summaryrefslogtreecommitdiff
path: root/kernel/sched/fair.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r--kernel/sched/fair.c934
1 files changed, 372 insertions, 562 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 134314406..acba2736f 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -308,9 +308,6 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
return grp->my_q;
}
-static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
- int force_update);
-
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (!cfs_rq->on_list) {
@@ -330,8 +327,6 @@ static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
}
cfs_rq->on_list = 1;
- /* We should have no load, but we need to update last_decay. */
- update_cfs_rq_blocked_load(cfs_rq, 0);
}
}
@@ -641,15 +636,10 @@ static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
*/
static u64 __sched_period(unsigned long nr_running)
{
- u64 period = sysctl_sched_latency;
- unsigned long nr_latency = sched_nr_latency;
-
- if (unlikely(nr_running > nr_latency)) {
- period = sysctl_sched_min_granularity;
- period *= nr_running;
- }
-
- return period;
+ if (unlikely(nr_running > sched_nr_latency))
+ return nr_running * sysctl_sched_min_granularity;
+ else
+ return sysctl_sched_latency;
}
/*
@@ -694,22 +684,37 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
static int select_idle_sibling(struct task_struct *p, int cpu);
static unsigned long task_h_load(struct task_struct *p);
-static inline void __update_task_entity_contrib(struct sched_entity *se);
-static inline void __update_task_entity_utilization(struct sched_entity *se);
+/*
+ * We choose a half-life close to 1 scheduling period.
+ * Note: The tables below are dependent on this value.
+ */
+#define LOAD_AVG_PERIOD 32
+#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
+#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
-/* Give new task start runnable values to heavy its load in infant time */
-void init_task_runnable_average(struct task_struct *p)
+/* Give new sched_entity start runnable values to heavy its load in infant time */
+void init_entity_runnable_average(struct sched_entity *se)
{
- u32 slice;
+ struct sched_avg *sa = &se->avg;
- slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
- p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
- p->se.avg.avg_period = slice;
- __update_task_entity_contrib(&p->se);
- __update_task_entity_utilization(&p->se);
+ sa->last_update_time = 0;
+ /*
+ * sched_avg's period_contrib should be strictly less then 1024, so
+ * we give it 1023 to make sure it is almost a period (1024us), and
+ * will definitely be update (after enqueue).
+ */
+ sa->period_contrib = 1023;
+ sa->load_avg = scale_load_down(se->load.weight);
+ sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
+ sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
+ sa->util_sum = LOAD_AVG_MAX;
+ /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
}
+
+static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
+static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
#else
-void init_task_runnable_average(struct task_struct *p)
+void init_entity_runnable_average(struct sched_entity *se)
{
}
#endif
@@ -1440,8 +1445,9 @@ static bool numa_has_capacity(struct task_numa_env *env)
* --------------------- vs ---------------------
* src->compute_capacity dst->compute_capacity
*/
- if (src->load * dst->compute_capacity >
- dst->load * src->compute_capacity)
+ if (src->load * dst->compute_capacity * env->imbalance_pct >
+
+ dst->load * src->compute_capacity * 100)
return true;
return false;
@@ -1727,8 +1733,8 @@ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
delta = runtime - p->last_sum_exec_runtime;
*period = now - p->last_task_numa_placement;
} else {
- delta = p->se.avg.runnable_avg_sum;
- *period = p->se.avg.avg_period;
+ delta = p->se.avg.load_sum / p->se.load.weight;
+ *period = LOAD_AVG_MAX;
}
p->last_sum_exec_runtime = runtime;
@@ -2376,12 +2382,12 @@ static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
long tg_weight;
/*
- * Use this CPU's actual weight instead of the last load_contribution
- * to gain a more accurate current total weight. See
- * update_cfs_rq_load_contribution().
+ * Use this CPU's real-time load instead of the last load contribution
+ * as the updating of the contribution is delayed, and we will use the
+ * the real-time load to calc the share. See update_tg_load_avg().
*/
tg_weight = atomic_long_read(&tg->load_avg);
- tg_weight -= cfs_rq->tg_load_contrib;
+ tg_weight -= cfs_rq->tg_load_avg_contrib;
tg_weight += cfs_rq->load.weight;
return tg_weight;
@@ -2454,14 +2460,6 @@ static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_SMP
-/*
- * We choose a half-life close to 1 scheduling period.
- * Note: The tables below are dependent on this value.
- */
-#define LOAD_AVG_PERIOD 32
-#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
-#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
-
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
@@ -2510,9 +2508,8 @@ static __always_inline u64 decay_load(u64 val, u64 n)
local_n %= LOAD_AVG_PERIOD;
}
- val *= runnable_avg_yN_inv[local_n];
- /* We don't use SRR here since we always want to round down. */
- return val >> 32;
+ val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
+ return val;
}
/*
@@ -2571,23 +2568,22 @@ static u32 __compute_runnable_contrib(u64 n)
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
*/
-static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
- struct sched_avg *sa,
- int runnable,
- int running)
+static __always_inline int
+__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
+ unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
u64 delta, periods;
- u32 runnable_contrib;
+ u32 contrib;
int delta_w, decayed = 0;
unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
- delta = now - sa->last_runnable_update;
+ delta = now - sa->last_update_time;
/*
* This should only happen when time goes backwards, which it
* unfortunately does during sched clock init when we swap over to TSC.
*/
if ((s64)delta < 0) {
- sa->last_runnable_update = now;
+ sa->last_update_time = now;
return 0;
}
@@ -2598,26 +2594,29 @@ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
delta >>= 10;
if (!delta)
return 0;
- sa->last_runnable_update = now;
+ sa->last_update_time = now;
/* delta_w is the amount already accumulated against our next period */
- delta_w = sa->avg_period % 1024;
+ delta_w = sa->period_contrib;
if (delta + delta_w >= 1024) {
- /* period roll-over */
decayed = 1;
+ /* how much left for next period will start over, we don't know yet */
+ sa->period_contrib = 0;
+
/*
* Now that we know we're crossing a period boundary, figure
* out how much from delta we need to complete the current
* period and accrue it.
*/
delta_w = 1024 - delta_w;
- if (runnable)
- sa->runnable_avg_sum += delta_w;
+ if (weight) {
+ sa->load_sum += weight * delta_w;
+ if (cfs_rq)
+ cfs_rq->runnable_load_sum += weight * delta_w;
+ }
if (running)
- sa->running_avg_sum += delta_w * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += delta_w;
+ sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
delta -= delta_w;
@@ -2625,341 +2624,187 @@ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
periods = delta / 1024;
delta %= 1024;
- sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
- periods + 1);
- sa->running_avg_sum = decay_load(sa->running_avg_sum,
- periods + 1);
- sa->avg_period = decay_load(sa->avg_period,
- periods + 1);
+ sa->load_sum = decay_load(sa->load_sum, periods + 1);
+ if (cfs_rq) {
+ cfs_rq->runnable_load_sum =
+ decay_load(cfs_rq->runnable_load_sum, periods + 1);
+ }
+ sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
/* Efficiently calculate \sum (1..n_period) 1024*y^i */
- runnable_contrib = __compute_runnable_contrib(periods);
- if (runnable)
- sa->runnable_avg_sum += runnable_contrib;
+ contrib = __compute_runnable_contrib(periods);
+ if (weight) {
+ sa->load_sum += weight * contrib;
+ if (cfs_rq)
+ cfs_rq->runnable_load_sum += weight * contrib;
+ }
if (running)
- sa->running_avg_sum += runnable_contrib * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += runnable_contrib;
+ sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
}
/* Remainder of delta accrued against u_0` */
- if (runnable)
- sa->runnable_avg_sum += delta;
+ if (weight) {
+ sa->load_sum += weight * delta;
+ if (cfs_rq)
+ cfs_rq->runnable_load_sum += weight * delta;
+ }
if (running)
- sa->running_avg_sum += delta * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += delta;
-
- return decayed;
-}
+ sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
-/* Synchronize an entity's decay with its parenting cfs_rq.*/
-static inline u64 __synchronize_entity_decay(struct sched_entity *se)
-{
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 decays = atomic64_read(&cfs_rq->decay_counter);
-
- decays -= se->avg.decay_count;
- se->avg.decay_count = 0;
- if (!decays)
- return 0;
+ sa->period_contrib += delta;
- se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
- se->avg.utilization_avg_contrib =
- decay_load(se->avg.utilization_avg_contrib, decays);
+ if (decayed) {
+ sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
+ if (cfs_rq) {
+ cfs_rq->runnable_load_avg =
+ div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
+ }
+ sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
+ }
- return decays;
+ return decayed;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
-static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
- int force_update)
-{
- struct task_group *tg = cfs_rq->tg;
- long tg_contrib;
-
- tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
- tg_contrib -= cfs_rq->tg_load_contrib;
-
- if (!tg_contrib)
- return;
-
- if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
- atomic_long_add(tg_contrib, &tg->load_avg);
- cfs_rq->tg_load_contrib += tg_contrib;
- }
-}
-
/*
- * Aggregate cfs_rq runnable averages into an equivalent task_group
- * representation for computing load contributions.
+ * Updating tg's load_avg is necessary before update_cfs_share (which is done)
+ * and effective_load (which is not done because it is too costly).
*/
-static inline void __update_tg_runnable_avg(struct sched_avg *sa,
- struct cfs_rq *cfs_rq)
+static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
- struct task_group *tg = cfs_rq->tg;
- long contrib;
+ long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
- /* The fraction of a cpu used by this cfs_rq */
- contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
- sa->avg_period + 1);
- contrib -= cfs_rq->tg_runnable_contrib;
-
- if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
- atomic_add(contrib, &tg->runnable_avg);
- cfs_rq->tg_runnable_contrib += contrib;
+ if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
+ atomic_long_add(delta, &cfs_rq->tg->load_avg);
+ cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
}
}
-static inline void __update_group_entity_contrib(struct sched_entity *se)
-{
- struct cfs_rq *cfs_rq = group_cfs_rq(se);
- struct task_group *tg = cfs_rq->tg;
- int runnable_avg;
-
- u64 contrib;
-
- contrib = cfs_rq->tg_load_contrib * tg->shares;
- se->avg.load_avg_contrib = div_u64(contrib,
- atomic_long_read(&tg->load_avg) + 1);
-
- /*
- * For group entities we need to compute a correction term in the case
- * that they are consuming <1 cpu so that we would contribute the same
- * load as a task of equal weight.
- *
- * Explicitly co-ordinating this measurement would be expensive, but
- * fortunately the sum of each cpus contribution forms a usable
- * lower-bound on the true value.
- *
- * Consider the aggregate of 2 contributions. Either they are disjoint
- * (and the sum represents true value) or they are disjoint and we are
- * understating by the aggregate of their overlap.
- *
- * Extending this to N cpus, for a given overlap, the maximum amount we
- * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
- * cpus that overlap for this interval and w_i is the interval width.
- *
- * On a small machine; the first term is well-bounded which bounds the
- * total error since w_i is a subset of the period. Whereas on a
- * larger machine, while this first term can be larger, if w_i is the
- * of consequential size guaranteed to see n_i*w_i quickly converge to
- * our upper bound of 1-cpu.
- */
- runnable_avg = atomic_read(&tg->runnable_avg);
- if (runnable_avg < NICE_0_LOAD) {
- se->avg.load_avg_contrib *= runnable_avg;
- se->avg.load_avg_contrib >>= NICE_0_SHIFT;
- }
-}
-
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
-{
- __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
- runnable, runnable);
- __update_tg_runnable_avg(&rq->avg, &rq->cfs);
-}
#else /* CONFIG_FAIR_GROUP_SCHED */
-static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
- int force_update) {}
-static inline void __update_tg_runnable_avg(struct sched_avg *sa,
- struct cfs_rq *cfs_rq) {}
-static inline void __update_group_entity_contrib(struct sched_entity *se) {}
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
+static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
#endif /* CONFIG_FAIR_GROUP_SCHED */
-static inline void __update_task_entity_contrib(struct sched_entity *se)
-{
- u32 contrib;
-
- /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
- contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
- contrib /= (se->avg.avg_period + 1);
- se->avg.load_avg_contrib = scale_load(contrib);
-}
+static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
-/* Compute the current contribution to load_avg by se, return any delta */
-static long __update_entity_load_avg_contrib(struct sched_entity *se)
+/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
+static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
{
- long old_contrib = se->avg.load_avg_contrib;
+ struct sched_avg *sa = &cfs_rq->avg;
+ int decayed, removed = 0;
- if (entity_is_task(se)) {
- __update_task_entity_contrib(se);
- } else {
- __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
- __update_group_entity_contrib(se);
+ if (atomic_long_read(&cfs_rq->removed_load_avg)) {
+ long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
+ sa->load_avg = max_t(long, sa->load_avg - r, 0);
+ sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
+ removed = 1;
}
- return se->avg.load_avg_contrib - old_contrib;
-}
-
-
-static inline void __update_task_entity_utilization(struct sched_entity *se)
-{
- u32 contrib;
+ if (atomic_long_read(&cfs_rq->removed_util_avg)) {
+ long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
+ sa->util_avg = max_t(long, sa->util_avg - r, 0);
+ sa->util_sum = max_t(s32, sa->util_sum -
+ ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
+ }
- /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
- contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
- contrib /= (se->avg.avg_period + 1);
- se->avg.utilization_avg_contrib = scale_load(contrib);
-}
+ decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
+ scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
-static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
-{
- long old_contrib = se->avg.utilization_avg_contrib;
-
- if (entity_is_task(se))
- __update_task_entity_utilization(se);
- else
- se->avg.utilization_avg_contrib =
- group_cfs_rq(se)->utilization_load_avg;
+#ifndef CONFIG_64BIT
+ smp_wmb();
+ cfs_rq->load_last_update_time_copy = sa->last_update_time;
+#endif
- return se->avg.utilization_avg_contrib - old_contrib;
+ return decayed || removed;
}
-static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
- long load_contrib)
-{
- if (likely(load_contrib < cfs_rq->blocked_load_avg))
- cfs_rq->blocked_load_avg -= load_contrib;
- else
- cfs_rq->blocked_load_avg = 0;
-}
-
-static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
-
-/* Update a sched_entity's runnable average */
-static inline void update_entity_load_avg(struct sched_entity *se,
- int update_cfs_rq)
+/* Update task and its cfs_rq load average */
+static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- long contrib_delta, utilization_delta;
int cpu = cpu_of(rq_of(cfs_rq));
- u64 now;
+ u64 now = cfs_rq_clock_task(cfs_rq);
/*
- * For a group entity we need to use their owned cfs_rq_clock_task() in
- * case they are the parent of a throttled hierarchy.
+ * Track task load average for carrying it to new CPU after migrated, and
+ * track group sched_entity load average for task_h_load calc in migration
*/
- if (entity_is_task(se))
- now = cfs_rq_clock_task(cfs_rq);
- else
- now = cfs_rq_clock_task(group_cfs_rq(se));
-
- if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
- cfs_rq->curr == se))
- return;
-
- contrib_delta = __update_entity_load_avg_contrib(se);
- utilization_delta = __update_entity_utilization_avg_contrib(se);
-
- if (!update_cfs_rq)
- return;
+ __update_load_avg(now, cpu, &se->avg,
+ se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
- if (se->on_rq) {
- cfs_rq->runnable_load_avg += contrib_delta;
- cfs_rq->utilization_load_avg += utilization_delta;
- } else {
- subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
- }
+ if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
+ update_tg_load_avg(cfs_rq, 0);
}
-/*
- * Decay the load contributed by all blocked children and account this so that
- * their contribution may appropriately discounted when they wake up.
- */
-static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
+/* Add the load generated by se into cfs_rq's load average */
+static inline void
+enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
- u64 decays;
-
- decays = now - cfs_rq->last_decay;
- if (!decays && !force_update)
- return;
+ struct sched_avg *sa = &se->avg;
+ u64 now = cfs_rq_clock_task(cfs_rq);
+ int migrated = 0, decayed;
- if (atomic_long_read(&cfs_rq->removed_load)) {
- unsigned long removed_load;
- removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
- subtract_blocked_load_contrib(cfs_rq, removed_load);
+ if (sa->last_update_time == 0) {
+ sa->last_update_time = now;
+ migrated = 1;
}
+ else {
+ __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
+ se->on_rq * scale_load_down(se->load.weight),
+ cfs_rq->curr == se, NULL);
+ }
+
+ decayed = update_cfs_rq_load_avg(now, cfs_rq);
+
+ cfs_rq->runnable_load_avg += sa->load_avg;
+ cfs_rq->runnable_load_sum += sa->load_sum;
- if (decays) {
- cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
- decays);
- atomic64_add(decays, &cfs_rq->decay_counter);
- cfs_rq->last_decay = now;
+ if (migrated) {
+ cfs_rq->avg.load_avg += sa->load_avg;
+ cfs_rq->avg.load_sum += sa->load_sum;
+ cfs_rq->avg.util_avg += sa->util_avg;
+ cfs_rq->avg.util_sum += sa->util_sum;
}
- __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
+ if (decayed || migrated)
+ update_tg_load_avg(cfs_rq, 0);
}
-/* Add the load generated by se into cfs_rq's child load-average */
-static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int wakeup)
+/* Remove the runnable load generated by se from cfs_rq's runnable load average */
+static inline void
+dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- /*
- * We track migrations using entity decay_count <= 0, on a wake-up
- * migration we use a negative decay count to track the remote decays
- * accumulated while sleeping.
- *
- * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
- * are seen by enqueue_entity_load_avg() as a migration with an already
- * constructed load_avg_contrib.
- */
- if (unlikely(se->avg.decay_count <= 0)) {
- se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
- if (se->avg.decay_count) {
- /*
- * In a wake-up migration we have to approximate the
- * time sleeping. This is because we can't synchronize
- * clock_task between the two cpus, and it is not
- * guaranteed to be read-safe. Instead, we can
- * approximate this using our carried decays, which are
- * explicitly atomically readable.
- */
- se->avg.last_runnable_update -= (-se->avg.decay_count)
- << 20;
- update_entity_load_avg(se, 0);
- /* Indicate that we're now synchronized and on-rq */
- se->avg.decay_count = 0;
- }
- wakeup = 0;
- } else {
- __synchronize_entity_decay(se);
- }
-
- /* migrated tasks did not contribute to our blocked load */
- if (wakeup) {
- subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
- update_entity_load_avg(se, 0);
- }
+ update_load_avg(se, 1);
- cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
- cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
- /* we force update consideration on load-balancer moves */
- update_cfs_rq_blocked_load(cfs_rq, !wakeup);
+ cfs_rq->runnable_load_avg =
+ max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
+ cfs_rq->runnable_load_sum =
+ max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
}
/*
- * Remove se's load from this cfs_rq child load-average, if the entity is
- * transitioning to a blocked state we track its projected decay using
- * blocked_load_avg.
+ * Task first catches up with cfs_rq, and then subtract
+ * itself from the cfs_rq (task must be off the queue now).
*/
-static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int sleep)
+void remove_entity_load_avg(struct sched_entity *se)
{
- update_entity_load_avg(se, 1);
- /* we force update consideration on load-balancer moves */
- update_cfs_rq_blocked_load(cfs_rq, !sleep);
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ u64 last_update_time;
+
+#ifndef CONFIG_64BIT
+ u64 last_update_time_copy;
+
+ do {
+ last_update_time_copy = cfs_rq->load_last_update_time_copy;
+ smp_rmb();
+ last_update_time = cfs_rq->avg.last_update_time;
+ } while (last_update_time != last_update_time_copy);
+#else
+ last_update_time = cfs_rq->avg.last_update_time;
+#endif
- cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
- cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
- if (sleep) {
- cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
- se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
- } /* migrations, e.g. sleep=0 leave decay_count == 0 */
+ __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
+ atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
+ atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
}
/*
@@ -2969,7 +2814,6 @@ static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
*/
void idle_enter_fair(struct rq *this_rq)
{
- update_rq_runnable_avg(this_rq, 1);
}
/*
@@ -2979,24 +2823,28 @@ void idle_enter_fair(struct rq *this_rq)
*/
void idle_exit_fair(struct rq *this_rq)
{
- update_rq_runnable_avg(this_rq, 0);
+}
+
+static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->runnable_load_avg;
+}
+
+static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->avg.load_avg;
}
static int idle_balance(struct rq *this_rq);
#else /* CONFIG_SMP */
-static inline void update_entity_load_avg(struct sched_entity *se,
- int update_cfs_rq) {}
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
-static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int wakeup) {}
-static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int sleep) {}
-static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
- int force_update) {}
+static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
+static inline void
+enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+static inline void
+dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+static inline void remove_entity_load_avg(struct sched_entity *se) {}
static inline int idle_balance(struct rq *rq)
{
@@ -3128,7 +2976,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
- enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
+ enqueue_entity_load_avg(cfs_rq, se);
account_entity_enqueue(cfs_rq, se);
update_cfs_shares(cfs_rq);
@@ -3203,7 +3051,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
- dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
+ dequeue_entity_load_avg(cfs_rq, se);
update_stats_dequeue(cfs_rq, se);
if (flags & DEQUEUE_SLEEP) {
@@ -3293,7 +3141,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
- update_entity_load_avg(se, 1);
+ update_load_avg(se, 1);
}
update_stats_curr_start(cfs_rq, se);
@@ -3393,7 +3241,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
/* in !on_rq case, update occurred at dequeue */
- update_entity_load_avg(prev, 1);
+ update_load_avg(prev, 0);
}
cfs_rq->curr = NULL;
}
@@ -3409,8 +3257,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
/*
* Ensure that runnable average is periodically updated.
*/
- update_entity_load_avg(curr, 1);
- update_cfs_rq_blocked_load(cfs_rq, 1);
+ update_load_avg(curr, 1);
update_cfs_shares(cfs_rq);
#ifdef CONFIG_SCHED_HRTICK
@@ -4283,14 +4130,13 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
+ update_load_avg(se, 1);
update_cfs_shares(cfs_rq);
- update_entity_load_avg(se, 1);
}
- if (!se) {
- update_rq_runnable_avg(rq, rq->nr_running);
+ if (!se)
add_nr_running(rq, 1);
- }
+
hrtick_update(rq);
}
@@ -4344,14 +4190,13 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
+ update_load_avg(se, 1);
update_cfs_shares(cfs_rq);
- update_entity_load_avg(se, 1);
}
- if (!se) {
+ if (!se)
sub_nr_running(rq, 1);
- update_rq_runnable_avg(rq, 1);
- }
+
hrtick_update(rq);
}
@@ -4464,6 +4309,12 @@ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
sched_avg_update(this_rq);
}
+/* Used instead of source_load when we know the type == 0 */
+static unsigned long weighted_cpuload(const int cpu)
+{
+ return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
+}
+
#ifdef CONFIG_NO_HZ_COMMON
/*
* There is no sane way to deal with nohz on smp when using jiffies because the
@@ -4485,7 +4336,7 @@ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
static void update_idle_cpu_load(struct rq *this_rq)
{
unsigned long curr_jiffies = READ_ONCE(jiffies);
- unsigned long load = this_rq->cfs.runnable_load_avg;
+ unsigned long load = weighted_cpuload(cpu_of(this_rq));
unsigned long pending_updates;
/*
@@ -4531,7 +4382,7 @@ void update_cpu_load_nohz(void)
*/
void update_cpu_load_active(struct rq *this_rq)
{
- unsigned long load = this_rq->cfs.runnable_load_avg;
+ unsigned long load = weighted_cpuload(cpu_of(this_rq));
/*
* See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
*/
@@ -4539,12 +4390,6 @@ void update_cpu_load_active(struct rq *this_rq)
__update_cpu_load(this_rq, load, 1);
}
-/* Used instead of source_load when we know the type == 0 */
-static unsigned long weighted_cpuload(const int cpu)
-{
- return cpu_rq(cpu)->cfs.runnable_load_avg;
-}
-
/*
* Return a low guess at the load of a migration-source cpu weighted
* according to the scheduling class and "nice" value.
@@ -4592,7 +4437,7 @@ static unsigned long cpu_avg_load_per_task(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
- unsigned long load_avg = rq->cfs.runnable_load_avg;
+ unsigned long load_avg = weighted_cpuload(cpu);
if (nr_running)
return load_avg / nr_running;
@@ -4711,7 +4556,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
/*
* w = rw_i + @wl
*/
- w = se->my_q->load.weight + wl;
+ w = cfs_rq_load_avg(se->my_q) + wl;
/*
* wl = S * s'_i; see (2)
@@ -4732,7 +4577,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
/*
* wl = dw_i = S * (s'_i - s_i); see (3)
*/
- wl -= se->load.weight;
+ wl -= se->avg.load_avg;
/*
* Recursively apply this logic to all parent groups to compute
@@ -4755,26 +4600,29 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
#endif
+/*
+ * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
+ * A waker of many should wake a different task than the one last awakened
+ * at a frequency roughly N times higher than one of its wakees. In order
+ * to determine whether we should let the load spread vs consolodating to
+ * shared cache, we look for a minimum 'flip' frequency of llc_size in one
+ * partner, and a factor of lls_size higher frequency in the other. With
+ * both conditions met, we can be relatively sure that the relationship is
+ * non-monogamous, with partner count exceeding socket size. Waker/wakee
+ * being client/server, worker/dispatcher, interrupt source or whatever is
+ * irrelevant, spread criteria is apparent partner count exceeds socket size.
+ */
static int wake_wide(struct task_struct *p)
{
+ unsigned int master = current->wakee_flips;
+ unsigned int slave = p->wakee_flips;
int factor = this_cpu_read(sd_llc_size);
- /*
- * Yeah, it's the switching-frequency, could means many wakee or
- * rapidly switch, use factor here will just help to automatically
- * adjust the loose-degree, so bigger node will lead to more pull.
- */
- if (p->wakee_flips > factor) {
- /*
- * wakee is somewhat hot, it needs certain amount of cpu
- * resource, so if waker is far more hot, prefer to leave
- * it alone.
- */
- if (current->wakee_flips > (factor * p->wakee_flips))
- return 1;
- }
-
- return 0;
+ if (master < slave)
+ swap(master, slave);
+ if (slave < factor || master < slave * factor)
+ return 0;
+ return 1;
}
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
@@ -4786,13 +4634,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
unsigned long weight;
int balanced;
- /*
- * If we wake multiple tasks be careful to not bounce
- * ourselves around too much.
- */
- if (wake_wide(p))
- return 0;
-
idx = sd->wake_idx;
this_cpu = smp_processor_id();
prev_cpu = task_cpu(p);
@@ -4806,14 +4647,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
*/
if (sync) {
tg = task_group(current);
- weight = current->se.load.weight;
+ weight = current->se.avg.load_avg;
this_load += effective_load(tg, this_cpu, -weight, -weight);
load += effective_load(tg, prev_cpu, 0, -weight);
}
tg = task_group(p);
- weight = p->se.load.weight;
+ weight = p->se.avg.load_avg;
/*
* In low-load situations, where prev_cpu is idle and this_cpu is idle
@@ -5006,12 +4847,12 @@ done:
* tasks. The unit of the return value must be the one of capacity so we can
* compare the usage with the capacity of the CPU that is available for CFS
* task (ie cpu_capacity).
- * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
+ * cfs.avg.util_avg is the sum of running time of runnable tasks on a
* CPU. It represents the amount of utilization of a CPU in the range
* [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
* capacity of the CPU because it's about the running time on this CPU.
- * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
- * because of unfortunate rounding in avg_period and running_load_avg or just
+ * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
+ * because of unfortunate rounding in util_avg or just
* after migrating tasks until the average stabilizes with the new running
* time. So we need to check that the usage stays into the range
* [0..cpu_capacity_orig] and cap if necessary.
@@ -5020,7 +4861,7 @@ done:
*/
static int get_cpu_usage(int cpu)
{
- unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
+ unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
unsigned long capacity = capacity_orig_of(cpu);
if (usage >= SCHED_LOAD_SCALE)
@@ -5046,17 +4887,17 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
{
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
int cpu = smp_processor_id();
- int new_cpu = cpu;
+ int new_cpu = prev_cpu;
int want_affine = 0;
int sync = wake_flags & WF_SYNC;
if (sd_flag & SD_BALANCE_WAKE)
- want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
+ want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
rcu_read_lock();
for_each_domain(cpu, tmp) {
if (!(tmp->flags & SD_LOAD_BALANCE))
- continue;
+ break;
/*
* If both cpu and prev_cpu are part of this domain,
@@ -5070,17 +4911,21 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
if (tmp->flags & sd_flag)
sd = tmp;
+ else if (!want_affine)
+ break;
}
- if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
- prev_cpu = cpu;
-
- if (sd_flag & SD_BALANCE_WAKE) {
- new_cpu = select_idle_sibling(p, prev_cpu);
- goto unlock;
+ if (affine_sd) {
+ sd = NULL; /* Prefer wake_affine over balance flags */
+ if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
+ new_cpu = cpu;
}
- while (sd) {
+ if (!sd) {
+ if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
+ new_cpu = select_idle_sibling(p, new_cpu);
+
+ } else while (sd) {
struct sched_group *group;
int weight;
@@ -5114,7 +4959,6 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
}
/* while loop will break here if sd == NULL */
}
-unlock:
rcu_read_unlock();
return new_cpu;
@@ -5126,26 +4970,27 @@ unlock:
* previous cpu. However, the caller only guarantees p->pi_lock is held; no
* other assumptions, including the state of rq->lock, should be made.
*/
-static void
-migrate_task_rq_fair(struct task_struct *p, int next_cpu)
+static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
-
/*
- * Load tracking: accumulate removed load so that it can be processed
- * when we next update owning cfs_rq under rq->lock. Tasks contribute
- * to blocked load iff they have a positive decay-count. It can never
- * be negative here since on-rq tasks have decay-count == 0.
+ * We are supposed to update the task to "current" time, then its up to date
+ * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
+ * what current time is, so simply throw away the out-of-date time. This
+ * will result in the wakee task is less decayed, but giving the wakee more
+ * load sounds not bad.
*/
- if (se->avg.decay_count) {
- se->avg.decay_count = -__synchronize_entity_decay(se);
- atomic_long_add(se->avg.load_avg_contrib,
- &cfs_rq->removed_load);
- }
+ remove_entity_load_avg(&p->se);
+
+ /* Tell new CPU we are migrated */
+ p->se.avg.last_update_time = 0;
/* We have migrated, no longer consider this task hot */
- se->exec_start = 0;
+ p->se.exec_start = 0;
+}
+
+static void task_dead_fair(struct task_struct *p)
+{
+ remove_entity_load_avg(&p->se);
}
#endif /* CONFIG_SMP */
@@ -5695,72 +5540,39 @@ static int task_hot(struct task_struct *p, struct lb_env *env)
#ifdef CONFIG_NUMA_BALANCING
/*
- * Returns true if the destination node is the preferred node.
- * Needs to match fbq_classify_rq(): if there is a runnable task
- * that is not on its preferred node, we should identify it.
+ * Returns 1, if task migration degrades locality
+ * Returns 0, if task migration improves locality i.e migration preferred.
+ * Returns -1, if task migration is not affected by locality.
*/
-static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
-{
- struct numa_group *numa_group = rcu_dereference(p->numa_group);
- unsigned long src_faults, dst_faults;
- int src_nid, dst_nid;
-
- if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
- !(env->sd->flags & SD_NUMA)) {
- return false;
- }
-
- src_nid = cpu_to_node(env->src_cpu);
- dst_nid = cpu_to_node(env->dst_cpu);
-
- if (src_nid == dst_nid)
- return false;
-
- /* Encourage migration to the preferred node. */
- if (dst_nid == p->numa_preferred_nid)
- return true;
-
- /* Migrating away from the preferred node is bad. */
- if (src_nid == p->numa_preferred_nid)
- return false;
-
- if (numa_group) {
- src_faults = group_faults(p, src_nid);
- dst_faults = group_faults(p, dst_nid);
- } else {
- src_faults = task_faults(p, src_nid);
- dst_faults = task_faults(p, dst_nid);
- }
-
- return dst_faults > src_faults;
-}
-
-
-static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
+static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
struct numa_group *numa_group = rcu_dereference(p->numa_group);
unsigned long src_faults, dst_faults;
int src_nid, dst_nid;
- if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
- return false;
-
if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
- return false;
+ return -1;
+
+ if (!sched_feat(NUMA))
+ return -1;
src_nid = cpu_to_node(env->src_cpu);
dst_nid = cpu_to_node(env->dst_cpu);
if (src_nid == dst_nid)
- return false;
+ return -1;
- /* Migrating away from the preferred node is bad. */
- if (src_nid == p->numa_preferred_nid)
- return true;
+ /* Migrating away from the preferred node is always bad. */
+ if (src_nid == p->numa_preferred_nid) {
+ if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
+ return 1;
+ else
+ return -1;
+ }
/* Encourage migration to the preferred node. */
if (dst_nid == p->numa_preferred_nid)
- return false;
+ return 0;
if (numa_group) {
src_faults = group_faults(p, src_nid);
@@ -5774,16 +5586,10 @@ static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
}
#else
-static inline bool migrate_improves_locality(struct task_struct *p,
+static inline int migrate_degrades_locality(struct task_struct *p,
struct lb_env *env)
{
- return false;
-}
-
-static inline bool migrate_degrades_locality(struct task_struct *p,
- struct lb_env *env)
-{
- return false;
+ return -1;
}
#endif
@@ -5793,7 +5599,7 @@ static inline bool migrate_degrades_locality(struct task_struct *p,
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
{
- int tsk_cache_hot = 0;
+ int tsk_cache_hot;
lockdep_assert_held(&env->src_rq->lock);
@@ -5851,13 +5657,13 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
* 2) task is cache cold, or
* 3) too many balance attempts have failed.
*/
- tsk_cache_hot = task_hot(p, env);
- if (!tsk_cache_hot)
- tsk_cache_hot = migrate_degrades_locality(p, env);
+ tsk_cache_hot = migrate_degrades_locality(p, env);
+ if (tsk_cache_hot == -1)
+ tsk_cache_hot = task_hot(p, env);
- if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
+ if (tsk_cache_hot <= 0 ||
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
- if (tsk_cache_hot) {
+ if (tsk_cache_hot == 1) {
schedstat_inc(env->sd, lb_hot_gained[env->idle]);
schedstat_inc(p, se.statistics.nr_forced_migrations);
}
@@ -5931,6 +5737,13 @@ static int detach_tasks(struct lb_env *env)
return 0;
while (!list_empty(tasks)) {
+ /*
+ * We don't want to steal all, otherwise we may be treated likewise,
+ * which could at worst lead to a livelock crash.
+ */
+ if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
+ break;
+
p = list_first_entry(tasks, struct task_struct, se.group_node);
env->loop++;
@@ -6040,39 +5853,6 @@ static void attach_tasks(struct lb_env *env)
}
#ifdef CONFIG_FAIR_GROUP_SCHED
-/*
- * update tg->load_weight by folding this cpu's load_avg
- */
-static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
-{
- struct sched_entity *se = tg->se[cpu];
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
-
- /* throttled entities do not contribute to load */
- if (throttled_hierarchy(cfs_rq))
- return;
-
- update_cfs_rq_blocked_load(cfs_rq, 1);
-
- if (se) {
- update_entity_load_avg(se, 1);
- /*
- * We pivot on our runnable average having decayed to zero for
- * list removal. This generally implies that all our children
- * have also been removed (modulo rounding error or bandwidth
- * control); however, such cases are rare and we can fix these
- * at enqueue.
- *
- * TODO: fix up out-of-order children on enqueue.
- */
- if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
- list_del_leaf_cfs_rq(cfs_rq);
- } else {
- struct rq *rq = rq_of(cfs_rq);
- update_rq_runnable_avg(rq, rq->nr_running);
- }
-}
-
static void update_blocked_averages(int cpu)
{
struct rq *rq = cpu_rq(cpu);
@@ -6081,19 +5861,19 @@ static void update_blocked_averages(int cpu)
raw_spin_lock_irqsave(&rq->lock, flags);
update_rq_clock(rq);
+
/*
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
*/
for_each_leaf_cfs_rq(rq, cfs_rq) {
- /*
- * Note: We may want to consider periodically releasing
- * rq->lock about these updates so that creating many task
- * groups does not result in continually extending hold time.
- */
- __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
- }
+ /* throttled entities do not contribute to load */
+ if (throttled_hierarchy(cfs_rq))
+ continue;
+ if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
+ update_tg_load_avg(cfs_rq, 0);
+ }
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -6121,14 +5901,14 @@ static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
}
if (!se) {
- cfs_rq->h_load = cfs_rq->runnable_load_avg;
+ cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
cfs_rq->last_h_load_update = now;
}
while ((se = cfs_rq->h_load_next) != NULL) {
load = cfs_rq->h_load;
- load = div64_ul(load * se->avg.load_avg_contrib,
- cfs_rq->runnable_load_avg + 1);
+ load = div64_ul(load * se->avg.load_avg,
+ cfs_rq_load_avg(cfs_rq) + 1);
cfs_rq = group_cfs_rq(se);
cfs_rq->h_load = load;
cfs_rq->last_h_load_update = now;
@@ -6140,17 +5920,25 @@ static unsigned long task_h_load(struct task_struct *p)
struct cfs_rq *cfs_rq = task_cfs_rq(p);
update_cfs_rq_h_load(cfs_rq);
- return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
- cfs_rq->runnable_load_avg + 1);
+ return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
+ cfs_rq_load_avg(cfs_rq) + 1);
}
#else
static inline void update_blocked_averages(int cpu)
{
+ struct rq *rq = cpu_rq(cpu);
+ struct cfs_rq *cfs_rq = &rq->cfs;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&rq->lock, flags);
+ update_rq_clock(rq);
+ update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
}
static unsigned long task_h_load(struct task_struct *p)
{
- return p->se.avg.load_avg_contrib;
+ return p->se.avg.load_avg;
}
#endif
@@ -8050,8 +7838,6 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
if (numabalancing_enabled)
task_tick_numa(rq, curr);
-
- update_rq_runnable_avg(rq, 1);
}
/*
@@ -8150,15 +7936,18 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
}
#ifdef CONFIG_SMP
- /*
- * Remove our load from contribution when we leave sched_fair
- * and ensure we don't carry in an old decay_count if we
- * switch back.
- */
- if (se->avg.decay_count) {
- __synchronize_entity_decay(se);
- subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
- }
+ /* Catch up with the cfs_rq and remove our load when we leave */
+ __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
+ se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
+
+ cfs_rq->avg.load_avg =
+ max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
+ cfs_rq->avg.load_sum =
+ max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
+ cfs_rq->avg.util_avg =
+ max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
+ cfs_rq->avg.util_sum =
+ max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
#endif
}
@@ -8167,16 +7956,31 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
*/
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
-#ifdef CONFIG_FAIR_GROUP_SCHED
struct sched_entity *se = &p->se;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Since the real-depth could have been changed (only FAIR
* class maintain depth value), reset depth properly.
*/
se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
- if (!task_on_rq_queued(p))
+
+ if (!task_on_rq_queued(p)) {
+
+ /*
+ * Ensure the task has a non-normalized vruntime when it is switched
+ * back to the fair class with !queued, so that enqueue_entity() at
+ * wake-up time will do the right thing.
+ *
+ * If it's queued, then the enqueue_entity(.flags=0) makes the task
+ * has non-normalized vruntime, if it's !queued, then it still has
+ * normalized vruntime.
+ */
+ if (p->state != TASK_RUNNING)
+ se->vruntime += cfs_rq_of(se)->min_vruntime;
return;
+ }
/*
* We were most likely switched from sched_rt, so
@@ -8215,8 +8019,8 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
- atomic64_set(&cfs_rq->decay_counter, 1);
- atomic_long_set(&cfs_rq->removed_load, 0);
+ atomic_long_set(&cfs_rq->removed_load_avg, 0);
+ atomic_long_set(&cfs_rq->removed_util_avg, 0);
#endif
}
@@ -8261,14 +8065,14 @@ static void task_move_group_fair(struct task_struct *p, int queued)
if (!queued) {
cfs_rq = cfs_rq_of(se);
se->vruntime += cfs_rq->min_vruntime;
+
#ifdef CONFIG_SMP
- /*
- * migrate_task_rq_fair() will have removed our previous
- * contribution, but we must synchronize for ongoing future
- * decay.
- */
- se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
- cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
+ /* Virtually synchronize task with its new cfs_rq */
+ p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
+ cfs_rq->avg.load_avg += p->se.avg.load_avg;
+ cfs_rq->avg.load_sum += p->se.avg.load_sum;
+ cfs_rq->avg.util_avg += p->se.avg.util_avg;
+ cfs_rq->avg.util_sum += p->se.avg.util_sum;
#endif
}
}
@@ -8282,8 +8086,11 @@ void free_fair_sched_group(struct task_group *tg)
for_each_possible_cpu(i) {
if (tg->cfs_rq)
kfree(tg->cfs_rq[i]);
- if (tg->se)
+ if (tg->se) {
+ if (tg->se[i])
+ remove_entity_load_avg(tg->se[i]);
kfree(tg->se[i]);
+ }
}
kfree(tg->cfs_rq);
@@ -8320,6 +8127,7 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
init_cfs_rq(cfs_rq);
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
+ init_entity_runnable_average(se);
}
return 1;
@@ -8469,6 +8277,8 @@ const struct sched_class fair_sched_class = {
.rq_offline = rq_offline_fair,
.task_waking = task_waking_fair,
+ .task_dead = task_dead_fair,
+ .set_cpus_allowed = set_cpus_allowed_common,
#endif
.set_curr_task = set_curr_task_fair,