cookie = dma_cookie_assign(&sw_desc->async_tx); + + /* initialize the completed cookie to be less than + * the most recently used cookie + */ + chan->common.completed_cookie = cookie - 1; + + /* channel should not be busy */ + BUG_ON(ppc440spe_chan_is_busy(chan)); + + /* set the descriptor address */ + ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc); + + /* run the descriptor */ + ppc440spe_chan_run(chan); + } else + printk(KERN_ERR "ppc440spe adma%d" + " failed to allocate null descriptor\n", + chan->device->id); + spin_unlock_bh(&chan->lock); +} + +/** + * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully. + * For this we just perform one WXOR operation with the same source + * and destination addresses, the GF-multiplier is 1; so if RAID-6 + * capabilities are enabled then we'll get src/dst filled with zero. + */ +static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan) +{ + struct ppc440spe_adma_desc_slot *sw_desc, *iter; + struct page *pg; + char *a; + dma_addr_t dma_addr, addrs[2]; + unsigned long op = 0; + int rval = 0; + + set_bit(PPC440SPE_DESC_WXOR, &op); + + pg = alloc_page(GFP_KERNEL); + if (!pg) + return -ENOMEM; + + spin_lock_bh(&chan->lock); + sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1); + if (sw_desc) { + /* 1 src, 1 dsr, int_ena, WXOR */ + ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op); + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE); + iter->unmap_len = PAGE_SIZE; + } + } else { + rval = -EFAULT; + spin_unlock_bh(&chan->lock); + goto exit; + } + spin_unlock_bh(&chan->lock); + + /* Fill the test page with ones */ + memset(page_address(pg), 0xFF, PAGE_SIZE); + dma_addr = dma_map_page(chan->device->dev, pg, 0, + PAGE_SIZE, DMA_BIDIRECTIONAL); + + /* Setup addresses */ + ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0); + ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0); + addrs[0] = dma_addr; + addrs[1] = 0; + ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q); + + async_tx_ack(&sw_desc->async_tx); + sw_desc->async_tx.callback = ppc440spe_test_callback; + sw_desc->async_tx.callback_param = NULL; + + init_completion(&ppc440spe_r6_test_comp); + + ppc440spe_adma_tx_submit(&sw_desc->async_tx); + ppc440spe_adma_issue_pending(&chan->common); + + wait_for_completion(&ppc440spe_r6_test_comp); + + /* Now check if the test page is zeroed */ + a = page_address(pg); + if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) { + /* page is zero - RAID-6 enabled */ + rval = 0; + } else { + /* RAID-6 was not enabled */ + rval = -EINVAL; + } +exit: + __free_page(pg); + return rval; +} + +static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev) +{ + switch (adev->id) { + case PPC440SPE_DMA0_ID: + case PPC440SPE_DMA1_ID: + dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); + dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); + dma_cap_set(DMA_PQ, adev->common.cap_mask); + dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask); + dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask); + break; + case PPC440SPE_XOR_ID: + dma_cap_set(DMA_XOR, adev->common.cap_mask); + dma_cap_set(DMA_PQ, adev->common.cap_mask); + dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); + adev->common.cap_mask = adev->common.cap_mask; + break; + } + + /* Set base routines */ + adev->common.device_alloc_chan_resources = + ppc440spe_adma_alloc_chan_resources; + adev->common.device_free_chan_resources = + ppc440spe_adma_free_chan_resources; + adev->common.device_tx_status = ppc440spe_adma_tx_status; + adev->common.device_issue_pending = ppc440spe_adma_issue_pending; + + /* Set prep routines based on capability */ + if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { + adev->common.device_prep_dma_memcpy = + ppc440spe_adma_prep_dma_memcpy; + } + if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { + adev->common.max_xor = XOR_MAX_OPS; + adev->common.device_prep_dma_xor = + ppc440spe_adma_prep_dma_xor; + } + if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) { + switch (adev->id) { + case PPC440SPE_DMA0_ID: + dma_set_maxpq(&adev->common, + DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0); + break; + case PPC440SPE_DMA1_ID: + dma_set_maxpq(&adev->common, + DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0); + break; + case PPC440SPE_XOR_ID: + adev->common.max_pq = XOR_MAX_OPS * 3; + break; + } + adev->common.device_prep_dma_pq = + ppc440spe_adma_prep_dma_pq; + } + if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) { + switch (adev->id) { + case PPC440SPE_DMA0_ID: + adev->common.max_pq = DMA0_FIFO_SIZE / + sizeof(struct dma_cdb); + break; + case PPC440SPE_DMA1_ID: + adev->common.max_pq = DMA1_FIFO_SIZE / + sizeof(struct dma_cdb); + break; + } + adev->common.device_prep_dma_pq_val = + ppc440spe_adma_prep_dma_pqzero_sum; + } + if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) { + switch (adev->id) { + case PPC440SPE_DMA0_ID: + adev->common.max_xor = DMA0_FIFO_SIZE / + sizeof(struct dma_cdb); + break; + case PPC440SPE_DMA1_ID: + adev->common.max_xor = DMA1_FIFO_SIZE / + sizeof(struct dma_cdb); + break; + } + adev->common.device_prep_dma_xor_val = + ppc440spe_adma_prep_dma_xor_zero_sum; + } + if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { + adev->common.device_prep_dma_interrupt = + ppc440spe_adma_prep_dma_interrupt; + } + pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: " + "( %s%s%s%s%s%s)\n", + dev_name(adev->dev), + dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "", + dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "", + dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", + dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "", + dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", + dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : ""); +} + +static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev, + struct ppc440spe_adma_chan *chan, + int *initcode) +{ + struct platform_device *ofdev; + struct device_node *np; + int ret; + + ofdev = container_of(adev->dev, struct platform_device, dev); + np = ofdev->dev.of_node; + if (adev->id != PPC440SPE_XOR_ID) { + adev->err_irq = irq_of_parse_and_map(np, 1); + if (adev->err_irq == NO_IRQ) { + dev_warn(adev->dev, "no err irq resource?\n"); + *initcode = PPC_ADMA_INIT_IRQ2; + adev->err_irq = -ENXIO; + } else + atomic_inc(&ppc440spe_adma_err_irq_ref); + } else { + adev->err_irq = -ENXIO; + } + + adev->irq = irq_of_parse_and_map(np, 0); + if (adev->irq == NO_IRQ) { + dev_err(adev->dev, "no irq resource\n"); + *initcode = PPC_ADMA_INIT_IRQ1; + ret = -ENXIO; + goto err_irq_map; + } + dev_dbg(adev->dev, "irq %d, err irq %d\n", + adev->irq, adev->err_irq); + + ret = request_irq(adev->irq, ppc440spe_adma_eot_handler, + 0, dev_driver_string(adev->dev), chan); + if (ret) { + dev_err(adev->dev, "can't request irq %d\n", + adev->irq); + *initcode = PPC_ADMA_INIT_IRQ1; + ret = -EIO; + goto err_req1; + } + + /* only DMA engines have a separate error IRQ + * so it's Ok if err_irq < 0 in XOR engine case. + */ + if (adev->err_irq > 0) { + /* both DMA engines share common error IRQ */ + ret = request_irq(adev->err_irq, + ppc440spe_adma_err_handler, + IRQF_SHARED, + dev_driver_string(adev->dev), + chan); + if (ret) { + dev_err(adev->dev, "can't request irq %d\n", + adev->err_irq); + *initcode = PPC_ADMA_INIT_IRQ2; + ret = -EIO; + goto err_req2; + } + } + + if (adev->id == PPC440SPE_XOR_ID) { + /* enable XOR engine interrupts */ + iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | + XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT, + &adev->xor_reg->ier); + } else { + u32 mask, enable; + + np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); + if (!np) { + pr_err("%s: can't find I2O device tree node\n", + __func__); + ret = -ENODEV; + goto err_req2; + } + adev->i2o_reg = of_iomap(np, 0); + if (!adev->i2o_reg) { + pr_err("%s: failed to map I2O registers\n", __func__); + of_node_put(np); + ret = -EINVAL; + goto err_req2; + } + of_node_put(np); + /* Unmask 'CS FIFO Attention' interrupts and + * enable generating interrupts on errors + */ + enable = (adev->id == PPC440SPE_DMA0_ID) ? + ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : + ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); + mask = ioread32(&adev->i2o_reg->iopim) & enable; + iowrite32(mask, &adev->i2o_reg->iopim); + } + return 0; + +err_req2: + free_irq(adev->irq, chan); +err_req1: + irq_dispose_mapping(adev->irq); +err_irq_map: + if (adev->err_irq > 0) { + if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) + irq_dispose_mapping(adev->err_irq); + } + return ret; +} + +static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev, + struct ppc440spe_adma_chan *chan) +{ + u32 mask, disable; + + if (adev->id == PPC440SPE_XOR_ID) { + /* disable XOR engine interrupts */ + mask = ioread32be(&adev->xor_reg->ier); + mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | + XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT); + iowrite32be(mask, &adev->xor_reg->ier); + } else { + /* disable DMAx engine interrupts */ + disable = (adev->id == PPC440SPE_DMA0_ID) ? + (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : + (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); + mask = ioread32(&adev->i2o_reg->iopim) | disable; + iowrite32(mask, &adev->i2o_reg->iopim); + } + free_irq(adev->irq, chan); + irq_dispose_mapping(adev->irq); + if (adev->err_irq > 0) { + free_irq(adev->err_irq, chan); + if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) { + irq_dispose_mapping(adev->err_irq); + iounmap(adev->i2o_reg); + } + } +} + +/** + * ppc440spe_adma_probe - probe the asynch device + */ +static int ppc440spe_adma_probe(struct platform_device *ofdev) +{ + struct device_node *np = ofdev->dev.of_node; + struct resource res; + struct ppc440spe_adma_device *adev; + struct ppc440spe_adma_chan *chan; + struct ppc_dma_chan_ref *ref, *_ref; + int ret = 0, initcode = PPC_ADMA_INIT_OK; + const u32 *idx; + int len; + void *regs; + u32 id, pool_size; + + if (of_device_is_compatible(np, "amcc,xor-accelerator")) { + id = PPC440SPE_XOR_ID; + /* As far as the XOR engine is concerned, it does not + * use FIFOs but uses linked list. So there is no dependency + * between pool size to allocate and the engine configuration. + */ + pool_size = PAGE_SIZE << 1; + } else { + /* it is DMA0 or DMA1 */ + idx = of_get_property(np, "cell-index", &len); + if (!idx || (len != sizeof(u32))) { + dev_err(&ofdev->dev, "Device node %s has missing " + "or invalid cell-index property\n", + np->full_name); + return -EINVAL; + } + id = *idx; + /* DMA0,1 engines use FIFO to maintain CDBs, so we + * should allocate the pool accordingly to size of this + * FIFO. Thus, the pool size depends on the FIFO depth: + * how much CDBs pointers the FIFO may contain then so + * much CDBs we should provide in the pool. + * That is + * CDB size = 32B; + * CDBs number = (DMA0_FIFO_SIZE >> 3); + * Pool size = CDBs number * CDB size = + * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2. + */ + pool_size = (id == PPC440SPE_DMA0_ID) ? + DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; + pool_size <<= 2; + } + + if (of_address_to_resource(np, 0, &res)) { + dev_err(&ofdev->dev, "failed to get memory resource\n"); + initcode = PPC_ADMA_INIT_MEMRES; + ret = -ENODEV; + goto out; + } + + if (!request_mem_region(res.start, resource_size(&res), + dev_driver_string(&ofdev->dev))) { + dev_err(&ofdev->dev, "failed to request memory region %pR\n", + &res); + initcode = PPC_ADMA_INIT_MEMREG; + ret = -EBUSY; + goto out; + } + + /* create a device */ + adev = kzalloc(sizeof(*adev), GFP_KERNEL); + if (!adev) { + dev_err(&ofdev->dev, "failed to allocate device\n"); + initcode = PPC_ADMA_INIT_ALLOC; + ret = -ENOMEM; + goto err_adev_alloc; + } + + adev->id = id; + adev->pool_size = pool_size; + /* allocate coherent memory for hardware descriptors */ + adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, + adev->pool_size, &adev->dma_desc_pool, + GFP_KERNEL); + if (adev->dma_desc_pool_virt == NULL) { + dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent " + "memory for hardware descriptors\n", + adev->pool_size); + initcode = PPC_ADMA_INIT_COHERENT; + ret = -ENOMEM; + goto err_dma_alloc; + } + dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n", + adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool); + + regs = ioremap(res.start, resource_size(&res)); + if (!regs) { + dev_err(&ofdev->dev, "failed to ioremap regs!\n"); + ret = -ENOMEM; + goto err_regs_alloc; + } + + if (adev->id == PPC440SPE_XOR_ID) { + adev->xor_reg = regs; + /* Reset XOR */ + iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr); + iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr); + } else { + size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ? + DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; + adev->dma_reg = regs; + /* DMAx_FIFO_SIZE is defined in bytes, + * <fsiz> - is defined in number of CDB pointers (8byte). + * DMA FIFO Length = CSlength + CPlength, where + * CSlength = CPlength = (fsiz + 1) * 8. + */ + iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2), + &adev->dma_reg->fsiz); + /* Configure DMA engine */ + iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN, + &adev->dma_reg->cfg); + /* Clear Status */ + iowrite32(~0, &adev->dma_reg->dsts); + } + + adev->dev = &ofdev->dev; + adev->common.dev = &ofdev->dev; + INIT_LIST_HEAD(&adev->common.channels); + platform_set_drvdata(ofdev, adev); + + /* create a channel */ + chan = kzalloc(sizeof(*chan), GFP_KERNEL); + if (!chan) { + dev_err(&ofdev->dev, "can't allocate channel structure\n"); + initcode = PPC_ADMA_INIT_CHANNEL; + ret = -ENOMEM; + goto err_chan_alloc; + } + + spin_lock_init(&chan->lock); + INIT_LIST_HEAD(&chan->chain); + INIT_LIST_HEAD(&chan->all_slots); + chan->device = adev; + chan->common.device = &adev->common; + dma_cookie_init(&chan->common); + list_add_tail(&chan->common.device_node, &adev->common.channels); + tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet, + (unsigned long)chan); + + /* allocate and map helper pages for async validation or + * async_mult/async_sum_product operations on DMA0/1. + */ + if (adev->id != PPC440SPE_XOR_ID) { + chan->pdest_page = alloc_page(GFP_KERNEL); + chan->qdest_page = alloc_page(GFP_KERNEL); + if (!chan->pdest_page || + !chan->qdest_page) { + if (chan->pdest_page) + __free_page(chan->pdest_page); + if (chan->qdest_page) + __free_page(chan->qdest_page); + ret = -ENOMEM; + goto err_page_alloc; + } + chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0, + PAGE_SIZE, DMA_BIDIRECTIONAL); + chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0, + PAGE_SIZE, DMA_BIDIRECTIONAL); + } + + ref = kmalloc(sizeof(*ref), GFP_KERNEL); + if (ref) { + ref->chan = &chan->common; + INIT_LIST_HEAD(&ref->node); + list_add_tail(&ref->node, &ppc440spe_adma_chan_list); + } else { + dev_err(&ofdev->dev, "failed to allocate channel reference!\n"); + ret = -ENOMEM; + goto err_ref_alloc; + } + + ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode); + if (ret) + goto err_irq; + + ppc440spe_adma_init_capabilities(adev); + + ret = dma_async_device_register(&adev->common); + if (ret) { + initcode = PPC_ADMA_INIT_REGISTER; + dev_err(&ofdev->dev, "failed to register dma device\n"); + goto err_dev_reg; + } + + goto out; + +err_dev_reg: + ppc440spe_adma_release_irqs(adev, chan); +err_irq: + list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) { + if (chan == to_ppc440spe_adma_chan(ref->chan)) { + list_del(&ref->node); + kfree(ref); + } + } +err_ref_alloc: + if (adev->id != PPC440SPE_XOR_ID) { + dma_unmap_page(&ofdev->dev, chan->pdest, + PAGE_SIZE, DMA_BIDIRECTIONAL); + dma_unmap_page(&ofdev->dev, chan->qdest, + PAGE_SIZE, DMA_BIDIRECTIONAL); + __free_page(chan->pdest_page); + __free_page(chan->qdest_page); + } +err_page_alloc: + kfree(chan); +err_chan_alloc: + if (adev->id == PPC440SPE_XOR_ID) + iounmap(adev->xor_reg); + else + iounmap(adev->dma_reg); +err_regs_alloc: + dma_free_coherent(adev->dev, adev->pool_size, + adev->dma_desc_pool_virt, + adev->dma_desc_pool); +err_dma_alloc: + kfree(adev); +err_adev_alloc: + release_mem_region(res.start, resource_size(&res)); +out: + if (id < PPC440SPE_ADMA_ENGINES_NUM) + ppc440spe_adma_devices[id] = initcode; + + return ret; +} + +/** + * ppc440spe_adma_remove - remove the asynch device + */ +static int ppc440spe_adma_remove(struct platform_device *ofdev) +{ + struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev); + struct device_node *np = ofdev->dev.of_node; + struct resource res; + struct dma_chan *chan, *_chan; + struct ppc_dma_chan_ref *ref, *_ref; + struct ppc440spe_adma_chan *ppc440spe_chan; + + if (adev->id < PPC440SPE_ADMA_ENGINES_NUM) + ppc440spe_adma_devices[adev->id] = -1; + + dma_async_device_unregister(&adev->common); + + list_for_each_entry_safe(chan, _chan, &adev->common.channels, + device_node) { + ppc440spe_chan = to_ppc440spe_adma_chan(chan); + ppc440spe_adma_release_irqs(adev, ppc440spe_chan); + tasklet_kill(&ppc440spe_chan->irq_tasklet); + if (adev->id != PPC440SPE_XOR_ID) { + dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest, + PAGE_SIZE, DMA_BIDIRECTIONAL); + dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest, + PAGE_SIZE, DMA_BIDIRECTIONAL); + __free_page(ppc440spe_chan->pdest_page); + __free_page(ppc440spe_chan->qdest_page); + } + list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, + node) { + if (ppc440spe_chan == + to_ppc440spe_adma_chan(ref->chan)) { + list_del(&ref->node); + kfree(ref); + } + } + list_del(&chan->device_node); + kfree(ppc440spe_chan); + } + + dma_free_coherent(adev->dev, adev->pool_size, + adev->dma_desc_pool_virt, adev->dma_desc_pool); + if (adev->id == PPC440SPE_XOR_ID) + iounmap(adev->xor_reg); + else + iounmap(adev->dma_reg); + of_address_to_resource(np, 0, &res); + release_mem_region(res.start, resource_size(&res)); + kfree(adev); + return 0; +} + +/* + * /sys driver interface to enable h/w RAID-6 capabilities + * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/ + * directory are "devices", "enable" and "poly". + * "devices" shows available engines. + * "enable" is used to enable RAID-6 capabilities or to check + * whether these has been activated. + * "poly" allows setting/checking used polynomial (for PPC440SPe only). + */ + +static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf) +{ + ssize_t size = 0; + int i; + + for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) { + if (ppc440spe_adma_devices[i] == -1) + continue; + size += snprintf(buf + size, PAGE_SIZE - size, + "PPC440SP(E)-ADMA.%d: %s\n", i, + ppc_adma_errors[ppc440spe_adma_devices[i]]); + } + return size; +} + +static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf) +{ + return snprintf(buf, PAGE_SIZE, + "PPC440SP(e) RAID-6 capabilities are %sABLED.\n", + ppc440spe_r6_enabled ? "EN" : "DIS"); +} + +static ssize_t store_ppc440spe_r6enable(struct device_driver *dev, + const char *buf, size_t count) +{ + unsigned long val; + + if (!count || count > 11) + return -EINVAL; + + if (!ppc440spe_r6_tchan) + return -EFAULT; + + /* Write a key */ + sscanf(buf, "%lx", &val); + dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val); + isync(); + + /* Verify whether it really works now */ + if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) { + pr_info("PPC440SP(e) RAID-6 has been activated " + "successfully\n"); + ppc440spe_r6_enabled = 1; + } else { + pr_info("PPC440SP(e) RAID-6 hasn't been activated!" + " Error key ?\n"); + ppc440spe_r6_enabled = 0; + } + return count; +} + +static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf) +{ + ssize_t size = 0; + u32 reg; + +#ifdef CONFIG_440SP + /* 440SP has fixed polynomial */ + reg = 0x4d; +#else + reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); + reg >>= MQ0_CFBHL_POLY; + reg &= 0xFF; +#endif + + size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver " + "uses 0x1%02x polynomial.\n", reg); + return size; +} + +static ssize_t store_ppc440spe_r6poly(struct device_driver *dev, + const char *buf, size_t count) +{ + unsigned long reg, val; + +#ifdef CONFIG_440SP + /* 440SP uses default 0x14D polynomial only */ + return -EINVAL; +#endif + + if (!count || count > 6) + return -EINVAL; + + /* e.g., 0x14D or 0x11D */ + sscanf(buf, "%lx", &val); + + if (val & ~0x1FF) + return -EINVAL; + + val &= 0xFF; + reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); + reg &= ~(0xFF << MQ0_CFBHL_POLY); + reg |= val << MQ0_CFBHL_POLY; + dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg); + + return count; +} + +static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL); +static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable, + store_ppc440spe_r6enable); +static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly, + store_ppc440spe_r6poly); + +/* + * Common initialisation for RAID engines; allocate memory for + * DMAx FIFOs, perform configuration common for all DMA engines. + * Further DMA engine specific configuration is done at probe time. + */ +static int ppc440spe_configure_raid_devices(void) +{ + struct device_node *np; + struct resource i2o_res; + struct i2o_regs __iomem *i2o_reg; + dcr_host_t i2o_dcr_host; + unsigned int dcr_base, dcr_len; + int i, ret; + + np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); + if (!np) { + pr_err("%s: can't find I2O device tree node\n", + __func__); + return -ENODEV; + } + + if (of_address_to_resource(np, 0, &i2o_res)) { + of_node_put(np); + return -EINVAL; + } + + i2o_reg = of_iomap(np, 0); + if (!i2o_reg) { + pr_err("%s: failed to map I2O registers\n", __func__); + of_node_put(np); + return -EINVAL; + } + + /* Get I2O DCRs base */ + dcr_base = dcr_resource_start(np, 0); + dcr_len = dcr_resource_len(np, 0); + if (!dcr_base && !dcr_len) { + pr_err("%s: can't get DCR registers base/len!\n", + np->full_name); + of_node_put(np); + iounmap(i2o_reg); + return -ENODEV; + } + + i2o_dcr_host = dcr_map(np, dcr_base, dcr_len); + if (!DCR_MAP_OK(i2o_dcr_host)) { + pr_err("%s: failed to map DCRs!\n", np->full_name); + of_node_put(np); + iounmap(i2o_reg); + return -ENODEV; + } + of_node_put(np); + + /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share + * the base address of FIFO memory space. + * Actually we need twice more physical memory than programmed in the + * <fsiz> register (because there are two FIFOs for each DMA: CP and CS) + */ + ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1, + GFP_KERNEL); + if (!ppc440spe_dma_fifo_buf) { + pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__); + iounmap(i2o_reg); + dcr_unmap(i2o_dcr_host, dcr_len); + return -ENOMEM; + } + + /* + * Configure h/w + */ + /* Reset I2O/DMA */ + mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA); + mtdcri(SDR0, DCRN_SDR0_SRST, 0); + + /* Setup the base address of mmaped registers */ + dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32)); + dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) | + I2O_REG_ENABLE); + dcr_unmap(i2o_dcr_host, dcr_len); + + /* Setup FIFO memory space base address */ + iowrite32(0, &i2o_reg->ifbah); + iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal); + + /* set zero FIFO size for I2O, so the whole + * ppc440spe_dma_fifo_buf is used by DMAs. + * DMAx_FIFOs will be configured while probe. + */ + iowrite32(0, &i2o_reg->ifsiz); + iounmap(i2o_reg); + + /* To prepare WXOR/RXOR functionality we need access to + * Memory Queue Module DCRs (finally it will be enabled + * via /sys interface of the ppc440spe ADMA driver). + */ + np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe"); + if (!np) { + pr_err("%s: can't find MQ device tree node\n", + __func__); + ret = -ENODEV; + goto out_free; + } + + /* Get MQ DCRs base */ + dcr_base = dcr_resource_start(np, 0); + dcr_len = dcr_resource_len(np, 0); + if (!dcr_base && !dcr_len) { + pr_err("%s: can't get DCR registers base/len!\n", + np->full_name); + ret = -ENODEV; + goto out_mq; + } + + ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len); + if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) { + pr_err("%s: failed to map DCRs!\n", np->full_name); + ret = -ENODEV; + goto out_mq; + } + of_node_put(np); + ppc440spe_mq_dcr_len = dcr_len; + + /* Set HB alias */ + dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB); + + /* Set: + * - LL transaction passing limit to 1; + * - Memory controller cycle limit to 1; + * - Galois Polynomial to 0x14d (default) + */ + dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, + (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) | + (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY)); + + atomic_set(&ppc440spe_adma_err_irq_ref, 0); + for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) + ppc440spe_adma_devices[i] = -1; + + return 0; + +out_mq: + of_node_put(np); +out_free: + kfree(ppc440spe_dma_fifo_buf); + return ret; +} + +static const struct of_device_id ppc440spe_adma_of_match[] = { + { .compatible = "ibm,dma-440spe", }, + { .compatible = "amcc,xor-accelerator", }, + {}, +}; +MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match); + +static struct platform_driver ppc440spe_adma_driver = { + .probe = ppc440spe_adma_probe, + .remove = ppc440spe_adma_remove, + .driver = { + .name = "PPC440SP(E)-ADMA", + .of_match_table = ppc440spe_adma_of_match, + }, +}; + +static __init int ppc440spe_adma_init(void) +{ + int ret; + + ret = ppc440spe_configure_raid_devices(); + if (ret) + return ret; + + ret = platform_driver_register(&ppc440spe_adma_driver); + if (ret) { + pr_err("%s: failed to register platform driver\n", + __func__); + goto out_reg; + } + + /* Initialization status */ + ret = driver_create_file(&ppc440spe_adma_driver.driver, + &driver_attr_devices); + if (ret) + goto out_dev; + + /* RAID-6 h/w enable entry */ + ret = driver_create_file(&ppc440spe_adma_driver.driver, + &driver_attr_enable); + if (ret) + goto out_en; + + /* GF polynomial to use */ + ret = driver_create_file(&ppc440spe_adma_driver.driver, + &driver_attr_poly); + if (!ret) + return ret; + + driver_remove_file(&ppc440spe_adma_driver.driver, + &driver_attr_enable); +out_en: + driver_remove_file(&ppc440spe_adma_driver.driver, + &driver_attr_devices); +out_dev: + /* User will not be able to enable h/w RAID-6 */ + pr_err("%s: failed to create RAID-6 driver interface\n", + __func__); + platform_driver_unregister(&ppc440spe_adma_driver); +out_reg: + dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); + kfree(ppc440spe_dma_fifo_buf); + return ret; +} + +static void __exit ppc440spe_adma_exit(void) +{ + driver_remove_file(&ppc440spe_adma_driver.driver, + &driver_attr_poly); + driver_remove_file(&ppc440spe_adma_driver.driver, + &driver_attr_enable); + driver_remove_file(&ppc440spe_adma_driver.driver, + &driver_attr_devices); + platform_driver_unregister(&ppc440spe_adma_driver); + dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); + kfree(ppc440spe_dma_fifo_buf); +} + +arch_initcall(ppc440spe_adma_init); +module_exit(ppc440spe_adma_exit); + +MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>"); +MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver"); +MODULE_LICENSE("GPL"); |