diff options
Diffstat (limited to 'drivers/mfd/ab8500-gpadc.c')
-rw-r--r-- | drivers/mfd/ab8500-gpadc.c | 1087 |
1 files changed, 1087 insertions, 0 deletions
diff --git a/drivers/mfd/ab8500-gpadc.c b/drivers/mfd/ab8500-gpadc.c new file mode 100644 index 000000000..dabbc93ab --- /dev/null +++ b/drivers/mfd/ab8500-gpadc.c @@ -0,0 +1,1087 @@ +/* + * Copyright (C) ST-Ericsson SA 2010 + * + * License Terms: GNU General Public License v2 + * Author: Arun R Murthy <arun.murthy@stericsson.com> + * Author: Daniel Willerud <daniel.willerud@stericsson.com> + * Author: Johan Palsson <johan.palsson@stericsson.com> + */ +#include <linux/init.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/interrupt.h> +#include <linux/spinlock.h> +#include <linux/delay.h> +#include <linux/pm_runtime.h> +#include <linux/platform_device.h> +#include <linux/completion.h> +#include <linux/regulator/consumer.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/list.h> +#include <linux/mfd/abx500.h> +#include <linux/mfd/abx500/ab8500.h> +#include <linux/mfd/abx500/ab8500-gpadc.h> + +/* + * GPADC register offsets + * Bank : 0x0A + */ +#define AB8500_GPADC_CTRL1_REG 0x00 +#define AB8500_GPADC_CTRL2_REG 0x01 +#define AB8500_GPADC_CTRL3_REG 0x02 +#define AB8500_GPADC_AUTO_TIMER_REG 0x03 +#define AB8500_GPADC_STAT_REG 0x04 +#define AB8500_GPADC_MANDATAL_REG 0x05 +#define AB8500_GPADC_MANDATAH_REG 0x06 +#define AB8500_GPADC_AUTODATAL_REG 0x07 +#define AB8500_GPADC_AUTODATAH_REG 0x08 +#define AB8500_GPADC_MUX_CTRL_REG 0x09 +#define AB8540_GPADC_MANDATA2L_REG 0x09 +#define AB8540_GPADC_MANDATA2H_REG 0x0A +#define AB8540_GPADC_APEAAX_REG 0x10 +#define AB8540_GPADC_APEAAT_REG 0x11 +#define AB8540_GPADC_APEAAM_REG 0x12 +#define AB8540_GPADC_APEAAH_REG 0x13 +#define AB8540_GPADC_APEAAL_REG 0x14 + +/* + * OTP register offsets + * Bank : 0x15 + */ +#define AB8500_GPADC_CAL_1 0x0F +#define AB8500_GPADC_CAL_2 0x10 +#define AB8500_GPADC_CAL_3 0x11 +#define AB8500_GPADC_CAL_4 0x12 +#define AB8500_GPADC_CAL_5 0x13 +#define AB8500_GPADC_CAL_6 0x14 +#define AB8500_GPADC_CAL_7 0x15 +/* New calibration for 8540 */ +#define AB8540_GPADC_OTP4_REG_7 0x38 +#define AB8540_GPADC_OTP4_REG_6 0x39 +#define AB8540_GPADC_OTP4_REG_5 0x3A + +/* gpadc constants */ +#define EN_VINTCORE12 0x04 +#define EN_VTVOUT 0x02 +#define EN_GPADC 0x01 +#define DIS_GPADC 0x00 +#define AVG_1 0x00 +#define AVG_4 0x20 +#define AVG_8 0x40 +#define AVG_16 0x60 +#define ADC_SW_CONV 0x04 +#define EN_ICHAR 0x80 +#define BTEMP_PULL_UP 0x08 +#define EN_BUF 0x40 +#define DIS_ZERO 0x00 +#define GPADC_BUSY 0x01 +#define EN_FALLING 0x10 +#define EN_TRIG_EDGE 0x02 +#define EN_VBIAS_XTAL_TEMP 0x02 + +/* GPADC constants from AB8500 spec, UM0836 */ +#define ADC_RESOLUTION 1024 +#define ADC_CH_BTEMP_MIN 0 +#define ADC_CH_BTEMP_MAX 1350 +#define ADC_CH_DIETEMP_MIN 0 +#define ADC_CH_DIETEMP_MAX 1350 +#define ADC_CH_CHG_V_MIN 0 +#define ADC_CH_CHG_V_MAX 20030 +#define ADC_CH_ACCDET2_MIN 0 +#define ADC_CH_ACCDET2_MAX 2500 +#define ADC_CH_VBAT_MIN 2300 +#define ADC_CH_VBAT_MAX 4800 +#define ADC_CH_CHG_I_MIN 0 +#define ADC_CH_CHG_I_MAX 1500 +#define ADC_CH_BKBAT_MIN 0 +#define ADC_CH_BKBAT_MAX 3200 + +/* GPADC constants from AB8540 spec */ +#define ADC_CH_IBAT_MIN (-6000) /* mA range measured by ADC for ibat*/ +#define ADC_CH_IBAT_MAX 6000 +#define ADC_CH_IBAT_MIN_V (-60) /* mV range measured by ADC for ibat*/ +#define ADC_CH_IBAT_MAX_V 60 +#define IBAT_VDROP_L (-56) /* mV */ +#define IBAT_VDROP_H 56 + +/* This is used to not lose precision when dividing to get gain and offset */ +#define CALIB_SCALE 1000 +/* + * Number of bits shift used to not lose precision + * when dividing to get ibat gain. + */ +#define CALIB_SHIFT_IBAT 20 + +/* Time in ms before disabling regulator */ +#define GPADC_AUDOSUSPEND_DELAY 1 + +#define CONVERSION_TIME 500 /* ms */ + +enum cal_channels { + ADC_INPUT_VMAIN = 0, + ADC_INPUT_BTEMP, + ADC_INPUT_VBAT, + ADC_INPUT_IBAT, + NBR_CAL_INPUTS, +}; + +/** + * struct adc_cal_data - Table for storing gain and offset for the calibrated + * ADC channels + * @gain: Gain of the ADC channel + * @offset: Offset of the ADC channel + */ +struct adc_cal_data { + s64 gain; + s64 offset; + u16 otp_calib_hi; + u16 otp_calib_lo; +}; + +/** + * struct ab8500_gpadc - AB8500 GPADC device information + * @dev: pointer to the struct device + * @node: a list of AB8500 GPADCs, hence prepared for + reentrance + * @parent: pointer to the struct ab8500 + * @ab8500_gpadc_complete: pointer to the struct completion, to indicate + * the completion of gpadc conversion + * @ab8500_gpadc_lock: structure of type mutex + * @regu: pointer to the struct regulator + * @irq_sw: interrupt number that is used by gpadc for Sw + * conversion + * @irq_hw: interrupt number that is used by gpadc for Hw + * conversion + * @cal_data array of ADC calibration data structs + */ +struct ab8500_gpadc { + struct device *dev; + struct list_head node; + struct ab8500 *parent; + struct completion ab8500_gpadc_complete; + struct mutex ab8500_gpadc_lock; + struct regulator *regu; + int irq_sw; + int irq_hw; + struct adc_cal_data cal_data[NBR_CAL_INPUTS]; +}; + +static LIST_HEAD(ab8500_gpadc_list); + +/** + * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC + * (i.e. the first GPADC in the instance list) + */ +struct ab8500_gpadc *ab8500_gpadc_get(char *name) +{ + struct ab8500_gpadc *gpadc; + + list_for_each_entry(gpadc, &ab8500_gpadc_list, node) { + if (!strcmp(name, dev_name(gpadc->dev))) + return gpadc; + } + + return ERR_PTR(-ENOENT); +} +EXPORT_SYMBOL(ab8500_gpadc_get); + +/** + * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage + */ +int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel, + int ad_value) +{ + int res; + + switch (channel) { + case MAIN_CHARGER_V: + /* For some reason we don't have calibrated data */ + if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) { + res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX - + ADC_CH_CHG_V_MIN) * ad_value / + ADC_RESOLUTION; + break; + } + /* Here we can use the calibrated data */ + res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain + + gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE; + break; + + case XTAL_TEMP: + case BAT_CTRL: + case BTEMP_BALL: + case ACC_DETECT1: + case ADC_AUX1: + case ADC_AUX2: + /* For some reason we don't have calibrated data */ + if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) { + res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX - + ADC_CH_BTEMP_MIN) * ad_value / + ADC_RESOLUTION; + break; + } + /* Here we can use the calibrated data */ + res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain + + gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE; + break; + + case MAIN_BAT_V: + case VBAT_TRUE_MEAS: + /* For some reason we don't have calibrated data */ + if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) { + res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX - + ADC_CH_VBAT_MIN) * ad_value / + ADC_RESOLUTION; + break; + } + /* Here we can use the calibrated data */ + res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain + + gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE; + break; + + case DIE_TEMP: + res = ADC_CH_DIETEMP_MIN + + (ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value / + ADC_RESOLUTION; + break; + + case ACC_DETECT2: + res = ADC_CH_ACCDET2_MIN + + (ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value / + ADC_RESOLUTION; + break; + + case VBUS_V: + res = ADC_CH_CHG_V_MIN + + (ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value / + ADC_RESOLUTION; + break; + + case MAIN_CHARGER_C: + case USB_CHARGER_C: + res = ADC_CH_CHG_I_MIN + + (ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value / + ADC_RESOLUTION; + break; + + case BK_BAT_V: + res = ADC_CH_BKBAT_MIN + + (ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value / + ADC_RESOLUTION; + break; + + case IBAT_VIRTUAL_CHANNEL: + /* For some reason we don't have calibrated data */ + if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) { + res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX - + ADC_CH_IBAT_MIN) * ad_value / + ADC_RESOLUTION; + break; + } + /* Here we can use the calibrated data */ + res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain + + gpadc->cal_data[ADC_INPUT_IBAT].offset) + >> CALIB_SHIFT_IBAT; + break; + + default: + dev_err(gpadc->dev, + "unknown channel, not possible to convert\n"); + res = -EINVAL; + break; + + } + return res; +} +EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage); + +/** + * ab8500_gpadc_sw_hw_convert() - gpadc conversion + * @channel: analog channel to be converted to digital data + * @avg_sample: number of ADC sample to average + * @trig_egde: selected ADC trig edge + * @trig_timer: selected ADC trigger delay timer + * @conv_type: selected conversion type (HW or SW conversion) + * + * This function converts the selected analog i/p to digital + * data. + */ +int ab8500_gpadc_sw_hw_convert(struct ab8500_gpadc *gpadc, u8 channel, + u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) +{ + int ad_value; + int voltage; + + ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample, + trig_edge, trig_timer, conv_type); +/* On failure retry a second time */ + if (ad_value < 0) + ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample, + trig_edge, trig_timer, conv_type); +if (ad_value < 0) { + dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n", + channel); + return ad_value; + } + + voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value); + if (voltage < 0) + dev_err(gpadc->dev, "GPADC to voltage conversion failed ch:" + " %d AD: 0x%x\n", channel, ad_value); + + return voltage; +} +EXPORT_SYMBOL(ab8500_gpadc_sw_hw_convert); + +/** + * ab8500_gpadc_read_raw() - gpadc read + * @channel: analog channel to be read + * @avg_sample: number of ADC sample to average + * @trig_edge: selected trig edge + * @trig_timer: selected ADC trigger delay timer + * @conv_type: selected conversion type (HW or SW conversion) + * + * This function obtains the raw ADC value for an hardware conversion, + * this then needs to be converted by calling ab8500_gpadc_ad_to_voltage() + */ +int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel, + u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) +{ + int raw_data; + raw_data = ab8500_gpadc_double_read_raw(gpadc, channel, + avg_sample, trig_edge, trig_timer, conv_type, NULL); + return raw_data; +} + +int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel, + u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type, + int *ibat) +{ + int ret; + int looplimit = 0; + unsigned long completion_timeout; + u8 val, low_data, high_data, low_data2, high_data2; + u8 val_reg1 = 0; + unsigned int delay_min = 0; + unsigned int delay_max = 0; + u8 data_low_addr, data_high_addr; + + if (!gpadc) + return -ENODEV; + + /* check if convertion is supported */ + if ((gpadc->irq_sw < 0) && (conv_type == ADC_SW)) + return -ENOTSUPP; + if ((gpadc->irq_hw < 0) && (conv_type == ADC_HW)) + return -ENOTSUPP; + + mutex_lock(&gpadc->ab8500_gpadc_lock); + /* Enable VTVout LDO this is required for GPADC */ + pm_runtime_get_sync(gpadc->dev); + + /* Check if ADC is not busy, lock and proceed */ + do { + ret = abx500_get_register_interruptible(gpadc->dev, + AB8500_GPADC, AB8500_GPADC_STAT_REG, &val); + if (ret < 0) + goto out; + if (!(val & GPADC_BUSY)) + break; + msleep(10); + } while (++looplimit < 10); + if (looplimit >= 10 && (val & GPADC_BUSY)) { + dev_err(gpadc->dev, "gpadc_conversion: GPADC busy"); + ret = -EINVAL; + goto out; + } + + /* Enable GPADC */ + val_reg1 |= EN_GPADC; + + /* Select the channel source and set average samples */ + switch (avg_sample) { + case SAMPLE_1: + val = channel | AVG_1; + break; + case SAMPLE_4: + val = channel | AVG_4; + break; + case SAMPLE_8: + val = channel | AVG_8; + break; + default: + val = channel | AVG_16; + break; + } + + if (conv_type == ADC_HW) { + ret = abx500_set_register_interruptible(gpadc->dev, + AB8500_GPADC, AB8500_GPADC_CTRL3_REG, val); + val_reg1 |= EN_TRIG_EDGE; + if (trig_edge) + val_reg1 |= EN_FALLING; + } + else + ret = abx500_set_register_interruptible(gpadc->dev, + AB8500_GPADC, AB8500_GPADC_CTRL2_REG, val); + if (ret < 0) { + dev_err(gpadc->dev, + "gpadc_conversion: set avg samples failed\n"); + goto out; + } + + /* + * Enable ADC, buffering, select rising edge and enable ADC path + * charging current sense if it needed, ABB 3.0 needs some special + * treatment too. + */ + switch (channel) { + case MAIN_CHARGER_C: + case USB_CHARGER_C: + val_reg1 |= EN_BUF | EN_ICHAR; + break; + case BTEMP_BALL: + if (!is_ab8500_2p0_or_earlier(gpadc->parent)) { + val_reg1 |= EN_BUF | BTEMP_PULL_UP; + /* + * Delay might be needed for ABB8500 cut 3.0, if not, + * remove when hardware will be availible + */ + delay_min = 1000; /* Delay in micro seconds */ + delay_max = 10000; /* large range to optimise sleep mode */ + break; + } + /* Intentional fallthrough */ + default: + val_reg1 |= EN_BUF; + break; + } + + /* Write configuration to register */ + ret = abx500_set_register_interruptible(gpadc->dev, + AB8500_GPADC, AB8500_GPADC_CTRL1_REG, val_reg1); + if (ret < 0) { + dev_err(gpadc->dev, + "gpadc_conversion: set Control register failed\n"); + goto out; + } + + if (delay_min != 0) + usleep_range(delay_min, delay_max); + + if (conv_type == ADC_HW) { + /* Set trigger delay timer */ + ret = abx500_set_register_interruptible(gpadc->dev, + AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, trig_timer); + if (ret < 0) { + dev_err(gpadc->dev, + "gpadc_conversion: trig timer failed\n"); + goto out; + } + completion_timeout = 2 * HZ; + data_low_addr = AB8500_GPADC_AUTODATAL_REG; + data_high_addr = AB8500_GPADC_AUTODATAH_REG; + } else { + /* Start SW conversion */ + ret = abx500_mask_and_set_register_interruptible(gpadc->dev, + AB8500_GPADC, AB8500_GPADC_CTRL1_REG, + ADC_SW_CONV, ADC_SW_CONV); + if (ret < 0) { + dev_err(gpadc->dev, + "gpadc_conversion: start s/w conv failed\n"); + goto out; + } + completion_timeout = msecs_to_jiffies(CONVERSION_TIME); + data_low_addr = AB8500_GPADC_MANDATAL_REG; + data_high_addr = AB8500_GPADC_MANDATAH_REG; + } + + /* wait for completion of conversion */ + if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, + completion_timeout)) { + dev_err(gpadc->dev, + "timeout didn't receive GPADC conv interrupt\n"); + ret = -EINVAL; + goto out; + } + + /* Read the converted RAW data */ + ret = abx500_get_register_interruptible(gpadc->dev, + AB8500_GPADC, data_low_addr, &low_data); + if (ret < 0) { + dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n"); + goto out; + } + + ret = abx500_get_register_interruptible(gpadc->dev, + AB8500_GPADC, data_high_addr, &high_data); + if (ret < 0) { + dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n"); + goto out; + } + + /* Check if double convertion is required */ + if ((channel == BAT_CTRL_AND_IBAT) || + (channel == VBAT_MEAS_AND_IBAT) || + (channel == VBAT_TRUE_MEAS_AND_IBAT) || + (channel == BAT_TEMP_AND_IBAT)) { + + if (conv_type == ADC_HW) { + /* not supported */ + ret = -ENOTSUPP; + dev_err(gpadc->dev, + "gpadc_conversion: only SW double conversion supported\n"); + goto out; + } else { + /* Read the converted RAW data 2 */ + ret = abx500_get_register_interruptible(gpadc->dev, + AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG, + &low_data2); + if (ret < 0) { + dev_err(gpadc->dev, + "gpadc_conversion: read sw low data 2 failed\n"); + goto out; + } + + ret = abx500_get_register_interruptible(gpadc->dev, + AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG, + &high_data2); + if (ret < 0) { + dev_err(gpadc->dev, + "gpadc_conversion: read sw high data 2 failed\n"); + goto out; + } + if (ibat != NULL) { + *ibat = (high_data2 << 8) | low_data2; + } else { + dev_warn(gpadc->dev, + "gpadc_conversion: ibat not stored\n"); + } + + } + } + + /* Disable GPADC */ + ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, + AB8500_GPADC_CTRL1_REG, DIS_GPADC); + if (ret < 0) { + dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n"); + goto out; + } + + /* Disable VTVout LDO this is required for GPADC */ + pm_runtime_mark_last_busy(gpadc->dev); + pm_runtime_put_autosuspend(gpadc->dev); + + mutex_unlock(&gpadc->ab8500_gpadc_lock); + + return (high_data << 8) | low_data; + +out: + /* + * It has shown to be needed to turn off the GPADC if an error occurs, + * otherwise we might have problem when waiting for the busy bit in the + * GPADC status register to go low. In V1.1 there wait_for_completion + * seems to timeout when waiting for an interrupt.. Not seen in V2.0 + */ + (void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, + AB8500_GPADC_CTRL1_REG, DIS_GPADC); + pm_runtime_put(gpadc->dev); + mutex_unlock(&gpadc->ab8500_gpadc_lock); + dev_err(gpadc->dev, + "gpadc_conversion: Failed to AD convert channel %d\n", channel); + return ret; +} +EXPORT_SYMBOL(ab8500_gpadc_read_raw); + +/** + * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion + * @irq: irq number + * @data: pointer to the data passed during request irq + * + * This is a interrupt service routine for gpadc conversion completion. + * Notifies the gpadc completion is completed and the converted raw value + * can be read from the registers. + * Returns IRQ status(IRQ_HANDLED) + */ +static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *_gpadc) +{ + struct ab8500_gpadc *gpadc = _gpadc; + + complete(&gpadc->ab8500_gpadc_complete); + + return IRQ_HANDLED; +} + +static int otp_cal_regs[] = { + AB8500_GPADC_CAL_1, + AB8500_GPADC_CAL_2, + AB8500_GPADC_CAL_3, + AB8500_GPADC_CAL_4, + AB8500_GPADC_CAL_5, + AB8500_GPADC_CAL_6, + AB8500_GPADC_CAL_7, +}; + +static int otp4_cal_regs[] = { + AB8540_GPADC_OTP4_REG_7, + AB8540_GPADC_OTP4_REG_6, + AB8540_GPADC_OTP4_REG_5, +}; + +static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc) +{ + int i; + int ret[ARRAY_SIZE(otp_cal_regs)]; + u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)]; + int ret_otp4[ARRAY_SIZE(otp4_cal_regs)]; + u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)]; + int vmain_high, vmain_low; + int btemp_high, btemp_low; + int vbat_high, vbat_low; + int ibat_high, ibat_low; + s64 V_gain, V_offset, V2A_gain, V2A_offset; + struct ab8500 *ab8500; + + ab8500 = gpadc->parent; + + /* First we read all OTP registers and store the error code */ + for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) { + ret[i] = abx500_get_register_interruptible(gpadc->dev, + AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]); + if (ret[i] < 0) + dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n", + __func__, otp_cal_regs[i]); + } + + /* + * The ADC calibration data is stored in OTP registers. + * The layout of the calibration data is outlined below and a more + * detailed description can be found in UM0836 + * + * vm_h/l = vmain_high/low + * bt_h/l = btemp_high/low + * vb_h/l = vbat_high/low + * + * Data bits 8500/9540: + * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | | vm_h9 | vm_h8 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | + * |.......|.......|.......|.......|.......|.......|.......|....... + * + * Data bits 8540: + * OTP2 + * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | + * |.......|.......|.......|.......|.......|.......|.......|....... + * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | + * |.......|.......|.......|.......|.......|.......|.......|....... + * + * Data bits 8540: + * OTP4 + * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | | ib_h9 | ib_h8 | ib_h7 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5 + * |.......|.......|.......|.......|.......|.......|.......|....... + * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 | + * + * + * Ideal output ADC codes corresponding to injected input voltages + * during manufacturing is: + * + * vmain_high: Vin = 19500mV / ADC ideal code = 997 + * vmain_low: Vin = 315mV / ADC ideal code = 16 + * btemp_high: Vin = 1300mV / ADC ideal code = 985 + * btemp_low: Vin = 21mV / ADC ideal code = 16 + * vbat_high: Vin = 4700mV / ADC ideal code = 982 + * vbat_low: Vin = 2380mV / ADC ideal code = 33 + */ + + if (is_ab8540(ab8500)) { + /* Calculate gain and offset for VMAIN if all reads succeeded*/ + if (!(ret[1] < 0 || ret[2] < 0)) { + vmain_high = (((gpadc_cal[1] & 0xFF) << 2) | + ((gpadc_cal[2] & 0xC0) >> 6)); + vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); + + gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi = + (u16)vmain_high; + gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo = + (u16)vmain_low; + + gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * + (19500 - 315) / (vmain_high - vmain_low); + gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * + 19500 - (CALIB_SCALE * (19500 - 315) / + (vmain_high - vmain_low)) * vmain_high; + } else { + gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; + } + + /* Read IBAT calibration Data */ + for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) { + ret_otp4[i] = abx500_get_register_interruptible( + gpadc->dev, AB8500_OTP_EMUL, + otp4_cal_regs[i], &gpadc_otp4[i]); + if (ret_otp4[i] < 0) + dev_err(gpadc->dev, + "%s: read otp4 reg 0x%02x failed\n", + __func__, otp4_cal_regs[i]); + } + + /* Calculate gain and offset for IBAT if all reads succeeded */ + if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) { + ibat_high = (((gpadc_otp4[0] & 0x07) << 7) | + ((gpadc_otp4[1] & 0xFE) >> 1)); + ibat_low = (((gpadc_otp4[1] & 0x01) << 5) | + ((gpadc_otp4[2] & 0xF8) >> 3)); + + gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi = + (u16)ibat_high; + gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo = + (u16)ibat_low; + + V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L) + << CALIB_SHIFT_IBAT) / (ibat_high - ibat_low); + + V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) - + (((IBAT_VDROP_H - IBAT_VDROP_L) << + CALIB_SHIFT_IBAT) / (ibat_high - ibat_low)) + * ibat_high; + /* + * Result obtained is in mV (at a scale factor), + * we need to calculate gain and offset to get mA + */ + V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/ + (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V); + V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN - + ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V) + << CALIB_SHIFT_IBAT) + / (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V); + + gpadc->cal_data[ADC_INPUT_IBAT].gain = V_gain * V2A_gain; + gpadc->cal_data[ADC_INPUT_IBAT].offset = V_offset * + V2A_gain + V2A_offset; + } else { + gpadc->cal_data[ADC_INPUT_IBAT].gain = 0; + } + + dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n", + gpadc->cal_data[ADC_INPUT_IBAT].gain, + gpadc->cal_data[ADC_INPUT_IBAT].offset); + } else { + /* Calculate gain and offset for VMAIN if all reads succeeded */ + if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) { + vmain_high = (((gpadc_cal[0] & 0x03) << 8) | + ((gpadc_cal[1] & 0x3F) << 2) | + ((gpadc_cal[2] & 0xC0) >> 6)); + vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); + + gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi = + (u16)vmain_high; + gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo = + (u16)vmain_low; + + gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * + (19500 - 315) / (vmain_high - vmain_low); + + gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * + 19500 - (CALIB_SCALE * (19500 - 315) / + (vmain_high - vmain_low)) * vmain_high; + } else { + gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; + } + } + + /* Calculate gain and offset for BTEMP if all reads succeeded */ + if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) { + btemp_high = (((gpadc_cal[2] & 0x01) << 9) | + (gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7)); + btemp_low = ((gpadc_cal[4] & 0x7C) >> 2); + + gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi = (u16)btemp_high; + gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo = (u16)btemp_low; + + gpadc->cal_data[ADC_INPUT_BTEMP].gain = + CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low); + gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 - + (CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low)) + * btemp_high; + } else { + gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0; + } + + /* Calculate gain and offset for VBAT if all reads succeeded */ + if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) { + vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]); + vbat_low = ((gpadc_cal[6] & 0xFC) >> 2); + + gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi = (u16)vbat_high; + gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo = (u16)vbat_low; + + gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE * + (4700 - 2380) / (vbat_high - vbat_low); + gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 - + (CALIB_SCALE * (4700 - 2380) / + (vbat_high - vbat_low)) * vbat_high; + } else { + gpadc->cal_data[ADC_INPUT_VBAT].gain = 0; + } + + dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n", + gpadc->cal_data[ADC_INPUT_VMAIN].gain, + gpadc->cal_data[ADC_INPUT_VMAIN].offset); + + dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n", + gpadc->cal_data[ADC_INPUT_BTEMP].gain, + gpadc->cal_data[ADC_INPUT_BTEMP].offset); + + dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n", + gpadc->cal_data[ADC_INPUT_VBAT].gain, + gpadc->cal_data[ADC_INPUT_VBAT].offset); +} + +#ifdef CONFIG_PM +static int ab8500_gpadc_runtime_suspend(struct device *dev) +{ + struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); + + regulator_disable(gpadc->regu); + return 0; +} + +static int ab8500_gpadc_runtime_resume(struct device *dev) +{ + struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); + int ret; + + ret = regulator_enable(gpadc->regu); + if (ret) + dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret); + return ret; +} +#endif + +#ifdef CONFIG_PM_SLEEP +static int ab8500_gpadc_suspend(struct device *dev) +{ + struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); + + mutex_lock(&gpadc->ab8500_gpadc_lock); + + pm_runtime_get_sync(dev); + + regulator_disable(gpadc->regu); + return 0; +} + +static int ab8500_gpadc_resume(struct device *dev) +{ + struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); + int ret; + + ret = regulator_enable(gpadc->regu); + if (ret) + dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret); + + pm_runtime_mark_last_busy(gpadc->dev); + pm_runtime_put_autosuspend(gpadc->dev); + + mutex_unlock(&gpadc->ab8500_gpadc_lock); + return ret; +} +#endif + +static int ab8500_gpadc_probe(struct platform_device *pdev) +{ + int ret = 0; + struct ab8500_gpadc *gpadc; + + gpadc = devm_kzalloc(&pdev->dev, sizeof(struct ab8500_gpadc), GFP_KERNEL); + if (!gpadc) { + dev_err(&pdev->dev, "Error: No memory\n"); + return -ENOMEM; + } + + gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END"); + if (gpadc->irq_sw < 0) + dev_err(gpadc->dev, "failed to get platform sw_conv_end irq\n"); + + gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END"); + if (gpadc->irq_hw < 0) + dev_err(gpadc->dev, "failed to get platform hw_conv_end irq\n"); + + gpadc->dev = &pdev->dev; + gpadc->parent = dev_get_drvdata(pdev->dev.parent); + mutex_init(&gpadc->ab8500_gpadc_lock); + + /* Initialize completion used to notify completion of conversion */ + init_completion(&gpadc->ab8500_gpadc_complete); + + /* Register interrupts */ + if (gpadc->irq_sw >= 0) { + ret = request_threaded_irq(gpadc->irq_sw, NULL, + ab8500_bm_gpadcconvend_handler, + IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc-sw", + gpadc); + if (ret < 0) { + dev_err(gpadc->dev, + "Failed to register interrupt irq: %d\n", + gpadc->irq_sw); + goto fail; + } + } + + if (gpadc->irq_hw >= 0) { + ret = request_threaded_irq(gpadc->irq_hw, NULL, + ab8500_bm_gpadcconvend_handler, + IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc-hw", + gpadc); + if (ret < 0) { + dev_err(gpadc->dev, + "Failed to register interrupt irq: %d\n", + gpadc->irq_hw); + goto fail_irq; + } + } + + /* VTVout LDO used to power up ab8500-GPADC */ + gpadc->regu = devm_regulator_get(&pdev->dev, "vddadc"); + if (IS_ERR(gpadc->regu)) { + ret = PTR_ERR(gpadc->regu); + dev_err(gpadc->dev, "failed to get vtvout LDO\n"); + goto fail_irq; + } + + platform_set_drvdata(pdev, gpadc); + + ret = regulator_enable(gpadc->regu); + if (ret) { + dev_err(gpadc->dev, "Failed to enable vtvout LDO: %d\n", ret); + goto fail_enable; + } + + pm_runtime_set_autosuspend_delay(gpadc->dev, GPADC_AUDOSUSPEND_DELAY); + pm_runtime_use_autosuspend(gpadc->dev); + pm_runtime_set_active(gpadc->dev); + pm_runtime_enable(gpadc->dev); + + ab8500_gpadc_read_calibration_data(gpadc); + list_add_tail(&gpadc->node, &ab8500_gpadc_list); + dev_dbg(gpadc->dev, "probe success\n"); + + return 0; + +fail_enable: +fail_irq: + free_irq(gpadc->irq_sw, gpadc); + free_irq(gpadc->irq_hw, gpadc); +fail: + return ret; +} + +static int ab8500_gpadc_remove(struct platform_device *pdev) +{ + struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev); + + /* remove this gpadc entry from the list */ + list_del(&gpadc->node); + /* remove interrupt - completion of Sw ADC conversion */ + if (gpadc->irq_sw >= 0) + free_irq(gpadc->irq_sw, gpadc); + if (gpadc->irq_hw >= 0) + free_irq(gpadc->irq_hw, gpadc); + + pm_runtime_get_sync(gpadc->dev); + pm_runtime_disable(gpadc->dev); + + regulator_disable(gpadc->regu); + + pm_runtime_set_suspended(gpadc->dev); + + pm_runtime_put_noidle(gpadc->dev); + + return 0; +} + +static const struct dev_pm_ops ab8500_gpadc_pm_ops = { + SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend, + ab8500_gpadc_runtime_resume, + NULL) + SET_SYSTEM_SLEEP_PM_OPS(ab8500_gpadc_suspend, + ab8500_gpadc_resume) + +}; + +static struct platform_driver ab8500_gpadc_driver = { + .probe = ab8500_gpadc_probe, + .remove = ab8500_gpadc_remove, + .driver = { + .name = "ab8500-gpadc", + .pm = &ab8500_gpadc_pm_ops, + }, +}; + +static int __init ab8500_gpadc_init(void) +{ + return platform_driver_register(&ab8500_gpadc_driver); +} + +static void __exit ab8500_gpadc_exit(void) +{ + platform_driver_unregister(&ab8500_gpadc_driver); +} + +/** + * ab8540_gpadc_get_otp() - returns OTP values + * + */ +void ab8540_gpadc_get_otp(struct ab8500_gpadc *gpadc, + u16 *vmain_l, u16 *vmain_h, u16 *btemp_l, u16 *btemp_h, + u16 *vbat_l, u16 *vbat_h, u16 *ibat_l, u16 *ibat_h) +{ + *vmain_l = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo; + *vmain_h = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi; + *btemp_l = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo; + *btemp_h = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi; + *vbat_l = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo; + *vbat_h = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi; + *ibat_l = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo; + *ibat_h = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi; + return ; +} + +subsys_initcall_sync(ab8500_gpadc_init); +module_exit(ab8500_gpadc_exit); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson," + "M'boumba Cedric Madianga"); +MODULE_ALIAS("platform:ab8500_gpadc"); +MODULE_DESCRIPTION("AB8500 GPADC driver"); |