From 03dd4cb26d967f9588437b0fc9cc0e8353322bb7 Mon Sep 17 00:00:00 2001 From: André Fabian Silva Delgado Date: Fri, 25 Mar 2016 03:53:42 -0300 Subject: Linux-libre 4.5-gnu --- Documentation/cgroups/blkio-controller.txt | 455 ----------------------------- 1 file changed, 455 deletions(-) delete mode 100644 Documentation/cgroups/blkio-controller.txt (limited to 'Documentation/cgroups/blkio-controller.txt') diff --git a/Documentation/cgroups/blkio-controller.txt b/Documentation/cgroups/blkio-controller.txt deleted file mode 100644 index 52fa9f353..000000000 --- a/Documentation/cgroups/blkio-controller.txt +++ /dev/null @@ -1,455 +0,0 @@ - Block IO Controller - =================== -Overview -======== -cgroup subsys "blkio" implements the block io controller. There seems to be -a need of various kinds of IO control policies (like proportional BW, max BW) -both at leaf nodes as well as at intermediate nodes in a storage hierarchy. -Plan is to use the same cgroup based management interface for blkio controller -and based on user options switch IO policies in the background. - -Currently two IO control policies are implemented. First one is proportional -weight time based division of disk policy. It is implemented in CFQ. Hence -this policy takes effect only on leaf nodes when CFQ is being used. The second -one is throttling policy which can be used to specify upper IO rate limits -on devices. This policy is implemented in generic block layer and can be -used on leaf nodes as well as higher level logical devices like device mapper. - -HOWTO -===== -Proportional Weight division of bandwidth ------------------------------------------ -You can do a very simple testing of running two dd threads in two different -cgroups. Here is what you can do. - -- Enable Block IO controller - CONFIG_BLK_CGROUP=y - -- Enable group scheduling in CFQ - CONFIG_CFQ_GROUP_IOSCHED=y - -- Compile and boot into kernel and mount IO controller (blkio); see - cgroups.txt, Why are cgroups needed?. - - mount -t tmpfs cgroup_root /sys/fs/cgroup - mkdir /sys/fs/cgroup/blkio - mount -t cgroup -o blkio none /sys/fs/cgroup/blkio - -- Create two cgroups - mkdir -p /sys/fs/cgroup/blkio/test1/ /sys/fs/cgroup/blkio/test2 - -- Set weights of group test1 and test2 - echo 1000 > /sys/fs/cgroup/blkio/test1/blkio.weight - echo 500 > /sys/fs/cgroup/blkio/test2/blkio.weight - -- Create two same size files (say 512MB each) on same disk (file1, file2) and - launch two dd threads in different cgroup to read those files. - - sync - echo 3 > /proc/sys/vm/drop_caches - - dd if=/mnt/sdb/zerofile1 of=/dev/null & - echo $! > /sys/fs/cgroup/blkio/test1/tasks - cat /sys/fs/cgroup/blkio/test1/tasks - - dd if=/mnt/sdb/zerofile2 of=/dev/null & - echo $! > /sys/fs/cgroup/blkio/test2/tasks - cat /sys/fs/cgroup/blkio/test2/tasks - -- At macro level, first dd should finish first. To get more precise data, keep - on looking at (with the help of script), at blkio.disk_time and - blkio.disk_sectors files of both test1 and test2 groups. This will tell how - much disk time (in milliseconds), each group got and how many sectors each - group dispatched to the disk. We provide fairness in terms of disk time, so - ideally io.disk_time of cgroups should be in proportion to the weight. - -Throttling/Upper Limit policy ------------------------------ -- Enable Block IO controller - CONFIG_BLK_CGROUP=y - -- Enable throttling in block layer - CONFIG_BLK_DEV_THROTTLING=y - -- Mount blkio controller (see cgroups.txt, Why are cgroups needed?) - mount -t cgroup -o blkio none /sys/fs/cgroup/blkio - -- Specify a bandwidth rate on particular device for root group. The format - for policy is ": ". - - echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device - - Above will put a limit of 1MB/second on reads happening for root group - on device having major/minor number 8:16. - -- Run dd to read a file and see if rate is throttled to 1MB/s or not. - - # dd if=/mnt/common/zerofile of=/dev/null bs=4K count=1024 - # iflag=direct - 1024+0 records in - 1024+0 records out - 4194304 bytes (4.2 MB) copied, 4.0001 s, 1.0 MB/s - - Limits for writes can be put using blkio.throttle.write_bps_device file. - -Hierarchical Cgroups -==================== - -Both CFQ and throttling implement hierarchy support; however, -throttling's hierarchy support is enabled iff "sane_behavior" is -enabled from cgroup side, which currently is a development option and -not publicly available. - -If somebody created a hierarchy like as follows. - - root - / \ - test1 test2 - | - test3 - -CFQ by default and throttling with "sane_behavior" will handle the -hierarchy correctly. For details on CFQ hierarchy support, refer to -Documentation/block/cfq-iosched.txt. For throttling, all limits apply -to the whole subtree while all statistics are local to the IOs -directly generated by tasks in that cgroup. - -Throttling without "sane_behavior" enabled from cgroup side will -practically treat all groups at same level as if it looks like the -following. - - pivot - / / \ \ - root test1 test2 test3 - -Various user visible config options -=================================== -CONFIG_BLK_CGROUP - - Block IO controller. - -CONFIG_DEBUG_BLK_CGROUP - - Debug help. Right now some additional stats file show up in cgroup - if this option is enabled. - -CONFIG_CFQ_GROUP_IOSCHED - - Enables group scheduling in CFQ. Currently only 1 level of group - creation is allowed. - -CONFIG_BLK_DEV_THROTTLING - - Enable block device throttling support in block layer. - -Details of cgroup files -======================= -Proportional weight policy files --------------------------------- -- blkio.weight - - Specifies per cgroup weight. This is default weight of the group - on all the devices until and unless overridden by per device rule. - (See blkio.weight_device). - Currently allowed range of weights is from 10 to 1000. - -- blkio.weight_device - - One can specify per cgroup per device rules using this interface. - These rules override the default value of group weight as specified - by blkio.weight. - - Following is the format. - - # echo dev_maj:dev_minor weight > blkio.weight_device - Configure weight=300 on /dev/sdb (8:16) in this cgroup - # echo 8:16 300 > blkio.weight_device - # cat blkio.weight_device - dev weight - 8:16 300 - - Configure weight=500 on /dev/sda (8:0) in this cgroup - # echo 8:0 500 > blkio.weight_device - # cat blkio.weight_device - dev weight - 8:0 500 - 8:16 300 - - Remove specific weight for /dev/sda in this cgroup - # echo 8:0 0 > blkio.weight_device - # cat blkio.weight_device - dev weight - 8:16 300 - -- blkio.leaf_weight[_device] - - Equivalents of blkio.weight[_device] for the purpose of - deciding how much weight tasks in the given cgroup has while - competing with the cgroup's child cgroups. For details, - please refer to Documentation/block/cfq-iosched.txt. - -- blkio.time - - disk time allocated to cgroup per device in milliseconds. First - two fields specify the major and minor number of the device and - third field specifies the disk time allocated to group in - milliseconds. - -- blkio.sectors - - number of sectors transferred to/from disk by the group. First - two fields specify the major and minor number of the device and - third field specifies the number of sectors transferred by the - group to/from the device. - -- blkio.io_service_bytes - - Number of bytes transferred to/from the disk by the group. These - are further divided by the type of operation - read or write, sync - or async. First two fields specify the major and minor number of the - device, third field specifies the operation type and the fourth field - specifies the number of bytes. - -- blkio.io_serviced - - Number of IOs (bio) issued to the disk by the group. These - are further divided by the type of operation - read or write, sync - or async. First two fields specify the major and minor number of the - device, third field specifies the operation type and the fourth field - specifies the number of IOs. - -- blkio.io_service_time - - Total amount of time between request dispatch and request completion - for the IOs done by this cgroup. This is in nanoseconds to make it - meaningful for flash devices too. For devices with queue depth of 1, - this time represents the actual service time. When queue_depth > 1, - that is no longer true as requests may be served out of order. This - may cause the service time for a given IO to include the service time - of multiple IOs when served out of order which may result in total - io_service_time > actual time elapsed. This time is further divided by - the type of operation - read or write, sync or async. First two fields - specify the major and minor number of the device, third field - specifies the operation type and the fourth field specifies the - io_service_time in ns. - -- blkio.io_wait_time - - Total amount of time the IOs for this cgroup spent waiting in the - scheduler queues for service. This can be greater than the total time - elapsed since it is cumulative io_wait_time for all IOs. It is not a - measure of total time the cgroup spent waiting but rather a measure of - the wait_time for its individual IOs. For devices with queue_depth > 1 - this metric does not include the time spent waiting for service once - the IO is dispatched to the device but till it actually gets serviced - (there might be a time lag here due to re-ordering of requests by the - device). This is in nanoseconds to make it meaningful for flash - devices too. This time is further divided by the type of operation - - read or write, sync or async. First two fields specify the major and - minor number of the device, third field specifies the operation type - and the fourth field specifies the io_wait_time in ns. - -- blkio.io_merged - - Total number of bios/requests merged into requests belonging to this - cgroup. This is further divided by the type of operation - read or - write, sync or async. - -- blkio.io_queued - - Total number of requests queued up at any given instant for this - cgroup. This is further divided by the type of operation - read or - write, sync or async. - -- blkio.avg_queue_size - - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. - The average queue size for this cgroup over the entire time of this - cgroup's existence. Queue size samples are taken each time one of the - queues of this cgroup gets a timeslice. - -- blkio.group_wait_time - - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. - This is the amount of time the cgroup had to wait since it became busy - (i.e., went from 0 to 1 request queued) to get a timeslice for one of - its queues. This is different from the io_wait_time which is the - cumulative total of the amount of time spent by each IO in that cgroup - waiting in the scheduler queue. This is in nanoseconds. If this is - read when the cgroup is in a waiting (for timeslice) state, the stat - will only report the group_wait_time accumulated till the last time it - got a timeslice and will not include the current delta. - -- blkio.empty_time - - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. - This is the amount of time a cgroup spends without any pending - requests when not being served, i.e., it does not include any time - spent idling for one of the queues of the cgroup. This is in - nanoseconds. If this is read when the cgroup is in an empty state, - the stat will only report the empty_time accumulated till the last - time it had a pending request and will not include the current delta. - -- blkio.idle_time - - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. - This is the amount of time spent by the IO scheduler idling for a - given cgroup in anticipation of a better request than the existing ones - from other queues/cgroups. This is in nanoseconds. If this is read - when the cgroup is in an idling state, the stat will only report the - idle_time accumulated till the last idle period and will not include - the current delta. - -- blkio.dequeue - - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. This - gives the statistics about how many a times a group was dequeued - from service tree of the device. First two fields specify the major - and minor number of the device and third field specifies the number - of times a group was dequeued from a particular device. - -- blkio.*_recursive - - Recursive version of various stats. These files show the - same information as their non-recursive counterparts but - include stats from all the descendant cgroups. - -Throttling/Upper limit policy files ------------------------------------ -- blkio.throttle.read_bps_device - - Specifies upper limit on READ rate from the device. IO rate is - specified in bytes per second. Rules are per device. Following is - the format. - - echo ": " > /cgrp/blkio.throttle.read_bps_device - -- blkio.throttle.write_bps_device - - Specifies upper limit on WRITE rate to the device. IO rate is - specified in bytes per second. Rules are per device. Following is - the format. - - echo ": " > /cgrp/blkio.throttle.write_bps_device - -- blkio.throttle.read_iops_device - - Specifies upper limit on READ rate from the device. IO rate is - specified in IO per second. Rules are per device. Following is - the format. - - echo ": " > /cgrp/blkio.throttle.read_iops_device - -- blkio.throttle.write_iops_device - - Specifies upper limit on WRITE rate to the device. IO rate is - specified in io per second. Rules are per device. Following is - the format. - - echo ": " > /cgrp/blkio.throttle.write_iops_device - -Note: If both BW and IOPS rules are specified for a device, then IO is - subjected to both the constraints. - -- blkio.throttle.io_serviced - - Number of IOs (bio) issued to the disk by the group. These - are further divided by the type of operation - read or write, sync - or async. First two fields specify the major and minor number of the - device, third field specifies the operation type and the fourth field - specifies the number of IOs. - -- blkio.throttle.io_service_bytes - - Number of bytes transferred to/from the disk by the group. These - are further divided by the type of operation - read or write, sync - or async. First two fields specify the major and minor number of the - device, third field specifies the operation type and the fourth field - specifies the number of bytes. - -Common files among various policies ------------------------------------ -- blkio.reset_stats - - Writing an int to this file will result in resetting all the stats - for that cgroup. - -CFQ sysfs tunable -================= -/sys/block//queue/iosched/slice_idle ------------------------------------------- -On a faster hardware CFQ can be slow, especially with sequential workload. -This happens because CFQ idles on a single queue and single queue might not -drive deeper request queue depths to keep the storage busy. In such scenarios -one can try setting slice_idle=0 and that would switch CFQ to IOPS -(IO operations per second) mode on NCQ supporting hardware. - -That means CFQ will not idle between cfq queues of a cfq group and hence be -able to driver higher queue depth and achieve better throughput. That also -means that cfq provides fairness among groups in terms of IOPS and not in -terms of disk time. - -/sys/block//queue/iosched/group_idle ------------------------------------------- -If one disables idling on individual cfq queues and cfq service trees by -setting slice_idle=0, group_idle kicks in. That means CFQ will still idle -on the group in an attempt to provide fairness among groups. - -By default group_idle is same as slice_idle and does not do anything if -slice_idle is enabled. - -One can experience an overall throughput drop if you have created multiple -groups and put applications in that group which are not driving enough -IO to keep disk busy. In that case set group_idle=0, and CFQ will not idle -on individual groups and throughput should improve. - -Writeback -========= - -Page cache is dirtied through buffered writes and shared mmaps and -written asynchronously to the backing filesystem by the writeback -mechanism. Writeback sits between the memory and IO domains and -regulates the proportion of dirty memory by balancing dirtying and -write IOs. - -On traditional cgroup hierarchies, relationships between different -controllers cannot be established making it impossible for writeback -to operate accounting for cgroup resource restrictions and all -writeback IOs are attributed to the root cgroup. - -If both the blkio and memory controllers are used on the v2 hierarchy -and the filesystem supports cgroup writeback, writeback operations -correctly follow the resource restrictions imposed by both memory and -blkio controllers. - -Writeback examines both system-wide and per-cgroup dirty memory status -and enforces the more restrictive of the two. Also, writeback control -parameters which are absolute values - vm.dirty_bytes and -vm.dirty_background_bytes - are distributed across cgroups according -to their current writeback bandwidth. - -There's a peculiarity stemming from the discrepancy in ownership -granularity between memory controller and writeback. While memory -controller tracks ownership per page, writeback operates on inode -basis. cgroup writeback bridges the gap by tracking ownership by -inode but migrating ownership if too many foreign pages, pages which -don't match the current inode ownership, have been encountered while -writing back the inode. - -This is a conscious design choice as writeback operations are -inherently tied to inodes making strictly following page ownership -complicated and inefficient. The only use case which suffers from -this compromise is multiple cgroups concurrently dirtying disjoint -regions of the same inode, which is an unlikely use case and decided -to be unsupported. Note that as memory controller assigns page -ownership on the first use and doesn't update it until the page is -released, even if cgroup writeback strictly follows page ownership, -multiple cgroups dirtying overlapping areas wouldn't work as expected. -In general, write-sharing an inode across multiple cgroups is not well -supported. - -Filesystem support for cgroup writeback ---------------------------------------- - -A filesystem can make writeback IOs cgroup-aware by updating -address_space_operations->writepage[s]() to annotate bio's using the -following two functions. - -* wbc_init_bio(@wbc, @bio) - - Should be called for each bio carrying writeback data and associates - the bio with the inode's owner cgroup. Can be called anytime - between bio allocation and submission. - -* wbc_account_io(@wbc, @page, @bytes) - - Should be called for each data segment being written out. While - this function doesn't care exactly when it's called during the - writeback session, it's the easiest and most natural to call it as - data segments are added to a bio. - -With writeback bio's annotated, cgroup support can be enabled per -super_block by setting MS_CGROUPWB in ->s_flags. This allows for -selective disabling of cgroup writeback support which is helpful when -certain filesystem features, e.g. journaled data mode, are -incompatible. - -wbc_init_bio() binds the specified bio to its cgroup. Depending on -the configuration, the bio may be executed at a lower priority and if -the writeback session is holding shared resources, e.g. a journal -entry, may lead to priority inversion. There is no one easy solution -for the problem. Filesystems can try to work around specific problem -cases by skipping wbc_init_bio() or using bio_associate_blkcg() -directly. -- cgit v1.2.3-54-g00ecf