summaryrefslogtreecommitdiff
path: root/drivers/staging/comedi/drivers/s626.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/staging/comedi/drivers/s626.c')
-rw-r--r--drivers/staging/comedi/drivers/s626.c2925
1 files changed, 2925 insertions, 0 deletions
diff --git a/drivers/staging/comedi/drivers/s626.c b/drivers/staging/comedi/drivers/s626.c
new file mode 100644
index 000000000..781918d8d
--- /dev/null
+++ b/drivers/staging/comedi/drivers/s626.c
@@ -0,0 +1,2925 @@
+/*
+ * comedi/drivers/s626.c
+ * Sensoray s626 Comedi driver
+ *
+ * COMEDI - Linux Control and Measurement Device Interface
+ * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
+ *
+ * Based on Sensoray Model 626 Linux driver Version 0.2
+ * Copyright (C) 2002-2004 Sensoray Co., Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+/*
+ * Driver: s626
+ * Description: Sensoray 626 driver
+ * Devices: [Sensoray] 626 (s626)
+ * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
+ * Updated: Fri, 15 Feb 2008 10:28:42 +0000
+ * Status: experimental
+
+ * Configuration options: not applicable, uses PCI auto config
+
+ * INSN_CONFIG instructions:
+ * analog input:
+ * none
+ *
+ * analog output:
+ * none
+ *
+ * digital channel:
+ * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
+ * supported configuration options:
+ * INSN_CONFIG_DIO_QUERY
+ * COMEDI_INPUT
+ * COMEDI_OUTPUT
+ *
+ * encoder:
+ * Every channel must be configured before reading.
+ *
+ * Example code
+ *
+ * insn.insn=INSN_CONFIG; //configuration instruction
+ * insn.n=1; //number of operation (must be 1)
+ * insn.data=&initialvalue; //initial value loaded into encoder
+ * //during configuration
+ * insn.subdev=5; //encoder subdevice
+ * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
+ * //to configure
+ *
+ * comedi_do_insn(cf,&insn); //executing configuration
+ */
+
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/types.h>
+
+#include "../comedi_pci.h"
+
+#include "s626.h"
+
+struct s626_buffer_dma {
+ dma_addr_t physical_base;
+ void *logical_base;
+};
+
+struct s626_private {
+ uint8_t ai_cmd_running; /* ai_cmd is running */
+ unsigned int ai_sample_timer; /* time between samples in
+ * units of the timer */
+ int ai_convert_count; /* conversion counter */
+ unsigned int ai_convert_timer; /* time between conversion in
+ * units of the timer */
+ uint16_t counter_int_enabs; /* counter interrupt enable mask
+ * for MISC2 register */
+ uint8_t adc_items; /* number of items in ADC poll list */
+ struct s626_buffer_dma rps_buf; /* DMA buffer used to hold ADC (RPS1)
+ * program */
+ struct s626_buffer_dma ana_buf; /* DMA buffer used to receive ADC data
+ * and hold DAC data */
+ uint32_t *dac_wbuf; /* pointer to logical adrs of DMA buffer
+ * used to hold DAC data */
+ uint16_t dacpol; /* image of DAC polarity register */
+ uint8_t trim_setpoint[12]; /* images of TrimDAC setpoints */
+ uint32_t i2c_adrs; /* I2C device address for onboard EEPROM
+ * (board rev dependent) */
+};
+
+/* Counter overflow/index event flag masks for RDMISC2. */
+#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
+#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
+
+/*
+ * Enable/disable a function or test status bit(s) that are accessed
+ * through Main Control Registers 1 or 2.
+ */
+static void s626_mc_enable(struct comedi_device *dev,
+ unsigned int cmd, unsigned int reg)
+{
+ unsigned int val = (cmd << 16) | cmd;
+
+ mmiowb();
+ writel(val, dev->mmio + reg);
+}
+
+static void s626_mc_disable(struct comedi_device *dev,
+ unsigned int cmd, unsigned int reg)
+{
+ writel(cmd << 16, dev->mmio + reg);
+ mmiowb();
+}
+
+static bool s626_mc_test(struct comedi_device *dev,
+ unsigned int cmd, unsigned int reg)
+{
+ unsigned int val;
+
+ val = readl(dev->mmio + reg);
+
+ return (val & cmd) ? true : false;
+}
+
+#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
+
+/* Write a time slot control record to TSL2. */
+#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
+
+static const struct comedi_lrange s626_range_table = {
+ 2, {
+ BIP_RANGE(5),
+ BIP_RANGE(10)
+ }
+};
+
+/*
+ * Execute a DEBI transfer. This must be called from within a critical section.
+ */
+static void s626_debi_transfer(struct comedi_device *dev)
+{
+ static const int timeout = 10000;
+ int i;
+
+ /* Initiate upload of shadow RAM to DEBI control register */
+ s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
+
+ /*
+ * Wait for completion of upload from shadow RAM to
+ * DEBI control register.
+ */
+ for (i = 0; i < timeout; i++) {
+ if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
+ break;
+ udelay(1);
+ }
+ if (i == timeout)
+ dev_err(dev->class_dev,
+ "Timeout while uploading to DEBI control register\n");
+
+ /* Wait until DEBI transfer is done */
+ for (i = 0; i < timeout; i++) {
+ if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
+ break;
+ udelay(1);
+ }
+ if (i == timeout)
+ dev_err(dev->class_dev, "DEBI transfer timeout\n");
+}
+
+/*
+ * Read a value from a gate array register.
+ */
+static uint16_t s626_debi_read(struct comedi_device *dev, uint16_t addr)
+{
+ /* Set up DEBI control register value in shadow RAM */
+ writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
+
+ /* Execute the DEBI transfer. */
+ s626_debi_transfer(dev);
+
+ return readl(dev->mmio + S626_P_DEBIAD);
+}
+
+/*
+ * Write a value to a gate array register.
+ */
+static void s626_debi_write(struct comedi_device *dev, uint16_t addr,
+ uint16_t wdata)
+{
+ /* Set up DEBI control register value in shadow RAM */
+ writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
+ writel(wdata, dev->mmio + S626_P_DEBIAD);
+
+ /* Execute the DEBI transfer. */
+ s626_debi_transfer(dev);
+}
+
+/*
+ * Replace the specified bits in a gate array register. Imports: mask
+ * specifies bits that are to be preserved, wdata is new value to be
+ * or'd with the masked original.
+ */
+static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
+ unsigned int mask, unsigned int wdata)
+{
+ unsigned int val;
+
+ addr &= 0xffff;
+ writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
+ s626_debi_transfer(dev);
+
+ writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
+ val = readl(dev->mmio + S626_P_DEBIAD);
+ val &= mask;
+ val |= wdata;
+ writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
+ s626_debi_transfer(dev);
+}
+
+/* ************** EEPROM ACCESS FUNCTIONS ************** */
+
+static int s626_i2c_handshake_eoc(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned long context)
+{
+ bool status;
+
+ status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
+ if (status)
+ return 0;
+ return -EBUSY;
+}
+
+static int s626_i2c_handshake(struct comedi_device *dev, uint32_t val)
+{
+ unsigned int ctrl;
+ int ret;
+
+ /* Write I2C command to I2C Transfer Control shadow register */
+ writel(val, dev->mmio + S626_P_I2CCTRL);
+
+ /*
+ * Upload I2C shadow registers into working registers and
+ * wait for upload confirmation.
+ */
+ s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
+ ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
+ if (ret)
+ return ret;
+
+ /* Wait until I2C bus transfer is finished or an error occurs */
+ do {
+ ctrl = readl(dev->mmio + S626_P_I2CCTRL);
+ } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
+
+ /* Return non-zero if I2C error occurred */
+ return ctrl & S626_I2C_ERR;
+}
+
+/* Read uint8_t from EEPROM. */
+static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
+{
+ struct s626_private *devpriv = dev->private;
+
+ /*
+ * Send EEPROM target address:
+ * Byte2 = I2C command: write to I2C EEPROM device.
+ * Byte1 = EEPROM internal target address.
+ * Byte0 = Not sent.
+ */
+ if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
+ devpriv->i2c_adrs) |
+ S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
+ S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
+ /* Abort function and declare error if handshake failed. */
+ return 0;
+
+ /*
+ * Execute EEPROM read:
+ * Byte2 = I2C command: read from I2C EEPROM device.
+ * Byte1 receives uint8_t from EEPROM.
+ * Byte0 = Not sent.
+ */
+ if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
+ (devpriv->i2c_adrs | 1)) |
+ S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
+ S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
+ /* Abort function and declare error if handshake failed. */
+ return 0;
+
+ return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
+}
+
+/* *********** DAC FUNCTIONS *********** */
+
+/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
+static const uint8_t s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
+
+/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
+static const uint8_t s626_trimadrs[] = {
+ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
+};
+
+enum {
+ s626_send_dac_wait_not_mc1_a2out,
+ s626_send_dac_wait_ssr_af2_out,
+ s626_send_dac_wait_fb_buffer2_msb_00,
+ s626_send_dac_wait_fb_buffer2_msb_ff
+};
+
+static int s626_send_dac_eoc(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned long context)
+{
+ unsigned int status;
+
+ switch (context) {
+ case s626_send_dac_wait_not_mc1_a2out:
+ status = readl(dev->mmio + S626_P_MC1);
+ if (!(status & S626_MC1_A2OUT))
+ return 0;
+ break;
+ case s626_send_dac_wait_ssr_af2_out:
+ status = readl(dev->mmio + S626_P_SSR);
+ if (status & S626_SSR_AF2_OUT)
+ return 0;
+ break;
+ case s626_send_dac_wait_fb_buffer2_msb_00:
+ status = readl(dev->mmio + S626_P_FB_BUFFER2);
+ if (!(status & 0xff000000))
+ return 0;
+ break;
+ case s626_send_dac_wait_fb_buffer2_msb_ff:
+ status = readl(dev->mmio + S626_P_FB_BUFFER2);
+ if (status & 0xff000000)
+ return 0;
+ break;
+ default:
+ return -EINVAL;
+ }
+ return -EBUSY;
+}
+
+/*
+ * Private helper function: Transmit serial data to DAC via Audio
+ * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
+ * dacpol contains valid target image.
+ */
+static int s626_send_dac(struct comedi_device *dev, uint32_t val)
+{
+ struct s626_private *devpriv = dev->private;
+ int ret;
+
+ /* START THE SERIAL CLOCK RUNNING ------------- */
+
+ /*
+ * Assert DAC polarity control and enable gating of DAC serial clock
+ * and audio bit stream signals. At this point in time we must be
+ * assured of being in time slot 0. If we are not in slot 0, the
+ * serial clock and audio stream signals will be disabled; this is
+ * because the following s626_debi_write statement (which enables
+ * signals to be passed through the gate array) would execute before
+ * the trailing edge of WS1/WS3 (which turns off the signals), thus
+ * causing the signals to be inactive during the DAC write.
+ */
+ s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
+
+ /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
+
+ /* Copy DAC setpoint value to DAC's output DMA buffer. */
+ /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
+ *devpriv->dac_wbuf = val;
+
+ /*
+ * Enable the output DMA transfer. This will cause the DMAC to copy
+ * the DAC's data value to A2's output FIFO. The DMA transfer will
+ * then immediately terminate because the protection address is
+ * reached upon transfer of the first DWORD value.
+ */
+ s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
+
+ /* While the DMA transfer is executing ... */
+
+ /*
+ * Reset Audio2 output FIFO's underflow flag (along with any
+ * other FIFO underflow/overflow flags). When set, this flag
+ * will indicate that we have emerged from slot 0.
+ */
+ writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
+
+ /*
+ * Wait for the DMA transfer to finish so that there will be data
+ * available in the FIFO when time slot 1 tries to transfer a DWORD
+ * from the FIFO to the output buffer register. We test for DMA
+ * Done by polling the DMAC enable flag; this flag is automatically
+ * cleared when the transfer has finished.
+ */
+ ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
+ s626_send_dac_wait_not_mc1_a2out);
+ if (ret) {
+ dev_err(dev->class_dev, "DMA transfer timeout\n");
+ return ret;
+ }
+
+ /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
+
+ /*
+ * FIFO data is now available, so we enable execution of time slots
+ * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
+ * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
+ * detection.
+ */
+ writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
+ dev->mmio + S626_VECTPORT(0));
+
+ /*
+ * Wait for slot 1 to execute to ensure that the Packet will be
+ * transmitted. This is detected by polling the Audio2 output FIFO
+ * underflow flag, which will be set when slot 1 execution has
+ * finished transferring the DAC's data DWORD from the output FIFO
+ * to the output buffer register.
+ */
+ ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
+ s626_send_dac_wait_ssr_af2_out);
+ if (ret) {
+ dev_err(dev->class_dev,
+ "TSL timeout waiting for slot 1 to execute\n");
+ return ret;
+ }
+
+ /*
+ * Set up to trap execution at slot 0 when the TSL sequencer cycles
+ * back to slot 0 after executing the EOS in slot 5. Also,
+ * simultaneously shift out and in the 0x00 that is ALWAYS the value
+ * stored in the last byte to be shifted out of the FIFO's DWORD
+ * buffer register.
+ */
+ writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
+ dev->mmio + S626_VECTPORT(0));
+
+ /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
+
+ /*
+ * Wait for the TSL to finish executing all time slots before
+ * exiting this function. We must do this so that the next DAC
+ * write doesn't start, thereby enabling clock/chip select signals:
+ *
+ * 1. Before the TSL sequence cycles back to slot 0, which disables
+ * the clock/cs signal gating and traps slot // list execution.
+ * we have not yet finished slot 5 then the clock/cs signals are
+ * still gated and we have not finished transmitting the stream.
+ *
+ * 2. While slots 2-5 are executing due to a late slot 0 trap. In
+ * this case, the slot sequence is currently repeating, but with
+ * clock/cs signals disabled. We must wait for slot 0 to trap
+ * execution before setting up the next DAC setpoint DMA transfer
+ * and enabling the clock/cs signals. To detect the end of slot 5,
+ * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
+ * the TSL has not yet finished executing slot 5 ...
+ */
+ if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
+ /*
+ * The trap was set on time and we are still executing somewhere
+ * in slots 2-5, so we now wait for slot 0 to execute and trap
+ * TSL execution. This is detected when FB_BUFFER2 MSB changes
+ * from 0xFF to 0x00, which slot 0 causes to happen by shifting
+ * out/in on SD2 the 0x00 that is always referenced by slot 5.
+ */
+ ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
+ s626_send_dac_wait_fb_buffer2_msb_00);
+ if (ret) {
+ dev_err(dev->class_dev,
+ "TSL timeout waiting for slot 0 to execute\n");
+ return ret;
+ }
+ }
+ /*
+ * Either (1) we were too late setting the slot 0 trap; the TSL
+ * sequencer restarted slot 0 before we could set the EOS trap flag,
+ * or (2) we were not late and execution is now trapped at slot 0.
+ * In either case, we must now change slot 0 so that it will store
+ * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
+ * In order to do this, we reprogram slot 0 so that it will shift in
+ * SD3, which is driven only by a pull-up resistor.
+ */
+ writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
+ dev->mmio + S626_VECTPORT(0));
+
+ /*
+ * Wait for slot 0 to execute, at which time the TSL is setup for
+ * the next DAC write. This is detected when FB_BUFFER2 MSB changes
+ * from 0x00 to 0xFF.
+ */
+ ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
+ s626_send_dac_wait_fb_buffer2_msb_ff);
+ if (ret) {
+ dev_err(dev->class_dev,
+ "TSL timeout waiting for slot 0 to execute\n");
+ return ret;
+ }
+ return 0;
+}
+
+/*
+ * Private helper function: Write setpoint to an application DAC channel.
+ */
+static int s626_set_dac(struct comedi_device *dev,
+ uint16_t chan, int16_t dacdata)
+{
+ struct s626_private *devpriv = dev->private;
+ uint16_t signmask;
+ uint32_t ws_image;
+ uint32_t val;
+
+ /*
+ * Adjust DAC data polarity and set up Polarity Control Register image.
+ */
+ signmask = 1 << chan;
+ if (dacdata < 0) {
+ dacdata = -dacdata;
+ devpriv->dacpol |= signmask;
+ } else {
+ devpriv->dacpol &= ~signmask;
+ }
+
+ /* Limit DAC setpoint value to valid range. */
+ if ((uint16_t)dacdata > 0x1FFF)
+ dacdata = 0x1FFF;
+
+ /*
+ * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
+ * and V3 transmit the setpoint to the target DAC. V4 and V5 send
+ * data to a non-existent TrimDac channel just to keep the clock
+ * running after sending data to the target DAC. This is necessary
+ * to eliminate the clock glitch that would otherwise occur at the
+ * end of the target DAC's serial data stream. When the sequence
+ * restarts at V0 (after executing V5), the gate array automatically
+ * disables gating for the DAC clock and all DAC chip selects.
+ */
+
+ /* Choose DAC chip select to be asserted */
+ ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
+ /* Slot 2: Transmit high data byte to target DAC */
+ writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
+ dev->mmio + S626_VECTPORT(2));
+ /* Slot 3: Transmit low data byte to target DAC */
+ writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
+ dev->mmio + S626_VECTPORT(3));
+ /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
+ writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
+ dev->mmio + S626_VECTPORT(4));
+ /* Slot 5: running after writing target DAC's low data byte */
+ writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
+ dev->mmio + S626_VECTPORT(5));
+
+ /*
+ * Construct and transmit target DAC's serial packet:
+ * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
+ * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
+ * to a non-existent TrimDac channel) that serves to keep the clock
+ * running after the packet has been sent to the target DAC.
+ */
+ val = 0x0F000000; /* Continue clock after target DAC data
+ * (write to non-existent trimdac). */
+ val |= 0x00004000; /* Address the two main dual-DAC devices
+ * (TSL's chip select enables target device). */
+ val |= ((uint32_t)(chan & 1) << 15); /* Address the DAC channel
+ * within the device. */
+ val |= (uint32_t)dacdata; /* Include DAC setpoint data. */
+ return s626_send_dac(dev, val);
+}
+
+static int s626_write_trim_dac(struct comedi_device *dev,
+ uint8_t logical_chan, uint8_t dac_data)
+{
+ struct s626_private *devpriv = dev->private;
+ uint32_t chan;
+
+ /*
+ * Save the new setpoint in case the application needs to read it back
+ * later.
+ */
+ devpriv->trim_setpoint[logical_chan] = (uint8_t)dac_data;
+
+ /* Map logical channel number to physical channel number. */
+ chan = s626_trimchan[logical_chan];
+
+ /*
+ * Set up TSL2 records for TrimDac write operation. All slots shift
+ * 0xFF in from pulled-up SD3 so that the end of the slot sequence
+ * can be detected.
+ */
+
+ /* Slot 2: Send high uint8_t to target TrimDac */
+ writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
+ dev->mmio + S626_VECTPORT(2));
+ /* Slot 3: Send low uint8_t to target TrimDac */
+ writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
+ dev->mmio + S626_VECTPORT(3));
+ /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
+ writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
+ dev->mmio + S626_VECTPORT(4));
+ /* Slot 5: Send NOP low uint8_t to DAC0 */
+ writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
+ dev->mmio + S626_VECTPORT(5));
+
+ /*
+ * Construct and transmit target DAC's serial packet:
+ * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
+ * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
+ * WORD value (that writes a channel 0 NOP command to a non-existent
+ * main DAC channel) that serves to keep the clock running after the
+ * packet has been sent to the target DAC.
+ */
+
+ /*
+ * Address the DAC channel within the trimdac device.
+ * Include DAC setpoint data.
+ */
+ return s626_send_dac(dev, (chan << 8) | dac_data);
+}
+
+static int s626_load_trim_dacs(struct comedi_device *dev)
+{
+ uint8_t i;
+ int ret;
+
+ /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
+ for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
+ ret = s626_write_trim_dac(dev, i,
+ s626_i2c_read(dev, s626_trimadrs[i]));
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/* ****** COUNTER FUNCTIONS ******* */
+
+/*
+ * All counter functions address a specific counter by means of the
+ * "Counter" argument, which is a logical counter number. The Counter
+ * argument may have any of the following legal values: 0=0A, 1=1A,
+ * 2=2A, 3=0B, 4=1B, 5=2B.
+ */
+
+/*
+ * Return/set a counter pair's latch trigger source. 0: On read
+ * access, 1: A index latches A, 2: B index latches B, 3: A overflow
+ * latches B.
+ */
+static void s626_set_latch_source(struct comedi_device *dev,
+ unsigned int chan, uint16_t value)
+{
+ s626_debi_replace(dev, S626_LP_CRB(chan),
+ ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
+ S626_SET_CRB_LATCHSRC(value));
+}
+
+/*
+ * Write value into counter preload register.
+ */
+static void s626_preload(struct comedi_device *dev,
+ unsigned int chan, uint32_t value)
+{
+ s626_debi_write(dev, S626_LP_CNTR(chan), value);
+ s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
+}
+
+/* ****** PRIVATE COUNTER FUNCTIONS ****** */
+
+/*
+ * Reset a counter's index and overflow event capture flags.
+ */
+static void s626_reset_cap_flags(struct comedi_device *dev,
+ unsigned int chan)
+{
+ uint16_t set;
+
+ set = S626_SET_CRB_INTRESETCMD(1);
+ if (chan < 3)
+ set |= S626_SET_CRB_INTRESET_A(1);
+ else
+ set |= S626_SET_CRB_INTRESET_B(1);
+
+ s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
+}
+
+#ifdef unused
+/*
+ * Return counter setup in a format (COUNTER_SETUP) that is consistent
+ * for both A and B counters.
+ */
+static uint16_t s626_get_mode_a(struct comedi_device *dev,
+ unsigned int chan)
+{
+ uint16_t cra;
+ uint16_t crb;
+ uint16_t setup;
+ unsigned cntsrc, clkmult, clkpol, encmode;
+
+ /* Fetch CRA and CRB register images. */
+ cra = s626_debi_read(dev, S626_LP_CRA(chan));
+ crb = s626_debi_read(dev, S626_LP_CRB(chan));
+
+ /*
+ * Populate the standardized counter setup bit fields.
+ */
+ setup =
+ /* LoadSrc = LoadSrcA. */
+ S626_SET_STD_LOADSRC(S626_GET_CRA_LOADSRC_A(cra)) |
+ /* LatchSrc = LatchSrcA. */
+ S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
+ /* IntSrc = IntSrcA. */
+ S626_SET_STD_INTSRC(S626_GET_CRA_INTSRC_A(cra)) |
+ /* IndxSrc = IndxSrcA. */
+ S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_A(cra)) |
+ /* IndxPol = IndxPolA. */
+ S626_SET_STD_INDXPOL(S626_GET_CRA_INDXPOL_A(cra)) |
+ /* ClkEnab = ClkEnabA. */
+ S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_A(crb));
+
+ /* Adjust mode-dependent parameters. */
+ cntsrc = S626_GET_CRA_CNTSRC_A(cra);
+ if (cntsrc & S626_CNTSRC_SYSCLK) {
+ /* Timer mode (CntSrcA<1> == 1): */
+ encmode = S626_ENCMODE_TIMER;
+ /* Set ClkPol to indicate count direction (CntSrcA<0>). */
+ clkpol = cntsrc & 1;
+ /* ClkMult must be 1x in Timer mode. */
+ clkmult = S626_CLKMULT_1X;
+ } else {
+ /* Counter mode (CntSrcA<1> == 0): */
+ encmode = S626_ENCMODE_COUNTER;
+ /* Pass through ClkPol. */
+ clkpol = S626_GET_CRA_CLKPOL_A(cra);
+ /* Force ClkMult to 1x if not legal, else pass through. */
+ clkmult = S626_GET_CRA_CLKMULT_A(cra);
+ if (clkmult == S626_CLKMULT_SPECIAL)
+ clkmult = S626_CLKMULT_1X;
+ }
+ setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
+ S626_SET_STD_CLKPOL(clkpol);
+
+ /* Return adjusted counter setup. */
+ return setup;
+}
+
+static uint16_t s626_get_mode_b(struct comedi_device *dev,
+ unsigned int chan)
+{
+ uint16_t cra;
+ uint16_t crb;
+ uint16_t setup;
+ unsigned cntsrc, clkmult, clkpol, encmode;
+
+ /* Fetch CRA and CRB register images. */
+ cra = s626_debi_read(dev, S626_LP_CRA(chan));
+ crb = s626_debi_read(dev, S626_LP_CRB(chan));
+
+ /*
+ * Populate the standardized counter setup bit fields.
+ */
+ setup =
+ /* IntSrc = IntSrcB. */
+ S626_SET_STD_INTSRC(S626_GET_CRB_INTSRC_B(crb)) |
+ /* LatchSrc = LatchSrcB. */
+ S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
+ /* LoadSrc = LoadSrcB. */
+ S626_SET_STD_LOADSRC(S626_GET_CRB_LOADSRC_B(crb)) |
+ /* IndxPol = IndxPolB. */
+ S626_SET_STD_INDXPOL(S626_GET_CRB_INDXPOL_B(crb)) |
+ /* ClkEnab = ClkEnabB. */
+ S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_B(crb)) |
+ /* IndxSrc = IndxSrcB. */
+ S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_B(cra));
+
+ /* Adjust mode-dependent parameters. */
+ cntsrc = S626_GET_CRA_CNTSRC_B(cra);
+ clkmult = S626_GET_CRB_CLKMULT_B(crb);
+ if (clkmult == S626_CLKMULT_SPECIAL) {
+ /* Extender mode (ClkMultB == S626_CLKMULT_SPECIAL): */
+ encmode = S626_ENCMODE_EXTENDER;
+ /* Indicate multiplier is 1x. */
+ clkmult = S626_CLKMULT_1X;
+ /* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
+ clkpol = cntsrc & 1;
+ } else if (cntsrc & S626_CNTSRC_SYSCLK) {
+ /* Timer mode (CntSrcB<1> == 1): */
+ encmode = S626_ENCMODE_TIMER;
+ /* Indicate multiplier is 1x. */
+ clkmult = S626_CLKMULT_1X;
+ /* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
+ clkpol = cntsrc & 1;
+ } else {
+ /* If Counter mode (CntSrcB<1> == 0): */
+ encmode = S626_ENCMODE_COUNTER;
+ /* Clock multiplier is passed through. */
+ /* Clock polarity is passed through. */
+ clkpol = S626_GET_CRB_CLKPOL_B(crb);
+ }
+ setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
+ S626_SET_STD_CLKPOL(clkpol);
+
+ /* Return adjusted counter setup. */
+ return setup;
+}
+
+static uint16_t s626_get_mode(struct comedi_device *dev,
+ unsigned int chan)
+{
+ return (chan < 3) ? s626_get_mode_a(dev, chan)
+ : s626_get_mode_b(dev, chan);
+}
+#endif
+
+/*
+ * Set the operating mode for the specified counter. The setup
+ * parameter is treated as a COUNTER_SETUP data type. The following
+ * parameters are programmable (all other parms are ignored): ClkMult,
+ * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
+ */
+static void s626_set_mode_a(struct comedi_device *dev,
+ unsigned int chan, uint16_t setup,
+ uint16_t disable_int_src)
+{
+ struct s626_private *devpriv = dev->private;
+ uint16_t cra;
+ uint16_t crb;
+ unsigned cntsrc, clkmult, clkpol;
+
+ /* Initialize CRA and CRB images. */
+ /* Preload trigger is passed through. */
+ cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
+ /* IndexSrc is passed through. */
+ cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
+
+ /* Reset any pending CounterA event captures. */
+ crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
+ /* Clock enable is passed through. */
+ crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
+
+ /* Force IntSrc to Disabled if disable_int_src is asserted. */
+ if (!disable_int_src)
+ cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
+
+ /* Populate all mode-dependent attributes of CRA & CRB images. */
+ clkpol = S626_GET_STD_CLKPOL(setup);
+ switch (S626_GET_STD_ENCMODE(setup)) {
+ case S626_ENCMODE_EXTENDER: /* Extender Mode: */
+ /* Force to Timer mode (Extender valid only for B counters). */
+ /* Fall through to case S626_ENCMODE_TIMER: */
+ case S626_ENCMODE_TIMER: /* Timer Mode: */
+ /* CntSrcA<1> selects system clock */
+ cntsrc = S626_CNTSRC_SYSCLK;
+ /* Count direction (CntSrcA<0>) obtained from ClkPol. */
+ cntsrc |= clkpol;
+ /* ClkPolA behaves as always-on clock enable. */
+ clkpol = 1;
+ /* ClkMult must be 1x. */
+ clkmult = S626_CLKMULT_1X;
+ break;
+ default: /* Counter Mode: */
+ /* Select ENC_C and ENC_D as clock/direction inputs. */
+ cntsrc = S626_CNTSRC_ENCODER;
+ /* Clock polarity is passed through. */
+ /* Force multiplier to x1 if not legal, else pass through. */
+ clkmult = S626_GET_STD_CLKMULT(setup);
+ if (clkmult == S626_CLKMULT_SPECIAL)
+ clkmult = S626_CLKMULT_1X;
+ break;
+ }
+ cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
+ S626_SET_CRA_CLKMULT_A(clkmult);
+
+ /*
+ * Force positive index polarity if IndxSrc is software-driven only,
+ * otherwise pass it through.
+ */
+ if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
+ cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
+
+ /*
+ * If IntSrc has been forced to Disabled, update the MISC2 interrupt
+ * enable mask to indicate the counter interrupt is disabled.
+ */
+ if (disable_int_src)
+ devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
+ S626_INDXMASK(chan));
+
+ /*
+ * While retaining CounterB and LatchSrc configurations, program the
+ * new counter operating mode.
+ */
+ s626_debi_replace(dev, S626_LP_CRA(chan),
+ S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
+ s626_debi_replace(dev, S626_LP_CRB(chan),
+ ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
+}
+
+static void s626_set_mode_b(struct comedi_device *dev,
+ unsigned int chan, uint16_t setup,
+ uint16_t disable_int_src)
+{
+ struct s626_private *devpriv = dev->private;
+ uint16_t cra;
+ uint16_t crb;
+ unsigned cntsrc, clkmult, clkpol;
+
+ /* Initialize CRA and CRB images. */
+ /* IndexSrc is passed through. */
+ cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
+
+ /* Reset event captures and disable interrupts. */
+ crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
+ /* Clock enable is passed through. */
+ crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
+ /* Preload trigger source is passed through. */
+ crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
+
+ /* Force IntSrc to Disabled if disable_int_src is asserted. */
+ if (!disable_int_src)
+ crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
+
+ /* Populate all mode-dependent attributes of CRA & CRB images. */
+ clkpol = S626_GET_STD_CLKPOL(setup);
+ switch (S626_GET_STD_ENCMODE(setup)) {
+ case S626_ENCMODE_TIMER: /* Timer Mode: */
+ /* CntSrcB<1> selects system clock */
+ cntsrc = S626_CNTSRC_SYSCLK;
+ /* with direction (CntSrcB<0>) obtained from ClkPol. */
+ cntsrc |= clkpol;
+ /* ClkPolB behaves as always-on clock enable. */
+ clkpol = 1;
+ /* ClkMultB must be 1x. */
+ clkmult = S626_CLKMULT_1X;
+ break;
+ case S626_ENCMODE_EXTENDER: /* Extender Mode: */
+ /* CntSrcB source is OverflowA (same as "timer") */
+ cntsrc = S626_CNTSRC_SYSCLK;
+ /* with direction obtained from ClkPol. */
+ cntsrc |= clkpol;
+ /* ClkPolB controls IndexB -- always set to active. */
+ clkpol = 1;
+ /* ClkMultB selects OverflowA as the clock source. */
+ clkmult = S626_CLKMULT_SPECIAL;
+ break;
+ default: /* Counter Mode: */
+ /* Select ENC_C and ENC_D as clock/direction inputs. */
+ cntsrc = S626_CNTSRC_ENCODER;
+ /* ClkPol is passed through. */
+ /* Force ClkMult to x1 if not legal, otherwise pass through. */
+ clkmult = S626_GET_STD_CLKMULT(setup);
+ if (clkmult == S626_CLKMULT_SPECIAL)
+ clkmult = S626_CLKMULT_1X;
+ break;
+ }
+ cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
+ crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
+
+ /*
+ * Force positive index polarity if IndxSrc is software-driven only,
+ * otherwise pass it through.
+ */
+ if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
+ crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
+
+ /*
+ * If IntSrc has been forced to Disabled, update the MISC2 interrupt
+ * enable mask to indicate the counter interrupt is disabled.
+ */
+ if (disable_int_src)
+ devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
+ S626_INDXMASK(chan));
+
+ /*
+ * While retaining CounterA and LatchSrc configurations, program the
+ * new counter operating mode.
+ */
+ s626_debi_replace(dev, S626_LP_CRA(chan),
+ ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
+ s626_debi_replace(dev, S626_LP_CRB(chan),
+ S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
+}
+
+static void s626_set_mode(struct comedi_device *dev,
+ unsigned int chan,
+ uint16_t setup, uint16_t disable_int_src)
+{
+ if (chan < 3)
+ s626_set_mode_a(dev, chan, setup, disable_int_src);
+ else
+ s626_set_mode_b(dev, chan, setup, disable_int_src);
+}
+
+/*
+ * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
+ */
+static void s626_set_enable(struct comedi_device *dev,
+ unsigned int chan, uint16_t enab)
+{
+ unsigned int mask = S626_CRBMSK_INTCTRL;
+ unsigned int set;
+
+ if (chan < 3) {
+ mask |= S626_CRBMSK_CLKENAB_A;
+ set = S626_SET_CRB_CLKENAB_A(enab);
+ } else {
+ mask |= S626_CRBMSK_CLKENAB_B;
+ set = S626_SET_CRB_CLKENAB_B(enab);
+ }
+ s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
+}
+
+#ifdef unused
+static uint16_t s626_get_enable(struct comedi_device *dev,
+ unsigned int chan)
+{
+ uint16_t crb = s626_debi_read(dev, S626_LP_CRB(chan));
+
+ return (chan < 3) ? S626_GET_CRB_CLKENAB_A(crb)
+ : S626_GET_CRB_CLKENAB_B(crb);
+}
+#endif
+
+#ifdef unused
+static uint16_t s626_get_latch_source(struct comedi_device *dev,
+ unsigned int chan)
+{
+ return S626_GET_CRB_LATCHSRC(s626_debi_read(dev, S626_LP_CRB(chan)));
+}
+#endif
+
+/*
+ * Return/set the event that will trigger transfer of the preload
+ * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
+ * 2=OverflowA (B counters only), 3=disabled.
+ */
+static void s626_set_load_trig(struct comedi_device *dev,
+ unsigned int chan, uint16_t trig)
+{
+ uint16_t reg;
+ uint16_t mask;
+ uint16_t set;
+
+ if (chan < 3) {
+ reg = S626_LP_CRA(chan);
+ mask = S626_CRAMSK_LOADSRC_A;
+ set = S626_SET_CRA_LOADSRC_A(trig);
+ } else {
+ reg = S626_LP_CRB(chan);
+ mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
+ set = S626_SET_CRB_LOADSRC_B(trig);
+ }
+ s626_debi_replace(dev, reg, ~mask, set);
+}
+
+#ifdef unused
+static uint16_t s626_get_load_trig(struct comedi_device *dev,
+ unsigned int chan)
+{
+ if (chan < 3)
+ return S626_GET_CRA_LOADSRC_A(s626_debi_read(dev,
+ S626_LP_CRA(chan)));
+ else
+ return S626_GET_CRB_LOADSRC_B(s626_debi_read(dev,
+ S626_LP_CRB(chan)));
+}
+#endif
+
+/*
+ * Return/set counter interrupt source and clear any captured
+ * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
+ * 2=IndexOnly, 3=IndexAndOverflow.
+ */
+static void s626_set_int_src(struct comedi_device *dev,
+ unsigned int chan, uint16_t int_source)
+{
+ struct s626_private *devpriv = dev->private;
+ uint16_t cra_reg = S626_LP_CRA(chan);
+ uint16_t crb_reg = S626_LP_CRB(chan);
+
+ if (chan < 3) {
+ /* Reset any pending counter overflow or index captures */
+ s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
+ S626_SET_CRB_INTRESETCMD(1) |
+ S626_SET_CRB_INTRESET_A(1));
+
+ /* Program counter interrupt source */
+ s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
+ S626_SET_CRA_INTSRC_A(int_source));
+ } else {
+ uint16_t crb;
+
+ /* Cache writeable CRB register image */
+ crb = s626_debi_read(dev, crb_reg);
+ crb &= ~S626_CRBMSK_INTCTRL;
+
+ /* Reset any pending counter overflow or index captures */
+ s626_debi_write(dev, crb_reg,
+ crb | S626_SET_CRB_INTRESETCMD(1) |
+ S626_SET_CRB_INTRESET_B(1));
+
+ /* Program counter interrupt source */
+ s626_debi_write(dev, crb_reg,
+ (crb & ~S626_CRBMSK_INTSRC_B) |
+ S626_SET_CRB_INTSRC_B(int_source));
+ }
+
+ /* Update MISC2 interrupt enable mask. */
+ devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
+ S626_INDXMASK(chan));
+ switch (int_source) {
+ case 0:
+ default:
+ break;
+ case 1:
+ devpriv->counter_int_enabs |= S626_OVERMASK(chan);
+ break;
+ case 2:
+ devpriv->counter_int_enabs |= S626_INDXMASK(chan);
+ break;
+ case 3:
+ devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
+ S626_INDXMASK(chan));
+ break;
+ }
+}
+
+#ifdef unused
+static uint16_t s626_get_int_src(struct comedi_device *dev,
+ unsigned int chan)
+{
+ if (chan < 3)
+ return S626_GET_CRA_INTSRC_A(s626_debi_read(dev,
+ S626_LP_CRA(chan)));
+ else
+ return S626_GET_CRB_INTSRC_B(s626_debi_read(dev,
+ S626_LP_CRB(chan)));
+}
+#endif
+
+#ifdef unused
+/*
+ * Return/set the clock multiplier.
+ */
+static void s626_set_clk_mult(struct comedi_device *dev,
+ unsigned int chan, uint16_t value)
+{
+ uint16_t mode;
+
+ mode = s626_get_mode(dev, chan);
+ mode &= ~S626_STDMSK_CLKMULT;
+ mode |= S626_SET_STD_CLKMULT(value);
+
+ s626_set_mode(dev, chan, mode, false);
+}
+
+static uint16_t s626_get_clk_mult(struct comedi_device *dev,
+ unsigned int chan)
+{
+ return S626_GET_STD_CLKMULT(s626_get_mode(dev, chan));
+}
+
+/*
+ * Return/set the clock polarity.
+ */
+static void s626_set_clk_pol(struct comedi_device *dev,
+ unsigned int chan, uint16_t value)
+{
+ uint16_t mode;
+
+ mode = s626_get_mode(dev, chan);
+ mode &= ~S626_STDMSK_CLKPOL;
+ mode |= S626_SET_STD_CLKPOL(value);
+
+ s626_set_mode(dev, chan, mode, false);
+}
+
+static uint16_t s626_get_clk_pol(struct comedi_device *dev,
+ unsigned int chan)
+{
+ return S626_GET_STD_CLKPOL(s626_get_mode(dev, chan));
+}
+
+/*
+ * Return/set the encoder mode.
+ */
+static void s626_set_enc_mode(struct comedi_device *dev,
+ unsigned int chan, uint16_t value)
+{
+ uint16_t mode;
+
+ mode = s626_get_mode(dev, chan);
+ mode &= ~S626_STDMSK_ENCMODE;
+ mode |= S626_SET_STD_ENCMODE(value);
+
+ s626_set_mode(dev, chan, mode, false);
+}
+
+static uint16_t s626_get_enc_mode(struct comedi_device *dev,
+ unsigned int chan)
+{
+ return S626_GET_STD_ENCMODE(s626_get_mode(dev, chan));
+}
+
+/*
+ * Return/set the index polarity.
+ */
+static void s626_set_index_pol(struct comedi_device *dev,
+ unsigned int chan, uint16_t value)
+{
+ uint16_t mode;
+
+ mode = s626_get_mode(dev, chan);
+ mode &= ~S626_STDMSK_INDXPOL;
+ mode |= S626_SET_STD_INDXPOL(value != 0);
+
+ s626_set_mode(dev, chan, mode, false);
+}
+
+static uint16_t s626_get_index_pol(struct comedi_device *dev,
+ unsigned int chan)
+{
+ return S626_GET_STD_INDXPOL(s626_get_mode(dev, chan));
+}
+
+/*
+ * Return/set the index source.
+ */
+static void s626_set_index_src(struct comedi_device *dev,
+ unsigned int chan, uint16_t value)
+{
+ uint16_t mode;
+
+ mode = s626_get_mode(dev, chan);
+ mode &= ~S626_STDMSK_INDXSRC;
+ mode |= S626_SET_STD_INDXSRC(value != 0);
+
+ s626_set_mode(dev, chan, mode, false);
+}
+
+static uint16_t s626_get_index_src(struct comedi_device *dev,
+ unsigned int chan)
+{
+ return S626_GET_STD_INDXSRC(s626_get_mode(dev, chan));
+}
+#endif
+
+/*
+ * Generate an index pulse.
+ */
+static void s626_pulse_index(struct comedi_device *dev,
+ unsigned int chan)
+{
+ if (chan < 3) {
+ uint16_t cra;
+
+ cra = s626_debi_read(dev, S626_LP_CRA(chan));
+
+ /* Pulse index */
+ s626_debi_write(dev, S626_LP_CRA(chan),
+ (cra ^ S626_CRAMSK_INDXPOL_A));
+ s626_debi_write(dev, S626_LP_CRA(chan), cra);
+ } else {
+ uint16_t crb;
+
+ crb = s626_debi_read(dev, S626_LP_CRB(chan));
+ crb &= ~S626_CRBMSK_INTCTRL;
+
+ /* Pulse index */
+ s626_debi_write(dev, S626_LP_CRB(chan),
+ (crb ^ S626_CRBMSK_INDXPOL_B));
+ s626_debi_write(dev, S626_LP_CRB(chan), crb);
+ }
+}
+
+static unsigned int s626_ai_reg_to_uint(unsigned int data)
+{
+ return ((data >> 18) & 0x3fff) ^ 0x2000;
+}
+
+static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
+{
+ unsigned int group = chan / 16;
+ unsigned int mask = 1 << (chan - (16 * group));
+ unsigned int status;
+
+ /* set channel to capture positive edge */
+ status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
+ s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
+
+ /* enable interrupt on selected channel */
+ status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
+ s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
+
+ /* enable edge capture write command */
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
+
+ /* enable edge capture on selected channel */
+ status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
+ s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
+
+ return 0;
+}
+
+static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
+ unsigned int mask)
+{
+ /* disable edge capture write command */
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
+
+ /* enable edge capture on selected channel */
+ s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
+
+ return 0;
+}
+
+static int s626_dio_clear_irq(struct comedi_device *dev)
+{
+ unsigned int group;
+
+ /* disable edge capture write command */
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
+
+ /* clear all dio pending events and interrupt */
+ for (group = 0; group < S626_DIO_BANKS; group++)
+ s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
+
+ return 0;
+}
+
+static void s626_handle_dio_interrupt(struct comedi_device *dev,
+ uint16_t irqbit, uint8_t group)
+{
+ struct s626_private *devpriv = dev->private;
+ struct comedi_subdevice *s = dev->read_subdev;
+ struct comedi_cmd *cmd = &s->async->cmd;
+
+ s626_dio_reset_irq(dev, group, irqbit);
+
+ if (devpriv->ai_cmd_running) {
+ /* check if interrupt is an ai acquisition start trigger */
+ if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
+ cmd->start_src == TRIG_EXT) {
+ /* Start executing the RPS program */
+ s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
+
+ if (cmd->scan_begin_src == TRIG_EXT)
+ s626_dio_set_irq(dev, cmd->scan_begin_arg);
+ }
+ if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
+ cmd->scan_begin_src == TRIG_EXT) {
+ /* Trigger ADC scan loop start */
+ s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
+
+ if (cmd->convert_src == TRIG_EXT) {
+ devpriv->ai_convert_count = cmd->chanlist_len;
+
+ s626_dio_set_irq(dev, cmd->convert_arg);
+ }
+
+ if (cmd->convert_src == TRIG_TIMER) {
+ devpriv->ai_convert_count = cmd->chanlist_len;
+ s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
+ }
+ }
+ if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
+ cmd->convert_src == TRIG_EXT) {
+ /* Trigger ADC scan loop start */
+ s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
+
+ devpriv->ai_convert_count--;
+ if (devpriv->ai_convert_count > 0)
+ s626_dio_set_irq(dev, cmd->convert_arg);
+ }
+ }
+}
+
+static void s626_check_dio_interrupts(struct comedi_device *dev)
+{
+ uint16_t irqbit;
+ uint8_t group;
+
+ for (group = 0; group < S626_DIO_BANKS; group++) {
+ /* read interrupt type */
+ irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
+
+ /* check if interrupt is generated from dio channels */
+ if (irqbit) {
+ s626_handle_dio_interrupt(dev, irqbit, group);
+ return;
+ }
+ }
+}
+
+static void s626_check_counter_interrupts(struct comedi_device *dev)
+{
+ struct s626_private *devpriv = dev->private;
+ struct comedi_subdevice *s = dev->read_subdev;
+ struct comedi_async *async = s->async;
+ struct comedi_cmd *cmd = &async->cmd;
+ uint16_t irqbit;
+
+ /* read interrupt type */
+ irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
+
+ /* check interrupt on counters */
+ if (irqbit & S626_IRQ_COINT1A) {
+ /* clear interrupt capture flag */
+ s626_reset_cap_flags(dev, 0);
+ }
+ if (irqbit & S626_IRQ_COINT2A) {
+ /* clear interrupt capture flag */
+ s626_reset_cap_flags(dev, 1);
+ }
+ if (irqbit & S626_IRQ_COINT3A) {
+ /* clear interrupt capture flag */
+ s626_reset_cap_flags(dev, 2);
+ }
+ if (irqbit & S626_IRQ_COINT1B) {
+ /* clear interrupt capture flag */
+ s626_reset_cap_flags(dev, 3);
+ }
+ if (irqbit & S626_IRQ_COINT2B) {
+ /* clear interrupt capture flag */
+ s626_reset_cap_flags(dev, 4);
+
+ if (devpriv->ai_convert_count > 0) {
+ devpriv->ai_convert_count--;
+ if (devpriv->ai_convert_count == 0)
+ s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
+
+ if (cmd->convert_src == TRIG_TIMER) {
+ /* Trigger ADC scan loop start */
+ s626_mc_enable(dev, S626_MC2_ADC_RPS,
+ S626_P_MC2);
+ }
+ }
+ }
+ if (irqbit & S626_IRQ_COINT3B) {
+ /* clear interrupt capture flag */
+ s626_reset_cap_flags(dev, 5);
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ /* Trigger ADC scan loop start */
+ s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
+ }
+
+ if (cmd->convert_src == TRIG_TIMER) {
+ devpriv->ai_convert_count = cmd->chanlist_len;
+ s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
+ }
+ }
+}
+
+static bool s626_handle_eos_interrupt(struct comedi_device *dev)
+{
+ struct s626_private *devpriv = dev->private;
+ struct comedi_subdevice *s = dev->read_subdev;
+ struct comedi_async *async = s->async;
+ struct comedi_cmd *cmd = &async->cmd;
+ /*
+ * Init ptr to DMA buffer that holds new ADC data. We skip the
+ * first uint16_t in the buffer because it contains junk data
+ * from the final ADC of the previous poll list scan.
+ */
+ uint32_t *readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
+ int i;
+
+ /* get the data and hand it over to comedi */
+ for (i = 0; i < cmd->chanlist_len; i++) {
+ unsigned short tempdata;
+
+ /*
+ * Convert ADC data to 16-bit integer values and copy
+ * to application buffer.
+ */
+ tempdata = s626_ai_reg_to_uint(*readaddr);
+ readaddr++;
+
+ comedi_buf_write_samples(s, &tempdata, 1);
+ }
+
+ if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
+ async->events |= COMEDI_CB_EOA;
+
+ if (async->events & COMEDI_CB_CANCEL_MASK)
+ devpriv->ai_cmd_running = 0;
+
+ if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
+ s626_dio_set_irq(dev, cmd->scan_begin_arg);
+
+ comedi_handle_events(dev, s);
+
+ return !devpriv->ai_cmd_running;
+}
+
+static irqreturn_t s626_irq_handler(int irq, void *d)
+{
+ struct comedi_device *dev = d;
+ unsigned long flags;
+ uint32_t irqtype, irqstatus;
+
+ if (!dev->attached)
+ return IRQ_NONE;
+ /* lock to avoid race with comedi_poll */
+ spin_lock_irqsave(&dev->spinlock, flags);
+
+ /* save interrupt enable register state */
+ irqstatus = readl(dev->mmio + S626_P_IER);
+
+ /* read interrupt type */
+ irqtype = readl(dev->mmio + S626_P_ISR);
+
+ /* disable master interrupt */
+ writel(0, dev->mmio + S626_P_IER);
+
+ /* clear interrupt */
+ writel(irqtype, dev->mmio + S626_P_ISR);
+
+ switch (irqtype) {
+ case S626_IRQ_RPS1: /* end_of_scan occurs */
+ if (s626_handle_eos_interrupt(dev))
+ irqstatus = 0;
+ break;
+ case S626_IRQ_GPIO3: /* check dio and counter interrupt */
+ /* s626_dio_clear_irq(dev); */
+ s626_check_dio_interrupts(dev);
+ s626_check_counter_interrupts(dev);
+ break;
+ }
+
+ /* enable interrupt */
+ writel(irqstatus, dev->mmio + S626_P_IER);
+
+ spin_unlock_irqrestore(&dev->spinlock, flags);
+ return IRQ_HANDLED;
+}
+
+/*
+ * This function builds the RPS program for hardware driven acquisition.
+ */
+static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
+{
+ struct s626_private *devpriv = dev->private;
+ struct comedi_subdevice *s = dev->read_subdev;
+ struct comedi_cmd *cmd = &s->async->cmd;
+ uint32_t *rps;
+ uint32_t jmp_adrs;
+ uint16_t i;
+ uint16_t n;
+ uint32_t local_ppl;
+
+ /* Stop RPS program in case it is currently running */
+ s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
+
+ /* Set starting logical address to write RPS commands. */
+ rps = (uint32_t *)devpriv->rps_buf.logical_base;
+
+ /* Initialize RPS instruction pointer */
+ writel((uint32_t)devpriv->rps_buf.physical_base,
+ dev->mmio + S626_P_RPSADDR1);
+
+ /* Construct RPS program in rps_buf DMA buffer */
+ if (cmd->scan_begin_src != TRIG_FOLLOW) {
+ /* Wait for Start trigger. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
+ }
+
+ /*
+ * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
+ * because the first RPS DEBI Write following a non-RPS DEBI write
+ * seems to always fail. If we don't do this dummy write, the ADC
+ * gain might not be set to the value required for the first slot in
+ * the poll list; the ADC gain would instead remain unchanged from
+ * the previously programmed value.
+ */
+ /* Write DEBI Write command and address to shadow RAM. */
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
+ *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
+ /* Write DEBI immediate data to shadow RAM: */
+ *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
+ /* Reset "shadow RAM uploaded" flag. */
+ /* Invoke shadow RAM upload. */
+ *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
+ /* Wait for shadow upload to finish. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
+
+ /*
+ * Digitize all slots in the poll list. This is implemented as a
+ * for loop to limit the slot count to 16 in case the application
+ * forgot to set the S626_EOPL flag in the final slot.
+ */
+ for (devpriv->adc_items = 0; devpriv->adc_items < 16;
+ devpriv->adc_items++) {
+ /*
+ * Convert application's poll list item to private board class
+ * format. Each app poll list item is an uint8_t with form
+ * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
+ * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
+ */
+ local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
+ S626_GSEL_BIPOLAR10V);
+
+ /* Switch ADC analog gain. */
+ /* Write DEBI command and address to shadow RAM. */
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
+ *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
+ /* Write DEBI immediate data to shadow RAM. */
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
+ *rps++ = local_ppl;
+ /* Reset "shadow RAM uploaded" flag. */
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
+ /* Invoke shadow RAM upload. */
+ *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
+ /* Wait for shadow upload to finish. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
+ /* Select ADC analog input channel. */
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
+ /* Write DEBI command and address to shadow RAM. */
+ *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
+ /* Write DEBI immediate data to shadow RAM. */
+ *rps++ = local_ppl;
+ /* Reset "shadow RAM uploaded" flag. */
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
+ /* Invoke shadow RAM upload. */
+ *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
+ /* Wait for shadow upload to finish. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
+
+ /*
+ * Delay at least 10 microseconds for analog input settling.
+ * Instead of padding with NOPs, we use S626_RPS_JUMP
+ * instructions here; this allows us to produce a longer delay
+ * than is possible with NOPs because each S626_RPS_JUMP
+ * flushes the RPS' instruction prefetch pipeline.
+ */
+ jmp_adrs =
+ (uint32_t)devpriv->rps_buf.physical_base +
+ (uint32_t)((unsigned long)rps -
+ (unsigned long)devpriv->
+ rps_buf.logical_base);
+ for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
+ jmp_adrs += 8; /* Repeat to implement time delay: */
+ /* Jump to next RPS instruction. */
+ *rps++ = S626_RPS_JUMP;
+ *rps++ = jmp_adrs;
+ }
+
+ if (cmd->convert_src != TRIG_NOW) {
+ /* Wait for Start trigger. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
+ }
+ /* Start ADC by pulsing GPIO1. */
+ /* Begin ADC Start pulse. */
+ *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
+ *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
+ *rps++ = S626_RPS_NOP;
+ /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
+ /* End ADC Start pulse. */
+ *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
+ *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
+ /*
+ * Wait for ADC to complete (GPIO2 is asserted high when ADC not
+ * busy) and for data from previous conversion to shift into FB
+ * BUFFER 1 register.
+ */
+ /* Wait for ADC done. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
+
+ /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
+ *rps++ = S626_RPS_STREG |
+ (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
+ *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
+ (devpriv->adc_items << 2);
+
+ /*
+ * If this slot's EndOfPollList flag is set, all channels have
+ * now been processed.
+ */
+ if (*ppl++ & S626_EOPL) {
+ devpriv->adc_items++; /* Adjust poll list item count. */
+ break; /* Exit poll list processing loop. */
+ }
+ }
+
+ /*
+ * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
+ * ADC to stabilize for 2 microseconds before starting the final
+ * (dummy) conversion. This delay is necessary to allow sufficient
+ * time between last conversion finished and the start of the dummy
+ * conversion. Without this delay, the last conversion's data value
+ * is sometimes set to the previous conversion's data value.
+ */
+ for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
+ *rps++ = S626_RPS_NOP;
+
+ /*
+ * Start a dummy conversion to cause the data from the last
+ * conversion of interest to be shifted in.
+ */
+ /* Begin ADC Start pulse. */
+ *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
+ *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
+ *rps++ = S626_RPS_NOP;
+ /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
+ *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
+ *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
+
+ /*
+ * Wait for the data from the last conversion of interest to arrive
+ * in FB BUFFER 1 register.
+ */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
+
+ /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
+ *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
+ *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
+ (devpriv->adc_items << 2);
+
+ /* Indicate ADC scan loop is finished. */
+ /* Signal ReadADC() that scan is done. */
+ /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
+
+ /* invoke interrupt */
+ if (devpriv->ai_cmd_running == 1)
+ *rps++ = S626_RPS_IRQ;
+
+ /* Restart RPS program at its beginning. */
+ *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
+ *rps++ = (uint32_t)devpriv->rps_buf.physical_base;
+
+ /* End of RPS program build */
+}
+
+#ifdef unused_code
+static int s626_ai_rinsn(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ struct s626_private *devpriv = dev->private;
+ uint8_t i;
+ int32_t *readaddr;
+
+ /* Trigger ADC scan loop start */
+ s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
+
+ /* Wait until ADC scan loop is finished (RPS Signal 0 reset) */
+ while (s626_mc_test(dev, S626_MC2_ADC_RPS, S626_P_MC2))
+ ;
+
+ /*
+ * Init ptr to DMA buffer that holds new ADC data. We skip the
+ * first uint16_t in the buffer because it contains junk data from
+ * the final ADC of the previous poll list scan.
+ */
+ readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
+
+ /*
+ * Convert ADC data to 16-bit integer values and
+ * copy to application buffer.
+ */
+ for (i = 0; i < devpriv->adc_items; i++) {
+ *data = s626_ai_reg_to_uint(*readaddr++);
+ data++;
+ }
+
+ return i;
+}
+#endif
+
+static int s626_ai_eoc(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned long context)
+{
+ unsigned int status;
+
+ status = readl(dev->mmio + S626_P_PSR);
+ if (status & S626_PSR_GPIO2)
+ return 0;
+ return -EBUSY;
+}
+
+static int s626_ai_insn_read(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ uint16_t chan = CR_CHAN(insn->chanspec);
+ uint16_t range = CR_RANGE(insn->chanspec);
+ uint16_t adc_spec = 0;
+ uint32_t gpio_image;
+ uint32_t tmp;
+ int ret;
+ int n;
+
+ /*
+ * Convert application's ADC specification into form
+ * appropriate for register programming.
+ */
+ if (range == 0)
+ adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
+ else
+ adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
+
+ /* Switch ADC analog gain. */
+ s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
+
+ /* Select ADC analog input channel. */
+ s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
+
+ for (n = 0; n < insn->n; n++) {
+ /* Delay 10 microseconds for analog input settling. */
+ udelay(10);
+
+ /* Start ADC by pulsing GPIO1 low */
+ gpio_image = readl(dev->mmio + S626_P_GPIO);
+ /* Assert ADC Start command */
+ writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+ /* and stretch it out */
+ writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+ writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+ /* Negate ADC Start command */
+ writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+
+ /*
+ * Wait for ADC to complete (GPIO2 is asserted high when
+ * ADC not busy) and for data from previous conversion to
+ * shift into FB BUFFER 1 register.
+ */
+
+ /* Wait for ADC done */
+ ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
+ if (ret)
+ return ret;
+
+ /* Fetch ADC data */
+ if (n != 0) {
+ tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
+ data[n - 1] = s626_ai_reg_to_uint(tmp);
+ }
+
+ /*
+ * Allow the ADC to stabilize for 4 microseconds before
+ * starting the next (final) conversion. This delay is
+ * necessary to allow sufficient time between last
+ * conversion finished and the start of the next
+ * conversion. Without this delay, the last conversion's
+ * data value is sometimes set to the previous
+ * conversion's data value.
+ */
+ udelay(4);
+ }
+
+ /*
+ * Start a dummy conversion to cause the data from the
+ * previous conversion to be shifted in.
+ */
+ gpio_image = readl(dev->mmio + S626_P_GPIO);
+ /* Assert ADC Start command */
+ writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+ /* and stretch it out */
+ writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+ writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+ /* Negate ADC Start command */
+ writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+
+ /* Wait for the data to arrive in FB BUFFER 1 register. */
+
+ /* Wait for ADC done */
+ ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
+ if (ret)
+ return ret;
+
+ /* Fetch ADC data from audio interface's input shift register. */
+
+ /* Fetch ADC data */
+ if (n != 0) {
+ tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
+ data[n - 1] = s626_ai_reg_to_uint(tmp);
+ }
+
+ return n;
+}
+
+static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
+{
+ int n;
+
+ for (n = 0; n < cmd->chanlist_len; n++) {
+ if (CR_RANGE(cmd->chanlist[n]) == 0)
+ ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
+ else
+ ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
+ }
+ if (n != 0)
+ ppl[n - 1] |= S626_EOPL;
+
+ return n;
+}
+
+static int s626_ai_inttrig(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ unsigned int trig_num)
+{
+ struct comedi_cmd *cmd = &s->async->cmd;
+
+ if (trig_num != cmd->start_arg)
+ return -EINVAL;
+
+ /* Start executing the RPS program */
+ s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
+
+ s->async->inttrig = NULL;
+
+ return 1;
+}
+
+/*
+ * This function doesn't require a particular form, this is just what
+ * happens to be used in some of the drivers. It should convert ns
+ * nanoseconds to a counter value suitable for programming the device.
+ * Also, it should adjust ns so that it cooresponds to the actual time
+ * that the device will use.
+ */
+static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
+{
+ int divider, base;
+
+ base = 500; /* 2MHz internal clock */
+
+ switch (flags & CMDF_ROUND_MASK) {
+ case CMDF_ROUND_NEAREST:
+ default:
+ divider = DIV_ROUND_CLOSEST(*nanosec, base);
+ break;
+ case CMDF_ROUND_DOWN:
+ divider = (*nanosec) / base;
+ break;
+ case CMDF_ROUND_UP:
+ divider = DIV_ROUND_UP(*nanosec, base);
+ break;
+ }
+
+ *nanosec = base * divider;
+ return divider - 1;
+}
+
+static void s626_timer_load(struct comedi_device *dev,
+ unsigned int chan, int tick)
+{
+ uint16_t setup =
+ /* Preload upon index. */
+ S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
+ /* Disable hardware index. */
+ S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
+ /* Operating mode is Timer. */
+ S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
+ /* Count direction is Down. */
+ S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
+ /* Clock multiplier is 1x. */
+ S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
+ /* Enabled by index */
+ S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
+ uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
+ /* uint16_t enab = S626_CLKENAB_ALWAYS; */
+
+ s626_set_mode(dev, chan, setup, false);
+
+ /* Set the preload register */
+ s626_preload(dev, chan, tick);
+
+ /*
+ * Software index pulse forces the preload register to load
+ * into the counter
+ */
+ s626_set_load_trig(dev, chan, 0);
+ s626_pulse_index(dev, chan);
+
+ /* set reload on counter overflow */
+ s626_set_load_trig(dev, chan, 1);
+
+ /* set interrupt on overflow */
+ s626_set_int_src(dev, chan, S626_INTSRC_OVER);
+
+ s626_set_latch_source(dev, chan, value_latchsrc);
+ /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
+}
+
+/* TO COMPLETE */
+static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
+{
+ struct s626_private *devpriv = dev->private;
+ uint8_t ppl[16];
+ struct comedi_cmd *cmd = &s->async->cmd;
+ int tick;
+
+ if (devpriv->ai_cmd_running) {
+ dev_err(dev->class_dev,
+ "s626_ai_cmd: Another ai_cmd is running\n");
+ return -EBUSY;
+ }
+ /* disable interrupt */
+ writel(0, dev->mmio + S626_P_IER);
+
+ /* clear interrupt request */
+ writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
+
+ /* clear any pending interrupt */
+ s626_dio_clear_irq(dev);
+ /* s626_enc_clear_irq(dev); */
+
+ /* reset ai_cmd_running flag */
+ devpriv->ai_cmd_running = 0;
+
+ s626_ai_load_polllist(ppl, cmd);
+ devpriv->ai_cmd_running = 1;
+ devpriv->ai_convert_count = 0;
+
+ switch (cmd->scan_begin_src) {
+ case TRIG_FOLLOW:
+ break;
+ case TRIG_TIMER:
+ /*
+ * set a counter to generate adc trigger at scan_begin_arg
+ * interval
+ */
+ tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
+
+ /* load timer value and enable interrupt */
+ s626_timer_load(dev, 5, tick);
+ s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
+ break;
+ case TRIG_EXT:
+ /* set the digital line and interrupt for scan trigger */
+ if (cmd->start_src != TRIG_EXT)
+ s626_dio_set_irq(dev, cmd->scan_begin_arg);
+ break;
+ }
+
+ switch (cmd->convert_src) {
+ case TRIG_NOW:
+ break;
+ case TRIG_TIMER:
+ /*
+ * set a counter to generate adc trigger at convert_arg
+ * interval
+ */
+ tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
+
+ /* load timer value and enable interrupt */
+ s626_timer_load(dev, 4, tick);
+ s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
+ break;
+ case TRIG_EXT:
+ /* set the digital line and interrupt for convert trigger */
+ if (cmd->scan_begin_src != TRIG_EXT &&
+ cmd->start_src == TRIG_EXT)
+ s626_dio_set_irq(dev, cmd->convert_arg);
+ break;
+ }
+
+ s626_reset_adc(dev, ppl);
+
+ switch (cmd->start_src) {
+ case TRIG_NOW:
+ /* Trigger ADC scan loop start */
+ /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
+
+ /* Start executing the RPS program */
+ s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
+ s->async->inttrig = NULL;
+ break;
+ case TRIG_EXT:
+ /* configure DIO channel for acquisition trigger */
+ s626_dio_set_irq(dev, cmd->start_arg);
+ s->async->inttrig = NULL;
+ break;
+ case TRIG_INT:
+ s->async->inttrig = s626_ai_inttrig;
+ break;
+ }
+
+ /* enable interrupt */
+ writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
+
+ return 0;
+}
+
+static int s626_ai_cmdtest(struct comedi_device *dev,
+ struct comedi_subdevice *s, struct comedi_cmd *cmd)
+{
+ int err = 0;
+ unsigned int arg;
+
+ /* Step 1 : check if triggers are trivially valid */
+
+ err |= comedi_check_trigger_src(&cmd->start_src,
+ TRIG_NOW | TRIG_INT | TRIG_EXT);
+ err |= comedi_check_trigger_src(&cmd->scan_begin_src,
+ TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
+ err |= comedi_check_trigger_src(&cmd->convert_src,
+ TRIG_TIMER | TRIG_EXT | TRIG_NOW);
+ err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
+ err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
+
+ if (err)
+ return 1;
+
+ /* Step 2a : make sure trigger sources are unique */
+
+ err |= comedi_check_trigger_is_unique(cmd->start_src);
+ err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
+ err |= comedi_check_trigger_is_unique(cmd->convert_src);
+ err |= comedi_check_trigger_is_unique(cmd->stop_src);
+
+ /* Step 2b : and mutually compatible */
+
+ if (err)
+ return 2;
+
+ /* Step 3: check if arguments are trivially valid */
+
+ switch (cmd->start_src) {
+ case TRIG_NOW:
+ case TRIG_INT:
+ err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
+ break;
+ case TRIG_EXT:
+ err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
+ break;
+ }
+
+ if (cmd->scan_begin_src == TRIG_EXT)
+ err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
+ if (cmd->convert_src == TRIG_EXT)
+ err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
+
+#define S626_MAX_SPEED 200000 /* in nanoseconds */
+#define S626_MIN_SPEED 2000000000 /* in nanoseconds */
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
+ S626_MAX_SPEED);
+ err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
+ S626_MIN_SPEED);
+ } else {
+ /*
+ * external trigger
+ * should be level/edge, hi/lo specification here
+ * should specify multiple external triggers
+ * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
+ */
+ }
+ if (cmd->convert_src == TRIG_TIMER) {
+ err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
+ S626_MAX_SPEED);
+ err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
+ S626_MIN_SPEED);
+ } else {
+ /*
+ * external trigger - see above
+ * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
+ */
+ }
+
+ err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
+ cmd->chanlist_len);
+
+ if (cmd->stop_src == TRIG_COUNT)
+ err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
+ else /* TRIG_NONE */
+ err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
+
+ if (err)
+ return 3;
+
+ /* step 4: fix up any arguments */
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ arg = cmd->scan_begin_arg;
+ s626_ns_to_timer(&arg, cmd->flags);
+ err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
+ }
+
+ if (cmd->convert_src == TRIG_TIMER) {
+ arg = cmd->convert_arg;
+ s626_ns_to_timer(&arg, cmd->flags);
+ err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ arg = cmd->convert_arg * cmd->scan_end_arg;
+ err |= comedi_check_trigger_arg_min(&cmd->
+ scan_begin_arg,
+ arg);
+ }
+ }
+
+ if (err)
+ return 4;
+
+ return 0;
+}
+
+static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
+{
+ struct s626_private *devpriv = dev->private;
+
+ /* Stop RPS program in case it is currently running */
+ s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
+
+ /* disable master interrupt */
+ writel(0, dev->mmio + S626_P_IER);
+
+ devpriv->ai_cmd_running = 0;
+
+ return 0;
+}
+
+static int s626_ao_insn_write(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ unsigned int chan = CR_CHAN(insn->chanspec);
+ int i;
+
+ for (i = 0; i < insn->n; i++) {
+ int16_t dacdata = (int16_t)data[i];
+ int ret;
+
+ dacdata -= (0x1fff);
+
+ ret = s626_set_dac(dev, chan, dacdata);
+ if (ret)
+ return ret;
+
+ s->readback[chan] = data[i];
+ }
+
+ return insn->n;
+}
+
+/* *************** DIGITAL I/O FUNCTIONS *************** */
+
+/*
+ * All DIO functions address a group of DIO channels by means of
+ * "group" argument. group may be 0, 1 or 2, which correspond to DIO
+ * ports A, B and C, respectively.
+ */
+
+static void s626_dio_init(struct comedi_device *dev)
+{
+ uint16_t group;
+
+ /* Prepare to treat writes to WRCapSel as capture disables. */
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
+
+ /* For each group of sixteen channels ... */
+ for (group = 0; group < S626_DIO_BANKS; group++) {
+ /* Disable all interrupts */
+ s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
+ /* Disable all event captures */
+ s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
+ /* Init all DIOs to default edge polarity */
+ s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
+ /* Program all outputs to inactive state */
+ s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
+ }
+}
+
+static int s626_dio_insn_bits(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ unsigned long group = (unsigned long)s->private;
+
+ if (comedi_dio_update_state(s, data))
+ s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
+
+ data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
+
+ return insn->n;
+}
+
+static int s626_dio_insn_config(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ unsigned long group = (unsigned long)s->private;
+ int ret;
+
+ ret = comedi_dio_insn_config(dev, s, insn, data, 0);
+ if (ret)
+ return ret;
+
+ s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
+
+ return insn->n;
+}
+
+/*
+ * Now this function initializes the value of the counter (data[0])
+ * and set the subdevice. To complete with trigger and interrupt
+ * configuration.
+ *
+ * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
+ * what is being configured, but this function appears to be using data[0]
+ * as a variable.
+ */
+static int s626_enc_insn_config(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
+ unsigned int chan = CR_CHAN(insn->chanspec);
+ uint16_t setup =
+ /* Preload upon index. */
+ S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
+ /* Disable hardware index. */
+ S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
+ /* Operating mode is Counter. */
+ S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
+ /* Active high clock. */
+ S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
+ /* Clock multiplier is 1x. */
+ S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
+ /* Enabled by index */
+ S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
+ /* uint16_t disable_int_src = true; */
+ /* uint32_t Preloadvalue; //Counter initial value */
+ uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
+ uint16_t enab = S626_CLKENAB_ALWAYS;
+
+ /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
+
+ s626_set_mode(dev, chan, setup, true);
+ s626_preload(dev, chan, data[0]);
+ s626_pulse_index(dev, chan);
+ s626_set_latch_source(dev, chan, value_latchsrc);
+ s626_set_enable(dev, chan, (enab != 0));
+
+ return insn->n;
+}
+
+static int s626_enc_insn_read(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ unsigned int chan = CR_CHAN(insn->chanspec);
+ uint16_t cntr_latch_reg = S626_LP_CNTR(chan);
+ int i;
+
+ for (i = 0; i < insn->n; i++) {
+ unsigned int val;
+
+ /*
+ * Read the counter's output latch LSW/MSW.
+ * Latches on LSW read.
+ */
+ val = s626_debi_read(dev, cntr_latch_reg);
+ val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
+ data[i] = val;
+ }
+
+ return insn->n;
+}
+
+static int s626_enc_insn_write(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
+ unsigned int chan = CR_CHAN(insn->chanspec);
+
+ /* Set the preload register */
+ s626_preload(dev, chan, data[0]);
+
+ /*
+ * Software index pulse forces the preload register to load
+ * into the counter
+ */
+ s626_set_load_trig(dev, chan, 0);
+ s626_pulse_index(dev, chan);
+ s626_set_load_trig(dev, chan, 2);
+
+ return 1;
+}
+
+static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
+{
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
+ s626_debi_write(dev, S626_LP_WRMISC2, new_image);
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
+}
+
+static void s626_counters_init(struct comedi_device *dev)
+{
+ int chan;
+ uint16_t setup =
+ /* Preload upon index. */
+ S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
+ /* Disable hardware index. */
+ S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
+ /* Operating mode is counter. */
+ S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
+ /* Active high clock. */
+ S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
+ /* Clock multiplier is 1x. */
+ S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
+ /* Enabled by index */
+ S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
+
+ /*
+ * Disable all counter interrupts and clear any captured counter events.
+ */
+ for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
+ s626_set_mode(dev, chan, setup, true);
+ s626_set_int_src(dev, chan, 0);
+ s626_reset_cap_flags(dev, chan);
+ s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
+ }
+}
+
+static int s626_allocate_dma_buffers(struct comedi_device *dev)
+{
+ struct pci_dev *pcidev = comedi_to_pci_dev(dev);
+ struct s626_private *devpriv = dev->private;
+ void *addr;
+ dma_addr_t appdma;
+
+ addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
+ if (!addr)
+ return -ENOMEM;
+ devpriv->ana_buf.logical_base = addr;
+ devpriv->ana_buf.physical_base = appdma;
+
+ addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
+ if (!addr)
+ return -ENOMEM;
+ devpriv->rps_buf.logical_base = addr;
+ devpriv->rps_buf.physical_base = appdma;
+
+ return 0;
+}
+
+static void s626_free_dma_buffers(struct comedi_device *dev)
+{
+ struct pci_dev *pcidev = comedi_to_pci_dev(dev);
+ struct s626_private *devpriv = dev->private;
+
+ if (!devpriv)
+ return;
+
+ if (devpriv->rps_buf.logical_base)
+ pci_free_consistent(pcidev, S626_DMABUF_SIZE,
+ devpriv->rps_buf.logical_base,
+ devpriv->rps_buf.physical_base);
+ if (devpriv->ana_buf.logical_base)
+ pci_free_consistent(pcidev, S626_DMABUF_SIZE,
+ devpriv->ana_buf.logical_base,
+ devpriv->ana_buf.physical_base);
+}
+
+static int s626_initialize(struct comedi_device *dev)
+{
+ struct s626_private *devpriv = dev->private;
+ dma_addr_t phys_buf;
+ uint16_t chan;
+ int i;
+ int ret;
+
+ /* Enable DEBI and audio pins, enable I2C interface */
+ s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
+ S626_P_MC1);
+
+ /*
+ * Configure DEBI operating mode
+ *
+ * Local bus is 16 bits wide
+ * Declare DEBI transfer timeout interval
+ * Set up byte lane steering
+ * Intel-compatible local bus (DEBI never times out)
+ */
+ writel(S626_DEBI_CFG_SLAVE16 |
+ (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
+ S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
+
+ /* Disable MMU paging */
+ writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
+
+ /* Init GPIO so that ADC Start* is negated */
+ writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
+
+ /* I2C device address for onboard eeprom (revb) */
+ devpriv->i2c_adrs = 0xA0;
+
+ /*
+ * Issue an I2C ABORT command to halt any I2C
+ * operation in progress and reset BUSY flag.
+ */
+ writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
+ dev->mmio + S626_P_I2CSTAT);
+ s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
+ ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
+ if (ret)
+ return ret;
+
+ /*
+ * Per SAA7146 data sheet, write to STATUS
+ * reg twice to reset all I2C error flags.
+ */
+ for (i = 0; i < 2; i++) {
+ writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
+ s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
+ ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
+ if (ret)
+ return ret;
+ }
+
+ /*
+ * Init audio interface functional attributes: set DAC/ADC
+ * serial clock rates, invert DAC serial clock so that
+ * DAC data setup times are satisfied, enable DAC serial
+ * clock out.
+ */
+ writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
+
+ /*
+ * Set up TSL1 slot list, which is used to control the
+ * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
+ * S626_SIB_A1 = store data uint8_t at next available location
+ * in FB BUFFER1 register.
+ */
+ writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
+ writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
+ dev->mmio + S626_P_TSL1 + 4);
+
+ /* Enable TSL1 slot list so that it executes all the time */
+ writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
+
+ /*
+ * Initialize RPS registers used for ADC
+ */
+
+ /* Physical start of RPS program */
+ writel((uint32_t)devpriv->rps_buf.physical_base,
+ dev->mmio + S626_P_RPSADDR1);
+ /* RPS program performs no explicit mem writes */
+ writel(0, dev->mmio + S626_P_RPSPAGE1);
+ /* Disable RPS timeouts */
+ writel(0, dev->mmio + S626_P_RPS1_TOUT);
+
+#if 0
+ /*
+ * SAA7146 BUG WORKAROUND
+ *
+ * Initialize SAA7146 ADC interface to a known state by
+ * invoking ADCs until FB BUFFER 1 register shows that it
+ * is correctly receiving ADC data. This is necessary
+ * because the SAA7146 ADC interface does not start up in
+ * a defined state after a PCI reset.
+ */
+ {
+ struct comedi_subdevice *s = dev->read_subdev;
+ uint8_t poll_list;
+ uint16_t adc_data;
+ uint16_t start_val;
+ uint16_t index;
+ unsigned int data[16];
+
+ /* Create a simple polling list for analog input channel 0 */
+ poll_list = S626_EOPL;
+ s626_reset_adc(dev, &poll_list);
+
+ /* Get initial ADC value */
+ s626_ai_rinsn(dev, s, NULL, data);
+ start_val = data[0];
+
+ /*
+ * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
+ * EXECUTION.
+ *
+ * Invoke ADCs until the new ADC value differs from the initial
+ * value or a timeout occurs. The timeout protects against the
+ * possibility that the driver is restarting and the ADC data is
+ * a fixed value resulting from the applied ADC analog input
+ * being unusually quiet or at the rail.
+ */
+ for (index = 0; index < 500; index++) {
+ s626_ai_rinsn(dev, s, NULL, data);
+ adc_data = data[0];
+ if (adc_data != start_val)
+ break;
+ }
+ }
+#endif /* SAA7146 BUG WORKAROUND */
+
+ /*
+ * Initialize the DAC interface
+ */
+
+ /*
+ * Init Audio2's output DMAC attributes:
+ * burst length = 1 DWORD
+ * threshold = 1 DWORD.
+ */
+ writel(0, dev->mmio + S626_P_PCI_BT_A);
+
+ /*
+ * Init Audio2's output DMA physical addresses. The protection
+ * address is set to 1 DWORD past the base address so that a
+ * single DWORD will be transferred each time a DMA transfer is
+ * enabled.
+ */
+ phys_buf = devpriv->ana_buf.physical_base +
+ (S626_DAC_WDMABUF_OS * sizeof(uint32_t));
+ writel((uint32_t)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
+ writel((uint32_t)(phys_buf + sizeof(uint32_t)),
+ dev->mmio + S626_P_PROTA2_OUT);
+
+ /*
+ * Cache Audio2's output DMA buffer logical address. This is
+ * where DAC data is buffered for A2 output DMA transfers.
+ */
+ devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
+ S626_DAC_WDMABUF_OS;
+
+ /*
+ * Audio2's output channels does not use paging. The
+ * protection violation handling bit is set so that the
+ * DMAC will automatically halt and its PCI address pointer
+ * will be reset when the protection address is reached.
+ */
+ writel(8, dev->mmio + S626_P_PAGEA2_OUT);
+
+ /*
+ * Initialize time slot list 2 (TSL2), which is used to control
+ * the clock generation for and serialization of data to be sent
+ * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
+ * execution; this permits other slots to be safely modified
+ * without first turning off the TSL sequencer (which is
+ * apparently impossible to do). Also, SD3 (which is driven by a
+ * pull-up resistor) is shifted in and stored to the MSB of
+ * FB_BUFFER2 to be used as evidence that the slot sequence has
+ * not yet finished executing.
+ */
+
+ /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
+ writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
+ dev->mmio + S626_VECTPORT(0));
+
+ /*
+ * Initialize slot 1, which is constant. Slot 1 causes a
+ * DWORD to be transferred from audio channel 2's output FIFO
+ * to the FIFO's output buffer so that it can be serialized
+ * and sent to the DAC during subsequent slots. All remaining
+ * slots are dynamically populated as required by the target
+ * DAC device.
+ */
+
+ /* Slot 1: Fetch DWORD from Audio2's output FIFO */
+ writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
+
+ /* Start DAC's audio interface (TSL2) running */
+ writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
+
+ /*
+ * Init Trim DACs to calibrated values. Do it twice because the
+ * SAA7146 audio channel does not always reset properly and
+ * sometimes causes the first few TrimDAC writes to malfunction.
+ */
+ s626_load_trim_dacs(dev);
+ ret = s626_load_trim_dacs(dev);
+ if (ret)
+ return ret;
+
+ /*
+ * Manually init all gate array hardware in case this is a soft
+ * reset (we have no way of determining whether this is a warm
+ * or cold start). This is necessary because the gate array will
+ * reset only in response to a PCI hard reset; there is no soft
+ * reset function.
+ */
+
+ /*
+ * Init all DAC outputs to 0V and init all DAC setpoint and
+ * polarity images.
+ */
+ for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
+ ret = s626_set_dac(dev, chan, 0);
+ if (ret)
+ return ret;
+ }
+
+ /* Init counters */
+ s626_counters_init(dev);
+
+ /*
+ * Without modifying the state of the Battery Backup enab, disable
+ * the watchdog timer, set DIO channels 0-5 to operate in the
+ * standard DIO (vs. counter overflow) mode, disable the battery
+ * charger, and reset the watchdog interval selector to zero.
+ */
+ s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
+ S626_MISC2_BATT_ENABLE));
+
+ /* Initialize the digital I/O subsystem */
+ s626_dio_init(dev);
+
+ return 0;
+}
+
+static int s626_auto_attach(struct comedi_device *dev,
+ unsigned long context_unused)
+{
+ struct pci_dev *pcidev = comedi_to_pci_dev(dev);
+ struct s626_private *devpriv;
+ struct comedi_subdevice *s;
+ int ret;
+
+ devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
+ if (!devpriv)
+ return -ENOMEM;
+
+ ret = comedi_pci_enable(dev);
+ if (ret)
+ return ret;
+
+ dev->mmio = pci_ioremap_bar(pcidev, 0);
+ if (!dev->mmio)
+ return -ENOMEM;
+
+ /* disable master interrupt */
+ writel(0, dev->mmio + S626_P_IER);
+
+ /* soft reset */
+ writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
+
+ /* DMA FIXME DMA// */
+
+ ret = s626_allocate_dma_buffers(dev);
+ if (ret)
+ return ret;
+
+ if (pcidev->irq) {
+ ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
+ dev->board_name, dev);
+
+ if (ret == 0)
+ dev->irq = pcidev->irq;
+ }
+
+ ret = comedi_alloc_subdevices(dev, 6);
+ if (ret)
+ return ret;
+
+ s = &dev->subdevices[0];
+ /* analog input subdevice */
+ s->type = COMEDI_SUBD_AI;
+ s->subdev_flags = SDF_READABLE | SDF_DIFF;
+ s->n_chan = S626_ADC_CHANNELS;
+ s->maxdata = 0x3fff;
+ s->range_table = &s626_range_table;
+ s->len_chanlist = S626_ADC_CHANNELS;
+ s->insn_read = s626_ai_insn_read;
+ if (dev->irq) {
+ dev->read_subdev = s;
+ s->subdev_flags |= SDF_CMD_READ;
+ s->do_cmd = s626_ai_cmd;
+ s->do_cmdtest = s626_ai_cmdtest;
+ s->cancel = s626_ai_cancel;
+ }
+
+ s = &dev->subdevices[1];
+ /* analog output subdevice */
+ s->type = COMEDI_SUBD_AO;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+ s->n_chan = S626_DAC_CHANNELS;
+ s->maxdata = 0x3fff;
+ s->range_table = &range_bipolar10;
+ s->insn_write = s626_ao_insn_write;
+
+ ret = comedi_alloc_subdev_readback(s);
+ if (ret)
+ return ret;
+
+ s = &dev->subdevices[2];
+ /* digital I/O subdevice */
+ s->type = COMEDI_SUBD_DIO;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+ s->n_chan = 16;
+ s->maxdata = 1;
+ s->io_bits = 0xffff;
+ s->private = (void *)0; /* DIO group 0 */
+ s->range_table = &range_digital;
+ s->insn_config = s626_dio_insn_config;
+ s->insn_bits = s626_dio_insn_bits;
+
+ s = &dev->subdevices[3];
+ /* digital I/O subdevice */
+ s->type = COMEDI_SUBD_DIO;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+ s->n_chan = 16;
+ s->maxdata = 1;
+ s->io_bits = 0xffff;
+ s->private = (void *)1; /* DIO group 1 */
+ s->range_table = &range_digital;
+ s->insn_config = s626_dio_insn_config;
+ s->insn_bits = s626_dio_insn_bits;
+
+ s = &dev->subdevices[4];
+ /* digital I/O subdevice */
+ s->type = COMEDI_SUBD_DIO;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+ s->n_chan = 16;
+ s->maxdata = 1;
+ s->io_bits = 0xffff;
+ s->private = (void *)2; /* DIO group 2 */
+ s->range_table = &range_digital;
+ s->insn_config = s626_dio_insn_config;
+ s->insn_bits = s626_dio_insn_bits;
+
+ s = &dev->subdevices[5];
+ /* encoder (counter) subdevice */
+ s->type = COMEDI_SUBD_COUNTER;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
+ s->n_chan = S626_ENCODER_CHANNELS;
+ s->maxdata = 0xffffff;
+ s->range_table = &range_unknown;
+ s->insn_config = s626_enc_insn_config;
+ s->insn_read = s626_enc_insn_read;
+ s->insn_write = s626_enc_insn_write;
+
+ ret = s626_initialize(dev);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static void s626_detach(struct comedi_device *dev)
+{
+ struct s626_private *devpriv = dev->private;
+
+ if (devpriv) {
+ /* stop ai_command */
+ devpriv->ai_cmd_running = 0;
+
+ if (dev->mmio) {
+ /* interrupt mask */
+ /* Disable master interrupt */
+ writel(0, dev->mmio + S626_P_IER);
+ /* Clear board's IRQ status flag */
+ writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
+ dev->mmio + S626_P_ISR);
+
+ /* Disable the watchdog timer and battery charger. */
+ s626_write_misc2(dev, 0);
+
+ /* Close all interfaces on 7146 device */
+ writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
+ writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
+ }
+ }
+ comedi_pci_detach(dev);
+ s626_free_dma_buffers(dev);
+}
+
+static struct comedi_driver s626_driver = {
+ .driver_name = "s626",
+ .module = THIS_MODULE,
+ .auto_attach = s626_auto_attach,
+ .detach = s626_detach,
+};
+
+static int s626_pci_probe(struct pci_dev *dev,
+ const struct pci_device_id *id)
+{
+ return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
+}
+
+/*
+ * For devices with vendor:device id == 0x1131:0x7146 you must specify
+ * also subvendor:subdevice ids, because otherwise it will conflict with
+ * Philips SAA7146 media/dvb based cards.
+ */
+static const struct pci_device_id s626_pci_table[] = {
+ { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
+ 0x6000, 0x0272) },
+ { 0 }
+};
+MODULE_DEVICE_TABLE(pci, s626_pci_table);
+
+static struct pci_driver s626_pci_driver = {
+ .name = "s626",
+ .id_table = s626_pci_table,
+ .probe = s626_pci_probe,
+ .remove = comedi_pci_auto_unconfig,
+};
+module_comedi_pci_driver(s626_driver, s626_pci_driver);
+
+MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
+MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
+MODULE_LICENSE("GPL");