summaryrefslogtreecommitdiff
path: root/kernel/sched/bfs.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/bfs.c')
-rw-r--r--kernel/sched/bfs.c7561
1 files changed, 0 insertions, 7561 deletions
diff --git a/kernel/sched/bfs.c b/kernel/sched/bfs.c
deleted file mode 100644
index a4e9de738..000000000
--- a/kernel/sched/bfs.c
+++ /dev/null
@@ -1,7561 +0,0 @@
-/*
- * kernel/sched/bfs.c, was kernel/sched.c
- *
- * Kernel scheduler and related syscalls
- *
- * Copyright (C) 1991-2002 Linus Torvalds
- *
- * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
- * make semaphores SMP safe
- * 1998-11-19 Implemented schedule_timeout() and related stuff
- * by Andrea Arcangeli
- * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
- * hybrid priority-list and round-robin design with
- * an array-switch method of distributing timeslices
- * and per-CPU runqueues. Cleanups and useful suggestions
- * by Davide Libenzi, preemptible kernel bits by Robert Love.
- * 2003-09-03 Interactivity tuning by Con Kolivas.
- * 2004-04-02 Scheduler domains code by Nick Piggin
- * 2007-04-15 Work begun on replacing all interactivity tuning with a
- * fair scheduling design by Con Kolivas.
- * 2007-05-05 Load balancing (smp-nice) and other improvements
- * by Peter Williams
- * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
- * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
- * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
- * Thomas Gleixner, Mike Kravetz
- * now Brainfuck deadline scheduling policy by Con Kolivas deletes
- * a whole lot of those previous things.
- */
-
-#include <linux/mm.h>
-#include <linux/module.h>
-#include <linux/nmi.h>
-#include <linux/init.h>
-#include <asm/uaccess.h>
-#include <linux/highmem.h>
-#include <asm/mmu_context.h>
-#include <linux/interrupt.h>
-#include <linux/capability.h>
-#include <linux/completion.h>
-#include <linux/kernel_stat.h>
-#include <linux/debug_locks.h>
-#include <linux/perf_event.h>
-#include <linux/security.h>
-#include <linux/notifier.h>
-#include <linux/profile.h>
-#include <linux/freezer.h>
-#include <linux/vmalloc.h>
-#include <linux/blkdev.h>
-#include <linux/delay.h>
-#include <linux/smp.h>
-#include <linux/threads.h>
-#include <linux/timer.h>
-#include <linux/rcupdate.h>
-#include <linux/cpu.h>
-#include <linux/cpuset.h>
-#include <linux/cpumask.h>
-#include <linux/percpu.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/syscalls.h>
-#include <linux/sched/sysctl.h>
-#include <linux/times.h>
-#include <linux/tsacct_kern.h>
-#include <linux/kprobes.h>
-#include <linux/delayacct.h>
-#include <linux/log2.h>
-#include <linux/bootmem.h>
-#include <linux/ftrace.h>
-#include <linux/slab.h>
-#include <linux/init_task.h>
-#include <linux/binfmts.h>
-#include <linux/context_tracking.h>
-#include <linux/sched/prio.h>
-#include <linux/tick.h>
-
-#include <asm/irq_regs.h>
-#include <asm/switch_to.h>
-#include <asm/tlb.h>
-#include <asm/unistd.h>
-#include <asm/mutex.h>
-#ifdef CONFIG_PARAVIRT
-#include <asm/paravirt.h>
-#endif
-
-#include "cpupri.h"
-#include "../workqueue_internal.h"
-#include "../smpboot.h"
-
-#define CREATE_TRACE_POINTS
-#include <trace/events/sched.h>
-
-#include "bfs_sched.h"
-
-#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
-#define rt_task(p) rt_prio((p)->prio)
-#define rt_queue(rq) rt_prio((rq)->rq_prio)
-#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
-#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \
- (policy) == SCHED_RR)
-#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
-
-#define is_idle_policy(policy) ((policy) == SCHED_IDLEPRIO)
-#define idleprio_task(p) unlikely(is_idle_policy((p)->policy))
-#define task_running_idle(p) unlikely((p)->prio == IDLE_PRIO)
-#define idle_queue(rq) (unlikely(is_idle_policy((rq)->rq_policy)))
-
-#define is_iso_policy(policy) ((policy) == SCHED_ISO)
-#define iso_task(p) unlikely(is_iso_policy((p)->policy))
-#define iso_queue(rq) unlikely(is_iso_policy((rq)->rq_policy))
-#define task_running_iso(p) unlikely((p)->prio == ISO_PRIO)
-#define rq_running_iso(rq) ((rq)->rq_prio == ISO_PRIO)
-
-#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT)
-
-#define ISO_PERIOD ((5 * HZ * grq.noc) + 1)
-
-#define SCHED_PRIO(p) ((p) + MAX_RT_PRIO)
-#define STOP_PRIO (MAX_RT_PRIO - 1)
-
-/*
- * Some helpers for converting to/from various scales. Use shifts to get
- * approximate multiples of ten for less overhead.
- */
-#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
-#define JIFFY_NS (1000000000 / HZ)
-#define HALF_JIFFY_NS (1000000000 / HZ / 2)
-#define HALF_JIFFY_US (1000000 / HZ / 2)
-#define MS_TO_NS(TIME) ((TIME) << 20)
-#define MS_TO_US(TIME) ((TIME) << 10)
-#define NS_TO_MS(TIME) ((TIME) >> 20)
-#define NS_TO_US(TIME) ((TIME) >> 10)
-
-#define RESCHED_US (100) /* Reschedule if less than this many μs left */
-
-void print_scheduler_version(void)
-{
- printk(KERN_INFO "BFS CPU scheduler v0.467 by Con Kolivas.\n");
-}
-
-/*
- * This is the time all tasks within the same priority round robin.
- * Value is in ms and set to a minimum of 6ms. Scales with number of cpus.
- * Tunable via /proc interface.
- */
-#ifdef CONFIG_PCK_INTERACTIVE
-int rr_interval __read_mostly = 3;
-#else
-int rr_interval __read_mostly = 6;
-#endif
-
-/* Tunable to choose whether to prioritise latency or throughput, simple
- * binary yes or no */
-
-int sched_interactive __read_mostly = 1;
-
-/*
- * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
- * are allowed to run five seconds as real time tasks. This is the total over
- * all online cpus.
- */
-#ifdef CONFIG_PCK_INTERACTIVE
-int sched_iso_cpu __read_mostly = 25;
-#else
-int sched_iso_cpu __read_mostly = 70;
-#endif
-
-/*
- * The relative length of deadline for each priority(nice) level.
- */
-static int prio_ratios[NICE_WIDTH] __read_mostly;
-
-/*
- * The quota handed out to tasks of all priority levels when refilling their
- * time_slice.
- */
-static inline int timeslice(void)
-{
- return MS_TO_US(rr_interval);
-}
-
-/*
- * The global runqueue data that all CPUs work off. Data is protected either
- * by the global grq lock, or the discrete lock that precedes the data in this
- * struct.
- */
-struct global_rq {
- raw_spinlock_t lock;
- unsigned long nr_running;
- unsigned long nr_uninterruptible;
- unsigned long long nr_switches;
- struct list_head queue[PRIO_LIMIT];
- DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1);
- unsigned long qnr; /* queued not running */
-#ifdef CONFIG_SMP
- cpumask_t cpu_idle_map;
- bool idle_cpus;
-#endif
- int noc; /* num_online_cpus stored and updated when it changes */
- u64 niffies; /* Nanosecond jiffies */
- unsigned long last_jiffy; /* Last jiffy we updated niffies */
-
- raw_spinlock_t iso_lock;
- int iso_ticks;
- bool iso_refractory;
-};
-
-#ifdef CONFIG_SMP
-/*
- * We add the notion of a root-domain which will be used to define per-domain
- * variables. Each exclusive cpuset essentially defines an island domain by
- * fully partitioning the member cpus from any other cpuset. Whenever a new
- * exclusive cpuset is created, we also create and attach a new root-domain
- * object.
- *
- */
-struct root_domain {
- atomic_t refcount;
- atomic_t rto_count;
- struct rcu_head rcu;
- cpumask_var_t span;
- cpumask_var_t online;
-
- /*
- * The "RT overload" flag: it gets set if a CPU has more than
- * one runnable RT task.
- */
- cpumask_var_t rto_mask;
- struct cpupri cpupri;
-};
-
-/*
- * By default the system creates a single root-domain with all cpus as
- * members (mimicking the global state we have today).
- */
-static struct root_domain def_root_domain;
-
-#endif /* CONFIG_SMP */
-
-/* There can be only one */
-static struct global_rq grq;
-
-static DEFINE_MUTEX(sched_hotcpu_mutex);
-
-/* cpus with isolated domains */
-cpumask_var_t cpu_isolated_map;
-
-DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
-#ifdef CONFIG_SMP
-struct rq *cpu_rq(int cpu)
-{
- return &per_cpu(runqueues, (cpu));
-}
-#define task_rq(p) cpu_rq(task_cpu(p))
-#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
-/*
- * sched_domains_mutex serialises calls to init_sched_domains,
- * detach_destroy_domains and partition_sched_domains.
- */
-DEFINE_MUTEX(sched_domains_mutex);
-
-/*
- * By default the system creates a single root-domain with all cpus as
- * members (mimicking the global state we have today).
- */
-static struct root_domain def_root_domain;
-
-int __weak arch_sd_sibling_asym_packing(void)
-{
- return 0*SD_ASYM_PACKING;
-}
-#else
-struct rq *uprq;
-#endif /* CONFIG_SMP */
-
-static inline void update_rq_clock(struct rq *rq);
-
-/*
- * Sanity check should sched_clock return bogus values. We make sure it does
- * not appear to go backwards, and use jiffies to determine the maximum and
- * minimum it could possibly have increased, and round down to the nearest
- * jiffy when it falls outside this.
- */
-static inline void niffy_diff(s64 *niff_diff, int jiff_diff)
-{
- unsigned long min_diff, max_diff;
-
- if (jiff_diff > 1)
- min_diff = JIFFIES_TO_NS(jiff_diff - 1);
- else
- min_diff = 1;
- /* Round up to the nearest tick for maximum */
- max_diff = JIFFIES_TO_NS(jiff_diff + 1);
-
- if (unlikely(*niff_diff < min_diff || *niff_diff > max_diff))
- *niff_diff = min_diff;
-}
-
-#ifdef CONFIG_SMP
-static inline int cpu_of(struct rq *rq)
-{
- return rq->cpu;
-}
-
-/*
- * Niffies are a globally increasing nanosecond counter. Whenever a runqueue
- * clock is updated with the grq.lock held, it is an opportunity to update the
- * niffies value. Any CPU can update it by adding how much its clock has
- * increased since it last updated niffies, minus any added niffies by other
- * CPUs.
- */
-static inline void update_clocks(struct rq *rq)
-{
- s64 ndiff;
- long jdiff;
-
- update_rq_clock(rq);
- ndiff = rq->clock - rq->old_clock;
- /* old_clock is only updated when we are updating niffies */
- rq->old_clock = rq->clock;
- ndiff -= grq.niffies - rq->last_niffy;
- jdiff = jiffies - grq.last_jiffy;
- niffy_diff(&ndiff, jdiff);
- grq.last_jiffy += jdiff;
- grq.niffies += ndiff;
- rq->last_niffy = grq.niffies;
-}
-#else /* CONFIG_SMP */
-static inline int cpu_of(struct rq *rq)
-{
- return 0;
-}
-
-static inline void update_clocks(struct rq *rq)
-{
- s64 ndiff;
- long jdiff;
-
- update_rq_clock(rq);
- ndiff = rq->clock - rq->old_clock;
- rq->old_clock = rq->clock;
- jdiff = jiffies - grq.last_jiffy;
- niffy_diff(&ndiff, jdiff);
- grq.last_jiffy += jdiff;
- grq.niffies += ndiff;
-}
-#endif
-
-#include "stats.h"
-
-#ifndef prepare_arch_switch
-# define prepare_arch_switch(next) do { } while (0)
-#endif
-#ifndef finish_arch_switch
-# define finish_arch_switch(prev) do { } while (0)
-#endif
-#ifndef finish_arch_post_lock_switch
-# define finish_arch_post_lock_switch() do { } while (0)
-#endif
-
-/*
- * All common locking functions performed on grq.lock. rq->clock is local to
- * the CPU accessing it so it can be modified just with interrupts disabled
- * when we're not updating niffies.
- * Looking up task_rq must be done under grq.lock to be safe.
- */
-static void update_rq_clock_task(struct rq *rq, s64 delta);
-
-static inline void update_rq_clock(struct rq *rq)
-{
- s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
-
- if (unlikely(delta < 0))
- return;
- rq->clock += delta;
- update_rq_clock_task(rq, delta);
-}
-
-static inline bool task_running(struct task_struct *p)
-{
- return p->on_cpu;
-}
-
-static inline void grq_lock(void)
- __acquires(grq.lock)
-{
- raw_spin_lock(&grq.lock);
-}
-
-static inline void grq_unlock(void)
- __releases(grq.lock)
-{
- raw_spin_unlock(&grq.lock);
-}
-
-static inline void grq_lock_irq(void)
- __acquires(grq.lock)
-{
- raw_spin_lock_irq(&grq.lock);
-}
-
-static inline void time_lock_grq(struct rq *rq)
- __acquires(grq.lock)
-{
- grq_lock();
- update_clocks(rq);
-}
-
-static inline void grq_unlock_irq(void)
- __releases(grq.lock)
-{
- raw_spin_unlock_irq(&grq.lock);
-}
-
-static inline void grq_lock_irqsave(unsigned long *flags)
- __acquires(grq.lock)
-{
- raw_spin_lock_irqsave(&grq.lock, *flags);
-}
-
-static inline void grq_unlock_irqrestore(unsigned long *flags)
- __releases(grq.lock)
-{
- raw_spin_unlock_irqrestore(&grq.lock, *flags);
-}
-
-static inline struct rq
-*task_grq_lock(struct task_struct *p, unsigned long *flags)
- __acquires(grq.lock)
-{
- grq_lock_irqsave(flags);
- return task_rq(p);
-}
-
-static inline struct rq
-*time_task_grq_lock(struct task_struct *p, unsigned long *flags)
- __acquires(grq.lock)
-{
- struct rq *rq = task_grq_lock(p, flags);
- update_clocks(rq);
- return rq;
-}
-
-static inline struct rq *task_grq_lock_irq(struct task_struct *p)
- __acquires(grq.lock)
-{
- grq_lock_irq();
- return task_rq(p);
-}
-
-static inline void time_task_grq_lock_irq(struct task_struct *p)
- __acquires(grq.lock)
-{
- struct rq *rq = task_grq_lock_irq(p);
- update_clocks(rq);
-}
-
-static inline void task_grq_unlock_irq(void)
- __releases(grq.lock)
-{
- grq_unlock_irq();
-}
-
-static inline void task_grq_unlock(unsigned long *flags)
- __releases(grq.lock)
-{
- grq_unlock_irqrestore(flags);
-}
-
-/**
- * grunqueue_is_locked
- *
- * Returns true if the global runqueue is locked.
- * This interface allows printk to be called with the runqueue lock
- * held and know whether or not it is OK to wake up the klogd.
- */
-bool grunqueue_is_locked(void)
-{
- return raw_spin_is_locked(&grq.lock);
-}
-
-void grq_unlock_wait(void)
- __releases(grq.lock)
-{
- smp_mb(); /* spin-unlock-wait is not a full memory barrier */
- raw_spin_unlock_wait(&grq.lock);
-}
-
-static inline void time_grq_lock(struct rq *rq, unsigned long *flags)
- __acquires(grq.lock)
-{
- local_irq_save(*flags);
- time_lock_grq(rq);
-}
-
-static inline struct rq *__task_grq_lock(struct task_struct *p)
- __acquires(grq.lock)
-{
- grq_lock();
- return task_rq(p);
-}
-
-static inline void __task_grq_unlock(void)
- __releases(grq.lock)
-{
- grq_unlock();
-}
-
-static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-{
-}
-
-static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-{
-#ifdef CONFIG_DEBUG_SPINLOCK
- /* this is a valid case when another task releases the spinlock */
- grq.lock.owner = current;
-#endif
- /*
- * If we are tracking spinlock dependencies then we have to
- * fix up the runqueue lock - which gets 'carried over' from
- * prev into current:
- */
- spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_);
-
- grq_unlock_irq();
-}
-
-static inline bool deadline_before(u64 deadline, u64 time)
-{
- return (deadline < time);
-}
-
-static inline bool deadline_after(u64 deadline, u64 time)
-{
- return (deadline > time);
-}
-
-/*
- * A task that is queued but not running will be on the grq run list.
- * A task that is not running or queued will not be on the grq run list.
- * A task that is currently running will have ->on_cpu set but not on the
- * grq run list.
- */
-static inline bool task_queued(struct task_struct *p)
-{
- return (!list_empty(&p->run_list));
-}
-
-/*
- * Removing from the global runqueue. Enter with grq locked.
- */
-static void dequeue_task(struct task_struct *p)
-{
- list_del_init(&p->run_list);
- if (list_empty(grq.queue + p->prio))
- __clear_bit(p->prio, grq.prio_bitmap);
- sched_info_dequeued(task_rq(p), p);
-}
-
-/*
- * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as
- * an idle task, we ensure none of the following conditions are met.
- */
-static bool idleprio_suitable(struct task_struct *p)
-{
- return (!freezing(p) && !signal_pending(p) &&
- !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING)));
-}
-
-/*
- * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check
- * that the iso_refractory flag is not set.
- */
-static bool isoprio_suitable(void)
-{
- return !grq.iso_refractory;
-}
-
-/*
- * Adding to the global runqueue. Enter with grq locked.
- */
-static void enqueue_task(struct task_struct *p, struct rq *rq)
-{
- if (!rt_task(p)) {
- /* Check it hasn't gotten rt from PI */
- if ((idleprio_task(p) && idleprio_suitable(p)) ||
- (iso_task(p) && isoprio_suitable()))
- p->prio = p->normal_prio;
- else
- p->prio = NORMAL_PRIO;
- }
- __set_bit(p->prio, grq.prio_bitmap);
- list_add_tail(&p->run_list, grq.queue + p->prio);
- sched_info_queued(rq, p);
-}
-
-static inline void requeue_task(struct task_struct *p)
-{
- sched_info_queued(task_rq(p), p);
-}
-
-/*
- * Returns the relative length of deadline all compared to the shortest
- * deadline which is that of nice -20.
- */
-static inline int task_prio_ratio(struct task_struct *p)
-{
- return prio_ratios[TASK_USER_PRIO(p)];
-}
-
-/*
- * task_timeslice - all tasks of all priorities get the exact same timeslice
- * length. CPU distribution is handled by giving different deadlines to
- * tasks of different priorities. Use 128 as the base value for fast shifts.
- */
-static inline int task_timeslice(struct task_struct *p)
-{
- return (rr_interval * task_prio_ratio(p) / 128);
-}
-
-static void resched_task(struct task_struct *p);
-
-static inline void resched_curr(struct rq *rq)
-{
- resched_task(rq->curr);
-}
-
-/*
- * qnr is the "queued but not running" count which is the total number of
- * tasks on the global runqueue list waiting for cpu time but not actually
- * currently running on a cpu.
- */
-static inline void inc_qnr(void)
-{
- grq.qnr++;
-}
-
-static inline void dec_qnr(void)
-{
- grq.qnr--;
-}
-
-static inline int queued_notrunning(void)
-{
- return grq.qnr;
-}
-
-#ifdef CONFIG_SMP
-/*
- * The cpu_idle_map stores a bitmap of all the CPUs currently idle to
- * allow easy lookup of whether any suitable idle CPUs are available.
- * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the
- * idle_cpus variable than to do a full bitmask check when we are busy.
- */
-static inline void set_cpuidle_map(int cpu)
-{
- if (likely(cpu_online(cpu))) {
- cpumask_set_cpu(cpu, &grq.cpu_idle_map);
- grq.idle_cpus = true;
- }
-}
-
-static inline void clear_cpuidle_map(int cpu)
-{
- cpumask_clear_cpu(cpu, &grq.cpu_idle_map);
- if (cpumask_empty(&grq.cpu_idle_map))
- grq.idle_cpus = false;
-}
-
-static bool suitable_idle_cpus(struct task_struct *p)
-{
- if (!grq.idle_cpus)
- return false;
- return (cpumask_intersects(&p->cpus_allowed, &grq.cpu_idle_map));
-}
-
-#define CPUIDLE_DIFF_THREAD (1)
-#define CPUIDLE_DIFF_CORE (2)
-#define CPUIDLE_CACHE_BUSY (4)
-#define CPUIDLE_DIFF_CPU (8)
-#define CPUIDLE_THREAD_BUSY (16)
-#define CPUIDLE_THROTTLED (32)
-#define CPUIDLE_DIFF_NODE (64)
-
-static inline bool scaling_rq(struct rq *rq);
-
-/*
- * The best idle CPU is chosen according to the CPUIDLE ranking above where the
- * lowest value would give the most suitable CPU to schedule p onto next. The
- * order works out to be the following:
- *
- * Same core, idle or busy cache, idle or busy threads
- * Other core, same cache, idle or busy cache, idle threads.
- * Same node, other CPU, idle cache, idle threads.
- * Same node, other CPU, busy cache, idle threads.
- * Other core, same cache, busy threads.
- * Same node, other CPU, busy threads.
- * Other node, other CPU, idle cache, idle threads.
- * Other node, other CPU, busy cache, idle threads.
- * Other node, other CPU, busy threads.
- */
-static int best_mask_cpu(int best_cpu, struct rq *rq, cpumask_t *tmpmask)
-{
- int best_ranking = CPUIDLE_DIFF_NODE | CPUIDLE_THROTTLED |
- CPUIDLE_THREAD_BUSY | CPUIDLE_DIFF_CPU | CPUIDLE_CACHE_BUSY |
- CPUIDLE_DIFF_CORE | CPUIDLE_DIFF_THREAD;
- int cpu_tmp;
-
- if (cpumask_test_cpu(best_cpu, tmpmask))
- goto out;
-
- for_each_cpu(cpu_tmp, tmpmask) {
- int ranking, locality;
- struct rq *tmp_rq;
-
- ranking = 0;
- tmp_rq = cpu_rq(cpu_tmp);
-
- locality = rq->cpu_locality[cpu_tmp];
-#ifdef CONFIG_NUMA
- if (locality > 3)
- ranking |= CPUIDLE_DIFF_NODE;
- else
-#endif
- if (locality > 2)
- ranking |= CPUIDLE_DIFF_CPU;
-#ifdef CONFIG_SCHED_MC
- else if (locality == 2)
- ranking |= CPUIDLE_DIFF_CORE;
- if (!(tmp_rq->cache_idle(cpu_tmp)))
- ranking |= CPUIDLE_CACHE_BUSY;
-#endif
-#ifdef CONFIG_SCHED_SMT
- if (locality == 1)
- ranking |= CPUIDLE_DIFF_THREAD;
- if (!(tmp_rq->siblings_idle(cpu_tmp)))
- ranking |= CPUIDLE_THREAD_BUSY;
-#endif
- if (scaling_rq(tmp_rq))
- ranking |= CPUIDLE_THROTTLED;
-
- if (ranking < best_ranking) {
- best_cpu = cpu_tmp;
- best_ranking = ranking;
- }
- }
-out:
- return best_cpu;
-}
-
-static void resched_best_mask(int best_cpu, struct rq *rq, cpumask_t *tmpmask)
-{
- best_cpu = best_mask_cpu(best_cpu, rq, tmpmask);
- resched_curr(cpu_rq(best_cpu));
-}
-
-bool cpus_share_cache(int this_cpu, int that_cpu)
-{
- struct rq *this_rq = cpu_rq(this_cpu);
-
- return (this_rq->cpu_locality[that_cpu] < 3);
-}
-
-#ifdef CONFIG_SCHED_SMT
-#ifdef CONFIG_SMT_NICE
-static const cpumask_t *thread_cpumask(int cpu);
-
-/* Find the best real time priority running on any SMT siblings of cpu and if
- * none are running, the static priority of the best deadline task running.
- * The lookups to the other runqueues is done lockless as the occasional wrong
- * value would be harmless. */
-static int best_smt_bias(int cpu)
-{
- int other_cpu, best_bias = 0;
-
- for_each_cpu(other_cpu, thread_cpumask(cpu)) {
- struct rq *rq;
-
- if (other_cpu == cpu)
- continue;
- rq = cpu_rq(other_cpu);
- if (rq_idle(rq))
- continue;
- if (!rq->online)
- continue;
- if (!rq->rq_mm)
- continue;
- if (likely(rq->rq_smt_bias > best_bias))
- best_bias = rq->rq_smt_bias;
- }
- return best_bias;
-}
-
-static int task_prio_bias(struct task_struct *p)
-{
- if (rt_task(p))
- return 1 << 30;
- else if (task_running_iso(p))
- return 1 << 29;
- else if (task_running_idle(p))
- return 0;
- return MAX_PRIO - p->static_prio;
-}
-
-/* We've already decided p can run on CPU, now test if it shouldn't for SMT
- * nice reasons. */
-static bool smt_should_schedule(struct task_struct *p, int cpu)
-{
- int best_bias, task_bias;
-
- /* Kernel threads always run */
- if (unlikely(!p->mm))
- return true;
- if (rt_task(p))
- return true;
- if (!idleprio_suitable(p))
- return true;
- best_bias = best_smt_bias(cpu);
- /* The smt siblings are all idle or running IDLEPRIO */
- if (best_bias < 1)
- return true;
- task_bias = task_prio_bias(p);
- if (task_bias < 1)
- return false;
- if (task_bias >= best_bias)
- return true;
- /* Dither 25% cpu of normal tasks regardless of nice difference */
- if (best_bias % 4 == 1)
- return true;
- /* Sorry, you lose */
- return false;
-}
-#endif
-#endif
-
-static bool resched_best_idle(struct task_struct *p)
-{
- cpumask_t tmpmask;
- int best_cpu;
-
- cpumask_and(&tmpmask, &p->cpus_allowed, &grq.cpu_idle_map);
- best_cpu = best_mask_cpu(task_cpu(p), task_rq(p), &tmpmask);
-#ifdef CONFIG_SMT_NICE
- if (!smt_should_schedule(p, best_cpu))
- return false;
-#endif
- resched_curr(cpu_rq(best_cpu));
- return true;
-}
-
-static inline void resched_suitable_idle(struct task_struct *p)
-{
- if (suitable_idle_cpus(p))
- resched_best_idle(p);
-}
-/*
- * Flags to tell us whether this CPU is running a CPU frequency governor that
- * has slowed its speed or not. No locking required as the very rare wrongly
- * read value would be harmless.
- */
-void cpu_scaling(int cpu)
-{
- cpu_rq(cpu)->scaling = true;
-}
-
-void cpu_nonscaling(int cpu)
-{
- cpu_rq(cpu)->scaling = false;
-}
-
-static inline bool scaling_rq(struct rq *rq)
-{
- return rq->scaling;
-}
-
-static inline int locality_diff(int cpu, struct rq *rq)
-{
- return rq->cpu_locality[cpu];
-}
-#else /* CONFIG_SMP */
-static inline void set_cpuidle_map(int cpu)
-{
-}
-
-static inline void clear_cpuidle_map(int cpu)
-{
-}
-
-static inline bool suitable_idle_cpus(struct task_struct *p)
-{
- return uprq->curr == uprq->idle;
-}
-
-static inline void resched_suitable_idle(struct task_struct *p)
-{
-}
-
-void cpu_scaling(int __unused)
-{
-}
-
-void cpu_nonscaling(int __unused)
-{
-}
-
-/*
- * Although CPUs can scale in UP, there is nowhere else for tasks to go so this
- * always returns 0.
- */
-static inline bool scaling_rq(struct rq *rq)
-{
- return false;
-}
-
-static inline int locality_diff(struct task_struct *p, struct rq *rq)
-{
- return 0;
-}
-#endif /* CONFIG_SMP */
-EXPORT_SYMBOL_GPL(cpu_scaling);
-EXPORT_SYMBOL_GPL(cpu_nonscaling);
-
-static inline int normal_prio(struct task_struct *p)
-{
- if (has_rt_policy(p))
- return MAX_RT_PRIO - 1 - p->rt_priority;
- if (idleprio_task(p))
- return IDLE_PRIO;
- if (iso_task(p))
- return ISO_PRIO;
- return NORMAL_PRIO;
-}
-
-/*
- * Calculate the current priority, i.e. the priority
- * taken into account by the scheduler. This value might
- * be boosted by RT tasks as it will be RT if the task got
- * RT-boosted. If not then it returns p->normal_prio.
- */
-static int effective_prio(struct task_struct *p)
-{
- p->normal_prio = normal_prio(p);
- /*
- * If we are RT tasks or we were boosted to RT priority,
- * keep the priority unchanged. Otherwise, update priority
- * to the normal priority:
- */
- if (!rt_prio(p->prio))
- return p->normal_prio;
- return p->prio;
-}
-
-/*
- * activate_task - move a task to the runqueue. Enter with grq locked.
- */
-static void activate_task(struct task_struct *p, struct rq *rq)
-{
- update_clocks(rq);
-
- /*
- * Sleep time is in units of nanosecs, so shift by 20 to get a
- * milliseconds-range estimation of the amount of time that the task
- * spent sleeping:
- */
- if (unlikely(prof_on == SLEEP_PROFILING)) {
- if (p->state == TASK_UNINTERRUPTIBLE)
- profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
- (rq->clock_task - p->last_ran) >> 20);
- }
-
- p->prio = effective_prio(p);
- if (task_contributes_to_load(p))
- grq.nr_uninterruptible--;
- enqueue_task(p, rq);
- rq->soft_affined++;
- p->on_rq = 1;
- grq.nr_running++;
- inc_qnr();
-}
-
-static inline void clear_sticky(struct task_struct *p);
-
-/*
- * deactivate_task - If it's running, it's not on the grq and we can just
- * decrement the nr_running. Enter with grq locked.
- */
-static inline void deactivate_task(struct task_struct *p, struct rq *rq)
-{
- if (task_contributes_to_load(p))
- grq.nr_uninterruptible++;
- rq->soft_affined--;
- p->on_rq = 0;
- grq.nr_running--;
- clear_sticky(p);
-}
-
-#ifdef CONFIG_SMP
-void set_task_cpu(struct task_struct *p, unsigned int cpu)
-{
-#ifdef CONFIG_LOCKDEP
- /*
- * The caller should hold grq lock.
- */
- WARN_ON_ONCE(debug_locks && !lockdep_is_held(&grq.lock));
-#endif
- if (task_cpu(p) == cpu)
- return;
- trace_sched_migrate_task(p, cpu);
- perf_event_task_migrate(p);
-
- /*
- * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be
- * successfully executed on another CPU. We must ensure that updates of
- * per-task data have been completed by this moment.
- */
- smp_wmb();
- if (p->on_rq) {
- task_rq(p)->soft_affined--;
- cpu_rq(cpu)->soft_affined++;
- }
- task_thread_info(p)->cpu = cpu;
-}
-
-static inline void clear_sticky(struct task_struct *p)
-{
- p->sticky = false;
-}
-
-static inline bool task_sticky(struct task_struct *p)
-{
- return p->sticky;
-}
-
-/* Reschedule the best idle CPU that is not this one. */
-static void
-resched_closest_idle(struct rq *rq, int cpu, struct task_struct *p)
-{
- cpumask_t tmpmask;
-
- cpumask_and(&tmpmask, &p->cpus_allowed, &grq.cpu_idle_map);
- cpumask_clear_cpu(cpu, &tmpmask);
- if (cpumask_empty(&tmpmask))
- return;
- resched_best_mask(cpu, rq, &tmpmask);
-}
-
-/*
- * We set the sticky flag on a task that is descheduled involuntarily meaning
- * it is awaiting further CPU time. If the last sticky task is still sticky
- * but unlucky enough to not be the next task scheduled, we unstick it and try
- * to find it an idle CPU. Realtime tasks do not stick to minimise their
- * latency at all times.
- */
-static inline void
-swap_sticky(struct rq *rq, int cpu, struct task_struct *p)
-{
- if (rq->sticky_task) {
- if (rq->sticky_task == p) {
- p->sticky = true;
- return;
- }
- if (task_sticky(rq->sticky_task)) {
- clear_sticky(rq->sticky_task);
- resched_closest_idle(rq, cpu, rq->sticky_task);
- }
- }
- if (!rt_task(p)) {
- p->sticky = true;
- rq->sticky_task = p;
- } else {
- resched_closest_idle(rq, cpu, p);
- rq->sticky_task = NULL;
- }
-}
-
-static inline void unstick_task(struct rq *rq, struct task_struct *p)
-{
- rq->sticky_task = NULL;
- clear_sticky(p);
-}
-#else
-static inline void clear_sticky(struct task_struct *p)
-{
-}
-
-static inline bool task_sticky(struct task_struct *p)
-{
- return false;
-}
-
-static inline void
-swap_sticky(struct rq *rq, int cpu, struct task_struct *p)
-{
-}
-
-static inline void unstick_task(struct rq *rq, struct task_struct *p)
-{
-}
-#endif
-
-/*
- * Move a task off the global queue and take it to a cpu for it will
- * become the running task.
- */
-static inline void take_task(int cpu, struct task_struct *p)
-{
- set_task_cpu(p, cpu);
- dequeue_task(p);
- clear_sticky(p);
- dec_qnr();
-}
-
-/*
- * Returns a descheduling task to the grq runqueue unless it is being
- * deactivated.
- */
-static inline void return_task(struct task_struct *p, struct rq *rq, bool deactivate)
-{
- if (deactivate)
- deactivate_task(p, rq);
- else {
- inc_qnr();
- enqueue_task(p, rq);
- }
-}
-
-/* Enter with grq lock held. We know p is on the local cpu */
-static inline void __set_tsk_resched(struct task_struct *p)
-{
- set_tsk_need_resched(p);
- set_preempt_need_resched();
-}
-
-/*
- * resched_task - mark a task 'to be rescheduled now'.
- *
- * On UP this means the setting of the need_resched flag, on SMP it
- * might also involve a cross-CPU call to trigger the scheduler on
- * the target CPU.
- */
-void resched_task(struct task_struct *p)
-{
- int cpu;
-
- lockdep_assert_held(&grq.lock);
-
- if (test_tsk_need_resched(p))
- return;
-
- set_tsk_need_resched(p);
-
- cpu = task_cpu(p);
- if (cpu == smp_processor_id()) {
- set_preempt_need_resched();
- return;
- }
-
- smp_send_reschedule(cpu);
-}
-
-/**
- * task_curr - is this task currently executing on a CPU?
- * @p: the task in question.
- *
- * Return: 1 if the task is currently executing. 0 otherwise.
- */
-inline int task_curr(const struct task_struct *p)
-{
- return cpu_curr(task_cpu(p)) == p;
-}
-
-#ifdef CONFIG_SMP
-struct migration_req {
- struct task_struct *task;
- int dest_cpu;
-};
-
-/*
- * wait_task_inactive - wait for a thread to unschedule.
- *
- * If @match_state is nonzero, it's the @p->state value just checked and
- * not expected to change. If it changes, i.e. @p might have woken up,
- * then return zero. When we succeed in waiting for @p to be off its CPU,
- * we return a positive number (its total switch count). If a second call
- * a short while later returns the same number, the caller can be sure that
- * @p has remained unscheduled the whole time.
- *
- * The caller must ensure that the task *will* unschedule sometime soon,
- * else this function might spin for a *long* time. This function can't
- * be called with interrupts off, or it may introduce deadlock with
- * smp_call_function() if an IPI is sent by the same process we are
- * waiting to become inactive.
- */
-unsigned long wait_task_inactive(struct task_struct *p, long match_state)
-{
- unsigned long flags;
- bool running, on_rq;
- unsigned long ncsw;
- struct rq *rq;
-
- for (;;) {
- rq = task_rq(p);
-
- /*
- * If the task is actively running on another CPU
- * still, just relax and busy-wait without holding
- * any locks.
- *
- * NOTE! Since we don't hold any locks, it's not
- * even sure that "rq" stays as the right runqueue!
- * But we don't care, since this will return false
- * if the runqueue has changed and p is actually now
- * running somewhere else!
- */
- while (task_running(p) && p == rq->curr) {
- if (match_state && unlikely(p->state != match_state))
- return 0;
- cpu_relax();
- }
-
- /*
- * Ok, time to look more closely! We need the grq
- * lock now, to be *sure*. If we're wrong, we'll
- * just go back and repeat.
- */
- rq = task_grq_lock(p, &flags);
- trace_sched_wait_task(p);
- running = task_running(p);
- on_rq = p->on_rq;
- ncsw = 0;
- if (!match_state || p->state == match_state)
- ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
- task_grq_unlock(&flags);
-
- /*
- * If it changed from the expected state, bail out now.
- */
- if (unlikely(!ncsw))
- break;
-
- /*
- * Was it really running after all now that we
- * checked with the proper locks actually held?
- *
- * Oops. Go back and try again..
- */
- if (unlikely(running)) {
- cpu_relax();
- continue;
- }
-
- /*
- * It's not enough that it's not actively running,
- * it must be off the runqueue _entirely_, and not
- * preempted!
- *
- * So if it was still runnable (but just not actively
- * running right now), it's preempted, and we should
- * yield - it could be a while.
- */
- if (unlikely(on_rq)) {
- ktime_t to = ktime_set(0, NSEC_PER_SEC / HZ);
-
- set_current_state(TASK_UNINTERRUPTIBLE);
- schedule_hrtimeout(&to, HRTIMER_MODE_REL);
- continue;
- }
-
- /*
- * Ahh, all good. It wasn't running, and it wasn't
- * runnable, which means that it will never become
- * running in the future either. We're all done!
- */
- break;
- }
-
- return ncsw;
-}
-
-/***
- * kick_process - kick a running thread to enter/exit the kernel
- * @p: the to-be-kicked thread
- *
- * Cause a process which is running on another CPU to enter
- * kernel-mode, without any delay. (to get signals handled.)
- *
- * NOTE: this function doesn't have to take the runqueue lock,
- * because all it wants to ensure is that the remote task enters
- * the kernel. If the IPI races and the task has been migrated
- * to another CPU then no harm is done and the purpose has been
- * achieved as well.
- */
-void kick_process(struct task_struct *p)
-{
- int cpu;
-
- preempt_disable();
- cpu = task_cpu(p);
- if ((cpu != smp_processor_id()) && task_curr(p))
- smp_send_reschedule(cpu);
- preempt_enable();
-}
-EXPORT_SYMBOL_GPL(kick_process);
-#endif
-
-/*
- * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
- * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or
- * between themselves, they cooperatively multitask. An idle rq scores as
- * prio PRIO_LIMIT so it is always preempted.
- */
-static inline bool
-can_preempt(struct task_struct *p, int prio, u64 deadline)
-{
- /* Better static priority RT task or better policy preemption */
- if (p->prio < prio)
- return true;
- if (p->prio > prio)
- return false;
- /* SCHED_NORMAL, BATCH and ISO will preempt based on deadline */
- if (!deadline_before(p->deadline, deadline))
- return false;
- return true;
-}
-
-#ifdef CONFIG_SMP
-#define cpu_online_map (*(cpumask_t *)cpu_online_mask)
-#ifdef CONFIG_HOTPLUG_CPU
-/*
- * Check to see if there is a task that is affined only to offline CPUs but
- * still wants runtime. This happens to kernel threads during suspend/halt and
- * disabling of CPUs.
- */
-static inline bool online_cpus(struct task_struct *p)
-{
- return (likely(cpumask_intersects(&cpu_online_map, &p->cpus_allowed)));
-}
-#else /* CONFIG_HOTPLUG_CPU */
-/* All available CPUs are always online without hotplug. */
-static inline bool online_cpus(struct task_struct *p)
-{
- return true;
-}
-#endif
-
-/*
- * Check to see if p can run on cpu, and if not, whether there are any online
- * CPUs it can run on instead.
- */
-static inline bool needs_other_cpu(struct task_struct *p, int cpu)
-{
- if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed)))
- return true;
- return false;
-}
-
-/*
- * When all else is equal, still prefer this_rq.
- */
-static void try_preempt(struct task_struct *p, struct rq *this_rq)
-{
- struct rq *highest_prio_rq = NULL;
- int cpu, highest_prio;
- u64 latest_deadline;
- cpumask_t tmp;
-
- /*
- * We clear the sticky flag here because for a task to have called
- * try_preempt with the sticky flag enabled means some complicated
- * re-scheduling has occurred and we should ignore the sticky flag.
- */
- clear_sticky(p);
-
- if (suitable_idle_cpus(p) && resched_best_idle(p))
- return;
-
- /* IDLEPRIO tasks never preempt anything but idle */
- if (p->policy == SCHED_IDLEPRIO)
- return;
-
- if (likely(online_cpus(p)))
- cpumask_and(&tmp, &cpu_online_map, &p->cpus_allowed);
- else
- return;
-
- highest_prio = latest_deadline = 0;
-
- for_each_cpu(cpu, &tmp) {
- struct rq *rq;
- int rq_prio;
-
- rq = cpu_rq(cpu);
- rq_prio = rq->rq_prio;
- if (rq_prio < highest_prio)
- continue;
-
- if (rq_prio > highest_prio ||
- deadline_after(rq->rq_deadline, latest_deadline)) {
- latest_deadline = rq->rq_deadline;
- highest_prio = rq_prio;
- highest_prio_rq = rq;
- }
- }
-
- if (likely(highest_prio_rq)) {
-#ifdef CONFIG_SMT_NICE
- cpu = cpu_of(highest_prio_rq);
- if (!smt_should_schedule(p, cpu))
- return;
-#endif
- if (can_preempt(p, highest_prio, highest_prio_rq->rq_deadline))
- resched_curr(highest_prio_rq);
- }
-}
-static int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask, bool check);
-#else /* CONFIG_SMP */
-static inline bool needs_other_cpu(struct task_struct *p, int cpu)
-{
- return false;
-}
-
-static void try_preempt(struct task_struct *p, struct rq *this_rq)
-{
- if (p->policy == SCHED_IDLEPRIO)
- return;
- if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline))
- resched_curr(uprq);
-}
-
-static inline int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask, bool check)
-{
- return set_cpus_allowed_ptr(p, new_mask);
-}
-#endif /* CONFIG_SMP */
-
-static void
-ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
-{
-#ifdef CONFIG_SCHEDSTATS
- struct rq *rq = this_rq();
-
-#ifdef CONFIG_SMP
- int this_cpu = smp_processor_id();
-
- if (cpu == this_cpu)
- schedstat_inc(rq, ttwu_local);
- else {
- struct sched_domain *sd;
-
- rcu_read_lock();
- for_each_domain(this_cpu, sd) {
- if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
- schedstat_inc(sd, ttwu_wake_remote);
- break;
- }
- }
- rcu_read_unlock();
- }
-
-#endif /* CONFIG_SMP */
-
- schedstat_inc(rq, ttwu_count);
-#endif /* CONFIG_SCHEDSTATS */
-}
-
-void wake_up_if_idle(int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
-
- rcu_read_lock();
-
- if (!is_idle_task(rcu_dereference(rq->curr)))
- goto out;
-
- grq_lock_irqsave(&flags);
- if (likely(is_idle_task(rq->curr)))
- smp_send_reschedule(cpu);
- /* Else cpu is not in idle, do nothing here */
- grq_unlock_irqrestore(&flags);
-
-out:
- rcu_read_unlock();
-}
-
-#ifdef CONFIG_SMP
-void scheduler_ipi(void)
-{
- /*
- * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
- * TIF_NEED_RESCHED remotely (for the first time) will also send
- * this IPI.
- */
- preempt_fold_need_resched();
-}
-#endif
-
-static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
- bool is_sync)
-{
- activate_task(p, rq);
-
- /*
- * Sync wakeups (i.e. those types of wakeups where the waker
- * has indicated that it will leave the CPU in short order)
- * don't trigger a preemption if there are no idle cpus,
- * instead waiting for current to deschedule.
- */
- if (!is_sync || suitable_idle_cpus(p))
- try_preempt(p, rq);
-}
-
-static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
- bool success)
-{
- trace_sched_wakeup(p);
- p->state = TASK_RUNNING;
-
- /*
- * if a worker is waking up, notify workqueue. Note that on BFS, we
- * don't really know what cpu it will be, so we fake it for
- * wq_worker_waking_up :/
- */
- if ((p->flags & PF_WQ_WORKER) && success)
- wq_worker_waking_up(p, cpu_of(rq));
-}
-
-/*
- * wake flags
- */
-#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
-#define WF_FORK 0x02 /* child wakeup after fork */
-#define WF_MIGRATED 0x4 /* internal use, task got migrated */
-
-/***
- * try_to_wake_up - wake up a thread
- * @p: the thread to be awakened
- * @state: the mask of task states that can be woken
- * @wake_flags: wake modifier flags (WF_*)
- *
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
- *
- * Return: %true if @p was woken up, %false if it was already running.
- * or @state didn't match @p's state.
- */
-static bool try_to_wake_up(struct task_struct *p, unsigned int state,
- int wake_flags)
-{
- bool success = false;
- unsigned long flags;
- struct rq *rq;
- int cpu;
-
- get_cpu();
-
- /*
- * If we are going to wake up a thread waiting for CONDITION we
- * need to ensure that CONDITION=1 done by the caller can not be
- * reordered with p->state check below. This pairs with mb() in
- * set_current_state() the waiting thread does.
- */
- smp_mb__before_spinlock();
-
- /*
- * No need to do time_lock_grq as we only need to update the rq clock
- * if we activate the task
- */
- rq = task_grq_lock(p, &flags);
- cpu = task_cpu(p);
-
- /* state is a volatile long, どうして、分からない */
- if (!((unsigned int)p->state & state))
- goto out_unlock;
-
- trace_sched_waking(p);
-
- if (task_queued(p) || task_running(p))
- goto out_running;
-
- ttwu_activate(p, rq, wake_flags & WF_SYNC);
- success = true;
-
-out_running:
- ttwu_post_activation(p, rq, success);
-out_unlock:
- task_grq_unlock(&flags);
-
- ttwu_stat(p, cpu, wake_flags);
-
- put_cpu();
-
- return success;
-}
-
-/**
- * try_to_wake_up_local - try to wake up a local task with grq lock held
- * @p: the thread to be awakened
- *
- * Put @p on the run-queue if it's not already there. The caller must
- * ensure that grq is locked and, @p is not the current task.
- * grq stays locked over invocation.
- */
-static void try_to_wake_up_local(struct task_struct *p)
-{
- struct rq *rq = task_rq(p);
- bool success = false;
-
- lockdep_assert_held(&grq.lock);
-
- if (!(p->state & TASK_NORMAL))
- return;
-
- trace_sched_waking(p);
-
- if (!task_queued(p)) {
- if (likely(!task_running(p))) {
- schedstat_inc(rq, ttwu_count);
- schedstat_inc(rq, ttwu_local);
- }
- ttwu_activate(p, rq, false);
- ttwu_stat(p, smp_processor_id(), 0);
- success = true;
- }
- ttwu_post_activation(p, rq, success);
-}
-
-/**
- * wake_up_process - Wake up a specific process
- * @p: The process to be woken up.
- *
- * Attempt to wake up the nominated process and move it to the set of runnable
- * processes.
- *
- * Return: 1 if the process was woken up, 0 if it was already running.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-int wake_up_process(struct task_struct *p)
-{
- WARN_ON(task_is_stopped_or_traced(p));
- return try_to_wake_up(p, TASK_NORMAL, 0);
-}
-EXPORT_SYMBOL(wake_up_process);
-
-int wake_up_state(struct task_struct *p, unsigned int state)
-{
- return try_to_wake_up(p, state, 0);
-}
-
-static void time_slice_expired(struct task_struct *p);
-
-/*
- * Perform scheduler related setup for a newly forked process p.
- * p is forked by current.
- */
-int sched_fork(unsigned long __maybe_unused clone_flags, struct task_struct *p)
-{
-#ifdef CONFIG_PREEMPT_NOTIFIERS
- INIT_HLIST_HEAD(&p->preempt_notifiers);
-#endif
- /*
- * The process state is set to the same value of the process executing
- * do_fork() code. That is running. This guarantees that nobody will
- * actually run it, and a signal or other external event cannot wake
- * it up and insert it on the runqueue either.
- */
-
- /* Should be reset in fork.c but done here for ease of bfs patching */
- p->on_rq =
- p->utime =
- p->stime =
- p->utimescaled =
- p->stimescaled =
- p->sched_time =
- p->stime_pc =
- p->utime_pc = 0;
-
- /*
- * Revert to default priority/policy on fork if requested.
- */
- if (unlikely(p->sched_reset_on_fork)) {
- if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
- p->policy = SCHED_NORMAL;
- p->normal_prio = normal_prio(p);
- }
-
- if (PRIO_TO_NICE(p->static_prio) < 0) {
- p->static_prio = NICE_TO_PRIO(0);
- p->normal_prio = p->static_prio;
- }
-
- /*
- * We don't need the reset flag anymore after the fork. It has
- * fulfilled its duty:
- */
- p->sched_reset_on_fork = 0;
- }
-
- INIT_LIST_HEAD(&p->run_list);
-#ifdef CONFIG_SCHED_INFO
- if (unlikely(sched_info_on()))
- memset(&p->sched_info, 0, sizeof(p->sched_info));
-#endif
- p->on_cpu = false;
- clear_sticky(p);
- init_task_preempt_count(p);
- return 0;
-}
-
-/*
- * wake_up_new_task - wake up a newly created task for the first time.
- *
- * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created context, then puts the task
- * on the runqueue and wakes it.
- */
-void wake_up_new_task(struct task_struct *p)
-{
- struct task_struct *parent;
- unsigned long flags;
- struct rq *rq;
-
- parent = p->parent;
- rq = task_grq_lock(p, &flags);
-
- /*
- * Reinit new task deadline as its creator deadline could have changed
- * since call to dup_task_struct().
- */
- p->deadline = rq->rq_deadline;
-
- /*
- * If the task is a new process, current and parent are the same. If
- * the task is a new thread in the thread group, it will have much more
- * in common with current than with the parent.
- */
- set_task_cpu(p, task_cpu(rq->curr));
-
- /*
- * Make sure we do not leak PI boosting priority to the child.
- */
- p->prio = rq->curr->normal_prio;
-
- activate_task(p, rq);
- trace_sched_wakeup_new(p);
- if (unlikely(p->policy == SCHED_FIFO))
- goto after_ts_init;
-
- /*
- * Share the timeslice between parent and child, thus the
- * total amount of pending timeslices in the system doesn't change,
- * resulting in more scheduling fairness. If it's negative, it won't
- * matter since that's the same as being 0. current's time_slice is
- * actually in rq_time_slice when it's running, as is its last_ran
- * value. rq->rq_deadline is only modified within schedule() so it
- * is always equal to current->deadline.
- */
- p->last_ran = rq->rq_last_ran;
- if (likely(rq->rq_time_slice >= RESCHED_US * 2)) {
- rq->rq_time_slice /= 2;
- p->time_slice = rq->rq_time_slice;
-after_ts_init:
- if (rq->curr == parent && !suitable_idle_cpus(p)) {
- /*
- * The VM isn't cloned, so we're in a good position to
- * do child-runs-first in anticipation of an exec. This
- * usually avoids a lot of COW overhead.
- */
- __set_tsk_resched(parent);
- } else
- try_preempt(p, rq);
- } else {
- if (rq->curr == parent) {
- /*
- * Forking task has run out of timeslice. Reschedule it and
- * start its child with a new time slice and deadline. The
- * child will end up running first because its deadline will
- * be slightly earlier.
- */
- rq->rq_time_slice = 0;
- __set_tsk_resched(parent);
- }
- time_slice_expired(p);
- }
- task_grq_unlock(&flags);
-}
-
-#ifdef CONFIG_PREEMPT_NOTIFIERS
-
-static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
-
-void preempt_notifier_inc(void)
-{
- static_key_slow_inc(&preempt_notifier_key);
-}
-EXPORT_SYMBOL_GPL(preempt_notifier_inc);
-
-void preempt_notifier_dec(void)
-{
- static_key_slow_dec(&preempt_notifier_key);
-}
-EXPORT_SYMBOL_GPL(preempt_notifier_dec);
-
-/**
- * preempt_notifier_register - tell me when current is being preempted & rescheduled
- * @notifier: notifier struct to register
- */
-void preempt_notifier_register(struct preempt_notifier *notifier)
-{
- if (!static_key_false(&preempt_notifier_key))
- WARN(1, "registering preempt_notifier while notifiers disabled\n");
-
- hlist_add_head(&notifier->link, &current->preempt_notifiers);
-}
-EXPORT_SYMBOL_GPL(preempt_notifier_register);
-
-/**
- * preempt_notifier_unregister - no longer interested in preemption notifications
- * @notifier: notifier struct to unregister
- *
- * This is *not* safe to call from within a preemption notifier.
- */
-void preempt_notifier_unregister(struct preempt_notifier *notifier)
-{
- hlist_del(&notifier->link);
-}
-EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
-
-static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
-{
- struct preempt_notifier *notifier;
-
- hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
- notifier->ops->sched_in(notifier, raw_smp_processor_id());
-}
-
-static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-{
- if (static_key_false(&preempt_notifier_key))
- __fire_sched_in_preempt_notifiers(curr);
-}
-
-static void
-__fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
-{
- struct preempt_notifier *notifier;
-
- hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
- notifier->ops->sched_out(notifier, next);
-}
-
-static __always_inline void
-fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
-{
- if (static_key_false(&preempt_notifier_key))
- __fire_sched_out_preempt_notifiers(curr, next);
-}
-
-#else /* !CONFIG_PREEMPT_NOTIFIERS */
-
-static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-{
-}
-
-static inline void
-fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
-{
-}
-
-#endif /* CONFIG_PREEMPT_NOTIFIERS */
-
-/**
- * prepare_task_switch - prepare to switch tasks
- * @rq: the runqueue preparing to switch
- * @next: the task we are going to switch to.
- *
- * This is called with the rq lock held and interrupts off. It must
- * be paired with a subsequent finish_task_switch after the context
- * switch.
- *
- * prepare_task_switch sets up locking and calls architecture specific
- * hooks.
- */
-static inline void
-prepare_task_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next)
-{
- sched_info_switch(rq, prev, next);
- perf_event_task_sched_out(prev, next);
- fire_sched_out_preempt_notifiers(prev, next);
- prepare_lock_switch(rq, next);
- prepare_arch_switch(next);
- trace_sched_switch(prev, next);
-}
-
-/**
- * finish_task_switch - clean up after a task-switch
- * @rq: runqueue associated with task-switch
- * @prev: the thread we just switched away from.
- *
- * finish_task_switch must be called after the context switch, paired
- * with a prepare_task_switch call before the context switch.
- * finish_task_switch will reconcile locking set up by prepare_task_switch,
- * and do any other architecture-specific cleanup actions.
- *
- * Note that we may have delayed dropping an mm in context_switch(). If
- * so, we finish that here outside of the runqueue lock. (Doing it
- * with the lock held can cause deadlocks; see schedule() for
- * details.)
- *
- * The context switch have flipped the stack from under us and restored the
- * local variables which were saved when this task called schedule() in the
- * past. prev == current is still correct but we need to recalculate this_rq
- * because prev may have moved to another CPU.
- */
-static struct rq *finish_task_switch(struct task_struct *prev)
- __releases(grq.lock)
-{
- struct rq *rq = this_rq();
- struct mm_struct *mm = rq->prev_mm;
- long prev_state;
-
- rq->prev_mm = NULL;
-
- /*
- * A task struct has one reference for the use as "current".
- * If a task dies, then it sets TASK_DEAD in tsk->state and calls
- * schedule one last time. The schedule call will never return, and
- * the scheduled task must drop that reference.
- *
- * We must observe prev->state before clearing prev->on_cpu (in
- * finish_lock_switch), otherwise a concurrent wakeup can get prev
- * running on another CPU and we could rave with its RUNNING -> DEAD
- * transition, resulting in a double drop.
- */
- prev_state = prev->state;
- vtime_task_switch(prev);
- perf_event_task_sched_in(prev, current);
- finish_lock_switch(rq, prev);
- finish_arch_post_lock_switch();
-
- fire_sched_in_preempt_notifiers(current);
- if (mm)
- mmdrop(mm);
- if (unlikely(prev_state == TASK_DEAD)) {
- /*
- * Remove function-return probe instances associated with this
- * task and put them back on the free list.
- */
- kprobe_flush_task(prev);
- put_task_struct(prev);
- }
- return rq;
-}
-
-/**
- * schedule_tail - first thing a freshly forked thread must call.
- * @prev: the thread we just switched away from.
- */
-asmlinkage __visible void schedule_tail(struct task_struct *prev)
- __releases(grq.lock)
-{
- struct rq *rq;
-
- /* finish_task_switch() drops rq->lock and enables preemption */
- preempt_disable();
- rq = finish_task_switch(prev);
- preempt_enable();
-
- if (current->set_child_tid)
- put_user(task_pid_vnr(current), current->set_child_tid);
-}
-
-/*
- * context_switch - switch to the new MM and the new thread's register state.
- */
-static inline struct rq *
-context_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next)
-{
- struct mm_struct *mm, *oldmm;
-
- prepare_task_switch(rq, prev, next);
-
- mm = next->mm;
- oldmm = prev->active_mm;
- /*
- * For paravirt, this is coupled with an exit in switch_to to
- * combine the page table reload and the switch backend into
- * one hypercall.
- */
- arch_start_context_switch(prev);
-
- if (!mm) {
- next->active_mm = oldmm;
- atomic_inc(&oldmm->mm_count);
- enter_lazy_tlb(oldmm, next);
- } else
- switch_mm(oldmm, mm, next);
-
- if (!prev->mm) {
- prev->active_mm = NULL;
- rq->prev_mm = oldmm;
- }
- /*
- * Since the runqueue lock will be released by the next
- * task (which is an invalid locking op but in the case
- * of the scheduler it's an obvious special-case), so we
- * do an early lockdep release here:
- */
- spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
-
- /* Here we just switch the register state and the stack. */
- switch_to(prev, next, prev);
- barrier();
-
- return finish_task_switch(prev);
-}
-
-/*
- * nr_running, nr_uninterruptible and nr_context_switches:
- *
- * externally visible scheduler statistics: current number of runnable
- * threads, total number of context switches performed since bootup. All are
- * measured without grabbing the grq lock but the occasional inaccurate result
- * doesn't matter so long as it's positive.
- */
-unsigned long nr_running(void)
-{
- long nr = grq.nr_running;
-
- if (unlikely(nr < 0))
- nr = 0;
- return (unsigned long)nr;
-}
-
-static unsigned long nr_uninterruptible(void)
-{
- long nu = grq.nr_uninterruptible;
-
- if (unlikely(nu < 0))
- nu = 0;
- return nu;
-}
-
-/*
- * Check if only the current task is running on the cpu.
- *
- * Caution: this function does not check that the caller has disabled
- * preemption, thus the result might have a time-of-check-to-time-of-use
- * race. The caller is responsible to use it correctly, for example:
- *
- * - from a non-preemptable section (of course)
- *
- * - from a thread that is bound to a single CPU
- *
- * - in a loop with very short iterations (e.g. a polling loop)
- */
-bool single_task_running(void)
-{
- if (cpu_rq(smp_processor_id())->soft_affined == 1)
- return true;
- else
- return false;
-}
-EXPORT_SYMBOL(single_task_running);
-
-unsigned long long nr_context_switches(void)
-{
- long long ns = grq.nr_switches;
-
- /* This is of course impossible */
- if (unlikely(ns < 0))
- ns = 1;
- return (unsigned long long)ns;
-}
-
-unsigned long nr_iowait(void)
-{
- unsigned long i, sum = 0;
-
- for_each_possible_cpu(i)
- sum += atomic_read(&cpu_rq(i)->nr_iowait);
-
- return sum;
-}
-
-unsigned long nr_iowait_cpu(int cpu)
-{
- struct rq *this = cpu_rq(cpu);
- return atomic_read(&this->nr_iowait);
-}
-
-unsigned long nr_active(void)
-{
- return nr_running() + nr_uninterruptible();
-}
-
-/* Beyond a task running on this CPU, load is equal everywhere on BFS, so we
- * base it on the number of running or queued tasks with their ->rq pointer
- * set to this cpu as being the CPU they're more likely to run on. */
-void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
-{
- struct rq *rq = this_rq();
-
- *nr_waiters = atomic_read(&rq->nr_iowait);
- *load = rq->soft_affined;
-}
-
-/* Variables and functions for calc_load */
-static unsigned long calc_load_update;
-unsigned long avenrun[3];
-EXPORT_SYMBOL(avenrun);
-
-/**
- * get_avenrun - get the load average array
- * @loads: pointer to dest load array
- * @offset: offset to add
- * @shift: shift count to shift the result left
- *
- * These values are estimates at best, so no need for locking.
- */
-void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
-{
- loads[0] = (avenrun[0] + offset) << shift;
- loads[1] = (avenrun[1] + offset) << shift;
- loads[2] = (avenrun[2] + offset) << shift;
-}
-
-static unsigned long
-calc_load(unsigned long load, unsigned long exp, unsigned long active)
-{
- load *= exp;
- load += active * (FIXED_1 - exp);
- return load >> FSHIFT;
-}
-
-/*
- * calc_load - update the avenrun load estimates every LOAD_FREQ seconds.
- */
-void calc_global_load(unsigned long ticks)
-{
- long active;
-
- if (time_before(jiffies, calc_load_update))
- return;
- active = nr_active() * FIXED_1;
-
- avenrun[0] = calc_load(avenrun[0], EXP_1, active);
- avenrun[1] = calc_load(avenrun[1], EXP_5, active);
- avenrun[2] = calc_load(avenrun[2], EXP_15, active);
-
- calc_load_update = jiffies + LOAD_FREQ;
-}
-
-DEFINE_PER_CPU(struct kernel_stat, kstat);
-DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
-
-EXPORT_PER_CPU_SYMBOL(kstat);
-EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
-
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-
-/*
- * There are no locks covering percpu hardirq/softirq time.
- * They are only modified in account_system_vtime, on corresponding CPU
- * with interrupts disabled. So, writes are safe.
- * They are read and saved off onto struct rq in update_rq_clock().
- * This may result in other CPU reading this CPU's irq time and can
- * race with irq/account_system_vtime on this CPU. We would either get old
- * or new value with a side effect of accounting a slice of irq time to wrong
- * task when irq is in progress while we read rq->clock. That is a worthy
- * compromise in place of having locks on each irq in account_system_time.
- */
-static DEFINE_PER_CPU(u64, cpu_hardirq_time);
-static DEFINE_PER_CPU(u64, cpu_softirq_time);
-
-static DEFINE_PER_CPU(u64, irq_start_time);
-static int sched_clock_irqtime;
-
-void enable_sched_clock_irqtime(void)
-{
- sched_clock_irqtime = 1;
-}
-
-void disable_sched_clock_irqtime(void)
-{
- sched_clock_irqtime = 0;
-}
-
-#ifndef CONFIG_64BIT
-static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
-
-static inline void irq_time_write_begin(void)
-{
- __this_cpu_inc(irq_time_seq.sequence);
- smp_wmb();
-}
-
-static inline void irq_time_write_end(void)
-{
- smp_wmb();
- __this_cpu_inc(irq_time_seq.sequence);
-}
-
-static inline u64 irq_time_read(int cpu)
-{
- u64 irq_time;
- unsigned seq;
-
- do {
- seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
- irq_time = per_cpu(cpu_softirq_time, cpu) +
- per_cpu(cpu_hardirq_time, cpu);
- } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
-
- return irq_time;
-}
-#else /* CONFIG_64BIT */
-static inline void irq_time_write_begin(void)
-{
-}
-
-static inline void irq_time_write_end(void)
-{
-}
-
-static inline u64 irq_time_read(int cpu)
-{
- return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
-}
-#endif /* CONFIG_64BIT */
-
-/*
- * Called before incrementing preempt_count on {soft,}irq_enter
- * and before decrementing preempt_count on {soft,}irq_exit.
- */
-void irqtime_account_irq(struct task_struct *curr)
-{
- unsigned long flags;
- s64 delta;
- int cpu;
-
- if (!sched_clock_irqtime)
- return;
-
- local_irq_save(flags);
-
- cpu = smp_processor_id();
- delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
- __this_cpu_add(irq_start_time, delta);
-
- irq_time_write_begin();
- /*
- * We do not account for softirq time from ksoftirqd here.
- * We want to continue accounting softirq time to ksoftirqd thread
- * in that case, so as not to confuse scheduler with a special task
- * that do not consume any time, but still wants to run.
- */
- if (hardirq_count())
- __this_cpu_add(cpu_hardirq_time, delta);
- else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
- __this_cpu_add(cpu_softirq_time, delta);
-
- irq_time_write_end();
- local_irq_restore(flags);
-}
-EXPORT_SYMBOL_GPL(irqtime_account_irq);
-
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-#ifdef CONFIG_PARAVIRT
-static inline u64 steal_ticks(u64 steal)
-{
- if (unlikely(steal > NSEC_PER_SEC))
- return div_u64(steal, TICK_NSEC);
-
- return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
-}
-#endif
-
-static void update_rq_clock_task(struct rq *rq, s64 delta)
-{
-/*
- * In theory, the compile should just see 0 here, and optimize out the call
- * to sched_rt_avg_update. But I don't trust it...
- */
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
- s64 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
-
- /*
- * Since irq_time is only updated on {soft,}irq_exit, we might run into
- * this case when a previous update_rq_clock() happened inside a
- * {soft,}irq region.
- *
- * When this happens, we stop ->clock_task and only update the
- * prev_irq_time stamp to account for the part that fit, so that a next
- * update will consume the rest. This ensures ->clock_task is
- * monotonic.
- *
- * It does however cause some slight miss-attribution of {soft,}irq
- * time, a more accurate solution would be to update the irq_time using
- * the current rq->clock timestamp, except that would require using
- * atomic ops.
- */
- if (irq_delta > delta)
- irq_delta = delta;
-
- rq->prev_irq_time += irq_delta;
- delta -= irq_delta;
-#endif
-#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
- if (static_key_false((&paravirt_steal_rq_enabled))) {
- s64 steal = paravirt_steal_clock(cpu_of(rq));
-
- steal -= rq->prev_steal_time_rq;
-
- if (unlikely(steal > delta))
- steal = delta;
-
- rq->prev_steal_time_rq += steal;
-
- delta -= steal;
- }
-#endif
-
- rq->clock_task += delta;
-}
-
-#ifndef nsecs_to_cputime
-# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
-#endif
-
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-static void irqtime_account_hi_si(void)
-{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
- u64 latest_ns;
-
- latest_ns = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time));
- if (latest_ns > cpustat[CPUTIME_IRQ])
- cpustat[CPUTIME_IRQ] += (__force u64)cputime_one_jiffy;
-
- latest_ns = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time));
- if (latest_ns > cpustat[CPUTIME_SOFTIRQ])
- cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy;
-}
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-#define sched_clock_irqtime (0)
-
-static inline void irqtime_account_hi_si(void)
-{
-}
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-static __always_inline bool steal_account_process_tick(void)
-{
-#ifdef CONFIG_PARAVIRT
- if (static_key_false(&paravirt_steal_enabled)) {
- u64 steal;
- cputime_t steal_ct;
-
- steal = paravirt_steal_clock(smp_processor_id());
- steal -= this_rq()->prev_steal_time;
-
- /*
- * cputime_t may be less precise than nsecs (eg: if it's
- * based on jiffies). Lets cast the result to cputime
- * granularity and account the rest on the next rounds.
- */
- steal_ct = nsecs_to_cputime(steal);
- this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
-
- account_steal_time(steal_ct);
- return steal_ct;
- }
-#endif
- return false;
-}
-
-/*
- * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
- * tasks (sum on group iteration) belonging to @tsk's group.
- */
-void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
-{
- struct signal_struct *sig = tsk->signal;
- cputime_t utime, stime;
- struct task_struct *t;
- unsigned int seq, nextseq;
- unsigned long flags;
-
- rcu_read_lock();
- /* Attempt a lockless read on the first round. */
- nextseq = 0;
- do {
- seq = nextseq;
- flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
- times->utime = sig->utime;
- times->stime = sig->stime;
- times->sum_exec_runtime = sig->sum_sched_runtime;
-
- for_each_thread(tsk, t) {
- task_cputime(t, &utime, &stime);
- times->utime += utime;
- times->stime += stime;
- times->sum_exec_runtime += task_sched_runtime(t);
- }
- /* If lockless access failed, take the lock. */
- nextseq = 1;
- } while (need_seqretry(&sig->stats_lock, seq));
- done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
- rcu_read_unlock();
-}
-
-/*
- * On each tick, see what percentage of that tick was attributed to each
- * component and add the percentage to the _pc values. Once a _pc value has
- * accumulated one tick's worth, account for that. This means the total
- * percentage of load components will always be 128 (pseudo 100) per tick.
- */
-static void pc_idle_time(struct rq *rq, struct task_struct *idle, unsigned long pc)
-{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
-
- if (atomic_read(&rq->nr_iowait) > 0) {
- rq->iowait_pc += pc;
- if (rq->iowait_pc >= 128) {
- cpustat[CPUTIME_IOWAIT] += (__force u64)cputime_one_jiffy * rq->iowait_pc / 128;
- rq->iowait_pc %= 128;
- }
- } else {
- rq->idle_pc += pc;
- if (rq->idle_pc >= 128) {
- cpustat[CPUTIME_IDLE] += (__force u64)cputime_one_jiffy * rq->idle_pc / 128;
- rq->idle_pc %= 128;
- }
- }
- acct_update_integrals(idle);
-}
-
-static void
-pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset,
- unsigned long pc, unsigned long ns)
-{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
- cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
-
- p->stime_pc += pc;
- if (p->stime_pc >= 128) {
- int jiffs = p->stime_pc / 128;
-
- p->stime_pc %= 128;
- p->stime += (__force u64)cputime_one_jiffy * jiffs;
- p->stimescaled += one_jiffy_scaled * jiffs;
- account_group_system_time(p, cputime_one_jiffy * jiffs);
- }
- p->sched_time += ns;
- account_group_exec_runtime(p, ns);
-
- if (hardirq_count() - hardirq_offset) {
- rq->irq_pc += pc;
- if (rq->irq_pc >= 128) {
- cpustat[CPUTIME_IRQ] += (__force u64)cputime_one_jiffy * rq->irq_pc / 128;
- rq->irq_pc %= 128;
- }
- } else if (in_serving_softirq()) {
- rq->softirq_pc += pc;
- if (rq->softirq_pc >= 128) {
- cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy * rq->softirq_pc / 128;
- rq->softirq_pc %= 128;
- }
- } else {
- rq->system_pc += pc;
- if (rq->system_pc >= 128) {
- cpustat[CPUTIME_SYSTEM] += (__force u64)cputime_one_jiffy * rq->system_pc / 128;
- rq->system_pc %= 128;
- }
- }
- acct_update_integrals(p);
-}
-
-static void pc_user_time(struct rq *rq, struct task_struct *p,
- unsigned long pc, unsigned long ns)
-{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
- cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
-
- p->utime_pc += pc;
- if (p->utime_pc >= 128) {
- int jiffs = p->utime_pc / 128;
-
- p->utime_pc %= 128;
- p->utime += (__force u64)cputime_one_jiffy * jiffs;
- p->utimescaled += one_jiffy_scaled * jiffs;
- account_group_user_time(p, cputime_one_jiffy * jiffs);
- }
- p->sched_time += ns;
- account_group_exec_runtime(p, ns);
-
- if (this_cpu_ksoftirqd() == p) {
- /*
- * ksoftirqd time do not get accounted in cpu_softirq_time.
- * So, we have to handle it separately here.
- */
- rq->softirq_pc += pc;
- if (rq->softirq_pc >= 128) {
- cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy * rq->softirq_pc / 128;
- rq->softirq_pc %= 128;
- }
- }
-
- if (task_nice(p) > 0 || idleprio_task(p)) {
- rq->nice_pc += pc;
- if (rq->nice_pc >= 128) {
- cpustat[CPUTIME_NICE] += (__force u64)cputime_one_jiffy * rq->nice_pc / 128;
- rq->nice_pc %= 128;
- }
- } else {
- rq->user_pc += pc;
- if (rq->user_pc >= 128) {
- cpustat[CPUTIME_USER] += (__force u64)cputime_one_jiffy * rq->user_pc / 128;
- rq->user_pc %= 128;
- }
- }
- acct_update_integrals(p);
-}
-
-/*
- * Convert nanoseconds to pseudo percentage of one tick. Use 128 for fast
- * shifts instead of 100
- */
-#define NS_TO_PC(NS) (NS * 128 / JIFFY_NS)
-
-/*
- * This is called on clock ticks.
- * Bank in p->sched_time the ns elapsed since the last tick or switch.
- * CPU scheduler quota accounting is also performed here in microseconds.
- */
-static void
-update_cpu_clock_tick(struct rq *rq, struct task_struct *p)
-{
- long account_ns = rq->clock_task - rq->rq_last_ran;
- struct task_struct *idle = rq->idle;
- unsigned long account_pc;
-
- if (unlikely(account_ns < 0) || steal_account_process_tick())
- goto ts_account;
-
- account_pc = NS_TO_PC(account_ns);
-
- /* Accurate tick timekeeping */
- if (user_mode(get_irq_regs()))
- pc_user_time(rq, p, account_pc, account_ns);
- else if (p != idle || (irq_count() != HARDIRQ_OFFSET))
- pc_system_time(rq, p, HARDIRQ_OFFSET,
- account_pc, account_ns);
- else
- pc_idle_time(rq, idle, account_pc);
-
- if (sched_clock_irqtime)
- irqtime_account_hi_si();
-
-ts_account:
- /* time_slice accounting is done in usecs to avoid overflow on 32bit */
- if (rq->rq_policy != SCHED_FIFO && p != idle) {
- s64 time_diff = rq->clock - rq->timekeep_clock;
-
- niffy_diff(&time_diff, 1);
- rq->rq_time_slice -= NS_TO_US(time_diff);
- }
-
- rq->rq_last_ran = rq->clock_task;
- rq->timekeep_clock = rq->clock;
-}
-
-/*
- * This is called on context switches.
- * Bank in p->sched_time the ns elapsed since the last tick or switch.
- * CPU scheduler quota accounting is also performed here in microseconds.
- */
-static void
-update_cpu_clock_switch(struct rq *rq, struct task_struct *p)
-{
- long account_ns = rq->clock_task - rq->rq_last_ran;
- struct task_struct *idle = rq->idle;
- unsigned long account_pc;
-
- if (unlikely(account_ns < 0))
- goto ts_account;
-
- account_pc = NS_TO_PC(account_ns);
-
- /* Accurate subtick timekeeping */
- if (p != idle) {
- pc_user_time(rq, p, account_pc, account_ns);
- }
- else
- pc_idle_time(rq, idle, account_pc);
-
-ts_account:
- /* time_slice accounting is done in usecs to avoid overflow on 32bit */
- if (rq->rq_policy != SCHED_FIFO && p != idle) {
- s64 time_diff = rq->clock - rq->timekeep_clock;
-
- niffy_diff(&time_diff, 1);
- rq->rq_time_slice -= NS_TO_US(time_diff);
- }
-
- rq->rq_last_ran = rq->clock_task;
- rq->timekeep_clock = rq->clock;
-}
-
-/*
- * Return any ns on the sched_clock that have not yet been accounted in
- * @p in case that task is currently running.
- *
- * Called with task_grq_lock() held.
- */
-static inline u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
-{
- u64 ns = 0;
-
- /*
- * Must be ->curr _and_ ->on_rq. If dequeued, we would
- * project cycles that may never be accounted to this
- * thread, breaking clock_gettime().
- */
- if (p == rq->curr && p->on_rq) {
- update_clocks(rq);
- ns = rq->clock_task - rq->rq_last_ran;
- if (unlikely((s64)ns < 0))
- ns = 0;
- }
-
- return ns;
-}
-
-/*
- * Return accounted runtime for the task.
- * Return separately the current's pending runtime that have not been
- * accounted yet.
- *
- */
-unsigned long long task_sched_runtime(struct task_struct *p)
-{
- unsigned long flags;
- struct rq *rq;
- u64 ns;
-
-#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
- /*
- * 64-bit doesn't need locks to atomically read a 64bit value.
- * So we have a optimization chance when the task's delta_exec is 0.
- * Reading ->on_cpu is racy, but this is ok.
- *
- * If we race with it leaving cpu, we'll take a lock. So we're correct.
- * If we race with it entering cpu, unaccounted time is 0. This is
- * indistinguishable from the read occurring a few cycles earlier.
- * If we see ->on_cpu without ->on_rq, the task is leaving, and has
- * been accounted, so we're correct here as well.
- */
- if (!p->on_cpu || !p->on_rq)
- return tsk_seruntime(p);
-#endif
-
- rq = task_grq_lock(p, &flags);
- ns = p->sched_time + do_task_delta_exec(p, rq);
- task_grq_unlock(&flags);
-
- return ns;
-}
-
-/* Compatibility crap */
-void account_user_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled)
-{
-}
-
-void account_idle_time(cputime_t cputime)
-{
-}
-
-/*
- * Account guest cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in virtual machine since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- */
-static void account_guest_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled)
-{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
-
- /* Add guest time to process. */
- p->utime += (__force u64)cputime;
- p->utimescaled += (__force u64)cputime_scaled;
- account_group_user_time(p, cputime);
- p->gtime += (__force u64)cputime;
-
- /* Add guest time to cpustat. */
- if (task_nice(p) > 0) {
- cpustat[CPUTIME_NICE] += (__force u64)cputime;
- cpustat[CPUTIME_GUEST_NICE] += (__force u64)cputime;
- } else {
- cpustat[CPUTIME_USER] += (__force u64)cputime;
- cpustat[CPUTIME_GUEST] += (__force u64)cputime;
- }
-}
-
-/*
- * Account system cpu time to a process and desired cpustat field
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- * @target_cputime64: pointer to cpustat field that has to be updated
- */
-static inline
-void __account_system_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled, cputime64_t *target_cputime64)
-{
- /* Add system time to process. */
- p->stime += (__force u64)cputime;
- p->stimescaled += (__force u64)cputime_scaled;
- account_group_system_time(p, cputime);
-
- /* Add system time to cpustat. */
- *target_cputime64 += (__force u64)cputime;
-
- /* Account for system time used */
- acct_update_integrals(p);
-}
-
-/*
- * Account system cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- * This is for guest only now.
- */
-void account_system_time(struct task_struct *p, int hardirq_offset,
- cputime_t cputime, cputime_t cputime_scaled)
-{
-
- if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
- account_guest_time(p, cputime, cputime_scaled);
-}
-
-/*
- * Account for involuntary wait time.
- * @steal: the cpu time spent in involuntary wait
- */
-void account_steal_time(cputime_t cputime)
-{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
-
- cpustat[CPUTIME_STEAL] += (__force u64)cputime;
-}
-
-/*
- * Account for idle time.
- * @cputime: the cpu time spent in idle wait
- */
-static void account_idle_times(cputime_t cputime)
-{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
- struct rq *rq = this_rq();
-
- if (atomic_read(&rq->nr_iowait) > 0)
- cpustat[CPUTIME_IOWAIT] += (__force u64)cputime;
- else
- cpustat[CPUTIME_IDLE] += (__force u64)cputime;
-}
-
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-
-void account_process_tick(struct task_struct *p, int user_tick)
-{
-}
-
-/*
- * Account multiple ticks of steal time.
- * @p: the process from which the cpu time has been stolen
- * @ticks: number of stolen ticks
- */
-void account_steal_ticks(unsigned long ticks)
-{
- account_steal_time(jiffies_to_cputime(ticks));
-}
-
-/*
- * Account multiple ticks of idle time.
- * @ticks: number of stolen ticks
- */
-void account_idle_ticks(unsigned long ticks)
-{
- account_idle_times(jiffies_to_cputime(ticks));
-}
-#endif
-
-static inline void grq_iso_lock(void)
- __acquires(grq.iso_lock)
-{
- raw_spin_lock(&grq.iso_lock);
-}
-
-static inline void grq_iso_unlock(void)
- __releases(grq.iso_lock)
-{
- raw_spin_unlock(&grq.iso_lock);
-}
-
-/*
- * Functions to test for when SCHED_ISO tasks have used their allocated
- * quota as real time scheduling and convert them back to SCHED_NORMAL.
- * Where possible, the data is tested lockless, to avoid grabbing iso_lock
- * because the occasional inaccurate result won't matter. However the
- * tick data is only ever modified under lock. iso_refractory is only simply
- * set to 0 or 1 so it's not worth grabbing the lock yet again for that.
- */
-static bool set_iso_refractory(void)
-{
- grq.iso_refractory = true;
- return grq.iso_refractory;
-}
-
-static bool clear_iso_refractory(void)
-{
- grq.iso_refractory = false;
- return grq.iso_refractory;
-}
-
-/*
- * Test if SCHED_ISO tasks have run longer than their alloted period as RT
- * tasks and set the refractory flag if necessary. There is 10% hysteresis
- * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a
- * slow division.
- */
-static bool test_ret_isorefractory(struct rq *rq)
-{
- if (likely(!grq.iso_refractory)) {
- if (grq.iso_ticks > ISO_PERIOD * sched_iso_cpu)
- return set_iso_refractory();
- } else {
- if (grq.iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128))
- return clear_iso_refractory();
- }
- return grq.iso_refractory;
-}
-
-static void iso_tick(void)
-{
- grq_iso_lock();
- grq.iso_ticks += 100;
- grq_iso_unlock();
-}
-
-/* No SCHED_ISO task was running so decrease rq->iso_ticks */
-static inline void no_iso_tick(void)
-{
- if (grq.iso_ticks) {
- grq_iso_lock();
- grq.iso_ticks -= grq.iso_ticks / ISO_PERIOD + 1;
- if (unlikely(grq.iso_refractory && grq.iso_ticks <
- ISO_PERIOD * (sched_iso_cpu * 115 / 128)))
- clear_iso_refractory();
- grq_iso_unlock();
- }
-}
-
-/* This manages tasks that have run out of timeslice during a scheduler_tick */
-static void task_running_tick(struct rq *rq)
-{
- struct task_struct *p;
-
- /*
- * If a SCHED_ISO task is running we increment the iso_ticks. In
- * order to prevent SCHED_ISO tasks from causing starvation in the
- * presence of true RT tasks we account those as iso_ticks as well.
- */
- if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) {
- if (grq.iso_ticks <= (ISO_PERIOD * 128) - 128)
- iso_tick();
- } else
- no_iso_tick();
-
- if (iso_queue(rq)) {
- if (unlikely(test_ret_isorefractory(rq))) {
- if (rq_running_iso(rq)) {
- /*
- * SCHED_ISO task is running as RT and limit
- * has been hit. Force it to reschedule as
- * SCHED_NORMAL by zeroing its time_slice
- */
- rq->rq_time_slice = 0;
- }
- }
- }
-
- /* SCHED_FIFO tasks never run out of timeslice. */
- if (rq->rq_policy == SCHED_FIFO)
- return;
- /*
- * Tasks that were scheduled in the first half of a tick are not
- * allowed to run into the 2nd half of the next tick if they will
- * run out of time slice in the interim. Otherwise, if they have
- * less than RESCHED_US μs of time slice left they will be rescheduled.
- */
- if (rq->dither) {
- if (rq->rq_time_slice > HALF_JIFFY_US)
- return;
- else
- rq->rq_time_slice = 0;
- } else if (rq->rq_time_slice >= RESCHED_US)
- return;
-
- /* p->time_slice < RESCHED_US. We only modify task_struct under grq lock */
- p = rq->curr;
-
- grq_lock();
- requeue_task(p);
- __set_tsk_resched(p);
- grq_unlock();
-}
-
-/*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled. The data modified is all
- * local to struct rq so we don't need to grab grq lock.
- */
-void scheduler_tick(void)
-{
- int cpu __maybe_unused = smp_processor_id();
- struct rq *rq = cpu_rq(cpu);
-
- sched_clock_tick();
- /* grq lock not grabbed, so only update rq clock */
- update_rq_clock(rq);
- update_cpu_clock_tick(rq, rq->curr);
- if (!rq_idle(rq))
- task_running_tick(rq);
- else
- no_iso_tick();
- rq->last_tick = rq->clock;
- perf_event_task_tick();
-}
-
-notrace unsigned long get_parent_ip(unsigned long addr)
-{
- if (in_lock_functions(addr)) {
- addr = CALLER_ADDR2;
- if (in_lock_functions(addr))
- addr = CALLER_ADDR3;
- }
- return addr;
-}
-
-#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
- defined(CONFIG_PREEMPT_TRACER))
-void preempt_count_add(int val)
-{
-#ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
- return;
-#endif
- __preempt_count_add(val);
-#ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Spinlock count overflowing soon?
- */
- DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
- PREEMPT_MASK - 10);
-#endif
- if (preempt_count() == val) {
- unsigned long ip = get_parent_ip(CALLER_ADDR1);
-#ifdef CONFIG_DEBUG_PREEMPT
- current->preempt_disable_ip = ip;
-#endif
- trace_preempt_off(CALLER_ADDR0, ip);
- }
-}
-EXPORT_SYMBOL(preempt_count_add);
-NOKPROBE_SYMBOL(preempt_count_add);
-
-void preempt_count_sub(int val)
-{
-#ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
- return;
- /*
- * Is the spinlock portion underflowing?
- */
- if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
- !(preempt_count() & PREEMPT_MASK)))
- return;
-#endif
-
- if (preempt_count() == val)
- trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
- __preempt_count_sub(val);
-}
-EXPORT_SYMBOL(preempt_count_sub);
-NOKPROBE_SYMBOL(preempt_count_sub);
-#endif
-
-/*
- * Deadline is "now" in niffies + (offset by priority). Setting the deadline
- * is the key to everything. It distributes cpu fairly amongst tasks of the
- * same nice value, it proportions cpu according to nice level, it means the
- * task that last woke up the longest ago has the earliest deadline, thus
- * ensuring that interactive tasks get low latency on wake up. The CPU
- * proportion works out to the square of the virtual deadline difference, so
- * this equation will give nice 19 3% CPU compared to nice 0.
- */
-static inline u64 prio_deadline_diff(int user_prio)
-{
- return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128));
-}
-
-static inline u64 task_deadline_diff(struct task_struct *p)
-{
- return prio_deadline_diff(TASK_USER_PRIO(p));
-}
-
-static inline u64 static_deadline_diff(int static_prio)
-{
- return prio_deadline_diff(USER_PRIO(static_prio));
-}
-
-static inline int longest_deadline_diff(void)
-{
- return prio_deadline_diff(39);
-}
-
-static inline int ms_longest_deadline_diff(void)
-{
- return NS_TO_MS(longest_deadline_diff());
-}
-
-/*
- * The time_slice is only refilled when it is empty and that is when we set a
- * new deadline.
- */
-static void time_slice_expired(struct task_struct *p)
-{
- p->time_slice = timeslice();
- p->deadline = grq.niffies + task_deadline_diff(p);
-#ifdef CONFIG_SMT_NICE
- if (!p->mm)
- p->smt_bias = 0;
- else if (rt_task(p))
- p->smt_bias = 1 << 30;
- else if (task_running_iso(p))
- p->smt_bias = 1 << 29;
- else if (idleprio_task(p)) {
- if (task_running_idle(p))
- p->smt_bias = 0;
- else
- p->smt_bias = 1;
- } else if (--p->smt_bias < 1)
- p->smt_bias = MAX_PRIO - p->static_prio;
-#endif
-}
-
-/*
- * Timeslices below RESCHED_US are considered as good as expired as there's no
- * point rescheduling when there's so little time left. SCHED_BATCH tasks
- * have been flagged be not latency sensitive and likely to be fully CPU
- * bound so every time they're rescheduled they have their time_slice
- * refilled, but get a new later deadline to have little effect on
- * SCHED_NORMAL tasks.
-
- */
-static inline void check_deadline(struct task_struct *p)
-{
- if (p->time_slice < RESCHED_US || batch_task(p))
- time_slice_expired(p);
-}
-
-#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
-
-/*
- * Scheduler queue bitmap specific find next bit.
- */
-static inline unsigned long
-next_sched_bit(const unsigned long *addr, unsigned long offset)
-{
- const unsigned long *p;
- unsigned long result;
- unsigned long size;
- unsigned long tmp;
-
- size = PRIO_LIMIT;
- if (offset >= size)
- return size;
-
- p = addr + BITOP_WORD(offset);
- result = offset & ~(BITS_PER_LONG-1);
- size -= result;
- offset %= BITS_PER_LONG;
- if (offset) {
- tmp = *(p++);
- tmp &= (~0UL << offset);
- if (size < BITS_PER_LONG)
- goto found_first;
- if (tmp)
- goto found_middle;
- size -= BITS_PER_LONG;
- result += BITS_PER_LONG;
- }
- while (size & ~(BITS_PER_LONG-1)) {
- if ((tmp = *(p++)))
- goto found_middle;
- result += BITS_PER_LONG;
- size -= BITS_PER_LONG;
- }
- if (!size)
- return result;
- tmp = *p;
-
-found_first:
- tmp &= (~0UL >> (BITS_PER_LONG - size));
- if (tmp == 0UL) /* Are any bits set? */
- return result + size; /* Nope. */
-found_middle:
- return result + __ffs(tmp);
-}
-
-/*
- * O(n) lookup of all tasks in the global runqueue. The real brainfuck
- * of lock contention and O(n). It's not really O(n) as only the queued,
- * but not running tasks are scanned, and is O(n) queued in the worst case
- * scenario only because the right task can be found before scanning all of
- * them.
- * Tasks are selected in this order:
- * Real time tasks are selected purely by their static priority and in the
- * order they were queued, so the lowest value idx, and the first queued task
- * of that priority value is chosen.
- * If no real time tasks are found, the SCHED_ISO priority is checked, and
- * all SCHED_ISO tasks have the same priority value, so they're selected by
- * the earliest deadline value.
- * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the
- * earliest deadline.
- * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are
- * selected by the earliest deadline.
- */
-static inline struct
-task_struct *earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
-{
- struct task_struct *edt = NULL;
- unsigned long idx = -1;
-
- do {
- struct list_head *queue;
- struct task_struct *p;
- u64 earliest_deadline;
-
- idx = next_sched_bit(grq.prio_bitmap, ++idx);
- if (idx >= PRIO_LIMIT)
- return idle;
- queue = grq.queue + idx;
-
- if (idx < MAX_RT_PRIO) {
- /* We found an rt task */
- list_for_each_entry(p, queue, run_list) {
- /* Make sure cpu affinity is ok */
- if (needs_other_cpu(p, cpu))
- continue;
- edt = p;
- goto out_take;
- }
- /*
- * None of the RT tasks at this priority can run on
- * this cpu
- */
- continue;
- }
-
- /*
- * No rt tasks. Find the earliest deadline task. Now we're in
- * O(n) territory.
- */
- earliest_deadline = ~0ULL;
- list_for_each_entry(p, queue, run_list) {
- u64 dl;
-
- /* Make sure cpu affinity is ok */
- if (needs_other_cpu(p, cpu))
- continue;
-
-#ifdef CONFIG_SMT_NICE
- if (!smt_should_schedule(p, cpu))
- continue;
-#endif
- /*
- * Soft affinity happens here by not scheduling a task
- * with its sticky flag set that ran on a different CPU
- * last when the CPU is scaling, or by greatly biasing
- * against its deadline when not, based on cpu cache
- * locality.
- */
- if (sched_interactive)
- dl = p->deadline;
- else {
- int tcpu = task_cpu(p);
-
- if (tcpu != cpu && task_sticky(p) && scaling_rq(rq))
- continue;
- dl = p->deadline << locality_diff(tcpu, rq);
- }
-
- if (deadline_before(dl, earliest_deadline)) {
- earliest_deadline = dl;
- edt = p;
- }
- }
- } while (!edt);
-
-out_take:
- take_task(cpu, edt);
- return edt;
-}
-
-
-/*
- * Print scheduling while atomic bug:
- */
-static noinline void __schedule_bug(struct task_struct *prev)
-{
- if (oops_in_progress)
- return;
-
- printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
- prev->comm, prev->pid, preempt_count());
-
- debug_show_held_locks(prev);
- print_modules();
- if (irqs_disabled())
- print_irqtrace_events(prev);
-#ifdef CONFIG_DEBUG_PREEMPT
- if (in_atomic_preempt_off()) {
- pr_err("Preemption disabled at:");
- print_ip_sym(current->preempt_disable_ip);
- pr_cont("\n");
- }
-#endif
- dump_stack();
- add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
-}
-
-/*
- * Various schedule()-time debugging checks and statistics:
- */
-static inline void schedule_debug(struct task_struct *prev)
-{
-#ifdef CONFIG_SCHED_STACK_END_CHECK
- BUG_ON(unlikely(task_stack_end_corrupted(prev)));
-#endif
- /*
- * Test if we are atomic. Since do_exit() needs to call into
- * schedule() atomically, we ignore that path. Otherwise whine
- * if we are scheduling when we should not.
- */
- if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
- __schedule_bug(prev);
- rcu_sleep_check();
-
- profile_hit(SCHED_PROFILING, __builtin_return_address(0));
-
- schedstat_inc(this_rq(), sched_count);
-}
-
-/*
- * The currently running task's information is all stored in rq local data
- * which is only modified by the local CPU, thereby allowing the data to be
- * changed without grabbing the grq lock.
- */
-static inline void set_rq_task(struct rq *rq, struct task_struct *p)
-{
- rq->rq_time_slice = p->time_slice;
- rq->rq_deadline = p->deadline;
- rq->rq_last_ran = p->last_ran = rq->clock_task;
- rq->rq_policy = p->policy;
- rq->rq_prio = p->prio;
-#ifdef CONFIG_SMT_NICE
- rq->rq_mm = p->mm;
- rq->rq_smt_bias = p->smt_bias;
-#endif
- if (p != rq->idle)
- rq->rq_running = true;
- else
- rq->rq_running = false;
-}
-
-static void reset_rq_task(struct rq *rq, struct task_struct *p)
-{
- rq->rq_policy = p->policy;
- rq->rq_prio = p->prio;
-#ifdef CONFIG_SMT_NICE
- rq->rq_smt_bias = p->smt_bias;
-#endif
-}
-
-#ifdef CONFIG_SMT_NICE
-/* Iterate over smt siblings when we've scheduled a process on cpu and decide
- * whether they should continue running or be descheduled. */
-static void check_smt_siblings(int cpu)
-{
- int other_cpu;
-
- for_each_cpu(other_cpu, thread_cpumask(cpu)) {
- struct task_struct *p;
- struct rq *rq;
-
- if (other_cpu == cpu)
- continue;
- rq = cpu_rq(other_cpu);
- if (rq_idle(rq))
- continue;
- if (!rq->online)
- continue;
- p = rq->curr;
- if (!smt_should_schedule(p, cpu)) {
- set_tsk_need_resched(p);
- smp_send_reschedule(other_cpu);
- }
- }
-}
-
-static void wake_smt_siblings(int cpu)
-{
- int other_cpu;
-
- if (!queued_notrunning())
- return;
-
- for_each_cpu(other_cpu, thread_cpumask(cpu)) {
- struct rq *rq;
-
- if (other_cpu == cpu)
- continue;
- rq = cpu_rq(other_cpu);
- if (rq_idle(rq)) {
- struct task_struct *p = rq->curr;
-
- set_tsk_need_resched(p);
- smp_send_reschedule(other_cpu);
- }
- }
-}
-#else
-static void check_smt_siblings(int __maybe_unused cpu) {}
-static void wake_smt_siblings(int __maybe_unused cpu) {}
-#endif
-
-/*
- * schedule() is the main scheduler function.
- *
- * The main means of driving the scheduler and thus entering this function are:
- *
- * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
- *
- * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
- * paths. For example, see arch/x86/entry_64.S.
- *
- * To drive preemption between tasks, the scheduler sets the flag in timer
- * interrupt handler scheduler_tick().
- *
- * 3. Wakeups don't really cause entry into schedule(). They add a
- * task to the run-queue and that's it.
- *
- * Now, if the new task added to the run-queue preempts the current
- * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
- * called on the nearest possible occasion:
- *
- * - If the kernel is preemptible (CONFIG_PREEMPT=y):
- *
- * - in syscall or exception context, at the next outmost
- * preempt_enable(). (this might be as soon as the wake_up()'s
- * spin_unlock()!)
- *
- * - in IRQ context, return from interrupt-handler to
- * preemptible context
- *
- * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
- * then at the next:
- *
- * - cond_resched() call
- * - explicit schedule() call
- * - return from syscall or exception to user-space
- * - return from interrupt-handler to user-space
- *
- * WARNING: must be called with preemption disabled!
- */
-static void __sched __schedule(void)
-{
- struct task_struct *prev, *next, *idle;
- unsigned long *switch_count;
- bool deactivate = false;
- struct rq *rq;
- int cpu;
-
- cpu = smp_processor_id();
- rq = cpu_rq(cpu);
- rcu_note_context_switch();
- prev = rq->curr;
-
- schedule_debug(prev);
-
- /*
- * Make sure that signal_pending_state()->signal_pending() below
- * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
- * done by the caller to avoid the race with signal_wake_up().
- */
- smp_mb__before_spinlock();
- grq_lock_irq();
-
- switch_count = &prev->nivcsw;
- if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
- if (unlikely(signal_pending_state(prev->state, prev))) {
- prev->state = TASK_RUNNING;
- } else {
- deactivate = true;
- prev->on_rq = 0;
-
- /*
- * If a worker is going to sleep, notify and
- * ask workqueue whether it wants to wake up a
- * task to maintain concurrency. If so, wake
- * up the task.
- */
- if (prev->flags & PF_WQ_WORKER) {
- struct task_struct *to_wakeup;
-
- to_wakeup = wq_worker_sleeping(prev, cpu);
- if (to_wakeup) {
- /* This shouldn't happen, but does */
- if (unlikely(to_wakeup == prev))
- deactivate = false;
- else
- try_to_wake_up_local(to_wakeup);
- }
- }
- }
- switch_count = &prev->nvcsw;
- }
-
- update_clocks(rq);
- update_cpu_clock_switch(rq, prev);
- if (rq->clock - rq->last_tick > HALF_JIFFY_NS)
- rq->dither = false;
- else
- rq->dither = true;
-
- clear_tsk_need_resched(prev);
- clear_preempt_need_resched();
-
- idle = rq->idle;
- if (idle != prev) {
- /* Update all the information stored on struct rq */
- prev->time_slice = rq->rq_time_slice;
- prev->deadline = rq->rq_deadline;
- check_deadline(prev);
- prev->last_ran = rq->clock_task;
-
- /* Task changed affinity off this CPU */
- if (likely(!needs_other_cpu(prev, cpu))) {
- if (!deactivate) {
- if (!queued_notrunning()) {
- /*
- * We now know prev is the only thing that is
- * awaiting CPU so we can bypass rechecking for
- * the earliest deadline task and just run it
- * again.
- */
- set_rq_task(rq, prev);
- check_smt_siblings(cpu);
- grq_unlock_irq();
- goto rerun_prev_unlocked;
- } else
- swap_sticky(rq, cpu, prev);
- }
- }
- return_task(prev, rq, deactivate);
- }
-
- if (unlikely(!queued_notrunning())) {
- /*
- * This CPU is now truly idle as opposed to when idle is
- * scheduled as a high priority task in its own right.
- */
- next = idle;
- schedstat_inc(rq, sched_goidle);
- set_cpuidle_map(cpu);
- } else {
- next = earliest_deadline_task(rq, cpu, idle);
- if (likely(next->prio != PRIO_LIMIT))
- clear_cpuidle_map(cpu);
- else
- set_cpuidle_map(cpu);
- }
-
- if (likely(prev != next)) {
- /*
- * Don't reschedule an idle task or deactivated tasks
- */
- if (prev != idle && !deactivate)
- resched_suitable_idle(prev);
- /*
- * Don't stick tasks when a real time task is going to run as
- * they may literally get stuck.
- */
- if (rt_task(next))
- unstick_task(rq, prev);
- set_rq_task(rq, next);
- if (next != idle)
- check_smt_siblings(cpu);
- else
- wake_smt_siblings(cpu);
- grq.nr_switches++;
- prev->on_cpu = false;
- next->on_cpu = true;
- rq->curr = next;
- ++*switch_count;
-
- rq = context_switch(rq, prev, next); /* unlocks the grq */
- cpu = cpu_of(rq);
- idle = rq->idle;
- } else {
- check_smt_siblings(cpu);
- grq_unlock_irq();
- }
-
-rerun_prev_unlocked:
- return;
-}
-
-static inline void sched_submit_work(struct task_struct *tsk)
-{
- if (!tsk->state || tsk_is_pi_blocked(tsk) ||
- (preempt_count() & PREEMPT_ACTIVE) ||
- signal_pending_state(tsk->state, tsk))
- return;
-
- /*
- * If we are going to sleep and we have plugged IO queued,
- * make sure to submit it to avoid deadlocks.
- */
- if (blk_needs_flush_plug(tsk))
- blk_schedule_flush_plug(tsk);
-}
-
-asmlinkage __visible void __sched schedule(void)
-{
- struct task_struct *tsk = current;
-
- sched_submit_work(tsk);
- do {
- preempt_disable();
- __schedule();
- sched_preempt_enable_no_resched();
- } while (need_resched());
-}
-
-EXPORT_SYMBOL(schedule);
-
-#ifdef CONFIG_CONTEXT_TRACKING
-asmlinkage __visible void __sched schedule_user(void)
-{
- /*
- * If we come here after a random call to set_need_resched(),
- * or we have been woken up remotely but the IPI has not yet arrived,
- * we haven't yet exited the RCU idle mode. Do it here manually until
- * we find a better solution.
- *
- * NB: There are buggy callers of this function. Ideally we
- * should warn if prev_state != IN_USER, but that will trigger
- * too frequently to make sense yet.
- */
- enum ctx_state prev_state = exception_enter();
- schedule();
- exception_exit(prev_state);
-}
-#endif
-
-/**
- * schedule_preempt_disabled - called with preemption disabled
- *
- * Returns with preemption disabled. Note: preempt_count must be 1
- */
-void __sched schedule_preempt_disabled(void)
-{
- sched_preempt_enable_no_resched();
- schedule();
- preempt_disable();
-}
-
-static void __sched notrace preempt_schedule_common(void)
-{
- do {
- preempt_active_enter();
- __schedule();
- preempt_active_exit();
-
- /*
- * Check again in case we missed a preemption opportunity
- * between schedule and now.
- */
- } while (need_resched());
-}
-
-#ifdef CONFIG_PREEMPT
-/*
- * this is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable. Kernel preemptions off return from interrupt
- * occur there and call schedule directly.
- */
-asmlinkage __visible void __sched notrace preempt_schedule(void)
-{
- /*
- * If there is a non-zero preempt_count or interrupts are disabled,
- * we do not want to preempt the current task. Just return..
- */
- if (likely(!preemptible()))
- return;
-
- preempt_schedule_common();
-}
-NOKPROBE_SYMBOL(preempt_schedule);
-EXPORT_SYMBOL(preempt_schedule);
-
-/**
- * preempt_schedule_notrace - preempt_schedule called by tracing
- *
- * The tracing infrastructure uses preempt_enable_notrace to prevent
- * recursion and tracing preempt enabling caused by the tracing
- * infrastructure itself. But as tracing can happen in areas coming
- * from userspace or just about to enter userspace, a preempt enable
- * can occur before user_exit() is called. This will cause the scheduler
- * to be called when the system is still in usermode.
- *
- * To prevent this, the preempt_enable_notrace will use this function
- * instead of preempt_schedule() to exit user context if needed before
- * calling the scheduler.
- */
-asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
-{
- enum ctx_state prev_ctx;
-
- if (likely(!preemptible()))
- return;
-
- do {
- /*
- * Use raw __prempt_count() ops that don't call function.
- * We can't call functions before disabling preemption which
- * disarm preemption tracing recursions.
- */
- __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
- barrier();
- /*
- * Needs preempt disabled in case user_exit() is traced
- * and the tracer calls preempt_enable_notrace() causing
- * an infinite recursion.
- */
- prev_ctx = exception_enter();
- __schedule();
- exception_exit(prev_ctx);
-
- barrier();
- __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
- } while (need_resched());
-}
-EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
-
-#endif /* CONFIG_PREEMPT */
-
-/*
- * this is the entry point to schedule() from kernel preemption
- * off of irq context.
- * Note, that this is called and return with irqs disabled. This will
- * protect us against recursive calling from irq.
- */
-asmlinkage __visible void __sched preempt_schedule_irq(void)
-{
- enum ctx_state prev_state;
-
- /* Catch callers which need to be fixed */
- BUG_ON(preempt_count() || !irqs_disabled());
-
- prev_state = exception_enter();
-
- do {
- preempt_active_enter();
- local_irq_enable();
- __schedule();
- local_irq_disable();
- preempt_active_exit();
- } while (need_resched());
-
- exception_exit(prev_state);
-}
-
-int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
- void *key)
-{
- return try_to_wake_up(curr->private, mode, wake_flags);
-}
-EXPORT_SYMBOL(default_wake_function);
-
-#ifdef CONFIG_RT_MUTEXES
-
-/*
- * rt_mutex_setprio - set the current priority of a task
- * @p: task
- * @prio: prio value (kernel-internal form)
- *
- * This function changes the 'effective' priority of a task. It does
- * not touch ->normal_prio like __setscheduler().
- *
- * Used by the rt_mutex code to implement priority inheritance
- * logic. Call site only calls if the priority of the task changed.
- */
-void rt_mutex_setprio(struct task_struct *p, int prio)
-{
- unsigned long flags;
- int queued, oldprio;
- struct rq *rq;
-
- BUG_ON(prio < 0 || prio > MAX_PRIO);
-
- rq = task_grq_lock(p, &flags);
-
- /*
- * Idle task boosting is a nono in general. There is one
- * exception, when PREEMPT_RT and NOHZ is active:
- *
- * The idle task calls get_next_timer_interrupt() and holds
- * the timer wheel base->lock on the CPU and another CPU wants
- * to access the timer (probably to cancel it). We can safely
- * ignore the boosting request, as the idle CPU runs this code
- * with interrupts disabled and will complete the lock
- * protected section without being interrupted. So there is no
- * real need to boost.
- */
- if (unlikely(p == rq->idle)) {
- WARN_ON(p != rq->curr);
- WARN_ON(p->pi_blocked_on);
- goto out_unlock;
- }
-
- trace_sched_pi_setprio(p, prio);
- oldprio = p->prio;
- queued = task_queued(p);
- if (queued)
- dequeue_task(p);
- p->prio = prio;
- if (task_running(p) && prio > oldprio)
- resched_task(p);
- if (queued) {
- enqueue_task(p, rq);
- try_preempt(p, rq);
- }
-
-out_unlock:
- task_grq_unlock(&flags);
-}
-
-#endif
-
-/*
- * Adjust the deadline for when the priority is to change, before it's
- * changed.
- */
-static inline void adjust_deadline(struct task_struct *p, int new_prio)
-{
- p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p);
-}
-
-void set_user_nice(struct task_struct *p, long nice)
-{
- int queued, new_static, old_static;
- unsigned long flags;
- struct rq *rq;
-
- if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
- return;
- new_static = NICE_TO_PRIO(nice);
- /*
- * We have to be careful, if called from sys_setpriority(),
- * the task might be in the middle of scheduling on another CPU.
- */
- rq = time_task_grq_lock(p, &flags);
- /*
- * The RT priorities are set via sched_setscheduler(), but we still
- * allow the 'normal' nice value to be set - but as expected
- * it wont have any effect on scheduling until the task is
- * not SCHED_NORMAL/SCHED_BATCH:
- */
- if (has_rt_policy(p)) {
- p->static_prio = new_static;
- goto out_unlock;
- }
- queued = task_queued(p);
- if (queued)
- dequeue_task(p);
-
- adjust_deadline(p, new_static);
- old_static = p->static_prio;
- p->static_prio = new_static;
- p->prio = effective_prio(p);
-
- if (queued) {
- enqueue_task(p, rq);
- if (new_static < old_static)
- try_preempt(p, rq);
- } else if (task_running(p)) {
- reset_rq_task(rq, p);
- if (old_static < new_static)
- resched_task(p);
- }
-out_unlock:
- task_grq_unlock(&flags);
-}
-EXPORT_SYMBOL(set_user_nice);
-
-/*
- * can_nice - check if a task can reduce its nice value
- * @p: task
- * @nice: nice value
- */
-int can_nice(const struct task_struct *p, const int nice)
-{
- /* convert nice value [19,-20] to rlimit style value [1,40] */
- int nice_rlim = nice_to_rlimit(nice);
-
- return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
- capable(CAP_SYS_NICE));
-}
-
-#ifdef __ARCH_WANT_SYS_NICE
-
-/*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
-SYSCALL_DEFINE1(nice, int, increment)
-{
- long nice, retval;
-
- /*
- * Setpriority might change our priority at the same moment.
- * We don't have to worry. Conceptually one call occurs first
- * and we have a single winner.
- */
-
- increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
- nice = task_nice(current) + increment;
-
- nice = clamp_val(nice, MIN_NICE, MAX_NICE);
- if (increment < 0 && !can_nice(current, nice))
- return -EPERM;
-
- retval = security_task_setnice(current, nice);
- if (retval)
- return retval;
-
- set_user_nice(current, nice);
- return 0;
-}
-
-#endif
-
-/**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * Return: The priority value as seen by users in /proc.
- * RT tasks are offset by -100. Normal tasks are centered around 1, value goes
- * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO).
- */
-int task_prio(const struct task_struct *p)
-{
- int delta, prio = p->prio - MAX_RT_PRIO;
-
- /* rt tasks and iso tasks */
- if (prio <= 0)
- goto out;
-
- /* Convert to ms to avoid overflows */
- delta = NS_TO_MS(p->deadline - grq.niffies);
- delta = delta * 40 / ms_longest_deadline_diff();
- if (delta > 0 && delta <= 80)
- prio += delta;
- if (idleprio_task(p))
- prio += 40;
-out:
- return prio;
-}
-
-/**
- * idle_cpu - is a given cpu idle currently?
- * @cpu: the processor in question.
- *
- * Return: 1 if the CPU is currently idle. 0 otherwise.
- */
-int idle_cpu(int cpu)
-{
- return cpu_curr(cpu) == cpu_rq(cpu)->idle;
-}
-
-/**
- * idle_task - return the idle task for a given cpu.
- * @cpu: the processor in question.
- *
- * Return: The idle task for the cpu @cpu.
- */
-struct task_struct *idle_task(int cpu)
-{
- return cpu_rq(cpu)->idle;
-}
-
-/**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- *
- * The task of @pid, if found. %NULL otherwise.
- */
-static inline struct task_struct *find_process_by_pid(pid_t pid)
-{
- return pid ? find_task_by_vpid(pid) : current;
-}
-
-/* Actually do priority change: must hold grq lock. */
-static void __setscheduler(struct task_struct *p, struct rq *rq, int policy,
- int prio, bool keep_boost)
-{
- int oldrtprio, oldprio;
-
- p->policy = policy;
- oldrtprio = p->rt_priority;
- p->rt_priority = prio;
- p->normal_prio = normal_prio(p);
- oldprio = p->prio;
- /*
- * Keep a potential priority boosting if called from
- * sched_setscheduler().
- */
- if (keep_boost) {
- /*
- * Take priority boosted tasks into account. If the new
- * effective priority is unchanged, we just store the new
- * normal parameters and do not touch the scheduler class and
- * the runqueue. This will be done when the task deboost
- * itself.
- */
- p->prio = rt_mutex_get_effective_prio(p, p->normal_prio);
- } else
- p->prio = p->normal_prio;
- if (task_running(p)) {
- reset_rq_task(rq, p);
- /* Resched only if we might now be preempted */
- if (p->prio > oldprio || p->rt_priority > oldrtprio)
- resched_task(p);
- }
-}
-
-/*
- * check the target process has a UID that matches the current process's
- */
-static bool check_same_owner(struct task_struct *p)
-{
- const struct cred *cred = current_cred(), *pcred;
- bool match;
-
- rcu_read_lock();
- pcred = __task_cred(p);
- match = (uid_eq(cred->euid, pcred->euid) ||
- uid_eq(cred->euid, pcred->uid));
- rcu_read_unlock();
- return match;
-}
-
-static int
-__sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param, bool user, bool pi)
-{
- struct sched_param zero_param = { .sched_priority = 0 };
- int queued, retval, oldpolicy = -1;
- unsigned long flags, rlim_rtprio = 0;
- int reset_on_fork;
- struct rq *rq;
-
- /* may grab non-irq protected spin_locks */
- BUG_ON(in_interrupt());
-
- if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
- unsigned long lflags;
-
- if (!lock_task_sighand(p, &lflags))
- return -ESRCH;
- rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
- unlock_task_sighand(p, &lflags);
- if (rlim_rtprio)
- goto recheck;
- /*
- * If the caller requested an RT policy without having the
- * necessary rights, we downgrade the policy to SCHED_ISO.
- * We also set the parameter to zero to pass the checks.
- */
- policy = SCHED_ISO;
- param = &zero_param;
- }
-recheck:
- /* double check policy once rq lock held */
- if (policy < 0) {
- reset_on_fork = p->sched_reset_on_fork;
- policy = oldpolicy = p->policy;
- } else {
- reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
- policy &= ~SCHED_RESET_ON_FORK;
-
- if (!SCHED_RANGE(policy))
- return -EINVAL;
- }
-
- /*
- * Valid priorities for SCHED_FIFO and SCHED_RR are
- * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
- * SCHED_BATCH is 0.
- */
- if (param->sched_priority < 0 ||
- (p->mm && param->sched_priority > MAX_USER_RT_PRIO - 1) ||
- (!p->mm && param->sched_priority > MAX_RT_PRIO - 1))
- return -EINVAL;
- if (is_rt_policy(policy) != (param->sched_priority != 0))
- return -EINVAL;
-
- /*
- * Allow unprivileged RT tasks to decrease priority:
- */
- if (user && !capable(CAP_SYS_NICE)) {
- if (is_rt_policy(policy)) {
- unsigned long rlim_rtprio =
- task_rlimit(p, RLIMIT_RTPRIO);
-
- /* can't set/change the rt policy */
- if (policy != p->policy && !rlim_rtprio)
- return -EPERM;
-
- /* can't increase priority */
- if (param->sched_priority > p->rt_priority &&
- param->sched_priority > rlim_rtprio)
- return -EPERM;
- } else {
- switch (p->policy) {
- /*
- * Can only downgrade policies but not back to
- * SCHED_NORMAL
- */
- case SCHED_ISO:
- if (policy == SCHED_ISO)
- goto out;
- if (policy == SCHED_NORMAL)
- return -EPERM;
- break;
- case SCHED_BATCH:
- if (policy == SCHED_BATCH)
- goto out;
- if (policy != SCHED_IDLEPRIO)
- return -EPERM;
- break;
- case SCHED_IDLEPRIO:
- if (policy == SCHED_IDLEPRIO)
- goto out;
- return -EPERM;
- default:
- break;
- }
- }
-
- /* can't change other user's priorities */
- if (!check_same_owner(p))
- return -EPERM;
-
- /* Normal users shall not reset the sched_reset_on_fork flag */
- if (p->sched_reset_on_fork && !reset_on_fork)
- return -EPERM;
- }
-
- if (user) {
- retval = security_task_setscheduler(p);
- if (retval)
- return retval;
- }
-
- /*
- * make sure no PI-waiters arrive (or leave) while we are
- * changing the priority of the task:
- */
- raw_spin_lock_irqsave(&p->pi_lock, flags);
- /*
- * To be able to change p->policy safely, the grunqueue lock must be
- * held.
- */
- rq = __task_grq_lock(p);
-
- /*
- * Changing the policy of the stop threads its a very bad idea
- */
- if (p == rq->stop) {
- __task_grq_unlock();
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- return -EINVAL;
- }
-
- /*
- * If not changing anything there's no need to proceed further:
- */
- if (unlikely(policy == p->policy && (!is_rt_policy(policy) ||
- param->sched_priority == p->rt_priority))) {
-
- __task_grq_unlock();
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- return 0;
- }
-
- /* recheck policy now with rq lock held */
- if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
- policy = oldpolicy = -1;
- __task_grq_unlock();
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- goto recheck;
- }
- update_clocks(rq);
- p->sched_reset_on_fork = reset_on_fork;
-
- queued = task_queued(p);
- if (queued)
- dequeue_task(p);
- __setscheduler(p, rq, policy, param->sched_priority, pi);
- if (queued) {
- enqueue_task(p, rq);
- try_preempt(p, rq);
- }
- __task_grq_unlock();
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-
- if (pi)
- rt_mutex_adjust_pi(p);
-out:
- return 0;
-}
-
-/**
- * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- *
- * NOTE that the task may be already dead.
- */
-int sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param)
-{
- return __sched_setscheduler(p, policy, param, true, true);
-}
-
-EXPORT_SYMBOL_GPL(sched_setscheduler);
-
-int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
-{
- const struct sched_param param = { .sched_priority = attr->sched_priority };
- int policy = attr->sched_policy;
-
- return __sched_setscheduler(p, policy, &param, true, true);
-}
-EXPORT_SYMBOL_GPL(sched_setattr);
-
-/**
- * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Just like sched_setscheduler, only don't bother checking if the
- * current context has permission. For example, this is needed in
- * stop_machine(): we create temporary high priority worker threads,
- * but our caller might not have that capability.
- *
- * Return: 0 on success. An error code otherwise.
- */
-int sched_setscheduler_nocheck(struct task_struct *p, int policy,
- const struct sched_param *param)
-{
- return __sched_setscheduler(p, policy, param, false, true);
-}
-
-static int
-do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-{
- struct sched_param lparam;
- struct task_struct *p;
- int retval;
-
- if (!param || pid < 0)
- return -EINVAL;
- if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
- return -EFAULT;
-
- rcu_read_lock();
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (p != NULL)
- retval = sched_setscheduler(p, policy, &lparam);
- rcu_read_unlock();
-
- return retval;
-}
-
-/*
- * Mimics kernel/events/core.c perf_copy_attr().
- */
-static int sched_copy_attr(struct sched_attr __user *uattr,
- struct sched_attr *attr)
-{
- u32 size;
- int ret;
-
- if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
- return -EFAULT;
-
- /*
- * zero the full structure, so that a short copy will be nice.
- */
- memset(attr, 0, sizeof(*attr));
-
- ret = get_user(size, &uattr->size);
- if (ret)
- return ret;
-
- if (size > PAGE_SIZE) /* silly large */
- goto err_size;
-
- if (!size) /* abi compat */
- size = SCHED_ATTR_SIZE_VER0;
-
- if (size < SCHED_ATTR_SIZE_VER0)
- goto err_size;
-
- /*
- * If we're handed a bigger struct than we know of,
- * ensure all the unknown bits are 0 - i.e. new
- * user-space does not rely on any kernel feature
- * extensions we dont know about yet.
- */
- if (size > sizeof(*attr)) {
- unsigned char __user *addr;
- unsigned char __user *end;
- unsigned char val;
-
- addr = (void __user *)uattr + sizeof(*attr);
- end = (void __user *)uattr + size;
-
- for (; addr < end; addr++) {
- ret = get_user(val, addr);
- if (ret)
- return ret;
- if (val)
- goto err_size;
- }
- size = sizeof(*attr);
- }
-
- ret = copy_from_user(attr, uattr, size);
- if (ret)
- return -EFAULT;
-
- /*
- * XXX: do we want to be lenient like existing syscalls; or do we want
- * to be strict and return an error on out-of-bounds values?
- */
- attr->sched_nice = clamp(attr->sched_nice, -20, 19);
-
- /* sched/core.c uses zero here but we already know ret is zero */
- return 0;
-
-err_size:
- put_user(sizeof(*attr), &uattr->size);
- return -E2BIG;
-}
-
-/**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy.
- *
- * Return: 0 on success. An error code otherwise.
- * @param: structure containing the new RT priority.
- */
-asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
- struct sched_param __user *param)
-{
- /* negative values for policy are not valid */
- if (policy < 0)
- return -EINVAL;
-
- return do_sched_setscheduler(pid, policy, param);
-}
-
-/*
- * sched_setparam() passes in -1 for its policy, to let the functions
- * it calls know not to change it.
- */
-#define SETPARAM_POLICY -1
-
-/**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-{
- return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
-}
-
-/**
- * sys_sched_setattr - same as above, but with extended sched_attr
- * @pid: the pid in question.
- * @uattr: structure containing the extended parameters.
- */
-SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
- unsigned int, flags)
-{
- struct sched_attr attr;
- struct task_struct *p;
- int retval;
-
- if (!uattr || pid < 0 || flags)
- return -EINVAL;
-
- retval = sched_copy_attr(uattr, &attr);
- if (retval)
- return retval;
-
- if ((int)attr.sched_policy < 0)
- return -EINVAL;
-
- rcu_read_lock();
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (p != NULL)
- retval = sched_setattr(p, &attr);
- rcu_read_unlock();
-
- return retval;
-}
-
-/**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
- *
- * Return: On success, the policy of the thread. Otherwise, a negative error
- * code.
- */
-SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-{
- struct task_struct *p;
- int retval = -EINVAL;
-
- if (pid < 0)
- goto out_nounlock;
-
- retval = -ESRCH;
- rcu_read_lock();
- p = find_process_by_pid(pid);
- if (p) {
- retval = security_task_getscheduler(p);
- if (!retval)
- retval = p->policy;
- }
- rcu_read_unlock();
-
-out_nounlock:
- return retval;
-}
-
-/**
- * sys_sched_getscheduler - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
- *
- * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
- * code.
- */
-SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-{
- struct sched_param lp = { .sched_priority = 0 };
- struct task_struct *p;
- int retval = -EINVAL;
-
- if (!param || pid < 0)
- goto out_nounlock;
-
- rcu_read_lock();
- p = find_process_by_pid(pid);
- retval = -ESRCH;
- if (!p)
- goto out_unlock;
-
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
-
- if (has_rt_policy(p))
- lp.sched_priority = p->rt_priority;
- rcu_read_unlock();
-
- /*
- * This one might sleep, we cannot do it with a spinlock held ...
- */
- retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-
-out_nounlock:
- return retval;
-
-out_unlock:
- rcu_read_unlock();
- return retval;
-}
-
-static int sched_read_attr(struct sched_attr __user *uattr,
- struct sched_attr *attr,
- unsigned int usize)
-{
- int ret;
-
- if (!access_ok(VERIFY_WRITE, uattr, usize))
- return -EFAULT;
-
- /*
- * If we're handed a smaller struct than we know of,
- * ensure all the unknown bits are 0 - i.e. old
- * user-space does not get uncomplete information.
- */
- if (usize < sizeof(*attr)) {
- unsigned char *addr;
- unsigned char *end;
-
- addr = (void *)attr + usize;
- end = (void *)attr + sizeof(*attr);
-
- for (; addr < end; addr++) {
- if (*addr)
- return -EFBIG;
- }
-
- attr->size = usize;
- }
-
- ret = copy_to_user(uattr, attr, attr->size);
- if (ret)
- return -EFAULT;
-
- /* sched/core.c uses zero here but we already know ret is zero */
- return ret;
-}
-
-/**
- * sys_sched_getattr - similar to sched_getparam, but with sched_attr
- * @pid: the pid in question.
- * @uattr: structure containing the extended parameters.
- * @size: sizeof(attr) for fwd/bwd comp.
- * @flags: for future extension.
- */
-SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
- unsigned int, size, unsigned int, flags)
-{
- struct sched_attr attr = {
- .size = sizeof(struct sched_attr),
- };
- struct task_struct *p;
- int retval;
-
- if (!uattr || pid < 0 || size > PAGE_SIZE ||
- size < SCHED_ATTR_SIZE_VER0 || flags)
- return -EINVAL;
-
- rcu_read_lock();
- p = find_process_by_pid(pid);
- retval = -ESRCH;
- if (!p)
- goto out_unlock;
-
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
-
- attr.sched_policy = p->policy;
- if (rt_task(p))
- attr.sched_priority = p->rt_priority;
- else
- attr.sched_nice = task_nice(p);
-
- rcu_read_unlock();
-
- retval = sched_read_attr(uattr, &attr, size);
- return retval;
-
-out_unlock:
- rcu_read_unlock();
- return retval;
-}
-
-long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
-{
- cpumask_var_t cpus_allowed, new_mask;
- struct task_struct *p;
- int retval;
-
- get_online_cpus();
- rcu_read_lock();
-
- p = find_process_by_pid(pid);
- if (!p) {
- rcu_read_unlock();
- put_online_cpus();
- return -ESRCH;
- }
-
- /* Prevent p going away */
- get_task_struct(p);
- rcu_read_unlock();
-
- if (p->flags & PF_NO_SETAFFINITY) {
- retval = -EINVAL;
- goto out_put_task;
- }
- if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
- retval = -ENOMEM;
- goto out_put_task;
- }
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
- retval = -ENOMEM;
- goto out_free_cpus_allowed;
- }
- retval = -EPERM;
- if (!check_same_owner(p)) {
- rcu_read_lock();
- if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
- rcu_read_unlock();
- goto out_unlock;
- }
- rcu_read_unlock();
- }
-
- retval = security_task_setscheduler(p);
- if (retval)
- goto out_unlock;
-
- cpuset_cpus_allowed(p, cpus_allowed);
- cpumask_and(new_mask, in_mask, cpus_allowed);
-again:
- retval = __set_cpus_allowed_ptr(p, new_mask, true);
-
- if (!retval) {
- cpuset_cpus_allowed(p, cpus_allowed);
- if (!cpumask_subset(new_mask, cpus_allowed)) {
- /*
- * We must have raced with a concurrent cpuset
- * update. Just reset the cpus_allowed to the
- * cpuset's cpus_allowed
- */
- cpumask_copy(new_mask, cpus_allowed);
- goto again;
- }
- }
-out_unlock:
- free_cpumask_var(new_mask);
-out_free_cpus_allowed:
- free_cpumask_var(cpus_allowed);
-out_put_task:
- put_task_struct(p);
- put_online_cpus();
- return retval;
-}
-
-static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
- cpumask_t *new_mask)
-{
- if (len < sizeof(cpumask_t)) {
- memset(new_mask, 0, sizeof(cpumask_t));
- } else if (len > sizeof(cpumask_t)) {
- len = sizeof(cpumask_t);
- }
- return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-}
-
-
-/**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
- unsigned long __user *, user_mask_ptr)
-{
- cpumask_var_t new_mask;
- int retval;
-
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
- return -ENOMEM;
-
- retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
- if (retval == 0)
- retval = sched_setaffinity(pid, new_mask);
- free_cpumask_var(new_mask);
- return retval;
-}
-
-long sched_getaffinity(pid_t pid, cpumask_t *mask)
-{
- struct task_struct *p;
- unsigned long flags;
- int retval;
-
- get_online_cpus();
- rcu_read_lock();
-
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (!p)
- goto out_unlock;
-
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
-
- grq_lock_irqsave(&flags);
- cpumask_and(mask, tsk_cpus_allowed(p), cpu_active_mask);
- grq_unlock_irqrestore(&flags);
-
-out_unlock:
- rcu_read_unlock();
- put_online_cpus();
-
- return retval;
-}
-
-/**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
- unsigned long __user *, user_mask_ptr)
-{
- int ret;
- cpumask_var_t mask;
-
- if ((len * BITS_PER_BYTE) < nr_cpu_ids)
- return -EINVAL;
- if (len & (sizeof(unsigned long)-1))
- return -EINVAL;
-
- if (!alloc_cpumask_var(&mask, GFP_KERNEL))
- return -ENOMEM;
-
- ret = sched_getaffinity(pid, mask);
- if (ret == 0) {
- size_t retlen = min_t(size_t, len, cpumask_size());
-
- if (copy_to_user(user_mask_ptr, mask, retlen))
- ret = -EFAULT;
- else
- ret = retlen;
- }
- free_cpumask_var(mask);
-
- return ret;
-}
-
-/**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * This function yields the current CPU to other tasks. It does this by
- * scheduling away the current task. If it still has the earliest deadline
- * it will be scheduled again as the next task.
- *
- * Return: 0.
- */
-SYSCALL_DEFINE0(sched_yield)
-{
- struct task_struct *p;
-
- p = current;
- grq_lock_irq();
- schedstat_inc(task_rq(p), yld_count);
- requeue_task(p);
-
- /*
- * Since we are going to call schedule() anyway, there's
- * no need to preempt or enable interrupts:
- */
- __release(grq.lock);
- spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
- do_raw_spin_unlock(&grq.lock);
- sched_preempt_enable_no_resched();
-
- schedule();
-
- return 0;
-}
-
-int __sched _cond_resched(void)
-{
- if (should_resched(0)) {
- preempt_schedule_common();
- return 1;
- }
- return 0;
-}
-EXPORT_SYMBOL(_cond_resched);
-
-/*
- * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
- * call schedule, and on return reacquire the lock.
- *
- * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
- * operations here to prevent schedule() from being called twice (once via
- * spin_unlock(), once by hand).
- */
-int __cond_resched_lock(spinlock_t *lock)
-{
- int resched = should_resched(PREEMPT_LOCK_OFFSET);
- int ret = 0;
-
- lockdep_assert_held(lock);
-
- if (spin_needbreak(lock) || resched) {
- spin_unlock(lock);
- if (resched)
- preempt_schedule_common();
- else
- cpu_relax();
- ret = 1;
- spin_lock(lock);
- }
- return ret;
-}
-EXPORT_SYMBOL(__cond_resched_lock);
-
-int __sched __cond_resched_softirq(void)
-{
- BUG_ON(!in_softirq());
-
- if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
- local_bh_enable();
- preempt_schedule_common();
- local_bh_disable();
- return 1;
- }
- return 0;
-}
-EXPORT_SYMBOL(__cond_resched_softirq);
-
-/**
- * yield - yield the current processor to other threads.
- *
- * Do not ever use this function, there's a 99% chance you're doing it wrong.
- *
- * The scheduler is at all times free to pick the calling task as the most
- * eligible task to run, if removing the yield() call from your code breaks
- * it, its already broken.
- *
- * Typical broken usage is:
- *
- * while (!event)
- * yield();
- *
- * where one assumes that yield() will let 'the other' process run that will
- * make event true. If the current task is a SCHED_FIFO task that will never
- * happen. Never use yield() as a progress guarantee!!
- *
- * If you want to use yield() to wait for something, use wait_event().
- * If you want to use yield() to be 'nice' for others, use cond_resched().
- * If you still want to use yield(), do not!
- */
-void __sched yield(void)
-{
- set_current_state(TASK_RUNNING);
- sys_sched_yield();
-}
-EXPORT_SYMBOL(yield);
-
-/**
- * yield_to - yield the current processor to another thread in
- * your thread group, or accelerate that thread toward the
- * processor it's on.
- * @p: target task
- * @preempt: whether task preemption is allowed or not
- *
- * It's the caller's job to ensure that the target task struct
- * can't go away on us before we can do any checks.
- *
- * Return:
- * true (>0) if we indeed boosted the target task.
- * false (0) if we failed to boost the target.
- * -ESRCH if there's no task to yield to.
- */
-int __sched yield_to(struct task_struct *p, bool preempt)
-{
- struct rq *rq, *p_rq;
- unsigned long flags;
- int yielded = 0;
-
- rq = this_rq();
- grq_lock_irqsave(&flags);
- if (task_running(p) || p->state) {
- yielded = -ESRCH;
- goto out_unlock;
- }
-
- p_rq = task_rq(p);
- yielded = 1;
- if (p->deadline > rq->rq_deadline)
- p->deadline = rq->rq_deadline;
- p->time_slice += rq->rq_time_slice;
- rq->rq_time_slice = 0;
- if (p->time_slice > timeslice())
- p->time_slice = timeslice();
- if (preempt && rq != p_rq)
- resched_curr(p_rq);
-out_unlock:
- grq_unlock_irqrestore(&flags);
-
- if (yielded > 0)
- schedule();
- return yielded;
-}
-EXPORT_SYMBOL_GPL(yield_to);
-
-/*
- * This task is about to go to sleep on IO. Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
- *
- * But don't do that if it is a deliberate, throttling IO wait (this task
- * has set its backing_dev_info: the queue against which it should throttle)
- */
-
-long __sched io_schedule_timeout(long timeout)
-{
- int old_iowait = current->in_iowait;
- struct rq *rq;
- long ret;
-
- current->in_iowait = 1;
- blk_schedule_flush_plug(current);
-
- delayacct_blkio_start();
- rq = raw_rq();
- atomic_inc(&rq->nr_iowait);
- ret = schedule_timeout(timeout);
- current->in_iowait = old_iowait;
- atomic_dec(&rq->nr_iowait);
- delayacct_blkio_end();
-
- return ret;
-}
-EXPORT_SYMBOL(io_schedule_timeout);
-
-/**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * Return: On success, this syscall returns the maximum
- * rt_priority that can be used by a given scheduling class.
- * On failure, a negative error code is returned.
- */
-SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-{
- int ret = -EINVAL;
-
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = MAX_USER_RT_PRIO-1;
- break;
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_ISO:
- case SCHED_IDLEPRIO:
- ret = 0;
- break;
- }
- return ret;
-}
-
-/**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * Return: On success, this syscall returns the minimum
- * rt_priority that can be used by a given scheduling class.
- * On failure, a negative error code is returned.
- */
-SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-{
- int ret = -EINVAL;
-
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = 1;
- break;
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_ISO:
- case SCHED_IDLEPRIO:
- ret = 0;
- break;
- }
- return ret;
-}
-
-/**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
- *
- *
- * Return: On success, 0 and the timeslice is in @interval. Otherwise,
- * an error code.
- */
-SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
- struct timespec __user *, interval)
-{
- struct task_struct *p;
- unsigned int time_slice;
- unsigned long flags;
- int retval;
- struct timespec t;
-
- if (pid < 0)
- return -EINVAL;
-
- retval = -ESRCH;
- rcu_read_lock();
- p = find_process_by_pid(pid);
- if (!p)
- goto out_unlock;
-
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
-
- grq_lock_irqsave(&flags);
- time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p));
- grq_unlock_irqrestore(&flags);
-
- rcu_read_unlock();
- t = ns_to_timespec(time_slice);
- retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
- return retval;
-
-out_unlock:
- rcu_read_unlock();
- return retval;
-}
-
-static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
-
-void sched_show_task(struct task_struct *p)
-{
- unsigned long free = 0;
- int ppid;
- unsigned long state = p->state;
-
- if (state)
- state = __ffs(state) + 1;
- printk(KERN_INFO "%-15.15s %c", p->comm,
- state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
-#if BITS_PER_LONG == 32
- if (state == TASK_RUNNING)
- printk(KERN_CONT " running ");
- else
- printk(KERN_CONT " %08lx ", thread_saved_pc(p));
-#else
- if (state == TASK_RUNNING)
- printk(KERN_CONT " running task ");
- else
- printk(KERN_CONT " %016lx ", thread_saved_pc(p));
-#endif
-#ifdef CONFIG_DEBUG_STACK_USAGE
- free = stack_not_used(p);
-#endif
- ppid = 0;
- rcu_read_lock();
- if (pid_alive(p))
- ppid = task_pid_nr(rcu_dereference(p->real_parent));
- rcu_read_unlock();
- printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
- task_pid_nr(p), ppid,
- (unsigned long)task_thread_info(p)->flags);
-
- print_worker_info(KERN_INFO, p);
- show_stack(p, NULL);
-}
-
-void show_state_filter(unsigned long state_filter)
-{
- struct task_struct *g, *p;
-
-#if BITS_PER_LONG == 32
- printk(KERN_INFO
- " task PC stack pid father\n");
-#else
- printk(KERN_INFO
- " task PC stack pid father\n");
-#endif
- rcu_read_lock();
- for_each_process_thread(g, p) {
- /*
- * reset the NMI-timeout, listing all files on a slow
- * console might take a lot of time:
- */
- touch_nmi_watchdog();
- if (!state_filter || (p->state & state_filter))
- sched_show_task(p);
- }
-
- touch_all_softlockup_watchdogs();
-
- rcu_read_unlock();
- /*
- * Only show locks if all tasks are dumped:
- */
- if (!state_filter)
- debug_show_all_locks();
-}
-
-void dump_cpu_task(int cpu)
-{
- pr_info("Task dump for CPU %d:\n", cpu);
- sched_show_task(cpu_curr(cpu));
-}
-
-#ifdef CONFIG_SMP
-void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
-{
- cpumask_copy(&p->cpus_allowed, new_mask);
- p->nr_cpus_allowed = cpumask_weight(new_mask);
-}
-
-void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
-{
- cpumask_copy(tsk_cpus_allowed(p), new_mask);
-}
-#endif
-
-/**
- * init_idle - set up an idle thread for a given CPU
- * @idle: task in question
- * @cpu: cpu the idle task belongs to
- *
- * NOTE: this function does not set the idle thread's NEED_RESCHED
- * flag, to make booting more robust.
- */
-void init_idle(struct task_struct *idle, int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
-
- raw_spin_lock_irqsave(&idle->pi_lock, flags);
- time_lock_grq(rq);
- idle->last_ran = rq->clock_task;
- idle->state = TASK_RUNNING;
- /* Setting prio to illegal value shouldn't matter when never queued */
- idle->prio = PRIO_LIMIT;
-#ifdef CONFIG_SMT_NICE
- idle->smt_bias = 0;
-#endif
- set_rq_task(rq, idle);
- do_set_cpus_allowed(idle, get_cpu_mask(cpu));
- /* Silence PROVE_RCU */
- rcu_read_lock();
- set_task_cpu(idle, cpu);
- rcu_read_unlock();
- rq->curr = rq->idle = idle;
- idle->on_cpu = 1;
- grq_unlock();
- raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
-
- /* Set the preempt count _outside_ the spinlocks! */
- init_idle_preempt_count(idle, cpu);
-
- ftrace_graph_init_idle_task(idle, cpu);
-#ifdef CONFIG_SMP
- sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
-#endif
-}
-
-int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur,
- const struct cpumask __maybe_unused *trial)
-{
- return 1;
-}
-
-int task_can_attach(struct task_struct *p,
- const struct cpumask *cs_cpus_allowed)
-{
- int ret = 0;
-
- /*
- * Kthreads which disallow setaffinity shouldn't be moved
- * to a new cpuset; we don't want to change their cpu
- * affinity and isolating such threads by their set of
- * allowed nodes is unnecessary. Thus, cpusets are not
- * applicable for such threads. This prevents checking for
- * success of set_cpus_allowed_ptr() on all attached tasks
- * before cpus_allowed may be changed.
- */
- if (p->flags & PF_NO_SETAFFINITY)
- ret = -EINVAL;
-
- return ret;
-}
-
-void wake_q_add(struct wake_q_head *head, struct task_struct *task)
-{
- struct wake_q_node *node = &task->wake_q;
-
- /*
- * Atomically grab the task, if ->wake_q is !nil already it means
- * its already queued (either by us or someone else) and will get the
- * wakeup due to that.
- *
- * This cmpxchg() implies a full barrier, which pairs with the write
- * barrier implied by the wakeup in wake_up_list().
- */
- if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
- return;
-
- get_task_struct(task);
-
- /*
- * The head is context local, there can be no concurrency.
- */
- *head->lastp = node;
- head->lastp = &node->next;
-}
-
-void wake_up_q(struct wake_q_head *head)
-{
- struct wake_q_node *node = head->first;
-
- while (node != WAKE_Q_TAIL) {
- struct task_struct *task;
-
- task = container_of(node, struct task_struct, wake_q);
- BUG_ON(!task);
- /* task can safely be re-inserted now */
- node = node->next;
- task->wake_q.next = NULL;
-
- /*
- * wake_up_process() implies a wmb() to pair with the queueing
- * in wake_q_add() so as not to miss wakeups.
- */
- wake_up_process(task);
- put_task_struct(task);
- }
-}
-
-void resched_cpu(int cpu)
-{
- unsigned long flags;
-
- grq_lock_irqsave(&flags);
- resched_task(cpu_curr(cpu));
- grq_unlock_irqrestore(&flags);
-}
-
-#ifdef CONFIG_SMP
-#ifdef CONFIG_NO_HZ_COMMON
-void nohz_balance_enter_idle(int cpu)
-{
-}
-
-void select_nohz_load_balancer(int stop_tick)
-{
-}
-
-void set_cpu_sd_state_idle(void) {}
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-/**
- * lowest_flag_domain - Return lowest sched_domain containing flag.
- * @cpu: The cpu whose lowest level of sched domain is to
- * be returned.
- * @flag: The flag to check for the lowest sched_domain
- * for the given cpu.
- *
- * Returns the lowest sched_domain of a cpu which contains the given flag.
- */
-static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
-{
- struct sched_domain *sd;
-
- for_each_domain(cpu, sd)
- if (sd && (sd->flags & flag))
- break;
-
- return sd;
-}
-
-/**
- * for_each_flag_domain - Iterates over sched_domains containing the flag.
- * @cpu: The cpu whose domains we're iterating over.
- * @sd: variable holding the value of the power_savings_sd
- * for cpu.
- * @flag: The flag to filter the sched_domains to be iterated.
- *
- * Iterates over all the scheduler domains for a given cpu that has the 'flag'
- * set, starting from the lowest sched_domain to the highest.
- */
-#define for_each_flag_domain(cpu, sd, flag) \
- for (sd = lowest_flag_domain(cpu, flag); \
- (sd && (sd->flags & flag)); sd = sd->parent)
-
-#endif /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
-
-/*
- * In the semi idle case, use the nearest busy cpu for migrating timers
- * from an idle cpu. This is good for power-savings.
- *
- * We don't do similar optimization for completely idle system, as
- * selecting an idle cpu will add more delays to the timers than intended
- * (as that cpu's timer base may not be uptodate wrt jiffies etc).
- */
-int get_nohz_timer_target(void)
-{
- int i, cpu = smp_processor_id();
- struct sched_domain *sd;
-
- if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
- return cpu;
-
- rcu_read_lock();
- for_each_domain(cpu, sd) {
- for_each_cpu(i, sched_domain_span(sd)) {
- if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
- cpu = i;
- goto unlock;
- }
- }
- }
-
- if (!is_housekeeping_cpu(cpu))
- cpu = housekeeping_any_cpu();
-unlock:
- rcu_read_unlock();
- return cpu;
-}
-
-/*
- * When add_timer_on() enqueues a timer into the timer wheel of an
- * idle CPU then this timer might expire before the next timer event
- * which is scheduled to wake up that CPU. In case of a completely
- * idle system the next event might even be infinite time into the
- * future. wake_up_idle_cpu() ensures that the CPU is woken up and
- * leaves the inner idle loop so the newly added timer is taken into
- * account when the CPU goes back to idle and evaluates the timer
- * wheel for the next timer event.
- */
-void wake_up_idle_cpu(int cpu)
-{
- if (cpu == smp_processor_id())
- return;
-
- set_tsk_need_resched(cpu_rq(cpu)->idle);
- smp_send_reschedule(cpu);
-}
-
-void wake_up_nohz_cpu(int cpu)
-{
- wake_up_idle_cpu(cpu);
-}
-#endif /* CONFIG_NO_HZ_COMMON */
-
-/*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely. The
- * call is not atomic; no spinlocks may be held.
- */
-static int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask, bool check)
-{
- bool running_wrong = false;
- bool queued = false;
- unsigned long flags;
- struct rq *rq;
- int ret = 0;
-
- rq = task_grq_lock(p, &flags);
-
- /*
- * Must re-check here, to close a race against __kthread_bind(),
- * sched_setaffinity() is not guaranteed to observe the flag.
- */
- if (check && (p->flags & PF_NO_SETAFFINITY)) {
- ret = -EINVAL;
- goto out;
- }
-
- if (cpumask_equal(tsk_cpus_allowed(p), new_mask))
- goto out;
-
- if (!cpumask_intersects(new_mask, cpu_active_mask)) {
- ret = -EINVAL;
- goto out;
- }
-
- queued = task_queued(p);
-
- do_set_cpus_allowed(p, new_mask);
-
- /* Can the task run on the task's current CPU? If so, we're done */
- if (cpumask_test_cpu(task_cpu(p), new_mask))
- goto out;
-
- if (task_running(p)) {
- /* Task is running on the wrong cpu now, reschedule it. */
- if (rq == this_rq()) {
- set_tsk_need_resched(p);
- running_wrong = true;
- } else
- resched_task(p);
- } else
- set_task_cpu(p, cpumask_any_and(cpu_active_mask, new_mask));
-
-out:
- if (queued)
- try_preempt(p, rq);
- task_grq_unlock(&flags);
-
- if (running_wrong)
- preempt_schedule_common();
-
- return ret;
-}
-
-int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
-{
- return __set_cpus_allowed_ptr(p, new_mask, false);
-}
-EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
-
-#ifdef CONFIG_HOTPLUG_CPU
-/* Run through task list and find tasks affined to the dead cpu, then remove
- * that cpu from the list, enable cpu0 and set the zerobound flag. */
-static void bind_zero(int src_cpu)
-{
- struct task_struct *p, *t;
- int bound = 0;
-
- if (src_cpu == 0)
- return;
-
- do_each_thread(t, p) {
- if (cpumask_test_cpu(src_cpu, tsk_cpus_allowed(p))) {
- cpumask_clear_cpu(src_cpu, tsk_cpus_allowed(p));
- cpumask_set_cpu(0, tsk_cpus_allowed(p));
- p->zerobound = true;
- bound++;
- }
- clear_sticky(p);
- } while_each_thread(t, p);
-
- if (bound) {
- printk(KERN_INFO "Removed affinity for %d processes to cpu %d\n",
- bound, src_cpu);
- }
-}
-
-/* Find processes with the zerobound flag and reenable their affinity for the
- * CPU coming alive. */
-static void unbind_zero(int src_cpu)
-{
- int unbound = 0, zerobound = 0;
- struct task_struct *p, *t;
-
- if (src_cpu == 0)
- return;
-
- do_each_thread(t, p) {
- if (!p->mm)
- p->zerobound = false;
- if (p->zerobound) {
- unbound++;
- cpumask_set_cpu(src_cpu, tsk_cpus_allowed(p));
- /* Once every CPU affinity has been re-enabled, remove
- * the zerobound flag */
- if (cpumask_subset(cpu_possible_mask, tsk_cpus_allowed(p))) {
- p->zerobound = false;
- zerobound++;
- }
- }
- } while_each_thread(t, p);
-
- if (unbound) {
- printk(KERN_INFO "Added affinity for %d processes to cpu %d\n",
- unbound, src_cpu);
- }
- if (zerobound) {
- printk(KERN_INFO "Released forced binding to cpu0 for %d processes\n",
- zerobound);
- }
-}
-
-/*
- * Ensures that the idle task is using init_mm right before its cpu goes
- * offline.
- */
-void idle_task_exit(void)
-{
- struct mm_struct *mm = current->active_mm;
-
- BUG_ON(cpu_online(smp_processor_id()));
-
- if (mm != &init_mm) {
- switch_mm(mm, &init_mm, current);
- finish_arch_post_lock_switch();
- }
- mmdrop(mm);
-}
-#else /* CONFIG_HOTPLUG_CPU */
-static void unbind_zero(int src_cpu) {}
-#endif /* CONFIG_HOTPLUG_CPU */
-
-void sched_set_stop_task(int cpu, struct task_struct *stop)
-{
- struct sched_param stop_param = { .sched_priority = STOP_PRIO };
- struct sched_param start_param = { .sched_priority = 0 };
- struct task_struct *old_stop = cpu_rq(cpu)->stop;
-
- if (stop) {
- /*
- * Make it appear like a SCHED_FIFO task, its something
- * userspace knows about and won't get confused about.
- *
- * Also, it will make PI more or less work without too
- * much confusion -- but then, stop work should not
- * rely on PI working anyway.
- */
- sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
- }
-
- cpu_rq(cpu)->stop = stop;
-
- if (old_stop) {
- /*
- * Reset it back to a normal scheduling policy so that
- * it can die in pieces.
- */
- sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param);
- }
-}
-
-
-#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
-
-static struct ctl_table sd_ctl_dir[] = {
- {
- .procname = "sched_domain",
- .mode = 0555,
- },
- {}
-};
-
-static struct ctl_table sd_ctl_root[] = {
- {
- .procname = "kernel",
- .mode = 0555,
- .child = sd_ctl_dir,
- },
- {}
-};
-
-static struct ctl_table *sd_alloc_ctl_entry(int n)
-{
- struct ctl_table *entry =
- kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
-
- return entry;
-}
-
-static void sd_free_ctl_entry(struct ctl_table **tablep)
-{
- struct ctl_table *entry;
-
- /*
- * In the intermediate directories, both the child directory and
- * procname are dynamically allocated and could fail but the mode
- * will always be set. In the lowest directory the names are
- * static strings and all have proc handlers.
- */
- for (entry = *tablep; entry->mode; entry++) {
- if (entry->child)
- sd_free_ctl_entry(&entry->child);
- if (entry->proc_handler == NULL)
- kfree(entry->procname);
- }
-
- kfree(*tablep);
- *tablep = NULL;
-}
-
-static void
-set_table_entry(struct ctl_table *entry,
- const char *procname, void *data, int maxlen,
- mode_t mode, proc_handler *proc_handler)
-{
- entry->procname = procname;
- entry->data = data;
- entry->maxlen = maxlen;
- entry->mode = mode;
- entry->proc_handler = proc_handler;
-}
-
-static struct ctl_table *
-sd_alloc_ctl_domain_table(struct sched_domain *sd)
-{
- struct ctl_table *table = sd_alloc_ctl_entry(14);
-
- if (table == NULL)
- return NULL;
-
- set_table_entry(&table[0], "min_interval", &sd->min_interval,
- sizeof(long), 0644, proc_doulongvec_minmax);
- set_table_entry(&table[1], "max_interval", &sd->max_interval,
- sizeof(long), 0644, proc_doulongvec_minmax);
- set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[9], "cache_nice_tries",
- &sd->cache_nice_tries,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[10], "flags", &sd->flags,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[11], "max_newidle_lb_cost",
- &sd->max_newidle_lb_cost,
- sizeof(long), 0644, proc_doulongvec_minmax);
- set_table_entry(&table[12], "name", sd->name,
- CORENAME_MAX_SIZE, 0444, proc_dostring);
- /* &table[13] is terminator */
-
- return table;
-}
-
-static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
-{
- struct ctl_table *entry, *table;
- struct sched_domain *sd;
- int domain_num = 0, i;
- char buf[32];
-
- for_each_domain(cpu, sd)
- domain_num++;
- entry = table = sd_alloc_ctl_entry(domain_num + 1);
- if (table == NULL)
- return NULL;
-
- i = 0;
- for_each_domain(cpu, sd) {
- snprintf(buf, 32, "domain%d", i);
- entry->procname = kstrdup(buf, GFP_KERNEL);
- entry->mode = 0555;
- entry->child = sd_alloc_ctl_domain_table(sd);
- entry++;
- i++;
- }
- return table;
-}
-
-static struct ctl_table_header *sd_sysctl_header;
-static void register_sched_domain_sysctl(void)
-{
- int i, cpu_num = num_possible_cpus();
- struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
- char buf[32];
-
- WARN_ON(sd_ctl_dir[0].child);
- sd_ctl_dir[0].child = entry;
-
- if (entry == NULL)
- return;
-
- for_each_possible_cpu(i) {
- snprintf(buf, 32, "cpu%d", i);
- entry->procname = kstrdup(buf, GFP_KERNEL);
- entry->mode = 0555;
- entry->child = sd_alloc_ctl_cpu_table(i);
- entry++;
- }
-
- WARN_ON(sd_sysctl_header);
- sd_sysctl_header = register_sysctl_table(sd_ctl_root);
-}
-
-/* may be called multiple times per register */
-static void unregister_sched_domain_sysctl(void)
-{
- unregister_sysctl_table(sd_sysctl_header);
- sd_sysctl_header = NULL;
- if (sd_ctl_dir[0].child)
- sd_free_ctl_entry(&sd_ctl_dir[0].child);
-}
-#else /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
-static void register_sched_domain_sysctl(void)
-{
-}
-static void unregister_sched_domain_sysctl(void)
-{
-}
-#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
-
-static void set_rq_online(struct rq *rq)
-{
- if (!rq->online) {
- cpumask_set_cpu(cpu_of(rq), rq->rd->online);
- rq->online = true;
- }
-}
-
-static void set_rq_offline(struct rq *rq)
-{
- if (rq->online) {
- cpumask_clear_cpu(cpu_of(rq), rq->rd->online);
- rq->online = false;
- }
-}
-
-/*
- * migration_call - callback that gets triggered when a CPU is added.
- */
-static int
-migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
-{
- int cpu = (long)hcpu;
- unsigned long flags;
- struct rq *rq = cpu_rq(cpu);
-#ifdef CONFIG_HOTPLUG_CPU
- struct task_struct *idle = rq->idle;
-#endif
-
- switch (action & ~CPU_TASKS_FROZEN) {
- case CPU_STARTING:
- return NOTIFY_OK;
- case CPU_UP_PREPARE:
- break;
-
- case CPU_ONLINE:
- /* Update our root-domain */
- grq_lock_irqsave(&flags);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-
- set_rq_online(rq);
- }
- unbind_zero(cpu);
- grq.noc = num_online_cpus();
- grq_unlock_irqrestore(&flags);
- break;
-
-#ifdef CONFIG_HOTPLUG_CPU
- case CPU_DEAD:
- grq_lock_irq();
- set_rq_task(rq, idle);
- update_clocks(rq);
- grq_unlock_irq();
- break;
-
- case CPU_DYING:
- /* Update our root-domain */
- grq_lock_irqsave(&flags);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
- set_rq_offline(rq);
- }
- bind_zero(cpu);
- grq.noc = num_online_cpus();
- grq_unlock_irqrestore(&flags);
- break;
-#endif
- }
- return NOTIFY_OK;
-}
-
-/*
- * Register at high priority so that task migration (migrate_all_tasks)
- * happens before everything else. This has to be lower priority than
- * the notifier in the perf_counter subsystem, though.
- */
-static struct notifier_block migration_notifier = {
- .notifier_call = migration_call,
- .priority = CPU_PRI_MIGRATION,
-};
-
-static int sched_cpu_active(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
-{
- switch (action & ~CPU_TASKS_FROZEN) {
- case CPU_STARTING:
- return NOTIFY_OK;
- case CPU_ONLINE:
- /*
- * At this point a starting CPU has marked itself as online via
- * set_cpu_online(). But it might not yet have marked itself
- * as active, which is essential from here on.
- *
- * Thus, fall-through and help the starting CPU along.
- */
- case CPU_DOWN_FAILED:
- set_cpu_active((long)hcpu, true);
- return NOTIFY_OK;
- default:
- return NOTIFY_DONE;
- }
-}
-
-static int sched_cpu_inactive(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
-{
- switch (action & ~CPU_TASKS_FROZEN) {
- case CPU_DOWN_PREPARE:
- set_cpu_active((long)hcpu, false);
- return NOTIFY_OK;
- default:
- return NOTIFY_DONE;
- }
-}
-
-int __init migration_init(void)
-{
- void *cpu = (void *)(long)smp_processor_id();
- int err;
-
- /* Initialise migration for the boot CPU */
- err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
- BUG_ON(err == NOTIFY_BAD);
- migration_call(&migration_notifier, CPU_ONLINE, cpu);
- register_cpu_notifier(&migration_notifier);
-
- /* Register cpu active notifiers */
- cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
- cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
-
- return 0;
-}
-early_initcall(migration_init);
-
-static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
-
-#ifdef CONFIG_SCHED_DEBUG
-
-static __read_mostly int sched_debug_enabled;
-
-static int __init sched_debug_setup(char *str)
-{
- sched_debug_enabled = 1;
-
- return 0;
-}
-early_param("sched_debug", sched_debug_setup);
-
-static inline bool sched_debug(void)
-{
- return sched_debug_enabled;
-}
-
-static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
- struct cpumask *groupmask)
-{
- cpumask_clear(groupmask);
-
- printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-
- if (!(sd->flags & SD_LOAD_BALANCE)) {
- printk("does not load-balance\n");
- if (sd->parent)
- printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
- " has parent");
- return -1;
- }
-
- printk(KERN_CONT "span %*pbl level %s\n",
- cpumask_pr_args(sched_domain_span(sd)), sd->name);
-
- if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
- printk(KERN_ERR "ERROR: domain->span does not contain "
- "CPU%d\n", cpu);
- }
-
- printk(KERN_CONT "\n");
-
- if (!cpumask_equal(sched_domain_span(sd), groupmask))
- printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-
- if (sd->parent &&
- !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
- printk(KERN_ERR "ERROR: parent span is not a superset "
- "of domain->span\n");
- return 0;
-}
-
-static void sched_domain_debug(struct sched_domain *sd, int cpu)
-{
- int level = 0;
-
- if (!sched_debug_enabled)
- return;
-
- if (!sd) {
- printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
- return;
- }
-
- printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-
- for (;;) {
- if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
- break;
- level++;
- sd = sd->parent;
- if (!sd)
- break;
- }
-}
-#else /* !CONFIG_SCHED_DEBUG */
-# define sched_domain_debug(sd, cpu) do { } while (0)
-static inline bool sched_debug(void)
-{
- return false;
-}
-#endif /* CONFIG_SCHED_DEBUG */
-
-static int sd_degenerate(struct sched_domain *sd)
-{
- if (cpumask_weight(sched_domain_span(sd)) == 1)
- return 1;
-
- /* Following flags don't use groups */
- if (sd->flags & (SD_WAKE_AFFINE))
- return 0;
-
- return 1;
-}
-
-static int
-sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-{
- unsigned long cflags = sd->flags, pflags = parent->flags;
-
- if (sd_degenerate(parent))
- return 1;
-
- if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
- return 0;
-
- if (~cflags & pflags)
- return 0;
-
- return 1;
-}
-
-static void free_rootdomain(struct rcu_head *rcu)
-{
- struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
-
- cpupri_cleanup(&rd->cpupri);
- free_cpumask_var(rd->rto_mask);
- free_cpumask_var(rd->online);
- free_cpumask_var(rd->span);
- kfree(rd);
-}
-
-static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-{
- struct root_domain *old_rd = NULL;
- unsigned long flags;
-
- grq_lock_irqsave(&flags);
-
- if (rq->rd) {
- old_rd = rq->rd;
-
- if (cpumask_test_cpu(rq->cpu, old_rd->online))
- set_rq_offline(rq);
-
- cpumask_clear_cpu(rq->cpu, old_rd->span);
-
- /*
- * If we dont want to free the old_rd yet then
- * set old_rd to NULL to skip the freeing later
- * in this function:
- */
- if (!atomic_dec_and_test(&old_rd->refcount))
- old_rd = NULL;
- }
-
- atomic_inc(&rd->refcount);
- rq->rd = rd;
-
- cpumask_set_cpu(rq->cpu, rd->span);
- if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
- set_rq_online(rq);
-
- grq_unlock_irqrestore(&flags);
-
- if (old_rd)
- call_rcu_sched(&old_rd->rcu, free_rootdomain);
-}
-
-static int init_rootdomain(struct root_domain *rd)
-{
- memset(rd, 0, sizeof(*rd));
-
- if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
- goto out;
- if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
- goto free_span;
- if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
- goto free_online;
-
- if (cpupri_init(&rd->cpupri) != 0)
- goto free_rto_mask;
- return 0;
-
-free_rto_mask:
- free_cpumask_var(rd->rto_mask);
-free_online:
- free_cpumask_var(rd->online);
-free_span:
- free_cpumask_var(rd->span);
-out:
- return -ENOMEM;
-}
-
-static void init_defrootdomain(void)
-{
- init_rootdomain(&def_root_domain);
-
- atomic_set(&def_root_domain.refcount, 1);
-}
-
-static struct root_domain *alloc_rootdomain(void)
-{
- struct root_domain *rd;
-
- rd = kmalloc(sizeof(*rd), GFP_KERNEL);
- if (!rd)
- return NULL;
-
- if (init_rootdomain(rd) != 0) {
- kfree(rd);
- return NULL;
- }
-
- return rd;
-}
-
-static void free_sched_domain(struct rcu_head *rcu)
-{
- struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
-
- kfree(sd);
-}
-
-static void destroy_sched_domain(struct sched_domain *sd, int cpu)
-{
- call_rcu(&sd->rcu, free_sched_domain);
-}
-
-static void destroy_sched_domains(struct sched_domain *sd, int cpu)
-{
- for (; sd; sd = sd->parent)
- destroy_sched_domain(sd, cpu);
-}
-
-/*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
-static void
-cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
- struct sched_domain *tmp;
-
- /* Remove the sched domains which do not contribute to scheduling. */
- for (tmp = sd; tmp; ) {
- struct sched_domain *parent = tmp->parent;
- if (!parent)
- break;
-
- if (sd_parent_degenerate(tmp, parent)) {
- tmp->parent = parent->parent;
- if (parent->parent)
- parent->parent->child = tmp;
- /*
- * Transfer SD_PREFER_SIBLING down in case of a
- * degenerate parent; the spans match for this
- * so the property transfers.
- */
- if (parent->flags & SD_PREFER_SIBLING)
- tmp->flags |= SD_PREFER_SIBLING;
- destroy_sched_domain(parent, cpu);
- } else
- tmp = tmp->parent;
- }
-
- if (sd && sd_degenerate(sd)) {
- tmp = sd;
- sd = sd->parent;
- destroy_sched_domain(tmp, cpu);
- if (sd)
- sd->child = NULL;
- }
-
- sched_domain_debug(sd, cpu);
-
- rq_attach_root(rq, rd);
- tmp = rq->sd;
- rcu_assign_pointer(rq->sd, sd);
- destroy_sched_domains(tmp, cpu);
-}
-
-/* Setup the mask of cpus configured for isolated domains */
-static int __init isolated_cpu_setup(char *str)
-{
- alloc_bootmem_cpumask_var(&cpu_isolated_map);
- cpulist_parse(str, cpu_isolated_map);
- return 1;
-}
-
-__setup("isolcpus=", isolated_cpu_setup);
-
-struct s_data {
- struct sched_domain ** __percpu sd;
- struct root_domain *rd;
-};
-
-enum s_alloc {
- sa_rootdomain,
- sa_sd,
- sa_sd_storage,
- sa_none,
-};
-
-/*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
-
-static int default_relax_domain_level = -1;
-int sched_domain_level_max;
-
-static int __init setup_relax_domain_level(char *str)
-{
- if (kstrtoint(str, 0, &default_relax_domain_level))
- pr_warn("Unable to set relax_domain_level\n");
-
- return 1;
-}
-__setup("relax_domain_level=", setup_relax_domain_level);
-
-static void set_domain_attribute(struct sched_domain *sd,
- struct sched_domain_attr *attr)
-{
- int request;
-
- if (!attr || attr->relax_domain_level < 0) {
- if (default_relax_domain_level < 0)
- return;
- else
- request = default_relax_domain_level;
- } else
- request = attr->relax_domain_level;
- if (request < sd->level) {
- /* turn off idle balance on this domain */
- sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- } else {
- /* turn on idle balance on this domain */
- sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- }
-}
-
-static void __sdt_free(const struct cpumask *cpu_map);
-static int __sdt_alloc(const struct cpumask *cpu_map);
-
-static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
- const struct cpumask *cpu_map)
-{
- switch (what) {
- case sa_rootdomain:
- if (!atomic_read(&d->rd->refcount))
- free_rootdomain(&d->rd->rcu); /* fall through */
- case sa_sd:
- free_percpu(d->sd); /* fall through */
- case sa_sd_storage:
- __sdt_free(cpu_map); /* fall through */
- case sa_none:
- break;
- }
-}
-
-static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
- const struct cpumask *cpu_map)
-{
- memset(d, 0, sizeof(*d));
-
- if (__sdt_alloc(cpu_map))
- return sa_sd_storage;
- d->sd = alloc_percpu(struct sched_domain *);
- if (!d->sd)
- return sa_sd_storage;
- d->rd = alloc_rootdomain();
- if (!d->rd)
- return sa_sd;
- return sa_rootdomain;
-}
-
-/*
- * NULL the sd_data elements we've used to build the sched_domain
- * structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
-static void claim_allocations(int cpu, struct sched_domain *sd)
-{
- struct sd_data *sdd = sd->private;
-
- WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
- *per_cpu_ptr(sdd->sd, cpu) = NULL;
-}
-
-#ifdef CONFIG_NUMA
-static int sched_domains_numa_levels;
-static int *sched_domains_numa_distance;
-static struct cpumask ***sched_domains_numa_masks;
-static int sched_domains_curr_level;
-#endif
-
-/*
- * SD_flags allowed in topology descriptions.
- *
- * SD_SHARE_CPUCAPACITY - describes SMT topologies
- * SD_SHARE_PKG_RESOURCES - describes shared caches
- * SD_NUMA - describes NUMA topologies
- * SD_SHARE_POWERDOMAIN - describes shared power domain
- *
- * Odd one out:
- * SD_ASYM_PACKING - describes SMT quirks
- */
-#define TOPOLOGY_SD_FLAGS \
- (SD_SHARE_CPUCAPACITY | \
- SD_SHARE_PKG_RESOURCES | \
- SD_NUMA | \
- SD_ASYM_PACKING | \
- SD_SHARE_POWERDOMAIN)
-
-static struct sched_domain *
-sd_init(struct sched_domain_topology_level *tl, int cpu)
-{
- struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
- int sd_weight, sd_flags = 0;
-
-#ifdef CONFIG_NUMA
- /*
- * Ugly hack to pass state to sd_numa_mask()...
- */
- sched_domains_curr_level = tl->numa_level;
-#endif
-
- sd_weight = cpumask_weight(tl->mask(cpu));
-
- if (tl->sd_flags)
- sd_flags = (*tl->sd_flags)();
- if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
- "wrong sd_flags in topology description\n"))
- sd_flags &= ~TOPOLOGY_SD_FLAGS;
-
- *sd = (struct sched_domain){
- .min_interval = sd_weight,
- .max_interval = 2*sd_weight,
- .busy_factor = 32,
- .imbalance_pct = 125,
-
- .cache_nice_tries = 0,
- .busy_idx = 0,
- .idle_idx = 0,
- .newidle_idx = 0,
- .wake_idx = 0,
- .forkexec_idx = 0,
-
- .flags = 1*SD_LOAD_BALANCE
- | 1*SD_BALANCE_NEWIDLE
- | 1*SD_BALANCE_EXEC
- | 1*SD_BALANCE_FORK
- | 0*SD_BALANCE_WAKE
- | 1*SD_WAKE_AFFINE
- | 0*SD_SHARE_CPUCAPACITY
- | 0*SD_SHARE_PKG_RESOURCES
- | 0*SD_SERIALIZE
- | 0*SD_PREFER_SIBLING
- | 0*SD_NUMA
- | sd_flags
- ,
-
- .last_balance = jiffies,
- .balance_interval = sd_weight,
- .smt_gain = 0,
- .max_newidle_lb_cost = 0,
- .next_decay_max_lb_cost = jiffies,
-#ifdef CONFIG_SCHED_DEBUG
- .name = tl->name,
-#endif
- };
-
- /*
- * Convert topological properties into behaviour.
- */
-
- if (sd->flags & SD_SHARE_CPUCAPACITY) {
- sd->flags |= SD_PREFER_SIBLING;
- sd->imbalance_pct = 110;
- sd->smt_gain = 1178; /* ~15% */
-
- } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->imbalance_pct = 117;
- sd->cache_nice_tries = 1;
- sd->busy_idx = 2;
-
-#ifdef CONFIG_NUMA
- } else if (sd->flags & SD_NUMA) {
- sd->cache_nice_tries = 2;
- sd->busy_idx = 3;
- sd->idle_idx = 2;
-
- sd->flags |= SD_SERIALIZE;
- if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
- sd->flags &= ~(SD_BALANCE_EXEC |
- SD_BALANCE_FORK |
- SD_WAKE_AFFINE);
- }
-
-#endif
- } else {
- sd->flags |= SD_PREFER_SIBLING;
- sd->cache_nice_tries = 1;
- sd->busy_idx = 2;
- sd->idle_idx = 1;
- }
-
- sd->private = &tl->data;
-
- return sd;
-}
-
-/*
- * Topology list, bottom-up.
- */
-static struct sched_domain_topology_level default_topology[] = {
-#ifdef CONFIG_SCHED_SMT
- { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
-#endif
-#ifdef CONFIG_SCHED_MC
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
-#endif
- { cpu_cpu_mask, SD_INIT_NAME(DIE) },
- { NULL, },
-};
-
-struct sched_domain_topology_level *sched_domain_topology = default_topology;
-
-#define for_each_sd_topology(tl) \
- for (tl = sched_domain_topology; tl->mask; tl++)
-
-void set_sched_topology(struct sched_domain_topology_level *tl)
-{
- sched_domain_topology = tl;
-}
-
-#ifdef CONFIG_NUMA
-
-static const struct cpumask *sd_numa_mask(int cpu)
-{
- return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
-}
-
-static void sched_numa_warn(const char *str)
-{
- static int done = false;
- int i,j;
-
- if (done)
- return;
-
- done = true;
-
- printk(KERN_WARNING "ERROR: %s\n\n", str);
-
- for (i = 0; i < nr_node_ids; i++) {
- printk(KERN_WARNING " ");
- for (j = 0; j < nr_node_ids; j++)
- printk(KERN_CONT "%02d ", node_distance(i,j));
- printk(KERN_CONT "\n");
- }
- printk(KERN_WARNING "\n");
-}
-
-static bool find_numa_distance(int distance)
-{
- int i;
-
- if (distance == node_distance(0, 0))
- return true;
-
- for (i = 0; i < sched_domains_numa_levels; i++) {
- if (sched_domains_numa_distance[i] == distance)
- return true;
- }
-
- return false;
-}
-
-static void sched_init_numa(void)
-{
- int next_distance, curr_distance = node_distance(0, 0);
- struct sched_domain_topology_level *tl;
- int level = 0;
- int i, j, k;
-
- sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
- if (!sched_domains_numa_distance)
- return;
-
- /*
- * O(nr_nodes^2) deduplicating selection sort -- in order to find the
- * unique distances in the node_distance() table.
- *
- * Assumes node_distance(0,j) includes all distances in
- * node_distance(i,j) in order to avoid cubic time.
- */
- next_distance = curr_distance;
- for (i = 0; i < nr_node_ids; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- for (k = 0; k < nr_node_ids; k++) {
- int distance = node_distance(i, k);
-
- if (distance > curr_distance &&
- (distance < next_distance ||
- next_distance == curr_distance))
- next_distance = distance;
-
- /*
- * While not a strong assumption it would be nice to know
- * about cases where if node A is connected to B, B is not
- * equally connected to A.
- */
- if (sched_debug() && node_distance(k, i) != distance)
- sched_numa_warn("Node-distance not symmetric");
-
- if (sched_debug() && i && !find_numa_distance(distance))
- sched_numa_warn("Node-0 not representative");
- }
- if (next_distance != curr_distance) {
- sched_domains_numa_distance[level++] = next_distance;
- sched_domains_numa_levels = level;
- curr_distance = next_distance;
- } else break;
- }
-
- /*
- * In case of sched_debug() we verify the above assumption.
- */
- if (!sched_debug())
- break;
- }
- /*
- * 'level' contains the number of unique distances, excluding the
- * identity distance node_distance(i,i).
- *
- * The sched_domains_numa_distance[] array includes the actual distance
- * numbers.
- */
-
- /*
- * Here, we should temporarily reset sched_domains_numa_levels to 0.
- * If it fails to allocate memory for array sched_domains_numa_masks[][],
- * the array will contain less then 'level' members. This could be
- * dangerous when we use it to iterate array sched_domains_numa_masks[][]
- * in other functions.
- *
- * We reset it to 'level' at the end of this function.
- */
- sched_domains_numa_levels = 0;
-
- sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
- if (!sched_domains_numa_masks)
- return;
-
- /*
- * Now for each level, construct a mask per node which contains all
- * cpus of nodes that are that many hops away from us.
- */
- for (i = 0; i < level; i++) {
- sched_domains_numa_masks[i] =
- kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
- if (!sched_domains_numa_masks[i])
- return;
-
- for (j = 0; j < nr_node_ids; j++) {
- struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
- if (!mask)
- return;
-
- sched_domains_numa_masks[i][j] = mask;
-
- for (k = 0; k < nr_node_ids; k++) {
- if (node_distance(j, k) > sched_domains_numa_distance[i])
- continue;
-
- cpumask_or(mask, mask, cpumask_of_node(k));
- }
- }
- }
-
- /* Compute default topology size */
- for (i = 0; sched_domain_topology[i].mask; i++);
-
- tl = kzalloc((i + level + 1) *
- sizeof(struct sched_domain_topology_level), GFP_KERNEL);
- if (!tl)
- return;
-
- /*
- * Copy the default topology bits..
- */
- for (i = 0; sched_domain_topology[i].mask; i++)
- tl[i] = sched_domain_topology[i];
-
- /*
- * .. and append 'j' levels of NUMA goodness.
- */
- for (j = 0; j < level; i++, j++) {
- tl[i] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .sd_flags = cpu_numa_flags,
- .flags = SDTL_OVERLAP,
- .numa_level = j,
- SD_INIT_NAME(NUMA)
- };
- }
-
- sched_domain_topology = tl;
-
- sched_domains_numa_levels = level;
-}
-
-static void sched_domains_numa_masks_set(int cpu)
-{
- int i, j;
- int node = cpu_to_node(cpu);
-
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- if (node_distance(j, node) <= sched_domains_numa_distance[i])
- cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
- }
-}
-
-static void sched_domains_numa_masks_clear(int cpu)
-{
- int i, j;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++)
- cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
-}
-
-/*
- * Update sched_domains_numa_masks[level][node] array when new cpus
- * are onlined.
- */
-static int sched_domains_numa_masks_update(struct notifier_block *nfb,
- unsigned long action,
- void *hcpu)
-{
- int cpu = (long)hcpu;
-
- switch (action & ~CPU_TASKS_FROZEN) {
- case CPU_ONLINE:
- sched_domains_numa_masks_set(cpu);
- break;
-
- case CPU_DEAD:
- sched_domains_numa_masks_clear(cpu);
- break;
-
- default:
- return NOTIFY_DONE;
- }
-
- return NOTIFY_OK;
-}
-#else
-static inline void sched_init_numa(void)
-{
-}
-
-static int sched_domains_numa_masks_update(struct notifier_block *nfb,
- unsigned long action,
- void *hcpu)
-{
- return 0;
-}
-#endif /* CONFIG_NUMA */
-
-static int __sdt_alloc(const struct cpumask *cpu_map)
-{
- struct sched_domain_topology_level *tl;
- int j;
-
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
-
- sdd->sd = alloc_percpu(struct sched_domain *);
- if (!sdd->sd)
- return -ENOMEM;
-
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
-
- sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sd)
- return -ENOMEM;
-
- *per_cpu_ptr(sdd->sd, j) = sd;
- }
- }
-
- return 0;
-}
-
-static void __sdt_free(const struct cpumask *cpu_map)
-{
- struct sched_domain_topology_level *tl;
- int j;
-
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
-
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
-
- if (sdd->sd) {
- sd = *per_cpu_ptr(sdd->sd, j);
- kfree(*per_cpu_ptr(sdd->sd, j));
- }
- }
- free_percpu(sdd->sd);
- sdd->sd = NULL;
- }
-}
-
-struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map, struct sched_domain_attr *attr,
- struct sched_domain *child, int cpu)
-{
- struct sched_domain *sd = sd_init(tl, cpu);
- if (!sd)
- return child;
-
- cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
- if (child) {
- sd->level = child->level + 1;
- sched_domain_level_max = max(sched_domain_level_max, sd->level);
- child->parent = sd;
- sd->child = child;
-
- if (!cpumask_subset(sched_domain_span(child),
- sched_domain_span(sd))) {
- pr_err("BUG: arch topology borken\n");
-#ifdef CONFIG_SCHED_DEBUG
- pr_err(" the %s domain not a subset of the %s domain\n",
- child->name, sd->name);
-#endif
- /* Fixup, ensure @sd has at least @child cpus. */
- cpumask_or(sched_domain_span(sd),
- sched_domain_span(sd),
- sched_domain_span(child));
- }
-
- }
- set_domain_attribute(sd, attr);
-
- return sd;
-}
-
-/*
- * Build sched domains for a given set of cpus and attach the sched domains
- * to the individual cpus
- */
-static int build_sched_domains(const struct cpumask *cpu_map,
- struct sched_domain_attr *attr)
-{
- enum s_alloc alloc_state;
- struct sched_domain *sd;
- struct s_data d;
- int i, ret = -ENOMEM;
-
- alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
- if (alloc_state != sa_rootdomain)
- goto error;
-
- /* Set up domains for cpus specified by the cpu_map. */
- for_each_cpu(i, cpu_map) {
- struct sched_domain_topology_level *tl;
-
- sd = NULL;
- for_each_sd_topology(tl) {
- sd = build_sched_domain(tl, cpu_map, attr, sd, i);
- if (tl == sched_domain_topology)
- *per_cpu_ptr(d.sd, i) = sd;
- if (tl->flags & SDTL_OVERLAP)
- sd->flags |= SD_OVERLAP;
- if (cpumask_equal(cpu_map, sched_domain_span(sd)))
- break;
- }
- }
-
- /* Calculate CPU capacity for physical packages and nodes */
- for (i = nr_cpumask_bits-1; i >= 0; i--) {
- if (!cpumask_test_cpu(i, cpu_map))
- continue;
-
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- claim_allocations(i, sd);
- }
- }
-
- /* Attach the domains */
- rcu_read_lock();
- for_each_cpu(i, cpu_map) {
- sd = *per_cpu_ptr(d.sd, i);
- cpu_attach_domain(sd, d.rd, i);
- }
- rcu_read_unlock();
-
- ret = 0;
-error:
- __free_domain_allocs(&d, alloc_state, cpu_map);
- return ret;
-}
-
-static cpumask_var_t *doms_cur; /* current sched domains */
-static int ndoms_cur; /* number of sched domains in 'doms_cur' */
-static struct sched_domain_attr *dattr_cur;
- /* attribues of custom domains in 'doms_cur' */
-
-/*
- * Special case: If a kmalloc of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
-static cpumask_var_t fallback_doms;
-
-/*
- * arch_update_cpu_topology lets virtualized architectures update the
- * cpu core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
-int __weak arch_update_cpu_topology(void)
-{
- return 0;
-}
-
-cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
-{
- int i;
- cpumask_var_t *doms;
-
- doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
- if (!doms)
- return NULL;
- for (i = 0; i < ndoms; i++) {
- if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
- free_sched_domains(doms, i);
- return NULL;
- }
- }
- return doms;
-}
-
-void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
-{
- unsigned int i;
- for (i = 0; i < ndoms; i++)
- free_cpumask_var(doms[i]);
- kfree(doms);
-}
-
-/*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated cpus, but could be used to
- * exclude other special cases in the future.
- */
-static int init_sched_domains(const struct cpumask *cpu_map)
-{
- int err;
-
- arch_update_cpu_topology();
- ndoms_cur = 1;
- doms_cur = alloc_sched_domains(ndoms_cur);
- if (!doms_cur)
- doms_cur = &fallback_doms;
- cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
- err = build_sched_domains(doms_cur[0], NULL);
- register_sched_domain_sysctl();
-
- return err;
-}
-
-/*
- * Detach sched domains from a group of cpus specified in cpu_map
- * These cpus will now be attached to the NULL domain
- */
-static void detach_destroy_domains(const struct cpumask *cpu_map)
-{
- int i;
-
- rcu_read_lock();
- for_each_cpu(i, cpu_map)
- cpu_attach_domain(NULL, &def_root_domain, i);
- rcu_read_unlock();
-}
-
-/* handle null as "default" */
-static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
- struct sched_domain_attr *new, int idx_new)
-{
- struct sched_domain_attr tmp;
-
- /* fast path */
- if (!new && !cur)
- return 1;
-
- tmp = SD_ATTR_INIT;
- return !memcmp(cur ? (cur + idx_cur) : &tmp,
- new ? (new + idx_new) : &tmp,
- sizeof(struct sched_domain_attr));
-}
-
-/*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains. This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock held
- */
-void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
- struct sched_domain_attr *dattr_new)
-{
- int i, j, n;
- int new_topology;
-
- mutex_lock(&sched_domains_mutex);
-
- /* always unregister in case we don't destroy any domains */
- unregister_sched_domain_sysctl();
-
- /* Let architecture update cpu core mappings. */
- new_topology = arch_update_cpu_topology();
-
- n = doms_new ? ndoms_new : 0;
-
- /* Destroy deleted domains */
- for (i = 0; i < ndoms_cur; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_cur[i], doms_new[j])
- && dattrs_equal(dattr_cur, i, dattr_new, j))
- goto match1;
- }
- /* no match - a current sched domain not in new doms_new[] */
- detach_destroy_domains(doms_cur[i]);
-match1:
- ;
- }
-
- n = ndoms_cur;
- if (doms_new == NULL) {
- n = 0;
- doms_new = &fallback_doms;
- cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
- WARN_ON_ONCE(dattr_new);
- }
-
- /* Build new domains */
- for (i = 0; i < ndoms_new; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_new[i], doms_cur[j])
- && dattrs_equal(dattr_new, i, dattr_cur, j))
- goto match2;
- }
- /* no match - add a new doms_new */
- build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
-match2:
- ;
- }
-
- /* Remember the new sched domains */
- if (doms_cur != &fallback_doms)
- free_sched_domains(doms_cur, ndoms_cur);
- kfree(dattr_cur); /* kfree(NULL) is safe */
- doms_cur = doms_new;
- dattr_cur = dattr_new;
- ndoms_cur = ndoms_new;
-
- register_sched_domain_sysctl();
-
- mutex_unlock(&sched_domains_mutex);
-}
-
-static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
-
-/*
- * Update cpusets according to cpu_active mask. If cpusets are
- * disabled, cpuset_update_active_cpus() becomes a simple wrapper
- * around partition_sched_domains().
- *
- * If we come here as part of a suspend/resume, don't touch cpusets because we
- * want to restore it back to its original state upon resume anyway.
- */
-static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
- void *hcpu)
-{
- switch (action) {
- case CPU_ONLINE_FROZEN:
- case CPU_DOWN_FAILED_FROZEN:
-
- /*
- * num_cpus_frozen tracks how many CPUs are involved in suspend
- * resume sequence. As long as this is not the last online
- * operation in the resume sequence, just build a single sched
- * domain, ignoring cpusets.
- */
- num_cpus_frozen--;
- if (likely(num_cpus_frozen)) {
- partition_sched_domains(1, NULL, NULL);
- break;
- }
-
- /*
- * This is the last CPU online operation. So fall through and
- * restore the original sched domains by considering the
- * cpuset configurations.
- */
-
- case CPU_ONLINE:
- cpuset_update_active_cpus(true);
- break;
- default:
- return NOTIFY_DONE;
- }
- return NOTIFY_OK;
-}
-
-static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
- void *hcpu)
-{
- switch (action) {
- case CPU_DOWN_PREPARE:
- cpuset_update_active_cpus(false);
- break;
- case CPU_DOWN_PREPARE_FROZEN:
- num_cpus_frozen++;
- partition_sched_domains(1, NULL, NULL);
- break;
- default:
- return NOTIFY_DONE;
- }
- return NOTIFY_OK;
-}
-
-#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
-/*
- * Cheaper version of the below functions in case support for SMT and MC is
- * compiled in but CPUs have no siblings.
- */
-static bool sole_cpu_idle(int cpu)
-{
- return rq_idle(cpu_rq(cpu));
-}
-#endif
-#ifdef CONFIG_SCHED_SMT
-static const cpumask_t *thread_cpumask(int cpu)
-{
- return topology_sibling_cpumask(cpu);
-}
-/* All this CPU's SMT siblings are idle */
-static bool siblings_cpu_idle(int cpu)
-{
- return cpumask_subset(thread_cpumask(cpu), &grq.cpu_idle_map);
-}
-#endif
-#ifdef CONFIG_SCHED_MC
-static const cpumask_t *core_cpumask(int cpu)
-{
- return topology_core_cpumask(cpu);
-}
-/* All this CPU's shared cache siblings are idle */
-static bool cache_cpu_idle(int cpu)
-{
- return cpumask_subset(core_cpumask(cpu), &grq.cpu_idle_map);
-}
-#endif
-
-enum sched_domain_level {
- SD_LV_NONE = 0,
- SD_LV_SIBLING,
- SD_LV_MC,
- SD_LV_BOOK,
- SD_LV_CPU,
- SD_LV_NODE,
- SD_LV_ALLNODES,
- SD_LV_MAX
-};
-
-void __init sched_init_smp(void)
-{
- struct sched_domain *sd;
- int cpu, other_cpu;
-
- cpumask_var_t non_isolated_cpus;
-
- alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
- alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
-
- sched_init_numa();
-
- /*
- * There's no userspace yet to cause hotplug operations; hence all the
- * cpu masks are stable and all blatant races in the below code cannot
- * happen.
- */
- mutex_lock(&sched_domains_mutex);
- init_sched_domains(cpu_active_mask);
- cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
- if (cpumask_empty(non_isolated_cpus))
- cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
- mutex_unlock(&sched_domains_mutex);
-
- hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
- hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
- hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
-
- /* Move init over to a non-isolated CPU */
- if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
- BUG();
- free_cpumask_var(non_isolated_cpus);
-
- mutex_lock(&sched_domains_mutex);
- grq_lock_irq();
- /*
- * Set up the relative cache distance of each online cpu from each
- * other in a simple array for quick lookup. Locality is determined
- * by the closest sched_domain that CPUs are separated by. CPUs with
- * shared cache in SMT and MC are treated as local. Separate CPUs
- * (within the same package or physically) within the same node are
- * treated as not local. CPUs not even in the same domain (different
- * nodes) are treated as very distant.
- */
- for_each_online_cpu(cpu) {
- struct rq *rq = cpu_rq(cpu);
-
- /* First check if this cpu is in the same node */
- for_each_domain(cpu, sd) {
- if (sd->level > SD_LV_NODE)
- continue;
- /* Set locality to local node if not already found lower */
- for_each_cpu(other_cpu, sched_domain_span(sd)) {
- if (rq->cpu_locality[other_cpu] > 3)
- rq->cpu_locality[other_cpu] = 3;
- }
- }
-
- /*
- * Each runqueue has its own function in case it doesn't have
- * siblings of its own allowing mixed topologies.
- */
-#ifdef CONFIG_SCHED_MC
- for_each_cpu(other_cpu, core_cpumask(cpu)) {
- if (rq->cpu_locality[other_cpu] > 2)
- rq->cpu_locality[other_cpu] = 2;
- }
- if (cpumask_weight(core_cpumask(cpu)) > 1)
- rq->cache_idle = cache_cpu_idle;
-#endif
-#ifdef CONFIG_SCHED_SMT
- for_each_cpu(other_cpu, thread_cpumask(cpu))
- rq->cpu_locality[other_cpu] = 1;
- if (cpumask_weight(thread_cpumask(cpu)) > 1)
- rq->siblings_idle = siblings_cpu_idle;
-#endif
- }
- grq_unlock_irq();
- mutex_unlock(&sched_domains_mutex);
-
- for_each_online_cpu(cpu) {
- struct rq *rq = cpu_rq(cpu);
- for_each_online_cpu(other_cpu) {
- if (other_cpu <= cpu)
- continue;
- printk(KERN_DEBUG "BFS LOCALITY CPU %d to %d: %d\n", cpu, other_cpu, rq->cpu_locality[other_cpu]);
- }
- }
-}
-#else
-void __init sched_init_smp(void)
-{
-}
-#endif /* CONFIG_SMP */
-
-int in_sched_functions(unsigned long addr)
-{
- return in_lock_functions(addr) ||
- (addr >= (unsigned long)__sched_text_start
- && addr < (unsigned long)__sched_text_end);
-}
-
-void __init sched_init(void)
-{
-#ifdef CONFIG_SMP
- int cpu_ids;
-#endif
- int i;
- struct rq *rq;
-
- prio_ratios[0] = 128;
- for (i = 1 ; i < NICE_WIDTH ; i++)
- prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
-
- raw_spin_lock_init(&grq.lock);
- grq.nr_running = grq.nr_uninterruptible = grq.nr_switches = 0;
- grq.niffies = 0;
- grq.last_jiffy = jiffies;
- raw_spin_lock_init(&grq.iso_lock);
- grq.iso_ticks = 0;
- grq.iso_refractory = false;
- grq.noc = 1;
-#ifdef CONFIG_SMP
- init_defrootdomain();
- grq.qnr = grq.idle_cpus = 0;
- cpumask_clear(&grq.cpu_idle_map);
-#else
- uprq = &per_cpu(runqueues, 0);
-#endif
- for_each_possible_cpu(i) {
- rq = cpu_rq(i);
- rq->grq_lock = &grq.lock;
- rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc =
- rq->iowait_pc = rq->idle_pc = 0;
- rq->dither = false;
-#ifdef CONFIG_SMP
- rq->sticky_task = NULL;
- rq->last_niffy = 0;
- rq->sd = NULL;
- rq->rd = NULL;
- rq->online = false;
- rq->cpu = i;
- rq_attach_root(rq, &def_root_domain);
-#endif
- atomic_set(&rq->nr_iowait, 0);
- }
-
-#ifdef CONFIG_SMP
- cpu_ids = i;
- /*
- * Set the base locality for cpu cache distance calculation to
- * "distant" (3). Make sure the distance from a CPU to itself is 0.
- */
- for_each_possible_cpu(i) {
- int j;
-
- rq = cpu_rq(i);
-#ifdef CONFIG_SCHED_SMT
- rq->siblings_idle = sole_cpu_idle;
-#endif
-#ifdef CONFIG_SCHED_MC
- rq->cache_idle = sole_cpu_idle;
-#endif
- rq->cpu_locality = kmalloc(cpu_ids * sizeof(int *), GFP_ATOMIC);
- for_each_possible_cpu(j) {
- if (i == j)
- rq->cpu_locality[j] = 0;
- else
- rq->cpu_locality[j] = 4;
- }
- }
-#endif
-
- for (i = 0; i < PRIO_LIMIT; i++)
- INIT_LIST_HEAD(grq.queue + i);
- /* delimiter for bitsearch */
- __set_bit(PRIO_LIMIT, grq.prio_bitmap);
-
-#ifdef CONFIG_PREEMPT_NOTIFIERS
- INIT_HLIST_HEAD(&init_task.preempt_notifiers);
-#endif
-
- /*
- * The boot idle thread does lazy MMU switching as well:
- */
- atomic_inc(&init_mm.mm_count);
- enter_lazy_tlb(&init_mm, current);
-
- /*
- * Make us the idle thread. Technically, schedule() should not be
- * called from this thread, however somewhere below it might be,
- * but because we are the idle thread, we just pick up running again
- * when this runqueue becomes "idle".
- */
- init_idle(current, smp_processor_id());
-
-#ifdef CONFIG_SMP
- zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
- /* May be allocated at isolcpus cmdline parse time */
- if (cpu_isolated_map == NULL)
- zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
- idle_thread_set_boot_cpu();
-#endif /* SMP */
-}
-
-#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
-static inline int preempt_count_equals(int preempt_offset)
-{
- int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
-
- return (nested == preempt_offset);
-}
-
-void __might_sleep(const char *file, int line, int preempt_offset)
-{
- /*
- * Blocking primitives will set (and therefore destroy) current->state,
- * since we will exit with TASK_RUNNING make sure we enter with it,
- * otherwise we will destroy state.
- */
- WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
- "do not call blocking ops when !TASK_RUNNING; "
- "state=%lx set at [<%p>] %pS\n",
- current->state,
- (void *)current->task_state_change,
- (void *)current->task_state_change);
-
- ___might_sleep(file, line, preempt_offset);
-}
-EXPORT_SYMBOL(__might_sleep);
-
-void ___might_sleep(const char *file, int line, int preempt_offset)
-{
- static unsigned long prev_jiffy; /* ratelimiting */
-
- rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
- if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
- !is_idle_task(current)) ||
- system_state != SYSTEM_RUNNING || oops_in_progress)
- return;
- if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
- return;
- prev_jiffy = jiffies;
-
- printk(KERN_ERR
- "BUG: sleeping function called from invalid context at %s:%d\n",
- file, line);
- printk(KERN_ERR
- "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
- in_atomic(), irqs_disabled(),
- current->pid, current->comm);
-
- if (task_stack_end_corrupted(current))
- printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
-
- debug_show_held_locks(current);
- if (irqs_disabled())
- print_irqtrace_events(current);
-#ifdef CONFIG_DEBUG_PREEMPT
- if (!preempt_count_equals(preempt_offset)) {
- pr_err("Preemption disabled at:");
- print_ip_sym(current->preempt_disable_ip);
- pr_cont("\n");
- }
-#endif
- dump_stack();
-}
-EXPORT_SYMBOL(___might_sleep);
-#endif
-
-#ifdef CONFIG_MAGIC_SYSRQ
-static inline void normalise_rt_tasks(void)
-{
- struct task_struct *g, *p;
- unsigned long flags;
- struct rq *rq;
- int queued;
-
- read_lock(&tasklist_lock);
- for_each_process_thread(g, p) {
- /*
- * Only normalize user tasks:
- */
- if (p->flags & PF_KTHREAD)
- continue;
-
- if (!rt_task(p) && !iso_task(p))
- continue;
-
- rq = task_grq_lock(p, &flags);
- queued = task_queued(p);
- if (queued)
- dequeue_task(p);
- __setscheduler(p, rq, SCHED_NORMAL, 0, false);
- if (queued) {
- enqueue_task(p, rq);
- try_preempt(p, rq);
- }
-
- task_grq_unlock(&flags);
- }
- read_unlock(&tasklist_lock);
-}
-
-void normalize_rt_tasks(void)
-{
- normalise_rt_tasks();
-}
-#endif /* CONFIG_MAGIC_SYSRQ */
-
-#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
-/*
- * These functions are only useful for the IA64 MCA handling, or kdb.
- *
- * They can only be called when the whole system has been
- * stopped - every CPU needs to be quiescent, and no scheduling
- * activity can take place. Using them for anything else would
- * be a serious bug, and as a result, they aren't even visible
- * under any other configuration.
- */
-
-/**
- * curr_task - return the current task for a given cpu.
- * @cpu: the processor in question.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- *
- * Return: The current task for @cpu.
- */
-struct task_struct *curr_task(int cpu)
-{
- return cpu_curr(cpu);
-}
-
-#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
-
-#ifdef CONFIG_IA64
-/**
- * set_curr_task - set the current task for a given cpu.
- * @cpu: the processor in question.
- * @p: the task pointer to set.
- *
- * Description: This function must only be used when non-maskable interrupts
- * are serviced on a separate stack. It allows the architecture to switch the
- * notion of the current task on a cpu in a non-blocking manner. This function
- * must be called with all CPU's synchronised, and interrupts disabled, the
- * and caller must save the original value of the current task (see
- * curr_task() above) and restore that value before reenabling interrupts and
- * re-starting the system.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
-void set_curr_task(int cpu, struct task_struct *p)
-{
- cpu_curr(cpu) = p;
-}
-
-#endif
-
-/*
- * Use precise platform statistics if available:
- */
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
- *ut = p->utime;
- *st = p->stime;
-}
-
-void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
- struct task_cputime cputime;
-
- thread_group_cputime(p, &cputime);
-
- *ut = cputime.utime;
- *st = cputime.stime;
-}
-
-void vtime_account_system_irqsafe(struct task_struct *tsk)
-{
- unsigned long flags;
-
- local_irq_save(flags);
- vtime_account_system(tsk);
- local_irq_restore(flags);
-}
-EXPORT_SYMBOL_GPL(vtime_account_system_irqsafe);
-
-#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
-void vtime_task_switch(struct task_struct *prev)
-{
- if (is_idle_task(prev))
- vtime_account_idle(prev);
- else
- vtime_account_system(prev);
-
- vtime_account_user(prev);
- arch_vtime_task_switch(prev);
-}
-#endif
-
-#else
-/*
- * Perform (stime * rtime) / total, but avoid multiplication overflow by
- * losing precision when the numbers are big.
- */
-static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
-{
- u64 scaled;
-
- for (;;) {
- /* Make sure "rtime" is the bigger of stime/rtime */
- if (stime > rtime) {
- u64 tmp = rtime; rtime = stime; stime = tmp;
- }
-
- /* Make sure 'total' fits in 32 bits */
- if (total >> 32)
- goto drop_precision;
-
- /* Does rtime (and thus stime) fit in 32 bits? */
- if (!(rtime >> 32))
- break;
-
- /* Can we just balance rtime/stime rather than dropping bits? */
- if (stime >> 31)
- goto drop_precision;
-
- /* We can grow stime and shrink rtime and try to make them both fit */
- stime <<= 1;
- rtime >>= 1;
- continue;
-
-drop_precision:
- /* We drop from rtime, it has more bits than stime */
- rtime >>= 1;
- total >>= 1;
- }
-
- /*
- * Make sure gcc understands that this is a 32x32->64 multiply,
- * followed by a 64/32->64 divide.
- */
- scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
- return (__force cputime_t) scaled;
-}
-
-/*
- * Adjust tick based cputime random precision against scheduler
- * runtime accounting.
- */
-static void cputime_adjust(struct task_cputime *curr,
- struct prev_cputime *prev,
- cputime_t *ut, cputime_t *st)
-{
- cputime_t rtime, stime, utime, total;
-
- stime = curr->stime;
- total = stime + curr->utime;
-
- /*
- * Tick based cputime accounting depend on random scheduling
- * timeslices of a task to be interrupted or not by the timer.
- * Depending on these circumstances, the number of these interrupts
- * may be over or under-optimistic, matching the real user and system
- * cputime with a variable precision.
- *
- * Fix this by scaling these tick based values against the total
- * runtime accounted by the CFS scheduler.
- */
- rtime = nsecs_to_cputime(curr->sum_exec_runtime);
-
- /*
- * Update userspace visible utime/stime values only if actual execution
- * time is bigger than already exported. Note that can happen, that we
- * provided bigger values due to scaling inaccuracy on big numbers.
- */
- if (prev->stime + prev->utime >= rtime)
- goto out;
-
- if (total) {
- stime = scale_stime((__force u64)stime,
- (__force u64)rtime, (__force u64)total);
- utime = rtime - stime;
- } else {
- stime = rtime;
- utime = 0;
- }
-
- /*
- * If the tick based count grows faster than the scheduler one,
- * the result of the scaling may go backward.
- * Let's enforce monotonicity.
- */
- prev->stime = max(prev->stime, stime);
- prev->utime = max(prev->utime, utime);
-
-out:
- *ut = prev->utime;
- *st = prev->stime;
-}
-
-void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
- struct task_cputime cputime = {
- .sum_exec_runtime = tsk_seruntime(p),
- };
-
- task_cputime(p, &cputime.utime, &cputime.stime);
- cputime_adjust(&cputime, &p->prev_cputime, ut, st);
-}
-
-/*
- * Must be called with siglock held.
- */
-void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
- struct task_cputime cputime;
-
- thread_group_cputime(p, &cputime);
- cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
-}
-#endif
-
-void init_idle_bootup_task(struct task_struct *idle)
-{}
-
-#ifdef CONFIG_SCHED_DEBUG
-void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
-{}
-
-void proc_sched_set_task(struct task_struct *p)
-{}
-#endif
-
-#ifdef CONFIG_SMP
-#define SCHED_LOAD_SHIFT (10)
-#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
-
-unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
-{
- return SCHED_LOAD_SCALE;
-}
-
-unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
-{
- unsigned long weight = cpumask_weight(sched_domain_span(sd));
- unsigned long smt_gain = sd->smt_gain;
-
- smt_gain /= weight;
-
- return smt_gain;
-}
-#endif