diff options
Diffstat (limited to 'virt/kvm/kvm_main.c')
-rw-r--r-- | virt/kvm/kvm_main.c | 3402 |
1 files changed, 3402 insertions, 0 deletions
diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c new file mode 100644 index 000000000..90977418a --- /dev/null +++ b/virt/kvm/kvm_main.c @@ -0,0 +1,3402 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * This module enables machines with Intel VT-x extensions to run virtual + * machines without emulation or binary translation. + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Avi Kivity <avi@qumranet.com> + * Yaniv Kamay <yaniv@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include <kvm/iodev.h> + +#include <linux/kvm_host.h> +#include <linux/kvm.h> +#include <linux/module.h> +#include <linux/errno.h> +#include <linux/percpu.h> +#include <linux/mm.h> +#include <linux/miscdevice.h> +#include <linux/vmalloc.h> +#include <linux/reboot.h> +#include <linux/debugfs.h> +#include <linux/highmem.h> +#include <linux/file.h> +#include <linux/syscore_ops.h> +#include <linux/cpu.h> +#include <linux/sched.h> +#include <linux/cpumask.h> +#include <linux/smp.h> +#include <linux/anon_inodes.h> +#include <linux/profile.h> +#include <linux/kvm_para.h> +#include <linux/pagemap.h> +#include <linux/mman.h> +#include <linux/swap.h> +#include <linux/bitops.h> +#include <linux/spinlock.h> +#include <linux/compat.h> +#include <linux/srcu.h> +#include <linux/hugetlb.h> +#include <linux/slab.h> +#include <linux/sort.h> +#include <linux/bsearch.h> + +#include <asm/processor.h> +#include <asm/io.h> +#include <asm/ioctl.h> +#include <asm/uaccess.h> +#include <asm/pgtable.h> + +#include "coalesced_mmio.h" +#include "async_pf.h" +#include "vfio.h" + +#define CREATE_TRACE_POINTS +#include <trace/events/kvm.h> + +MODULE_AUTHOR("Qumranet"); +MODULE_LICENSE("GPL"); + +static unsigned int halt_poll_ns; +module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); + +/* + * Ordering of locks: + * + * kvm->lock --> kvm->slots_lock --> kvm->irq_lock + */ + +DEFINE_SPINLOCK(kvm_lock); +static DEFINE_RAW_SPINLOCK(kvm_count_lock); +LIST_HEAD(vm_list); + +static cpumask_var_t cpus_hardware_enabled; +static int kvm_usage_count; +static atomic_t hardware_enable_failed; + +struct kmem_cache *kvm_vcpu_cache; +EXPORT_SYMBOL_GPL(kvm_vcpu_cache); + +static __read_mostly struct preempt_ops kvm_preempt_ops; + +struct dentry *kvm_debugfs_dir; +EXPORT_SYMBOL_GPL(kvm_debugfs_dir); + +static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, + unsigned long arg); +#ifdef CONFIG_KVM_COMPAT +static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, + unsigned long arg); +#endif +static int hardware_enable_all(void); +static void hardware_disable_all(void); + +static void kvm_io_bus_destroy(struct kvm_io_bus *bus); + +static void kvm_release_pfn_dirty(pfn_t pfn); +static void mark_page_dirty_in_slot(struct kvm *kvm, + struct kvm_memory_slot *memslot, gfn_t gfn); + +__visible bool kvm_rebooting; +EXPORT_SYMBOL_GPL(kvm_rebooting); + +static bool largepages_enabled = true; + +bool kvm_is_reserved_pfn(pfn_t pfn) +{ + if (pfn_valid(pfn)) + return PageReserved(pfn_to_page(pfn)); + + return true; +} + +/* + * Switches to specified vcpu, until a matching vcpu_put() + */ +int vcpu_load(struct kvm_vcpu *vcpu) +{ + int cpu; + + if (mutex_lock_killable(&vcpu->mutex)) + return -EINTR; + cpu = get_cpu(); + preempt_notifier_register(&vcpu->preempt_notifier); + kvm_arch_vcpu_load(vcpu, cpu); + put_cpu(); + return 0; +} + +void vcpu_put(struct kvm_vcpu *vcpu) +{ + preempt_disable(); + kvm_arch_vcpu_put(vcpu); + preempt_notifier_unregister(&vcpu->preempt_notifier); + preempt_enable(); + mutex_unlock(&vcpu->mutex); +} + +static void ack_flush(void *_completed) +{ +} + +bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) +{ + int i, cpu, me; + cpumask_var_t cpus; + bool called = true; + struct kvm_vcpu *vcpu; + + zalloc_cpumask_var(&cpus, GFP_ATOMIC); + + me = get_cpu(); + kvm_for_each_vcpu(i, vcpu, kvm) { + kvm_make_request(req, vcpu); + cpu = vcpu->cpu; + + /* Set ->requests bit before we read ->mode */ + smp_mb(); + + if (cpus != NULL && cpu != -1 && cpu != me && + kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) + cpumask_set_cpu(cpu, cpus); + } + if (unlikely(cpus == NULL)) + smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); + else if (!cpumask_empty(cpus)) + smp_call_function_many(cpus, ack_flush, NULL, 1); + else + called = false; + put_cpu(); + free_cpumask_var(cpus); + return called; +} + +#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL +void kvm_flush_remote_tlbs(struct kvm *kvm) +{ + long dirty_count = kvm->tlbs_dirty; + + smp_mb(); + if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) + ++kvm->stat.remote_tlb_flush; + cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); +} +EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); +#endif + +void kvm_reload_remote_mmus(struct kvm *kvm) +{ + kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); +} + +void kvm_make_mclock_inprogress_request(struct kvm *kvm) +{ + kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); +} + +void kvm_make_scan_ioapic_request(struct kvm *kvm) +{ + kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); +} + +int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) +{ + struct page *page; + int r; + + mutex_init(&vcpu->mutex); + vcpu->cpu = -1; + vcpu->kvm = kvm; + vcpu->vcpu_id = id; + vcpu->pid = NULL; + init_waitqueue_head(&vcpu->wq); + kvm_async_pf_vcpu_init(vcpu); + + page = alloc_page(GFP_KERNEL | __GFP_ZERO); + if (!page) { + r = -ENOMEM; + goto fail; + } + vcpu->run = page_address(page); + + kvm_vcpu_set_in_spin_loop(vcpu, false); + kvm_vcpu_set_dy_eligible(vcpu, false); + vcpu->preempted = false; + + r = kvm_arch_vcpu_init(vcpu); + if (r < 0) + goto fail_free_run; + return 0; + +fail_free_run: + free_page((unsigned long)vcpu->run); +fail: + return r; +} +EXPORT_SYMBOL_GPL(kvm_vcpu_init); + +void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) +{ + put_pid(vcpu->pid); + kvm_arch_vcpu_uninit(vcpu); + free_page((unsigned long)vcpu->run); +} +EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); + +#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) +static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) +{ + return container_of(mn, struct kvm, mmu_notifier); +} + +static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, + struct mm_struct *mm, + unsigned long address) +{ + struct kvm *kvm = mmu_notifier_to_kvm(mn); + int need_tlb_flush, idx; + + /* + * When ->invalidate_page runs, the linux pte has been zapped + * already but the page is still allocated until + * ->invalidate_page returns. So if we increase the sequence + * here the kvm page fault will notice if the spte can't be + * established because the page is going to be freed. If + * instead the kvm page fault establishes the spte before + * ->invalidate_page runs, kvm_unmap_hva will release it + * before returning. + * + * The sequence increase only need to be seen at spin_unlock + * time, and not at spin_lock time. + * + * Increasing the sequence after the spin_unlock would be + * unsafe because the kvm page fault could then establish the + * pte after kvm_unmap_hva returned, without noticing the page + * is going to be freed. + */ + idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + + kvm->mmu_notifier_seq++; + need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; + /* we've to flush the tlb before the pages can be freed */ + if (need_tlb_flush) + kvm_flush_remote_tlbs(kvm); + + spin_unlock(&kvm->mmu_lock); + + kvm_arch_mmu_notifier_invalidate_page(kvm, address); + + srcu_read_unlock(&kvm->srcu, idx); +} + +static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, + struct mm_struct *mm, + unsigned long address, + pte_t pte) +{ + struct kvm *kvm = mmu_notifier_to_kvm(mn); + int idx; + + idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + kvm->mmu_notifier_seq++; + kvm_set_spte_hva(kvm, address, pte); + spin_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, idx); +} + +static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, + struct mm_struct *mm, + unsigned long start, + unsigned long end) +{ + struct kvm *kvm = mmu_notifier_to_kvm(mn); + int need_tlb_flush = 0, idx; + + idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + /* + * The count increase must become visible at unlock time as no + * spte can be established without taking the mmu_lock and + * count is also read inside the mmu_lock critical section. + */ + kvm->mmu_notifier_count++; + need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); + need_tlb_flush |= kvm->tlbs_dirty; + /* we've to flush the tlb before the pages can be freed */ + if (need_tlb_flush) + kvm_flush_remote_tlbs(kvm); + + spin_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, idx); +} + +static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, + struct mm_struct *mm, + unsigned long start, + unsigned long end) +{ + struct kvm *kvm = mmu_notifier_to_kvm(mn); + + spin_lock(&kvm->mmu_lock); + /* + * This sequence increase will notify the kvm page fault that + * the page that is going to be mapped in the spte could have + * been freed. + */ + kvm->mmu_notifier_seq++; + smp_wmb(); + /* + * The above sequence increase must be visible before the + * below count decrease, which is ensured by the smp_wmb above + * in conjunction with the smp_rmb in mmu_notifier_retry(). + */ + kvm->mmu_notifier_count--; + spin_unlock(&kvm->mmu_lock); + + BUG_ON(kvm->mmu_notifier_count < 0); +} + +static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, + struct mm_struct *mm, + unsigned long start, + unsigned long end) +{ + struct kvm *kvm = mmu_notifier_to_kvm(mn); + int young, idx; + + idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + + young = kvm_age_hva(kvm, start, end); + if (young) + kvm_flush_remote_tlbs(kvm); + + spin_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, idx); + + return young; +} + +static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, + struct mm_struct *mm, + unsigned long address) +{ + struct kvm *kvm = mmu_notifier_to_kvm(mn); + int young, idx; + + idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + young = kvm_test_age_hva(kvm, address); + spin_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, idx); + + return young; +} + +static void kvm_mmu_notifier_release(struct mmu_notifier *mn, + struct mm_struct *mm) +{ + struct kvm *kvm = mmu_notifier_to_kvm(mn); + int idx; + + idx = srcu_read_lock(&kvm->srcu); + kvm_arch_flush_shadow_all(kvm); + srcu_read_unlock(&kvm->srcu, idx); +} + +static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { + .invalidate_page = kvm_mmu_notifier_invalidate_page, + .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, + .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, + .clear_flush_young = kvm_mmu_notifier_clear_flush_young, + .test_young = kvm_mmu_notifier_test_young, + .change_pte = kvm_mmu_notifier_change_pte, + .release = kvm_mmu_notifier_release, +}; + +static int kvm_init_mmu_notifier(struct kvm *kvm) +{ + kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; + return mmu_notifier_register(&kvm->mmu_notifier, current->mm); +} + +#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ + +static int kvm_init_mmu_notifier(struct kvm *kvm) +{ + return 0; +} + +#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ + +static void kvm_init_memslots_id(struct kvm *kvm) +{ + int i; + struct kvm_memslots *slots = kvm->memslots; + + for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) + slots->id_to_index[i] = slots->memslots[i].id = i; +} + +static struct kvm *kvm_create_vm(unsigned long type) +{ + int r, i; + struct kvm *kvm = kvm_arch_alloc_vm(); + + if (!kvm) + return ERR_PTR(-ENOMEM); + + r = kvm_arch_init_vm(kvm, type); + if (r) + goto out_err_no_disable; + + r = hardware_enable_all(); + if (r) + goto out_err_no_disable; + +#ifdef CONFIG_HAVE_KVM_IRQFD + INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); +#endif + + BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); + + r = -ENOMEM; + kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots)); + if (!kvm->memslots) + goto out_err_no_srcu; + + /* + * Init kvm generation close to the maximum to easily test the + * code of handling generation number wrap-around. + */ + kvm->memslots->generation = -150; + + kvm_init_memslots_id(kvm); + if (init_srcu_struct(&kvm->srcu)) + goto out_err_no_srcu; + if (init_srcu_struct(&kvm->irq_srcu)) + goto out_err_no_irq_srcu; + for (i = 0; i < KVM_NR_BUSES; i++) { + kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), + GFP_KERNEL); + if (!kvm->buses[i]) + goto out_err; + } + + spin_lock_init(&kvm->mmu_lock); + kvm->mm = current->mm; + atomic_inc(&kvm->mm->mm_count); + kvm_eventfd_init(kvm); + mutex_init(&kvm->lock); + mutex_init(&kvm->irq_lock); + mutex_init(&kvm->slots_lock); + atomic_set(&kvm->users_count, 1); + INIT_LIST_HEAD(&kvm->devices); + + r = kvm_init_mmu_notifier(kvm); + if (r) + goto out_err; + + spin_lock(&kvm_lock); + list_add(&kvm->vm_list, &vm_list); + spin_unlock(&kvm_lock); + + return kvm; + +out_err: + cleanup_srcu_struct(&kvm->irq_srcu); +out_err_no_irq_srcu: + cleanup_srcu_struct(&kvm->srcu); +out_err_no_srcu: + hardware_disable_all(); +out_err_no_disable: + for (i = 0; i < KVM_NR_BUSES; i++) + kfree(kvm->buses[i]); + kvfree(kvm->memslots); + kvm_arch_free_vm(kvm); + return ERR_PTR(r); +} + +/* + * Avoid using vmalloc for a small buffer. + * Should not be used when the size is statically known. + */ +void *kvm_kvzalloc(unsigned long size) +{ + if (size > PAGE_SIZE) + return vzalloc(size); + else + return kzalloc(size, GFP_KERNEL); +} + +static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) +{ + if (!memslot->dirty_bitmap) + return; + + kvfree(memslot->dirty_bitmap); + memslot->dirty_bitmap = NULL; +} + +/* + * Free any memory in @free but not in @dont. + */ +static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free, + struct kvm_memory_slot *dont) +{ + if (!dont || free->dirty_bitmap != dont->dirty_bitmap) + kvm_destroy_dirty_bitmap(free); + + kvm_arch_free_memslot(kvm, free, dont); + + free->npages = 0; +} + +static void kvm_free_physmem(struct kvm *kvm) +{ + struct kvm_memslots *slots = kvm->memslots; + struct kvm_memory_slot *memslot; + + kvm_for_each_memslot(memslot, slots) + kvm_free_physmem_slot(kvm, memslot, NULL); + + kvfree(kvm->memslots); +} + +static void kvm_destroy_devices(struct kvm *kvm) +{ + struct list_head *node, *tmp; + + list_for_each_safe(node, tmp, &kvm->devices) { + struct kvm_device *dev = + list_entry(node, struct kvm_device, vm_node); + + list_del(node); + dev->ops->destroy(dev); + } +} + +static void kvm_destroy_vm(struct kvm *kvm) +{ + int i; + struct mm_struct *mm = kvm->mm; + + kvm_arch_sync_events(kvm); + spin_lock(&kvm_lock); + list_del(&kvm->vm_list); + spin_unlock(&kvm_lock); + kvm_free_irq_routing(kvm); + for (i = 0; i < KVM_NR_BUSES; i++) + kvm_io_bus_destroy(kvm->buses[i]); + kvm_coalesced_mmio_free(kvm); +#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) + mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); +#else + kvm_arch_flush_shadow_all(kvm); +#endif + kvm_arch_destroy_vm(kvm); + kvm_destroy_devices(kvm); + kvm_free_physmem(kvm); + cleanup_srcu_struct(&kvm->irq_srcu); + cleanup_srcu_struct(&kvm->srcu); + kvm_arch_free_vm(kvm); + hardware_disable_all(); + mmdrop(mm); +} + +void kvm_get_kvm(struct kvm *kvm) +{ + atomic_inc(&kvm->users_count); +} +EXPORT_SYMBOL_GPL(kvm_get_kvm); + +void kvm_put_kvm(struct kvm *kvm) +{ + if (atomic_dec_and_test(&kvm->users_count)) + kvm_destroy_vm(kvm); +} +EXPORT_SYMBOL_GPL(kvm_put_kvm); + + +static int kvm_vm_release(struct inode *inode, struct file *filp) +{ + struct kvm *kvm = filp->private_data; + + kvm_irqfd_release(kvm); + + kvm_put_kvm(kvm); + return 0; +} + +/* + * Allocation size is twice as large as the actual dirty bitmap size. + * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. + */ +static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) +{ + unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); + + memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); + if (!memslot->dirty_bitmap) + return -ENOMEM; + + return 0; +} + +/* + * Insert memslot and re-sort memslots based on their GFN, + * so binary search could be used to lookup GFN. + * Sorting algorithm takes advantage of having initially + * sorted array and known changed memslot position. + */ +static void update_memslots(struct kvm_memslots *slots, + struct kvm_memory_slot *new) +{ + int id = new->id; + int i = slots->id_to_index[id]; + struct kvm_memory_slot *mslots = slots->memslots; + + WARN_ON(mslots[i].id != id); + if (!new->npages) { + WARN_ON(!mslots[i].npages); + new->base_gfn = 0; + new->flags = 0; + if (mslots[i].npages) + slots->used_slots--; + } else { + if (!mslots[i].npages) + slots->used_slots++; + } + + while (i < KVM_MEM_SLOTS_NUM - 1 && + new->base_gfn <= mslots[i + 1].base_gfn) { + if (!mslots[i + 1].npages) + break; + mslots[i] = mslots[i + 1]; + slots->id_to_index[mslots[i].id] = i; + i++; + } + + /* + * The ">=" is needed when creating a slot with base_gfn == 0, + * so that it moves before all those with base_gfn == npages == 0. + * + * On the other hand, if new->npages is zero, the above loop has + * already left i pointing to the beginning of the empty part of + * mslots, and the ">=" would move the hole backwards in this + * case---which is wrong. So skip the loop when deleting a slot. + */ + if (new->npages) { + while (i > 0 && + new->base_gfn >= mslots[i - 1].base_gfn) { + mslots[i] = mslots[i - 1]; + slots->id_to_index[mslots[i].id] = i; + i--; + } + } else + WARN_ON_ONCE(i != slots->used_slots); + + mslots[i] = *new; + slots->id_to_index[mslots[i].id] = i; +} + +static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) +{ + u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; + +#ifdef __KVM_HAVE_READONLY_MEM + valid_flags |= KVM_MEM_READONLY; +#endif + + if (mem->flags & ~valid_flags) + return -EINVAL; + + return 0; +} + +static struct kvm_memslots *install_new_memslots(struct kvm *kvm, + struct kvm_memslots *slots) +{ + struct kvm_memslots *old_memslots = kvm->memslots; + + /* + * Set the low bit in the generation, which disables SPTE caching + * until the end of synchronize_srcu_expedited. + */ + WARN_ON(old_memslots->generation & 1); + slots->generation = old_memslots->generation + 1; + + rcu_assign_pointer(kvm->memslots, slots); + synchronize_srcu_expedited(&kvm->srcu); + + /* + * Increment the new memslot generation a second time. This prevents + * vm exits that race with memslot updates from caching a memslot + * generation that will (potentially) be valid forever. + */ + slots->generation++; + + kvm_arch_memslots_updated(kvm); + + return old_memslots; +} + +/* + * Allocate some memory and give it an address in the guest physical address + * space. + * + * Discontiguous memory is allowed, mostly for framebuffers. + * + * Must be called holding kvm->slots_lock for write. + */ +int __kvm_set_memory_region(struct kvm *kvm, + struct kvm_userspace_memory_region *mem) +{ + int r; + gfn_t base_gfn; + unsigned long npages; + struct kvm_memory_slot *slot; + struct kvm_memory_slot old, new; + struct kvm_memslots *slots = NULL, *old_memslots; + enum kvm_mr_change change; + + r = check_memory_region_flags(mem); + if (r) + goto out; + + r = -EINVAL; + /* General sanity checks */ + if (mem->memory_size & (PAGE_SIZE - 1)) + goto out; + if (mem->guest_phys_addr & (PAGE_SIZE - 1)) + goto out; + /* We can read the guest memory with __xxx_user() later on. */ + if ((mem->slot < KVM_USER_MEM_SLOTS) && + ((mem->userspace_addr & (PAGE_SIZE - 1)) || + !access_ok(VERIFY_WRITE, + (void __user *)(unsigned long)mem->userspace_addr, + mem->memory_size))) + goto out; + if (mem->slot >= KVM_MEM_SLOTS_NUM) + goto out; + if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) + goto out; + + slot = id_to_memslot(kvm->memslots, mem->slot); + base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; + npages = mem->memory_size >> PAGE_SHIFT; + + if (npages > KVM_MEM_MAX_NR_PAGES) + goto out; + + if (!npages) + mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; + + new = old = *slot; + + new.id = mem->slot; + new.base_gfn = base_gfn; + new.npages = npages; + new.flags = mem->flags; + + if (npages) { + if (!old.npages) + change = KVM_MR_CREATE; + else { /* Modify an existing slot. */ + if ((mem->userspace_addr != old.userspace_addr) || + (npages != old.npages) || + ((new.flags ^ old.flags) & KVM_MEM_READONLY)) + goto out; + + if (base_gfn != old.base_gfn) + change = KVM_MR_MOVE; + else if (new.flags != old.flags) + change = KVM_MR_FLAGS_ONLY; + else { /* Nothing to change. */ + r = 0; + goto out; + } + } + } else if (old.npages) { + change = KVM_MR_DELETE; + } else /* Modify a non-existent slot: disallowed. */ + goto out; + + if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { + /* Check for overlaps */ + r = -EEXIST; + kvm_for_each_memslot(slot, kvm->memslots) { + if ((slot->id >= KVM_USER_MEM_SLOTS) || + (slot->id == mem->slot)) + continue; + if (!((base_gfn + npages <= slot->base_gfn) || + (base_gfn >= slot->base_gfn + slot->npages))) + goto out; + } + } + + /* Free page dirty bitmap if unneeded */ + if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) + new.dirty_bitmap = NULL; + + r = -ENOMEM; + if (change == KVM_MR_CREATE) { + new.userspace_addr = mem->userspace_addr; + + if (kvm_arch_create_memslot(kvm, &new, npages)) + goto out_free; + } + + /* Allocate page dirty bitmap if needed */ + if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { + if (kvm_create_dirty_bitmap(&new) < 0) + goto out_free; + } + + slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); + if (!slots) + goto out_free; + memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots)); + + if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { + slot = id_to_memslot(slots, mem->slot); + slot->flags |= KVM_MEMSLOT_INVALID; + + old_memslots = install_new_memslots(kvm, slots); + + /* slot was deleted or moved, clear iommu mapping */ + kvm_iommu_unmap_pages(kvm, &old); + /* From this point no new shadow pages pointing to a deleted, + * or moved, memslot will be created. + * + * validation of sp->gfn happens in: + * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) + * - kvm_is_visible_gfn (mmu_check_roots) + */ + kvm_arch_flush_shadow_memslot(kvm, slot); + + /* + * We can re-use the old_memslots from above, the only difference + * from the currently installed memslots is the invalid flag. This + * will get overwritten by update_memslots anyway. + */ + slots = old_memslots; + } + + r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); + if (r) + goto out_slots; + + /* actual memory is freed via old in kvm_free_physmem_slot below */ + if (change == KVM_MR_DELETE) { + new.dirty_bitmap = NULL; + memset(&new.arch, 0, sizeof(new.arch)); + } + + update_memslots(slots, &new); + old_memslots = install_new_memslots(kvm, slots); + + kvm_arch_commit_memory_region(kvm, mem, &old, change); + + kvm_free_physmem_slot(kvm, &old, &new); + kvfree(old_memslots); + + /* + * IOMMU mapping: New slots need to be mapped. Old slots need to be + * un-mapped and re-mapped if their base changes. Since base change + * unmapping is handled above with slot deletion, mapping alone is + * needed here. Anything else the iommu might care about for existing + * slots (size changes, userspace addr changes and read-only flag + * changes) is disallowed above, so any other attribute changes getting + * here can be skipped. + */ + if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { + r = kvm_iommu_map_pages(kvm, &new); + return r; + } + + return 0; + +out_slots: + kvfree(slots); +out_free: + kvm_free_physmem_slot(kvm, &new, &old); +out: + return r; +} +EXPORT_SYMBOL_GPL(__kvm_set_memory_region); + +int kvm_set_memory_region(struct kvm *kvm, + struct kvm_userspace_memory_region *mem) +{ + int r; + + mutex_lock(&kvm->slots_lock); + r = __kvm_set_memory_region(kvm, mem); + mutex_unlock(&kvm->slots_lock); + return r; +} +EXPORT_SYMBOL_GPL(kvm_set_memory_region); + +static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, + struct kvm_userspace_memory_region *mem) +{ + if (mem->slot >= KVM_USER_MEM_SLOTS) + return -EINVAL; + return kvm_set_memory_region(kvm, mem); +} + +int kvm_get_dirty_log(struct kvm *kvm, + struct kvm_dirty_log *log, int *is_dirty) +{ + struct kvm_memory_slot *memslot; + int r, i; + unsigned long n; + unsigned long any = 0; + + r = -EINVAL; + if (log->slot >= KVM_USER_MEM_SLOTS) + goto out; + + memslot = id_to_memslot(kvm->memslots, log->slot); + r = -ENOENT; + if (!memslot->dirty_bitmap) + goto out; + + n = kvm_dirty_bitmap_bytes(memslot); + + for (i = 0; !any && i < n/sizeof(long); ++i) + any = memslot->dirty_bitmap[i]; + + r = -EFAULT; + if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) + goto out; + + if (any) + *is_dirty = 1; + + r = 0; +out: + return r; +} +EXPORT_SYMBOL_GPL(kvm_get_dirty_log); + +#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT +/** + * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages + * are dirty write protect them for next write. + * @kvm: pointer to kvm instance + * @log: slot id and address to which we copy the log + * @is_dirty: flag set if any page is dirty + * + * We need to keep it in mind that VCPU threads can write to the bitmap + * concurrently. So, to avoid losing track of dirty pages we keep the + * following order: + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Copy the snapshot to the userspace. + * 4. Upon return caller flushes TLB's if needed. + * + * Between 2 and 4, the guest may write to the page using the remaining TLB + * entry. This is not a problem because the page is reported dirty using + * the snapshot taken before and step 4 ensures that writes done after + * exiting to userspace will be logged for the next call. + * + */ +int kvm_get_dirty_log_protect(struct kvm *kvm, + struct kvm_dirty_log *log, bool *is_dirty) +{ + struct kvm_memory_slot *memslot; + int r, i; + unsigned long n; + unsigned long *dirty_bitmap; + unsigned long *dirty_bitmap_buffer; + + r = -EINVAL; + if (log->slot >= KVM_USER_MEM_SLOTS) + goto out; + + memslot = id_to_memslot(kvm->memslots, log->slot); + + dirty_bitmap = memslot->dirty_bitmap; + r = -ENOENT; + if (!dirty_bitmap) + goto out; + + n = kvm_dirty_bitmap_bytes(memslot); + + dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); + memset(dirty_bitmap_buffer, 0, n); + + spin_lock(&kvm->mmu_lock); + *is_dirty = false; + for (i = 0; i < n / sizeof(long); i++) { + unsigned long mask; + gfn_t offset; + + if (!dirty_bitmap[i]) + continue; + + *is_dirty = true; + + mask = xchg(&dirty_bitmap[i], 0); + dirty_bitmap_buffer[i] = mask; + + if (mask) { + offset = i * BITS_PER_LONG; + kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, + offset, mask); + } + } + + spin_unlock(&kvm->mmu_lock); + + r = -EFAULT; + if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) + goto out; + + r = 0; +out: + return r; +} +EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); +#endif + +bool kvm_largepages_enabled(void) +{ + return largepages_enabled; +} + +void kvm_disable_largepages(void) +{ + largepages_enabled = false; +} +EXPORT_SYMBOL_GPL(kvm_disable_largepages); + +struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) +{ + return __gfn_to_memslot(kvm_memslots(kvm), gfn); +} +EXPORT_SYMBOL_GPL(gfn_to_memslot); + +int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) +{ + struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); + + if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || + memslot->flags & KVM_MEMSLOT_INVALID) + return 0; + + return 1; +} +EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); + +unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) +{ + struct vm_area_struct *vma; + unsigned long addr, size; + + size = PAGE_SIZE; + + addr = gfn_to_hva(kvm, gfn); + if (kvm_is_error_hva(addr)) + return PAGE_SIZE; + + down_read(¤t->mm->mmap_sem); + vma = find_vma(current->mm, addr); + if (!vma) + goto out; + + size = vma_kernel_pagesize(vma); + +out: + up_read(¤t->mm->mmap_sem); + + return size; +} + +static bool memslot_is_readonly(struct kvm_memory_slot *slot) +{ + return slot->flags & KVM_MEM_READONLY; +} + +static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, + gfn_t *nr_pages, bool write) +{ + if (!slot || slot->flags & KVM_MEMSLOT_INVALID) + return KVM_HVA_ERR_BAD; + + if (memslot_is_readonly(slot) && write) + return KVM_HVA_ERR_RO_BAD; + + if (nr_pages) + *nr_pages = slot->npages - (gfn - slot->base_gfn); + + return __gfn_to_hva_memslot(slot, gfn); +} + +static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, + gfn_t *nr_pages) +{ + return __gfn_to_hva_many(slot, gfn, nr_pages, true); +} + +unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, + gfn_t gfn) +{ + return gfn_to_hva_many(slot, gfn, NULL); +} +EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); + +unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) +{ + return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); +} +EXPORT_SYMBOL_GPL(gfn_to_hva); + +/* + * If writable is set to false, the hva returned by this function is only + * allowed to be read. + */ +unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, + gfn_t gfn, bool *writable) +{ + unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); + + if (!kvm_is_error_hva(hva) && writable) + *writable = !memslot_is_readonly(slot); + + return hva; +} + +unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) +{ + struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); + + return gfn_to_hva_memslot_prot(slot, gfn, writable); +} + +static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, int write, struct page **page) +{ + int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; + + if (write) + flags |= FOLL_WRITE; + + return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); +} + +static inline int check_user_page_hwpoison(unsigned long addr) +{ + int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; + + rc = __get_user_pages(current, current->mm, addr, 1, + flags, NULL, NULL, NULL); + return rc == -EHWPOISON; +} + +/* + * The atomic path to get the writable pfn which will be stored in @pfn, + * true indicates success, otherwise false is returned. + */ +static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, + bool write_fault, bool *writable, pfn_t *pfn) +{ + struct page *page[1]; + int npages; + + if (!(async || atomic)) + return false; + + /* + * Fast pin a writable pfn only if it is a write fault request + * or the caller allows to map a writable pfn for a read fault + * request. + */ + if (!(write_fault || writable)) + return false; + + npages = __get_user_pages_fast(addr, 1, 1, page); + if (npages == 1) { + *pfn = page_to_pfn(page[0]); + + if (writable) + *writable = true; + return true; + } + + return false; +} + +/* + * The slow path to get the pfn of the specified host virtual address, + * 1 indicates success, -errno is returned if error is detected. + */ +static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, + bool *writable, pfn_t *pfn) +{ + struct page *page[1]; + int npages = 0; + + might_sleep(); + + if (writable) + *writable = write_fault; + + if (async) { + down_read(¤t->mm->mmap_sem); + npages = get_user_page_nowait(current, current->mm, + addr, write_fault, page); + up_read(¤t->mm->mmap_sem); + } else + npages = __get_user_pages_unlocked(current, current->mm, addr, 1, + write_fault, 0, page, + FOLL_TOUCH|FOLL_HWPOISON); + if (npages != 1) + return npages; + + /* map read fault as writable if possible */ + if (unlikely(!write_fault) && writable) { + struct page *wpage[1]; + + npages = __get_user_pages_fast(addr, 1, 1, wpage); + if (npages == 1) { + *writable = true; + put_page(page[0]); + page[0] = wpage[0]; + } + + npages = 1; + } + *pfn = page_to_pfn(page[0]); + return npages; +} + +static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) +{ + if (unlikely(!(vma->vm_flags & VM_READ))) + return false; + + if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) + return false; + + return true; +} + +/* + * Pin guest page in memory and return its pfn. + * @addr: host virtual address which maps memory to the guest + * @atomic: whether this function can sleep + * @async: whether this function need to wait IO complete if the + * host page is not in the memory + * @write_fault: whether we should get a writable host page + * @writable: whether it allows to map a writable host page for !@write_fault + * + * The function will map a writable host page for these two cases: + * 1): @write_fault = true + * 2): @write_fault = false && @writable, @writable will tell the caller + * whether the mapping is writable. + */ +static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, + bool write_fault, bool *writable) +{ + struct vm_area_struct *vma; + pfn_t pfn = 0; + int npages; + + /* we can do it either atomically or asynchronously, not both */ + BUG_ON(atomic && async); + + if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) + return pfn; + + if (atomic) + return KVM_PFN_ERR_FAULT; + + npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); + if (npages == 1) + return pfn; + + down_read(¤t->mm->mmap_sem); + if (npages == -EHWPOISON || + (!async && check_user_page_hwpoison(addr))) { + pfn = KVM_PFN_ERR_HWPOISON; + goto exit; + } + + vma = find_vma_intersection(current->mm, addr, addr + 1); + + if (vma == NULL) + pfn = KVM_PFN_ERR_FAULT; + else if ((vma->vm_flags & VM_PFNMAP)) { + pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + + vma->vm_pgoff; + BUG_ON(!kvm_is_reserved_pfn(pfn)); + } else { + if (async && vma_is_valid(vma, write_fault)) + *async = true; + pfn = KVM_PFN_ERR_FAULT; + } +exit: + up_read(¤t->mm->mmap_sem); + return pfn; +} + +static pfn_t +__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, + bool *async, bool write_fault, bool *writable) +{ + unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); + + if (addr == KVM_HVA_ERR_RO_BAD) + return KVM_PFN_ERR_RO_FAULT; + + if (kvm_is_error_hva(addr)) + return KVM_PFN_NOSLOT; + + /* Do not map writable pfn in the readonly memslot. */ + if (writable && memslot_is_readonly(slot)) { + *writable = false; + writable = NULL; + } + + return hva_to_pfn(addr, atomic, async, write_fault, + writable); +} + +static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, + bool write_fault, bool *writable) +{ + struct kvm_memory_slot *slot; + + if (async) + *async = false; + + slot = gfn_to_memslot(kvm, gfn); + + return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, + writable); +} + +pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) +{ + return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); +} +EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); + +pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, + bool write_fault, bool *writable) +{ + return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); +} +EXPORT_SYMBOL_GPL(gfn_to_pfn_async); + +pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) +{ + return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); +} +EXPORT_SYMBOL_GPL(gfn_to_pfn); + +pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, + bool *writable) +{ + return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); +} +EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); + +pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) +{ + return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); +} + +pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) +{ + return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); +} +EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); + +int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, + int nr_pages) +{ + unsigned long addr; + gfn_t entry; + + addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); + if (kvm_is_error_hva(addr)) + return -1; + + if (entry < nr_pages) + return 0; + + return __get_user_pages_fast(addr, nr_pages, 1, pages); +} +EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); + +static struct page *kvm_pfn_to_page(pfn_t pfn) +{ + if (is_error_noslot_pfn(pfn)) + return KVM_ERR_PTR_BAD_PAGE; + + if (kvm_is_reserved_pfn(pfn)) { + WARN_ON(1); + return KVM_ERR_PTR_BAD_PAGE; + } + + return pfn_to_page(pfn); +} + +struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) +{ + pfn_t pfn; + + pfn = gfn_to_pfn(kvm, gfn); + + return kvm_pfn_to_page(pfn); +} +EXPORT_SYMBOL_GPL(gfn_to_page); + +void kvm_release_page_clean(struct page *page) +{ + WARN_ON(is_error_page(page)); + + kvm_release_pfn_clean(page_to_pfn(page)); +} +EXPORT_SYMBOL_GPL(kvm_release_page_clean); + +void kvm_release_pfn_clean(pfn_t pfn) +{ + if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) + put_page(pfn_to_page(pfn)); +} +EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); + +void kvm_release_page_dirty(struct page *page) +{ + WARN_ON(is_error_page(page)); + + kvm_release_pfn_dirty(page_to_pfn(page)); +} +EXPORT_SYMBOL_GPL(kvm_release_page_dirty); + +static void kvm_release_pfn_dirty(pfn_t pfn) +{ + kvm_set_pfn_dirty(pfn); + kvm_release_pfn_clean(pfn); +} + +void kvm_set_pfn_dirty(pfn_t pfn) +{ + if (!kvm_is_reserved_pfn(pfn)) { + struct page *page = pfn_to_page(pfn); + + if (!PageReserved(page)) + SetPageDirty(page); + } +} +EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); + +void kvm_set_pfn_accessed(pfn_t pfn) +{ + if (!kvm_is_reserved_pfn(pfn)) + mark_page_accessed(pfn_to_page(pfn)); +} +EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); + +void kvm_get_pfn(pfn_t pfn) +{ + if (!kvm_is_reserved_pfn(pfn)) + get_page(pfn_to_page(pfn)); +} +EXPORT_SYMBOL_GPL(kvm_get_pfn); + +static int next_segment(unsigned long len, int offset) +{ + if (len > PAGE_SIZE - offset) + return PAGE_SIZE - offset; + else + return len; +} + +int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, + int len) +{ + int r; + unsigned long addr; + + addr = gfn_to_hva_prot(kvm, gfn, NULL); + if (kvm_is_error_hva(addr)) + return -EFAULT; + r = __copy_from_user(data, (void __user *)addr + offset, len); + if (r) + return -EFAULT; + return 0; +} +EXPORT_SYMBOL_GPL(kvm_read_guest_page); + +int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) +{ + gfn_t gfn = gpa >> PAGE_SHIFT; + int seg; + int offset = offset_in_page(gpa); + int ret; + + while ((seg = next_segment(len, offset)) != 0) { + ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); + if (ret < 0) + return ret; + offset = 0; + len -= seg; + data += seg; + ++gfn; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_read_guest); + +int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, + unsigned long len) +{ + int r; + unsigned long addr; + gfn_t gfn = gpa >> PAGE_SHIFT; + int offset = offset_in_page(gpa); + + addr = gfn_to_hva_prot(kvm, gfn, NULL); + if (kvm_is_error_hva(addr)) + return -EFAULT; + pagefault_disable(); + r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); + pagefault_enable(); + if (r) + return -EFAULT; + return 0; +} +EXPORT_SYMBOL(kvm_read_guest_atomic); + +int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, + int offset, int len) +{ + int r; + unsigned long addr; + + addr = gfn_to_hva(kvm, gfn); + if (kvm_is_error_hva(addr)) + return -EFAULT; + r = __copy_to_user((void __user *)addr + offset, data, len); + if (r) + return -EFAULT; + mark_page_dirty(kvm, gfn); + return 0; +} +EXPORT_SYMBOL_GPL(kvm_write_guest_page); + +int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, + unsigned long len) +{ + gfn_t gfn = gpa >> PAGE_SHIFT; + int seg; + int offset = offset_in_page(gpa); + int ret; + + while ((seg = next_segment(len, offset)) != 0) { + ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); + if (ret < 0) + return ret; + offset = 0; + len -= seg; + data += seg; + ++gfn; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_write_guest); + +int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, + gpa_t gpa, unsigned long len) +{ + struct kvm_memslots *slots = kvm_memslots(kvm); + int offset = offset_in_page(gpa); + gfn_t start_gfn = gpa >> PAGE_SHIFT; + gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; + gfn_t nr_pages_needed = end_gfn - start_gfn + 1; + gfn_t nr_pages_avail; + + ghc->gpa = gpa; + ghc->generation = slots->generation; + ghc->len = len; + ghc->memslot = gfn_to_memslot(kvm, start_gfn); + ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); + if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { + ghc->hva += offset; + } else { + /* + * If the requested region crosses two memslots, we still + * verify that the entire region is valid here. + */ + while (start_gfn <= end_gfn) { + ghc->memslot = gfn_to_memslot(kvm, start_gfn); + ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, + &nr_pages_avail); + if (kvm_is_error_hva(ghc->hva)) + return -EFAULT; + start_gfn += nr_pages_avail; + } + /* Use the slow path for cross page reads and writes. */ + ghc->memslot = NULL; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); + +int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, + void *data, unsigned long len) +{ + struct kvm_memslots *slots = kvm_memslots(kvm); + int r; + + BUG_ON(len > ghc->len); + + if (slots->generation != ghc->generation) + kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); + + if (unlikely(!ghc->memslot)) + return kvm_write_guest(kvm, ghc->gpa, data, len); + + if (kvm_is_error_hva(ghc->hva)) + return -EFAULT; + + r = __copy_to_user((void __user *)ghc->hva, data, len); + if (r) + return -EFAULT; + mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_write_guest_cached); + +int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, + void *data, unsigned long len) +{ + struct kvm_memslots *slots = kvm_memslots(kvm); + int r; + + BUG_ON(len > ghc->len); + + if (slots->generation != ghc->generation) + kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); + + if (unlikely(!ghc->memslot)) + return kvm_read_guest(kvm, ghc->gpa, data, len); + + if (kvm_is_error_hva(ghc->hva)) + return -EFAULT; + + r = __copy_from_user(data, (void __user *)ghc->hva, len); + if (r) + return -EFAULT; + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_read_guest_cached); + +int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) +{ + const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); + + return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); +} +EXPORT_SYMBOL_GPL(kvm_clear_guest_page); + +int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) +{ + gfn_t gfn = gpa >> PAGE_SHIFT; + int seg; + int offset = offset_in_page(gpa); + int ret; + + while ((seg = next_segment(len, offset)) != 0) { + ret = kvm_clear_guest_page(kvm, gfn, offset, seg); + if (ret < 0) + return ret; + offset = 0; + len -= seg; + ++gfn; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_clear_guest); + +static void mark_page_dirty_in_slot(struct kvm *kvm, + struct kvm_memory_slot *memslot, + gfn_t gfn) +{ + if (memslot && memslot->dirty_bitmap) { + unsigned long rel_gfn = gfn - memslot->base_gfn; + + set_bit_le(rel_gfn, memslot->dirty_bitmap); + } +} + +void mark_page_dirty(struct kvm *kvm, gfn_t gfn) +{ + struct kvm_memory_slot *memslot; + + memslot = gfn_to_memslot(kvm, gfn); + mark_page_dirty_in_slot(kvm, memslot, gfn); +} +EXPORT_SYMBOL_GPL(mark_page_dirty); + +static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) +{ + if (kvm_arch_vcpu_runnable(vcpu)) { + kvm_make_request(KVM_REQ_UNHALT, vcpu); + return -EINTR; + } + if (kvm_cpu_has_pending_timer(vcpu)) + return -EINTR; + if (signal_pending(current)) + return -EINTR; + + return 0; +} + +/* + * The vCPU has executed a HLT instruction with in-kernel mode enabled. + */ +void kvm_vcpu_block(struct kvm_vcpu *vcpu) +{ + ktime_t start, cur; + DEFINE_WAIT(wait); + bool waited = false; + + start = cur = ktime_get(); + if (halt_poll_ns) { + ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns); + + do { + /* + * This sets KVM_REQ_UNHALT if an interrupt + * arrives. + */ + if (kvm_vcpu_check_block(vcpu) < 0) { + ++vcpu->stat.halt_successful_poll; + goto out; + } + cur = ktime_get(); + } while (single_task_running() && ktime_before(cur, stop)); + } + + for (;;) { + prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); + + if (kvm_vcpu_check_block(vcpu) < 0) + break; + + waited = true; + schedule(); + } + + finish_wait(&vcpu->wq, &wait); + cur = ktime_get(); + +out: + trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited); +} +EXPORT_SYMBOL_GPL(kvm_vcpu_block); + +#ifndef CONFIG_S390 +/* + * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. + */ +void kvm_vcpu_kick(struct kvm_vcpu *vcpu) +{ + int me; + int cpu = vcpu->cpu; + wait_queue_head_t *wqp; + + wqp = kvm_arch_vcpu_wq(vcpu); + if (waitqueue_active(wqp)) { + wake_up_interruptible(wqp); + ++vcpu->stat.halt_wakeup; + } + + me = get_cpu(); + if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) + if (kvm_arch_vcpu_should_kick(vcpu)) + smp_send_reschedule(cpu); + put_cpu(); +} +EXPORT_SYMBOL_GPL(kvm_vcpu_kick); +#endif /* !CONFIG_S390 */ + +int kvm_vcpu_yield_to(struct kvm_vcpu *target) +{ + struct pid *pid; + struct task_struct *task = NULL; + int ret = 0; + + rcu_read_lock(); + pid = rcu_dereference(target->pid); + if (pid) + task = get_pid_task(pid, PIDTYPE_PID); + rcu_read_unlock(); + if (!task) + return ret; + ret = yield_to(task, 1); + put_task_struct(task); + + return ret; +} +EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); + +/* + * Helper that checks whether a VCPU is eligible for directed yield. + * Most eligible candidate to yield is decided by following heuristics: + * + * (a) VCPU which has not done pl-exit or cpu relax intercepted recently + * (preempted lock holder), indicated by @in_spin_loop. + * Set at the beiginning and cleared at the end of interception/PLE handler. + * + * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get + * chance last time (mostly it has become eligible now since we have probably + * yielded to lockholder in last iteration. This is done by toggling + * @dy_eligible each time a VCPU checked for eligibility.) + * + * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding + * to preempted lock-holder could result in wrong VCPU selection and CPU + * burning. Giving priority for a potential lock-holder increases lock + * progress. + * + * Since algorithm is based on heuristics, accessing another VCPU data without + * locking does not harm. It may result in trying to yield to same VCPU, fail + * and continue with next VCPU and so on. + */ +static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) +{ +#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT + bool eligible; + + eligible = !vcpu->spin_loop.in_spin_loop || + vcpu->spin_loop.dy_eligible; + + if (vcpu->spin_loop.in_spin_loop) + kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); + + return eligible; +#else + return true; +#endif +} + +void kvm_vcpu_on_spin(struct kvm_vcpu *me) +{ + struct kvm *kvm = me->kvm; + struct kvm_vcpu *vcpu; + int last_boosted_vcpu = me->kvm->last_boosted_vcpu; + int yielded = 0; + int try = 3; + int pass; + int i; + + kvm_vcpu_set_in_spin_loop(me, true); + /* + * We boost the priority of a VCPU that is runnable but not + * currently running, because it got preempted by something + * else and called schedule in __vcpu_run. Hopefully that + * VCPU is holding the lock that we need and will release it. + * We approximate round-robin by starting at the last boosted VCPU. + */ + for (pass = 0; pass < 2 && !yielded && try; pass++) { + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!pass && i <= last_boosted_vcpu) { + i = last_boosted_vcpu; + continue; + } else if (pass && i > last_boosted_vcpu) + break; + if (!ACCESS_ONCE(vcpu->preempted)) + continue; + if (vcpu == me) + continue; + if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) + continue; + if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) + continue; + + yielded = kvm_vcpu_yield_to(vcpu); + if (yielded > 0) { + kvm->last_boosted_vcpu = i; + break; + } else if (yielded < 0) { + try--; + if (!try) + break; + } + } + } + kvm_vcpu_set_in_spin_loop(me, false); + + /* Ensure vcpu is not eligible during next spinloop */ + kvm_vcpu_set_dy_eligible(me, false); +} +EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); + +static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) +{ + struct kvm_vcpu *vcpu = vma->vm_file->private_data; + struct page *page; + + if (vmf->pgoff == 0) + page = virt_to_page(vcpu->run); +#ifdef CONFIG_X86 + else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) + page = virt_to_page(vcpu->arch.pio_data); +#endif +#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET + else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) + page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); +#endif + else + return kvm_arch_vcpu_fault(vcpu, vmf); + get_page(page); + vmf->page = page; + return 0; +} + +static const struct vm_operations_struct kvm_vcpu_vm_ops = { + .fault = kvm_vcpu_fault, +}; + +static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) +{ + vma->vm_ops = &kvm_vcpu_vm_ops; + return 0; +} + +static int kvm_vcpu_release(struct inode *inode, struct file *filp) +{ + struct kvm_vcpu *vcpu = filp->private_data; + + kvm_put_kvm(vcpu->kvm); + return 0; +} + +static struct file_operations kvm_vcpu_fops = { + .release = kvm_vcpu_release, + .unlocked_ioctl = kvm_vcpu_ioctl, +#ifdef CONFIG_KVM_COMPAT + .compat_ioctl = kvm_vcpu_compat_ioctl, +#endif + .mmap = kvm_vcpu_mmap, + .llseek = noop_llseek, +}; + +/* + * Allocates an inode for the vcpu. + */ +static int create_vcpu_fd(struct kvm_vcpu *vcpu) +{ + return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); +} + +/* + * Creates some virtual cpus. Good luck creating more than one. + */ +static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) +{ + int r; + struct kvm_vcpu *vcpu, *v; + + if (id >= KVM_MAX_VCPUS) + return -EINVAL; + + vcpu = kvm_arch_vcpu_create(kvm, id); + if (IS_ERR(vcpu)) + return PTR_ERR(vcpu); + + preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); + + r = kvm_arch_vcpu_setup(vcpu); + if (r) + goto vcpu_destroy; + + mutex_lock(&kvm->lock); + if (!kvm_vcpu_compatible(vcpu)) { + r = -EINVAL; + goto unlock_vcpu_destroy; + } + if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { + r = -EINVAL; + goto unlock_vcpu_destroy; + } + + kvm_for_each_vcpu(r, v, kvm) + if (v->vcpu_id == id) { + r = -EEXIST; + goto unlock_vcpu_destroy; + } + + BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); + + /* Now it's all set up, let userspace reach it */ + kvm_get_kvm(kvm); + r = create_vcpu_fd(vcpu); + if (r < 0) { + kvm_put_kvm(kvm); + goto unlock_vcpu_destroy; + } + + kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; + smp_wmb(); + atomic_inc(&kvm->online_vcpus); + + mutex_unlock(&kvm->lock); + kvm_arch_vcpu_postcreate(vcpu); + return r; + +unlock_vcpu_destroy: + mutex_unlock(&kvm->lock); +vcpu_destroy: + kvm_arch_vcpu_destroy(vcpu); + return r; +} + +static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) +{ + if (sigset) { + sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); + vcpu->sigset_active = 1; + vcpu->sigset = *sigset; + } else + vcpu->sigset_active = 0; + return 0; +} + +static long kvm_vcpu_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm_vcpu *vcpu = filp->private_data; + void __user *argp = (void __user *)arg; + int r; + struct kvm_fpu *fpu = NULL; + struct kvm_sregs *kvm_sregs = NULL; + + if (vcpu->kvm->mm != current->mm) + return -EIO; + + if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) + return -EINVAL; + +#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) + /* + * Special cases: vcpu ioctls that are asynchronous to vcpu execution, + * so vcpu_load() would break it. + */ + if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) + return kvm_arch_vcpu_ioctl(filp, ioctl, arg); +#endif + + + r = vcpu_load(vcpu); + if (r) + return r; + switch (ioctl) { + case KVM_RUN: + r = -EINVAL; + if (arg) + goto out; + if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { + /* The thread running this VCPU changed. */ + struct pid *oldpid = vcpu->pid; + struct pid *newpid = get_task_pid(current, PIDTYPE_PID); + + rcu_assign_pointer(vcpu->pid, newpid); + if (oldpid) + synchronize_rcu(); + put_pid(oldpid); + } + r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); + trace_kvm_userspace_exit(vcpu->run->exit_reason, r); + break; + case KVM_GET_REGS: { + struct kvm_regs *kvm_regs; + + r = -ENOMEM; + kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); + if (!kvm_regs) + goto out; + r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); + if (r) + goto out_free1; + r = -EFAULT; + if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) + goto out_free1; + r = 0; +out_free1: + kfree(kvm_regs); + break; + } + case KVM_SET_REGS: { + struct kvm_regs *kvm_regs; + + r = -ENOMEM; + kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); + if (IS_ERR(kvm_regs)) { + r = PTR_ERR(kvm_regs); + goto out; + } + r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); + kfree(kvm_regs); + break; + } + case KVM_GET_SREGS: { + kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); + r = -ENOMEM; + if (!kvm_sregs) + goto out; + r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) + goto out; + r = 0; + break; + } + case KVM_SET_SREGS: { + kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); + if (IS_ERR(kvm_sregs)) { + r = PTR_ERR(kvm_sregs); + kvm_sregs = NULL; + goto out; + } + r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); + break; + } + case KVM_GET_MP_STATE: { + struct kvm_mp_state mp_state; + + r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, &mp_state, sizeof(mp_state))) + goto out; + r = 0; + break; + } + case KVM_SET_MP_STATE: { + struct kvm_mp_state mp_state; + + r = -EFAULT; + if (copy_from_user(&mp_state, argp, sizeof(mp_state))) + goto out; + r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); + break; + } + case KVM_TRANSLATE: { + struct kvm_translation tr; + + r = -EFAULT; + if (copy_from_user(&tr, argp, sizeof(tr))) + goto out; + r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, &tr, sizeof(tr))) + goto out; + r = 0; + break; + } + case KVM_SET_GUEST_DEBUG: { + struct kvm_guest_debug dbg; + + r = -EFAULT; + if (copy_from_user(&dbg, argp, sizeof(dbg))) + goto out; + r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); + break; + } + case KVM_SET_SIGNAL_MASK: { + struct kvm_signal_mask __user *sigmask_arg = argp; + struct kvm_signal_mask kvm_sigmask; + sigset_t sigset, *p; + + p = NULL; + if (argp) { + r = -EFAULT; + if (copy_from_user(&kvm_sigmask, argp, + sizeof(kvm_sigmask))) + goto out; + r = -EINVAL; + if (kvm_sigmask.len != sizeof(sigset)) + goto out; + r = -EFAULT; + if (copy_from_user(&sigset, sigmask_arg->sigset, + sizeof(sigset))) + goto out; + p = &sigset; + } + r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); + break; + } + case KVM_GET_FPU: { + fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); + r = -ENOMEM; + if (!fpu) + goto out; + r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) + goto out; + r = 0; + break; + } + case KVM_SET_FPU: { + fpu = memdup_user(argp, sizeof(*fpu)); + if (IS_ERR(fpu)) { + r = PTR_ERR(fpu); + fpu = NULL; + goto out; + } + r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); + break; + } + default: + r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); + } +out: + vcpu_put(vcpu); + kfree(fpu); + kfree(kvm_sregs); + return r; +} + +#ifdef CONFIG_KVM_COMPAT +static long kvm_vcpu_compat_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm_vcpu *vcpu = filp->private_data; + void __user *argp = compat_ptr(arg); + int r; + + if (vcpu->kvm->mm != current->mm) + return -EIO; + + switch (ioctl) { + case KVM_SET_SIGNAL_MASK: { + struct kvm_signal_mask __user *sigmask_arg = argp; + struct kvm_signal_mask kvm_sigmask; + compat_sigset_t csigset; + sigset_t sigset; + + if (argp) { + r = -EFAULT; + if (copy_from_user(&kvm_sigmask, argp, + sizeof(kvm_sigmask))) + goto out; + r = -EINVAL; + if (kvm_sigmask.len != sizeof(csigset)) + goto out; + r = -EFAULT; + if (copy_from_user(&csigset, sigmask_arg->sigset, + sizeof(csigset))) + goto out; + sigset_from_compat(&sigset, &csigset); + r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); + } else + r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); + break; + } + default: + r = kvm_vcpu_ioctl(filp, ioctl, arg); + } + +out: + return r; +} +#endif + +static int kvm_device_ioctl_attr(struct kvm_device *dev, + int (*accessor)(struct kvm_device *dev, + struct kvm_device_attr *attr), + unsigned long arg) +{ + struct kvm_device_attr attr; + + if (!accessor) + return -EPERM; + + if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) + return -EFAULT; + + return accessor(dev, &attr); +} + +static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, + unsigned long arg) +{ + struct kvm_device *dev = filp->private_data; + + switch (ioctl) { + case KVM_SET_DEVICE_ATTR: + return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); + case KVM_GET_DEVICE_ATTR: + return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); + case KVM_HAS_DEVICE_ATTR: + return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); + default: + if (dev->ops->ioctl) + return dev->ops->ioctl(dev, ioctl, arg); + + return -ENOTTY; + } +} + +static int kvm_device_release(struct inode *inode, struct file *filp) +{ + struct kvm_device *dev = filp->private_data; + struct kvm *kvm = dev->kvm; + + kvm_put_kvm(kvm); + return 0; +} + +static const struct file_operations kvm_device_fops = { + .unlocked_ioctl = kvm_device_ioctl, +#ifdef CONFIG_KVM_COMPAT + .compat_ioctl = kvm_device_ioctl, +#endif + .release = kvm_device_release, +}; + +struct kvm_device *kvm_device_from_filp(struct file *filp) +{ + if (filp->f_op != &kvm_device_fops) + return NULL; + + return filp->private_data; +} + +static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { +#ifdef CONFIG_KVM_MPIC + [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, + [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, +#endif + +#ifdef CONFIG_KVM_XICS + [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, +#endif +}; + +int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) +{ + if (type >= ARRAY_SIZE(kvm_device_ops_table)) + return -ENOSPC; + + if (kvm_device_ops_table[type] != NULL) + return -EEXIST; + + kvm_device_ops_table[type] = ops; + return 0; +} + +void kvm_unregister_device_ops(u32 type) +{ + if (kvm_device_ops_table[type] != NULL) + kvm_device_ops_table[type] = NULL; +} + +static int kvm_ioctl_create_device(struct kvm *kvm, + struct kvm_create_device *cd) +{ + struct kvm_device_ops *ops = NULL; + struct kvm_device *dev; + bool test = cd->flags & KVM_CREATE_DEVICE_TEST; + int ret; + + if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) + return -ENODEV; + + ops = kvm_device_ops_table[cd->type]; + if (ops == NULL) + return -ENODEV; + + if (test) + return 0; + + dev = kzalloc(sizeof(*dev), GFP_KERNEL); + if (!dev) + return -ENOMEM; + + dev->ops = ops; + dev->kvm = kvm; + + ret = ops->create(dev, cd->type); + if (ret < 0) { + kfree(dev); + return ret; + } + + ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); + if (ret < 0) { + ops->destroy(dev); + return ret; + } + + list_add(&dev->vm_node, &kvm->devices); + kvm_get_kvm(kvm); + cd->fd = ret; + return 0; +} + +static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) +{ + switch (arg) { + case KVM_CAP_USER_MEMORY: + case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: + case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: +#ifdef CONFIG_KVM_APIC_ARCHITECTURE + case KVM_CAP_SET_BOOT_CPU_ID: +#endif + case KVM_CAP_INTERNAL_ERROR_DATA: +#ifdef CONFIG_HAVE_KVM_MSI + case KVM_CAP_SIGNAL_MSI: +#endif +#ifdef CONFIG_HAVE_KVM_IRQFD + case KVM_CAP_IRQFD: + case KVM_CAP_IRQFD_RESAMPLE: +#endif + case KVM_CAP_CHECK_EXTENSION_VM: + return 1; +#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING + case KVM_CAP_IRQ_ROUTING: + return KVM_MAX_IRQ_ROUTES; +#endif + default: + break; + } + return kvm_vm_ioctl_check_extension(kvm, arg); +} + +static long kvm_vm_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm *kvm = filp->private_data; + void __user *argp = (void __user *)arg; + int r; + + if (kvm->mm != current->mm) + return -EIO; + switch (ioctl) { + case KVM_CREATE_VCPU: + r = kvm_vm_ioctl_create_vcpu(kvm, arg); + break; + case KVM_SET_USER_MEMORY_REGION: { + struct kvm_userspace_memory_region kvm_userspace_mem; + + r = -EFAULT; + if (copy_from_user(&kvm_userspace_mem, argp, + sizeof(kvm_userspace_mem))) + goto out; + + r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); + break; + } + case KVM_GET_DIRTY_LOG: { + struct kvm_dirty_log log; + + r = -EFAULT; + if (copy_from_user(&log, argp, sizeof(log))) + goto out; + r = kvm_vm_ioctl_get_dirty_log(kvm, &log); + break; + } +#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET + case KVM_REGISTER_COALESCED_MMIO: { + struct kvm_coalesced_mmio_zone zone; + + r = -EFAULT; + if (copy_from_user(&zone, argp, sizeof(zone))) + goto out; + r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); + break; + } + case KVM_UNREGISTER_COALESCED_MMIO: { + struct kvm_coalesced_mmio_zone zone; + + r = -EFAULT; + if (copy_from_user(&zone, argp, sizeof(zone))) + goto out; + r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); + break; + } +#endif + case KVM_IRQFD: { + struct kvm_irqfd data; + + r = -EFAULT; + if (copy_from_user(&data, argp, sizeof(data))) + goto out; + r = kvm_irqfd(kvm, &data); + break; + } + case KVM_IOEVENTFD: { + struct kvm_ioeventfd data; + + r = -EFAULT; + if (copy_from_user(&data, argp, sizeof(data))) + goto out; + r = kvm_ioeventfd(kvm, &data); + break; + } +#ifdef CONFIG_KVM_APIC_ARCHITECTURE + case KVM_SET_BOOT_CPU_ID: + r = 0; + mutex_lock(&kvm->lock); + if (atomic_read(&kvm->online_vcpus) != 0) + r = -EBUSY; + else + kvm->bsp_vcpu_id = arg; + mutex_unlock(&kvm->lock); + break; +#endif +#ifdef CONFIG_HAVE_KVM_MSI + case KVM_SIGNAL_MSI: { + struct kvm_msi msi; + + r = -EFAULT; + if (copy_from_user(&msi, argp, sizeof(msi))) + goto out; + r = kvm_send_userspace_msi(kvm, &msi); + break; + } +#endif +#ifdef __KVM_HAVE_IRQ_LINE + case KVM_IRQ_LINE_STATUS: + case KVM_IRQ_LINE: { + struct kvm_irq_level irq_event; + + r = -EFAULT; + if (copy_from_user(&irq_event, argp, sizeof(irq_event))) + goto out; + + r = kvm_vm_ioctl_irq_line(kvm, &irq_event, + ioctl == KVM_IRQ_LINE_STATUS); + if (r) + goto out; + + r = -EFAULT; + if (ioctl == KVM_IRQ_LINE_STATUS) { + if (copy_to_user(argp, &irq_event, sizeof(irq_event))) + goto out; + } + + r = 0; + break; + } +#endif +#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING + case KVM_SET_GSI_ROUTING: { + struct kvm_irq_routing routing; + struct kvm_irq_routing __user *urouting; + struct kvm_irq_routing_entry *entries; + + r = -EFAULT; + if (copy_from_user(&routing, argp, sizeof(routing))) + goto out; + r = -EINVAL; + if (routing.nr >= KVM_MAX_IRQ_ROUTES) + goto out; + if (routing.flags) + goto out; + r = -ENOMEM; + entries = vmalloc(routing.nr * sizeof(*entries)); + if (!entries) + goto out; + r = -EFAULT; + urouting = argp; + if (copy_from_user(entries, urouting->entries, + routing.nr * sizeof(*entries))) + goto out_free_irq_routing; + r = kvm_set_irq_routing(kvm, entries, routing.nr, + routing.flags); +out_free_irq_routing: + vfree(entries); + break; + } +#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ + case KVM_CREATE_DEVICE: { + struct kvm_create_device cd; + + r = -EFAULT; + if (copy_from_user(&cd, argp, sizeof(cd))) + goto out; + + r = kvm_ioctl_create_device(kvm, &cd); + if (r) + goto out; + + r = -EFAULT; + if (copy_to_user(argp, &cd, sizeof(cd))) + goto out; + + r = 0; + break; + } + case KVM_CHECK_EXTENSION: + r = kvm_vm_ioctl_check_extension_generic(kvm, arg); + break; + default: + r = kvm_arch_vm_ioctl(filp, ioctl, arg); + } +out: + return r; +} + +#ifdef CONFIG_KVM_COMPAT +struct compat_kvm_dirty_log { + __u32 slot; + __u32 padding1; + union { + compat_uptr_t dirty_bitmap; /* one bit per page */ + __u64 padding2; + }; +}; + +static long kvm_vm_compat_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm *kvm = filp->private_data; + int r; + + if (kvm->mm != current->mm) + return -EIO; + switch (ioctl) { + case KVM_GET_DIRTY_LOG: { + struct compat_kvm_dirty_log compat_log; + struct kvm_dirty_log log; + + r = -EFAULT; + if (copy_from_user(&compat_log, (void __user *)arg, + sizeof(compat_log))) + goto out; + log.slot = compat_log.slot; + log.padding1 = compat_log.padding1; + log.padding2 = compat_log.padding2; + log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); + + r = kvm_vm_ioctl_get_dirty_log(kvm, &log); + break; + } + default: + r = kvm_vm_ioctl(filp, ioctl, arg); + } + +out: + return r; +} +#endif + +static struct file_operations kvm_vm_fops = { + .release = kvm_vm_release, + .unlocked_ioctl = kvm_vm_ioctl, +#ifdef CONFIG_KVM_COMPAT + .compat_ioctl = kvm_vm_compat_ioctl, +#endif + .llseek = noop_llseek, +}; + +static int kvm_dev_ioctl_create_vm(unsigned long type) +{ + int r; + struct kvm *kvm; + + kvm = kvm_create_vm(type); + if (IS_ERR(kvm)) + return PTR_ERR(kvm); +#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET + r = kvm_coalesced_mmio_init(kvm); + if (r < 0) { + kvm_put_kvm(kvm); + return r; + } +#endif + r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); + if (r < 0) + kvm_put_kvm(kvm); + + return r; +} + +static long kvm_dev_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + long r = -EINVAL; + + switch (ioctl) { + case KVM_GET_API_VERSION: + if (arg) + goto out; + r = KVM_API_VERSION; + break; + case KVM_CREATE_VM: + r = kvm_dev_ioctl_create_vm(arg); + break; + case KVM_CHECK_EXTENSION: + r = kvm_vm_ioctl_check_extension_generic(NULL, arg); + break; + case KVM_GET_VCPU_MMAP_SIZE: + if (arg) + goto out; + r = PAGE_SIZE; /* struct kvm_run */ +#ifdef CONFIG_X86 + r += PAGE_SIZE; /* pio data page */ +#endif +#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET + r += PAGE_SIZE; /* coalesced mmio ring page */ +#endif + break; + case KVM_TRACE_ENABLE: + case KVM_TRACE_PAUSE: + case KVM_TRACE_DISABLE: + r = -EOPNOTSUPP; + break; + default: + return kvm_arch_dev_ioctl(filp, ioctl, arg); + } +out: + return r; +} + +static struct file_operations kvm_chardev_ops = { + .unlocked_ioctl = kvm_dev_ioctl, + .compat_ioctl = kvm_dev_ioctl, + .llseek = noop_llseek, +}; + +static struct miscdevice kvm_dev = { + KVM_MINOR, + "kvm", + &kvm_chardev_ops, +}; + +static void hardware_enable_nolock(void *junk) +{ + int cpu = raw_smp_processor_id(); + int r; + + if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) + return; + + cpumask_set_cpu(cpu, cpus_hardware_enabled); + + r = kvm_arch_hardware_enable(); + + if (r) { + cpumask_clear_cpu(cpu, cpus_hardware_enabled); + atomic_inc(&hardware_enable_failed); + pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); + } +} + +static void hardware_enable(void) +{ + raw_spin_lock(&kvm_count_lock); + if (kvm_usage_count) + hardware_enable_nolock(NULL); + raw_spin_unlock(&kvm_count_lock); +} + +static void hardware_disable_nolock(void *junk) +{ + int cpu = raw_smp_processor_id(); + + if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) + return; + cpumask_clear_cpu(cpu, cpus_hardware_enabled); + kvm_arch_hardware_disable(); +} + +static void hardware_disable(void) +{ + raw_spin_lock(&kvm_count_lock); + if (kvm_usage_count) + hardware_disable_nolock(NULL); + raw_spin_unlock(&kvm_count_lock); +} + +static void hardware_disable_all_nolock(void) +{ + BUG_ON(!kvm_usage_count); + + kvm_usage_count--; + if (!kvm_usage_count) + on_each_cpu(hardware_disable_nolock, NULL, 1); +} + +static void hardware_disable_all(void) +{ + raw_spin_lock(&kvm_count_lock); + hardware_disable_all_nolock(); + raw_spin_unlock(&kvm_count_lock); +} + +static int hardware_enable_all(void) +{ + int r = 0; + + raw_spin_lock(&kvm_count_lock); + + kvm_usage_count++; + if (kvm_usage_count == 1) { + atomic_set(&hardware_enable_failed, 0); + on_each_cpu(hardware_enable_nolock, NULL, 1); + + if (atomic_read(&hardware_enable_failed)) { + hardware_disable_all_nolock(); + r = -EBUSY; + } + } + + raw_spin_unlock(&kvm_count_lock); + + return r; +} + +static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, + void *v) +{ + int cpu = (long)v; + + val &= ~CPU_TASKS_FROZEN; + switch (val) { + case CPU_DYING: + pr_info("kvm: disabling virtualization on CPU%d\n", + cpu); + hardware_disable(); + break; + case CPU_STARTING: + pr_info("kvm: enabling virtualization on CPU%d\n", + cpu); + hardware_enable(); + break; + } + return NOTIFY_OK; +} + +static int kvm_reboot(struct notifier_block *notifier, unsigned long val, + void *v) +{ + /* + * Some (well, at least mine) BIOSes hang on reboot if + * in vmx root mode. + * + * And Intel TXT required VMX off for all cpu when system shutdown. + */ + pr_info("kvm: exiting hardware virtualization\n"); + kvm_rebooting = true; + on_each_cpu(hardware_disable_nolock, NULL, 1); + return NOTIFY_OK; +} + +static struct notifier_block kvm_reboot_notifier = { + .notifier_call = kvm_reboot, + .priority = 0, +}; + +static void kvm_io_bus_destroy(struct kvm_io_bus *bus) +{ + int i; + + for (i = 0; i < bus->dev_count; i++) { + struct kvm_io_device *pos = bus->range[i].dev; + + kvm_iodevice_destructor(pos); + } + kfree(bus); +} + +static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, + const struct kvm_io_range *r2) +{ + if (r1->addr < r2->addr) + return -1; + if (r1->addr + r1->len > r2->addr + r2->len) + return 1; + return 0; +} + +static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) +{ + return kvm_io_bus_cmp(p1, p2); +} + +static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, + gpa_t addr, int len) +{ + bus->range[bus->dev_count++] = (struct kvm_io_range) { + .addr = addr, + .len = len, + .dev = dev, + }; + + sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), + kvm_io_bus_sort_cmp, NULL); + + return 0; +} + +static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, + gpa_t addr, int len) +{ + struct kvm_io_range *range, key; + int off; + + key = (struct kvm_io_range) { + .addr = addr, + .len = len, + }; + + range = bsearch(&key, bus->range, bus->dev_count, + sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); + if (range == NULL) + return -ENOENT; + + off = range - bus->range; + + while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) + off--; + + return off; +} + +static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, + struct kvm_io_range *range, const void *val) +{ + int idx; + + idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); + if (idx < 0) + return -EOPNOTSUPP; + + while (idx < bus->dev_count && + kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { + if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, + range->len, val)) + return idx; + idx++; + } + + return -EOPNOTSUPP; +} + +/* kvm_io_bus_write - called under kvm->slots_lock */ +int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, + int len, const void *val) +{ + struct kvm_io_bus *bus; + struct kvm_io_range range; + int r; + + range = (struct kvm_io_range) { + .addr = addr, + .len = len, + }; + + bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); + r = __kvm_io_bus_write(vcpu, bus, &range, val); + return r < 0 ? r : 0; +} + +/* kvm_io_bus_write_cookie - called under kvm->slots_lock */ +int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, + gpa_t addr, int len, const void *val, long cookie) +{ + struct kvm_io_bus *bus; + struct kvm_io_range range; + + range = (struct kvm_io_range) { + .addr = addr, + .len = len, + }; + + bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); + + /* First try the device referenced by cookie. */ + if ((cookie >= 0) && (cookie < bus->dev_count) && + (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) + if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, + val)) + return cookie; + + /* + * cookie contained garbage; fall back to search and return the + * correct cookie value. + */ + return __kvm_io_bus_write(vcpu, bus, &range, val); +} + +static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, + struct kvm_io_range *range, void *val) +{ + int idx; + + idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); + if (idx < 0) + return -EOPNOTSUPP; + + while (idx < bus->dev_count && + kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { + if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, + range->len, val)) + return idx; + idx++; + } + + return -EOPNOTSUPP; +} +EXPORT_SYMBOL_GPL(kvm_io_bus_write); + +/* kvm_io_bus_read - called under kvm->slots_lock */ +int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, + int len, void *val) +{ + struct kvm_io_bus *bus; + struct kvm_io_range range; + int r; + + range = (struct kvm_io_range) { + .addr = addr, + .len = len, + }; + + bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); + r = __kvm_io_bus_read(vcpu, bus, &range, val); + return r < 0 ? r : 0; +} + + +/* Caller must hold slots_lock. */ +int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, + int len, struct kvm_io_device *dev) +{ + struct kvm_io_bus *new_bus, *bus; + + bus = kvm->buses[bus_idx]; + /* exclude ioeventfd which is limited by maximum fd */ + if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) + return -ENOSPC; + + new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * + sizeof(struct kvm_io_range)), GFP_KERNEL); + if (!new_bus) + return -ENOMEM; + memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * + sizeof(struct kvm_io_range))); + kvm_io_bus_insert_dev(new_bus, dev, addr, len); + rcu_assign_pointer(kvm->buses[bus_idx], new_bus); + synchronize_srcu_expedited(&kvm->srcu); + kfree(bus); + + return 0; +} + +/* Caller must hold slots_lock. */ +int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, + struct kvm_io_device *dev) +{ + int i, r; + struct kvm_io_bus *new_bus, *bus; + + bus = kvm->buses[bus_idx]; + r = -ENOENT; + for (i = 0; i < bus->dev_count; i++) + if (bus->range[i].dev == dev) { + r = 0; + break; + } + + if (r) + return r; + + new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * + sizeof(struct kvm_io_range)), GFP_KERNEL); + if (!new_bus) + return -ENOMEM; + + memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); + new_bus->dev_count--; + memcpy(new_bus->range + i, bus->range + i + 1, + (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); + + rcu_assign_pointer(kvm->buses[bus_idx], new_bus); + synchronize_srcu_expedited(&kvm->srcu); + kfree(bus); + return r; +} + +static struct notifier_block kvm_cpu_notifier = { + .notifier_call = kvm_cpu_hotplug, +}; + +static int vm_stat_get(void *_offset, u64 *val) +{ + unsigned offset = (long)_offset; + struct kvm *kvm; + + *val = 0; + spin_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) + *val += *(u32 *)((void *)kvm + offset); + spin_unlock(&kvm_lock); + return 0; +} + +DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); + +static int vcpu_stat_get(void *_offset, u64 *val) +{ + unsigned offset = (long)_offset; + struct kvm *kvm; + struct kvm_vcpu *vcpu; + int i; + + *val = 0; + spin_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) + kvm_for_each_vcpu(i, vcpu, kvm) + *val += *(u32 *)((void *)vcpu + offset); + + spin_unlock(&kvm_lock); + return 0; +} + +DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); + +static const struct file_operations *stat_fops[] = { + [KVM_STAT_VCPU] = &vcpu_stat_fops, + [KVM_STAT_VM] = &vm_stat_fops, +}; + +static int kvm_init_debug(void) +{ + int r = -EEXIST; + struct kvm_stats_debugfs_item *p; + + kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); + if (kvm_debugfs_dir == NULL) + goto out; + + for (p = debugfs_entries; p->name; ++p) { + p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, + (void *)(long)p->offset, + stat_fops[p->kind]); + if (p->dentry == NULL) + goto out_dir; + } + + return 0; + +out_dir: + debugfs_remove_recursive(kvm_debugfs_dir); +out: + return r; +} + +static void kvm_exit_debug(void) +{ + struct kvm_stats_debugfs_item *p; + + for (p = debugfs_entries; p->name; ++p) + debugfs_remove(p->dentry); + debugfs_remove(kvm_debugfs_dir); +} + +static int kvm_suspend(void) +{ + if (kvm_usage_count) + hardware_disable_nolock(NULL); + return 0; +} + +static void kvm_resume(void) +{ + if (kvm_usage_count) { + WARN_ON(raw_spin_is_locked(&kvm_count_lock)); + hardware_enable_nolock(NULL); + } +} + +static struct syscore_ops kvm_syscore_ops = { + .suspend = kvm_suspend, + .resume = kvm_resume, +}; + +static inline +struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) +{ + return container_of(pn, struct kvm_vcpu, preempt_notifier); +} + +static void kvm_sched_in(struct preempt_notifier *pn, int cpu) +{ + struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); + + if (vcpu->preempted) + vcpu->preempted = false; + + kvm_arch_sched_in(vcpu, cpu); + + kvm_arch_vcpu_load(vcpu, cpu); +} + +static void kvm_sched_out(struct preempt_notifier *pn, + struct task_struct *next) +{ + struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); + + if (current->state == TASK_RUNNING) + vcpu->preempted = true; + kvm_arch_vcpu_put(vcpu); +} + +int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, + struct module *module) +{ + int r; + int cpu; + + r = kvm_arch_init(opaque); + if (r) + goto out_fail; + + /* + * kvm_arch_init makes sure there's at most one caller + * for architectures that support multiple implementations, + * like intel and amd on x86. + * kvm_arch_init must be called before kvm_irqfd_init to avoid creating + * conflicts in case kvm is already setup for another implementation. + */ + r = kvm_irqfd_init(); + if (r) + goto out_irqfd; + + if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { + r = -ENOMEM; + goto out_free_0; + } + + r = kvm_arch_hardware_setup(); + if (r < 0) + goto out_free_0a; + + for_each_online_cpu(cpu) { + smp_call_function_single(cpu, + kvm_arch_check_processor_compat, + &r, 1); + if (r < 0) + goto out_free_1; + } + + r = register_cpu_notifier(&kvm_cpu_notifier); + if (r) + goto out_free_2; + register_reboot_notifier(&kvm_reboot_notifier); + + /* A kmem cache lets us meet the alignment requirements of fx_save. */ + if (!vcpu_align) + vcpu_align = __alignof__(struct kvm_vcpu); + kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, + 0, NULL); + if (!kvm_vcpu_cache) { + r = -ENOMEM; + goto out_free_3; + } + + r = kvm_async_pf_init(); + if (r) + goto out_free; + + kvm_chardev_ops.owner = module; + kvm_vm_fops.owner = module; + kvm_vcpu_fops.owner = module; + + r = misc_register(&kvm_dev); + if (r) { + pr_err("kvm: misc device register failed\n"); + goto out_unreg; + } + + register_syscore_ops(&kvm_syscore_ops); + + kvm_preempt_ops.sched_in = kvm_sched_in; + kvm_preempt_ops.sched_out = kvm_sched_out; + + r = kvm_init_debug(); + if (r) { + pr_err("kvm: create debugfs files failed\n"); + goto out_undebugfs; + } + + r = kvm_vfio_ops_init(); + WARN_ON(r); + + return 0; + +out_undebugfs: + unregister_syscore_ops(&kvm_syscore_ops); + misc_deregister(&kvm_dev); +out_unreg: + kvm_async_pf_deinit(); +out_free: + kmem_cache_destroy(kvm_vcpu_cache); +out_free_3: + unregister_reboot_notifier(&kvm_reboot_notifier); + unregister_cpu_notifier(&kvm_cpu_notifier); +out_free_2: +out_free_1: + kvm_arch_hardware_unsetup(); +out_free_0a: + free_cpumask_var(cpus_hardware_enabled); +out_free_0: + kvm_irqfd_exit(); +out_irqfd: + kvm_arch_exit(); +out_fail: + return r; +} +EXPORT_SYMBOL_GPL(kvm_init); + +void kvm_exit(void) +{ + kvm_exit_debug(); + misc_deregister(&kvm_dev); + kmem_cache_destroy(kvm_vcpu_cache); + kvm_async_pf_deinit(); + unregister_syscore_ops(&kvm_syscore_ops); + unregister_reboot_notifier(&kvm_reboot_notifier); + unregister_cpu_notifier(&kvm_cpu_notifier); + on_each_cpu(hardware_disable_nolock, NULL, 1); + kvm_arch_hardware_unsetup(); + kvm_arch_exit(); + kvm_irqfd_exit(); + free_cpumask_var(cpus_hardware_enabled); + kvm_vfio_ops_exit(); +} +EXPORT_SYMBOL_GPL(kvm_exit); |