From 03dd4cb26d967f9588437b0fc9cc0e8353322bb7 Mon Sep 17 00:00:00 2001 From: André Fabian Silva Delgado Date: Fri, 25 Mar 2016 03:53:42 -0300 Subject: Linux-libre 4.5-gnu --- Documentation/cgroups/cgroups.txt | 682 -------------------------------------- 1 file changed, 682 deletions(-) delete mode 100644 Documentation/cgroups/cgroups.txt (limited to 'Documentation/cgroups/cgroups.txt') diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt deleted file mode 100644 index c6256ae98..000000000 --- a/Documentation/cgroups/cgroups.txt +++ /dev/null @@ -1,682 +0,0 @@ - CGROUPS - ------- - -Written by Paul Menage based on -Documentation/cgroups/cpusets.txt - -Original copyright statements from cpusets.txt: -Portions Copyright (C) 2004 BULL SA. -Portions Copyright (c) 2004-2006 Silicon Graphics, Inc. -Modified by Paul Jackson -Modified by Christoph Lameter - -CONTENTS: -========= - -1. Control Groups - 1.1 What are cgroups ? - 1.2 Why are cgroups needed ? - 1.3 How are cgroups implemented ? - 1.4 What does notify_on_release do ? - 1.5 What does clone_children do ? - 1.6 How do I use cgroups ? -2. Usage Examples and Syntax - 2.1 Basic Usage - 2.2 Attaching processes - 2.3 Mounting hierarchies by name -3. Kernel API - 3.1 Overview - 3.2 Synchronization - 3.3 Subsystem API -4. Extended attributes usage -5. Questions - -1. Control Groups -================= - -1.1 What are cgroups ? ----------------------- - -Control Groups provide a mechanism for aggregating/partitioning sets of -tasks, and all their future children, into hierarchical groups with -specialized behaviour. - -Definitions: - -A *cgroup* associates a set of tasks with a set of parameters for one -or more subsystems. - -A *subsystem* is a module that makes use of the task grouping -facilities provided by cgroups to treat groups of tasks in -particular ways. A subsystem is typically a "resource controller" that -schedules a resource or applies per-cgroup limits, but it may be -anything that wants to act on a group of processes, e.g. a -virtualization subsystem. - -A *hierarchy* is a set of cgroups arranged in a tree, such that -every task in the system is in exactly one of the cgroups in the -hierarchy, and a set of subsystems; each subsystem has system-specific -state attached to each cgroup in the hierarchy. Each hierarchy has -an instance of the cgroup virtual filesystem associated with it. - -At any one time there may be multiple active hierarchies of task -cgroups. Each hierarchy is a partition of all tasks in the system. - -User-level code may create and destroy cgroups by name in an -instance of the cgroup virtual file system, specify and query to -which cgroup a task is assigned, and list the task PIDs assigned to -a cgroup. Those creations and assignments only affect the hierarchy -associated with that instance of the cgroup file system. - -On their own, the only use for cgroups is for simple job -tracking. The intention is that other subsystems hook into the generic -cgroup support to provide new attributes for cgroups, such as -accounting/limiting the resources which processes in a cgroup can -access. For example, cpusets (see Documentation/cgroups/cpusets.txt) allow -you to associate a set of CPUs and a set of memory nodes with the -tasks in each cgroup. - -1.2 Why are cgroups needed ? ----------------------------- - -There are multiple efforts to provide process aggregations in the -Linux kernel, mainly for resource-tracking purposes. Such efforts -include cpusets, CKRM/ResGroups, UserBeanCounters, and virtual server -namespaces. These all require the basic notion of a -grouping/partitioning of processes, with newly forked processes ending -up in the same group (cgroup) as their parent process. - -The kernel cgroup patch provides the minimum essential kernel -mechanisms required to efficiently implement such groups. It has -minimal impact on the system fast paths, and provides hooks for -specific subsystems such as cpusets to provide additional behaviour as -desired. - -Multiple hierarchy support is provided to allow for situations where -the division of tasks into cgroups is distinctly different for -different subsystems - having parallel hierarchies allows each -hierarchy to be a natural division of tasks, without having to handle -complex combinations of tasks that would be present if several -unrelated subsystems needed to be forced into the same tree of -cgroups. - -At one extreme, each resource controller or subsystem could be in a -separate hierarchy; at the other extreme, all subsystems -would be attached to the same hierarchy. - -As an example of a scenario (originally proposed by vatsa@in.ibm.com) -that can benefit from multiple hierarchies, consider a large -university server with various users - students, professors, system -tasks etc. The resource planning for this server could be along the -following lines: - - CPU : "Top cpuset" - / \ - CPUSet1 CPUSet2 - | | - (Professors) (Students) - - In addition (system tasks) are attached to topcpuset (so - that they can run anywhere) with a limit of 20% - - Memory : Professors (50%), Students (30%), system (20%) - - Disk : Professors (50%), Students (30%), system (20%) - - Network : WWW browsing (20%), Network File System (60%), others (20%) - / \ - Professors (15%) students (5%) - -Browsers like Firefox/Lynx go into the WWW network class, while (k)nfsd goes -into the NFS network class. - -At the same time Firefox/Lynx will share an appropriate CPU/Memory class -depending on who launched it (prof/student). - -With the ability to classify tasks differently for different resources -(by putting those resource subsystems in different hierarchies), -the admin can easily set up a script which receives exec notifications -and depending on who is launching the browser he can - - # echo browser_pid > /sys/fs/cgroup///tasks - -With only a single hierarchy, he now would potentially have to create -a separate cgroup for every browser launched and associate it with -appropriate network and other resource class. This may lead to -proliferation of such cgroups. - -Also let's say that the administrator would like to give enhanced network -access temporarily to a student's browser (since it is night and the user -wants to do online gaming :)) OR give one of the student's simulation -apps enhanced CPU power. - -With ability to write PIDs directly to resource classes, it's just a -matter of: - - # echo pid > /sys/fs/cgroup/network//tasks - (after some time) - # echo pid > /sys/fs/cgroup/network//tasks - -Without this ability, the administrator would have to split the cgroup into -multiple separate ones and then associate the new cgroups with the -new resource classes. - - - -1.3 How are cgroups implemented ? ---------------------------------- - -Control Groups extends the kernel as follows: - - - Each task in the system has a reference-counted pointer to a - css_set. - - - A css_set contains a set of reference-counted pointers to - cgroup_subsys_state objects, one for each cgroup subsystem - registered in the system. There is no direct link from a task to - the cgroup of which it's a member in each hierarchy, but this - can be determined by following pointers through the - cgroup_subsys_state objects. This is because accessing the - subsystem state is something that's expected to happen frequently - and in performance-critical code, whereas operations that require a - task's actual cgroup assignments (in particular, moving between - cgroups) are less common. A linked list runs through the cg_list - field of each task_struct using the css_set, anchored at - css_set->tasks. - - - A cgroup hierarchy filesystem can be mounted for browsing and - manipulation from user space. - - - You can list all the tasks (by PID) attached to any cgroup. - -The implementation of cgroups requires a few, simple hooks -into the rest of the kernel, none in performance-critical paths: - - - in init/main.c, to initialize the root cgroups and initial - css_set at system boot. - - - in fork and exit, to attach and detach a task from its css_set. - -In addition, a new file system of type "cgroup" may be mounted, to -enable browsing and modifying the cgroups presently known to the -kernel. When mounting a cgroup hierarchy, you may specify a -comma-separated list of subsystems to mount as the filesystem mount -options. By default, mounting the cgroup filesystem attempts to -mount a hierarchy containing all registered subsystems. - -If an active hierarchy with exactly the same set of subsystems already -exists, it will be reused for the new mount. If no existing hierarchy -matches, and any of the requested subsystems are in use in an existing -hierarchy, the mount will fail with -EBUSY. Otherwise, a new hierarchy -is activated, associated with the requested subsystems. - -It's not currently possible to bind a new subsystem to an active -cgroup hierarchy, or to unbind a subsystem from an active cgroup -hierarchy. This may be possible in future, but is fraught with nasty -error-recovery issues. - -When a cgroup filesystem is unmounted, if there are any -child cgroups created below the top-level cgroup, that hierarchy -will remain active even though unmounted; if there are no -child cgroups then the hierarchy will be deactivated. - -No new system calls are added for cgroups - all support for -querying and modifying cgroups is via this cgroup file system. - -Each task under /proc has an added file named 'cgroup' displaying, -for each active hierarchy, the subsystem names and the cgroup name -as the path relative to the root of the cgroup file system. - -Each cgroup is represented by a directory in the cgroup file system -containing the following files describing that cgroup: - - - tasks: list of tasks (by PID) attached to that cgroup. This list - is not guaranteed to be sorted. Writing a thread ID into this file - moves the thread into this cgroup. - - cgroup.procs: list of thread group IDs in the cgroup. This list is - not guaranteed to be sorted or free of duplicate TGIDs, and userspace - should sort/uniquify the list if this property is required. - Writing a thread group ID into this file moves all threads in that - group into this cgroup. - - notify_on_release flag: run the release agent on exit? - - release_agent: the path to use for release notifications (this file - exists in the top cgroup only) - -Other subsystems such as cpusets may add additional files in each -cgroup dir. - -New cgroups are created using the mkdir system call or shell -command. The properties of a cgroup, such as its flags, are -modified by writing to the appropriate file in that cgroups -directory, as listed above. - -The named hierarchical structure of nested cgroups allows partitioning -a large system into nested, dynamically changeable, "soft-partitions". - -The attachment of each task, automatically inherited at fork by any -children of that task, to a cgroup allows organizing the work load -on a system into related sets of tasks. A task may be re-attached to -any other cgroup, if allowed by the permissions on the necessary -cgroup file system directories. - -When a task is moved from one cgroup to another, it gets a new -css_set pointer - if there's an already existing css_set with the -desired collection of cgroups then that group is reused, otherwise a new -css_set is allocated. The appropriate existing css_set is located by -looking into a hash table. - -To allow access from a cgroup to the css_sets (and hence tasks) -that comprise it, a set of cg_cgroup_link objects form a lattice; -each cg_cgroup_link is linked into a list of cg_cgroup_links for -a single cgroup on its cgrp_link_list field, and a list of -cg_cgroup_links for a single css_set on its cg_link_list. - -Thus the set of tasks in a cgroup can be listed by iterating over -each css_set that references the cgroup, and sub-iterating over -each css_set's task set. - -The use of a Linux virtual file system (vfs) to represent the -cgroup hierarchy provides for a familiar permission and name space -for cgroups, with a minimum of additional kernel code. - -1.4 What does notify_on_release do ? ------------------------------------- - -If the notify_on_release flag is enabled (1) in a cgroup, then -whenever the last task in the cgroup leaves (exits or attaches to -some other cgroup) and the last child cgroup of that cgroup -is removed, then the kernel runs the command specified by the contents -of the "release_agent" file in that hierarchy's root directory, -supplying the pathname (relative to the mount point of the cgroup -file system) of the abandoned cgroup. This enables automatic -removal of abandoned cgroups. The default value of -notify_on_release in the root cgroup at system boot is disabled -(0). The default value of other cgroups at creation is the current -value of their parents' notify_on_release settings. The default value of -a cgroup hierarchy's release_agent path is empty. - -1.5 What does clone_children do ? ---------------------------------- - -This flag only affects the cpuset controller. If the clone_children -flag is enabled (1) in a cgroup, a new cpuset cgroup will copy its -configuration from the parent during initialization. - -1.6 How do I use cgroups ? --------------------------- - -To start a new job that is to be contained within a cgroup, using -the "cpuset" cgroup subsystem, the steps are something like: - - 1) mount -t tmpfs cgroup_root /sys/fs/cgroup - 2) mkdir /sys/fs/cgroup/cpuset - 3) mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset - 4) Create the new cgroup by doing mkdir's and write's (or echo's) in - the /sys/fs/cgroup/cpuset virtual file system. - 5) Start a task that will be the "founding father" of the new job. - 6) Attach that task to the new cgroup by writing its PID to the - /sys/fs/cgroup/cpuset tasks file for that cgroup. - 7) fork, exec or clone the job tasks from this founding father task. - -For example, the following sequence of commands will setup a cgroup -named "Charlie", containing just CPUs 2 and 3, and Memory Node 1, -and then start a subshell 'sh' in that cgroup: - - mount -t tmpfs cgroup_root /sys/fs/cgroup - mkdir /sys/fs/cgroup/cpuset - mount -t cgroup cpuset -ocpuset /sys/fs/cgroup/cpuset - cd /sys/fs/cgroup/cpuset - mkdir Charlie - cd Charlie - /bin/echo 2-3 > cpuset.cpus - /bin/echo 1 > cpuset.mems - /bin/echo $$ > tasks - sh - # The subshell 'sh' is now running in cgroup Charlie - # The next line should display '/Charlie' - cat /proc/self/cgroup - -2. Usage Examples and Syntax -============================ - -2.1 Basic Usage ---------------- - -Creating, modifying, using cgroups can be done through the cgroup -virtual filesystem. - -To mount a cgroup hierarchy with all available subsystems, type: -# mount -t cgroup xxx /sys/fs/cgroup - -The "xxx" is not interpreted by the cgroup code, but will appear in -/proc/mounts so may be any useful identifying string that you like. - -Note: Some subsystems do not work without some user input first. For instance, -if cpusets are enabled the user will have to populate the cpus and mems files -for each new cgroup created before that group can be used. - -As explained in section `1.2 Why are cgroups needed?' you should create -different hierarchies of cgroups for each single resource or group of -resources you want to control. Therefore, you should mount a tmpfs on -/sys/fs/cgroup and create directories for each cgroup resource or resource -group. - -# mount -t tmpfs cgroup_root /sys/fs/cgroup -# mkdir /sys/fs/cgroup/rg1 - -To mount a cgroup hierarchy with just the cpuset and memory -subsystems, type: -# mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1 - -While remounting cgroups is currently supported, it is not recommend -to use it. Remounting allows changing bound subsystems and -release_agent. Rebinding is hardly useful as it only works when the -hierarchy is empty and release_agent itself should be replaced with -conventional fsnotify. The support for remounting will be removed in -the future. - -To Specify a hierarchy's release_agent: -# mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \ - xxx /sys/fs/cgroup/rg1 - -Note that specifying 'release_agent' more than once will return failure. - -Note that changing the set of subsystems is currently only supported -when the hierarchy consists of a single (root) cgroup. Supporting -the ability to arbitrarily bind/unbind subsystems from an existing -cgroup hierarchy is intended to be implemented in the future. - -Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the -tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1 -is the cgroup that holds the whole system. - -If you want to change the value of release_agent: -# echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent - -It can also be changed via remount. - -If you want to create a new cgroup under /sys/fs/cgroup/rg1: -# cd /sys/fs/cgroup/rg1 -# mkdir my_cgroup - -Now you want to do something with this cgroup. -# cd my_cgroup - -In this directory you can find several files: -# ls -cgroup.procs notify_on_release tasks -(plus whatever files added by the attached subsystems) - -Now attach your shell to this cgroup: -# /bin/echo $$ > tasks - -You can also create cgroups inside your cgroup by using mkdir in this -directory. -# mkdir my_sub_cs - -To remove a cgroup, just use rmdir: -# rmdir my_sub_cs - -This will fail if the cgroup is in use (has cgroups inside, or -has processes attached, or is held alive by other subsystem-specific -reference). - -2.2 Attaching processes ------------------------ - -# /bin/echo PID > tasks - -Note that it is PID, not PIDs. You can only attach ONE task at a time. -If you have several tasks to attach, you have to do it one after another: - -# /bin/echo PID1 > tasks -# /bin/echo PID2 > tasks - ... -# /bin/echo PIDn > tasks - -You can attach the current shell task by echoing 0: - -# echo 0 > tasks - -You can use the cgroup.procs file instead of the tasks file to move all -threads in a threadgroup at once. Echoing the PID of any task in a -threadgroup to cgroup.procs causes all tasks in that threadgroup to be -attached to the cgroup. Writing 0 to cgroup.procs moves all tasks -in the writing task's threadgroup. - -Note: Since every task is always a member of exactly one cgroup in each -mounted hierarchy, to remove a task from its current cgroup you must -move it into a new cgroup (possibly the root cgroup) by writing to the -new cgroup's tasks file. - -Note: Due to some restrictions enforced by some cgroup subsystems, moving -a process to another cgroup can fail. - -2.3 Mounting hierarchies by name --------------------------------- - -Passing the name= option when mounting a cgroups hierarchy -associates the given name with the hierarchy. This can be used when -mounting a pre-existing hierarchy, in order to refer to it by name -rather than by its set of active subsystems. Each hierarchy is either -nameless, or has a unique name. - -The name should match [\w.-]+ - -When passing a name= option for a new hierarchy, you need to -specify subsystems manually; the legacy behaviour of mounting all -subsystems when none are explicitly specified is not supported when -you give a subsystem a name. - -The name of the subsystem appears as part of the hierarchy description -in /proc/mounts and /proc//cgroups. - - -3. Kernel API -============= - -3.1 Overview ------------- - -Each kernel subsystem that wants to hook into the generic cgroup -system needs to create a cgroup_subsys object. This contains -various methods, which are callbacks from the cgroup system, along -with a subsystem ID which will be assigned by the cgroup system. - -Other fields in the cgroup_subsys object include: - -- subsys_id: a unique array index for the subsystem, indicating which - entry in cgroup->subsys[] this subsystem should be managing. - -- name: should be initialized to a unique subsystem name. Should be - no longer than MAX_CGROUP_TYPE_NAMELEN. - -- early_init: indicate if the subsystem needs early initialization - at system boot. - -Each cgroup object created by the system has an array of pointers, -indexed by subsystem ID; this pointer is entirely managed by the -subsystem; the generic cgroup code will never touch this pointer. - -3.2 Synchronization -------------------- - -There is a global mutex, cgroup_mutex, used by the cgroup -system. This should be taken by anything that wants to modify a -cgroup. It may also be taken to prevent cgroups from being -modified, but more specific locks may be more appropriate in that -situation. - -See kernel/cgroup.c for more details. - -Subsystems can take/release the cgroup_mutex via the functions -cgroup_lock()/cgroup_unlock(). - -Accessing a task's cgroup pointer may be done in the following ways: -- while holding cgroup_mutex -- while holding the task's alloc_lock (via task_lock()) -- inside an rcu_read_lock() section via rcu_dereference() - -3.3 Subsystem API ------------------ - -Each subsystem should: - -- add an entry in linux/cgroup_subsys.h -- define a cgroup_subsys object called _subsys - -If a subsystem can be compiled as a module, it should also have in its -module initcall a call to cgroup_load_subsys(), and in its exitcall a -call to cgroup_unload_subsys(). It should also set its_subsys.module = -THIS_MODULE in its .c file. - -Each subsystem may export the following methods. The only mandatory -methods are css_alloc/free. Any others that are null are presumed to -be successful no-ops. - -struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp) -(cgroup_mutex held by caller) - -Called to allocate a subsystem state object for a cgroup. The -subsystem should allocate its subsystem state object for the passed -cgroup, returning a pointer to the new object on success or a -ERR_PTR() value. On success, the subsystem pointer should point to -a structure of type cgroup_subsys_state (typically embedded in a -larger subsystem-specific object), which will be initialized by the -cgroup system. Note that this will be called at initialization to -create the root subsystem state for this subsystem; this case can be -identified by the passed cgroup object having a NULL parent (since -it's the root of the hierarchy) and may be an appropriate place for -initialization code. - -int css_online(struct cgroup *cgrp) -(cgroup_mutex held by caller) - -Called after @cgrp successfully completed all allocations and made -visible to cgroup_for_each_child/descendant_*() iterators. The -subsystem may choose to fail creation by returning -errno. This -callback can be used to implement reliable state sharing and -propagation along the hierarchy. See the comment on -cgroup_for_each_descendant_pre() for details. - -void css_offline(struct cgroup *cgrp); -(cgroup_mutex held by caller) - -This is the counterpart of css_online() and called iff css_online() -has succeeded on @cgrp. This signifies the beginning of the end of -@cgrp. @cgrp is being removed and the subsystem should start dropping -all references it's holding on @cgrp. When all references are dropped, -cgroup removal will proceed to the next step - css_free(). After this -callback, @cgrp should be considered dead to the subsystem. - -void css_free(struct cgroup *cgrp) -(cgroup_mutex held by caller) - -The cgroup system is about to free @cgrp; the subsystem should free -its subsystem state object. By the time this method is called, @cgrp -is completely unused; @cgrp->parent is still valid. (Note - can also -be called for a newly-created cgroup if an error occurs after this -subsystem's create() method has been called for the new cgroup). - -int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) -(cgroup_mutex held by caller) - -Called prior to moving one or more tasks into a cgroup; if the -subsystem returns an error, this will abort the attach operation. -@tset contains the tasks to be attached and is guaranteed to have at -least one task in it. - -If there are multiple tasks in the taskset, then: - - it's guaranteed that all are from the same thread group - - @tset contains all tasks from the thread group whether or not - they're switching cgroups - - the first task is the leader - -Each @tset entry also contains the task's old cgroup and tasks which -aren't switching cgroup can be skipped easily using the -cgroup_taskset_for_each() iterator. Note that this isn't called on a -fork. If this method returns 0 (success) then this should remain valid -while the caller holds cgroup_mutex and it is ensured that either -attach() or cancel_attach() will be called in future. - -void css_reset(struct cgroup_subsys_state *css) -(cgroup_mutex held by caller) - -An optional operation which should restore @css's configuration to the -initial state. This is currently only used on the unified hierarchy -when a subsystem is disabled on a cgroup through -"cgroup.subtree_control" but should remain enabled because other -subsystems depend on it. cgroup core makes such a css invisible by -removing the associated interface files and invokes this callback so -that the hidden subsystem can return to the initial neutral state. -This prevents unexpected resource control from a hidden css and -ensures that the configuration is in the initial state when it is made -visible again later. - -void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) -(cgroup_mutex held by caller) - -Called when a task attach operation has failed after can_attach() has succeeded. -A subsystem whose can_attach() has some side-effects should provide this -function, so that the subsystem can implement a rollback. If not, not necessary. -This will be called only about subsystems whose can_attach() operation have -succeeded. The parameters are identical to can_attach(). - -void attach(struct cgroup *cgrp, struct cgroup_taskset *tset) -(cgroup_mutex held by caller) - -Called after the task has been attached to the cgroup, to allow any -post-attachment activity that requires memory allocations or blocking. -The parameters are identical to can_attach(). - -void fork(struct task_struct *task) - -Called when a task is forked into a cgroup. - -void exit(struct task_struct *task) - -Called during task exit. - -void free(struct task_struct *task) - -Called when the task_struct is freed. - -void bind(struct cgroup *root) -(cgroup_mutex held by caller) - -Called when a cgroup subsystem is rebound to a different hierarchy -and root cgroup. Currently this will only involve movement between -the default hierarchy (which never has sub-cgroups) and a hierarchy -that is being created/destroyed (and hence has no sub-cgroups). - -4. Extended attribute usage -=========================== - -cgroup filesystem supports certain types of extended attributes in its -directories and files. The current supported types are: - - Trusted (XATTR_TRUSTED) - - Security (XATTR_SECURITY) - -Both require CAP_SYS_ADMIN capability to set. - -Like in tmpfs, the extended attributes in cgroup filesystem are stored -using kernel memory and it's advised to keep the usage at minimum. This -is the reason why user defined extended attributes are not supported, since -any user can do it and there's no limit in the value size. - -The current known users for this feature are SELinux to limit cgroup usage -in containers and systemd for assorted meta data like main PID in a cgroup -(systemd creates a cgroup per service). - -5. Questions -============ - -Q: what's up with this '/bin/echo' ? -A: bash's builtin 'echo' command does not check calls to write() against - errors. If you use it in the cgroup file system, you won't be - able to tell whether a command succeeded or failed. - -Q: When I attach processes, only the first of the line gets really attached ! -A: We can only return one error code per call to write(). So you should also - put only ONE PID. - -- cgit v1.2.3-54-g00ecf