summaryrefslogtreecommitdiff
path: root/fs/ubifs/io.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ubifs/io.c')
-rw-r--r--fs/ubifs/io.c1150
1 files changed, 1150 insertions, 0 deletions
diff --git a/fs/ubifs/io.c b/fs/ubifs/io.c
new file mode 100644
index 000000000..97be41215
--- /dev/null
+++ b/fs/ubifs/io.c
@@ -0,0 +1,1150 @@
+/*
+ * This file is part of UBIFS.
+ *
+ * Copyright (C) 2006-2008 Nokia Corporation.
+ * Copyright (C) 2006, 2007 University of Szeged, Hungary
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 51
+ * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Authors: Artem Bityutskiy (Битюцкий Артём)
+ * Adrian Hunter
+ * Zoltan Sogor
+ */
+
+/*
+ * This file implements UBIFS I/O subsystem which provides various I/O-related
+ * helper functions (reading/writing/checking/validating nodes) and implements
+ * write-buffering support. Write buffers help to save space which otherwise
+ * would have been wasted for padding to the nearest minimal I/O unit boundary.
+ * Instead, data first goes to the write-buffer and is flushed when the
+ * buffer is full or when it is not used for some time (by timer). This is
+ * similar to the mechanism is used by JFFS2.
+ *
+ * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
+ * write size (@c->max_write_size). The latter is the maximum amount of bytes
+ * the underlying flash is able to program at a time, and writing in
+ * @c->max_write_size units should presumably be faster. Obviously,
+ * @c->min_io_size <= @c->max_write_size. Write-buffers are of
+ * @c->max_write_size bytes in size for maximum performance. However, when a
+ * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
+ * boundary) which contains data is written, not the whole write-buffer,
+ * because this is more space-efficient.
+ *
+ * This optimization adds few complications to the code. Indeed, on the one
+ * hand, we want to write in optimal @c->max_write_size bytes chunks, which
+ * also means aligning writes at the @c->max_write_size bytes offsets. On the
+ * other hand, we do not want to waste space when synchronizing the write
+ * buffer, so during synchronization we writes in smaller chunks. And this makes
+ * the next write offset to be not aligned to @c->max_write_size bytes. So the
+ * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
+ * to @c->max_write_size bytes again. We do this by temporarily shrinking
+ * write-buffer size (@wbuf->size).
+ *
+ * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
+ * mutexes defined inside these objects. Since sometimes upper-level code
+ * has to lock the write-buffer (e.g. journal space reservation code), many
+ * functions related to write-buffers have "nolock" suffix which means that the
+ * caller has to lock the write-buffer before calling this function.
+ *
+ * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
+ * aligned, UBIFS starts the next node from the aligned address, and the padded
+ * bytes may contain any rubbish. In other words, UBIFS does not put padding
+ * bytes in those small gaps. Common headers of nodes store real node lengths,
+ * not aligned lengths. Indexing nodes also store real lengths in branches.
+ *
+ * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
+ * uses padding nodes or padding bytes, if the padding node does not fit.
+ *
+ * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
+ * they are read from the flash media.
+ */
+
+#include <linux/crc32.h>
+#include <linux/slab.h>
+#include "ubifs.h"
+
+/**
+ * ubifs_ro_mode - switch UBIFS to read read-only mode.
+ * @c: UBIFS file-system description object
+ * @err: error code which is the reason of switching to R/O mode
+ */
+void ubifs_ro_mode(struct ubifs_info *c, int err)
+{
+ if (!c->ro_error) {
+ c->ro_error = 1;
+ c->no_chk_data_crc = 0;
+ c->vfs_sb->s_flags |= MS_RDONLY;
+ ubifs_warn(c, "switched to read-only mode, error %d", err);
+ dump_stack();
+ }
+}
+
+/*
+ * Below are simple wrappers over UBI I/O functions which include some
+ * additional checks and UBIFS debugging stuff. See corresponding UBI function
+ * for more information.
+ */
+
+int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
+ int len, int even_ebadmsg)
+{
+ int err;
+
+ err = ubi_read(c->ubi, lnum, buf, offs, len);
+ /*
+ * In case of %-EBADMSG print the error message only if the
+ * @even_ebadmsg is true.
+ */
+ if (err && (err != -EBADMSG || even_ebadmsg)) {
+ ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
+ len, lnum, offs, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
+ int len)
+{
+ int err;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+ if (!dbg_is_tst_rcvry(c))
+ err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
+ else
+ err = dbg_leb_write(c, lnum, buf, offs, len);
+ if (err) {
+ ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
+ len, lnum, offs, err);
+ ubifs_ro_mode(c, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
+{
+ int err;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+ if (!dbg_is_tst_rcvry(c))
+ err = ubi_leb_change(c->ubi, lnum, buf, len);
+ else
+ err = dbg_leb_change(c, lnum, buf, len);
+ if (err) {
+ ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
+ len, lnum, err);
+ ubifs_ro_mode(c, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
+{
+ int err;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+ if (!dbg_is_tst_rcvry(c))
+ err = ubi_leb_unmap(c->ubi, lnum);
+ else
+ err = dbg_leb_unmap(c, lnum);
+ if (err) {
+ ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
+ ubifs_ro_mode(c, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_leb_map(struct ubifs_info *c, int lnum)
+{
+ int err;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+ if (!dbg_is_tst_rcvry(c))
+ err = ubi_leb_map(c->ubi, lnum);
+ else
+ err = dbg_leb_map(c, lnum);
+ if (err) {
+ ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
+ ubifs_ro_mode(c, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
+{
+ int err;
+
+ err = ubi_is_mapped(c->ubi, lnum);
+ if (err < 0) {
+ ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
+ lnum, err);
+ dump_stack();
+ }
+ return err;
+}
+
+/**
+ * ubifs_check_node - check node.
+ * @c: UBIFS file-system description object
+ * @buf: node to check
+ * @lnum: logical eraseblock number
+ * @offs: offset within the logical eraseblock
+ * @quiet: print no messages
+ * @must_chk_crc: indicates whether to always check the CRC
+ *
+ * This function checks node magic number and CRC checksum. This function also
+ * validates node length to prevent UBIFS from becoming crazy when an attacker
+ * feeds it a file-system image with incorrect nodes. For example, too large
+ * node length in the common header could cause UBIFS to read memory outside of
+ * allocated buffer when checking the CRC checksum.
+ *
+ * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
+ * true, which is controlled by corresponding UBIFS mount option. However, if
+ * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
+ * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
+ * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
+ * is checked. This is because during mounting or re-mounting from R/O mode to
+ * R/W mode we may read journal nodes (when replying the journal or doing the
+ * recovery) and the journal nodes may potentially be corrupted, so checking is
+ * required.
+ *
+ * This function returns zero in case of success and %-EUCLEAN in case of bad
+ * CRC or magic.
+ */
+int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
+ int offs, int quiet, int must_chk_crc)
+{
+ int err = -EINVAL, type, node_len;
+ uint32_t crc, node_crc, magic;
+ const struct ubifs_ch *ch = buf;
+
+ ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
+ ubifs_assert(!(offs & 7) && offs < c->leb_size);
+
+ magic = le32_to_cpu(ch->magic);
+ if (magic != UBIFS_NODE_MAGIC) {
+ if (!quiet)
+ ubifs_err(c, "bad magic %#08x, expected %#08x",
+ magic, UBIFS_NODE_MAGIC);
+ err = -EUCLEAN;
+ goto out;
+ }
+
+ type = ch->node_type;
+ if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
+ if (!quiet)
+ ubifs_err(c, "bad node type %d", type);
+ goto out;
+ }
+
+ node_len = le32_to_cpu(ch->len);
+ if (node_len + offs > c->leb_size)
+ goto out_len;
+
+ if (c->ranges[type].max_len == 0) {
+ if (node_len != c->ranges[type].len)
+ goto out_len;
+ } else if (node_len < c->ranges[type].min_len ||
+ node_len > c->ranges[type].max_len)
+ goto out_len;
+
+ if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
+ !c->remounting_rw && c->no_chk_data_crc)
+ return 0;
+
+ crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
+ node_crc = le32_to_cpu(ch->crc);
+ if (crc != node_crc) {
+ if (!quiet)
+ ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
+ crc, node_crc);
+ err = -EUCLEAN;
+ goto out;
+ }
+
+ return 0;
+
+out_len:
+ if (!quiet)
+ ubifs_err(c, "bad node length %d", node_len);
+out:
+ if (!quiet) {
+ ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
+ ubifs_dump_node(c, buf);
+ dump_stack();
+ }
+ return err;
+}
+
+/**
+ * ubifs_pad - pad flash space.
+ * @c: UBIFS file-system description object
+ * @buf: buffer to put padding to
+ * @pad: how many bytes to pad
+ *
+ * The flash media obliges us to write only in chunks of %c->min_io_size and
+ * when we have to write less data we add padding node to the write-buffer and
+ * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
+ * media is being scanned. If the amount of wasted space is not enough to fit a
+ * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
+ * pattern (%UBIFS_PADDING_BYTE).
+ *
+ * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
+ * used.
+ */
+void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
+{
+ uint32_t crc;
+
+ ubifs_assert(pad >= 0 && !(pad & 7));
+
+ if (pad >= UBIFS_PAD_NODE_SZ) {
+ struct ubifs_ch *ch = buf;
+ struct ubifs_pad_node *pad_node = buf;
+
+ ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
+ ch->node_type = UBIFS_PAD_NODE;
+ ch->group_type = UBIFS_NO_NODE_GROUP;
+ ch->padding[0] = ch->padding[1] = 0;
+ ch->sqnum = 0;
+ ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
+ pad -= UBIFS_PAD_NODE_SZ;
+ pad_node->pad_len = cpu_to_le32(pad);
+ crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
+ ch->crc = cpu_to_le32(crc);
+ memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
+ } else if (pad > 0)
+ /* Too little space, padding node won't fit */
+ memset(buf, UBIFS_PADDING_BYTE, pad);
+}
+
+/**
+ * next_sqnum - get next sequence number.
+ * @c: UBIFS file-system description object
+ */
+static unsigned long long next_sqnum(struct ubifs_info *c)
+{
+ unsigned long long sqnum;
+
+ spin_lock(&c->cnt_lock);
+ sqnum = ++c->max_sqnum;
+ spin_unlock(&c->cnt_lock);
+
+ if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
+ if (sqnum >= SQNUM_WATERMARK) {
+ ubifs_err(c, "sequence number overflow %llu, end of life",
+ sqnum);
+ ubifs_ro_mode(c, -EINVAL);
+ }
+ ubifs_warn(c, "running out of sequence numbers, end of life soon");
+ }
+
+ return sqnum;
+}
+
+/**
+ * ubifs_prepare_node - prepare node to be written to flash.
+ * @c: UBIFS file-system description object
+ * @node: the node to pad
+ * @len: node length
+ * @pad: if the buffer has to be padded
+ *
+ * This function prepares node at @node to be written to the media - it
+ * calculates node CRC, fills the common header, and adds proper padding up to
+ * the next minimum I/O unit if @pad is not zero.
+ */
+void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
+{
+ uint32_t crc;
+ struct ubifs_ch *ch = node;
+ unsigned long long sqnum = next_sqnum(c);
+
+ ubifs_assert(len >= UBIFS_CH_SZ);
+
+ ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
+ ch->len = cpu_to_le32(len);
+ ch->group_type = UBIFS_NO_NODE_GROUP;
+ ch->sqnum = cpu_to_le64(sqnum);
+ ch->padding[0] = ch->padding[1] = 0;
+ crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
+ ch->crc = cpu_to_le32(crc);
+
+ if (pad) {
+ len = ALIGN(len, 8);
+ pad = ALIGN(len, c->min_io_size) - len;
+ ubifs_pad(c, node + len, pad);
+ }
+}
+
+/**
+ * ubifs_prep_grp_node - prepare node of a group to be written to flash.
+ * @c: UBIFS file-system description object
+ * @node: the node to pad
+ * @len: node length
+ * @last: indicates the last node of the group
+ *
+ * This function prepares node at @node to be written to the media - it
+ * calculates node CRC and fills the common header.
+ */
+void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
+{
+ uint32_t crc;
+ struct ubifs_ch *ch = node;
+ unsigned long long sqnum = next_sqnum(c);
+
+ ubifs_assert(len >= UBIFS_CH_SZ);
+
+ ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
+ ch->len = cpu_to_le32(len);
+ if (last)
+ ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
+ else
+ ch->group_type = UBIFS_IN_NODE_GROUP;
+ ch->sqnum = cpu_to_le64(sqnum);
+ ch->padding[0] = ch->padding[1] = 0;
+ crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
+ ch->crc = cpu_to_le32(crc);
+}
+
+/**
+ * wbuf_timer_callback - write-buffer timer callback function.
+ * @timer: timer data (write-buffer descriptor)
+ *
+ * This function is called when the write-buffer timer expires.
+ */
+static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
+{
+ struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
+
+ dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
+ wbuf->need_sync = 1;
+ wbuf->c->need_wbuf_sync = 1;
+ ubifs_wake_up_bgt(wbuf->c);
+ return HRTIMER_NORESTART;
+}
+
+/**
+ * new_wbuf_timer - start new write-buffer timer.
+ * @wbuf: write-buffer descriptor
+ */
+static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
+{
+ ubifs_assert(!hrtimer_active(&wbuf->timer));
+
+ if (wbuf->no_timer)
+ return;
+ dbg_io("set timer for jhead %s, %llu-%llu millisecs",
+ dbg_jhead(wbuf->jhead),
+ div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
+ div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
+ USEC_PER_SEC));
+ hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
+ HRTIMER_MODE_REL);
+}
+
+/**
+ * cancel_wbuf_timer - cancel write-buffer timer.
+ * @wbuf: write-buffer descriptor
+ */
+static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
+{
+ if (wbuf->no_timer)
+ return;
+ wbuf->need_sync = 0;
+ hrtimer_cancel(&wbuf->timer);
+}
+
+/**
+ * ubifs_wbuf_sync_nolock - synchronize write-buffer.
+ * @wbuf: write-buffer to synchronize
+ *
+ * This function synchronizes write-buffer @buf and returns zero in case of
+ * success or a negative error code in case of failure.
+ *
+ * Note, although write-buffers are of @c->max_write_size, this function does
+ * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
+ * if the write-buffer is only partially filled with data, only the used part
+ * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
+ * This way we waste less space.
+ */
+int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
+{
+ struct ubifs_info *c = wbuf->c;
+ int err, dirt, sync_len;
+
+ cancel_wbuf_timer_nolock(wbuf);
+ if (!wbuf->used || wbuf->lnum == -1)
+ /* Write-buffer is empty or not seeked */
+ return 0;
+
+ dbg_io("LEB %d:%d, %d bytes, jhead %s",
+ wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
+ ubifs_assert(!(wbuf->avail & 7));
+ ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
+ ubifs_assert(wbuf->size >= c->min_io_size);
+ ubifs_assert(wbuf->size <= c->max_write_size);
+ ubifs_assert(wbuf->size % c->min_io_size == 0);
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
+
+ if (c->ro_error)
+ return -EROFS;
+
+ /*
+ * Do not write whole write buffer but write only the minimum necessary
+ * amount of min. I/O units.
+ */
+ sync_len = ALIGN(wbuf->used, c->min_io_size);
+ dirt = sync_len - wbuf->used;
+ if (dirt)
+ ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
+ err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
+ if (err)
+ return err;
+
+ spin_lock(&wbuf->lock);
+ wbuf->offs += sync_len;
+ /*
+ * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
+ * But our goal is to optimize writes and make sure we write in
+ * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
+ * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
+ * sure that @wbuf->offs + @wbuf->size is aligned to
+ * @c->max_write_size. This way we make sure that after next
+ * write-buffer flush we are again at the optimal offset (aligned to
+ * @c->max_write_size).
+ */
+ if (c->leb_size - wbuf->offs < c->max_write_size)
+ wbuf->size = c->leb_size - wbuf->offs;
+ else if (wbuf->offs & (c->max_write_size - 1))
+ wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
+ else
+ wbuf->size = c->max_write_size;
+ wbuf->avail = wbuf->size;
+ wbuf->used = 0;
+ wbuf->next_ino = 0;
+ spin_unlock(&wbuf->lock);
+
+ if (wbuf->sync_callback)
+ err = wbuf->sync_callback(c, wbuf->lnum,
+ c->leb_size - wbuf->offs, dirt);
+ return err;
+}
+
+/**
+ * ubifs_wbuf_seek_nolock - seek write-buffer.
+ * @wbuf: write-buffer
+ * @lnum: logical eraseblock number to seek to
+ * @offs: logical eraseblock offset to seek to
+ *
+ * This function targets the write-buffer to logical eraseblock @lnum:@offs.
+ * The write-buffer has to be empty. Returns zero in case of success and a
+ * negative error code in case of failure.
+ */
+int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
+{
+ const struct ubifs_info *c = wbuf->c;
+
+ dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
+ ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
+ ubifs_assert(offs >= 0 && offs <= c->leb_size);
+ ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
+ ubifs_assert(lnum != wbuf->lnum);
+ ubifs_assert(wbuf->used == 0);
+
+ spin_lock(&wbuf->lock);
+ wbuf->lnum = lnum;
+ wbuf->offs = offs;
+ if (c->leb_size - wbuf->offs < c->max_write_size)
+ wbuf->size = c->leb_size - wbuf->offs;
+ else if (wbuf->offs & (c->max_write_size - 1))
+ wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
+ else
+ wbuf->size = c->max_write_size;
+ wbuf->avail = wbuf->size;
+ wbuf->used = 0;
+ spin_unlock(&wbuf->lock);
+
+ return 0;
+}
+
+/**
+ * ubifs_bg_wbufs_sync - synchronize write-buffers.
+ * @c: UBIFS file-system description object
+ *
+ * This function is called by background thread to synchronize write-buffers.
+ * Returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+int ubifs_bg_wbufs_sync(struct ubifs_info *c)
+{
+ int err, i;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (!c->need_wbuf_sync)
+ return 0;
+ c->need_wbuf_sync = 0;
+
+ if (c->ro_error) {
+ err = -EROFS;
+ goto out_timers;
+ }
+
+ dbg_io("synchronize");
+ for (i = 0; i < c->jhead_cnt; i++) {
+ struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
+
+ cond_resched();
+
+ /*
+ * If the mutex is locked then wbuf is being changed, so
+ * synchronization is not necessary.
+ */
+ if (mutex_is_locked(&wbuf->io_mutex))
+ continue;
+
+ mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
+ if (!wbuf->need_sync) {
+ mutex_unlock(&wbuf->io_mutex);
+ continue;
+ }
+
+ err = ubifs_wbuf_sync_nolock(wbuf);
+ mutex_unlock(&wbuf->io_mutex);
+ if (err) {
+ ubifs_err(c, "cannot sync write-buffer, error %d", err);
+ ubifs_ro_mode(c, err);
+ goto out_timers;
+ }
+ }
+
+ return 0;
+
+out_timers:
+ /* Cancel all timers to prevent repeated errors */
+ for (i = 0; i < c->jhead_cnt; i++) {
+ struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
+
+ mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
+ cancel_wbuf_timer_nolock(wbuf);
+ mutex_unlock(&wbuf->io_mutex);
+ }
+ return err;
+}
+
+/**
+ * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
+ * @wbuf: write-buffer
+ * @buf: node to write
+ * @len: node length
+ *
+ * This function writes data to flash via write-buffer @wbuf. This means that
+ * the last piece of the node won't reach the flash media immediately if it
+ * does not take whole max. write unit (@c->max_write_size). Instead, the node
+ * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
+ * because more data are appended to the write-buffer).
+ *
+ * This function returns zero in case of success and a negative error code in
+ * case of failure. If the node cannot be written because there is no more
+ * space in this logical eraseblock, %-ENOSPC is returned.
+ */
+int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
+{
+ struct ubifs_info *c = wbuf->c;
+ int err, written, n, aligned_len = ALIGN(len, 8);
+
+ dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
+ dbg_ntype(((struct ubifs_ch *)buf)->node_type),
+ dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
+ ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
+ ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
+ ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
+ ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
+ ubifs_assert(wbuf->size >= c->min_io_size);
+ ubifs_assert(wbuf->size <= c->max_write_size);
+ ubifs_assert(wbuf->size % c->min_io_size == 0);
+ ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ ubifs_assert(!c->space_fixup);
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
+
+ if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
+ err = -ENOSPC;
+ goto out;
+ }
+
+ cancel_wbuf_timer_nolock(wbuf);
+
+ if (c->ro_error)
+ return -EROFS;
+
+ if (aligned_len <= wbuf->avail) {
+ /*
+ * The node is not very large and fits entirely within
+ * write-buffer.
+ */
+ memcpy(wbuf->buf + wbuf->used, buf, len);
+
+ if (aligned_len == wbuf->avail) {
+ dbg_io("flush jhead %s wbuf to LEB %d:%d",
+ dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
+ err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
+ wbuf->offs, wbuf->size);
+ if (err)
+ goto out;
+
+ spin_lock(&wbuf->lock);
+ wbuf->offs += wbuf->size;
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ wbuf->size = c->max_write_size;
+ else
+ wbuf->size = c->leb_size - wbuf->offs;
+ wbuf->avail = wbuf->size;
+ wbuf->used = 0;
+ wbuf->next_ino = 0;
+ spin_unlock(&wbuf->lock);
+ } else {
+ spin_lock(&wbuf->lock);
+ wbuf->avail -= aligned_len;
+ wbuf->used += aligned_len;
+ spin_unlock(&wbuf->lock);
+ }
+
+ goto exit;
+ }
+
+ written = 0;
+
+ if (wbuf->used) {
+ /*
+ * The node is large enough and does not fit entirely within
+ * current available space. We have to fill and flush
+ * write-buffer and switch to the next max. write unit.
+ */
+ dbg_io("flush jhead %s wbuf to LEB %d:%d",
+ dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
+ memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
+ err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
+ wbuf->size);
+ if (err)
+ goto out;
+
+ wbuf->offs += wbuf->size;
+ len -= wbuf->avail;
+ aligned_len -= wbuf->avail;
+ written += wbuf->avail;
+ } else if (wbuf->offs & (c->max_write_size - 1)) {
+ /*
+ * The write-buffer offset is not aligned to
+ * @c->max_write_size and @wbuf->size is less than
+ * @c->max_write_size. Write @wbuf->size bytes to make sure the
+ * following writes are done in optimal @c->max_write_size
+ * chunks.
+ */
+ dbg_io("write %d bytes to LEB %d:%d",
+ wbuf->size, wbuf->lnum, wbuf->offs);
+ err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
+ wbuf->size);
+ if (err)
+ goto out;
+
+ wbuf->offs += wbuf->size;
+ len -= wbuf->size;
+ aligned_len -= wbuf->size;
+ written += wbuf->size;
+ }
+
+ /*
+ * The remaining data may take more whole max. write units, so write the
+ * remains multiple to max. write unit size directly to the flash media.
+ * We align node length to 8-byte boundary because we anyway flash wbuf
+ * if the remaining space is less than 8 bytes.
+ */
+ n = aligned_len >> c->max_write_shift;
+ if (n) {
+ n <<= c->max_write_shift;
+ dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
+ wbuf->offs);
+ err = ubifs_leb_write(c, wbuf->lnum, buf + written,
+ wbuf->offs, n);
+ if (err)
+ goto out;
+ wbuf->offs += n;
+ aligned_len -= n;
+ len -= n;
+ written += n;
+ }
+
+ spin_lock(&wbuf->lock);
+ if (aligned_len)
+ /*
+ * And now we have what's left and what does not take whole
+ * max. write unit, so write it to the write-buffer and we are
+ * done.
+ */
+ memcpy(wbuf->buf, buf + written, len);
+
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ wbuf->size = c->max_write_size;
+ else
+ wbuf->size = c->leb_size - wbuf->offs;
+ wbuf->avail = wbuf->size - aligned_len;
+ wbuf->used = aligned_len;
+ wbuf->next_ino = 0;
+ spin_unlock(&wbuf->lock);
+
+exit:
+ if (wbuf->sync_callback) {
+ int free = c->leb_size - wbuf->offs - wbuf->used;
+
+ err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
+ if (err)
+ goto out;
+ }
+
+ if (wbuf->used)
+ new_wbuf_timer_nolock(wbuf);
+
+ return 0;
+
+out:
+ ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
+ len, wbuf->lnum, wbuf->offs, err);
+ ubifs_dump_node(c, buf);
+ dump_stack();
+ ubifs_dump_leb(c, wbuf->lnum);
+ return err;
+}
+
+/**
+ * ubifs_write_node - write node to the media.
+ * @c: UBIFS file-system description object
+ * @buf: the node to write
+ * @len: node length
+ * @lnum: logical eraseblock number
+ * @offs: offset within the logical eraseblock
+ *
+ * This function automatically fills node magic number, assigns sequence
+ * number, and calculates node CRC checksum. The length of the @buf buffer has
+ * to be aligned to the minimal I/O unit size. This function automatically
+ * appends padding node and padding bytes if needed. Returns zero in case of
+ * success and a negative error code in case of failure.
+ */
+int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
+ int offs)
+{
+ int err, buf_len = ALIGN(len, c->min_io_size);
+
+ dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
+ lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
+ buf_len);
+ ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
+ ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ ubifs_assert(!c->space_fixup);
+
+ if (c->ro_error)
+ return -EROFS;
+
+ ubifs_prepare_node(c, buf, len, 1);
+ err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
+ if (err)
+ ubifs_dump_node(c, buf);
+
+ return err;
+}
+
+/**
+ * ubifs_read_node_wbuf - read node from the media or write-buffer.
+ * @wbuf: wbuf to check for un-written data
+ * @buf: buffer to read to
+ * @type: node type
+ * @len: node length
+ * @lnum: logical eraseblock number
+ * @offs: offset within the logical eraseblock
+ *
+ * This function reads a node of known type and length, checks it and stores
+ * in @buf. If the node partially or fully sits in the write-buffer, this
+ * function takes data from the buffer, otherwise it reads the flash media.
+ * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
+ * error code in case of failure.
+ */
+int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
+ int lnum, int offs)
+{
+ const struct ubifs_info *c = wbuf->c;
+ int err, rlen, overlap;
+ struct ubifs_ch *ch = buf;
+
+ dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
+ dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
+ ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
+ ubifs_assert(!(offs & 7) && offs < c->leb_size);
+ ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
+
+ spin_lock(&wbuf->lock);
+ overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
+ if (!overlap) {
+ /* We may safely unlock the write-buffer and read the data */
+ spin_unlock(&wbuf->lock);
+ return ubifs_read_node(c, buf, type, len, lnum, offs);
+ }
+
+ /* Don't read under wbuf */
+ rlen = wbuf->offs - offs;
+ if (rlen < 0)
+ rlen = 0;
+
+ /* Copy the rest from the write-buffer */
+ memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
+ spin_unlock(&wbuf->lock);
+
+ if (rlen > 0) {
+ /* Read everything that goes before write-buffer */
+ err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
+ if (err && err != -EBADMSG)
+ return err;
+ }
+
+ if (type != ch->node_type) {
+ ubifs_err(c, "bad node type (%d but expected %d)",
+ ch->node_type, type);
+ goto out;
+ }
+
+ err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
+ if (err) {
+ ubifs_err(c, "expected node type %d", type);
+ return err;
+ }
+
+ rlen = le32_to_cpu(ch->len);
+ if (rlen != len) {
+ ubifs_err(c, "bad node length %d, expected %d", rlen, len);
+ goto out;
+ }
+
+ return 0;
+
+out:
+ ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
+ ubifs_dump_node(c, buf);
+ dump_stack();
+ return -EINVAL;
+}
+
+/**
+ * ubifs_read_node - read node.
+ * @c: UBIFS file-system description object
+ * @buf: buffer to read to
+ * @type: node type
+ * @len: node length (not aligned)
+ * @lnum: logical eraseblock number
+ * @offs: offset within the logical eraseblock
+ *
+ * This function reads a node of known type and and length, checks it and
+ * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
+ * and a negative error code in case of failure.
+ */
+int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
+ int lnum, int offs)
+{
+ int err, l;
+ struct ubifs_ch *ch = buf;
+
+ dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
+ ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
+ ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
+ ubifs_assert(!(offs & 7) && offs < c->leb_size);
+ ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
+
+ err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
+ if (err && err != -EBADMSG)
+ return err;
+
+ if (type != ch->node_type) {
+ ubifs_errc(c, "bad node type (%d but expected %d)",
+ ch->node_type, type);
+ goto out;
+ }
+
+ err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
+ if (err) {
+ ubifs_errc(c, "expected node type %d", type);
+ return err;
+ }
+
+ l = le32_to_cpu(ch->len);
+ if (l != len) {
+ ubifs_errc(c, "bad node length %d, expected %d", l, len);
+ goto out;
+ }
+
+ return 0;
+
+out:
+ ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
+ offs, ubi_is_mapped(c->ubi, lnum));
+ if (!c->probing) {
+ ubifs_dump_node(c, buf);
+ dump_stack();
+ }
+ return -EINVAL;
+}
+
+/**
+ * ubifs_wbuf_init - initialize write-buffer.
+ * @c: UBIFS file-system description object
+ * @wbuf: write-buffer to initialize
+ *
+ * This function initializes write-buffer. Returns zero in case of success
+ * %-ENOMEM in case of failure.
+ */
+int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
+{
+ size_t size;
+
+ wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
+ if (!wbuf->buf)
+ return -ENOMEM;
+
+ size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
+ wbuf->inodes = kmalloc(size, GFP_KERNEL);
+ if (!wbuf->inodes) {
+ kfree(wbuf->buf);
+ wbuf->buf = NULL;
+ return -ENOMEM;
+ }
+
+ wbuf->used = 0;
+ wbuf->lnum = wbuf->offs = -1;
+ /*
+ * If the LEB starts at the max. write size aligned address, then
+ * write-buffer size has to be set to @c->max_write_size. Otherwise,
+ * set it to something smaller so that it ends at the closest max.
+ * write size boundary.
+ */
+ size = c->max_write_size - (c->leb_start % c->max_write_size);
+ wbuf->avail = wbuf->size = size;
+ wbuf->sync_callback = NULL;
+ mutex_init(&wbuf->io_mutex);
+ spin_lock_init(&wbuf->lock);
+ wbuf->c = c;
+ wbuf->next_ino = 0;
+
+ hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ wbuf->timer.function = wbuf_timer_callback_nolock;
+ wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
+ wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
+ wbuf->delta *= 1000000000ULL;
+ ubifs_assert(wbuf->delta <= ULONG_MAX);
+ return 0;
+}
+
+/**
+ * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
+ * @wbuf: the write-buffer where to add
+ * @inum: the inode number
+ *
+ * This function adds an inode number to the inode array of the write-buffer.
+ */
+void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
+{
+ if (!wbuf->buf)
+ /* NOR flash or something similar */
+ return;
+
+ spin_lock(&wbuf->lock);
+ if (wbuf->used)
+ wbuf->inodes[wbuf->next_ino++] = inum;
+ spin_unlock(&wbuf->lock);
+}
+
+/**
+ * wbuf_has_ino - returns if the wbuf contains data from the inode.
+ * @wbuf: the write-buffer
+ * @inum: the inode number
+ *
+ * This function returns with %1 if the write-buffer contains some data from the
+ * given inode otherwise it returns with %0.
+ */
+static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
+{
+ int i, ret = 0;
+
+ spin_lock(&wbuf->lock);
+ for (i = 0; i < wbuf->next_ino; i++)
+ if (inum == wbuf->inodes[i]) {
+ ret = 1;
+ break;
+ }
+ spin_unlock(&wbuf->lock);
+
+ return ret;
+}
+
+/**
+ * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
+ * @c: UBIFS file-system description object
+ * @inode: inode to synchronize
+ *
+ * This function synchronizes write-buffers which contain nodes belonging to
+ * @inode. Returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
+{
+ int i, err = 0;
+
+ for (i = 0; i < c->jhead_cnt; i++) {
+ struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
+
+ if (i == GCHD)
+ /*
+ * GC head is special, do not look at it. Even if the
+ * head contains something related to this inode, it is
+ * a _copy_ of corresponding on-flash node which sits
+ * somewhere else.
+ */
+ continue;
+
+ if (!wbuf_has_ino(wbuf, inode->i_ino))
+ continue;
+
+ mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
+ if (wbuf_has_ino(wbuf, inode->i_ino))
+ err = ubifs_wbuf_sync_nolock(wbuf);
+ mutex_unlock(&wbuf->io_mutex);
+
+ if (err) {
+ ubifs_ro_mode(c, err);
+ return err;
+ }
+ }
+ return 0;
+}