diff options
Diffstat (limited to 'drivers/nvme/host/pci.c')
-rw-r--r-- | drivers/nvme/host/pci.c | 3524 |
1 files changed, 3524 insertions, 0 deletions
diff --git a/drivers/nvme/host/pci.c b/drivers/nvme/host/pci.c new file mode 100644 index 000000000..0c67b57be --- /dev/null +++ b/drivers/nvme/host/pci.c @@ -0,0 +1,3524 @@ +/* + * NVM Express device driver + * Copyright (c) 2011-2014, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ + +#include <linux/bitops.h> +#include <linux/blkdev.h> +#include <linux/blk-mq.h> +#include <linux/cpu.h> +#include <linux/delay.h> +#include <linux/errno.h> +#include <linux/fs.h> +#include <linux/genhd.h> +#include <linux/hdreg.h> +#include <linux/idr.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/kdev_t.h> +#include <linux/kthread.h> +#include <linux/kernel.h> +#include <linux/list_sort.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/pci.h> +#include <linux/poison.h> +#include <linux/ptrace.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/t10-pi.h> +#include <linux/types.h> +#include <linux/pr.h> +#include <scsi/sg.h> +#include <linux/io-64-nonatomic-lo-hi.h> +#include <asm/unaligned.h> + +#include <uapi/linux/nvme_ioctl.h> +#include "nvme.h" + +#define NVME_MINORS (1U << MINORBITS) +#define NVME_Q_DEPTH 1024 +#define NVME_AQ_DEPTH 256 +#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) +#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) +#define ADMIN_TIMEOUT (admin_timeout * HZ) +#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ) + +static unsigned char admin_timeout = 60; +module_param(admin_timeout, byte, 0644); +MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); + +unsigned char nvme_io_timeout = 30; +module_param_named(io_timeout, nvme_io_timeout, byte, 0644); +MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); + +static unsigned char shutdown_timeout = 5; +module_param(shutdown_timeout, byte, 0644); +MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); + +static int nvme_major; +module_param(nvme_major, int, 0); + +static int nvme_char_major; +module_param(nvme_char_major, int, 0); + +static int use_threaded_interrupts; +module_param(use_threaded_interrupts, int, 0); + +static bool use_cmb_sqes = true; +module_param(use_cmb_sqes, bool, 0644); +MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); + +static DEFINE_SPINLOCK(dev_list_lock); +static LIST_HEAD(dev_list); +static struct task_struct *nvme_thread; +static struct workqueue_struct *nvme_workq; +static wait_queue_head_t nvme_kthread_wait; + +static struct class *nvme_class; + +static int __nvme_reset(struct nvme_dev *dev); +static int nvme_reset(struct nvme_dev *dev); +static void nvme_process_cq(struct nvme_queue *nvmeq); +static void nvme_dead_ctrl(struct nvme_dev *dev); + +struct async_cmd_info { + struct kthread_work work; + struct kthread_worker *worker; + struct request *req; + u32 result; + int status; + void *ctx; +}; + +/* + * An NVM Express queue. Each device has at least two (one for admin + * commands and one for I/O commands). + */ +struct nvme_queue { + struct device *q_dmadev; + struct nvme_dev *dev; + char irqname[24]; /* nvme4294967295-65535\0 */ + spinlock_t q_lock; + struct nvme_command *sq_cmds; + struct nvme_command __iomem *sq_cmds_io; + volatile struct nvme_completion *cqes; + struct blk_mq_tags **tags; + dma_addr_t sq_dma_addr; + dma_addr_t cq_dma_addr; + u32 __iomem *q_db; + u16 q_depth; + s16 cq_vector; + u16 sq_head; + u16 sq_tail; + u16 cq_head; + u16 qid; + u8 cq_phase; + u8 cqe_seen; + struct async_cmd_info cmdinfo; +}; + +/* + * Check we didin't inadvertently grow the command struct + */ +static inline void _nvme_check_size(void) +{ + BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); + BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); + BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); + BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); + BUILD_BUG_ON(sizeof(struct nvme_features) != 64); + BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_command) != 64); + BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); + BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); + BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); + BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); +} + +typedef void (*nvme_completion_fn)(struct nvme_queue *, void *, + struct nvme_completion *); + +struct nvme_cmd_info { + nvme_completion_fn fn; + void *ctx; + int aborted; + struct nvme_queue *nvmeq; + struct nvme_iod iod[0]; +}; + +/* + * Max size of iod being embedded in the request payload + */ +#define NVME_INT_PAGES 2 +#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size) +#define NVME_INT_MASK 0x01 + +/* + * Will slightly overestimate the number of pages needed. This is OK + * as it only leads to a small amount of wasted memory for the lifetime of + * the I/O. + */ +static int nvme_npages(unsigned size, struct nvme_dev *dev) +{ + unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size); + return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); +} + +static unsigned int nvme_cmd_size(struct nvme_dev *dev) +{ + unsigned int ret = sizeof(struct nvme_cmd_info); + + ret += sizeof(struct nvme_iod); + ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev); + ret += sizeof(struct scatterlist) * NVME_INT_PAGES; + + return ret; +} + +static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, + unsigned int hctx_idx) +{ + struct nvme_dev *dev = data; + struct nvme_queue *nvmeq = dev->queues[0]; + + WARN_ON(hctx_idx != 0); + WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); + WARN_ON(nvmeq->tags); + + hctx->driver_data = nvmeq; + nvmeq->tags = &dev->admin_tagset.tags[0]; + return 0; +} + +static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) +{ + struct nvme_queue *nvmeq = hctx->driver_data; + + nvmeq->tags = NULL; +} + +static int nvme_admin_init_request(void *data, struct request *req, + unsigned int hctx_idx, unsigned int rq_idx, + unsigned int numa_node) +{ + struct nvme_dev *dev = data; + struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = dev->queues[0]; + + BUG_ON(!nvmeq); + cmd->nvmeq = nvmeq; + return 0; +} + +static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, + unsigned int hctx_idx) +{ + struct nvme_dev *dev = data; + struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; + + if (!nvmeq->tags) + nvmeq->tags = &dev->tagset.tags[hctx_idx]; + + WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); + hctx->driver_data = nvmeq; + return 0; +} + +static int nvme_init_request(void *data, struct request *req, + unsigned int hctx_idx, unsigned int rq_idx, + unsigned int numa_node) +{ + struct nvme_dev *dev = data; + struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; + + BUG_ON(!nvmeq); + cmd->nvmeq = nvmeq; + return 0; +} + +static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx, + nvme_completion_fn handler) +{ + cmd->fn = handler; + cmd->ctx = ctx; + cmd->aborted = 0; + blk_mq_start_request(blk_mq_rq_from_pdu(cmd)); +} + +static void *iod_get_private(struct nvme_iod *iod) +{ + return (void *) (iod->private & ~0x1UL); +} + +/* + * If bit 0 is set, the iod is embedded in the request payload. + */ +static bool iod_should_kfree(struct nvme_iod *iod) +{ + return (iod->private & NVME_INT_MASK) == 0; +} + +/* Special values must be less than 0x1000 */ +#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA) +#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) +#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) +#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) + +static void special_completion(struct nvme_queue *nvmeq, void *ctx, + struct nvme_completion *cqe) +{ + if (ctx == CMD_CTX_CANCELLED) + return; + if (ctx == CMD_CTX_COMPLETED) { + dev_warn(nvmeq->q_dmadev, + "completed id %d twice on queue %d\n", + cqe->command_id, le16_to_cpup(&cqe->sq_id)); + return; + } + if (ctx == CMD_CTX_INVALID) { + dev_warn(nvmeq->q_dmadev, + "invalid id %d completed on queue %d\n", + cqe->command_id, le16_to_cpup(&cqe->sq_id)); + return; + } + dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx); +} + +static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn) +{ + void *ctx; + + if (fn) + *fn = cmd->fn; + ctx = cmd->ctx; + cmd->fn = special_completion; + cmd->ctx = CMD_CTX_CANCELLED; + return ctx; +} + +static void async_req_completion(struct nvme_queue *nvmeq, void *ctx, + struct nvme_completion *cqe) +{ + u32 result = le32_to_cpup(&cqe->result); + u16 status = le16_to_cpup(&cqe->status) >> 1; + + if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) + ++nvmeq->dev->event_limit; + if (status != NVME_SC_SUCCESS) + return; + + switch (result & 0xff07) { + case NVME_AER_NOTICE_NS_CHANGED: + dev_info(nvmeq->q_dmadev, "rescanning\n"); + schedule_work(&nvmeq->dev->scan_work); + default: + dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result); + } +} + +static void abort_completion(struct nvme_queue *nvmeq, void *ctx, + struct nvme_completion *cqe) +{ + struct request *req = ctx; + + u16 status = le16_to_cpup(&cqe->status) >> 1; + u32 result = le32_to_cpup(&cqe->result); + + blk_mq_free_request(req); + + dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result); + ++nvmeq->dev->abort_limit; +} + +static void async_completion(struct nvme_queue *nvmeq, void *ctx, + struct nvme_completion *cqe) +{ + struct async_cmd_info *cmdinfo = ctx; + cmdinfo->result = le32_to_cpup(&cqe->result); + cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; + queue_kthread_work(cmdinfo->worker, &cmdinfo->work); + blk_mq_free_request(cmdinfo->req); +} + +static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq, + unsigned int tag) +{ + struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag); + + return blk_mq_rq_to_pdu(req); +} + +/* + * Called with local interrupts disabled and the q_lock held. May not sleep. + */ +static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag, + nvme_completion_fn *fn) +{ + struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag); + void *ctx; + if (tag >= nvmeq->q_depth) { + *fn = special_completion; + return CMD_CTX_INVALID; + } + if (fn) + *fn = cmd->fn; + ctx = cmd->ctx; + cmd->fn = special_completion; + cmd->ctx = CMD_CTX_COMPLETED; + return ctx; +} + +/** + * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell + * @nvmeq: The queue to use + * @cmd: The command to send + * + * Safe to use from interrupt context + */ +static void __nvme_submit_cmd(struct nvme_queue *nvmeq, + struct nvme_command *cmd) +{ + u16 tail = nvmeq->sq_tail; + + if (nvmeq->sq_cmds_io) + memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); + else + memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); + + if (++tail == nvmeq->q_depth) + tail = 0; + writel(tail, nvmeq->q_db); + nvmeq->sq_tail = tail; +} + +static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) +{ + unsigned long flags; + spin_lock_irqsave(&nvmeq->q_lock, flags); + __nvme_submit_cmd(nvmeq, cmd); + spin_unlock_irqrestore(&nvmeq->q_lock, flags); +} + +static __le64 **iod_list(struct nvme_iod *iod) +{ + return ((void *)iod) + iod->offset; +} + +static inline void iod_init(struct nvme_iod *iod, unsigned nbytes, + unsigned nseg, unsigned long private) +{ + iod->private = private; + iod->offset = offsetof(struct nvme_iod, sg[nseg]); + iod->npages = -1; + iod->length = nbytes; + iod->nents = 0; +} + +static struct nvme_iod * +__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev, + unsigned long priv, gfp_t gfp) +{ + struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) + + sizeof(__le64 *) * nvme_npages(bytes, dev) + + sizeof(struct scatterlist) * nseg, gfp); + + if (iod) + iod_init(iod, bytes, nseg, priv); + + return iod; +} + +static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev, + gfp_t gfp) +{ + unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) : + sizeof(struct nvme_dsm_range); + struct nvme_iod *iod; + + if (rq->nr_phys_segments <= NVME_INT_PAGES && + size <= NVME_INT_BYTES(dev)) { + struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq); + + iod = cmd->iod; + iod_init(iod, size, rq->nr_phys_segments, + (unsigned long) rq | NVME_INT_MASK); + return iod; + } + + return __nvme_alloc_iod(rq->nr_phys_segments, size, dev, + (unsigned long) rq, gfp); +} + +static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) +{ + const int last_prp = dev->page_size / 8 - 1; + int i; + __le64 **list = iod_list(iod); + dma_addr_t prp_dma = iod->first_dma; + + if (iod->npages == 0) + dma_pool_free(dev->prp_small_pool, list[0], prp_dma); + for (i = 0; i < iod->npages; i++) { + __le64 *prp_list = list[i]; + dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); + dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); + prp_dma = next_prp_dma; + } + + if (iod_should_kfree(iod)) + kfree(iod); +} + +static int nvme_error_status(u16 status) +{ + switch (status & 0x7ff) { + case NVME_SC_SUCCESS: + return 0; + case NVME_SC_CAP_EXCEEDED: + return -ENOSPC; + default: + return -EIO; + } +} + +#ifdef CONFIG_BLK_DEV_INTEGRITY +static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) +{ + if (be32_to_cpu(pi->ref_tag) == v) + pi->ref_tag = cpu_to_be32(p); +} + +static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) +{ + if (be32_to_cpu(pi->ref_tag) == p) + pi->ref_tag = cpu_to_be32(v); +} + +/** + * nvme_dif_remap - remaps ref tags to bip seed and physical lba + * + * The virtual start sector is the one that was originally submitted by the + * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical + * start sector may be different. Remap protection information to match the + * physical LBA on writes, and back to the original seed on reads. + * + * Type 0 and 3 do not have a ref tag, so no remapping required. + */ +static void nvme_dif_remap(struct request *req, + void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) +{ + struct nvme_ns *ns = req->rq_disk->private_data; + struct bio_integrity_payload *bip; + struct t10_pi_tuple *pi; + void *p, *pmap; + u32 i, nlb, ts, phys, virt; + + if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) + return; + + bip = bio_integrity(req->bio); + if (!bip) + return; + + pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; + + p = pmap; + virt = bip_get_seed(bip); + phys = nvme_block_nr(ns, blk_rq_pos(req)); + nlb = (blk_rq_bytes(req) >> ns->lba_shift); + ts = ns->disk->queue->integrity.tuple_size; + + for (i = 0; i < nlb; i++, virt++, phys++) { + pi = (struct t10_pi_tuple *)p; + dif_swap(phys, virt, pi); + p += ts; + } + kunmap_atomic(pmap); +} + +static void nvme_init_integrity(struct nvme_ns *ns) +{ + struct blk_integrity integrity; + + switch (ns->pi_type) { + case NVME_NS_DPS_PI_TYPE3: + integrity.profile = &t10_pi_type3_crc; + break; + case NVME_NS_DPS_PI_TYPE1: + case NVME_NS_DPS_PI_TYPE2: + integrity.profile = &t10_pi_type1_crc; + break; + default: + integrity.profile = NULL; + break; + } + integrity.tuple_size = ns->ms; + blk_integrity_register(ns->disk, &integrity); + blk_queue_max_integrity_segments(ns->queue, 1); +} +#else /* CONFIG_BLK_DEV_INTEGRITY */ +static void nvme_dif_remap(struct request *req, + void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) +{ +} +static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) +{ +} +static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) +{ +} +static void nvme_init_integrity(struct nvme_ns *ns) +{ +} +#endif + +static void req_completion(struct nvme_queue *nvmeq, void *ctx, + struct nvme_completion *cqe) +{ + struct nvme_iod *iod = ctx; + struct request *req = iod_get_private(iod); + struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req); + u16 status = le16_to_cpup(&cqe->status) >> 1; + bool requeue = false; + int error = 0; + + if (unlikely(status)) { + if (!(status & NVME_SC_DNR || blk_noretry_request(req)) + && (jiffies - req->start_time) < req->timeout) { + unsigned long flags; + + requeue = true; + blk_mq_requeue_request(req); + spin_lock_irqsave(req->q->queue_lock, flags); + if (!blk_queue_stopped(req->q)) + blk_mq_kick_requeue_list(req->q); + spin_unlock_irqrestore(req->q->queue_lock, flags); + goto release_iod; + } + + if (req->cmd_type == REQ_TYPE_DRV_PRIV) { + if (cmd_rq->ctx == CMD_CTX_CANCELLED) + error = -EINTR; + else + error = status; + } else { + error = nvme_error_status(status); + } + } + + if (req->cmd_type == REQ_TYPE_DRV_PRIV) { + u32 result = le32_to_cpup(&cqe->result); + req->special = (void *)(uintptr_t)result; + } + + if (cmd_rq->aborted) + dev_warn(nvmeq->dev->dev, + "completing aborted command with status:%04x\n", + error); + +release_iod: + if (iod->nents) { + dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents, + rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); + if (blk_integrity_rq(req)) { + if (!rq_data_dir(req)) + nvme_dif_remap(req, nvme_dif_complete); + dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1, + rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); + } + } + nvme_free_iod(nvmeq->dev, iod); + + if (likely(!requeue)) + blk_mq_complete_request(req, error); +} + +/* length is in bytes. gfp flags indicates whether we may sleep. */ +static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, + int total_len, gfp_t gfp) +{ + struct dma_pool *pool; + int length = total_len; + struct scatterlist *sg = iod->sg; + int dma_len = sg_dma_len(sg); + u64 dma_addr = sg_dma_address(sg); + u32 page_size = dev->page_size; + int offset = dma_addr & (page_size - 1); + __le64 *prp_list; + __le64 **list = iod_list(iod); + dma_addr_t prp_dma; + int nprps, i; + + length -= (page_size - offset); + if (length <= 0) + return total_len; + + dma_len -= (page_size - offset); + if (dma_len) { + dma_addr += (page_size - offset); + } else { + sg = sg_next(sg); + dma_addr = sg_dma_address(sg); + dma_len = sg_dma_len(sg); + } + + if (length <= page_size) { + iod->first_dma = dma_addr; + return total_len; + } + + nprps = DIV_ROUND_UP(length, page_size); + if (nprps <= (256 / 8)) { + pool = dev->prp_small_pool; + iod->npages = 0; + } else { + pool = dev->prp_page_pool; + iod->npages = 1; + } + + prp_list = dma_pool_alloc(pool, gfp, &prp_dma); + if (!prp_list) { + iod->first_dma = dma_addr; + iod->npages = -1; + return (total_len - length) + page_size; + } + list[0] = prp_list; + iod->first_dma = prp_dma; + i = 0; + for (;;) { + if (i == page_size >> 3) { + __le64 *old_prp_list = prp_list; + prp_list = dma_pool_alloc(pool, gfp, &prp_dma); + if (!prp_list) + return total_len - length; + list[iod->npages++] = prp_list; + prp_list[0] = old_prp_list[i - 1]; + old_prp_list[i - 1] = cpu_to_le64(prp_dma); + i = 1; + } + prp_list[i++] = cpu_to_le64(dma_addr); + dma_len -= page_size; + dma_addr += page_size; + length -= page_size; + if (length <= 0) + break; + if (dma_len > 0) + continue; + BUG_ON(dma_len < 0); + sg = sg_next(sg); + dma_addr = sg_dma_address(sg); + dma_len = sg_dma_len(sg); + } + + return total_len; +} + +static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req, + struct nvme_iod *iod) +{ + struct nvme_command cmnd; + + memcpy(&cmnd, req->cmd, sizeof(cmnd)); + cmnd.rw.command_id = req->tag; + if (req->nr_phys_segments) { + cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); + cmnd.rw.prp2 = cpu_to_le64(iod->first_dma); + } + + __nvme_submit_cmd(nvmeq, &cmnd); +} + +/* + * We reuse the small pool to allocate the 16-byte range here as it is not + * worth having a special pool for these or additional cases to handle freeing + * the iod. + */ +static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns, + struct request *req, struct nvme_iod *iod) +{ + struct nvme_dsm_range *range = + (struct nvme_dsm_range *)iod_list(iod)[0]; + struct nvme_command cmnd; + + range->cattr = cpu_to_le32(0); + range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift); + range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); + + memset(&cmnd, 0, sizeof(cmnd)); + cmnd.dsm.opcode = nvme_cmd_dsm; + cmnd.dsm.command_id = req->tag; + cmnd.dsm.nsid = cpu_to_le32(ns->ns_id); + cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma); + cmnd.dsm.nr = 0; + cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); + + __nvme_submit_cmd(nvmeq, &cmnd); +} + +static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns, + int cmdid) +{ + struct nvme_command cmnd; + + memset(&cmnd, 0, sizeof(cmnd)); + cmnd.common.opcode = nvme_cmd_flush; + cmnd.common.command_id = cmdid; + cmnd.common.nsid = cpu_to_le32(ns->ns_id); + + __nvme_submit_cmd(nvmeq, &cmnd); +} + +static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod, + struct nvme_ns *ns) +{ + struct request *req = iod_get_private(iod); + struct nvme_command cmnd; + u16 control = 0; + u32 dsmgmt = 0; + + if (req->cmd_flags & REQ_FUA) + control |= NVME_RW_FUA; + if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) + control |= NVME_RW_LR; + + if (req->cmd_flags & REQ_RAHEAD) + dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; + + memset(&cmnd, 0, sizeof(cmnd)); + cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); + cmnd.rw.command_id = req->tag; + cmnd.rw.nsid = cpu_to_le32(ns->ns_id); + cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); + cmnd.rw.prp2 = cpu_to_le64(iod->first_dma); + cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); + cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); + + if (ns->ms) { + switch (ns->pi_type) { + case NVME_NS_DPS_PI_TYPE3: + control |= NVME_RW_PRINFO_PRCHK_GUARD; + break; + case NVME_NS_DPS_PI_TYPE1: + case NVME_NS_DPS_PI_TYPE2: + control |= NVME_RW_PRINFO_PRCHK_GUARD | + NVME_RW_PRINFO_PRCHK_REF; + cmnd.rw.reftag = cpu_to_le32( + nvme_block_nr(ns, blk_rq_pos(req))); + break; + } + if (blk_integrity_rq(req)) + cmnd.rw.metadata = + cpu_to_le64(sg_dma_address(iod->meta_sg)); + else + control |= NVME_RW_PRINFO_PRACT; + } + + cmnd.rw.control = cpu_to_le16(control); + cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt); + + __nvme_submit_cmd(nvmeq, &cmnd); + + return 0; +} + +/* + * NOTE: ns is NULL when called on the admin queue. + */ +static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, + const struct blk_mq_queue_data *bd) +{ + struct nvme_ns *ns = hctx->queue->queuedata; + struct nvme_queue *nvmeq = hctx->driver_data; + struct nvme_dev *dev = nvmeq->dev; + struct request *req = bd->rq; + struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); + struct nvme_iod *iod; + enum dma_data_direction dma_dir; + + /* + * If formated with metadata, require the block layer provide a buffer + * unless this namespace is formated such that the metadata can be + * stripped/generated by the controller with PRACT=1. + */ + if (ns && ns->ms && !blk_integrity_rq(req)) { + if (!(ns->pi_type && ns->ms == 8) && + req->cmd_type != REQ_TYPE_DRV_PRIV) { + blk_mq_complete_request(req, -EFAULT); + return BLK_MQ_RQ_QUEUE_OK; + } + } + + iod = nvme_alloc_iod(req, dev, GFP_ATOMIC); + if (!iod) + return BLK_MQ_RQ_QUEUE_BUSY; + + if (req->cmd_flags & REQ_DISCARD) { + void *range; + /* + * We reuse the small pool to allocate the 16-byte range here + * as it is not worth having a special pool for these or + * additional cases to handle freeing the iod. + */ + range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, + &iod->first_dma); + if (!range) + goto retry_cmd; + iod_list(iod)[0] = (__le64 *)range; + iod->npages = 0; + } else if (req->nr_phys_segments) { + dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; + + sg_init_table(iod->sg, req->nr_phys_segments); + iod->nents = blk_rq_map_sg(req->q, req, iod->sg); + if (!iod->nents) + goto error_cmd; + + if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir)) + goto retry_cmd; + + if (blk_rq_bytes(req) != + nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) { + dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); + goto retry_cmd; + } + if (blk_integrity_rq(req)) { + if (blk_rq_count_integrity_sg(req->q, req->bio) != 1) { + dma_unmap_sg(dev->dev, iod->sg, iod->nents, + dma_dir); + goto error_cmd; + } + + sg_init_table(iod->meta_sg, 1); + if (blk_rq_map_integrity_sg( + req->q, req->bio, iod->meta_sg) != 1) { + dma_unmap_sg(dev->dev, iod->sg, iod->nents, + dma_dir); + goto error_cmd; + } + + if (rq_data_dir(req)) + nvme_dif_remap(req, nvme_dif_prep); + + if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir)) { + dma_unmap_sg(dev->dev, iod->sg, iod->nents, + dma_dir); + goto error_cmd; + } + } + } + + nvme_set_info(cmd, iod, req_completion); + spin_lock_irq(&nvmeq->q_lock); + if (req->cmd_type == REQ_TYPE_DRV_PRIV) + nvme_submit_priv(nvmeq, req, iod); + else if (req->cmd_flags & REQ_DISCARD) + nvme_submit_discard(nvmeq, ns, req, iod); + else if (req->cmd_flags & REQ_FLUSH) + nvme_submit_flush(nvmeq, ns, req->tag); + else + nvme_submit_iod(nvmeq, iod, ns); + + nvme_process_cq(nvmeq); + spin_unlock_irq(&nvmeq->q_lock); + return BLK_MQ_RQ_QUEUE_OK; + + error_cmd: + nvme_free_iod(dev, iod); + return BLK_MQ_RQ_QUEUE_ERROR; + retry_cmd: + nvme_free_iod(dev, iod); + return BLK_MQ_RQ_QUEUE_BUSY; +} + +static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) +{ + u16 head, phase; + + head = nvmeq->cq_head; + phase = nvmeq->cq_phase; + + for (;;) { + void *ctx; + nvme_completion_fn fn; + struct nvme_completion cqe = nvmeq->cqes[head]; + if ((le16_to_cpu(cqe.status) & 1) != phase) + break; + nvmeq->sq_head = le16_to_cpu(cqe.sq_head); + if (++head == nvmeq->q_depth) { + head = 0; + phase = !phase; + } + if (tag && *tag == cqe.command_id) + *tag = -1; + ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn); + fn(nvmeq, ctx, &cqe); + } + + /* If the controller ignores the cq head doorbell and continuously + * writes to the queue, it is theoretically possible to wrap around + * the queue twice and mistakenly return IRQ_NONE. Linux only + * requires that 0.1% of your interrupts are handled, so this isn't + * a big problem. + */ + if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) + return; + + if (likely(nvmeq->cq_vector >= 0)) + writel(head, nvmeq->q_db + nvmeq->dev->db_stride); + nvmeq->cq_head = head; + nvmeq->cq_phase = phase; + + nvmeq->cqe_seen = 1; +} + +static void nvme_process_cq(struct nvme_queue *nvmeq) +{ + __nvme_process_cq(nvmeq, NULL); +} + +static irqreturn_t nvme_irq(int irq, void *data) +{ + irqreturn_t result; + struct nvme_queue *nvmeq = data; + spin_lock(&nvmeq->q_lock); + nvme_process_cq(nvmeq); + result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; + nvmeq->cqe_seen = 0; + spin_unlock(&nvmeq->q_lock); + return result; +} + +static irqreturn_t nvme_irq_check(int irq, void *data) +{ + struct nvme_queue *nvmeq = data; + struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; + if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) + return IRQ_NONE; + return IRQ_WAKE_THREAD; +} + +static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) +{ + struct nvme_queue *nvmeq = hctx->driver_data; + + if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == + nvmeq->cq_phase) { + spin_lock_irq(&nvmeq->q_lock); + __nvme_process_cq(nvmeq, &tag); + spin_unlock_irq(&nvmeq->q_lock); + + if (tag == -1) + return 1; + } + + return 0; +} + +/* + * Returns 0 on success. If the result is negative, it's a Linux error code; + * if the result is positive, it's an NVM Express status code + */ +int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, + void *buffer, void __user *ubuffer, unsigned bufflen, + u32 *result, unsigned timeout) +{ + bool write = cmd->common.opcode & 1; + struct bio *bio = NULL; + struct request *req; + int ret; + + req = blk_mq_alloc_request(q, write, GFP_KERNEL, false); + if (IS_ERR(req)) + return PTR_ERR(req); + + req->cmd_type = REQ_TYPE_DRV_PRIV; + req->cmd_flags |= REQ_FAILFAST_DRIVER; + req->__data_len = 0; + req->__sector = (sector_t) -1; + req->bio = req->biotail = NULL; + + req->timeout = timeout ? timeout : ADMIN_TIMEOUT; + + req->cmd = (unsigned char *)cmd; + req->cmd_len = sizeof(struct nvme_command); + req->special = (void *)0; + + if (buffer && bufflen) { + ret = blk_rq_map_kern(q, req, buffer, bufflen, + __GFP_DIRECT_RECLAIM); + if (ret) + goto out; + } else if (ubuffer && bufflen) { + ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, + __GFP_DIRECT_RECLAIM); + if (ret) + goto out; + bio = req->bio; + } + + blk_execute_rq(req->q, NULL, req, 0); + if (bio) + blk_rq_unmap_user(bio); + if (result) + *result = (u32)(uintptr_t)req->special; + ret = req->errors; + out: + blk_mq_free_request(req); + return ret; +} + +int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, + void *buffer, unsigned bufflen) +{ + return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0); +} + +static int nvme_submit_async_admin_req(struct nvme_dev *dev) +{ + struct nvme_queue *nvmeq = dev->queues[0]; + struct nvme_command c; + struct nvme_cmd_info *cmd_info; + struct request *req; + + req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true); + if (IS_ERR(req)) + return PTR_ERR(req); + + req->cmd_flags |= REQ_NO_TIMEOUT; + cmd_info = blk_mq_rq_to_pdu(req); + nvme_set_info(cmd_info, NULL, async_req_completion); + + memset(&c, 0, sizeof(c)); + c.common.opcode = nvme_admin_async_event; + c.common.command_id = req->tag; + + blk_mq_free_request(req); + __nvme_submit_cmd(nvmeq, &c); + return 0; +} + +static int nvme_submit_admin_async_cmd(struct nvme_dev *dev, + struct nvme_command *cmd, + struct async_cmd_info *cmdinfo, unsigned timeout) +{ + struct nvme_queue *nvmeq = dev->queues[0]; + struct request *req; + struct nvme_cmd_info *cmd_rq; + + req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false); + if (IS_ERR(req)) + return PTR_ERR(req); + + req->timeout = timeout; + cmd_rq = blk_mq_rq_to_pdu(req); + cmdinfo->req = req; + nvme_set_info(cmd_rq, cmdinfo, async_completion); + cmdinfo->status = -EINTR; + + cmd->common.command_id = req->tag; + + nvme_submit_cmd(nvmeq, cmd); + return 0; +} + +static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) +{ + struct nvme_command c; + + memset(&c, 0, sizeof(c)); + c.delete_queue.opcode = opcode; + c.delete_queue.qid = cpu_to_le16(id); + + return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0); +} + +static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, + struct nvme_queue *nvmeq) +{ + struct nvme_command c; + int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; + + /* + * Note: we (ab)use the fact the the prp fields survive if no data + * is attached to the request. + */ + memset(&c, 0, sizeof(c)); + c.create_cq.opcode = nvme_admin_create_cq; + c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); + c.create_cq.cqid = cpu_to_le16(qid); + c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); + c.create_cq.cq_flags = cpu_to_le16(flags); + c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); + + return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0); +} + +static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, + struct nvme_queue *nvmeq) +{ + struct nvme_command c; + int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; + + /* + * Note: we (ab)use the fact the the prp fields survive if no data + * is attached to the request. + */ + memset(&c, 0, sizeof(c)); + c.create_sq.opcode = nvme_admin_create_sq; + c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); + c.create_sq.sqid = cpu_to_le16(qid); + c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); + c.create_sq.sq_flags = cpu_to_le16(flags); + c.create_sq.cqid = cpu_to_le16(qid); + + return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0); +} + +static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) +{ + return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); +} + +static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) +{ + return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); +} + +int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id) +{ + struct nvme_command c = { }; + int error; + + /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ + c.identify.opcode = nvme_admin_identify; + c.identify.cns = cpu_to_le32(1); + + *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); + if (!*id) + return -ENOMEM; + + error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, + sizeof(struct nvme_id_ctrl)); + if (error) + kfree(*id); + return error; +} + +int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid, + struct nvme_id_ns **id) +{ + struct nvme_command c = { }; + int error; + + /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ + c.identify.opcode = nvme_admin_identify, + c.identify.nsid = cpu_to_le32(nsid), + + *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); + if (!*id) + return -ENOMEM; + + error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, + sizeof(struct nvme_id_ns)); + if (error) + kfree(*id); + return error; +} + +int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, + dma_addr_t dma_addr, u32 *result) +{ + struct nvme_command c; + + memset(&c, 0, sizeof(c)); + c.features.opcode = nvme_admin_get_features; + c.features.nsid = cpu_to_le32(nsid); + c.features.prp1 = cpu_to_le64(dma_addr); + c.features.fid = cpu_to_le32(fid); + + return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0, + result, 0); +} + +int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11, + dma_addr_t dma_addr, u32 *result) +{ + struct nvme_command c; + + memset(&c, 0, sizeof(c)); + c.features.opcode = nvme_admin_set_features; + c.features.prp1 = cpu_to_le64(dma_addr); + c.features.fid = cpu_to_le32(fid); + c.features.dword11 = cpu_to_le32(dword11); + + return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0, + result, 0); +} + +int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log) +{ + struct nvme_command c = { }; + int error; + + c.common.opcode = nvme_admin_get_log_page, + c.common.nsid = cpu_to_le32(0xFFFFFFFF), + c.common.cdw10[0] = cpu_to_le32( + (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | + NVME_LOG_SMART), + + *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); + if (!*log) + return -ENOMEM; + + error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, + sizeof(struct nvme_smart_log)); + if (error) + kfree(*log); + return error; +} + +/** + * nvme_abort_req - Attempt aborting a request + * + * Schedule controller reset if the command was already aborted once before and + * still hasn't been returned to the driver, or if this is the admin queue. + */ +static void nvme_abort_req(struct request *req) +{ + struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = cmd_rq->nvmeq; + struct nvme_dev *dev = nvmeq->dev; + struct request *abort_req; + struct nvme_cmd_info *abort_cmd; + struct nvme_command cmd; + + if (!nvmeq->qid || cmd_rq->aborted) { + spin_lock(&dev_list_lock); + if (!__nvme_reset(dev)) { + dev_warn(dev->dev, + "I/O %d QID %d timeout, reset controller\n", + req->tag, nvmeq->qid); + } + spin_unlock(&dev_list_lock); + return; + } + + if (!dev->abort_limit) + return; + + abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, + false); + if (IS_ERR(abort_req)) + return; + + abort_cmd = blk_mq_rq_to_pdu(abort_req); + nvme_set_info(abort_cmd, abort_req, abort_completion); + + memset(&cmd, 0, sizeof(cmd)); + cmd.abort.opcode = nvme_admin_abort_cmd; + cmd.abort.cid = req->tag; + cmd.abort.sqid = cpu_to_le16(nvmeq->qid); + cmd.abort.command_id = abort_req->tag; + + --dev->abort_limit; + cmd_rq->aborted = 1; + + dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag, + nvmeq->qid); + nvme_submit_cmd(dev->queues[0], &cmd); +} + +static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved) +{ + struct nvme_queue *nvmeq = data; + void *ctx; + nvme_completion_fn fn; + struct nvme_cmd_info *cmd; + struct nvme_completion cqe; + + if (!blk_mq_request_started(req)) + return; + + cmd = blk_mq_rq_to_pdu(req); + + if (cmd->ctx == CMD_CTX_CANCELLED) + return; + + if (blk_queue_dying(req->q)) + cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1); + else + cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); + + + dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", + req->tag, nvmeq->qid); + ctx = cancel_cmd_info(cmd, &fn); + fn(nvmeq, ctx, &cqe); +} + +static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) +{ + struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = cmd->nvmeq; + + dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag, + nvmeq->qid); + spin_lock_irq(&nvmeq->q_lock); + nvme_abort_req(req); + spin_unlock_irq(&nvmeq->q_lock); + + /* + * The aborted req will be completed on receiving the abort req. + * We enable the timer again. If hit twice, it'll cause a device reset, + * as the device then is in a faulty state. + */ + return BLK_EH_RESET_TIMER; +} + +static void nvme_free_queue(struct nvme_queue *nvmeq) +{ + dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), + (void *)nvmeq->cqes, nvmeq->cq_dma_addr); + if (nvmeq->sq_cmds) + dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), + nvmeq->sq_cmds, nvmeq->sq_dma_addr); + kfree(nvmeq); +} + +static void nvme_free_queues(struct nvme_dev *dev, int lowest) +{ + int i; + + for (i = dev->queue_count - 1; i >= lowest; i--) { + struct nvme_queue *nvmeq = dev->queues[i]; + dev->queue_count--; + dev->queues[i] = NULL; + nvme_free_queue(nvmeq); + } +} + +/** + * nvme_suspend_queue - put queue into suspended state + * @nvmeq - queue to suspend + */ +static int nvme_suspend_queue(struct nvme_queue *nvmeq) +{ + int vector; + + spin_lock_irq(&nvmeq->q_lock); + if (nvmeq->cq_vector == -1) { + spin_unlock_irq(&nvmeq->q_lock); + return 1; + } + vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; + nvmeq->dev->online_queues--; + nvmeq->cq_vector = -1; + spin_unlock_irq(&nvmeq->q_lock); + + if (!nvmeq->qid && nvmeq->dev->admin_q) + blk_mq_freeze_queue_start(nvmeq->dev->admin_q); + + irq_set_affinity_hint(vector, NULL); + free_irq(vector, nvmeq); + + return 0; +} + +static void nvme_clear_queue(struct nvme_queue *nvmeq) +{ + spin_lock_irq(&nvmeq->q_lock); + if (nvmeq->tags && *nvmeq->tags) + blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq); + spin_unlock_irq(&nvmeq->q_lock); +} + +static void nvme_disable_queue(struct nvme_dev *dev, int qid) +{ + struct nvme_queue *nvmeq = dev->queues[qid]; + + if (!nvmeq) + return; + if (nvme_suspend_queue(nvmeq)) + return; + + /* Don't tell the adapter to delete the admin queue. + * Don't tell a removed adapter to delete IO queues. */ + if (qid && readl(&dev->bar->csts) != -1) { + adapter_delete_sq(dev, qid); + adapter_delete_cq(dev, qid); + } + + spin_lock_irq(&nvmeq->q_lock); + nvme_process_cq(nvmeq); + spin_unlock_irq(&nvmeq->q_lock); +} + +static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, + int entry_size) +{ + int q_depth = dev->q_depth; + unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size); + + if (q_size_aligned * nr_io_queues > dev->cmb_size) { + u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); + mem_per_q = round_down(mem_per_q, dev->page_size); + q_depth = div_u64(mem_per_q, entry_size); + + /* + * Ensure the reduced q_depth is above some threshold where it + * would be better to map queues in system memory with the + * original depth + */ + if (q_depth < 64) + return -ENOMEM; + } + + return q_depth; +} + +static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, + int qid, int depth) +{ + if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { + unsigned offset = (qid - 1) * + roundup(SQ_SIZE(depth), dev->page_size); + nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; + nvmeq->sq_cmds_io = dev->cmb + offset; + } else { + nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), + &nvmeq->sq_dma_addr, GFP_KERNEL); + if (!nvmeq->sq_cmds) + return -ENOMEM; + } + + return 0; +} + +static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, + int depth) +{ + struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); + if (!nvmeq) + return NULL; + + nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), + &nvmeq->cq_dma_addr, GFP_KERNEL); + if (!nvmeq->cqes) + goto free_nvmeq; + + if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) + goto free_cqdma; + + nvmeq->q_dmadev = dev->dev; + nvmeq->dev = dev; + snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", + dev->instance, qid); + spin_lock_init(&nvmeq->q_lock); + nvmeq->cq_head = 0; + nvmeq->cq_phase = 1; + nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; + nvmeq->q_depth = depth; + nvmeq->qid = qid; + nvmeq->cq_vector = -1; + dev->queues[qid] = nvmeq; + + /* make sure queue descriptor is set before queue count, for kthread */ + mb(); + dev->queue_count++; + + return nvmeq; + + free_cqdma: + dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, + nvmeq->cq_dma_addr); + free_nvmeq: + kfree(nvmeq); + return NULL; +} + +static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, + const char *name) +{ + if (use_threaded_interrupts) + return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, + nvme_irq_check, nvme_irq, IRQF_SHARED, + name, nvmeq); + return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, + IRQF_SHARED, name, nvmeq); +} + +static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) +{ + struct nvme_dev *dev = nvmeq->dev; + + spin_lock_irq(&nvmeq->q_lock); + nvmeq->sq_tail = 0; + nvmeq->cq_head = 0; + nvmeq->cq_phase = 1; + nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; + memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); + dev->online_queues++; + spin_unlock_irq(&nvmeq->q_lock); +} + +static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) +{ + struct nvme_dev *dev = nvmeq->dev; + int result; + + nvmeq->cq_vector = qid - 1; + result = adapter_alloc_cq(dev, qid, nvmeq); + if (result < 0) + return result; + + result = adapter_alloc_sq(dev, qid, nvmeq); + if (result < 0) + goto release_cq; + + result = queue_request_irq(dev, nvmeq, nvmeq->irqname); + if (result < 0) + goto release_sq; + + nvme_init_queue(nvmeq, qid); + return result; + + release_sq: + adapter_delete_sq(dev, qid); + release_cq: + adapter_delete_cq(dev, qid); + return result; +} + +static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled) +{ + unsigned long timeout; + u32 bit = enabled ? NVME_CSTS_RDY : 0; + + timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; + + while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) { + msleep(100); + if (fatal_signal_pending(current)) + return -EINTR; + if (time_after(jiffies, timeout)) { + dev_err(dev->dev, + "Device not ready; aborting %s\n", enabled ? + "initialisation" : "reset"); + return -ENODEV; + } + } + + return 0; +} + +/* + * If the device has been passed off to us in an enabled state, just clear + * the enabled bit. The spec says we should set the 'shutdown notification + * bits', but doing so may cause the device to complete commands to the + * admin queue ... and we don't know what memory that might be pointing at! + */ +static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap) +{ + dev->ctrl_config &= ~NVME_CC_SHN_MASK; + dev->ctrl_config &= ~NVME_CC_ENABLE; + writel(dev->ctrl_config, &dev->bar->cc); + + return nvme_wait_ready(dev, cap, false); +} + +static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap) +{ + dev->ctrl_config &= ~NVME_CC_SHN_MASK; + dev->ctrl_config |= NVME_CC_ENABLE; + writel(dev->ctrl_config, &dev->bar->cc); + + return nvme_wait_ready(dev, cap, true); +} + +static int nvme_shutdown_ctrl(struct nvme_dev *dev) +{ + unsigned long timeout; + + dev->ctrl_config &= ~NVME_CC_SHN_MASK; + dev->ctrl_config |= NVME_CC_SHN_NORMAL; + + writel(dev->ctrl_config, &dev->bar->cc); + + timeout = SHUTDOWN_TIMEOUT + jiffies; + while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) != + NVME_CSTS_SHST_CMPLT) { + msleep(100); + if (fatal_signal_pending(current)) + return -EINTR; + if (time_after(jiffies, timeout)) { + dev_err(dev->dev, + "Device shutdown incomplete; abort shutdown\n"); + return -ENODEV; + } + } + + return 0; +} + +static struct blk_mq_ops nvme_mq_admin_ops = { + .queue_rq = nvme_queue_rq, + .map_queue = blk_mq_map_queue, + .init_hctx = nvme_admin_init_hctx, + .exit_hctx = nvme_admin_exit_hctx, + .init_request = nvme_admin_init_request, + .timeout = nvme_timeout, +}; + +static struct blk_mq_ops nvme_mq_ops = { + .queue_rq = nvme_queue_rq, + .map_queue = blk_mq_map_queue, + .init_hctx = nvme_init_hctx, + .init_request = nvme_init_request, + .timeout = nvme_timeout, + .poll = nvme_poll, +}; + +static void nvme_dev_remove_admin(struct nvme_dev *dev) +{ + if (dev->admin_q && !blk_queue_dying(dev->admin_q)) { + blk_cleanup_queue(dev->admin_q); + blk_mq_free_tag_set(&dev->admin_tagset); + } +} + +static int nvme_alloc_admin_tags(struct nvme_dev *dev) +{ + if (!dev->admin_q) { + dev->admin_tagset.ops = &nvme_mq_admin_ops; + dev->admin_tagset.nr_hw_queues = 1; + dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1; + dev->admin_tagset.reserved_tags = 1; + dev->admin_tagset.timeout = ADMIN_TIMEOUT; + dev->admin_tagset.numa_node = dev_to_node(dev->dev); + dev->admin_tagset.cmd_size = nvme_cmd_size(dev); + dev->admin_tagset.driver_data = dev; + + if (blk_mq_alloc_tag_set(&dev->admin_tagset)) + return -ENOMEM; + + dev->admin_q = blk_mq_init_queue(&dev->admin_tagset); + if (IS_ERR(dev->admin_q)) { + blk_mq_free_tag_set(&dev->admin_tagset); + return -ENOMEM; + } + if (!blk_get_queue(dev->admin_q)) { + nvme_dev_remove_admin(dev); + dev->admin_q = NULL; + return -ENODEV; + } + } else + blk_mq_unfreeze_queue(dev->admin_q); + + return 0; +} + +static int nvme_configure_admin_queue(struct nvme_dev *dev) +{ + int result; + u32 aqa; + u64 cap = lo_hi_readq(&dev->bar->cap); + struct nvme_queue *nvmeq; + /* + * default to a 4K page size, with the intention to update this + * path in the future to accomodate architectures with differing + * kernel and IO page sizes. + */ + unsigned page_shift = 12; + unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12; + + if (page_shift < dev_page_min) { + dev_err(dev->dev, + "Minimum device page size (%u) too large for " + "host (%u)\n", 1 << dev_page_min, + 1 << page_shift); + return -ENODEV; + } + + dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ? + NVME_CAP_NSSRC(cap) : 0; + + if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO)) + writel(NVME_CSTS_NSSRO, &dev->bar->csts); + + result = nvme_disable_ctrl(dev, cap); + if (result < 0) + return result; + + nvmeq = dev->queues[0]; + if (!nvmeq) { + nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); + if (!nvmeq) + return -ENOMEM; + } + + aqa = nvmeq->q_depth - 1; + aqa |= aqa << 16; + + dev->page_size = 1 << page_shift; + + dev->ctrl_config = NVME_CC_CSS_NVM; + dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; + dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; + dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; + + writel(aqa, &dev->bar->aqa); + lo_hi_writeq(nvmeq->sq_dma_addr, &dev->bar->asq); + lo_hi_writeq(nvmeq->cq_dma_addr, &dev->bar->acq); + + result = nvme_enable_ctrl(dev, cap); + if (result) + goto free_nvmeq; + + nvmeq->cq_vector = 0; + result = queue_request_irq(dev, nvmeq, nvmeq->irqname); + if (result) { + nvmeq->cq_vector = -1; + goto free_nvmeq; + } + + return result; + + free_nvmeq: + nvme_free_queues(dev, 0); + return result; +} + +static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) +{ + struct nvme_dev *dev = ns->dev; + struct nvme_user_io io; + struct nvme_command c; + unsigned length, meta_len; + int status, write; + dma_addr_t meta_dma = 0; + void *meta = NULL; + void __user *metadata; + + if (copy_from_user(&io, uio, sizeof(io))) + return -EFAULT; + + switch (io.opcode) { + case nvme_cmd_write: + case nvme_cmd_read: + case nvme_cmd_compare: + break; + default: + return -EINVAL; + } + + length = (io.nblocks + 1) << ns->lba_shift; + meta_len = (io.nblocks + 1) * ns->ms; + metadata = (void __user *)(uintptr_t)io.metadata; + write = io.opcode & 1; + + if (ns->ext) { + length += meta_len; + meta_len = 0; + } + if (meta_len) { + if (((io.metadata & 3) || !io.metadata) && !ns->ext) + return -EINVAL; + + meta = dma_alloc_coherent(dev->dev, meta_len, + &meta_dma, GFP_KERNEL); + + if (!meta) { + status = -ENOMEM; + goto unmap; + } + if (write) { + if (copy_from_user(meta, metadata, meta_len)) { + status = -EFAULT; + goto unmap; + } + } + } + + memset(&c, 0, sizeof(c)); + c.rw.opcode = io.opcode; + c.rw.flags = io.flags; + c.rw.nsid = cpu_to_le32(ns->ns_id); + c.rw.slba = cpu_to_le64(io.slba); + c.rw.length = cpu_to_le16(io.nblocks); + c.rw.control = cpu_to_le16(io.control); + c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); + c.rw.reftag = cpu_to_le32(io.reftag); + c.rw.apptag = cpu_to_le16(io.apptag); + c.rw.appmask = cpu_to_le16(io.appmask); + c.rw.metadata = cpu_to_le64(meta_dma); + + status = __nvme_submit_sync_cmd(ns->queue, &c, NULL, + (void __user *)(uintptr_t)io.addr, length, NULL, 0); + unmap: + if (meta) { + if (status == NVME_SC_SUCCESS && !write) { + if (copy_to_user(metadata, meta, meta_len)) + status = -EFAULT; + } + dma_free_coherent(dev->dev, meta_len, meta, meta_dma); + } + return status; +} + +static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns, + struct nvme_passthru_cmd __user *ucmd) +{ + struct nvme_passthru_cmd cmd; + struct nvme_command c; + unsigned timeout = 0; + int status; + + if (!capable(CAP_SYS_ADMIN)) + return -EACCES; + if (copy_from_user(&cmd, ucmd, sizeof(cmd))) + return -EFAULT; + + memset(&c, 0, sizeof(c)); + c.common.opcode = cmd.opcode; + c.common.flags = cmd.flags; + c.common.nsid = cpu_to_le32(cmd.nsid); + c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); + c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); + c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); + c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); + c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); + c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); + c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); + c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); + + if (cmd.timeout_ms) + timeout = msecs_to_jiffies(cmd.timeout_ms); + + status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c, + NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len, + &cmd.result, timeout); + if (status >= 0) { + if (put_user(cmd.result, &ucmd->result)) + return -EFAULT; + } + + return status; +} + +static int nvme_subsys_reset(struct nvme_dev *dev) +{ + if (!dev->subsystem) + return -ENOTTY; + + writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */ + return 0; +} + +static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, + unsigned long arg) +{ + struct nvme_ns *ns = bdev->bd_disk->private_data; + + switch (cmd) { + case NVME_IOCTL_ID: + force_successful_syscall_return(); + return ns->ns_id; + case NVME_IOCTL_ADMIN_CMD: + return nvme_user_cmd(ns->dev, NULL, (void __user *)arg); + case NVME_IOCTL_IO_CMD: + return nvme_user_cmd(ns->dev, ns, (void __user *)arg); + case NVME_IOCTL_SUBMIT_IO: + return nvme_submit_io(ns, (void __user *)arg); + case SG_GET_VERSION_NUM: + return nvme_sg_get_version_num((void __user *)arg); + case SG_IO: + return nvme_sg_io(ns, (void __user *)arg); + default: + return -ENOTTY; + } +} + +#ifdef CONFIG_COMPAT +static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, + unsigned int cmd, unsigned long arg) +{ + switch (cmd) { + case SG_IO: + return -ENOIOCTLCMD; + } + return nvme_ioctl(bdev, mode, cmd, arg); +} +#else +#define nvme_compat_ioctl NULL +#endif + +static void nvme_free_dev(struct kref *kref); +static void nvme_free_ns(struct kref *kref) +{ + struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); + + if (ns->type == NVME_NS_LIGHTNVM) + nvme_nvm_unregister(ns->queue, ns->disk->disk_name); + + spin_lock(&dev_list_lock); + ns->disk->private_data = NULL; + spin_unlock(&dev_list_lock); + + kref_put(&ns->dev->kref, nvme_free_dev); + put_disk(ns->disk); + kfree(ns); +} + +static int nvme_open(struct block_device *bdev, fmode_t mode) +{ + int ret = 0; + struct nvme_ns *ns; + + spin_lock(&dev_list_lock); + ns = bdev->bd_disk->private_data; + if (!ns) + ret = -ENXIO; + else if (!kref_get_unless_zero(&ns->kref)) + ret = -ENXIO; + spin_unlock(&dev_list_lock); + + return ret; +} + +static void nvme_release(struct gendisk *disk, fmode_t mode) +{ + struct nvme_ns *ns = disk->private_data; + kref_put(&ns->kref, nvme_free_ns); +} + +static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo) +{ + /* some standard values */ + geo->heads = 1 << 6; + geo->sectors = 1 << 5; + geo->cylinders = get_capacity(bd->bd_disk) >> 11; + return 0; +} + +static void nvme_config_discard(struct nvme_ns *ns) +{ + u32 logical_block_size = queue_logical_block_size(ns->queue); + ns->queue->limits.discard_zeroes_data = 0; + ns->queue->limits.discard_alignment = logical_block_size; + ns->queue->limits.discard_granularity = logical_block_size; + blk_queue_max_discard_sectors(ns->queue, 0xffffffff); + queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); +} + +static int nvme_revalidate_disk(struct gendisk *disk) +{ + struct nvme_ns *ns = disk->private_data; + struct nvme_dev *dev = ns->dev; + struct nvme_id_ns *id; + u8 lbaf, pi_type; + u16 old_ms; + unsigned short bs; + + if (nvme_identify_ns(dev, ns->ns_id, &id)) { + dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__, + dev->instance, ns->ns_id); + return -ENODEV; + } + if (id->ncap == 0) { + kfree(id); + return -ENODEV; + } + + if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) { + if (nvme_nvm_register(ns->queue, disk->disk_name)) { + dev_warn(dev->dev, + "%s: LightNVM init failure\n", __func__); + kfree(id); + return -ENODEV; + } + ns->type = NVME_NS_LIGHTNVM; + } + + old_ms = ns->ms; + lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; + ns->lba_shift = id->lbaf[lbaf].ds; + ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); + ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); + + /* + * If identify namespace failed, use default 512 byte block size so + * block layer can use before failing read/write for 0 capacity. + */ + if (ns->lba_shift == 0) + ns->lba_shift = 9; + bs = 1 << ns->lba_shift; + + /* XXX: PI implementation requires metadata equal t10 pi tuple size */ + pi_type = ns->ms == sizeof(struct t10_pi_tuple) ? + id->dps & NVME_NS_DPS_PI_MASK : 0; + + blk_mq_freeze_queue(disk->queue); + if (blk_get_integrity(disk) && (ns->pi_type != pi_type || + ns->ms != old_ms || + bs != queue_logical_block_size(disk->queue) || + (ns->ms && ns->ext))) + blk_integrity_unregister(disk); + + ns->pi_type = pi_type; + blk_queue_logical_block_size(ns->queue, bs); + + if (ns->ms && !ns->ext) + nvme_init_integrity(ns); + + if ((ns->ms && !(ns->ms == 8 && ns->pi_type) && + !blk_get_integrity(disk)) || + ns->type == NVME_NS_LIGHTNVM) + set_capacity(disk, 0); + else + set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); + + if (dev->oncs & NVME_CTRL_ONCS_DSM) + nvme_config_discard(ns); + blk_mq_unfreeze_queue(disk->queue); + + kfree(id); + return 0; +} + +static char nvme_pr_type(enum pr_type type) +{ + switch (type) { + case PR_WRITE_EXCLUSIVE: + return 1; + case PR_EXCLUSIVE_ACCESS: + return 2; + case PR_WRITE_EXCLUSIVE_REG_ONLY: + return 3; + case PR_EXCLUSIVE_ACCESS_REG_ONLY: + return 4; + case PR_WRITE_EXCLUSIVE_ALL_REGS: + return 5; + case PR_EXCLUSIVE_ACCESS_ALL_REGS: + return 6; + default: + return 0; + } +}; + +static int nvme_pr_command(struct block_device *bdev, u32 cdw10, + u64 key, u64 sa_key, u8 op) +{ + struct nvme_ns *ns = bdev->bd_disk->private_data; + struct nvme_command c; + u8 data[16] = { 0, }; + + put_unaligned_le64(key, &data[0]); + put_unaligned_le64(sa_key, &data[8]); + + memset(&c, 0, sizeof(c)); + c.common.opcode = op; + c.common.nsid = cpu_to_le32(ns->ns_id); + c.common.cdw10[0] = cpu_to_le32(cdw10); + + return nvme_submit_sync_cmd(ns->queue, &c, data, 16); +} + +static int nvme_pr_register(struct block_device *bdev, u64 old, + u64 new, unsigned flags) +{ + u32 cdw10; + + if (flags & ~PR_FL_IGNORE_KEY) + return -EOPNOTSUPP; + + cdw10 = old ? 2 : 0; + cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; + cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ + return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); +} + +static int nvme_pr_reserve(struct block_device *bdev, u64 key, + enum pr_type type, unsigned flags) +{ + u32 cdw10; + + if (flags & ~PR_FL_IGNORE_KEY) + return -EOPNOTSUPP; + + cdw10 = nvme_pr_type(type) << 8; + cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); + return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); +} + +static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, + enum pr_type type, bool abort) +{ + u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; + return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); +} + +static int nvme_pr_clear(struct block_device *bdev, u64 key) +{ + u32 cdw10 = 1 | (key ? 1 << 3 : 0); + return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); +} + +static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) +{ + u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; + return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); +} + +static const struct pr_ops nvme_pr_ops = { + .pr_register = nvme_pr_register, + .pr_reserve = nvme_pr_reserve, + .pr_release = nvme_pr_release, + .pr_preempt = nvme_pr_preempt, + .pr_clear = nvme_pr_clear, +}; + +static const struct block_device_operations nvme_fops = { + .owner = THIS_MODULE, + .ioctl = nvme_ioctl, + .compat_ioctl = nvme_compat_ioctl, + .open = nvme_open, + .release = nvme_release, + .getgeo = nvme_getgeo, + .revalidate_disk= nvme_revalidate_disk, + .pr_ops = &nvme_pr_ops, +}; + +static int nvme_kthread(void *data) +{ + struct nvme_dev *dev, *next; + + while (!kthread_should_stop()) { + set_current_state(TASK_INTERRUPTIBLE); + spin_lock(&dev_list_lock); + list_for_each_entry_safe(dev, next, &dev_list, node) { + int i; + u32 csts = readl(&dev->bar->csts); + + if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) || + csts & NVME_CSTS_CFS) { + if (!__nvme_reset(dev)) { + dev_warn(dev->dev, + "Failed status: %x, reset controller\n", + readl(&dev->bar->csts)); + } + continue; + } + for (i = 0; i < dev->queue_count; i++) { + struct nvme_queue *nvmeq = dev->queues[i]; + if (!nvmeq) + continue; + spin_lock_irq(&nvmeq->q_lock); + nvme_process_cq(nvmeq); + + while ((i == 0) && (dev->event_limit > 0)) { + if (nvme_submit_async_admin_req(dev)) + break; + dev->event_limit--; + } + spin_unlock_irq(&nvmeq->q_lock); + } + } + spin_unlock(&dev_list_lock); + schedule_timeout(round_jiffies_relative(HZ)); + } + return 0; +} + +static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid) +{ + struct nvme_ns *ns; + struct gendisk *disk; + int node = dev_to_node(dev->dev); + + ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); + if (!ns) + return; + + ns->queue = blk_mq_init_queue(&dev->tagset); + if (IS_ERR(ns->queue)) + goto out_free_ns; + queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); + queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); + ns->dev = dev; + ns->queue->queuedata = ns; + + disk = alloc_disk_node(0, node); + if (!disk) + goto out_free_queue; + + kref_init(&ns->kref); + ns->ns_id = nsid; + ns->disk = disk; + ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ + list_add_tail(&ns->list, &dev->namespaces); + + blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); + if (dev->max_hw_sectors) { + blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors); + blk_queue_max_segments(ns->queue, + (dev->max_hw_sectors / (dev->page_size >> 9)) + 1); + } + if (dev->stripe_size) + blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9); + if (dev->vwc & NVME_CTRL_VWC_PRESENT) + blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA); + blk_queue_virt_boundary(ns->queue, dev->page_size - 1); + + disk->major = nvme_major; + disk->first_minor = 0; + disk->fops = &nvme_fops; + disk->private_data = ns; + disk->queue = ns->queue; + disk->driverfs_dev = dev->device; + disk->flags = GENHD_FL_EXT_DEVT; + sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid); + + /* + * Initialize capacity to 0 until we establish the namespace format and + * setup integrity extentions if necessary. The revalidate_disk after + * add_disk allows the driver to register with integrity if the format + * requires it. + */ + set_capacity(disk, 0); + if (nvme_revalidate_disk(ns->disk)) + goto out_free_disk; + + kref_get(&dev->kref); + if (ns->type != NVME_NS_LIGHTNVM) { + add_disk(ns->disk); + if (ns->ms) { + struct block_device *bd = bdget_disk(ns->disk, 0); + if (!bd) + return; + if (blkdev_get(bd, FMODE_READ, NULL)) { + bdput(bd); + return; + } + blkdev_reread_part(bd); + blkdev_put(bd, FMODE_READ); + } + } + return; + out_free_disk: + kfree(disk); + list_del(&ns->list); + out_free_queue: + blk_cleanup_queue(ns->queue); + out_free_ns: + kfree(ns); +} + +/* + * Create I/O queues. Failing to create an I/O queue is not an issue, + * we can continue with less than the desired amount of queues, and + * even a controller without I/O queues an still be used to issue + * admin commands. This might be useful to upgrade a buggy firmware + * for example. + */ +static void nvme_create_io_queues(struct nvme_dev *dev) +{ + unsigned i; + + for (i = dev->queue_count; i <= dev->max_qid; i++) + if (!nvme_alloc_queue(dev, i, dev->q_depth)) + break; + + for (i = dev->online_queues; i <= dev->queue_count - 1; i++) + if (nvme_create_queue(dev->queues[i], i)) { + nvme_free_queues(dev, i); + break; + } +} + +static int set_queue_count(struct nvme_dev *dev, int count) +{ + int status; + u32 result; + u32 q_count = (count - 1) | ((count - 1) << 16); + + status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0, + &result); + if (status < 0) + return status; + if (status > 0) { + dev_err(dev->dev, "Could not set queue count (%d)\n", status); + return 0; + } + return min(result & 0xffff, result >> 16) + 1; +} + +static void __iomem *nvme_map_cmb(struct nvme_dev *dev) +{ + u64 szu, size, offset; + u32 cmbloc; + resource_size_t bar_size; + struct pci_dev *pdev = to_pci_dev(dev->dev); + void __iomem *cmb; + dma_addr_t dma_addr; + + if (!use_cmb_sqes) + return NULL; + + dev->cmbsz = readl(&dev->bar->cmbsz); + if (!(NVME_CMB_SZ(dev->cmbsz))) + return NULL; + + cmbloc = readl(&dev->bar->cmbloc); + + szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); + size = szu * NVME_CMB_SZ(dev->cmbsz); + offset = szu * NVME_CMB_OFST(cmbloc); + bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); + + if (offset > bar_size) + return NULL; + + /* + * Controllers may support a CMB size larger than their BAR, + * for example, due to being behind a bridge. Reduce the CMB to + * the reported size of the BAR + */ + if (size > bar_size - offset) + size = bar_size - offset; + + dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; + cmb = ioremap_wc(dma_addr, size); + if (!cmb) + return NULL; + + dev->cmb_dma_addr = dma_addr; + dev->cmb_size = size; + return cmb; +} + +static inline void nvme_release_cmb(struct nvme_dev *dev) +{ + if (dev->cmb) { + iounmap(dev->cmb); + dev->cmb = NULL; + } +} + +static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) +{ + return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); +} + +static int nvme_setup_io_queues(struct nvme_dev *dev) +{ + struct nvme_queue *adminq = dev->queues[0]; + struct pci_dev *pdev = to_pci_dev(dev->dev); + int result, i, vecs, nr_io_queues, size; + + nr_io_queues = num_possible_cpus(); + result = set_queue_count(dev, nr_io_queues); + if (result <= 0) + return result; + if (result < nr_io_queues) + nr_io_queues = result; + + if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { + result = nvme_cmb_qdepth(dev, nr_io_queues, + sizeof(struct nvme_command)); + if (result > 0) + dev->q_depth = result; + else + nvme_release_cmb(dev); + } + + size = db_bar_size(dev, nr_io_queues); + if (size > 8192) { + iounmap(dev->bar); + do { + dev->bar = ioremap(pci_resource_start(pdev, 0), size); + if (dev->bar) + break; + if (!--nr_io_queues) + return -ENOMEM; + size = db_bar_size(dev, nr_io_queues); + } while (1); + dev->dbs = ((void __iomem *)dev->bar) + 4096; + adminq->q_db = dev->dbs; + } + + /* Deregister the admin queue's interrupt */ + free_irq(dev->entry[0].vector, adminq); + + /* + * If we enable msix early due to not intx, disable it again before + * setting up the full range we need. + */ + if (!pdev->irq) + pci_disable_msix(pdev); + + for (i = 0; i < nr_io_queues; i++) + dev->entry[i].entry = i; + vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); + if (vecs < 0) { + vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); + if (vecs < 0) { + vecs = 1; + } else { + for (i = 0; i < vecs; i++) + dev->entry[i].vector = i + pdev->irq; + } + } + + /* + * Should investigate if there's a performance win from allocating + * more queues than interrupt vectors; it might allow the submission + * path to scale better, even if the receive path is limited by the + * number of interrupts. + */ + nr_io_queues = vecs; + dev->max_qid = nr_io_queues; + + result = queue_request_irq(dev, adminq, adminq->irqname); + if (result) { + adminq->cq_vector = -1; + goto free_queues; + } + + /* Free previously allocated queues that are no longer usable */ + nvme_free_queues(dev, nr_io_queues + 1); + nvme_create_io_queues(dev); + + return 0; + + free_queues: + nvme_free_queues(dev, 1); + return result; +} + +static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) +{ + struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); + struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); + + return nsa->ns_id - nsb->ns_id; +} + +static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid) +{ + struct nvme_ns *ns; + + list_for_each_entry(ns, &dev->namespaces, list) { + if (ns->ns_id == nsid) + return ns; + if (ns->ns_id > nsid) + break; + } + return NULL; +} + +static inline bool nvme_io_incapable(struct nvme_dev *dev) +{ + return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS || + dev->online_queues < 2); +} + +static void nvme_ns_remove(struct nvme_ns *ns) +{ + bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue); + + if (kill) { + blk_set_queue_dying(ns->queue); + + /* + * The controller was shutdown first if we got here through + * device removal. The shutdown may requeue outstanding + * requests. These need to be aborted immediately so + * del_gendisk doesn't block indefinitely for their completion. + */ + blk_mq_abort_requeue_list(ns->queue); + } + if (ns->disk->flags & GENHD_FL_UP) + del_gendisk(ns->disk); + if (kill || !blk_queue_dying(ns->queue)) { + blk_mq_abort_requeue_list(ns->queue); + blk_cleanup_queue(ns->queue); + } + list_del_init(&ns->list); + kref_put(&ns->kref, nvme_free_ns); +} + +static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn) +{ + struct nvme_ns *ns, *next; + unsigned i; + + for (i = 1; i <= nn; i++) { + ns = nvme_find_ns(dev, i); + if (ns) { + if (revalidate_disk(ns->disk)) + nvme_ns_remove(ns); + } else + nvme_alloc_ns(dev, i); + } + list_for_each_entry_safe(ns, next, &dev->namespaces, list) { + if (ns->ns_id > nn) + nvme_ns_remove(ns); + } + list_sort(NULL, &dev->namespaces, ns_cmp); +} + +static void nvme_set_irq_hints(struct nvme_dev *dev) +{ + struct nvme_queue *nvmeq; + int i; + + for (i = 0; i < dev->online_queues; i++) { + nvmeq = dev->queues[i]; + + if (!nvmeq->tags || !(*nvmeq->tags)) + continue; + + irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, + blk_mq_tags_cpumask(*nvmeq->tags)); + } +} + +static void nvme_dev_scan(struct work_struct *work) +{ + struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work); + struct nvme_id_ctrl *ctrl; + + if (!dev->tagset.tags) + return; + if (nvme_identify_ctrl(dev, &ctrl)) + return; + nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn)); + kfree(ctrl); + nvme_set_irq_hints(dev); +} + +/* + * Return: error value if an error occurred setting up the queues or calling + * Identify Device. 0 if these succeeded, even if adding some of the + * namespaces failed. At the moment, these failures are silent. TBD which + * failures should be reported. + */ +static int nvme_dev_add(struct nvme_dev *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + int res; + struct nvme_id_ctrl *ctrl; + int shift = NVME_CAP_MPSMIN(lo_hi_readq(&dev->bar->cap)) + 12; + + res = nvme_identify_ctrl(dev, &ctrl); + if (res) { + dev_err(dev->dev, "Identify Controller failed (%d)\n", res); + return -EIO; + } + + dev->oncs = le16_to_cpup(&ctrl->oncs); + dev->abort_limit = ctrl->acl + 1; + dev->vwc = ctrl->vwc; + memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); + memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); + memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); + if (ctrl->mdts) + dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9); + else + dev->max_hw_sectors = UINT_MAX; + if ((pdev->vendor == PCI_VENDOR_ID_INTEL) && + (pdev->device == 0x0953) && ctrl->vs[3]) { + unsigned int max_hw_sectors; + + dev->stripe_size = 1 << (ctrl->vs[3] + shift); + max_hw_sectors = dev->stripe_size >> (shift - 9); + if (dev->max_hw_sectors) { + dev->max_hw_sectors = min(max_hw_sectors, + dev->max_hw_sectors); + } else + dev->max_hw_sectors = max_hw_sectors; + } + kfree(ctrl); + + if (!dev->tagset.tags) { + dev->tagset.ops = &nvme_mq_ops; + dev->tagset.nr_hw_queues = dev->online_queues - 1; + dev->tagset.timeout = NVME_IO_TIMEOUT; + dev->tagset.numa_node = dev_to_node(dev->dev); + dev->tagset.queue_depth = + min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; + dev->tagset.cmd_size = nvme_cmd_size(dev); + dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; + dev->tagset.driver_data = dev; + + if (blk_mq_alloc_tag_set(&dev->tagset)) + return 0; + } + schedule_work(&dev->scan_work); + return 0; +} + +static int nvme_dev_map(struct nvme_dev *dev) +{ + u64 cap; + int bars, result = -ENOMEM; + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (pci_enable_device_mem(pdev)) + return result; + + dev->entry[0].vector = pdev->irq; + pci_set_master(pdev); + bars = pci_select_bars(pdev, IORESOURCE_MEM); + if (!bars) + goto disable_pci; + + if (pci_request_selected_regions(pdev, bars, "nvme")) + goto disable_pci; + + if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && + dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) + goto disable; + + dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); + if (!dev->bar) + goto disable; + + if (readl(&dev->bar->csts) == -1) { + result = -ENODEV; + goto unmap; + } + + /* + * Some devices don't advertse INTx interrupts, pre-enable a single + * MSIX vec for setup. We'll adjust this later. + */ + if (!pdev->irq) { + result = pci_enable_msix(pdev, dev->entry, 1); + if (result < 0) + goto unmap; + } + + cap = lo_hi_readq(&dev->bar->cap); + dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); + dev->db_stride = 1 << NVME_CAP_STRIDE(cap); + dev->dbs = ((void __iomem *)dev->bar) + 4096; + + /* + * Temporary fix for the Apple controller found in the MacBook8,1 and + * some MacBook7,1 to avoid controller resets and data loss. + */ + if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { + dev->q_depth = 2; + dev_warn(dev->dev, "detected Apple NVMe controller, set " + "queue depth=%u to work around controller resets\n", + dev->q_depth); + } + + if (readl(&dev->bar->vs) >= NVME_VS(1, 2)) + dev->cmb = nvme_map_cmb(dev); + + return 0; + + unmap: + iounmap(dev->bar); + dev->bar = NULL; + disable: + pci_release_regions(pdev); + disable_pci: + pci_disable_device(pdev); + return result; +} + +static void nvme_dev_unmap(struct nvme_dev *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (pdev->msi_enabled) + pci_disable_msi(pdev); + else if (pdev->msix_enabled) + pci_disable_msix(pdev); + + if (dev->bar) { + iounmap(dev->bar); + dev->bar = NULL; + pci_release_regions(pdev); + } + + if (pci_is_enabled(pdev)) + pci_disable_device(pdev); +} + +struct nvme_delq_ctx { + struct task_struct *waiter; + struct kthread_worker *worker; + atomic_t refcount; +}; + +static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev) +{ + dq->waiter = current; + mb(); + + for (;;) { + set_current_state(TASK_KILLABLE); + if (!atomic_read(&dq->refcount)) + break; + if (!schedule_timeout(ADMIN_TIMEOUT) || + fatal_signal_pending(current)) { + /* + * Disable the controller first since we can't trust it + * at this point, but leave the admin queue enabled + * until all queue deletion requests are flushed. + * FIXME: This may take a while if there are more h/w + * queues than admin tags. + */ + set_current_state(TASK_RUNNING); + nvme_disable_ctrl(dev, lo_hi_readq(&dev->bar->cap)); + nvme_clear_queue(dev->queues[0]); + flush_kthread_worker(dq->worker); + nvme_disable_queue(dev, 0); + return; + } + } + set_current_state(TASK_RUNNING); +} + +static void nvme_put_dq(struct nvme_delq_ctx *dq) +{ + atomic_dec(&dq->refcount); + if (dq->waiter) + wake_up_process(dq->waiter); +} + +static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq) +{ + atomic_inc(&dq->refcount); + return dq; +} + +static void nvme_del_queue_end(struct nvme_queue *nvmeq) +{ + struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx; + nvme_put_dq(dq); + + spin_lock_irq(&nvmeq->q_lock); + nvme_process_cq(nvmeq); + spin_unlock_irq(&nvmeq->q_lock); +} + +static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode, + kthread_work_func_t fn) +{ + struct nvme_command c; + + memset(&c, 0, sizeof(c)); + c.delete_queue.opcode = opcode; + c.delete_queue.qid = cpu_to_le16(nvmeq->qid); + + init_kthread_work(&nvmeq->cmdinfo.work, fn); + return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo, + ADMIN_TIMEOUT); +} + +static void nvme_del_cq_work_handler(struct kthread_work *work) +{ + struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, + cmdinfo.work); + nvme_del_queue_end(nvmeq); +} + +static int nvme_delete_cq(struct nvme_queue *nvmeq) +{ + return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq, + nvme_del_cq_work_handler); +} + +static void nvme_del_sq_work_handler(struct kthread_work *work) +{ + struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, + cmdinfo.work); + int status = nvmeq->cmdinfo.status; + + if (!status) + status = nvme_delete_cq(nvmeq); + if (status) + nvme_del_queue_end(nvmeq); +} + +static int nvme_delete_sq(struct nvme_queue *nvmeq) +{ + return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq, + nvme_del_sq_work_handler); +} + +static void nvme_del_queue_start(struct kthread_work *work) +{ + struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, + cmdinfo.work); + if (nvme_delete_sq(nvmeq)) + nvme_del_queue_end(nvmeq); +} + +static void nvme_disable_io_queues(struct nvme_dev *dev) +{ + int i; + DEFINE_KTHREAD_WORKER_ONSTACK(worker); + struct nvme_delq_ctx dq; + struct task_struct *kworker_task = kthread_run(kthread_worker_fn, + &worker, "nvme%d", dev->instance); + + if (IS_ERR(kworker_task)) { + dev_err(dev->dev, + "Failed to create queue del task\n"); + for (i = dev->queue_count - 1; i > 0; i--) + nvme_disable_queue(dev, i); + return; + } + + dq.waiter = NULL; + atomic_set(&dq.refcount, 0); + dq.worker = &worker; + for (i = dev->queue_count - 1; i > 0; i--) { + struct nvme_queue *nvmeq = dev->queues[i]; + + if (nvme_suspend_queue(nvmeq)) + continue; + nvmeq->cmdinfo.ctx = nvme_get_dq(&dq); + nvmeq->cmdinfo.worker = dq.worker; + init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start); + queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work); + } + nvme_wait_dq(&dq, dev); + kthread_stop(kworker_task); +} + +/* +* Remove the node from the device list and check +* for whether or not we need to stop the nvme_thread. +*/ +static void nvme_dev_list_remove(struct nvme_dev *dev) +{ + struct task_struct *tmp = NULL; + + spin_lock(&dev_list_lock); + list_del_init(&dev->node); + if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) { + tmp = nvme_thread; + nvme_thread = NULL; + } + spin_unlock(&dev_list_lock); + + if (tmp) + kthread_stop(tmp); +} + +static void nvme_freeze_queues(struct nvme_dev *dev) +{ + struct nvme_ns *ns; + + list_for_each_entry(ns, &dev->namespaces, list) { + blk_mq_freeze_queue_start(ns->queue); + + spin_lock_irq(ns->queue->queue_lock); + queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue); + spin_unlock_irq(ns->queue->queue_lock); + + blk_mq_cancel_requeue_work(ns->queue); + blk_mq_stop_hw_queues(ns->queue); + } +} + +static void nvme_unfreeze_queues(struct nvme_dev *dev) +{ + struct nvme_ns *ns; + + list_for_each_entry(ns, &dev->namespaces, list) { + queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue); + blk_mq_unfreeze_queue(ns->queue); + blk_mq_start_stopped_hw_queues(ns->queue, true); + blk_mq_kick_requeue_list(ns->queue); + } +} + +static void nvme_dev_shutdown(struct nvme_dev *dev) +{ + int i; + u32 csts = -1; + + nvme_dev_list_remove(dev); + + if (dev->bar) { + nvme_freeze_queues(dev); + csts = readl(&dev->bar->csts); + } + if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { + for (i = dev->queue_count - 1; i >= 0; i--) { + struct nvme_queue *nvmeq = dev->queues[i]; + nvme_suspend_queue(nvmeq); + } + } else { + nvme_disable_io_queues(dev); + nvme_shutdown_ctrl(dev); + nvme_disable_queue(dev, 0); + } + nvme_dev_unmap(dev); + + for (i = dev->queue_count - 1; i >= 0; i--) + nvme_clear_queue(dev->queues[i]); +} + +static void nvme_dev_remove(struct nvme_dev *dev) +{ + struct nvme_ns *ns, *next; + + if (nvme_io_incapable(dev)) { + /* + * If the device is not capable of IO (surprise hot-removal, + * for example), we need to quiesce prior to deleting the + * namespaces. This will end outstanding requests and prevent + * attempts to sync dirty data. + */ + nvme_dev_shutdown(dev); + } + list_for_each_entry_safe(ns, next, &dev->namespaces, list) + nvme_ns_remove(ns); +} + +static int nvme_setup_prp_pools(struct nvme_dev *dev) +{ + dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, + PAGE_SIZE, PAGE_SIZE, 0); + if (!dev->prp_page_pool) + return -ENOMEM; + + /* Optimisation for I/Os between 4k and 128k */ + dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, + 256, 256, 0); + if (!dev->prp_small_pool) { + dma_pool_destroy(dev->prp_page_pool); + return -ENOMEM; + } + return 0; +} + +static void nvme_release_prp_pools(struct nvme_dev *dev) +{ + dma_pool_destroy(dev->prp_page_pool); + dma_pool_destroy(dev->prp_small_pool); +} + +static DEFINE_IDA(nvme_instance_ida); + +static int nvme_set_instance(struct nvme_dev *dev) +{ + int instance, error; + + do { + if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) + return -ENODEV; + + spin_lock(&dev_list_lock); + error = ida_get_new(&nvme_instance_ida, &instance); + spin_unlock(&dev_list_lock); + } while (error == -EAGAIN); + + if (error) + return -ENODEV; + + dev->instance = instance; + return 0; +} + +static void nvme_release_instance(struct nvme_dev *dev) +{ + spin_lock(&dev_list_lock); + ida_remove(&nvme_instance_ida, dev->instance); + spin_unlock(&dev_list_lock); +} + +static void nvme_free_dev(struct kref *kref) +{ + struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref); + + put_device(dev->dev); + put_device(dev->device); + nvme_release_instance(dev); + if (dev->tagset.tags) + blk_mq_free_tag_set(&dev->tagset); + if (dev->admin_q) + blk_put_queue(dev->admin_q); + kfree(dev->queues); + kfree(dev->entry); + kfree(dev); +} + +static int nvme_dev_open(struct inode *inode, struct file *f) +{ + struct nvme_dev *dev; + int instance = iminor(inode); + int ret = -ENODEV; + + spin_lock(&dev_list_lock); + list_for_each_entry(dev, &dev_list, node) { + if (dev->instance == instance) { + if (!dev->admin_q) { + ret = -EWOULDBLOCK; + break; + } + if (!kref_get_unless_zero(&dev->kref)) + break; + f->private_data = dev; + ret = 0; + break; + } + } + spin_unlock(&dev_list_lock); + + return ret; +} + +static int nvme_dev_release(struct inode *inode, struct file *f) +{ + struct nvme_dev *dev = f->private_data; + kref_put(&dev->kref, nvme_free_dev); + return 0; +} + +static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg) +{ + struct nvme_dev *dev = f->private_data; + struct nvme_ns *ns; + + switch (cmd) { + case NVME_IOCTL_ADMIN_CMD: + return nvme_user_cmd(dev, NULL, (void __user *)arg); + case NVME_IOCTL_IO_CMD: + if (list_empty(&dev->namespaces)) + return -ENOTTY; + ns = list_first_entry(&dev->namespaces, struct nvme_ns, list); + return nvme_user_cmd(dev, ns, (void __user *)arg); + case NVME_IOCTL_RESET: + dev_warn(dev->dev, "resetting controller\n"); + return nvme_reset(dev); + case NVME_IOCTL_SUBSYS_RESET: + return nvme_subsys_reset(dev); + default: + return -ENOTTY; + } +} + +static const struct file_operations nvme_dev_fops = { + .owner = THIS_MODULE, + .open = nvme_dev_open, + .release = nvme_dev_release, + .unlocked_ioctl = nvme_dev_ioctl, + .compat_ioctl = nvme_dev_ioctl, +}; + +static void nvme_probe_work(struct work_struct *work) +{ + struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work); + bool start_thread = false; + int result; + + result = nvme_dev_map(dev); + if (result) + goto out; + + result = nvme_configure_admin_queue(dev); + if (result) + goto unmap; + + spin_lock(&dev_list_lock); + if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) { + start_thread = true; + nvme_thread = NULL; + } + list_add(&dev->node, &dev_list); + spin_unlock(&dev_list_lock); + + if (start_thread) { + nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); + wake_up_all(&nvme_kthread_wait); + } else + wait_event_killable(nvme_kthread_wait, nvme_thread); + + if (IS_ERR_OR_NULL(nvme_thread)) { + result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR; + goto disable; + } + + nvme_init_queue(dev->queues[0], 0); + result = nvme_alloc_admin_tags(dev); + if (result) + goto disable; + + result = nvme_setup_io_queues(dev); + if (result) + goto free_tags; + + dev->event_limit = 1; + + /* + * Keep the controller around but remove all namespaces if we don't have + * any working I/O queue. + */ + if (dev->online_queues < 2) { + dev_warn(dev->dev, "IO queues not created\n"); + nvme_dev_remove(dev); + } else { + nvme_unfreeze_queues(dev); + nvme_dev_add(dev); + } + + return; + + free_tags: + nvme_dev_remove_admin(dev); + blk_put_queue(dev->admin_q); + dev->admin_q = NULL; + dev->queues[0]->tags = NULL; + disable: + nvme_disable_queue(dev, 0); + nvme_dev_list_remove(dev); + unmap: + nvme_dev_unmap(dev); + out: + if (!work_busy(&dev->reset_work)) + nvme_dead_ctrl(dev); +} + +static int nvme_remove_dead_ctrl(void *arg) +{ + struct nvme_dev *dev = (struct nvme_dev *)arg; + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (pci_get_drvdata(pdev)) + pci_stop_and_remove_bus_device_locked(pdev); + kref_put(&dev->kref, nvme_free_dev); + return 0; +} + +static void nvme_dead_ctrl(struct nvme_dev *dev) +{ + dev_warn(dev->dev, "Device failed to resume\n"); + kref_get(&dev->kref); + if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d", + dev->instance))) { + dev_err(dev->dev, + "Failed to start controller remove task\n"); + kref_put(&dev->kref, nvme_free_dev); + } +} + +static void nvme_reset_work(struct work_struct *ws) +{ + struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work); + bool in_probe = work_busy(&dev->probe_work); + + nvme_dev_shutdown(dev); + + /* Synchronize with device probe so that work will see failure status + * and exit gracefully without trying to schedule another reset */ + flush_work(&dev->probe_work); + + /* Fail this device if reset occured during probe to avoid + * infinite initialization loops. */ + if (in_probe) { + nvme_dead_ctrl(dev); + return; + } + /* Schedule device resume asynchronously so the reset work is available + * to cleanup errors that may occur during reinitialization */ + schedule_work(&dev->probe_work); +} + +static int __nvme_reset(struct nvme_dev *dev) +{ + if (work_pending(&dev->reset_work)) + return -EBUSY; + list_del_init(&dev->node); + queue_work(nvme_workq, &dev->reset_work); + return 0; +} + +static int nvme_reset(struct nvme_dev *dev) +{ + int ret; + + if (!dev->admin_q || blk_queue_dying(dev->admin_q)) + return -ENODEV; + + spin_lock(&dev_list_lock); + ret = __nvme_reset(dev); + spin_unlock(&dev_list_lock); + + if (!ret) { + flush_work(&dev->reset_work); + flush_work(&dev->probe_work); + return 0; + } + + return ret; +} + +static ssize_t nvme_sysfs_reset(struct device *dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct nvme_dev *ndev = dev_get_drvdata(dev); + int ret; + + ret = nvme_reset(ndev); + if (ret < 0) + return ret; + + return count; +} +static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); + +static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) +{ + int node, result = -ENOMEM; + struct nvme_dev *dev; + + node = dev_to_node(&pdev->dev); + if (node == NUMA_NO_NODE) + set_dev_node(&pdev->dev, 0); + + dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); + if (!dev) + return -ENOMEM; + dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), + GFP_KERNEL, node); + if (!dev->entry) + goto free; + dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), + GFP_KERNEL, node); + if (!dev->queues) + goto free; + + INIT_LIST_HEAD(&dev->namespaces); + INIT_WORK(&dev->reset_work, nvme_reset_work); + dev->dev = get_device(&pdev->dev); + pci_set_drvdata(pdev, dev); + result = nvme_set_instance(dev); + if (result) + goto put_pci; + + result = nvme_setup_prp_pools(dev); + if (result) + goto release; + + kref_init(&dev->kref); + dev->device = device_create(nvme_class, &pdev->dev, + MKDEV(nvme_char_major, dev->instance), + dev, "nvme%d", dev->instance); + if (IS_ERR(dev->device)) { + result = PTR_ERR(dev->device); + goto release_pools; + } + get_device(dev->device); + dev_set_drvdata(dev->device, dev); + + result = device_create_file(dev->device, &dev_attr_reset_controller); + if (result) + goto put_dev; + + INIT_LIST_HEAD(&dev->node); + INIT_WORK(&dev->scan_work, nvme_dev_scan); + INIT_WORK(&dev->probe_work, nvme_probe_work); + schedule_work(&dev->probe_work); + return 0; + + put_dev: + device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance)); + put_device(dev->device); + release_pools: + nvme_release_prp_pools(dev); + release: + nvme_release_instance(dev); + put_pci: + put_device(dev->dev); + free: + kfree(dev->queues); + kfree(dev->entry); + kfree(dev); + return result; +} + +static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + if (prepare) + nvme_dev_shutdown(dev); + else + schedule_work(&dev->probe_work); +} + +static void nvme_shutdown(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + nvme_dev_shutdown(dev); +} + +static void nvme_remove(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + spin_lock(&dev_list_lock); + list_del_init(&dev->node); + spin_unlock(&dev_list_lock); + + pci_set_drvdata(pdev, NULL); + flush_work(&dev->probe_work); + flush_work(&dev->reset_work); + flush_work(&dev->scan_work); + device_remove_file(dev->device, &dev_attr_reset_controller); + nvme_dev_remove(dev); + nvme_dev_shutdown(dev); + nvme_dev_remove_admin(dev); + device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance)); + nvme_free_queues(dev, 0); + nvme_release_cmb(dev); + nvme_release_prp_pools(dev); + kref_put(&dev->kref, nvme_free_dev); +} + +/* These functions are yet to be implemented */ +#define nvme_error_detected NULL +#define nvme_dump_registers NULL +#define nvme_link_reset NULL +#define nvme_slot_reset NULL +#define nvme_error_resume NULL + +#ifdef CONFIG_PM_SLEEP +static int nvme_suspend(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct nvme_dev *ndev = pci_get_drvdata(pdev); + + nvme_dev_shutdown(ndev); + return 0; +} + +static int nvme_resume(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct nvme_dev *ndev = pci_get_drvdata(pdev); + + schedule_work(&ndev->probe_work); + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); + +static const struct pci_error_handlers nvme_err_handler = { + .error_detected = nvme_error_detected, + .mmio_enabled = nvme_dump_registers, + .link_reset = nvme_link_reset, + .slot_reset = nvme_slot_reset, + .resume = nvme_error_resume, + .reset_notify = nvme_reset_notify, +}; + +/* Move to pci_ids.h later */ +#define PCI_CLASS_STORAGE_EXPRESS 0x010802 + +static const struct pci_device_id nvme_id_table[] = { + { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, + { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, + { 0, } +}; +MODULE_DEVICE_TABLE(pci, nvme_id_table); + +static struct pci_driver nvme_driver = { + .name = "nvme", + .id_table = nvme_id_table, + .probe = nvme_probe, + .remove = nvme_remove, + .shutdown = nvme_shutdown, + .driver = { + .pm = &nvme_dev_pm_ops, + }, + .err_handler = &nvme_err_handler, +}; + +static int __init nvme_init(void) +{ + int result; + + init_waitqueue_head(&nvme_kthread_wait); + + nvme_workq = create_singlethread_workqueue("nvme"); + if (!nvme_workq) + return -ENOMEM; + + result = register_blkdev(nvme_major, "nvme"); + if (result < 0) + goto kill_workq; + else if (result > 0) + nvme_major = result; + + result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", + &nvme_dev_fops); + if (result < 0) + goto unregister_blkdev; + else if (result > 0) + nvme_char_major = result; + + nvme_class = class_create(THIS_MODULE, "nvme"); + if (IS_ERR(nvme_class)) { + result = PTR_ERR(nvme_class); + goto unregister_chrdev; + } + + result = pci_register_driver(&nvme_driver); + if (result) + goto destroy_class; + return 0; + + destroy_class: + class_destroy(nvme_class); + unregister_chrdev: + __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); + unregister_blkdev: + unregister_blkdev(nvme_major, "nvme"); + kill_workq: + destroy_workqueue(nvme_workq); + return result; +} + +static void __exit nvme_exit(void) +{ + pci_unregister_driver(&nvme_driver); + unregister_blkdev(nvme_major, "nvme"); + destroy_workqueue(nvme_workq); + class_destroy(nvme_class); + __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); + BUG_ON(nvme_thread && !IS_ERR(nvme_thread)); + _nvme_check_size(); +} + +MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); +MODULE_LICENSE("GPL"); +MODULE_VERSION("1.0"); +module_init(nvme_init); +module_exit(nvme_exit); |