diff options
Diffstat (limited to 'kernel/bpf/verifier.c')
-rw-r--r-- | kernel/bpf/verifier.c | 2146 |
1 files changed, 2146 insertions, 0 deletions
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c new file mode 100644 index 000000000..47dcd3aa6 --- /dev/null +++ b/kernel/bpf/verifier.c @@ -0,0 +1,2146 @@ +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of version 2 of the GNU General Public + * License as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + */ +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/bpf.h> +#include <linux/filter.h> +#include <net/netlink.h> +#include <linux/file.h> +#include <linux/vmalloc.h> + +/* bpf_check() is a static code analyzer that walks eBPF program + * instruction by instruction and updates register/stack state. + * All paths of conditional branches are analyzed until 'bpf_exit' insn. + * + * The first pass is depth-first-search to check that the program is a DAG. + * It rejects the following programs: + * - larger than BPF_MAXINSNS insns + * - if loop is present (detected via back-edge) + * - unreachable insns exist (shouldn't be a forest. program = one function) + * - out of bounds or malformed jumps + * The second pass is all possible path descent from the 1st insn. + * Since it's analyzing all pathes through the program, the length of the + * analysis is limited to 32k insn, which may be hit even if total number of + * insn is less then 4K, but there are too many branches that change stack/regs. + * Number of 'branches to be analyzed' is limited to 1k + * + * On entry to each instruction, each register has a type, and the instruction + * changes the types of the registers depending on instruction semantics. + * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is + * copied to R1. + * + * All registers are 64-bit. + * R0 - return register + * R1-R5 argument passing registers + * R6-R9 callee saved registers + * R10 - frame pointer read-only + * + * At the start of BPF program the register R1 contains a pointer to bpf_context + * and has type PTR_TO_CTX. + * + * Verifier tracks arithmetic operations on pointers in case: + * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), + * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), + * 1st insn copies R10 (which has FRAME_PTR) type into R1 + * and 2nd arithmetic instruction is pattern matched to recognize + * that it wants to construct a pointer to some element within stack. + * So after 2nd insn, the register R1 has type PTR_TO_STACK + * (and -20 constant is saved for further stack bounds checking). + * Meaning that this reg is a pointer to stack plus known immediate constant. + * + * Most of the time the registers have UNKNOWN_VALUE type, which + * means the register has some value, but it's not a valid pointer. + * (like pointer plus pointer becomes UNKNOWN_VALUE type) + * + * When verifier sees load or store instructions the type of base register + * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer + * types recognized by check_mem_access() function. + * + * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' + * and the range of [ptr, ptr + map's value_size) is accessible. + * + * registers used to pass values to function calls are checked against + * function argument constraints. + * + * ARG_PTR_TO_MAP_KEY is one of such argument constraints. + * It means that the register type passed to this function must be + * PTR_TO_STACK and it will be used inside the function as + * 'pointer to map element key' + * + * For example the argument constraints for bpf_map_lookup_elem(): + * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + * .arg1_type = ARG_CONST_MAP_PTR, + * .arg2_type = ARG_PTR_TO_MAP_KEY, + * + * ret_type says that this function returns 'pointer to map elem value or null' + * function expects 1st argument to be a const pointer to 'struct bpf_map' and + * 2nd argument should be a pointer to stack, which will be used inside + * the helper function as a pointer to map element key. + * + * On the kernel side the helper function looks like: + * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) + * { + * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; + * void *key = (void *) (unsigned long) r2; + * void *value; + * + * here kernel can access 'key' and 'map' pointers safely, knowing that + * [key, key + map->key_size) bytes are valid and were initialized on + * the stack of eBPF program. + * } + * + * Corresponding eBPF program may look like: + * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR + * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK + * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP + * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + * here verifier looks at prototype of map_lookup_elem() and sees: + * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, + * Now verifier knows that this map has key of R1->map_ptr->key_size bytes + * + * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, + * Now verifier checks that [R2, R2 + map's key_size) are within stack limits + * and were initialized prior to this call. + * If it's ok, then verifier allows this BPF_CALL insn and looks at + * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets + * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function + * returns ether pointer to map value or NULL. + * + * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' + * insn, the register holding that pointer in the true branch changes state to + * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false + * branch. See check_cond_jmp_op(). + * + * After the call R0 is set to return type of the function and registers R1-R5 + * are set to NOT_INIT to indicate that they are no longer readable. + */ + +/* types of values stored in eBPF registers */ +enum bpf_reg_type { + NOT_INIT = 0, /* nothing was written into register */ + UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */ + PTR_TO_CTX, /* reg points to bpf_context */ + CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ + PTR_TO_MAP_VALUE, /* reg points to map element value */ + PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */ + FRAME_PTR, /* reg == frame_pointer */ + PTR_TO_STACK, /* reg == frame_pointer + imm */ + CONST_IMM, /* constant integer value */ +}; + +struct reg_state { + enum bpf_reg_type type; + union { + /* valid when type == CONST_IMM | PTR_TO_STACK */ + int imm; + + /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | + * PTR_TO_MAP_VALUE_OR_NULL + */ + struct bpf_map *map_ptr; + }; +}; + +enum bpf_stack_slot_type { + STACK_INVALID, /* nothing was stored in this stack slot */ + STACK_SPILL, /* register spilled into stack */ + STACK_MISC /* BPF program wrote some data into this slot */ +}; + +#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ + +/* state of the program: + * type of all registers and stack info + */ +struct verifier_state { + struct reg_state regs[MAX_BPF_REG]; + u8 stack_slot_type[MAX_BPF_STACK]; + struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE]; +}; + +/* linked list of verifier states used to prune search */ +struct verifier_state_list { + struct verifier_state state; + struct verifier_state_list *next; +}; + +/* verifier_state + insn_idx are pushed to stack when branch is encountered */ +struct verifier_stack_elem { + /* verifer state is 'st' + * before processing instruction 'insn_idx' + * and after processing instruction 'prev_insn_idx' + */ + struct verifier_state st; + int insn_idx; + int prev_insn_idx; + struct verifier_stack_elem *next; +}; + +#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ + +/* single container for all structs + * one verifier_env per bpf_check() call + */ +struct verifier_env { + struct bpf_prog *prog; /* eBPF program being verified */ + struct verifier_stack_elem *head; /* stack of verifier states to be processed */ + int stack_size; /* number of states to be processed */ + struct verifier_state cur_state; /* current verifier state */ + struct verifier_state_list **explored_states; /* search pruning optimization */ + struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ + u32 used_map_cnt; /* number of used maps */ +}; + +/* verbose verifier prints what it's seeing + * bpf_check() is called under lock, so no race to access these global vars + */ +static u32 log_level, log_size, log_len; +static char *log_buf; + +static DEFINE_MUTEX(bpf_verifier_lock); + +/* log_level controls verbosity level of eBPF verifier. + * verbose() is used to dump the verification trace to the log, so the user + * can figure out what's wrong with the program + */ +static void verbose(const char *fmt, ...) +{ + va_list args; + + if (log_level == 0 || log_len >= log_size - 1) + return; + + va_start(args, fmt); + log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); + va_end(args); +} + +/* string representation of 'enum bpf_reg_type' */ +static const char * const reg_type_str[] = { + [NOT_INIT] = "?", + [UNKNOWN_VALUE] = "inv", + [PTR_TO_CTX] = "ctx", + [CONST_PTR_TO_MAP] = "map_ptr", + [PTR_TO_MAP_VALUE] = "map_value", + [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", + [FRAME_PTR] = "fp", + [PTR_TO_STACK] = "fp", + [CONST_IMM] = "imm", +}; + +static void print_verifier_state(struct verifier_env *env) +{ + enum bpf_reg_type t; + int i; + + for (i = 0; i < MAX_BPF_REG; i++) { + t = env->cur_state.regs[i].type; + if (t == NOT_INIT) + continue; + verbose(" R%d=%s", i, reg_type_str[t]); + if (t == CONST_IMM || t == PTR_TO_STACK) + verbose("%d", env->cur_state.regs[i].imm); + else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE || + t == PTR_TO_MAP_VALUE_OR_NULL) + verbose("(ks=%d,vs=%d)", + env->cur_state.regs[i].map_ptr->key_size, + env->cur_state.regs[i].map_ptr->value_size); + } + for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { + if (env->cur_state.stack_slot_type[i] == STACK_SPILL) + verbose(" fp%d=%s", -MAX_BPF_STACK + i, + reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]); + } + verbose("\n"); +} + +static const char *const bpf_class_string[] = { + [BPF_LD] = "ld", + [BPF_LDX] = "ldx", + [BPF_ST] = "st", + [BPF_STX] = "stx", + [BPF_ALU] = "alu", + [BPF_JMP] = "jmp", + [BPF_RET] = "BUG", + [BPF_ALU64] = "alu64", +}; + +static const char *const bpf_alu_string[] = { + [BPF_ADD >> 4] = "+=", + [BPF_SUB >> 4] = "-=", + [BPF_MUL >> 4] = "*=", + [BPF_DIV >> 4] = "/=", + [BPF_OR >> 4] = "|=", + [BPF_AND >> 4] = "&=", + [BPF_LSH >> 4] = "<<=", + [BPF_RSH >> 4] = ">>=", + [BPF_NEG >> 4] = "neg", + [BPF_MOD >> 4] = "%=", + [BPF_XOR >> 4] = "^=", + [BPF_MOV >> 4] = "=", + [BPF_ARSH >> 4] = "s>>=", + [BPF_END >> 4] = "endian", +}; + +static const char *const bpf_ldst_string[] = { + [BPF_W >> 3] = "u32", + [BPF_H >> 3] = "u16", + [BPF_B >> 3] = "u8", + [BPF_DW >> 3] = "u64", +}; + +static const char *const bpf_jmp_string[] = { + [BPF_JA >> 4] = "jmp", + [BPF_JEQ >> 4] = "==", + [BPF_JGT >> 4] = ">", + [BPF_JGE >> 4] = ">=", + [BPF_JSET >> 4] = "&", + [BPF_JNE >> 4] = "!=", + [BPF_JSGT >> 4] = "s>", + [BPF_JSGE >> 4] = "s>=", + [BPF_CALL >> 4] = "call", + [BPF_EXIT >> 4] = "exit", +}; + +static void print_bpf_insn(struct bpf_insn *insn) +{ + u8 class = BPF_CLASS(insn->code); + + if (class == BPF_ALU || class == BPF_ALU64) { + if (BPF_SRC(insn->code) == BPF_X) + verbose("(%02x) %sr%d %s %sr%d\n", + insn->code, class == BPF_ALU ? "(u32) " : "", + insn->dst_reg, + bpf_alu_string[BPF_OP(insn->code) >> 4], + class == BPF_ALU ? "(u32) " : "", + insn->src_reg); + else + verbose("(%02x) %sr%d %s %s%d\n", + insn->code, class == BPF_ALU ? "(u32) " : "", + insn->dst_reg, + bpf_alu_string[BPF_OP(insn->code) >> 4], + class == BPF_ALU ? "(u32) " : "", + insn->imm); + } else if (class == BPF_STX) { + if (BPF_MODE(insn->code) == BPF_MEM) + verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, + insn->off, insn->src_reg); + else if (BPF_MODE(insn->code) == BPF_XADD) + verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, insn->off, + insn->src_reg); + else + verbose("BUG_%02x\n", insn->code); + } else if (class == BPF_ST) { + if (BPF_MODE(insn->code) != BPF_MEM) { + verbose("BUG_st_%02x\n", insn->code); + return; + } + verbose("(%02x) *(%s *)(r%d %+d) = %d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, + insn->off, insn->imm); + } else if (class == BPF_LDX) { + if (BPF_MODE(insn->code) != BPF_MEM) { + verbose("BUG_ldx_%02x\n", insn->code); + return; + } + verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", + insn->code, insn->dst_reg, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->src_reg, insn->off); + } else if (class == BPF_LD) { + if (BPF_MODE(insn->code) == BPF_ABS) { + verbose("(%02x) r0 = *(%s *)skb[%d]\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->imm); + } else if (BPF_MODE(insn->code) == BPF_IND) { + verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->src_reg, insn->imm); + } else if (BPF_MODE(insn->code) == BPF_IMM) { + verbose("(%02x) r%d = 0x%x\n", + insn->code, insn->dst_reg, insn->imm); + } else { + verbose("BUG_ld_%02x\n", insn->code); + return; + } + } else if (class == BPF_JMP) { + u8 opcode = BPF_OP(insn->code); + + if (opcode == BPF_CALL) { + verbose("(%02x) call %d\n", insn->code, insn->imm); + } else if (insn->code == (BPF_JMP | BPF_JA)) { + verbose("(%02x) goto pc%+d\n", + insn->code, insn->off); + } else if (insn->code == (BPF_JMP | BPF_EXIT)) { + verbose("(%02x) exit\n", insn->code); + } else if (BPF_SRC(insn->code) == BPF_X) { + verbose("(%02x) if r%d %s r%d goto pc%+d\n", + insn->code, insn->dst_reg, + bpf_jmp_string[BPF_OP(insn->code) >> 4], + insn->src_reg, insn->off); + } else { + verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", + insn->code, insn->dst_reg, + bpf_jmp_string[BPF_OP(insn->code) >> 4], + insn->imm, insn->off); + } + } else { + verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); + } +} + +static int pop_stack(struct verifier_env *env, int *prev_insn_idx) +{ + struct verifier_stack_elem *elem; + int insn_idx; + + if (env->head == NULL) + return -1; + + memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); + insn_idx = env->head->insn_idx; + if (prev_insn_idx) + *prev_insn_idx = env->head->prev_insn_idx; + elem = env->head->next; + kfree(env->head); + env->head = elem; + env->stack_size--; + return insn_idx; +} + +static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx, + int prev_insn_idx) +{ + struct verifier_stack_elem *elem; + + elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL); + if (!elem) + goto err; + + memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); + elem->insn_idx = insn_idx; + elem->prev_insn_idx = prev_insn_idx; + elem->next = env->head; + env->head = elem; + env->stack_size++; + if (env->stack_size > 1024) { + verbose("BPF program is too complex\n"); + goto err; + } + return &elem->st; +err: + /* pop all elements and return */ + while (pop_stack(env, NULL) >= 0); + return NULL; +} + +#define CALLER_SAVED_REGS 6 +static const int caller_saved[CALLER_SAVED_REGS] = { + BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 +}; + +static void init_reg_state(struct reg_state *regs) +{ + int i; + + for (i = 0; i < MAX_BPF_REG; i++) { + regs[i].type = NOT_INIT; + regs[i].imm = 0; + regs[i].map_ptr = NULL; + } + + /* frame pointer */ + regs[BPF_REG_FP].type = FRAME_PTR; + + /* 1st arg to a function */ + regs[BPF_REG_1].type = PTR_TO_CTX; +} + +static void mark_reg_unknown_value(struct reg_state *regs, u32 regno) +{ + BUG_ON(regno >= MAX_BPF_REG); + regs[regno].type = UNKNOWN_VALUE; + regs[regno].imm = 0; + regs[regno].map_ptr = NULL; +} + +enum reg_arg_type { + SRC_OP, /* register is used as source operand */ + DST_OP, /* register is used as destination operand */ + DST_OP_NO_MARK /* same as above, check only, don't mark */ +}; + +static int check_reg_arg(struct reg_state *regs, u32 regno, + enum reg_arg_type t) +{ + if (regno >= MAX_BPF_REG) { + verbose("R%d is invalid\n", regno); + return -EINVAL; + } + + if (t == SRC_OP) { + /* check whether register used as source operand can be read */ + if (regs[regno].type == NOT_INIT) { + verbose("R%d !read_ok\n", regno); + return -EACCES; + } + } else { + /* check whether register used as dest operand can be written to */ + if (regno == BPF_REG_FP) { + verbose("frame pointer is read only\n"); + return -EACCES; + } + if (t == DST_OP) + mark_reg_unknown_value(regs, regno); + } + return 0; +} + +static int bpf_size_to_bytes(int bpf_size) +{ + if (bpf_size == BPF_W) + return 4; + else if (bpf_size == BPF_H) + return 2; + else if (bpf_size == BPF_B) + return 1; + else if (bpf_size == BPF_DW) + return 8; + else + return -EINVAL; +} + +/* check_stack_read/write functions track spill/fill of registers, + * stack boundary and alignment are checked in check_mem_access() + */ +static int check_stack_write(struct verifier_state *state, int off, int size, + int value_regno) +{ + int i; + /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, + * so it's aligned access and [off, off + size) are within stack limits + */ + + if (value_regno >= 0 && + (state->regs[value_regno].type == PTR_TO_MAP_VALUE || + state->regs[value_regno].type == PTR_TO_STACK || + state->regs[value_regno].type == PTR_TO_CTX)) { + + /* register containing pointer is being spilled into stack */ + if (size != BPF_REG_SIZE) { + verbose("invalid size of register spill\n"); + return -EACCES; + } + + /* save register state */ + state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = + state->regs[value_regno]; + + for (i = 0; i < BPF_REG_SIZE; i++) + state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; + } else { + /* regular write of data into stack */ + state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = + (struct reg_state) {}; + + for (i = 0; i < size; i++) + state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; + } + return 0; +} + +static int check_stack_read(struct verifier_state *state, int off, int size, + int value_regno) +{ + u8 *slot_type; + int i; + + slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; + + if (slot_type[0] == STACK_SPILL) { + if (size != BPF_REG_SIZE) { + verbose("invalid size of register spill\n"); + return -EACCES; + } + for (i = 1; i < BPF_REG_SIZE; i++) { + if (slot_type[i] != STACK_SPILL) { + verbose("corrupted spill memory\n"); + return -EACCES; + } + } + + if (value_regno >= 0) + /* restore register state from stack */ + state->regs[value_regno] = + state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE]; + return 0; + } else { + for (i = 0; i < size; i++) { + if (slot_type[i] != STACK_MISC) { + verbose("invalid read from stack off %d+%d size %d\n", + off, i, size); + return -EACCES; + } + } + if (value_regno >= 0) + /* have read misc data from the stack */ + mark_reg_unknown_value(state->regs, value_regno); + return 0; + } +} + +/* check read/write into map element returned by bpf_map_lookup_elem() */ +static int check_map_access(struct verifier_env *env, u32 regno, int off, + int size) +{ + struct bpf_map *map = env->cur_state.regs[regno].map_ptr; + + if (off < 0 || off + size > map->value_size) { + verbose("invalid access to map value, value_size=%d off=%d size=%d\n", + map->value_size, off, size); + return -EACCES; + } + return 0; +} + +/* check access to 'struct bpf_context' fields */ +static int check_ctx_access(struct verifier_env *env, int off, int size, + enum bpf_access_type t) +{ + if (env->prog->aux->ops->is_valid_access && + env->prog->aux->ops->is_valid_access(off, size, t)) + return 0; + + verbose("invalid bpf_context access off=%d size=%d\n", off, size); + return -EACCES; +} + +/* check whether memory at (regno + off) is accessible for t = (read | write) + * if t==write, value_regno is a register which value is stored into memory + * if t==read, value_regno is a register which will receive the value from memory + * if t==write && value_regno==-1, some unknown value is stored into memory + * if t==read && value_regno==-1, don't care what we read from memory + */ +static int check_mem_access(struct verifier_env *env, u32 regno, int off, + int bpf_size, enum bpf_access_type t, + int value_regno) +{ + struct verifier_state *state = &env->cur_state; + int size, err = 0; + + size = bpf_size_to_bytes(bpf_size); + if (size < 0) + return size; + + if (off % size != 0) { + verbose("misaligned access off %d size %d\n", off, size); + return -EACCES; + } + + if (state->regs[regno].type == PTR_TO_MAP_VALUE) { + err = check_map_access(env, regno, off, size); + if (!err && t == BPF_READ && value_regno >= 0) + mark_reg_unknown_value(state->regs, value_regno); + + } else if (state->regs[regno].type == PTR_TO_CTX) { + err = check_ctx_access(env, off, size, t); + if (!err && t == BPF_READ && value_regno >= 0) + mark_reg_unknown_value(state->regs, value_regno); + + } else if (state->regs[regno].type == FRAME_PTR) { + if (off >= 0 || off < -MAX_BPF_STACK) { + verbose("invalid stack off=%d size=%d\n", off, size); + return -EACCES; + } + if (t == BPF_WRITE) + err = check_stack_write(state, off, size, value_regno); + else + err = check_stack_read(state, off, size, value_regno); + } else { + verbose("R%d invalid mem access '%s'\n", + regno, reg_type_str[state->regs[regno].type]); + return -EACCES; + } + return err; +} + +static int check_xadd(struct verifier_env *env, struct bpf_insn *insn) +{ + struct reg_state *regs = env->cur_state.regs; + int err; + + if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || + insn->imm != 0) { + verbose("BPF_XADD uses reserved fields\n"); + return -EINVAL; + } + + /* check src1 operand */ + err = check_reg_arg(regs, insn->src_reg, SRC_OP); + if (err) + return err; + + /* check src2 operand */ + err = check_reg_arg(regs, insn->dst_reg, SRC_OP); + if (err) + return err; + + /* check whether atomic_add can read the memory */ + err = check_mem_access(env, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_READ, -1); + if (err) + return err; + + /* check whether atomic_add can write into the same memory */ + return check_mem_access(env, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_WRITE, -1); +} + +/* when register 'regno' is passed into function that will read 'access_size' + * bytes from that pointer, make sure that it's within stack boundary + * and all elements of stack are initialized + */ +static int check_stack_boundary(struct verifier_env *env, + int regno, int access_size) +{ + struct verifier_state *state = &env->cur_state; + struct reg_state *regs = state->regs; + int off, i; + + if (regs[regno].type != PTR_TO_STACK) + return -EACCES; + + off = regs[regno].imm; + if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || + access_size <= 0) { + verbose("invalid stack type R%d off=%d access_size=%d\n", + regno, off, access_size); + return -EACCES; + } + + for (i = 0; i < access_size; i++) { + if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { + verbose("invalid indirect read from stack off %d+%d size %d\n", + off, i, access_size); + return -EACCES; + } + } + return 0; +} + +static int check_func_arg(struct verifier_env *env, u32 regno, + enum bpf_arg_type arg_type, struct bpf_map **mapp) +{ + struct reg_state *reg = env->cur_state.regs + regno; + enum bpf_reg_type expected_type; + int err = 0; + + if (arg_type == ARG_DONTCARE) + return 0; + + if (reg->type == NOT_INIT) { + verbose("R%d !read_ok\n", regno); + return -EACCES; + } + + if (arg_type == ARG_ANYTHING) + return 0; + + if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY || + arg_type == ARG_PTR_TO_MAP_VALUE) { + expected_type = PTR_TO_STACK; + } else if (arg_type == ARG_CONST_STACK_SIZE) { + expected_type = CONST_IMM; + } else if (arg_type == ARG_CONST_MAP_PTR) { + expected_type = CONST_PTR_TO_MAP; + } else if (arg_type == ARG_PTR_TO_CTX) { + expected_type = PTR_TO_CTX; + } else { + verbose("unsupported arg_type %d\n", arg_type); + return -EFAULT; + } + + if (reg->type != expected_type) { + verbose("R%d type=%s expected=%s\n", regno, + reg_type_str[reg->type], reg_type_str[expected_type]); + return -EACCES; + } + + if (arg_type == ARG_CONST_MAP_PTR) { + /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ + *mapp = reg->map_ptr; + + } else if (arg_type == ARG_PTR_TO_MAP_KEY) { + /* bpf_map_xxx(..., map_ptr, ..., key) call: + * check that [key, key + map->key_size) are within + * stack limits and initialized + */ + if (!*mapp) { + /* in function declaration map_ptr must come before + * map_key, so that it's verified and known before + * we have to check map_key here. Otherwise it means + * that kernel subsystem misconfigured verifier + */ + verbose("invalid map_ptr to access map->key\n"); + return -EACCES; + } + err = check_stack_boundary(env, regno, (*mapp)->key_size); + + } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { + /* bpf_map_xxx(..., map_ptr, ..., value) call: + * check [value, value + map->value_size) validity + */ + if (!*mapp) { + /* kernel subsystem misconfigured verifier */ + verbose("invalid map_ptr to access map->value\n"); + return -EACCES; + } + err = check_stack_boundary(env, regno, (*mapp)->value_size); + + } else if (arg_type == ARG_CONST_STACK_SIZE) { + /* bpf_xxx(..., buf, len) call will access 'len' bytes + * from stack pointer 'buf'. Check it + * note: regno == len, regno - 1 == buf + */ + if (regno == 0) { + /* kernel subsystem misconfigured verifier */ + verbose("ARG_CONST_STACK_SIZE cannot be first argument\n"); + return -EACCES; + } + err = check_stack_boundary(env, regno - 1, reg->imm); + } + + return err; +} + +static int check_call(struct verifier_env *env, int func_id) +{ + struct verifier_state *state = &env->cur_state; + const struct bpf_func_proto *fn = NULL; + struct reg_state *regs = state->regs; + struct bpf_map *map = NULL; + struct reg_state *reg; + int i, err; + + /* find function prototype */ + if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { + verbose("invalid func %d\n", func_id); + return -EINVAL; + } + + if (env->prog->aux->ops->get_func_proto) + fn = env->prog->aux->ops->get_func_proto(func_id); + + if (!fn) { + verbose("unknown func %d\n", func_id); + return -EINVAL; + } + + /* eBPF programs must be GPL compatible to use GPL-ed functions */ + if (!env->prog->gpl_compatible && fn->gpl_only) { + verbose("cannot call GPL only function from proprietary program\n"); + return -EINVAL; + } + + /* check args */ + err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map); + if (err) + return err; + err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map); + if (err) + return err; + err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map); + if (err) + return err; + err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map); + if (err) + return err; + err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map); + if (err) + return err; + + /* reset caller saved regs */ + for (i = 0; i < CALLER_SAVED_REGS; i++) { + reg = regs + caller_saved[i]; + reg->type = NOT_INIT; + reg->imm = 0; + } + + /* update return register */ + if (fn->ret_type == RET_INTEGER) { + regs[BPF_REG_0].type = UNKNOWN_VALUE; + } else if (fn->ret_type == RET_VOID) { + regs[BPF_REG_0].type = NOT_INIT; + } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { + regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; + /* remember map_ptr, so that check_map_access() + * can check 'value_size' boundary of memory access + * to map element returned from bpf_map_lookup_elem() + */ + if (map == NULL) { + verbose("kernel subsystem misconfigured verifier\n"); + return -EINVAL; + } + regs[BPF_REG_0].map_ptr = map; + } else { + verbose("unknown return type %d of func %d\n", + fn->ret_type, func_id); + return -EINVAL; + } + return 0; +} + +/* check validity of 32-bit and 64-bit arithmetic operations */ +static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn) +{ + u8 opcode = BPF_OP(insn->code); + int err; + + if (opcode == BPF_END || opcode == BPF_NEG) { + if (opcode == BPF_NEG) { + if (BPF_SRC(insn->code) != 0 || + insn->src_reg != BPF_REG_0 || + insn->off != 0 || insn->imm != 0) { + verbose("BPF_NEG uses reserved fields\n"); + return -EINVAL; + } + } else { + if (insn->src_reg != BPF_REG_0 || insn->off != 0 || + (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) { + verbose("BPF_END uses reserved fields\n"); + return -EINVAL; + } + } + + /* check src operand */ + err = check_reg_arg(regs, insn->dst_reg, SRC_OP); + if (err) + return err; + + /* check dest operand */ + err = check_reg_arg(regs, insn->dst_reg, DST_OP); + if (err) + return err; + + } else if (opcode == BPF_MOV) { + + if (BPF_SRC(insn->code) == BPF_X) { + if (insn->imm != 0 || insn->off != 0) { + verbose("BPF_MOV uses reserved fields\n"); + return -EINVAL; + } + + /* check src operand */ + err = check_reg_arg(regs, insn->src_reg, SRC_OP); + if (err) + return err; + } else { + if (insn->src_reg != BPF_REG_0 || insn->off != 0) { + verbose("BPF_MOV uses reserved fields\n"); + return -EINVAL; + } + } + + /* check dest operand */ + err = check_reg_arg(regs, insn->dst_reg, DST_OP); + if (err) + return err; + + if (BPF_SRC(insn->code) == BPF_X) { + if (BPF_CLASS(insn->code) == BPF_ALU64) { + /* case: R1 = R2 + * copy register state to dest reg + */ + regs[insn->dst_reg] = regs[insn->src_reg]; + } else { + regs[insn->dst_reg].type = UNKNOWN_VALUE; + regs[insn->dst_reg].map_ptr = NULL; + } + } else { + /* case: R = imm + * remember the value we stored into this reg + */ + regs[insn->dst_reg].type = CONST_IMM; + regs[insn->dst_reg].imm = insn->imm; + } + + } else if (opcode > BPF_END) { + verbose("invalid BPF_ALU opcode %x\n", opcode); + return -EINVAL; + + } else { /* all other ALU ops: and, sub, xor, add, ... */ + + bool stack_relative = false; + + if (BPF_SRC(insn->code) == BPF_X) { + if (insn->imm != 0 || insn->off != 0) { + verbose("BPF_ALU uses reserved fields\n"); + return -EINVAL; + } + /* check src1 operand */ + err = check_reg_arg(regs, insn->src_reg, SRC_OP); + if (err) + return err; + } else { + if (insn->src_reg != BPF_REG_0 || insn->off != 0) { + verbose("BPF_ALU uses reserved fields\n"); + return -EINVAL; + } + } + + /* check src2 operand */ + err = check_reg_arg(regs, insn->dst_reg, SRC_OP); + if (err) + return err; + + if ((opcode == BPF_MOD || opcode == BPF_DIV) && + BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { + verbose("div by zero\n"); + return -EINVAL; + } + + /* pattern match 'bpf_add Rx, imm' instruction */ + if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 && + regs[insn->dst_reg].type == FRAME_PTR && + BPF_SRC(insn->code) == BPF_K) + stack_relative = true; + + /* check dest operand */ + err = check_reg_arg(regs, insn->dst_reg, DST_OP); + if (err) + return err; + + if (stack_relative) { + regs[insn->dst_reg].type = PTR_TO_STACK; + regs[insn->dst_reg].imm = insn->imm; + } + } + + return 0; +} + +static int check_cond_jmp_op(struct verifier_env *env, + struct bpf_insn *insn, int *insn_idx) +{ + struct reg_state *regs = env->cur_state.regs; + struct verifier_state *other_branch; + u8 opcode = BPF_OP(insn->code); + int err; + + if (opcode > BPF_EXIT) { + verbose("invalid BPF_JMP opcode %x\n", opcode); + return -EINVAL; + } + + if (BPF_SRC(insn->code) == BPF_X) { + if (insn->imm != 0) { + verbose("BPF_JMP uses reserved fields\n"); + return -EINVAL; + } + + /* check src1 operand */ + err = check_reg_arg(regs, insn->src_reg, SRC_OP); + if (err) + return err; + } else { + if (insn->src_reg != BPF_REG_0) { + verbose("BPF_JMP uses reserved fields\n"); + return -EINVAL; + } + } + + /* check src2 operand */ + err = check_reg_arg(regs, insn->dst_reg, SRC_OP); + if (err) + return err; + + /* detect if R == 0 where R was initialized to zero earlier */ + if (BPF_SRC(insn->code) == BPF_K && + (opcode == BPF_JEQ || opcode == BPF_JNE) && + regs[insn->dst_reg].type == CONST_IMM && + regs[insn->dst_reg].imm == insn->imm) { + if (opcode == BPF_JEQ) { + /* if (imm == imm) goto pc+off; + * only follow the goto, ignore fall-through + */ + *insn_idx += insn->off; + return 0; + } else { + /* if (imm != imm) goto pc+off; + * only follow fall-through branch, since + * that's where the program will go + */ + return 0; + } + } + + other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); + if (!other_branch) + return -EFAULT; + + /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */ + if (BPF_SRC(insn->code) == BPF_K && + insn->imm == 0 && (opcode == BPF_JEQ || + opcode == BPF_JNE) && + regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) { + if (opcode == BPF_JEQ) { + /* next fallthrough insn can access memory via + * this register + */ + regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; + /* branch targer cannot access it, since reg == 0 */ + other_branch->regs[insn->dst_reg].type = CONST_IMM; + other_branch->regs[insn->dst_reg].imm = 0; + } else { + other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; + regs[insn->dst_reg].type = CONST_IMM; + regs[insn->dst_reg].imm = 0; + } + } else if (BPF_SRC(insn->code) == BPF_K && + (opcode == BPF_JEQ || opcode == BPF_JNE)) { + + if (opcode == BPF_JEQ) { + /* detect if (R == imm) goto + * and in the target state recognize that R = imm + */ + other_branch->regs[insn->dst_reg].type = CONST_IMM; + other_branch->regs[insn->dst_reg].imm = insn->imm; + } else { + /* detect if (R != imm) goto + * and in the fall-through state recognize that R = imm + */ + regs[insn->dst_reg].type = CONST_IMM; + regs[insn->dst_reg].imm = insn->imm; + } + } + if (log_level) + print_verifier_state(env); + return 0; +} + +/* return the map pointer stored inside BPF_LD_IMM64 instruction */ +static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) +{ + u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; + + return (struct bpf_map *) (unsigned long) imm64; +} + +/* verify BPF_LD_IMM64 instruction */ +static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn) +{ + struct reg_state *regs = env->cur_state.regs; + int err; + + if (BPF_SIZE(insn->code) != BPF_DW) { + verbose("invalid BPF_LD_IMM insn\n"); + return -EINVAL; + } + if (insn->off != 0) { + verbose("BPF_LD_IMM64 uses reserved fields\n"); + return -EINVAL; + } + + err = check_reg_arg(regs, insn->dst_reg, DST_OP); + if (err) + return err; + + if (insn->src_reg == 0) + /* generic move 64-bit immediate into a register */ + return 0; + + /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ + BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); + + regs[insn->dst_reg].type = CONST_PTR_TO_MAP; + regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); + return 0; +} + +static bool may_access_skb(enum bpf_prog_type type) +{ + switch (type) { + case BPF_PROG_TYPE_SOCKET_FILTER: + case BPF_PROG_TYPE_SCHED_CLS: + case BPF_PROG_TYPE_SCHED_ACT: + return true; + default: + return false; + } +} + +/* verify safety of LD_ABS|LD_IND instructions: + * - they can only appear in the programs where ctx == skb + * - since they are wrappers of function calls, they scratch R1-R5 registers, + * preserve R6-R9, and store return value into R0 + * + * Implicit input: + * ctx == skb == R6 == CTX + * + * Explicit input: + * SRC == any register + * IMM == 32-bit immediate + * + * Output: + * R0 - 8/16/32-bit skb data converted to cpu endianness + */ +static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn) +{ + struct reg_state *regs = env->cur_state.regs; + u8 mode = BPF_MODE(insn->code); + struct reg_state *reg; + int i, err; + + if (!may_access_skb(env->prog->type)) { + verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n"); + return -EINVAL; + } + + if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || + (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { + verbose("BPF_LD_ABS uses reserved fields\n"); + return -EINVAL; + } + + /* check whether implicit source operand (register R6) is readable */ + err = check_reg_arg(regs, BPF_REG_6, SRC_OP); + if (err) + return err; + + if (regs[BPF_REG_6].type != PTR_TO_CTX) { + verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); + return -EINVAL; + } + + if (mode == BPF_IND) { + /* check explicit source operand */ + err = check_reg_arg(regs, insn->src_reg, SRC_OP); + if (err) + return err; + } + + /* reset caller saved regs to unreadable */ + for (i = 0; i < CALLER_SAVED_REGS; i++) { + reg = regs + caller_saved[i]; + reg->type = NOT_INIT; + reg->imm = 0; + } + + /* mark destination R0 register as readable, since it contains + * the value fetched from the packet + */ + regs[BPF_REG_0].type = UNKNOWN_VALUE; + return 0; +} + +/* non-recursive DFS pseudo code + * 1 procedure DFS-iterative(G,v): + * 2 label v as discovered + * 3 let S be a stack + * 4 S.push(v) + * 5 while S is not empty + * 6 t <- S.pop() + * 7 if t is what we're looking for: + * 8 return t + * 9 for all edges e in G.adjacentEdges(t) do + * 10 if edge e is already labelled + * 11 continue with the next edge + * 12 w <- G.adjacentVertex(t,e) + * 13 if vertex w is not discovered and not explored + * 14 label e as tree-edge + * 15 label w as discovered + * 16 S.push(w) + * 17 continue at 5 + * 18 else if vertex w is discovered + * 19 label e as back-edge + * 20 else + * 21 // vertex w is explored + * 22 label e as forward- or cross-edge + * 23 label t as explored + * 24 S.pop() + * + * convention: + * 0x10 - discovered + * 0x11 - discovered and fall-through edge labelled + * 0x12 - discovered and fall-through and branch edges labelled + * 0x20 - explored + */ + +enum { + DISCOVERED = 0x10, + EXPLORED = 0x20, + FALLTHROUGH = 1, + BRANCH = 2, +}; + +#define STATE_LIST_MARK ((struct verifier_state_list *) -1L) + +static int *insn_stack; /* stack of insns to process */ +static int cur_stack; /* current stack index */ +static int *insn_state; + +/* t, w, e - match pseudo-code above: + * t - index of current instruction + * w - next instruction + * e - edge + */ +static int push_insn(int t, int w, int e, struct verifier_env *env) +{ + if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) + return 0; + + if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) + return 0; + + if (w < 0 || w >= env->prog->len) { + verbose("jump out of range from insn %d to %d\n", t, w); + return -EINVAL; + } + + if (e == BRANCH) + /* mark branch target for state pruning */ + env->explored_states[w] = STATE_LIST_MARK; + + if (insn_state[w] == 0) { + /* tree-edge */ + insn_state[t] = DISCOVERED | e; + insn_state[w] = DISCOVERED; + if (cur_stack >= env->prog->len) + return -E2BIG; + insn_stack[cur_stack++] = w; + return 1; + } else if ((insn_state[w] & 0xF0) == DISCOVERED) { + verbose("back-edge from insn %d to %d\n", t, w); + return -EINVAL; + } else if (insn_state[w] == EXPLORED) { + /* forward- or cross-edge */ + insn_state[t] = DISCOVERED | e; + } else { + verbose("insn state internal bug\n"); + return -EFAULT; + } + return 0; +} + +/* non-recursive depth-first-search to detect loops in BPF program + * loop == back-edge in directed graph + */ +static int check_cfg(struct verifier_env *env) +{ + struct bpf_insn *insns = env->prog->insnsi; + int insn_cnt = env->prog->len; + int ret = 0; + int i, t; + + insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); + if (!insn_state) + return -ENOMEM; + + insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); + if (!insn_stack) { + kfree(insn_state); + return -ENOMEM; + } + + insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ + insn_stack[0] = 0; /* 0 is the first instruction */ + cur_stack = 1; + +peek_stack: + if (cur_stack == 0) + goto check_state; + t = insn_stack[cur_stack - 1]; + + if (BPF_CLASS(insns[t].code) == BPF_JMP) { + u8 opcode = BPF_OP(insns[t].code); + + if (opcode == BPF_EXIT) { + goto mark_explored; + } else if (opcode == BPF_CALL) { + ret = push_insn(t, t + 1, FALLTHROUGH, env); + if (ret == 1) + goto peek_stack; + else if (ret < 0) + goto err_free; + } else if (opcode == BPF_JA) { + if (BPF_SRC(insns[t].code) != BPF_K) { + ret = -EINVAL; + goto err_free; + } + /* unconditional jump with single edge */ + ret = push_insn(t, t + insns[t].off + 1, + FALLTHROUGH, env); + if (ret == 1) + goto peek_stack; + else if (ret < 0) + goto err_free; + /* tell verifier to check for equivalent states + * after every call and jump + */ + if (t + 1 < insn_cnt) + env->explored_states[t + 1] = STATE_LIST_MARK; + } else { + /* conditional jump with two edges */ + ret = push_insn(t, t + 1, FALLTHROUGH, env); + if (ret == 1) + goto peek_stack; + else if (ret < 0) + goto err_free; + + ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); + if (ret == 1) + goto peek_stack; + else if (ret < 0) + goto err_free; + } + } else { + /* all other non-branch instructions with single + * fall-through edge + */ + ret = push_insn(t, t + 1, FALLTHROUGH, env); + if (ret == 1) + goto peek_stack; + else if (ret < 0) + goto err_free; + } + +mark_explored: + insn_state[t] = EXPLORED; + if (cur_stack-- <= 0) { + verbose("pop stack internal bug\n"); + ret = -EFAULT; + goto err_free; + } + goto peek_stack; + +check_state: + for (i = 0; i < insn_cnt; i++) { + if (insn_state[i] != EXPLORED) { + verbose("unreachable insn %d\n", i); + ret = -EINVAL; + goto err_free; + } + } + ret = 0; /* cfg looks good */ + +err_free: + kfree(insn_state); + kfree(insn_stack); + return ret; +} + +/* compare two verifier states + * + * all states stored in state_list are known to be valid, since + * verifier reached 'bpf_exit' instruction through them + * + * this function is called when verifier exploring different branches of + * execution popped from the state stack. If it sees an old state that has + * more strict register state and more strict stack state then this execution + * branch doesn't need to be explored further, since verifier already + * concluded that more strict state leads to valid finish. + * + * Therefore two states are equivalent if register state is more conservative + * and explored stack state is more conservative than the current one. + * Example: + * explored current + * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) + * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) + * + * In other words if current stack state (one being explored) has more + * valid slots than old one that already passed validation, it means + * the verifier can stop exploring and conclude that current state is valid too + * + * Similarly with registers. If explored state has register type as invalid + * whereas register type in current state is meaningful, it means that + * the current state will reach 'bpf_exit' instruction safely + */ +static bool states_equal(struct verifier_state *old, struct verifier_state *cur) +{ + int i; + + for (i = 0; i < MAX_BPF_REG; i++) { + if (memcmp(&old->regs[i], &cur->regs[i], + sizeof(old->regs[0])) != 0) { + if (old->regs[i].type == NOT_INIT || + (old->regs[i].type == UNKNOWN_VALUE && + cur->regs[i].type != NOT_INIT)) + continue; + return false; + } + } + + for (i = 0; i < MAX_BPF_STACK; i++) { + if (old->stack_slot_type[i] == STACK_INVALID) + continue; + if (old->stack_slot_type[i] != cur->stack_slot_type[i]) + /* Ex: old explored (safe) state has STACK_SPILL in + * this stack slot, but current has has STACK_MISC -> + * this verifier states are not equivalent, + * return false to continue verification of this path + */ + return false; + if (i % BPF_REG_SIZE) + continue; + if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE], + &cur->spilled_regs[i / BPF_REG_SIZE], + sizeof(old->spilled_regs[0]))) + /* when explored and current stack slot types are + * the same, check that stored pointers types + * are the same as well. + * Ex: explored safe path could have stored + * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8} + * but current path has stored: + * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16} + * such verifier states are not equivalent. + * return false to continue verification of this path + */ + return false; + else + continue; + } + return true; +} + +static int is_state_visited(struct verifier_env *env, int insn_idx) +{ + struct verifier_state_list *new_sl; + struct verifier_state_list *sl; + + sl = env->explored_states[insn_idx]; + if (!sl) + /* this 'insn_idx' instruction wasn't marked, so we will not + * be doing state search here + */ + return 0; + + while (sl != STATE_LIST_MARK) { + if (states_equal(&sl->state, &env->cur_state)) + /* reached equivalent register/stack state, + * prune the search + */ + return 1; + sl = sl->next; + } + + /* there were no equivalent states, remember current one. + * technically the current state is not proven to be safe yet, + * but it will either reach bpf_exit (which means it's safe) or + * it will be rejected. Since there are no loops, we won't be + * seeing this 'insn_idx' instruction again on the way to bpf_exit + */ + new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER); + if (!new_sl) + return -ENOMEM; + + /* add new state to the head of linked list */ + memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); + new_sl->next = env->explored_states[insn_idx]; + env->explored_states[insn_idx] = new_sl; + return 0; +} + +static int do_check(struct verifier_env *env) +{ + struct verifier_state *state = &env->cur_state; + struct bpf_insn *insns = env->prog->insnsi; + struct reg_state *regs = state->regs; + int insn_cnt = env->prog->len; + int insn_idx, prev_insn_idx = 0; + int insn_processed = 0; + bool do_print_state = false; + + init_reg_state(regs); + insn_idx = 0; + for (;;) { + struct bpf_insn *insn; + u8 class; + int err; + + if (insn_idx >= insn_cnt) { + verbose("invalid insn idx %d insn_cnt %d\n", + insn_idx, insn_cnt); + return -EFAULT; + } + + insn = &insns[insn_idx]; + class = BPF_CLASS(insn->code); + + if (++insn_processed > 32768) { + verbose("BPF program is too large. Proccessed %d insn\n", + insn_processed); + return -E2BIG; + } + + err = is_state_visited(env, insn_idx); + if (err < 0) + return err; + if (err == 1) { + /* found equivalent state, can prune the search */ + if (log_level) { + if (do_print_state) + verbose("\nfrom %d to %d: safe\n", + prev_insn_idx, insn_idx); + else + verbose("%d: safe\n", insn_idx); + } + goto process_bpf_exit; + } + + if (log_level && do_print_state) { + verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx); + print_verifier_state(env); + do_print_state = false; + } + + if (log_level) { + verbose("%d: ", insn_idx); + print_bpf_insn(insn); + } + + if (class == BPF_ALU || class == BPF_ALU64) { + err = check_alu_op(regs, insn); + if (err) + return err; + + } else if (class == BPF_LDX) { + enum bpf_reg_type src_reg_type; + + /* check for reserved fields is already done */ + + /* check src operand */ + err = check_reg_arg(regs, insn->src_reg, SRC_OP); + if (err) + return err; + + err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK); + if (err) + return err; + + src_reg_type = regs[insn->src_reg].type; + + /* check that memory (src_reg + off) is readable, + * the state of dst_reg will be updated by this func + */ + err = check_mem_access(env, insn->src_reg, insn->off, + BPF_SIZE(insn->code), BPF_READ, + insn->dst_reg); + if (err) + return err; + + if (BPF_SIZE(insn->code) != BPF_W) { + insn_idx++; + continue; + } + + if (insn->imm == 0) { + /* saw a valid insn + * dst_reg = *(u32 *)(src_reg + off) + * use reserved 'imm' field to mark this insn + */ + insn->imm = src_reg_type; + + } else if (src_reg_type != insn->imm && + (src_reg_type == PTR_TO_CTX || + insn->imm == PTR_TO_CTX)) { + /* ABuser program is trying to use the same insn + * dst_reg = *(u32*) (src_reg + off) + * with different pointer types: + * src_reg == ctx in one branch and + * src_reg == stack|map in some other branch. + * Reject it. + */ + verbose("same insn cannot be used with different pointers\n"); + return -EINVAL; + } + + } else if (class == BPF_STX) { + if (BPF_MODE(insn->code) == BPF_XADD) { + err = check_xadd(env, insn); + if (err) + return err; + insn_idx++; + continue; + } + + if (BPF_MODE(insn->code) != BPF_MEM || + insn->imm != 0) { + verbose("BPF_STX uses reserved fields\n"); + return -EINVAL; + } + /* check src1 operand */ + err = check_reg_arg(regs, insn->src_reg, SRC_OP); + if (err) + return err; + /* check src2 operand */ + err = check_reg_arg(regs, insn->dst_reg, SRC_OP); + if (err) + return err; + + /* check that memory (dst_reg + off) is writeable */ + err = check_mem_access(env, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_WRITE, + insn->src_reg); + if (err) + return err; + + } else if (class == BPF_ST) { + if (BPF_MODE(insn->code) != BPF_MEM || + insn->src_reg != BPF_REG_0) { + verbose("BPF_ST uses reserved fields\n"); + return -EINVAL; + } + /* check src operand */ + err = check_reg_arg(regs, insn->dst_reg, SRC_OP); + if (err) + return err; + + /* check that memory (dst_reg + off) is writeable */ + err = check_mem_access(env, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_WRITE, + -1); + if (err) + return err; + + } else if (class == BPF_JMP) { + u8 opcode = BPF_OP(insn->code); + + if (opcode == BPF_CALL) { + if (BPF_SRC(insn->code) != BPF_K || + insn->off != 0 || + insn->src_reg != BPF_REG_0 || + insn->dst_reg != BPF_REG_0) { + verbose("BPF_CALL uses reserved fields\n"); + return -EINVAL; + } + + err = check_call(env, insn->imm); + if (err) + return err; + + } else if (opcode == BPF_JA) { + if (BPF_SRC(insn->code) != BPF_K || + insn->imm != 0 || + insn->src_reg != BPF_REG_0 || + insn->dst_reg != BPF_REG_0) { + verbose("BPF_JA uses reserved fields\n"); + return -EINVAL; + } + + insn_idx += insn->off + 1; + continue; + + } else if (opcode == BPF_EXIT) { + if (BPF_SRC(insn->code) != BPF_K || + insn->imm != 0 || + insn->src_reg != BPF_REG_0 || + insn->dst_reg != BPF_REG_0) { + verbose("BPF_EXIT uses reserved fields\n"); + return -EINVAL; + } + + /* eBPF calling convetion is such that R0 is used + * to return the value from eBPF program. + * Make sure that it's readable at this time + * of bpf_exit, which means that program wrote + * something into it earlier + */ + err = check_reg_arg(regs, BPF_REG_0, SRC_OP); + if (err) + return err; + +process_bpf_exit: + insn_idx = pop_stack(env, &prev_insn_idx); + if (insn_idx < 0) { + break; + } else { + do_print_state = true; + continue; + } + } else { + err = check_cond_jmp_op(env, insn, &insn_idx); + if (err) + return err; + } + } else if (class == BPF_LD) { + u8 mode = BPF_MODE(insn->code); + + if (mode == BPF_ABS || mode == BPF_IND) { + err = check_ld_abs(env, insn); + if (err) + return err; + + } else if (mode == BPF_IMM) { + err = check_ld_imm(env, insn); + if (err) + return err; + + insn_idx++; + } else { + verbose("invalid BPF_LD mode\n"); + return -EINVAL; + } + } else { + verbose("unknown insn class %d\n", class); + return -EINVAL; + } + + insn_idx++; + } + + return 0; +} + +/* look for pseudo eBPF instructions that access map FDs and + * replace them with actual map pointers + */ +static int replace_map_fd_with_map_ptr(struct verifier_env *env) +{ + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + int i, j; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (BPF_CLASS(insn->code) == BPF_LDX && + (BPF_MODE(insn->code) != BPF_MEM || + insn->imm != 0)) { + verbose("BPF_LDX uses reserved fields\n"); + return -EINVAL; + } + + if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { + struct bpf_map *map; + struct fd f; + + if (i == insn_cnt - 1 || insn[1].code != 0 || + insn[1].dst_reg != 0 || insn[1].src_reg != 0 || + insn[1].off != 0) { + verbose("invalid bpf_ld_imm64 insn\n"); + return -EINVAL; + } + + if (insn->src_reg == 0) + /* valid generic load 64-bit imm */ + goto next_insn; + + if (insn->src_reg != BPF_PSEUDO_MAP_FD) { + verbose("unrecognized bpf_ld_imm64 insn\n"); + return -EINVAL; + } + + f = fdget(insn->imm); + + map = bpf_map_get(f); + if (IS_ERR(map)) { + verbose("fd %d is not pointing to valid bpf_map\n", + insn->imm); + fdput(f); + return PTR_ERR(map); + } + + /* store map pointer inside BPF_LD_IMM64 instruction */ + insn[0].imm = (u32) (unsigned long) map; + insn[1].imm = ((u64) (unsigned long) map) >> 32; + + /* check whether we recorded this map already */ + for (j = 0; j < env->used_map_cnt; j++) + if (env->used_maps[j] == map) { + fdput(f); + goto next_insn; + } + + if (env->used_map_cnt >= MAX_USED_MAPS) { + fdput(f); + return -E2BIG; + } + + /* remember this map */ + env->used_maps[env->used_map_cnt++] = map; + + /* hold the map. If the program is rejected by verifier, + * the map will be released by release_maps() or it + * will be used by the valid program until it's unloaded + * and all maps are released in free_bpf_prog_info() + */ + atomic_inc(&map->refcnt); + + fdput(f); +next_insn: + insn++; + i++; + } + } + + /* now all pseudo BPF_LD_IMM64 instructions load valid + * 'struct bpf_map *' into a register instead of user map_fd. + * These pointers will be used later by verifier to validate map access. + */ + return 0; +} + +/* drop refcnt of maps used by the rejected program */ +static void release_maps(struct verifier_env *env) +{ + int i; + + for (i = 0; i < env->used_map_cnt; i++) + bpf_map_put(env->used_maps[i]); +} + +/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ +static void convert_pseudo_ld_imm64(struct verifier_env *env) +{ + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + int i; + + for (i = 0; i < insn_cnt; i++, insn++) + if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) + insn->src_reg = 0; +} + +static void adjust_branches(struct bpf_prog *prog, int pos, int delta) +{ + struct bpf_insn *insn = prog->insnsi; + int insn_cnt = prog->len; + int i; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (BPF_CLASS(insn->code) != BPF_JMP || + BPF_OP(insn->code) == BPF_CALL || + BPF_OP(insn->code) == BPF_EXIT) + continue; + + /* adjust offset of jmps if necessary */ + if (i < pos && i + insn->off + 1 > pos) + insn->off += delta; + else if (i > pos && i + insn->off + 1 < pos) + insn->off -= delta; + } +} + +/* convert load instructions that access fields of 'struct __sk_buff' + * into sequence of instructions that access fields of 'struct sk_buff' + */ +static int convert_ctx_accesses(struct verifier_env *env) +{ + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + struct bpf_insn insn_buf[16]; + struct bpf_prog *new_prog; + u32 cnt; + int i; + + if (!env->prog->aux->ops->convert_ctx_access) + return 0; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (insn->code != (BPF_LDX | BPF_MEM | BPF_W)) + continue; + + if (insn->imm != PTR_TO_CTX) { + /* clear internal mark */ + insn->imm = 0; + continue; + } + + cnt = env->prog->aux->ops-> + convert_ctx_access(insn->dst_reg, insn->src_reg, + insn->off, insn_buf); + if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { + verbose("bpf verifier is misconfigured\n"); + return -EINVAL; + } + + if (cnt == 1) { + memcpy(insn, insn_buf, sizeof(*insn)); + continue; + } + + /* several new insns need to be inserted. Make room for them */ + insn_cnt += cnt - 1; + new_prog = bpf_prog_realloc(env->prog, + bpf_prog_size(insn_cnt), + GFP_USER); + if (!new_prog) + return -ENOMEM; + + new_prog->len = insn_cnt; + + memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1, + sizeof(*insn) * (insn_cnt - i - cnt)); + + /* copy substitute insns in place of load instruction */ + memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt); + + /* adjust branches in the whole program */ + adjust_branches(new_prog, i, cnt - 1); + + /* keep walking new program and skip insns we just inserted */ + env->prog = new_prog; + insn = new_prog->insnsi + i + cnt - 1; + i += cnt - 1; + } + + return 0; +} + +static void free_states(struct verifier_env *env) +{ + struct verifier_state_list *sl, *sln; + int i; + + if (!env->explored_states) + return; + + for (i = 0; i < env->prog->len; i++) { + sl = env->explored_states[i]; + + if (sl) + while (sl != STATE_LIST_MARK) { + sln = sl->next; + kfree(sl); + sl = sln; + } + } + + kfree(env->explored_states); +} + +int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) +{ + char __user *log_ubuf = NULL; + struct verifier_env *env; + int ret = -EINVAL; + + if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS) + return -E2BIG; + + /* 'struct verifier_env' can be global, but since it's not small, + * allocate/free it every time bpf_check() is called + */ + env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL); + if (!env) + return -ENOMEM; + + env->prog = *prog; + + /* grab the mutex to protect few globals used by verifier */ + mutex_lock(&bpf_verifier_lock); + + if (attr->log_level || attr->log_buf || attr->log_size) { + /* user requested verbose verifier output + * and supplied buffer to store the verification trace + */ + log_level = attr->log_level; + log_ubuf = (char __user *) (unsigned long) attr->log_buf; + log_size = attr->log_size; + log_len = 0; + + ret = -EINVAL; + /* log_* values have to be sane */ + if (log_size < 128 || log_size > UINT_MAX >> 8 || + log_level == 0 || log_ubuf == NULL) + goto free_env; + + ret = -ENOMEM; + log_buf = vmalloc(log_size); + if (!log_buf) + goto free_env; + } else { + log_level = 0; + } + + ret = replace_map_fd_with_map_ptr(env); + if (ret < 0) + goto skip_full_check; + + env->explored_states = kcalloc(env->prog->len, + sizeof(struct verifier_state_list *), + GFP_USER); + ret = -ENOMEM; + if (!env->explored_states) + goto skip_full_check; + + ret = check_cfg(env); + if (ret < 0) + goto skip_full_check; + + ret = do_check(env); + +skip_full_check: + while (pop_stack(env, NULL) >= 0); + free_states(env); + + if (ret == 0) + /* program is valid, convert *(u32*)(ctx + off) accesses */ + ret = convert_ctx_accesses(env); + + if (log_level && log_len >= log_size - 1) { + BUG_ON(log_len >= log_size); + /* verifier log exceeded user supplied buffer */ + ret = -ENOSPC; + /* fall through to return what was recorded */ + } + + /* copy verifier log back to user space including trailing zero */ + if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { + ret = -EFAULT; + goto free_log_buf; + } + + if (ret == 0 && env->used_map_cnt) { + /* if program passed verifier, update used_maps in bpf_prog_info */ + env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, + sizeof(env->used_maps[0]), + GFP_KERNEL); + + if (!env->prog->aux->used_maps) { + ret = -ENOMEM; + goto free_log_buf; + } + + memcpy(env->prog->aux->used_maps, env->used_maps, + sizeof(env->used_maps[0]) * env->used_map_cnt); + env->prog->aux->used_map_cnt = env->used_map_cnt; + + /* program is valid. Convert pseudo bpf_ld_imm64 into generic + * bpf_ld_imm64 instructions + */ + convert_pseudo_ld_imm64(env); + } + +free_log_buf: + if (log_level) + vfree(log_buf); +free_env: + if (!env->prog->aux->used_maps) + /* if we didn't copy map pointers into bpf_prog_info, release + * them now. Otherwise free_bpf_prog_info() will release them. + */ + release_maps(env); + *prog = env->prog; + kfree(env); + mutex_unlock(&bpf_verifier_lock); + return ret; +} |