summaryrefslogtreecommitdiff
path: root/drivers/rtc/rtc-bfin.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/rtc/rtc-bfin.c')
-rw-r--r--drivers/rtc/rtc-bfin.c448
1 files changed, 448 insertions, 0 deletions
diff --git a/drivers/rtc/rtc-bfin.c b/drivers/rtc/rtc-bfin.c
new file mode 100644
index 000000000..3d44b1172
--- /dev/null
+++ b/drivers/rtc/rtc-bfin.c
@@ -0,0 +1,448 @@
+/*
+ * Blackfin On-Chip Real Time Clock Driver
+ * Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
+ *
+ * Copyright 2004-2010 Analog Devices Inc.
+ *
+ * Enter bugs at http://blackfin.uclinux.org/
+ *
+ * Licensed under the GPL-2 or later.
+ */
+
+/* The biggest issue we deal with in this driver is that register writes are
+ * synced to the RTC frequency of 1Hz. So if you write to a register and
+ * attempt to write again before the first write has completed, the new write
+ * is simply discarded. This can easily be troublesome if userspace disables
+ * one event (say periodic) and then right after enables an event (say alarm).
+ * Since all events are maintained in the same interrupt mask register, if
+ * we wrote to it to disable the first event and then wrote to it again to
+ * enable the second event, that second event would not be enabled as the
+ * write would be discarded and things quickly fall apart.
+ *
+ * To keep this delay from significantly degrading performance (we, in theory,
+ * would have to sleep for up to 1 second every time we wanted to write a
+ * register), we only check the write pending status before we start to issue
+ * a new write. We bank on the idea that it doesn't matter when the sync
+ * happens so long as we don't attempt another write before it does. The only
+ * time userspace would take this penalty is when they try and do multiple
+ * operations right after another ... but in this case, they need to take the
+ * sync penalty, so we should be OK.
+ *
+ * Also note that the RTC_ISTAT register does not suffer this penalty; its
+ * writes to clear status registers complete immediately.
+ */
+
+/* It may seem odd that there is no SWCNT code in here (which would be exposed
+ * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral
+ * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
+ * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
+ * The same exact behavior can be accomplished by using the update interrupt
+ * event (UIE). Maybe down the line the RTC peripheral will suck less in which
+ * case we can re-introduce PIE support.
+ */
+
+#include <linux/bcd.h>
+#include <linux/completion.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/seq_file.h>
+#include <linux/slab.h>
+
+#include <asm/blackfin.h>
+
+#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
+
+struct bfin_rtc {
+ struct rtc_device *rtc_dev;
+ struct rtc_time rtc_alarm;
+ u16 rtc_wrote_regs;
+};
+
+/* Bit values for the ISTAT / ICTL registers */
+#define RTC_ISTAT_WRITE_COMPLETE 0x8000
+#define RTC_ISTAT_WRITE_PENDING 0x4000
+#define RTC_ISTAT_ALARM_DAY 0x0040
+#define RTC_ISTAT_24HR 0x0020
+#define RTC_ISTAT_HOUR 0x0010
+#define RTC_ISTAT_MIN 0x0008
+#define RTC_ISTAT_SEC 0x0004
+#define RTC_ISTAT_ALARM 0x0002
+#define RTC_ISTAT_STOPWATCH 0x0001
+
+/* Shift values for RTC_STAT register */
+#define DAY_BITS_OFF 17
+#define HOUR_BITS_OFF 12
+#define MIN_BITS_OFF 6
+#define SEC_BITS_OFF 0
+
+/* Some helper functions to convert between the common RTC notion of time
+ * and the internal Blackfin notion that is encoded in 32bits.
+ */
+static inline u32 rtc_time_to_bfin(unsigned long now)
+{
+ u32 sec = (now % 60);
+ u32 min = (now % (60 * 60)) / 60;
+ u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
+ u32 days = (now / (60 * 60 * 24));
+ return (sec << SEC_BITS_OFF) +
+ (min << MIN_BITS_OFF) +
+ (hour << HOUR_BITS_OFF) +
+ (days << DAY_BITS_OFF);
+}
+static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
+{
+ return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
+ (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
+ (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
+ (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
+}
+static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
+{
+ rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
+}
+
+/**
+ * bfin_rtc_sync_pending - make sure pending writes have complete
+ *
+ * Wait for the previous write to a RTC register to complete.
+ * Unfortunately, we can't sleep here as that introduces a race condition when
+ * turning on interrupt events. Consider this:
+ * - process sets alarm
+ * - process enables alarm
+ * - process sleeps while waiting for rtc write to sync
+ * - interrupt fires while process is sleeping
+ * - interrupt acks the event by writing to ISTAT
+ * - interrupt sets the WRITE PENDING bit
+ * - interrupt handler finishes
+ * - process wakes up, sees WRITE PENDING bit set, goes to sleep
+ * - interrupt fires while process is sleeping
+ * If anyone can point out the obvious solution here, i'm listening :). This
+ * shouldn't be an issue on an SMP or preempt system as this function should
+ * only be called with the rtc lock held.
+ *
+ * Other options:
+ * - disable PREN so the sync happens at 32.768kHZ ... but this changes the
+ * inc rate for all RTC registers from 1HZ to 32.768kHZ ...
+ * - use the write complete IRQ
+ */
+/*
+static void bfin_rtc_sync_pending_polled(void)
+{
+ while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
+ if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
+ break;
+ bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
+}
+*/
+static DECLARE_COMPLETION(bfin_write_complete);
+static void bfin_rtc_sync_pending(struct device *dev)
+{
+ dev_dbg_stamp(dev);
+ while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
+ wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
+ dev_dbg_stamp(dev);
+}
+
+/**
+ * bfin_rtc_reset - set RTC to sane/known state
+ *
+ * Initialize the RTC. Enable pre-scaler to scale RTC clock
+ * to 1Hz and clear interrupt/status registers.
+ */
+static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
+{
+ struct bfin_rtc *rtc = dev_get_drvdata(dev);
+ dev_dbg_stamp(dev);
+ bfin_rtc_sync_pending(dev);
+ bfin_write_RTC_PREN(0x1);
+ bfin_write_RTC_ICTL(rtc_ictl);
+ bfin_write_RTC_ALARM(0);
+ bfin_write_RTC_ISTAT(0xFFFF);
+ rtc->rtc_wrote_regs = 0;
+}
+
+/**
+ * bfin_rtc_interrupt - handle interrupt from RTC
+ *
+ * Since we handle all RTC events here, we have to make sure the requested
+ * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
+ * always gets updated regardless of the interrupt being enabled. So when one
+ * even we care about (e.g. stopwatch) goes off, we don't want to turn around
+ * and say that other events have happened as well (e.g. second). We do not
+ * have to worry about pending writes to the RTC_ICTL register as interrupts
+ * only fire if they are enabled in the RTC_ICTL register.
+ */
+static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
+{
+ struct device *dev = dev_id;
+ struct bfin_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long events = 0;
+ bool write_complete = false;
+ u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits;
+
+ dev_dbg_stamp(dev);
+
+ rtc_istat = bfin_read_RTC_ISTAT();
+ rtc_ictl = bfin_read_RTC_ICTL();
+ rtc_istat_clear = 0;
+
+ bits = RTC_ISTAT_WRITE_COMPLETE;
+ if (rtc_istat & bits) {
+ rtc_istat_clear |= bits;
+ write_complete = true;
+ complete(&bfin_write_complete);
+ }
+
+ bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
+ if (rtc_ictl & bits) {
+ if (rtc_istat & bits) {
+ rtc_istat_clear |= bits;
+ events |= RTC_AF | RTC_IRQF;
+ }
+ }
+
+ bits = RTC_ISTAT_SEC;
+ if (rtc_ictl & bits) {
+ if (rtc_istat & bits) {
+ rtc_istat_clear |= bits;
+ events |= RTC_UF | RTC_IRQF;
+ }
+ }
+
+ if (events)
+ rtc_update_irq(rtc->rtc_dev, 1, events);
+
+ if (write_complete || events) {
+ bfin_write_RTC_ISTAT(rtc_istat_clear);
+ return IRQ_HANDLED;
+ } else
+ return IRQ_NONE;
+}
+
+static void bfin_rtc_int_set(u16 rtc_int)
+{
+ bfin_write_RTC_ISTAT(rtc_int);
+ bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
+}
+static void bfin_rtc_int_clear(u16 rtc_int)
+{
+ bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
+}
+static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
+{
+ /* Blackfin has different bits for whether the alarm is
+ * more than 24 hours away.
+ */
+ bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
+}
+
+static int bfin_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct bfin_rtc *rtc = dev_get_drvdata(dev);
+
+ dev_dbg_stamp(dev);
+ if (enabled)
+ bfin_rtc_int_set_alarm(rtc);
+ else
+ bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
+
+ return 0;
+}
+
+static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct bfin_rtc *rtc = dev_get_drvdata(dev);
+
+ dev_dbg_stamp(dev);
+
+ if (rtc->rtc_wrote_regs & 0x1)
+ bfin_rtc_sync_pending(dev);
+
+ rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
+
+ return 0;
+}
+
+static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct bfin_rtc *rtc = dev_get_drvdata(dev);
+ int ret;
+ unsigned long now;
+
+ dev_dbg_stamp(dev);
+
+ ret = rtc_tm_to_time(tm, &now);
+ if (ret == 0) {
+ if (rtc->rtc_wrote_regs & 0x1)
+ bfin_rtc_sync_pending(dev);
+ bfin_write_RTC_STAT(rtc_time_to_bfin(now));
+ rtc->rtc_wrote_regs = 0x1;
+ }
+
+ return ret;
+}
+
+static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct bfin_rtc *rtc = dev_get_drvdata(dev);
+ dev_dbg_stamp(dev);
+ alrm->time = rtc->rtc_alarm;
+ bfin_rtc_sync_pending(dev);
+ alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
+ return 0;
+}
+
+static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct bfin_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long rtc_alarm;
+
+ dev_dbg_stamp(dev);
+
+ if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
+ return -EINVAL;
+
+ rtc->rtc_alarm = alrm->time;
+
+ bfin_rtc_sync_pending(dev);
+ bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
+ if (alrm->enabled)
+ bfin_rtc_int_set_alarm(rtc);
+
+ return 0;
+}
+
+static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+#define yesno(x) ((x) ? "yes" : "no")
+ u16 ictl = bfin_read_RTC_ICTL();
+ dev_dbg_stamp(dev);
+ seq_printf(seq,
+ "alarm_IRQ\t: %s\n"
+ "wkalarm_IRQ\t: %s\n"
+ "seconds_IRQ\t: %s\n",
+ yesno(ictl & RTC_ISTAT_ALARM),
+ yesno(ictl & RTC_ISTAT_ALARM_DAY),
+ yesno(ictl & RTC_ISTAT_SEC));
+ return 0;
+#undef yesno
+}
+
+static struct rtc_class_ops bfin_rtc_ops = {
+ .read_time = bfin_rtc_read_time,
+ .set_time = bfin_rtc_set_time,
+ .read_alarm = bfin_rtc_read_alarm,
+ .set_alarm = bfin_rtc_set_alarm,
+ .proc = bfin_rtc_proc,
+ .alarm_irq_enable = bfin_rtc_alarm_irq_enable,
+};
+
+static int bfin_rtc_probe(struct platform_device *pdev)
+{
+ struct bfin_rtc *rtc;
+ struct device *dev = &pdev->dev;
+ int ret;
+ unsigned long timeout = jiffies + HZ;
+
+ dev_dbg_stamp(dev);
+
+ /* Allocate memory for our RTC struct */
+ rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
+ if (unlikely(!rtc))
+ return -ENOMEM;
+ platform_set_drvdata(pdev, rtc);
+ device_init_wakeup(dev, 1);
+
+ /* Register our RTC with the RTC framework */
+ rtc->rtc_dev = devm_rtc_device_register(dev, pdev->name, &bfin_rtc_ops,
+ THIS_MODULE);
+ if (unlikely(IS_ERR(rtc->rtc_dev)))
+ return PTR_ERR(rtc->rtc_dev);
+
+ /* Grab the IRQ and init the hardware */
+ ret = devm_request_irq(dev, IRQ_RTC, bfin_rtc_interrupt, 0,
+ pdev->name, dev);
+ if (unlikely(ret))
+ dev_err(&pdev->dev,
+ "unable to request IRQ; alarm won't work, "
+ "and writes will be delayed\n");
+
+ /* sometimes the bootloader touched things, but the write complete was not
+ * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
+ */
+ while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
+ if (time_after(jiffies, timeout))
+ break;
+ bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
+ bfin_write_RTC_SWCNT(0);
+
+ return 0;
+}
+
+static int bfin_rtc_remove(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+
+ bfin_rtc_reset(dev, 0);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int bfin_rtc_suspend(struct device *dev)
+{
+ dev_dbg_stamp(dev);
+
+ if (device_may_wakeup(dev)) {
+ enable_irq_wake(IRQ_RTC);
+ bfin_rtc_sync_pending(dev);
+ } else
+ bfin_rtc_int_clear(0);
+
+ return 0;
+}
+
+static int bfin_rtc_resume(struct device *dev)
+{
+ dev_dbg_stamp(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(IRQ_RTC);
+
+ /*
+ * Since only some of the RTC bits are maintained externally in the
+ * Vbat domain, we need to wait for the RTC MMRs to be synced into
+ * the core after waking up. This happens every RTC 1HZ. Once that
+ * has happened, we can go ahead and re-enable the important write
+ * complete interrupt event.
+ */
+ while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC))
+ continue;
+ bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(bfin_rtc_pm_ops, bfin_rtc_suspend, bfin_rtc_resume);
+
+static struct platform_driver bfin_rtc_driver = {
+ .driver = {
+ .name = "rtc-bfin",
+ .pm = &bfin_rtc_pm_ops,
+ },
+ .probe = bfin_rtc_probe,
+ .remove = bfin_rtc_remove,
+};
+
+module_platform_driver(bfin_rtc_driver);
+
+MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
+MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-bfin");